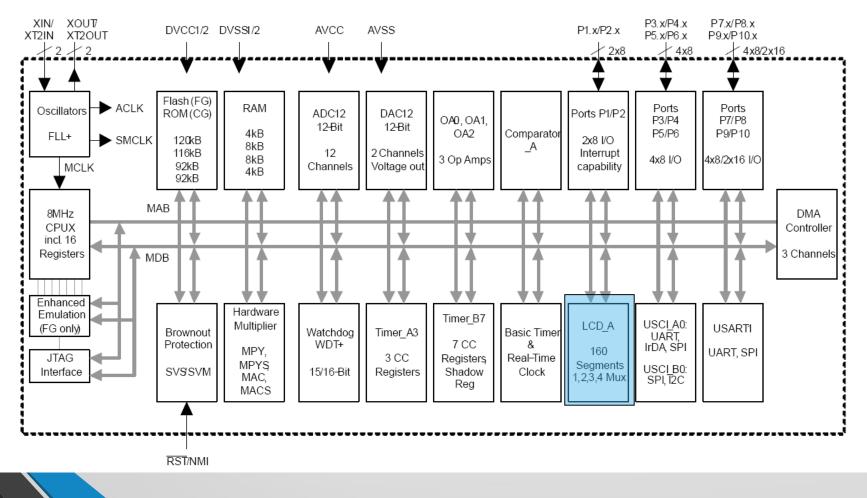


CPE 323: MSP430 LCD_A Controller

Aleksandar Milenkovic


Electrical and Computer Engineering The University of Alabama in Huntsville

milenka@ece.uah.edu

http://www.ece.uah.edu/~milenka

MSP430xG461x Microcontroller

CPE 323 Intro to Embedded Computer Systems

LCD Displays

Bias Voltage **LCD** A Controller

LCD - Liquid crystal display

Clock

- Use much less power than LEDs
- Does not emit light itself but controls the intensity of reflected or transmitted light
 - Backlight must be provided for a display to be used in dark surroundings
- Three classes

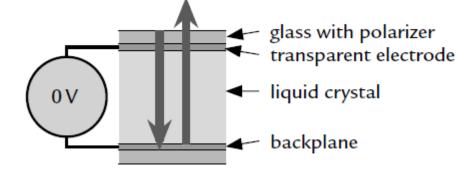
- Segmented LCDs
- Character-based LCDs
- Fully graphical LCDs

Reflective LCD: Operation Basics

Bias Voltage LCD A Controller

- Construction: two glass plates carry transparent electrodes on their opposing faces and there is a mirror below the lower plate
 - Gap between is filled with a liquid crystal

Clock


Basics

Intro

- Bias voltage between electrodes = 0 => Incident light is reflected and the display appears clear
- Sufficiently large bias voltage changes the optical properties of the liquid crystal so that reflected light is no longer transmitted through the upper glass and the segment appears dark
- Electrically the display is similar to a capacitor, albeit rather lossy

(a) No voltage applied: incident light reflected (b) Voltage applied: light absorbed

 $\pm V_{LCD}$

Reflective LCD: Operation Basics (cont'd)

FG4618 LCD Interface

Bias Voltage LCD A Controller

Clock

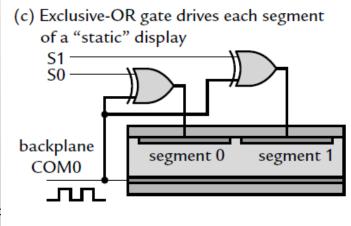
Complication: LCDs must be driven with AC, not DC

Basics

- A steady voltage of only a few tens of millivolts leads to electrolysis of the liquid crystal, which eventually destroys the display
- Approach: The two electrodes of a segment are therefore driven with square waves in antiphase to produce an alternating voltage with zero mean
 - The frequency is low, typically around 100 Hz, but must not be close to multiples of the AC mains (line) frequency (50 or 60 Hz)
 - The output of many lights fluctuates at twice the frequency of the mains and the LCD appears to flicker if it is updated at a similar rate

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

FG4618 LCD Interface


Driving Multiple Segments in LCDs

Bias Voltage LCD A Controller

- Common backplane: COM A square wave provides a clock to bias the display
- Each segment on the front has a separate connection: S0, S1

Clock

- An exclusive-OR gate with a control signal to each segment:
 - Si=0 => XOR gate transmits clock on COM0 unchanged => there is no potential difference between the electrodes, and the segment remains clear
 - Si=1 => XOR inverts the clock so that an alternating bias is applied to the segment, which turns dark
- XOR gates could be real devices but it is straightforward to implement this inside the MCU by toggling the outputs periodically

CPE 323 Intro

Basics

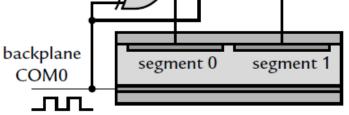
Driving Multiple Segments in LCDs (cont'd)

Bias Voltage LCD A Controller

• Static approach:

Basics

Intro


 One pin for each segment on display + one pin for backplane

Clock

- Problem: Large number of pins
- Solution:

