

CPE 323 Module 15 © A. Milenković 1

CPE 323
MODULE 14

ENERGY, POWER, AND LOW-POWER MODES

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module discusses energy, power, and low-power operating modes in the MSP430 family of
microcontrollers.

Objectives

Upon completion of this module learners will be able to:

 Describe factors impacting energy and power of a running program on a microcontroller;

 Utilize low-power modes in their programs to extend operating time of battery-powered
embedded systems;

 Utilize EnergyTrace Technology in Code Composer Studio to perform power profiling of
their programs.

Contents

Contents .. 1

1 Introduction ... 2

2 Energy and Power in CMOS Integrated Circuits .. 2

3 MSP430 Operating Modes .. 8

4 Estimating Operating Time .. 12

5 Power Profiling Using EnergyTrace Technology in CCStudio .. 13

6 Exercises .. 20

mailto:milenka@uah.edu

CPE 323 Energy, Power, LPM Modes © A. Milenković 2

1 Introduction
We traditionally care deeply about several aspects of a computer system we design: (a)
functionality – what services or tasks it can carry out; (b) performance - how much time does it
take to complete a task; and (c) cost - how much does it cost to acquire and operate the
computer system. However, energy-efficiency have emerged as a critical aspect of computer
systems with proliferation of wearable and mobile computing platforms as well as wireless
sensor network nodes that rely on batteries as a source of energy. The energy available is
batteries is limited. A need to frequently replace or recharge batteries reduces convenience and
availability and increases operating costs. The amount of energy stored in a battery (a.k.a.,
battery capacity) is directly proportional to its size and weight. On the other side, we want
computer systems to be lightweight and have a small form factor. No one would be interested
in a smartphone weighing 1 kg. These factors bring the total energy needed to complete a task
and the average power consumed into the focus of computer engineers. We want computing
platforms not only to give us excellent functionality and performance at minimal cost, but also
to be very energy-efficient – meaning they can operate for a long period of time on a single
battery charge and we want the battery to be lightweight and small.

We care about energy-efficiency of computing platforms for reasons that go beyond extending
their operating time on a single battery charge. For example, in wearable electronics and
wireless sensor networks we would like to be able to harvest energy from the environment
(a.k.a. energy scavenging). The existing energy harvesting systems provide a relatively small
amount of energy for low-power and low-energy electronic systems. So, designing low-power
systems is imperative if we want to rely on energy harvested from the environment. Next, in
high-performance and cloud computing, electricity bills for powering and cooling computing
platforms and networking equipment dominate the operating costs. High-end processors have
tens of billions of transistors, each switching billions of times in a second resulting in a
significant amount of heat that needs to be taken off of the chip to prevent it from melting or
malfunctioning. Thus, power impacts cooling costs, packaging costs, and reliability of computing
platforms. Last but not least, the energy demands of modern computing infrastructures
continue to increase with an increase in the number of computing platforms and their
interconnectivity, contributing to growing emissions of greenhouse gasses.

In this module we discuss energy and power in CMOS integrated circuits (CMOS ICs). Specifically
we discuss how power supply voltage, complexity of the chip, the activity of individual
components, and the clock frequency impact energy and power. Next, we briefly discuss
operating modes of the MSP430 family of microcontrollers and how to transition into and out
of these modes. Finally, we discuss power profiling using the EnergyTrace Technology
component available in the TI’s Code Composer Studio (CCStudio).

2 Energy and Power in CMOS Integrated Circuits
Power is drawn from a voltage source attached to the VDD pins of a chip. We define the
following terms:

 The instantaneous power consumed or supplied by a circuit element is the product of
the current through the element and the voltage across the element: 𝑃(𝑡) = 𝐼(𝑡) ∙ 𝑉(𝑡).

CPE 323 Module 15 © A. Milenković 3

 The energy consumed or suppled over an interval T is the integral of the instantaneous

power: 𝐸 = ∫ 𝑃(𝑡) ∙ 𝑑𝑡
𝑇

0
.

