

CPE 323 Module 12 © A. Milenković 1

CPE 323
MODULE 12

DIRECT MEMORY ACCESS (DMA) CONTROLLER

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces direct memory access (DMA) transfers and DMA controllers. The module
describes direct memory access transfers and how they compare to other software approaches
to interfacing peripherals (polling and interrupt). You will learn about hardware and software
aspects of MSP430’s DMA controller.

Objectives

Upon completion of this module learners will be able to:

 Describe hardware and software aspects of direct memory access transfers

 Utilize DMA controllers to interface input/output peripherals

Contents

Contents .. 1

1 Introduction ... 2

2 Direct Memory Transfers: Basic Principles .. 3

3 MSP430’s DMA Peripheral .. 5

4 DMA Registers ... 11

5 Demo Programs ... 14

6 Exercises .. 21

mailto:milenka@uah.edu

CPE 323 DMA © A. Milenković 2

1 Introduction
So far we have discussed two software techniques for interfacing input/output peripherals: (a)
using polling and (b) using interrupt service routines.

With polling, we continually check whether a hardware event has occurred by reading an I/O
peripheral register that contains the corresponding flag that indicates whether an event has
occurred or not. For example, recall the use of the watchdog timer in the interval mode to
toggle the LED1 in the Lauchpad platform as described in Module 09. When the the predefined
time interval (1 s) expires, the WDTIFG bit in the SFRIFG1 register is set to a logic 1. Code 1
shows a code snippet that continually tests whether the WDTIFG is set. The statement in line 10
tests the WDTIFG bit in the SFRIFG1 register; the testing is repeated as long as the WDTIFG flag
is not set (has value 0). Once the WDTIFG flag is set, the condition in line 10 becomes false, and
the statements in lines 11 and 12 are executed to toggle LED1 and clear the flag, respectively.
The infinite loop ensures that LED1 is toggled every 1 s because the WDTIFG is set once every
second.

#include <msp430.h> 1
 2
void main(void) 3
{ 4
 WDTCTL = WDT_ADLY_1000; // 1 s interval timer 5
 P1DIR |= BIT0; // Set P1.0 to output direction 6
 7
 for (;;) { 8
 // Use software polling 9
 while (!(SFRIFG1 & WDTIFG)); 10
 P1OUT ^= BIT0; 11
 SFRIFG1 &= ~WDTIFG; // Clear bit WDTIFG in IFG1 12
 13
 } 14
} 15

Code 1. Toggling LED1 using WDT and Software Polling on WDTIFG.

Code 2 shows a program that performs the same task using the watchdog timer interval mode
interrupt service routine (ISR). By enabling the interrupt, once the WDTIFG is set, the interrupt
service routine is entered. Please note that ISR for the watchdog timer is single-sourced
interrupt, so the WDTIFG flag is cleared during exception processing in hardware.

#include <msp430.h> 1
 2
void main(void) { 3
 WDTCTL = WDT_ADLY_1000; // 1s interval mode 4
 P1DIR |= BIT0; // Set P1.0 to output direction 5
 SFRIE1 |= WDTIE; // Enable WDT interrupt 6
 7

CPE 323 Module 12 © A. Milenković 3

 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 with interrupt 8
} 9
// Watchdog Timer interrupt service routine 10
#pragma vector=WDT_VECTOR 11
__interrupt void watchdog_timer(void) { 12
 P1OUT ^= BIT0; // Toggle P1.0 using exclusive-OR 13
} 14

Code 2. Toggling LED1 using WDT and Software Polling on WDTIFG.

In this module we will discuss third approach to interfacing I/O peripherals using a direct
memory access controller or DMA. The primary role of a DMA is to carry out data transfers
without involvement from the processor. DMAs can thus be considered as hardware
accelerators for moving data in a computer system.