(c) Exclusive-OR gate drives each segment of a "static" display

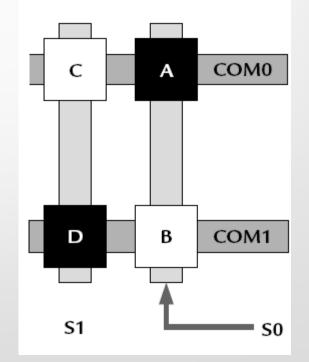
FG4618 LCD Interface

- Multiplexed displays require fewer pins (multiple segments share a single pin)
- Drawback: more trickier to multiplex LCDs because of the requirement for AC drive

asics Multiplexing

Intro

Bias Voltage 🔰 LCD_A Controller



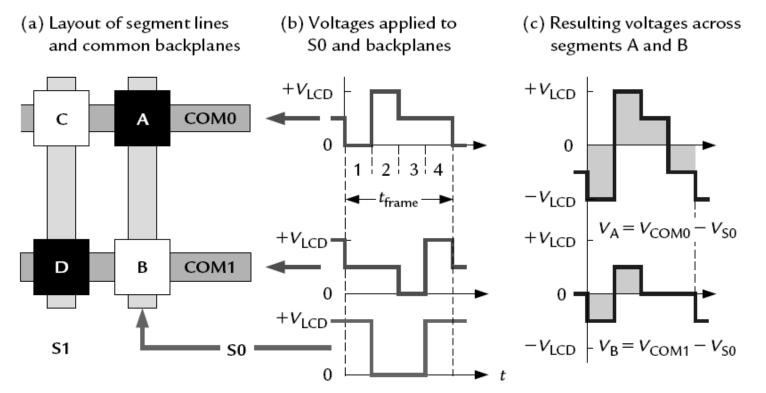
Two-way Multiplexing

Example

- 4 segments (A, B, C, and D)
- 1 backplane
- Static: 5 pins
- Multiplexed: 4 pins
 - 2 common backplanes (COM0, COM1)
 - 2 signals (SO, S1)

(a) Layout of segment lines and common backplanes

Two-way Multiplexing


Bias Voltage LCD A Controller

• Segment A: $V_{COM0} - V_{S0}$; Segment B: $V_{COM1} - V_{S0}$

Multiplexing

Clock

Segment C: V_{COM0} –V_{S1}; Segment D: V_{COM1} – V_{S1}

Two-way Multiplexing

- Each period of the waveforms, called a *frame*, is divided into four phases:
- 1. The segments on COM0 are addressed in the first phase by pulling COM0 to ground (0 V).
 - Segment A should be on and S0 is therefore driven to its maximum value, V_{LCD}
 - $V_A = V_{COM0} V_{S0} = -V_{LCD}$

Multiplexing

Intro

- The segments on COM1 should be inactive during this phase and it is therefore put at a "neutral" voltage of 1/2V_{LCD}
- $V_B = V_{COM1} V_{S0} = -1/2V_{LCD}$
- 2. The voltages in the second phase are the opposite of those in the first to ensure a pure AC signal with zero mean
 - $V_{COM0} = V_{LCD}$ and $V_{S0} = 0$ to give $V_A = +V_{LCD}$

Clock

- The backplane that is not being addressed, COM1, remains at its neutral voltage of $1/2V_{LCD}$ so that $V_B = +1/2V_{LCD}$
- 3. Now it is the turn of COM1 to be addressed so it is pulled to ground and COM0 is set to neutral 1/2V_{LCD}
 - Segment B should be off and S0 is therefore pulled to ground as well
 - 4. This is the opposite of phase 3 to ensure that the mean voltage remains 0.

Two-way Multiplexing

Bias Voltage LCD A Controller

- It is not possible to apply either the maximum voltage ±V_{LCD} at all times to segments that should be on nor a constant value of 0 to those that should be off
- Response of a segment depends on the root mean square (rms) value of the bias across it
- Suppose that $V_{LCD} = 3.0 V$. Then the values here are
 - Vrms A = $\sqrt{5}/8 V_{LCD} \approx 2.4V$

Clock

Multiplexing

- Vrms $B = \sqrt{1/8} V_{LCD} \approx 1.1 V$
- The rms voltages have a ratio of V5 and are sufficiently large and small to make the segments dark and clear, respectively
 - The drive is no longer purely "digital" because a voltage of 1/2 V_{LCD} is needed

LCD_A Display Clock

Bias Voltage LCD A Controller

- Refresh rate: 30 Hz or faster to avoid flicker
 - Higher frequencies give a clearer display but consume more current
- 2-way multiplexed: 2x2, 4 clocks per frame
- 4-way multiplexed display needs eight clock cycles per frame (4x2)
 - fLCD must be at least 240 Hz

Clock

Intro

 ACLK is at the usual 32 KHz => 32 K/240 = 136 or less, so a factor of 128 would probably be chosen

LCD_A Bias Voltage

Bias Voltage LCD A Controller

LCD_A has an internal chain of resistors

Clock

- No external components are needed other than the display itself
- An external resistor chain can be used to reduce the current required. A variable resistor can be attached as a contrast control

