

CPE 323: AD&DA Conversion © A. Milenković 1

CPE 323
MODULE 11

Digital-to-Analog Conversion

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces main concepts of analog-to-digital (AD) and digital-to-analog (DA)
conversion. You will learn hardware aspects as well as software aspects of the analog-to-digital
and digital-to-analog conversion and AD and DA converters. You will understand how to configure
and utilize MSP430 ADC12 and DAC12 peripherals in your programs.

Objectives

 Learners will understand hardware and software aspects of analog-to-digital and digital-
to-analog converters

 Learners will understand how to configure and interact with MSP430 ADC peripheral

 Learners will understand how to configure and interact with MSP430 DAC peripheral

Contents

1 DA Conversion: An Introduction .. 3

2 DA Conversion: A System View ... 4

3 DA Conversion: An Example .. 5

4 Digital-to-Analog Converter Types .. 7

4.1 Weighted Resistors Architecture ... 7

4.2 R-2R Ladder Network DAC ... 9

5 MSP430’s DAC12 Controller .. 15

5.1 DAC12 Organization ... 16

5.2 DAC12 Control Registers .. 19

6 Code Example .. 22

7 Exercises .. 23

mailto:milenka@uah.edu

CPE 323: Module 11 © A. Milenković 2

CPE 323: AD&DA Conversion © A. Milenković 3

1 DA Conversion: An Introduction

Embedded computer systems are typically a part of other systems or devices. Four main tasks of
any embedded computer system (or any computer system in general) are: (1) sensing the
physical world (environment) using sensors; (2) processing information; (3) storing information;
and (4) communicating information and acting on the environment. In this way, embedded
systems are very similar to humans. Sensors or transducers are used to convert physical
quantities (e.g., force, atmospheric pressure, sound, light, temperature, and others) into
electrical signals (e.g., voltage or current) that we can measure. The electrical signals are often
either noisy, weak, or both noisy and weak, so we rely on signal conditioning circuits to remove
undesired harmonics of continual electrical signals (filtering) and amplify them (amplification) so
they can be properly measured. Once the electrical signals are ready and in a desired range, a
critical step is to convert them into corresponding digital values that can be further processed,
stored, and/or communicated using digital computers. The process of converting analog
electrical signals into binary numbers that correspond to the magnitude of the input signals is
known as analog-to-digital conversion and is carried out using dedicated peripherals called
analog-to-digital converters (ADCs).

One outcome of data processing is that we may need to act on the environment. For example,
think about the air conditioning system at your house – a sensor continually measures the
temperature (sensing), and if the temperature rises above a certain threshold (processing), a
controller sends a signal to your AC unit to start pumping in cool air (acting on the environment).
Once the temperature is lowered, the controller sends a signal to the AC unit to stop its
operation. Acting on the environment sometimes requires that we generate analog electrical
signals of certain amplitude and frequency. To generate such signals we conduct digital-to-analog
conversion and for that we rely on peripheral devices called digital-to-analog converters (DACs).

In this module you will learn hardware aspects as well as software aspects of the analog-to-digital
and digital-to-analog converters. You will understand how to configure and utilize MSP430 ADC
and DAC peripherals in your programs. The very name MSP that stands for Mixed Signal Processor
underscores the fact that MSP430 family of microcontrollers integrates a processor, non-volatile
and volatile memories, and peripherals that deal with both analog and digital electrical signals.

Things to remember 1-1. Analog-to-digital conversion.

Analog-to-digital conversion is a process of converting analog continuous input signals
(typically voltage or current) into discrete digital numbers that represent the magnitude of the
input signal.

Things to remember 1-2. Digital-to-analog conversion.

Digital-to-analog conversion is a process of converting digital numbers into a continuous
analog output signal.