Things to remember 1-1. Three Approaches to Interfacing I/O Peripherals

Three principal software approaches to interface I/O peripherals in computer systems are as
follows:

(a) polling – the CPU is actively polling a peripheral to detect when it is ready before it
carries out the requested I/O transfer;

(b) Interrupt Service Routine – an interrupt is requested and the CPU carries out the
requested I/O transfer inside the corresponding ISR;

(c) Direct Memory Access – a special peripheral called DMA controller carries out the
requested I/O transfer without any CPU involvement.

2 Direct Memory Transfers: Basic Principles
A DMA can be used to facilitate the following data transfers:

 Input to memory: from an input peripheral (e.g., serial communication interface
receiving data) to a buffer in memory;

 Memory to output: from a buffer in memory to an output peripheral (e.g., serial
communication interface transmitting data);

 Input to output: from an input peripheral to an output peripheral; or

 Memory to memory: from a source buffer in memory to a destination buffer in memory.

To utilize a DMA, we need to configure it to carry out desired data transfers. Configuring data
transfers involves specifying the starting address of the data source (e.g., RXBUF of an USCI
peripheral), the starting address of the data destination (e.g., starting address of a character
array in memory that will keep the message received from a USCI), and the number of elements
to be transferred (e.g., our message has 20 characters). In addition, we typically configure the
type of DMA transfers (bytes, words), how individual data transfers are carried out, and how
they are handled in hardware.

CPE 323 DMA © A. Milenković 4

Figure 1 shows a register-view of a typical DMA. The Control register is initialized to enable
certain types of data transfers, the SourceAddress register is initialized with the starting address
of the data source, the DestinationAddress register is initialized with the starting address of the
data destination, and the Size register is initialized to specify the number of data items that
needs to be transferred.

Once the DMA is initialized and enabled, DMA will carry out data transfers independently from
the processor, entirely in hardware. To do this, DMA needs to be able to initiate read and write
transactions on the bus. In computer systems discussed so far, only the processor could initiate
read and write transaction on the bus. However, if we have a DMA in the system, it can also
initiate reads from memory or I/O peripherals or writes to memory and I/O peripherals.
Consequently, DMA is a special type of a peripheral – it is initialized by the processor during
data transfer setup and thus acts as any other peripheral. However, it also acts independently
from the processor when transferring data. When a device can initiate read and write
transactions on the bus, it is typically referred to as being a master on the bas – other
peripherals and memory have to respond to read or write requests from the DMA.

DMA_Control

DMA_SourceAddress

DMA_DestinationAddress

DMA_Size

DMA_Data

Figure 1. DMA Registers.

Things to remember 2-1. DMA is a special peripheral

Unlike other I/O peripherals, a DMA is special type of a peripheral. Like any other peripheral it is
initialized by the CPU by writing and reading its registers. However, once it is initialized, the
DMA peripheral can initiate reads and writes from I/O peripherals and memory independently
from the CPU. Ability to initiate data transfers on the bus makes the DMA special.

CPE 323 Module 12 © A. Milenković 5

Things to remember 2-2. DMA registers

Initializing a DMA transfers involves setting up the source data address (DMAxSA), the
destination data address (DMAxDA), and the size of the data block to be transferred (DMAxSZ).

3 MSP430’s DMA Peripheral
MSP430 microcontrollers include a DMA with multiple channels (typically 3, but latest
microcontrollers can have more). Each channel has its own set of registers and configurable
triggers as shown in Figure 2, so multiple independent transfers can take place in the same time
window, though only one data transfer can take place at a time on the bus. Each channel has
its set of special registers: DMAxSA, DMAxDA, and DMAxSZ. Each DMA channel has its own
control register, DMAxCTL. In addition, there is a control register for entire peripheral.

In the following text, we will discuss several specific features of the MSP430’s DMA controller.

DMA Addressing Modes. The DMA controller has four addressing modes as follows (Figure 3):

 Fixed address to fixed address

 Fixed address to block of addresses

 Block of addresses to fixed address

 Block of addresses to block of addresses

The addressing mode for each DMA channel is independently configurable. For example,
channel 0 may transfer between two fixed addresses, while channel 1 transfers between two
blocks of addresses. The addressing modes are configured with the DMASRCINCR and
DMADSTINCR control bits. The DMASRCINCR bits select if the source address is incremented,
decremented, or unchanged after each transfer. The DMADSTINCR bits select if the destination
address is incremented, decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When
transferring word-to-byte, only the lower byte of the source word is transferred. When
transferring byte-to-word, the upper byte of the destination word is cleared when the transfer
occurs. The control fields DSTBYTE and SRCBYTE in the DMAxCTL control register (x=0, 1, 2, …)
select the type of a transfer.