 The average power over this interval is determined as 𝑃𝑎𝑣𝑔 =
𝐸

𝑇
=

1

𝑇
∙ ∫ 𝑃(𝑡) ∙ 𝑑𝑡

𝑇

0

Power is expressed in units of Watts (W). Energy is usually expressed in Joules (J), where 1 W =
1 J/1 s. Energy in batteries is often given in W-hr, where 1 W-hr = (1 J/s)(3600 s/hr)(1 hr) = 3600
J. Alternatively, the battery capacity is given in mA-hr (milliAmpere-hours). For example, let us
consider a standard AA battery that provides V=1.5 V and has the capacity of 2500 mA-hr. The
energy of such a battery is E = 2.5 A-hr * 1.5 V * 3600 s/hr = 13,500 J.

To understand energy consumed by CMOS logic gates we consider the simplest logic gate, an
inverter shown in Figure 1. It consists of a PMOS transistor in the pull-up portion of the circuit
(between the VDD and the output Vout) and an NMOS transistor in the pull-down portion of the
circuit (between the Vout and the GND). The energy is taken from the source when the output of

the inverter transitions from a logic 0 to a logic 1 (01). For this transition to happen, the input

of the inverter transitions from a logic 1 to a logic 0 (10). When Vin=0 V (logic 0 at the input),
the NMOS transistor is OFF, and the PMOS transistor is ON. Thus, we can model the equivalent
circuit as shown in Figure 2. The PMOS transistor goes through saturation and liner modes of
operation during this transition, but we can simplify its behavior and model it as a resistor with
an equivalent resistance R. The rest of the circuit is modelled by a load capacitor with the
capacitance C. The current flows from the source through the PMOS and charges the output
capacitor. The transition is completed when the output voltage reaches the power supply
voltage, i.e., Vout=VDD, and the current stops flowing. The product of the resistance R and
capacitance C is often referred to as the time constant, i.e., 𝜏 = 𝑅𝐶. Please note that at time
time 𝑡 = 4𝜏 from the start of the transition, 𝑣𝑜𝑢𝑡 ≈ 0.98𝑉𝐷𝐷.

Figure 1. CMOS Inverter.

Vin Vout

C

Vdd

CPE 323 Energy, Power, LPM Modes © A. Milenković 4

Figure 2. CMOS Inverter, dynamic response for (01) transition on the output.

We can determine energy taken from the source during one 01 transition at the output of
the CMOS inverter as shown in Figure 3. Please note that we transition from the time domain to

CPE 323 Module 15 © A. Milenković 5

integrate over the output voltage that changes from 0 V at 𝑡 = 0 to VDD at 𝑡 = ∞. The energy
depends only on the capacitance C and power supply voltage VDD. This component is known as
switching energy.

Figure 3. Energy taken from the source during one 01 transition on the output of the CMOS inverter.

What happens with this energy? We can apply energy equations for each component, the
PMOS transitor (modelled as a resistor) and the capacitive load (modelled as a capacitor).
Figure 4 shows the energy equations for these components. One half of the energy taken from
the source is dissipated into heat on the PMOS transistor and the other half is stored in form of

charges on the capacitor. Once we have a transistion 10 on the output of the inverter, the
energy stored in the capacitor will turn into heat on the NMOS transistor. Thus, all energy taken
from the source eventually dissipates into heat that needs to be taken off of the chip. If you
look into modern desktops, you will see that processors sit beneath very sophisticated heat
sinks designed in such a way to maximize heat dissipation. Often a fan will be mounted on top
of the heat sink to create airflow that is, with the help of additional fans, taken out of the
computer case.

CPE 323 Energy, Power, LPM Modes © A. Milenković 6

Figure 4. Energy taken from the source during one 01 transition on the output of the CMOS inverter
is split between energy on the capacitor (one half) and energy dissipated into heat on the PMOS

transistor.