LCD_A Bias Voltage

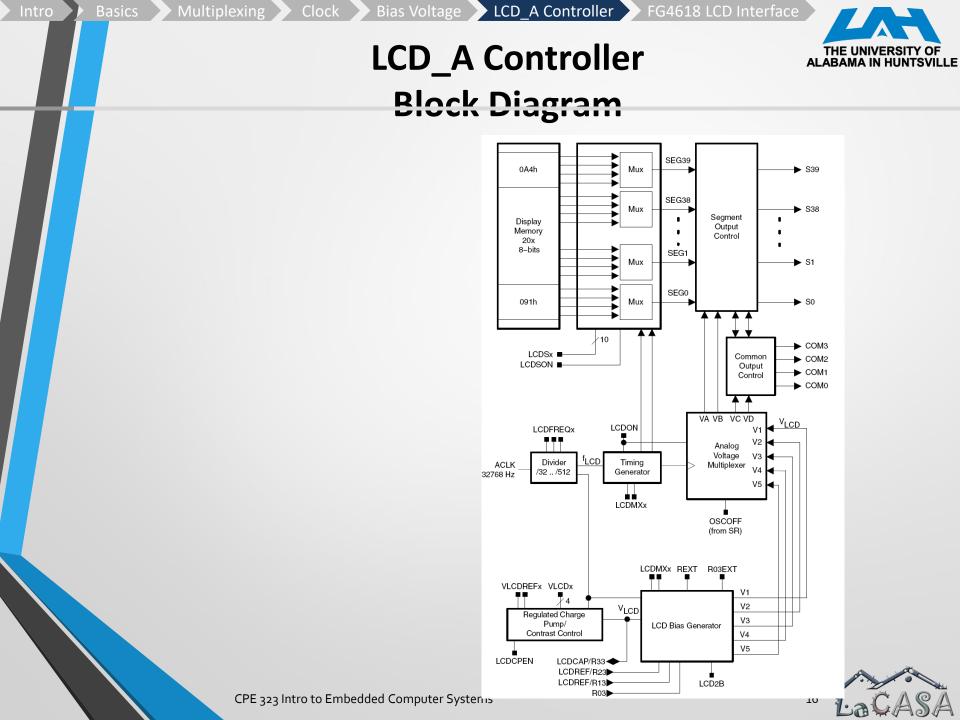
Bias Voltage LCD A Controller

- LCD_A offers three choices for the voltage to drive the display:
 - 1) Internal AVCC

Clock

- 2) An external voltage, which may be used with either the internal or an external divider
- 3) An internal charge pump, which provides an adjustable, regulated output in the range 2.60–3.44V, which can be controlled from software
 - A reservoir capacitor CLCD of at least 4.7F for the charge pump must be connected to the LCDCAP pin
 - Note: CPU may operate on low voltages

LCD_A Controller


• Liquid Crystal Display (LCD) controller

Clock

- Included in several devices of the MSP430 families ('3xx and '4xx)
- Allows a rapid and simple way to interface with the program
- LCD controller commands the LCD panels generating voltage signals to the segments
- Features

- Display memory
- Automatic signal generation
- Configurable frame frequency
- Blinking capability
- Support for 4 types of LCDs:
 - Static
 - 2-mux, 1/2 bias
 - 3-mux, 1/3 bias
 - 4-mux, 1/3 bias

LCD Memory Map

 Each memory bit corresponds to one LCD segment, or is not used, depending on the mode

Clock

Intro

 To turn on an LCD segment, its corresponding memory bit is set

Associated Common Pins	3	2	1	0	3	2	1	0		
Address	7	-	-			-	-	0		Associated egment Pins
0A4h									38	39, 38
0A3h									36	37, 36
0A2h									34	35, 34
0A1h									32	33, 32
0A0h									30	31, 30
09Fh									28	29, 28
09Eh									26	27, 26
09Dh									24	25, 24
09Ch									22	23, 22
09Bh									20	21, 20
09Ah									18	19, 18
099h									16	17, 16
098h									14	15, 14
097h									12	13, 12
096h									10	11, 10
095h									8	9, 8
094h									6	7, 6
093h									4	5, 4
092h									2	3, 2
091h									0	1,0
				/	\				,	
		Sn	+1			S	n			

LCD Controller Operation

LCD controller supports blinking

Clock

- The LCDSON bit is ANDed with each segment's memory bit.
 - When LCDSON = 1, each segment is on or off according to its bit value
 - When LCDSON = 0, each LCD segment is off
- Timing generation

- Uses the f_{LCD} signal to generate the timing for common and segment lines
- Proper frequency f_{LCD} depends on the LCD's requirement for framing frequency and LCD multiplex rate

LCD_A Voltage Generation

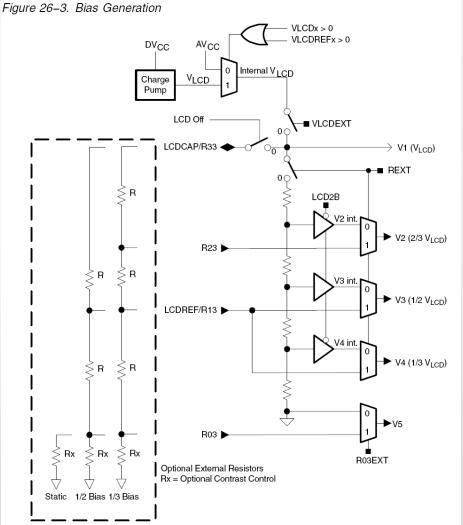
- Allows selectable sources for the peak output waveform voltage, V1, as well as the fractional LCD biasing voltages V2 – V5
- VLCD may be sourced from AVCC, an internal charge pump, or externally
- All internal voltage generation is disabled if the oscillator sourcing ACLK is turned off (OSCOFF = 1) or the LCD_A module is disabled (LCDON = 0)

LCD_A Voltage Selection

Sourced from

Clock

- AVCC when VLCDEXT = 0, VLCDx = 0, and VREFx = 0.
- the internal charge pump when VLCDEXT = 0, VLCDPEN = 1, and VLCDx > 0
 - The charge pump is always sourced from DVCC
 - The VLCDx bits provide a software selectable LCD voltage from 2.6 V to 3.44 V (typical) independent of DVCC
 - The internal charge pump may use an external reference voltage when VLCDREFx = 01. In this case, the charge pump voltage will be 3x the voltage applied externally to the LCDREF pin and the VLCDx bits are ignored.
- When VLCDEXT = 1, VLCD is sourced externally from the LCDCAP pin and the internal charge pump is disabled.