CPE 323 DMA © A. Milenković 6

Figure 2. Block diagram of a DMA peripheral with 3 channels (as in MSP430F5529).

CPE 323 Module 12 © A. Milenković 7

Figure 3. DMA addressing modes.

DMA Transfer Modes. The DMA controller six transfer modes as shown in Figure 4.

Single transfer modes (DMADAT=000b). In single transfer mode, each byte or word transfer
requires a separate trigger. The DMAxSZ register defines the number of transfers to be made.
The DMADSTINCR and DMASRCINCR bits select if the destination address and the source
address are incremented, decremented, or remain fixed after each transfer. If DMAxSZ = 0, no
transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The
temporary values of DMAxSA and DMAxDA are incremented or decremented after each
transfer. The DMAxSZ register is decremented after each transfer. When the DMAxSZ register
decrements to zero, it is reloaded from its temporary register and the corresponding DMAIFG
flag is set. When DMADT = {0}, the DMAEN bit is cleared automatically when DMAxSZ
decrements to zero and must be set again for a new round of transfer to start. Please note that
thanks to these temporary registers, you do not have to re-initialize the DMA registers over-
and-over again if you want to repeat data transfer, just setting the DMAEN would suffice.

Repeated single transfer modes (DMADAT=100b). In repeated single transfer mode, the DMA
controller remains enabled with DMAEN = 1, and a transfer occurs every time a trigger occurs.

Block transfer mode (DMADT=001b). In block transfer mode, a transfer of a complete block of
data occurs after one trigger. When DMADT = {1}, the DMAEN bit is cleared after the
completion of the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals occurring during the
block transfer are ignored. The DMAxSA, DMAxDA, and DMAxSZ registers are copied into
temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or

CPE 323 DMA © A. Milenković 8

decremented after each transfer in the block. The DMAxSZ register is decremented after each
transfer of the block and shows the number of transfers remaining in the block. When the
DMAxSZ register decrements to zero, it is reloaded from its temporary register and the
corresponding DMAIFG flag is set. During a block transfer, the CPU is halted until the complete
block has been transferred. The block transfer takes 2 × MCLK × DMAxSZ clock cycles to
complete. CPU execution resumes with its previous state after the block transfer is complete.

Repeated block transfer mode (DMADT=101b). In repeated block transfer mode, the DMAEN bit
remains set after completion of the block transfer. The next trigger after the completion of a
repeated block transfer triggers another block transfer.

Bust-Block transfer mode (DMADT=010b or DMADT=011b). In burst-block mode, transfers are
block transfers with CPU activity interleaved. The CPU executes two MCLK cycles after every
four byte/word transfers of the block, resulting in 20% CPU execution capacity. After the burst-
block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN must be
set again before another burst-block transfer can be triggered. After a burst-block transfer has
been triggered, further trigger signals occurring during the burst-block transfer are ignored.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The
temporary values of DMAxSA and DMAxDA are incremented or decremented after each
transfer in the block. The DMAxSZ register is decremented after each transfer of the block and
shows the number of transfers remaining in the block. When the DMAxSZ register decrements
to zero, it is reloaded from its temporary register and the corresponding DMAIFG flag is set.

Bust-Block transfer mode (DMADT=110b or DMADT=111b).In repeated burst-block mode, the
DMAEN bit remains set after completion of the burst-block transfer and no further trigger
signals are required to initiate another burst-block transfer. Another burst-block transfer begins
immediately after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing the DMAEN bit, or by an (non)maskable interrupt (NMI) when ENNMI is set.
In repeated burst block mode, the CPU executes at 20% capacity continuously until the
repeated burst-block transfer is stopped.