CPE 323: Module 11 © A. Milenković 4

2 DA Conversion: A System View

The process of converting digital values represented in binary into analog electrical signals is
known as digital-to-analog conversion and is carried out using dedicated peripherals called
digital-to-analog converters (DACs). Thus, DACs perform the reverse function of ADCs. DACs
convert an abstract finite-precision number (integer or fixed-point binary number) into a physical
quantity, typically an electrical signal. DACs are instrumental in many embedded applications.
E.g., they are used in music players to convert digital data streams into analog audio signals, or
in mobile devices and television to convert digital video data streams into analog video signals.
Next, DACs are used in communications to create periodic sinusoidal signals.

Figure 1 shows a system view of digital-to-analog conversion. We provide a stream of digital data
via N-bit DAC_DATA input lines and the DAC produces an analog output signal (V𝑜𝑢𝑡) with the
magnitude proportional to the binary input as described in the equation below, where V𝑅𝐸𝐹 is
the reference voltage.

V𝑜𝑢𝑡 = V𝑅𝐸𝐹 ∙
𝐷𝐴𝐶_𝐷𝐴𝑇𝐴

2𝑁

Figure 1. Digital-to-analog conversion: a system view.

Let us consider the following inputs. If we provide all zeros at the input, the output voltage is

V𝑜𝑢𝑡 = 0. If we provide all ones at the input, V𝑜𝑢𝑡 = V𝑅𝐸𝐹 ∙
2𝑁−1

2𝑁
. Please note that the analog

output never reaches V𝑅𝐸𝐹. If we provide 1000..0b at the input, the output voltage is V𝑜𝑢𝑡 =∙
V𝑅𝐸𝐹

2
. Consequently, indeed this transfer function gives an output analog signal that is

proportional to the binary input.

DAC
N

Vout
Analog
Output

DAC_DATA

Vref

Binary
input

CPE 323: AD&DA Conversion © A. Milenković 5

Things to remember 2-1. DAC Transfer Function.

The transfer function of an N-bit DAC with VREF reference voltage producing analog output
voltage Vout is expressed by the following equation:

V𝑜𝑢𝑡 = V𝑅𝐸𝐹 ∙
𝐷𝐴𝐶_𝐷𝐴𝑇𝐴

2𝑁

3 DA Conversion: An Example

Let us consider an analog signal, 𝑎0, as shown in Figure 2. The ramp like signal is periodic with
the period of 𝑇𝑎0 = 0.5 𝑚𝑠. The frequency of the input signal is 𝐹𝑎0 = 1 𝑇𝑎0⁄ = 2,000 𝐻𝑧. The
signal rises from 0 to 2.5 V in 0.3 ms and falls back to 0 V in 0.2 ms. Please note that the signal is
bounded between 0 and 2.5 V. Let us assume that our task is to create this ramp-like signal. Note:
this example is a reverse of what we did in analog-to-digital conversion – here we have to send
digital samples periodically to produce a signal that will look like the ideal ramp-like signal.

Two important questions related to the process of digital-to-analog conversion are as follows: (a)
how many bits do we want in the binary representation (resolution of DA conversion); and (b)
how many discrete samples do we want to send to the DAC in a unit of time (sampling frequency).
By increasing the number of bits, we increase the resolution and accuracy of the DA conversion.
By increasing the sampling frequency, we can create the signal closer to its ideal form.

Let us assume the following parameters of a DA conversion: the bit length of the binary
representation is 8 bits and the number of samples per single period of the input signal is 5. This
is equivalent to having 10,000 samples per second (2,000 Hz * 5 samples/period = 10,000 samples
per second, or 𝐹𝑠 = 10,000 sps). The sampling period is the the time distance between two
consecutive samples and in this example is: Δ𝑡𝑠 = 1 𝐹𝑠⁄ = 0.1 𝑚𝑠. The signal is bounded 0 ≤
𝑎0 ≤ 2.5 𝑉, so we will set the reference voltage to 𝑉𝑅𝐸𝐹 = 2.5 𝑉.

CPE 323: Module 11 © A. Milenković 6

Figure 2. An example of the desired output analog signal.