The energy equations from above are somewhat simplified, but representative for any CMOS
integrated circuit. No matter how complex an IC is, it is a collection of CMOS gates and the
reasoning applied on the inverter applies universally. Let us now generalize – we have many
gates on a chip and so far we considered only switching power (energy taken when we are
having transitions at the output). Unfortunately, our input signals are not perfect step functions

(01 or 10 transitions are not instantaneous), rather they have a slope. Thus for a short
period of time, tSC, both PMOS and NMOS transistors are ON. This results in a current flowing
between the source and the ground that is known as the short circuit current, ISC. This current
also contributes to the total energy consumption. Next, modern transistors do not behave as
perfect switches - as transistors are getting smaller and smaller, they become leaky. That means
that some charges are leaking regardless of whether we have transitions or not. As long as the

CPE 323 Module 15 © A. Milenković 7

power supply is turned ON, some charges are lost and need to be compensated by the source.
The lost charges are quantified by the leakage current ILEAK. Please note that this component is
static, i.e., it is present even though there may not be any transitions at the output of logic
gates.

Figure 5 shows a general equation for the total energy consumed in CMOS ICs that includes the
switching component, the short-circuit switching component, and the leakage current
component. We assume that the program execution takes T seconds. Not every gate is going to

switch every clock cycle. The total number of transitions 01 can be calculated as follows:

𝛼01 = 𝑝01 ∙ 𝑓 ∙ 𝑇, where 𝑝01 is activity or probability of having 01 transition and 𝑓 is the
system clock frequency.

Figure 5. Equation for the total energy that includes switching component, short-circuit switching
component, and leakage current component.

The average power can be determined as P=E/T, i.e.,

𝑃𝑎𝑣𝑔 = 𝑝01𝐶𝑉𝐷𝐷
2 𝑓 + 𝑝01𝑉𝐷𝐷𝐼𝑆𝐶𝑡𝑆𝐶𝑓 + 𝑉𝐷𝐷𝐼𝐿𝐸𝐴𝐾

This equation gives us a framework to guide the design of energy-efficient circuits (design-time
techniques) as well as to guide run-time optimizations to reduce power.

CPE 323 Energy, Power, LPM Modes © A. Milenković 8

How do we minimize energy/power? The most promising knob we have is to reduce the power
supply voltage, VDD, because the switching energy is proportional to VDD

2. The power supply of
inner logic in modern ICs is below 0.5 V (this does not apply to the power supply used for
external I/O pins that are in order 3-5 V). However, lowering power supply can impact how fast
our gates are switching. Next, it is also important to minimize activity when possible – e.g.,
eliminating unnecessary glitches in logic design will also help reduce switching power. The total
capacitance on a chip is a function of the number and type of logic gates, their fan-out, and
wire lengths. Short-circuit current can be controlled by avoiding having small gates driving long
wires or by avoiding large fan-outs. Finally, leakage current can be reduced by turning off
unused portions of the chip. Modern high-end processors include a lot of hardware resources
solely devoted to power management. They employ Dynamic Voltage and Frequency Scaling
(DVFS) that allows for dynamic changes of the power supply voltage and frequency to adjust to
the current workload – the processor can run at a lower frequency when you are reading an
email or browsing the Internet and at a higher frequency when editing a video. Next, there are
provisions to turn off unused components, so the leakage power can be reduced.

The MSP430 family of microcontrollers is the industry leader in its support for low-power
modes. They allow us to progressively turn off clocks (MCLK, SMCLK, ACLK) or unused
resources. In addition, sophisticated clock subsystems allow for software control of clock
frequency on-the-fly (no need to stop program execution), so one can run at minimal clock
frequency that meets application demands.

Please note that sometimes low-power does not necessarily means lower energy. Often times
running computation at highest clock frequency and going into a low-power mode is better for
the total energy rather than running at a lower clock frequency for longer time.