Figure 4. DMA transfer modes.

CPE 323 Module 12 © A. Milenković 9

DMA Triggers. The trigger source for each DMA channel is independently configured by
DMAxTSEL bits. Figure 5 lists common triggers and their operation. Triggers correspond to I/O
peripheral events, e.g., a character has been received in UCAxRFBUF (UCAxRXIFG is set) or a
UCAxTXIFG is set indicating that the corresponding TXBUF is ready to receive a new character.
When DMALEVEL=0, edge sensitive triggers are used – the rising edge of the trigger signal
initiates the transfer. Note: in block or burst-block modes only one trigger is required to initiate
a transfer of the entire block. When DMALEVEL=1, level-sensitive triggers are used. For proper
operation, level-sensitive triggers can only be used when external trigger DMAE0 is selected as
the trigger. When DMALEVEL=1, transfer modes selected by DMADT = {0, 1, 2, or 3} are
recommended because the DMAEN bit is automatically reset after the configured transfer.

DMA triggers are often device-specific, and thus the corresponding manual should be consulted
to determine trigger encoding. For example, for MSP430F5529 microcontroller, the triggers are
shown in Figure 6.

Figure 5. DMA triggers and their operation.

CPE 323 DMA © A. Milenković 10

Figure 6. DMA triggers for MSP430F5529.

CPE 323 Module 12 © A. Milenković 11

DMA Channel Priorities. The default DMA channel priorities are channel 0 to channel 7. If
multiple triggers happen simultaneously or are pending, the channel with the highest priority
completes its transfer first. The DMA channel priorities are configurable using ROUNDROBIN
control bit. When this bit is set, the channel that completes a transfer becomes the lowest
priority.

Stopping DMA transfers. There are two ways to stop DMA transfers in progress. A single, block,
and burst-block transfer may be stopped by a NMI if ENNMI is set in register DMACTL4. A burst-
block transfer may be stopped by clearing the DMAEN bit.

DMA Interrupts. DMA transfers cannot be interrupted by system interrupts. NMIs (non-
maskable interrupts) can interrupt the DMA controller if the ENNMI control bit is set. ISRs can
be interrupted by DMA transfers. Consequently, if that is not acceptable, DMA interrupts
should be disabled when executing ISRs.

Each DMA channel has its own DMAIFG flag tha tis set in any mode when the corresponding
DMAxSZ register counts to 0. If the corresponding DMAIE bit and GIE bit are set, an interrupt
request is generated. Similar to other multi-sourced ISRs, the ISR for DMA can take advantage
of DMAIV register to reduce overhead insider the ISR. Channel 0 has the highest priority
interrupt.

4 DMA Registers
Figure 7 shows a format of the DMACTL0 register that specifies triggers for channels 0 and 1.
Registers DMACTL1, DMACTL2, and DMACTL3 are specifying triggers for other channels. These
are DMA-wide control registers. Figure 8 shows the format of DMACTL4. Figure 9 shows the
format of a channel specific control register DMAxCTL. Figure 10 shows the format of the
DMAxSA register. Please note that the address registers are 32-bit long, thus supporting
transfers in MSP430 microcontroller with extended ISA (20-bit addresses).

CPE 323 DMA © A. Milenković 12

Figure 7. DMACTL0. This register selects triggers for channels 0 (bits 4-0) and 1 (bits 12-8). DMACTL1
selects triggers for channels 2 and 3. DMACTL2 selects triggers for channels 4 and 5. DMACTL3 selects

triggers for channels 6 and 7.

Figure 8. DMACTL4.

CPE 323 Module 12 © A. Milenković 13

Figure 9. DMAxCTL. Channel x control register (x=0, 1, 2, …).

CPE 323 DMA © A. Milenković 14

Figure 10. DMAxSA. Please note that registers are 32-bit long to support extended architectures (20-
bit address).