Bias Generation

 The fractional LCD biasing voltages, V2 – V5 can be generate internally or externally, independent of the source for VLCD

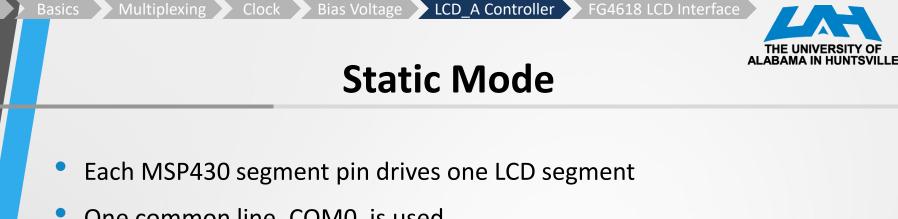
Clock

• REXT bit

LCD_A Voltage Generation

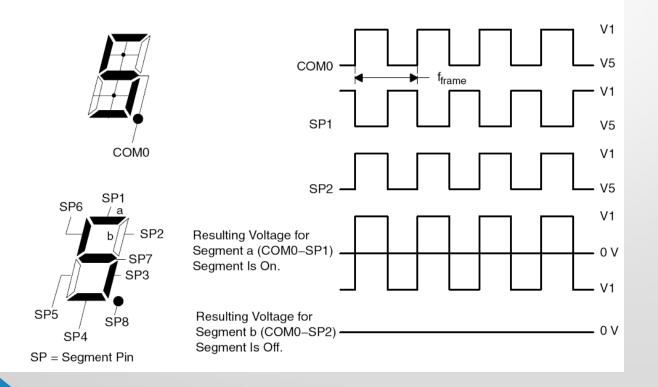
- The contrast ratio depends on the used LCD display and the selected biasing scheme
- Table 26–1 shows the biasing configurations that apply to the different modes together with the RMS voltages for the segments turned on (VRMS,ON) and turned off (VRMS,OFF) as functions of VLCD. It also shows the resulting contrast ratios between the on and off states

Mode	Bias Config	LCDMx	LCD2B	COM Lines	Voltage Levels	V _{RMS,OFF} / V _{LCD}	V _{RMS,ON} / V _{LCD}	Contrast Ratio V _{RMS,ON} / V _{RMS,OFF}
Static	Static	00	Х	1	V1, V5	0	1	1/0
2–mux	1/2	01	1	2	V1, V3, V5	0.354	0.791	2.236
2–mux	1/3	01	0	2	V1, V2, V4, V5	0.333	0.745	2.236
3–mux	1/2	10	1	3	V1, V3, V5	0.408	0.707	1.732
3–mux	1/3	10	0	3	V1, V2, V4, V5	0.333	0.638	1.915
4–mux	1/2	11	1	4	V1, V3, V5	0.433	0.661	1.528
4–mux	1/3	11	0	4	V1, V2, V4, V5	0.333	0.577	1.732


Table 26–1.LCD Voltage and Biasing Characteristics

Clock

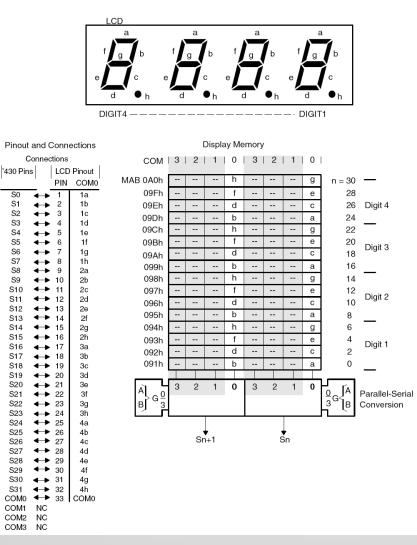
Intro



22

One common line, COMO, is used

Figure 26-4. Example Static Waveforms



Static LCD Example

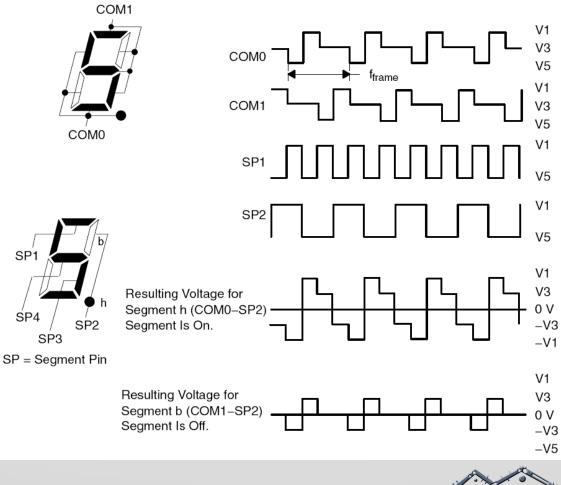
Clock

25

Static Mode Software Example

	f a digit are often lo with the static disp											
a EQU 001h b EQU 010h c EQU 002h d EQU 020h e EQU 004h f EQU 040h g EQU 080h ; The register content : The Table represents ; content of Rx.	of Rx should be disp the 'on'-segments acc	cording		d	b	g	e	C		a]	
MOV.B Table (Rx), MOV.B Ry,&LCDn RRA Ry	<pre>RY ; Load segment in ; into temporary ; (Ry) = 0000 000 ; Note: ; All bits of an ' byte are writte ; (Ry) = 0000 000</pre>	memory 00 hfdb LCD me en	geca mory		ł	n f	d	b	g	е	с	а
MOV.B Ry, &LCDn+1	; Note: ; All bits of an ; byte are writte	LCD mei en	mory		o	h	f	d	b	g	е	c
RRA Ry MOV.B Ry,&LCDn+2	; (Ry) = 0000 000 ; Note: ; All bits of an ′ byte are writte	LCD me			C	0 0	h	f	d	b	g	е
RRA Ry MOV.B Ry,&LCDn+3	; (Ry) = 0000 000 ; Note: ; All bits of an ' byte are writte	LCD me	-		0	0	ο	h	f	d	b	g
, Table DB a+b+c+d+e+f DB b+c; DB	; displays "0" ; displays "1"									A		