We have already discussed how to determine the binary representation of samples taken at 𝑡0 =
0 𝑚𝑠, 𝑡1 = Δ𝑡𝑠 = 0.1 𝑚𝑠, 𝑡2 = 2Δ𝑡𝑠 = 0.2 𝑚𝑠, 𝑡3 = 3Δ𝑡𝑠 = 0.3 𝑚𝑠, 𝑡4 = 4Δ𝑡𝑠 = 0.4 𝑚𝑠. The
digital values of these samples are 0, 85, 170, 255, 127 (or 128), respectively. How do we create
the output analog signal then? A simple approach is that we create a lookup table in memory
containing precomputed values of digital samples, e.g., ramp_lt[5]={0, 85, 170, 255,
127}. Next, we initialize a variable csample, that serves as an index in the lookup table, taking
values, 0, 1, 2, 3, and 4. We can have a timer to generate a periodic interrupt request every 0.1
ms. Inside the timer’s ISR we send the current sample to the DAC_DATA register of the DAC
peripheral, DAC_DATA=ramp_lt[csample], and increment the current sample index,
csample=(csample+1)%5.

Figure 3 illustrates the output signal we create shown in red. It is overlapped with the ideal output
signal given in black. The ramp shape of the desired signal is quite distorted and this is captured
by the signal-to-noise ratio metric. One way to improve accuracy of the signal is to have more
samples per one signal period. Repeat the exercise if 𝐹𝑠 = 20,000 sps. Also, repeat the exercise
assuming N=16 bits. How big lookup table would be in that case?

0.1

[V]

0.5

1

2

1.5

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ms

0
0

CPE 323: AD&DA Conversion © A. Milenković 7

Figure 3. An example output analog signal created by a lookup table with 5 samples per
period (one sample for every 0.1 ms).

The approach described above can be used for any type of output signal you want to create. In
general, we are always limited with the number of bits in the binary representation as well as
with how many samples we can acquire in any period of time, so our “digitized” interpretation
of the real physical world is never perfect. The parameters to consider are size of each sample
and the number of samples per period, impacting the the size of the lookup table. Please note
that we do not have to have all samples pre-computed in the lookup table. For simpler shapes
like in our example, the sample values can be computed in software every time you need to send
them. However, for complex functions, e.g., sinusoidal signals, the computation can introduce
significant overhead in processor time, so pre-computing the samples is preferred approach.

4 Digital-to-Analog Converter Types

DACs are simpler than ADCs to design. Here we will illustrate two implementations, one using
weighted resistors and the other using the R-2R ladder network.

4.1 Weighted Resistors Architecture

Figure 4 shows schematic diagram of a 3-bit DAC using weighted resistors. It can easily be
generalized to N-bit DAC. In the center we have an inverting summing amplifier. The binary input
consists of 3 bits 𝑏2𝑏1𝑏0, where 𝑏0 is the least significant bit. Please note that these inputs control
switches. E.g., if 𝑏0 = 0, the leftmost switch connects to the ground, otherwise to −𝑉𝑅.

0.1

[V]

0.5

1

2

1.5

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ms

0
0

CPE 323: Module 11 © A. Milenković 8

Figure 4. Binary weighted resistors DAC.

First step is to note that the positive input of the amplifier is at the ground, 𝑉+ = 0. The input
voltage of the amplifier is always V𝑖𝑛 = 0, and thus the voltage at the negative input of the
amplifier is also 𝑉− = 0. The current flowing through each resistor can be expressed as follows:

𝐼0 =
𝑉− − 𝑏0 ∙ (−𝑉𝑅)

22 ∙ 𝑅
=

𝑏0 ∙ 𝑉𝑅

22 ∙ 𝑅

𝐼1 =
𝑉− − 𝑏1 ∙ (−𝑉𝑅)

21 ∙ 𝑅
=

𝑏1 ∙ 𝑉𝑅

21 ∙ 𝑅

𝐼2 =
𝑉− − 𝑏2 ∙ (−𝑉𝑅)

20 ∙ 𝑅
=

𝑏2 ∙ 𝑉𝑅

20 ∙ 𝑅

To generalize, the current through i-th resistor is:

𝐼𝑖 =
𝑏𝑖 ∙ 𝑉𝑅

2𝑁−1−𝑖 ∙ 𝑅

The next step is to write equation for the current flowing from the output, 𝐼𝑓 (please note that

Rf=R/2):

𝐼𝑓 =
𝑉𝑜𝑢𝑡 − 𝑉−

𝑅𝑓
=

𝑉𝑜𝑢𝑡

𝑅𝑓
=

2 ∙ 𝑉𝑜𝑢𝑡

𝑅

Finally, the current does not flow into the amplifier, so the current 𝐼𝑓 should be equal to the sum

of individual currents through the weighted resistors, i.e.:

𝐼𝑓 = 𝐼0 + 𝐼1 + 𝐼2

2 ∙ 𝑉𝑜𝑢𝑡

𝑅
=

𝑏0 ∙ 𝑉𝑅

22 ∙ 𝑅
+

𝑏1 ∙ 𝑉𝑅

21 ∙ 𝑅
+

𝑏2 ∙ 𝑉𝑅

20 ∙ 𝑅

-

+

Rf

b0 b1 b2

22R 21R 20R

-VR

101010

Vout

R =2Rf

I2I1

If

I0

CPE 323: AD&DA Conversion © A. Milenković 9

𝑉𝑜𝑢𝑡 = (
𝑏0

23
+

𝑏1

22
+

𝑏2

21
) ∙ 𝑉𝑅 =

𝑏0 ∙ 20 + 𝑏1 ∙ 21 + 𝑏2 ∙ 22

23
∙ 𝑉𝑅 =

𝐷𝐴𝐶_𝐷𝐴𝑇𝐴

23
∙ 𝑉𝑅

Example 4-1. Consider a 3-bit DAC discussed above. What is the analog
output when 𝑏2𝑏1𝑏0 = 000, 𝑏2𝑏1𝑏0 = 001, 𝑏2𝑏1𝑏0 = 100, 𝑎𝑛𝑑 𝑏2𝑏1𝑏0 = 111. Assume 𝑉𝑅𝐸𝐹 = 1.5𝑉.

The transfer function for 3-bit DAC is shown above:

𝑉𝑜𝑢𝑡 =
𝐷𝐴𝐶_𝐷𝐴𝑇𝐴

23 ∙ 𝑉𝑅

𝑏2𝑏1𝑏0 = 000 => 𝑉𝑜𝑢𝑡 = 0 𝑉

𝑏2𝑏1𝑏0 = 001 => 𝑉𝑜𝑢𝑡 =
1

8
1.5 𝑉 = 0.1875 𝑉

𝑏2𝑏1𝑏0 = 100 => 𝑉𝑜𝑢𝑡 =
4

8
1.5 𝑉 = 0.75 𝑉

𝑏2𝑏1𝑏0 = 111 => 𝑉𝑜𝑢𝑡 =
7

8
1.5 𝑉 = 1.3125 𝑉

Whereas this implementation is straightforward, the DAC accuracy depends on our ability to
make resistors to have resistance as described above: R, 2R, 4R, ..2N-1R. The resistance of the
resistors varies widely, especially for larger values of N, which presents a problem in
implementation. To remedy this problem an alternative implementation using R-2R binary ladder
is used instead.

4.2 R-2R Ladder Network DAC

Figure 5 shows schematic diagram for a 3-bit R-2R ladder network implementation. This ladder
arrangement consists of only two resistors, a base resistor with resistance R and a 2R resistor
which is twice the value of the base resistor. A pair of R and 2R is used for one input bit as shown
in Figure 5. The advantage of this implementation is that it can be fabricated easily as it requires
only two values of resistors, the increasing the number of bits does not degrade its performance,
and its output resistance remains constant and does not depend on the number of bits.

To analyze the circuit we use Thevenin’s theorem and the Superposition theorem. The step-by-
step walk through is given in Figure 6, Figure 7, Figure 8, and Figure 9.

CPE 323: Module 11 © A. Milenković 10

Figure 5. R-2R ladder network DAC.