5 Demo Programs
In this section we will consider there implementations of a program that sends a time message
every second over a UART link to the workstation as shown in Figure 11. This program will run
on an MSP-EXP430F5529LP Launchpad and utilize UCA1 channel. This channel is multiplexed
with the debug interface, so no additional serial connections are needed. We will provide three
implementations that will utilize polling, ISR, and DMA.

Figure 11. CCStudio Terminal Showing Time Messages.

Code 3 shows a program implementation using polling. The program initializes the watchdog
timer in the interval mode and the USCI_A1 as described in the header. In the main loop of the
program, we wait for the WDTIFG bit to be set (line 71). Clearly the while statement in line 71

CPE 323 Module 12 © A. Milenković 15

will execute hundreds of thousands times in a second, before the WDTIFG becomes set. Once
the bit is set, we increment the variable keeping track of time, toggle LED1, and prepare the
message to be sent over UCA1 using sprintf library function. Then the program enters a for loop
where we send one-by-one character of the time message (the message should have 29
characters). Please note that inside the for loop, we use polling to check whether the
UCA1TXBUF register is ready to receive a new character (line 77). So, the execution time of this
portion of the main loop will be limited by the baud rate set in the program. We can roughly
estimate time needed to transmit the message as follows: the total number of characters is 30,
each character has 10 bits (start, 8-bit data, stop), so the total number of bits sent is 300. With
the 115,200 bps baud rate, the time can be estimated to ~2.6 ms. So, the majority of time, the
CPU will spend waiting on WDTIFG in line 71.

/*-- 1
 * File: Module12_D1_ts.c 2
 * 3
 * Function: Sends a greeting message via a serial comm channel using polling. 4
 * 5
 * Description: This program sends a time message every second as follows: 6
 * "Elapsed time is <sec> s" 7
 * via a serial communication interface, UCA1. 8
 * It toggles LED1 every second. 9
 * 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 11
 * Board: MSP-EXP430F5529 (Launchpad) 12
 * Communication is carried out via USCI, channel A1 13
 * that is multiplexed with the debug interface. 14
 * Baud rate: low-frequency (UCOS16=0); 15
 * 1048576/115200 = ~9.1 (0x0009|0x01) 16
 * 17
 * Instructions: Set the following parameters in Terminal/putty/MobaXterm 18
 * Port: COMx 19
 * Baud rate: 115200 20
 * Data bits: 8 21
 * Parity: None 22
 * Stop bits: 1 23
 * Flow Control: None 24
 * 25
 26
 * MSP430F5529 27
 * ----------------- 28
 * /|\ | XIN|- 29
 * | | | 32kHz 30
 * |--|RST XOUT|- 31
 * | | 32
 * | P4.4/UCA1TXD|------------> 33
 * | | 115200 - 8N1 34
 * | P4.5/UCA1RXD|<------------ 35
 * | P1.0|----> LED1 36
 * 37

CPE 323 DMA © A. Milenković 16

 * Input: None 38
 * Output: Message displayed in Terminal/putty/MobaXterm 39
 * Author: A. Milenkovic, milenkovic@computer.org 40
 * Date: October 2022 41
 --/ 42
#include <msp430.h> 43
#include <stdio.h> 44
 45
define LEN 30 46
const char msg_header[17] = "Elapsed time is: "; 47
char msg[LEN]; // Header of the message 48
unsigned int sec=0; // Variable for keeping time in seconds 49
 50
// Channel A1 is multiplexed through JTAG 51
void USCIA1_setup(void) { 52
 P4SEL |= BIT4 + BIT5; // Set USCI_A1 RXD/TXD to receive/transmit data 53
 UCA1CTL1 |= UCSWRST; // Set software reset during initialization 54
 UCA1CTL0 = 0; // USCI_A1 control register 55
 UCA1CTL1 |= UCSSEL_2; // Clock source SMCLK 56
 57
 UCA1BR0 = 0x09; // 1048576 Hz / 115200 lower byte 58
 UCA1BR1 = 0x00; // upper byte 59
 UCA1MCTL |= UCBRS0; // Modulation (UCBRS0=0x01, UCOS16=0) 60
 UCA1CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 61
} 62
 63
void main(void) { 64
 int i; 65
 66
 WDTCTL = WDT_ADLY_1000; // WDT intrval mode, 1000 ms period 67
 P1DIR |= BIT0; // Set P1.0 to be output 68
 USCIA1_setup(); // Initialize UART 69
 for(;;) { 70
 while(!(SFRIFG1&WDTIFG)); // wait for WDT 71
 sec++; 72
 P1OUT ^= BIT0; // Toggle LED1 73
 SFRIFG1 &= ~WDTIFG; // Clear WDTIFG 74
 sprintf(msg, "%s%6u s\n\r", msg_header, sec); 75
 for(i=0; i<LEN; i++) { 76
 while(!(UCA1IFG&UCTXIFG)); // Wait for a TXBUF to be ready 77
 UCA1TXBUF = msg[i]; // TXBUF <= msg[i] 78
 } 79
 } 80
} 81
 82