CPE 323 Intro to Embedded Computer Systems

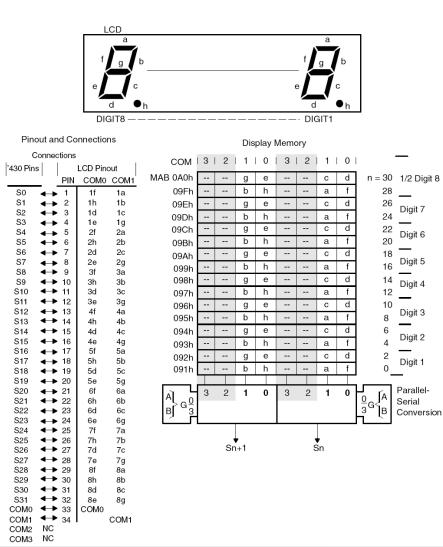

2-MUX Mode

 Each MSP430 segment Figure 26–6. Example 2-Mux Waveforms pin drives two LCD segments

Clock

- Two common lines, COM0 and COM1, are used
- 2-mux example waverforms
 - a=COM1-SP1
 - b=COM1-SP2
 - c=COM1-SP3
 - d=COMo-SP3
 - e=COMo-SP4
 - f=COMo-SP1
 - g=COM1-SP4

h=COMo-SP2

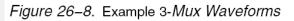

26

2-MUX LCD Example

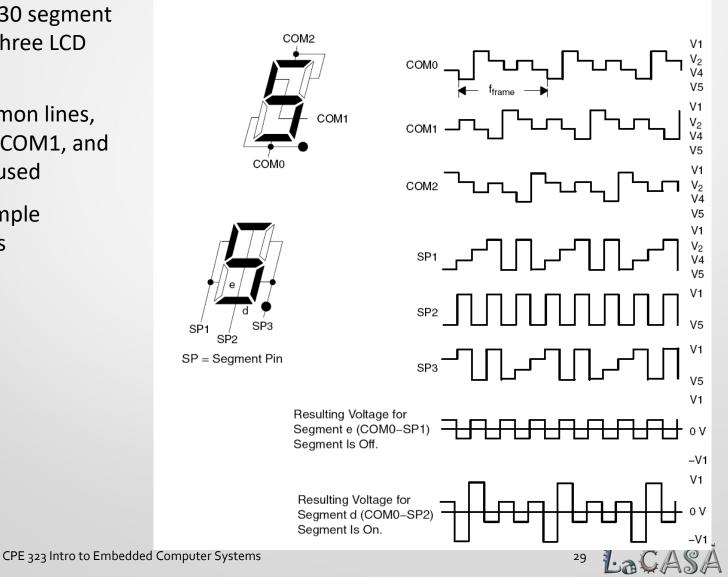
Figure 26-7. 2-Mux LCD Example

Clock

27


2-MUX Software Example

All eight segments of a digit are often located in two ; display memory bytes with the 2mux display rate 002h а EQU EQU 020h b EQU 008h С d EQU 004h е EQU 040h f EQU 001h EQU 080h g h EQU 010h The register content of Rx should be displayed. ; The Table represents the 'on'-segments according to the content of Rx. MOV.B Table(Rx), Ry; Load segment information into ; temporary memory. ; (Ry) = 0000 0000 gebh cdafMOV.B Ry,&LCDn ; Note: ; All bits of an LCD memory byte ; are written RRA Ry (Ry) = 0000 00000geb hcda (Ry) = 0000 0000 00ge bhcdRRA Ry MOV.B Ry,&LCDn+1 ; Note: ; All bits of an LCD memory byte ; are written . Table DB a+b+c+d+e+f ; displays "0" a+b+c+d+e+f+g ; displays "8" DB . DB ;



3-MUX Mode Waverforms

 Each MSP430 segment pin drives three LCD segments

- Three common lines, COM0 and COM1, and COM2 are used
- 3-mux example waverforms