-

+

b0 b1 b2

2R

-VR

101010

Vout

2R

R R

2R

2R

Rf

CPE 323: AD&DA Conversion © A. Milenković 11

CPE 323: Module 11 © A. Milenković 12

Figure 6. Equivalent circuit for input vector 𝒃𝟐𝒃𝟏𝒃𝟎 = 𝟎𝟎𝟏. We mark network nodes near
switches 0, 1, and 2, and walk step-by-step creating an equivalent circuit replacing the R-2R

ladder. Based on Thevenin’s theorem, the equivalent circuit has a power source with voltage
corresponding to the potential at given node and equivalent resistance is computed by

removing all power sources.

CPE 323: AD&DA Conversion © A. Milenković 13

Figure 7. Equivalent circuit for input vector 𝒃𝟐𝒃𝟏𝒃𝟎 = 𝟎𝟏0.

CPE 323: Module 11 © A. Milenković 14

Figure 8. Equivalent circuit for input vector 𝒃𝟐𝒃𝟏𝒃𝟎 = 100.

CPE 323: AD&DA Conversion © A. Milenković 15

Figure 9. Superposition. Using Superposition theorem and 𝐼𝑓 = 𝐼0 + 𝐼1 + 𝐼2 we arrive that the

desired expression.

5 MSP430’s DAC12 Controller

Figure 10 shows a block diagram of MSP430F4618. It includes a 12-channel ADC12, a two-channel
DAC12, an analog comparator Comparator_A, and three op amps.

Figure 10. Block diagram of MSP430F4618.

CPE 323: Module 11 © A. Milenković 16

5.1 DAC12 Organization

The MSP430’s DAC12 peripheral is a two-channel digital-to-analog converter. Its architecture is
based on a ladder of resistors and is conceptually like a potential divider with a large number of
settings. Selecting a particular output requires only a particular configuration of switches. The
voltage from the potential divider is buffered through an amplifier. The DAC12 can fairly quickly
change its output, though typically faster switching requires higher current.

The output voltage of an N-bit DAC is related to its digital input NDAC by the following equation,
which is opposite to the equation for the DAC:

V𝑜𝑢𝑡 = V𝑅𝐸𝐹 ∙
𝐷𝐴𝐶_𝐷𝐴𝑇𝐴

212

The input must lie between 0x0000 and 0x0FFF for DAC12 in 12-bit mode. Note: This means that
the output voltage cannot quite reach the VFS (4095/4096). The DAC12 can operate in 8-bit mode
with inputs between 0x0000 – 0x00FF. There is also a further option for two’s complement input,
rather than regular unsigned binary; thus, 0x0080 corresponds to output voltage 0 V, and 0x07F
corresponds to the maximum output voltage. The DAC12 needs a reference voltage and it usually
borrows it from an ADC (typically from the ADC12).

Let us take a look at the DAC12 block diagram shown in Figure 11.

CPE 323: AD&DA Conversion © A. Milenković 17

Figure 11. Block diagram of DAC12.

DAC12 Core. The DAC12 can be configured to operate in 8-bit or 12-bit mode using the DAC12RES
bit. The full-scale output is programmable to be 1x or 3x the selected reference voltage via the
DAC12IR bit. This feature allows the user to control the dynamic range of the DAC12. The
DAC12DF bit allows the user to select between straight binary data and 2s compliment data for
the DAC. When using straight binary data format, the formula for the output voltage is given
below in Figure 12.

CPE 323: Module 11 © A. Milenković 18

Figure 12. DAC12 output voltage formula.

DAC12 Outputs. On MSP430FG43x and MSP430FG461x devices, the DAC12 outputs are
multiplexed with the port P6 pins and ADC12 analog inputs, and also the VeREF+ and P5.1/S0/A12
pins. When DAC12AMPx > 0, the DAC12 function is automatically selected for the pin, regardless
of the state of the associated PxSELx and PxDIRx bits. The DAC12OPS bit selects between the P6
pins and the VeREF+ and P5.1 pins for the DAC outputs. For example, when DAC12OPS = 0,
DAC12_0 outputs on P6.6 and DAC12_1 outputs on P6.7. When DAC12OPS = 1, DAC12_0 outputs
on VeREF+ and DAC12_1 outputs on P5.1.