Things to remember 2-1. Average power in CMOS ICs

The average power in CMOS integrated circuits is shown below:

𝑃𝑎𝑣𝑔 = 𝑝01𝐶𝑉𝐷𝐷
2 𝑓 + 𝑝01𝑉𝐷𝐷𝐼𝑆𝐶𝑡𝑆𝐶𝑓 + 𝑉𝐷𝐷𝐼𝐿𝐸𝐴𝐾

It includes three components:

(a) switching power – it is a function of activity (probability for having transitions 01),
total capacitance, clock frequency, and power supply voltage squared;

(b) switching short-circuit power – it is a function of activity, power supply, frequency,
short circuit current, and short-circuit period;

(c) leakage power – it is a function of the power supply and the leakage current.

3 MSP430 Operating Modes
The MSP430 family is designed for ultra-low-power applications and uses different operating
modes as shown in Figure 6. The low-power modes LPM0 to LPM4 are configured using

CPE 323 Module 15 © A. Milenković 9

dedicated mode-control bits in the status register: CPUOFF, OSCOFF, SCG0, and SCG1. Table 1
shows encoding for different operating modes.

Figure 6. MSP430 Operating Modes.

CPE 323 Energy, Power, LPM Modes © A. Milenković 10

Table 1. Operating Modes

Mode SCG1 SCG0 OSCOFF CPUOFF CPU/Clocks Status

Active 0 0 0 0 CPU, MCLK active; ACLK active; SMCLK is
optionally active (SMCLKOFF=0); DCO is
enabled if it sources clocks; FLL is enabled if
DCO is enabled;

LPM0 0 0 0 1 CPU, MCLK are disabled; ACLK active; SMCLK is
optionally active (SMCLKOFF=0); DCO is
enabled if it sources clocks; FLL is enabled if
DCO is enabled;

LPM1 0 1 0 1 CPU, MCLK are disabled; ACLK active; SMCLK is
optionally active (SMCLKOFF=0); DCO is
enabled if it sources clocks; FLL is disabled;

LPM2 1 0 0 1 CPU, MCLK are disabled; ACLK active; SMCLK is
disabled; DCO is enabled if it sources ACLK; FLL
is disabled;

LPM3 1 1 0 1 CPU, MCLK are disabled; ACLK active; SMCLK is
disabled; DCO is enabled if it sources ACLK; FLL
is disabled;

LPM4 1 1 1 1 CPU and all clocks are disabled;

LPM3.5 1 1 1 1 PMMREGOFF=1, regulator is disabled; no
memory retention; RTC can work;

LPM4.5 1 1 1 1 PMMREGOFF=0, regulator is disabled; no
memory retention; RTC cannot work;

Entering a low-power mode is carried out by simply setting appropriate control bits in the
status register. Exiting a low-power mode is done only through interrupt service routines. Recall
that SR is cleared in the exception processing, ensuring that the MSP430 enters the active
mode. By executing the RETI at the end of the ISR, the original SR is popped off the stack,
ensuring a return into a low-power mode. Optionally, we can change these bits in the copy of
the status register on the stack while inside an ISR, thus enabling a return into a different
operating mode upon exiting the ISR. Code 1 shows assembly code snippets for entering low-
power modes as well as code snippets that are executed within an ISR routine for exiting low-
power modes upon return. Code 2 shows similar examples in C.

CPE 323 Module 15 © A. Milenković 11

By changing any mode-control bits we enter the selected operating mode immediately. All
peripherals operating on any of the disabled clocks become inactive. Thus, if entering an LPM
that disables a clock that is powering a peripheral that should wake you up is clearly going to
result in a deadlock. Thus, do not cook your rooster. While in an LPM all I/O port pins, registers,
and RAM memory remain unchanged.

// Enter LMP0 1
 bis.w #GIE+CPUOFF, SR 2
 3
// Exit LMP0 from an ISR 4
 . . . 5
 bic.w #CPUOFF, 0(SP) // clear CPUOFF in the SR copy on the TOS (0+SP) 6
 reti 7
 8
// Enter LMP3 9
 bis.w #GIE+CPUOFF+SCG1+SCG0, SR 10
 11
// Exit LMP3 from an ISR 12
 . . . 13
 bic.w #CPUOFF+SCG1+SCG0, 0(SP) // clear bits in the SR copy on the TOS (0+SP) 14
 reti 15
 16
 17

Code 1. Assembly examples for entering and exiting LPMs.