Code 3. Module12_D1_ts.c: polling implementation.

Code 4 shows a program implementation using ISRs. The main program initializes the watchdog
timer (interval mode, 1s) and enables the interrupt by setting the WDTIE bit in the SFRIE1
register. The USCI_A1 is initialized by the USCIA1_setup() procedure. The main loop is organized
as an infinite loop. The first line puts the CPU into LPM0 (low-power mode 0). The ISR of the
watchdog timer will enable that the CPU resumes program execution upon exiting the

CPE 323 Module 12 © A. Milenković 17

WDT_ISR(). The time variable is incremented (line 74), LED1 toggled (75), and the time message
prepared using sprintf (line 76). Next, we enable the interrupt from USCI_A1 when the transmit
buffer is ready and go back to the sleep mode LPM0. Please note that the next interrupt from
the WDT will enable exiting the sleep mode. While in sleep mode, the USCIA1TX_ISR() will be
executed every time the UCA1TXBUF is ready. Once the entire message is sent (i=LEN), the
interrupts from the transmit side are disabled and the local index is set back to 0. Please note
that the local index variable i is declared as static.

/*-- 1
 * File: Module12_D2_ts.c 2
 * 3
 * Function: Sends a greeting message via a serial comm channel using ISRs. 4
 * 5
 * Description: This program sends a time message every second 6
 * "Elapsed time is <sec> s" 7
 * via a serial communication interface, UCA1. 8
 * It toggles LED1 every second. 9
 * 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 11
 * Board: MSP-EXP430F5529 (Launchpad) 12
 * Communication is carried out via USCI, channel A1 13
 * that is multiplexed with the debug interface. 14
 * Baud rate: low-frequency (UCOS16=0); 15
 * 1048576/115200 = ~9.1 (0x0009|0x01) 16
 * 17
 * Instructions: Set the following parameters in Terminal/putty/MobaXterm 18
 * Port: COMx 19
 * Baud rate: 115200 20
 * Data bits: 8 21
 * Parity: None 22
 * Stop bits: 1 23
 * Flow Control: None 24
 * 25
 26
 * MSP430F5529 27
 * ----------------- 28
 * /|\ | XIN|- 29
 * | | | 32kHz 30
 * |--|RST XOUT|- 31
 * | | 32
 * | P4.4/UCA1TXD|------------> 33
 * | | 115200 - 8N1 34
 * | P4.5/UCA1RXD|<------------ 35
 * | P1.0|----> LED1 36
 * 37
 * Input: None 38
 * Output: Message displayed in Terminal/putty/MobaXterm 39
 * Author: A. Milenkovic, milenkovic@computer.org 40
 * Date: October 2022 41
 --/ 42
#include <msp430.h> 43
#include <stdio.h> 44