Reference Voltage. DAC12 is configured to use either an external reference voltage or the
internal 1.5-V/2.5-V reference from the ADC12 module with the DAC12SREFx bits. When
DAC12SREFx = {0,1} the VREF+ signal is used as the reference and when DAC12SREFx = {2,3} the
VeREF+ signal is used as the reference.

To use an ADC internal reference, it must be enabled and configured via the applicable ADC
control bits.

DAC12 Voltage Output. The DAC12_xDAT register can be connected directly to the DAC12 core
or double buffered. The trigger for updating the DAC12 voltage output is selected with the
DAC12LSELx bits.

When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT register is applied
directly to the DAC12 core. The DAC12 output updates immediately when new DAC12 data is
written to the DAC12_xDAT register, regardless of the state of the DAC12ENC bit.

When DAC12LSELx = 1, DAC12 data is latched and applied to the DAC12 core after new data is
written to DAC12_xDAT. When DAC12LSELx = 2 or 3, data is latched on the rising edge from the
Timer_A CCR1 output or Timer_B CCR2 output respectively. DAC12ENC must be set to latch the
new data when DAC12LSELx > 0.

The DAC12AMPx control bits configure the DAC12’s amplifier as shown in Figure 13.

CPE 323: AD&DA Conversion © A. Milenković 19

Figure 13. DAC12 amplifier control.

5.2 DAC12 Control Registers

The DAC12 is a 16-bit peripheral device and two control registers, one for each output channel,
DAC12_xCTL. (Figure 14).

CPE 323: Module 11 © A. Milenković 20

CPE 323: AD&DA Conversion © A. Milenković 21

Figure 14. Control Register DAC12CTLx.

CPE 323: Module 11 © A. Milenković 22

6 Code Example

Code 1 shows a C program that generates a sinusoidal output using DAC12 with frequency of 10
Hz. We create a lookup table containing 256 samples per one period (T = 0.1 s). The DAC12 is
setup as follows: the reference voltage is set to 2.5 V, no amplification is used, and the medium
speed/current is used for the output buffer. Please note the the voltage generator is turned on
in ADC12 and the time delay is used to wait for the signal to become stable, before using the
DAC12 (line 35-37). The main loop of the program is an infinite loop where the processor enters
a low-power mode LPM0. The TimerA is set to generate an interrupt 256 times every 0.1 s. The
TimerA ISR wakes the CPU and makes sure it remains active after exiting the ISR. In the main
loop, the next sample from the lookup table is sent to the DAC12_DAT register and the index is
updated before the CPU goes back to LPM0.

Code 2 shows the content of the lookup table created in Matlab.

/*-- 1
 * File: Lab11_D3.c (CPE 325 Lab11 Demo code) 2
 * Function: Sinusoidal wave with DAC (MPS430FG4618) 3
 * Description: This C program reconstructs the sinusoidal wave (y=1.25(1+sin(x))) 4
 * from the samples using DAC and outputs at P6.6. WDT is used to 5
 * give an interrupt for every ~0.064ms to wake up the CPU and 6
 * feed the DAC with new value. Connect the oscilloscope to P6.6 7
 * to observe the signal. The interval used to read the samples 8
 * controls the frequency of output signal. 9
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 10
 * An external watch crystal between XIN & XOUT is required for ACLK 11
 * 12
 * MSP430xG461x 13
 * ------------------- 14
 * /|\| XIN|- 15
 * | | | 32kHz 16
 * --|RST XOUT|- 17
 * | | 18
 * | DAC0/P6.6|--> sine (10Hz) 19
 * | | 20
 * Input: None 21
 * Output: Sinusoidal wave with 10Hz frequency at P6.6 22
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 23
 --/ 24
#include <msp430fg4618.h> 25
#include "sine_lut_256.h" /*256 samples are stored in this table */ 26
 27
void TimerA_setup(void) { 28
 TACTL = TASSEL_2 + MC_1; // SMCLK, up mode 29
 TACCR0 = 410; // Sets Timer Freq (1048576*0.1sec/256) 30
 TACCTL0 = CCIE; // CCR0 interrupt enabled 31
} 32
 33
void DAC_setup(void) { 34
 ADC12CTL0 = REF2_5V + REFON; // Turn on 2.5V internal ref voltage 35
 unsigned int i = 0; 36