// Enter LMP0 1
 __bis_SR_register(LMP0_bits + GIE); 2
 3
// Exit LMP0 from an ISR 4
 __bic_SR_register_on_exit(LMP0_bits); 5
 6
// Enter LMP1 7
 __bis_SR_register(LMP1_bits + GIE); 8
 9
// Exit LMP1 from an ISR 10
 __bic_SR_register_on_exit(LMP1_bits); 11
 12
. . . 13
 14
// Enter LMP4 15
 __bis_SR_register(LMP4_bits + GIE); 16
 17
// Exit LMP4 from an ISR 18
 __bic_SR_register_on_exit(LMP4_bits); 19
 20

Code 2. C examples for entering and exiting LPMs.

CPE 323 Energy, Power, LPM Modes © A. Milenković 12

Things to remember 3-1. MSP430 LPMs

The MSP430 family supports a number of low-power modes entered by setting
mode-control bits in the status register. Interrupt mechanism ensures
exiting the LPMs; inside ISRs the mode-control bits of the status register
copy on the stack can be cleared to ensure returning to a different
operating mode.

4 Estimating Operating Time
Figure 7 shows a typical current profile for MSP430F41x devices. The current drawn depends on
operating mode, clock frequency, as well as power supply voltage. For example, in the active

mode, the device running at 1 MHz clock frequency will draw ~300 A if the power supply is 3 V

or ~200 A if the power supply is 2.2 V. The current drawn in LPM0 under the same conditions

will be 55 A. If we increase the clock frequency to 4 MHz, the current drawn in the active

mode will be 4*300 A or 1.2 mA. This information is typically available in device specific
reference manuals. It allows us to quickly estimate the average current and operating time of
our programs.

Figure 7. Typical Current Drawn by a MSP430F41x Device as a Function of Operating Mode, Power
Supply per 1 MHz.

Let us consider the following example. Assume that your program reports the time with
resolution of deciseconds (1/10th of a second). The main program loop is thus executed 10
times per second. The timer wakes up the CPU, a message is generated and sent over a UART
link. Let us assume that the time needed for the CPU to update time, prepare message and
send it over the UART link is ~2,000 processor clock cycles. Then, the main loop enters LPM0.
Let us assume that we use two AA batteries to power the platform. Their capacity BC=2500 mA-
hr. Based on these assumptions and information from Figure 7 we can estimate the average
current drawn and operating time on a single battery charge as follows.

CPE 323 Module 15 © A. Milenković 13

The first step is to determine the average current. One application period is 100 ms. Assuming
the default clock cycle of ~1 MHz, one application period corresponds to ~100,000 processor
clock cycles. The CPU active time is 2,000 clock cycles or 2% (2/100). The rest of the time
(100,000 – 2,000 = 98,000 CPU clock cycles) or 98%, the CPU spends in LMP0. The average
current is as follows:

𝐼𝑎𝑣𝑔 =
𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝐼active +

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
𝐼LPM0 = 0.02 ∙ 300𝜇𝐴 + 0.98 ∙ 55𝜇𝐴 = 58.25𝜇𝐴

Once we know the average current drawn by our platform, we can estimate operating time.
Operating time, OT, is determined by dividing the battery capacity with the average current
drawn, i.e.,

𝑂𝑇 =
𝐵𝐶

𝐼𝑎𝑣𝑔
=

2500 𝑚𝐴ℎ𝑟

0.05825 𝑚𝐴
≈ 42,918 ℎ𝑟 ≈ 1,777 𝑑𝑎𝑦𝑠

Please note that the above example considers energy drawn only by the MSP430. Other chips
present on a board will also contribute to the power consumed.

Things to remember 4-1. Estimating operating time.

The operating time of a battery-powered system can be estimated as follows:

𝑂𝑇 =
𝐵𝐶

𝐼𝑎𝑣𝑔

where BC is the battery capacity expressed in A-hr and 𝐼𝑎𝑣𝑔 is the average

current drawn expressed in A.