CPE 323 DMA © A. Milenković 18

 45
define LEN 30 46
const char msg_header[17] = "Elapsed time is: "; 47
char msg[LEN]; // header of the message to be printed every 48
second 49
unsigned int sec=0; // variable for keeping time in seconds 50
 51
 52
// Channel A1 is multiplexed through JTAG 53
void USCIA1_setup(void) { 54
 P4SEL |= BIT4 + BIT5; // Set USCI_A1 RXD/TXD to receive/transmit data 55
 UCA1CTL1 |= UCSWRST; // Set software reset during initialization 56
 UCA1CTL0 = 0; // USCI_A1 control register 57
 UCA1CTL1 |= UCSSEL_2; // Clock source SMCLK 58
 59
 UCA1BR0 = 0x09; // 1048576 Hz / 115200 lower byte 60
 UCA1BR1 = 0x00; // upper byte 61
 UCA1MCTL |= UCBRS0; // Modulation (UCBRS0=0x01, UCOS16=0) 62
 UCA1CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 63
} 64
 65
void main(void) { 66
 67
 WDTCTL = WDT_ADLY_1000; // WDT intrval mode, 1000 ms period 68
 P1DIR |= BIT0; // Set P1.0 to be output 69
 USCIA1_setup(); // Initialize UART 70
 SFRIE1 |= WDTIE; // Enable WDT interrupt 71
 for(;;) { 72
 _BIS_SR(LPM0_bits + GIE); // enter LPM0, enable interrupts 73
 sec++; // increment time 74
 P1OUT ^= BIT0; // Toggle LED1 75
 sprintf(msg, "%s%6u s\n\r", msg_header, sec); 76
 UCA1IE |= UCTXIE; // Enable transmit interrupt 77
 } 78
} 79
 80
#pragma vector = WDT_VECTOR 81
__interrupt void WDT_ISR(void) { 82
 __bic_SR_register_on_exit(CPUOFF); // exit LPM mode 83
} 84
 85
#pragma vector = USCI_A1_VECTOR 86
__interrupt void USCIA1TX_ISR (void) { 87
 static int i=0; 88
 UCA1TXBUF = msg[i]; // TXBUF <= msg[i] 89
 i++; 90
 if (i == LEN) { 91
 UCA1IE &= ~UCTXIE; // disable interrupts 92
 i = 0; // reset i 93
 } 94
} 95
 96

Code 4. Module12_D2_ts.c: ISR implementation.

CPE 323 Module 12 © A. Milenković 19

Code 5 shows a program implementation using DMA, channel 0. The main program initializes
the watchdog timer in the interval mode, the USCI_A1 (line 81), and the DMA, channel 0 (line
82). The WDT ISR is enabled and the CPU enters the sleep mode, LPM0. The WDT_ISR() is
entered every second, the time variable is incremented (line 89), LED1 is toggled (line 90), the
time message prepared (line 91), and DMA transfer is enabled (line 92). The transfer of the time
message is carried out by the DMA with no intervention from the CPU.

To initialize the DMA controller, the following steps are carried out. The trigger for channel 0 is
when the UCA1TXBUF is ready. This trigger is encoded in the control register DMACTL0 and it is
set to 10101b (21) as shown in line 68. DMA0SA contains the starting address of the time
message (msg) (line 70). DMA0DA contains the address of UCA1TXBUF (line 71). DMA0SZ is set
to length of the message (LEN). The control register for channel 0 is set as follows (line 73):
DMA single transfer (DMADT=0000b – default), byte-to-byte transfer (DMASBDB), increment
the source address (DMASRCINCR_3), fixed the destination address (default), and DMA level
trigger.

/*-- 1
 * File: Module12_D3_ts.c 2
 * 3
 * Function: Sends a greeting message via a serial comm channel using DMA. 4
 * 5
 * Description: This program sends a time message every second 6
 * "Elapsed time is <sec> s" 7
 * via a serial communication interface, UCA1. 8
 * It toggles LED1 every second. 9
 * 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 11
 * Board: MSP-EXP430F5529 (Launchpad) 12
 * Communication is carried out via USCI, channel A1 13
 * that is multiplexed with the debug interface. 14
 * Baud rate: low-frequency (UCOS16=0); 15
 * 1048576/115200 = ~9.1 (0x0009|0x01) 16
 * 17
 * Instructions: Set the following parameters in Terminal/putty/MobaXterm 18
 * Port: COMx 19
 * Baud rate: 115200 20
 * Data bits: 8 21
 * Parity: None 22
 * Stop bits: 1 23
 * Flow Control: None 24
 * 25
 26
 * MSP430F5529 27
 * ----------------- 28
 * /|\ | XIN|- 29
 * | | | 32kHz 30
 * |--|RST XOUT|- 31
 * | | 32
 * | P4.4/UCA1TXD|------------> 33