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S11

S14

S16

S17

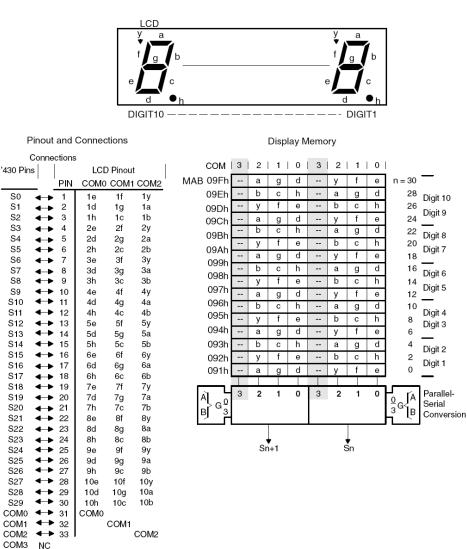
S18

S21

S23

S24

S25


S27

Bias Voltage LCD_A Controller FG4618 LCD Interface

3-MUX LCD Example

Figure 26–9. 3-Mux LCD Example

3-MUX Software Example

	; dig ; 1	git. Th		ort nine segments for each ts of a digit are located in ytes.
	; The ; LSI	EQU EQU EQU EQU EQU EQU Table Digit c	e represents t of register of	er Rx should be displayed. he 'on'-segments according to the Rx. d for temporary memory
	ODDDIG	RLA MOV		; LCD in 3mux has 9 segments per ; digit; word table required for ; displayed characters. ; Load segment information to
			Ry,&LCDn	; temporary mem. ; (Ry) = 0000 0bch 0agd 0yfe ; write 'a, g, d, y, f, e' of
			Ry #07h,&LCDn+1	; Digit n (LowByte) ; (Ry) = 0agd 0yfe 0000 0bch ; write 'b, c, h' of Digit n ; (HighByte)
	EVNDIG			; LCD in 3mux has 9 segments per ; digit; word table required for
			Table(Rx),Ry Ry Ry Ry Ry #070h,&LCD _{n+1}	; displayed characters. ; Load segment information to ; temporary mem. ; (Ry) = 0000 0bch 0agd 0yfe ; (Ry) = 0000 bch0 agd0 yfe0 ; (Ry) = 000b ch0a gd0y fe00 ; (Ry) = 00bc h0ag d0yf e000 ; (Ry) = 0bch 0agd 0yfe 0000 ; write 'y, f, e' of Digit n+1
		SWPB	Ry Ry,&LCD _{n+2}	; (LowByte) ; (Ry) = Oyfe 0000 0bch 0agd ; write 'b, c, h, a, g, d' of ; Digit n+1 (HighByte)
	Table	DW DW 	b+c	; displays "0" ; displays "1"
tro to		DW		; displays "F"

CPE 323 Intro to

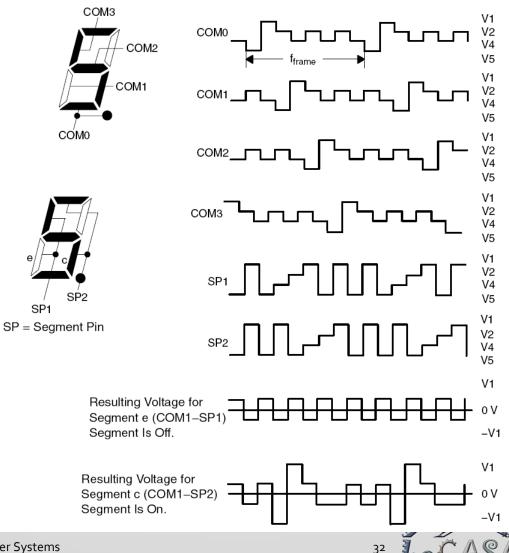
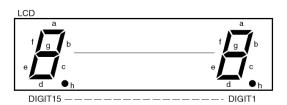

4-MUX Mode Waverforms

Figure 26–10. Example 4-Mux Waveforms

 Each MSP430 segment pin drives four LCD segments

Clock

- Four common lines, COM0, COM1, COM2, and COM3 are used
- 4-mux example waverforms



4-MUX LCD Example

Figure 26–11.4-Mux LCD Example

Clock

Pinout and Connections **Display Memory** Connections COM | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | '430 Pins LCD Pinout n = 30 Digit 16 COM0 COM1 COM2COM3 MAB 09Fh а PIN 28 Digit 15 09Eł а b С h g е d 1g 1f S0 1d 1e 26 Digit 14 S1 а b с h 1h 1c 1b 1a 09Dł е **--**2f S2 2d 2e 2g 24 Digit 13 С 09Cł 2a 2c 2b S3 2h 22 Digit 12 а b С Зf h е 3g 09Bł S4 3d 3e S5 3c 3b За а b С h a e 20 Digit 11 3h 09Ał **S**6 4d 4e 4a 4f 18 Digit 10 а 4a 099ł S7 4h 4c 4b 16 Digit 9 а b С h 5e 5g 5f 5d 098ł SS 5c 5b 5a а b с 14 Digit 8 5h 097ŀ 6f S10 6d 6e 6g 12 Digit 7 а b С h a 6a S11 6h 6c 6b 096ł 10 Digit 6 7f а b С 7d 7e 7g 095ł 7b 7a 8 Digit 5 7h 7c b с 8f 094ł S14 8d 8e 8a b 6 Digit 4 а с 8b 8a 8h 8c 093ł 4 Digit 3 9f а b с S16 9e 9q 9d S17 9h 9c 9b 9a 092h а b С h a 2 Digit 2 10f S18 10d 10e 10g 091h а b С 0 Digit 1 е 10b 10a S19 10h 10c 11f 11d 11e 11g S20 S21 11c 11b 11a 2 0 2 11h 3 1 3 0 Parallel-ÍA. 0 12g 12f 12d 12e G Serial C 3 12a вГ 12b в 12h 12c Conversion 13g 13f 13d 13e S24 13h 13c 13b 13a 14f 14d 14e 14g S2P ▶ 27 **∳** Sn Sn+1 14c 14b 14a 14h 28 15d 15e 15g 15f S28 - 29 S29 -> 30 15h 15c 15b 15a COM0 31 COM0 COM1 ← 32 COM1 COM2 - 33 COM2 COM3 🔶 34 СОМЗ