5 Power Profiling Using EnergyTrace Technology in CCStudio
EnergyTrace technology enables analog energy measurements to determine the energy
consumption of an application. This feature is integrated into CCStudio and works on MSP430
and MSP432 microcontrollers with selected debuggers. EnergyTrace tool gives you the
information needed to help you achieve the lowest power design. This feedback makes it easier
to implement the various techniques offered by the MSP architecture, as well as the many tools
provided by TI, such as ULP advisor. More information about EnergyTrace is available on the
following web site: https://www.ti.com/tool/ENERGYTRACE.

EnergyTrace implements a new method for measuring MCU current consumption. Power is
traditionally measured by amplifying the signal of interest and measuring the current and
voltage drop over a shunt resistor at discrete times. In debuggers that support EnergyTrace
sofware, a software-controlled DC-DC converter generates the target power supply. The time
density of the DC/DC converter charge pulses equals the energy consumption of the target
microcontroller. A built-in calibration circuit in the debug tool defines the energy equivalent for
a single charge pulse. Because the width of each charge pulse remains constant, the debugger
can just count each charge pulse and then sum them over time to calculate an average current

https://www.ti.com/tool/ENERGYTRACE

CPE 323 Energy, Power, LPM Modes © A. Milenković 14

which leads to very accurate measurements. Using this approach, even the shortest device
activity that consumes energy contributes to the overall recorded energy.

The TI MSP-FET (Flash Emulation Tool) supports EnergyTrace and can be used with the
EXP430F5529LP Launchpad board. For this, we will need to bypass the built-in ez-FET lite
emulator on the Launchpad by removing all jumpers between the emulator and the rest of the
board. The MSP430 FET should be connected to the Launchpad as follows (see Figure 8):

 TDI/TDO (pin 1 of FET) goes to SBWTDIO of Launchpad;

 VCC_TOOL (pin 2 of FET) goes to 3V3 of Luanchpad;

 TCK (pin 7 of FET) goes to SWBWTCK of Launcpad;

 GND (pin 9 of FET) goes to GND of Launchapd.

Figure 8. MSP430-FET connected to Launchpad.

Figure 8 also shows a USB to TTL Serial cable from Adafruit and its connection to the TxD and
RxD pins of the Launchpad. This connection is needed only if your application communicates
with the workstation over the serial interface, which is the case in the example to follow. The
cable is connected as follows:

 The green wire represents TxD of the serial cable and should be connected to the RxD
pin on the Launchpad;

 The white wire represents RxD of the serial cable and should be connected to the TxD
pin on the Launchpad;

 The black wire represents GND and should be connected to any ground pin on the
Launchpad.

CPE 323 Module 15 © A. Milenković 15

To enable the use of EnergyTrace, open the CCStudio, click on WindowsPreferences, and

then select Code Composer StudioAdvanced toolsEnergyTrace Technology. A window
shown in Figure 9 should open up. You can check the box in front of Enable Auto-Launch on
target connect, if you want. You can specify the power supply voltage (3300 mV in this
example).

Figure 9. Configuring EnergyTrace Technology in Code Composer.

To illustrate the use of EnergyTrace we consider three implementations of a program that
sends timestamped messages to a workstation every second. The programs in Module 12,
namely Module12_D1_ts.c, Module12_D2_ts.c, and Module12_D3_ts.c use polling, ISRs, and
DMA, respectively. Use the project from Module12_D1_ts.c and click on Debug icon. A window
like one in Figure 10 should open. In EnergyTrace Technology tab, click on stopwatch icon and
set the measurement time to 1 minute. Enable Auto-launch on target connect in Preferences.
Click run on the play icon to start a debug session. The measurement will take place for 60 s.
Once the power tracing is completed, the total energy, power (mean, min, max), voltage, and
current are reported as shown in Figure 11. Figure 12 shows the average power over the
measurement period. If you recall in this program we periodically toggle LED1 (it is 1 s on and 1
s off). The current drawn by LED1 dominates the power. The power varies between two states:
~11.35 mV when LED1 is on and ~1.85 mW when LED1 is off. The average power is ~6.58 mW.