CPE 323 DMA © A. Milenković 20

 * | | 115200 - 8N1 34
 * | P4.5/UCA1RXD|<------------ 35
 * | P1.0|----> LED1 36
 * 37
 * Input: None 38
 * Output: Message displayed in Terminal/putty/MobaXterm 39
 * Author: A. Milenkovic, milenkovic@computer.org 40
 * Date: April 2022 41
 --/ 42
#include <msp430.h> 43
#include <stdio.h> 44
 45
define LEN 30 46
const char msg_header[17] = "Elapsed time is: "; 47
char msg[LEN]; // header of the message to be printed every 48
second 49
unsigned int sec=0; // variable for keeping time in seconds 50
 51
 52
// Channel A1 is multiplexed through JTAG 53
void USCIA1_setup(void) { 54
 P4SEL |= BIT4 + BIT5; // Set USCI_A1 RXD/TXD to receive/transmit data 55
 UCA1CTL1 |= UCSWRST; // Set software reset during initialization 56
 UCA1CTL0 = 0; // USCI_A1 control register 57
 UCA1CTL1 |= UCSSEL_2; // Clock source SMCLK 58
 59
 UCA1BR0 = 0x09; // 1048576 Hz / 115200 lower byte 60
 UCA1BR1 = 0x00; // upper byte 61
 UCA1MCTL |= UCBRS0; // Modulation (UCBRS0=0x01, UCOS16=0) 62
 UCA1CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 63
} 64
 65
 66
void DMA_setup(void) { 67
 DMACTL0 = DMA0TSEL_21; // DMAREQ, software trigger, trigger: UCA1TX is 68
ready 69
 DMA0SA = msg; // DMA0SA gets source block address 70
 DMA0DA = &UCA1TXBUF; // DMA0DA gets the address of UCA1TXBUF 71
 DMA0SZ = LEN; // DMA0SZ gets the length of the string 72
 DMA0CTL = DMASRCINCR_3 + DMASBDB + DMALEVEL; // src-inc, byte-to-byte, level 73
trigger 74
} 75
 76
void main(void) { 77
 78
 WDTCTL = WDT_ADLY_1000; // WDT interval mode, 1000 ms period 79
 P1DIR |= BIT0; // Set P1.0 to be output 80
 USCIA1_setup(); // Initialize UART 81
 DMA_setup(); // Initialize DMA 82
 SFRIE1 |= WDTIE; // Enable WDT interrupt 83
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, enable interrupts 84
} 85
 86
#pragma vector = WDT_VECTOR 87
__interrupt void WDT_ISR(void) { 88

CPE 323 Module 12 © A. Milenković 21

 sec++; // Increment time 89
 P1OUT ^= BIT0; // Toggle LED1 90
 sprintf(msg, "%s%6u s\n\r", msg_header, sec); 91
 DMA0CTL |= DMAEN; // Enable DMA 92
} 93
 94

Code 5. Module12_D2_ts.c: DMA implementation.

6 Exercises

Q1.

Describe main registers of a DMA channel and how they should be set.

Q2.

DMA transfers a message that consists of 20 characters received over USCI_A1 (UCA1TXBUF).
The message should go into a RAM memory buffer that starts at the address 0x0800. How
would you initialize DMA to carry out this transfer? Explain.

Q3.

Describe pros and cons of using DMA transfers over ISRs. Explain.

Q4.

You need to transfer a lookup table with constants from the flash memory, unsigned int
flash_lookup[64], into a buffer in RAM memory, unsigned int ram_lookup[64]. Is it

possible to use a DMA channel to perform this transfer? If yes, explain how you would initialize
the DMA.