Bias Voltage LCD_A Controller

Clock

4-MUX Software Example

;	The	e 4mux	rate supports es	igł	ht segments for each digit.
				li	git can often be located in
;	one	-	ay memory byte		
а		EQU	080h		
b		EQU			
С		EQU			
d		EQU			
e		EQU			
f		EQU			
g		EQU			
h		EQU	010h		
;		T GD '		-	
					x should be displayed.
		itent o	_	. (on'-segments according to the
'	COL	itent o	L KX.		
;		MOV B	Table(Rx),&LCDn		n – 1 15
		1100.0		-	all eight segments are
					written to the display
				;	
				,	-
Tab	le	DB	a+b+c+d+e+f	;	displays "0"
		DB	b+c	;	displays "1"
			-		displays "d"
			a+d+e+f+g		displays "E"
		DB	a+e+f+g	;	displays "F"

o 🎾 Bas

LCD Control Registers

Table 26–2.LCD Controller Registers

Clock

Register	Short Form	Register Type	Address	Initial State
LCD_A control register	LCDACTL	Read/write	090h	Reset with PUC
LCD memory 1	LCDM1	Read/write	091h	Unchanged
LCD memory 2	LCDM2	Read/write	092h	Unchanged
LCD memory 3	LCDM3	Read/write	093h	Unchanged
LCD memory 4	LCDM4	Read/write	094h	Unchanged
LCD memory 5	LCDM5	Read/write	095h	Unchanged
LCD memory 6	LCDM6	Read/write	096h	Unchanged
LCD memory 7	LCDM7	Read/write	097h	Unchanged
LCD memory 8	LCDM8	Read/write	098h	Unchanged
LCD memory 9	LCDM9	Read/write	099h	Unchanged
LCD memory 10	LCDM10	Read/write	09Ah	Unchanged
LCD memory 11	LCDM11	Read/write	09Bh	Unchanged
LCD memory 12	LCDM12	Read/write	09Ch	Unchanged
LCD memory 13	LCDM13	Read/write	09Dh	Unchanged
LCD memory 14	LCDM14	Read/write	09Eh	Unchanged
LCD memory 15	LCDM15	Read/write	09Fh	Unchanged
LCD memory 16	LCDM16	Read/write	0A0h	Unchanged
LCD memory 17	LCDM17	Read/write	0A1h	Unchanged
LCD memory 18	LCDM18	Read/write	0A2h	Unchanged
LCD memory 19	LCDM19	Read/write	0A3h	Unchanged
LCD memory 20	LCDM20	Read/write	0A4h	Unchanged
LCD_A port control 0	LCDAPCTL0	Read/write	0ACh	Reset with PUC
LCD_A port control 1	LCDAPCTL1	Read/write	0ADh	Reset with PUC
LCD_A voltage control 0	LCDAVCTL0	Read/write	0AEh	Reset with PUC
LCD_A voltage control 1	LCDAVCTL1	Read/write	0AFh	Reset with PUC

35 LaCASA

LCD_A Control Register

LCDACTL, LCD_A Control Register

Clock

7	6	5	4	3	2	1	0
	LCDFREQx		LCD	MXx	LCDSON	Unused	LCDON
rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0

LCDFREQx	Bits 7-5	LCD frequency select. These bits select the ACLK divider for the LCD frequency. 000 Divide by 32 001 Divide by 64 010 Divide by 96 011 Divide by 128 100 Divide by 192 101 Divide by 256 110 Divide by 384 111 Divide by 512
LCDMXx	Bits 4-3	LCD mux rate. These bits select the LCD mode. 00 Static 01 2-mux 10 3-mux 11 4-mux
LCDSON	Bit 2	 LCD segments on. This bit supports flashing LCD applications by turning off all segment lines, while leaving the LCD timing generator and R33 enabled. All LCD segments are off All LCD segments are enabled and on or off according to their corresponding memory location.
Unused	Bit 1	Unused
LCDON	Bit 0	LCD On. This bit turns on the LCD_A module.LCD_A module off.LCD_A module on.

LCD_A Port Control Register

LCDAPCTL0, LCD_A Port Control Register 0

Clock

7	6	5	4	3	2	1	0			
LCDS28	LCDS24	LCDS20	LCDS16	LCDS12	LCDS8	LCDS4	LCDS0 [†]			
rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0			
† Segments S0-	S3 on the MSP4	130FG461x devi	ices are disable	d from LCD fund	ctionality when o	charge pump is	enabled.			
LCDS28	LCD segment 28 to 31 enable This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function. 0 Multiplexed pins are port functions. 1 Pins are LCD functions 1									
LCDS24	TI	re always LC Multiplex	ffects pins w D function.	<i>i</i> ith multiplex		. Dedicated	LCD pins			
LCDS20	TI	re always LC Multiplex	ffects pins w D function.	<i>i</i> ith multiplex		. Dedicated	LCD pins			
LCDS16	TI	re always LC Multiplex	ffects pins w D function.	vith multiplex		. Dedicated	LCD pins			
LCDS12	T	re always LC Multiplex	ffects pins w D function.	vith multiplex		. Dedicated	LCD pins			
LCDS8	T	re always LC Multiplex	ffects pins w D function.	vith multiplex		. Dedicated	LCD pins			
LCDS4	TI	re always LC Multiplex	ffects pins w D function.	vith multiplex		. Dedicated	LCD pins			
LCDS0	TI	re always LC Multiplex	ffects pins w D function.	vith multiplex		. Dedicated	LCD pins			

LCD_A Port Control Register (1)

LCDAPCTL1, LCD_A Port Control Register 1 7 6 5 3 2 1 0 4 LCDS32 Unused LCDS36 rw–0 rw-0 rw-0 rw-0 rw–0 rw–0 rw-0 rw-0 Bits Unused Unused 7–2 LCDS36 Bit 1 LCD segment 36 to 39 enable This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function. Multiplexed pins are port functions. 0 Pins are LCD functions 1 LCDS32 LCD segment 32 to 35 enable Bit 0 This bit only affects pins with multiplexed functions. Dedicated LCD pins are always LCD function. Multiplexed pins are port functions. 0 Pins are LCD functions 1

CPE 323 Intro to Embedded Computer Systems

LCD_A Voltage Control Register (0)