CPE 323: AD&DA Conversion © A. Milenković 23

 for (i = 50000; i > 0; i--); // Delay to allow Ref to settle 37
 DAC12_0CTL = DAC12IR + DAC12AMP_5 + DAC12ENC; //Sets DAC12 38
} 39
 40
void main(void) { 41
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT 42
 TimerA_setup(); // Set timer to uniformly distribute the 43
samples 44
 DAC_setup(); // Setup DAC 45
 unsigned int i = 0; 46
 while (1) { 47
 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 48
 DAC12_0DAT = LUT256[i]; 49
 i=(i+1)%256; 50
 } 51
} 52
 53
#pragma vector = TIMERA0_VECTOR 54
__interrupt void TA0_ISR(void) { 55
 __bic_SR_register_on_exit(LPM0_bits); // Exit LPMx, interrupts enabled 56
} 57
 58

Code 1. Program for generating a sine wave function 𝟏. 𝟐𝟓 ∙ (𝟏 + 𝒔𝒊𝒏(𝟐 ∙ 𝝅 ∙ 𝟏𝟎 ∙ 𝒕)).

int LUT256[] = { 2048, 2098, 2148, 2198, 2248, 2298, 2348, 2398, 2447, 2496, 2545,
2594, 2642, 2690, 2737, 2784, 2831, 2877, 2923, 2968, 3013, 3057, 3100, 3143, 3185,
3226, 3267, 3307, 3346, 3385, 3423, 3459, 3495, 3530, 3565, 3598, 3630, 3662, 3692,
3722, 3750, 3777, 3804, 3829, 3853, 3876, 3898, 3919, 3939, 3958, 3975, 3992, 4007,
4021, 4034, 4045, 4056, 4065, 4073, 4080, 4085, 4089, 4093, 4094, 4095, 4094, 4093,
4089, 4085, 4080, 4073, 4065, 4056, 4045, 4034, 4021, 4007, 3992, 3975, 3958, 3939,
3919, 3898, 3876, 3853, 3829, 3804, 3777, 3750, 3722, 3692, 3662, 3630, 3598, 3565,
3530, 3495, 3459, 3423, 3385, 3346, 3307, 3267, 3226, 3185, 3143, 3100, 3057, 3013,
2968, 2923, 2877, 2831, 2784, 2737, 2690, 2642, 2594, 2545, 2496, 2447, 2398, 2348,
2298, 2248, 2198, 2148, 2098, 2048, 1997, 1947, 1897, 1847, 1797, 1747, 1697, 1648,
1599, 1550, 1501, 1453, 1405, 1358, 1311, 1264, 1218, 1172, 1127, 1082, 1038, 995,
952, 910, 869, 828, 788, 749, 710, 672, 636, 600, 565, 530, 497, 465, 433, 403, 373,
345, 318, 291, 266, 242, 219, 197, 176, 156, 137, 120, 103, 88, 74, 61, 50, 39, 30,
22, 15, 10, 6, 2, 1, 0, 1, 2, 6, 10, 15, 22, 30, 39, 50, 61, 74, 88, 103, 120, 137,
156, 176, 197, 219, 242, 266, 291, 318, 345, 373, 403, 433, 465, 497, 530, 565, 600,
636, 672, 710, 749, 788, 828, 869, 910, 952, 995, 1038, 1082, 1127, 1172, 1218, 1264,
1311, 1358, 1405, 1453, 1501, 1550, 1599, 1648, 1697, 1747, 1797, 1847, 1897, 1947,
1997, 2047 };

Code 2. Lookup table.

7 Exercises