CPE 323 Energy, Power, LPM Modes © A. Milenković 16

Figure 10. EnergyTrace Technology Window in Code Composer before measurement is started.

Figure 11. EnergyTrace Technology Window in Code Compose after measurement is conducted.

CPE 323 Module 15 © A. Milenković 17

Figure 12. Power profile for 60 s of execution of Module12_D1_ts.c.

We are interested to evaluate energy-efficiency of 3 principal approaches to interfacing. To
eliminate the dominating effects of the current drawn by LED1, we modify all demo programs
to remove the LED1 toggling statement. The new versions of the programs are named
Module12_D1_ts(noLED).c, Module12_D2_ts(noLED).c, and Module12_D3_ts(noLED).c. We
repeat the process of power profiling for these three versions.

Figure 13, Figure 14, and Figure 15 show the summary and power profiles for
Module12_D1_ts(noLED).c, Module12_D2_ts(noLED).c, Module12_D3_ts(noLED).c,
respectively. The average power is 1.855 mW for implementation with polling, 0.8476 mW for
implementation with ISRs, and 0.8509 mW for implementation with the DMA controller. We
can further reduce power by experimenting with deeper low-power modes (e.g., LPM1 – LPM4)
or using ACLK instead of SMCLK for TimerA or UART peripherals. Readers are encouraged to
probe further and experiment with EnergyTrace and low-power optimizations.

CPE 323 Energy, Power, LPM Modes © A. Milenković 18

Figure 13. Power Profile of Module12_D1_ts(noLED).c.

CPE 323 Module 15 © A. Milenković 19

Figure 14. Power Profile of Module12_D2_ts(noLED).c.

CPE 323 Energy, Power, LPM Modes © A. Milenković 20

Figure 15. Power Profile of Module12_D3_ts(noLED).c.

6 Exercises
Q1.

We are considering processing requirements of an application with the main loop that repeats
every 200ms. Each application cycle invokes three interrupt service routines: isrA is invoked 10
times per application cycle, isrB 20 times, and isrC 20 times. We profile the service routines and

CPE 323 Module 15 © A. Milenković 21

find that isrA takes 250 clock cycles, isrB takes 200 clock cycles, and isrC takes 400 clock cycles.
The time spent in the main loop during one application cycle is 20,000 processor clock cycles.
Answer the following questions.

Q1.A. How many clock cycles is required for the CPU to stay in the active mode during one
application cycle?

Q1.B. If the processor clock is fMCLK=4 MHz, what portion of the application cycle can be spent in
a low-power mode?

Q1.C. Do we need to support nesting of interrupt routines for this application to function
properly? Assume that interrupts isrA and isrB are generated periodically during an application
cycle? Explain your answer. What is the maximum time one service routine may be pending
before it gets serviced?

Q1.D. What is the operating time of the application if we know the following: the battery

capacity is 660 mA-hr, current drawn by the microcontroller in active mode is 4 mA and 10 A
in a low-power mode?

Q1.E. What is the minimum processor clock cycle that we could have and still meet the timing
requirements for the application?

Q2.

Let us consider a program that displays time on the LCD of the TI’s Experimenter platform. The
time is displayed with resolution of one tenth of a second (100 ms, deciseconds). The processor
wakes up periodically, updates local time variables, performs necessary format conversions,
and displays the time on an LCD in the following format (hh.mm.ss.d). These steps take N=2,000
processor clock cycles during which the processor is in the active mode; after that the processor
goes back into a low-power mode. The MCLK in the active mode is 1 MHz. The platform draws 1
mA when the MSP430 is in the active mode and 0.1 mA when in the low-power mode.

Q2.A. What is the total active and sleep time during one application cycle? Calculate the
average current drawn by the platform.

Q2.B. Calculate the average power P consumed (in milliWatts) if we power the platform by two
AA batteries (V=3 V). Determine the system operating time in days if we know that the battery
capacity is 2500 mAh.