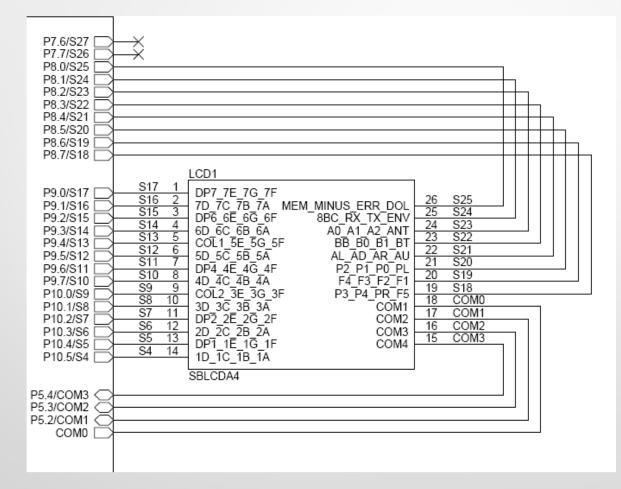
LCDAVCTL0, LCD_A Voltage Control Register 0

Clock

7	6	5	4	3	2	1	0
Unused	R03EXT	REXT	VLCDEXT	LCDCPEN	VLCD	REFx	LCD2B
rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0	rw–0

Unused	Bit 7	Unused
R03EXT	Bit 6	 V5 voltage select. This bit selects the external connection for the lowest LCD voltage. R03EXT is ignored if there is no R03 pin available. V5 is AV_{SS} V5 is sourced from the R03 pin
REXT	Bit 5	 V2 - V4 voltage select. This bit selects the external connections for voltages V2 - V4. V2 - V4 are generated internally V2 - V4 are sourced externally and the internal bias generator is switched off
VLCDEXT	Bit 4	V _{LCD} source select 0 V _{LCD} is generated internally 1 V _{LCD} is sourced externally
LCDCPEN	Bit 3	 Charge pump enable. Charge pump disabled. Charge pump enabled when V_{LCD} is generated internally (VLCDEXT = 0) and VLCDx > 0 or VLCDREFx > 0.
VLCDREFx	Bits 2–1	Charge pump reference select 00 Internal 01 External 10 Reserved 11 Reserved
LCD2B	Bit 0	Bias select. LCD2B is ignored when LCDMx = 00. 0 1/3 bias 1 1/2 bias

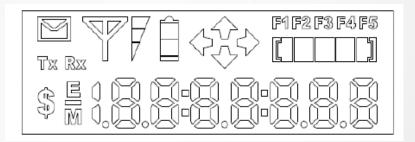
LCD_A Voltage Control Register (1)

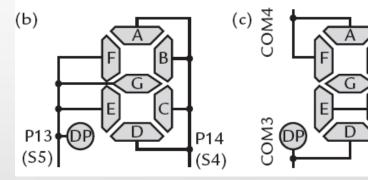

7	6	5	4	3	2	1	0
	Unused	ł		VLC	CDx		Unused
rw–0 rw–0 rw–			rw–0	rw–0	rw–0	rw–0	rw–0
Unused	Bits 7–5	Unused					
VLCDx	Bits 4–1	Charge pump be enabled. A and VLCDEX 0000 Charge 0001 $V_{LCD} = 3$ 0010 $V_{LCD} = 3$ 0100 $V_{LCD} = 3$ 0101 $V_{LCD} = 3$ 0101 $V_{LCD} = 3$ 0111 $V_{LCD} = 3$ 1000 $V_{LCD} = 3$ 1001 $V_{LCD} = 3$ 1010 $V_{LCD} = 3$ 1010 $V_{LCD} = 3$ 1011 $V_{LCD} = 3$ 1010 $V_{LCD} = 3$ 1011 $V_{LCD} = 3$ 1100 $V_{LCD} = 3$ 1101 $V_{LCD} = 3$ 1110 $V_{LCD} = 3$ 1111 $V_{LCD} = 3$	N _{CC} is used f T = 0. pump disable 2.60 V 2.66 V 2.72 V 2.78 V 2.78 V 2.84 V 2.90 V 2.96 V 3.02 V 3.08 V 3.14 V 3.20 V 3.26 V 3.26 V 3.32 V 3.38 V	or V _{LCD} wh			• • •

CPE 323 Intro to Embedded Computer Systems

DRFG4618 LCD Interface

CPE 323 Intro to Embedded Computer Systems


Softbaugh LCD SBLCDA4: Segment Description


Bias Voltage

3 6 5 R 2 DOL $T^{\mathsf{x}} \mathbb{R}^{\mathsf{x}}$ F в F1 F4 F3 F5 MINUS G F1F2F3F4F5 Е С D MEN AN. ΒT Β1 A1 B0 AO BB PL P0 P2 Ρ3 PR P1 Ρ4 ENV

Clock

SBLCDA4 Display

COM0

COM2

В

Mapping SBCDA4 segments to MSP430 pints in HUNTSVILL (TI Experimenter board)

Bias Voltage LCD A Controller FG4618 LCD Interface

	CC	DM:	3	2	1	0	3	2	1	0		
display memory	MSP430 pin	LCD pin	S _{n + 1}				S _n				LCD pin	MSP430 pin
LCDM13	S25	P26	MEM	MIN	ERR	DOL	8BC	RX	ТΧ	ENV	P25	S24
LCDM12	S23	P24	A0	A1	A2	ANT	BB	B0	B1	ВТ	P23	S22
:	:	÷									÷	•
LCDM4	S7	P11	DP2	2E	2G	2F	2D	2C	2B	2A	P12	S6
LCDM3	S5	P13	DP1	1E	1G	1F	1D	1C	1B	1A	P14	S4
		Bit:	7	6	5	4	3	2	1	0		

CPE 323 Intro to Embedded Computer Systems