

CPE 323: AD&DA Conversion © A. Milenković 1

CPE 323
MODULE 11

Analog-to-Digital Conversion

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces main concepts of analog-to-digital (AD) and digital-to-analog (DA)
conversion. You will learn hardware aspects as well as software aspects of the analog-to-digital
and digital-to-analog conversion and AD and DA converters. You will understand how to configure
and utilize MSP430 ADC12 and DAC12 peripherals in your programs.

Objectives

 Learners will understand hardware and software aspects of analog-to-digital and digital-
to-analog converters

 Learners will understand how to configure and interact with MSP430 ADC peripheral

 Learners will understand how to configure and interact with MSP430 DAC peripheral

Contents

1 AD Conversion: An Introduction .. 3

2 AD Conversion: An Example .. 4

3 Analog-to-Digital Conversion Flow .. 7

4 Analog-to-Digital Converter Types .. 11

4.1 Successive Approximation ADC .. 11

4.2 Parallel or Flash ADC .. 12

5 MSP430’s ADC12_A Controller .. 13

5.1 ADC12_A Organization ... 14

5.2 ADC12_A Control Registers .. 20

6 Code Example .. 26

7 Exercises .. 30

mailto:milenka@uah.edu

CPE 323: Module 11 © A. Milenković 2

CPE 323: AD&DA Conversion © A. Milenković 3

1 AD Conversion: An Introduction

Embedded computer systems typically a part of other systems or devices. We often refer to four
main tasks of any embedded computer system (or any computer system in general) as: (1)
sensing the external physical world through sensors; (2) processing information; (3) storing
information; and (4) communicating information and acting on the environment. Sensors or
transducers are used to convert physical quantities (e.g., force, atmospheric pressure, sound,
light, temperature, and others) into electrical signals (e.g., voltage or current) that we can
measure. The electrical signals are often either noisy, weak, or both noisy and weak, so signal
conditioning circuits are responsible to remove undesired harmonics of continual electrical
signals (filtering) and amplify them (amplification) so they can be properly measured. Once the
electrical signals are ready and in a desired range, a critical step is to convert them into
corresponding digital values that can be further processed, stored, and/or communicated using
digital computers. The process of converting analog electrical signals into binary numbers that
correspond to the magnitude of the input signals is known as analog-to-digital conversion and is
carried out using dedicated peripherals called analog-to-digital converters (ADCs).

One outcome of data processing is that we may need to act on the environment. For example,
think about the air conditioning system at your house – a sensor continually measures the
temperature (sensing), and if the temperature rises above a certain threshold (processing), a
controller sends a signal to your AC unit to start pumping in cool air (acting on the environment).
Once the temperature is lowered, the controller sends a signal to the AC unit to stop its
operation. Acting on the environment sometimes requires that we generate analog electrical
signals of certain amplitude and frequency. To generate such signals we conduct digital-to-analog
conversion and for that we rely on peripheral devices called digital-to-analog converters (DACs).

In this module you will learn hardware aspects as well as software aspects of the analog-to-digital
and digital-to-analog converters. You will understand how to configure and utilize MSP430 ADC
and DAC peripherals in your programs. The very name MSP that stands for Mixed Signal Processor
underscores the fact that MSP430 family of microcontrollers integrates a processor, non-volatile
and volatile memories, and peripherals that deal with both analog and digital electrical signals.

Things to remember 1-1. Analog-to-digital conversion.

Analog-to-digital conversion is a process of converting analog continuous input signals
(typically voltage or current) into discrete digital numbers that represent the magnitude of the
input signal.

Things to remember 1-2. Digital-to-analog conversion.

Digital-to-analog conversion is a process of converting digital numbers into a continuous
analog output signal.

CPE 323: Module 11 © A. Milenković 4

2 AD Conversion: An Example

Let us consider an input analog signal, 𝑎0, as shown in Figure 1. The ramp like signal is periodic
with the period of 𝑇𝑎0 = 0.5 𝑚𝑠. The frequency of the input signal is 𝐹𝑎0 = 1 𝑇𝑎0⁄ = 2,000 𝐻𝑧.
The signal rises from 0 to 2.5 V in 0.3 ms and falls back to 0 V in 0.2 ms. Please note that the signal
is bounded between 0 and 2.5 V. Analog-to-digital conversion assumes that we want to convert
this continual analog input signal into a sequence of binary numbers, where each binary number
corresponds to the magnitude of the input signal at a given moment. Two important questions
related to the process of analog-to-digital conversion are as follows: (a) how many bits do we
want in the binary representation (resolution of AD conversion); and (b) how many discrete
samples do we want to get per each signal period (sampling frequency). By increasing the number
of bits, we increase the resolution and accuracy of the AD conversion. By increasing the sampling
frequency, we can recreate input signal more faithfully.

Let us assume the following parameters of an AD conversion: the bit length of the binary
representation is 8 bits and the number of samples per single period of the input signal is 5. This
is equivalent to having 10,000 samples per second (2,000 Hz * 5 samples/period = 10,000 samples
per second, or 𝐹𝑠 = 10,000 sps). The sampling period is the the time distance between two
consecutive samples and in this example is: Δ𝑡𝑠 = 1 𝐹𝑠⁄ = 0.1 𝑚𝑠.

Figure 1. An example input analog signal.

Figure 2 shows a block-box representation of analog-to-digital conversion. An analog input
voltage signal 𝑎0 is periodically sampled by an AD converter. The sampling is controlled by a
control signal named Sample/Hold. The reference voltages of the AD converter ideally match the
input signal bounds, i.e., 𝑉𝑅− ≤ 𝑎0 ≤ 𝑉𝑅+. The AD converter produces an N-bit binary
representation that corresponds to the magnitude of the input signal at the moment it has been
sampled. This binary output is then read by the processor core using one of the I/O interfacing
approaches (polling, ISRs, DMA transfer).

0.1

[V]

0.5

1

2

1.5

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ms

0
0

CPE 323: AD&DA Conversion © A. Milenković 5

Figure 2. Analog-to-digital conversion: a top view.

Without lack of generality, we assume that samples are taken at times: 𝑡𝑖 = 𝑖 ∙ Δ𝑡𝑠, for i=0, 1, 2,
3, and so on. In a general case the function of an AD converter can be described by the following
transfer function:

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
)

where 𝑁 is the resolution of the AD converter (the number bits in the output binary
representation), 𝑎0 is the value of the analog input at a given time, and 𝑉𝑅+ and 𝑉𝑅− are the
reference voltages of the AD converter. The 𝑛𝑖𝑛𝑡 stands for the nearest integer. In our example
we assume the following parameters: 𝑁 = 8, 𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0 𝑉. The transfer function
is thus as follows:

Sample Value = 𝑛𝑖𝑛𝑡 (255 ∙
𝑎0

2.5 𝑉
)

Consequently, if 𝑎0 = 0 𝑉, 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 = 0 𝑜𝑟 0𝑥00; if 𝑎0 = 2.5 𝑉, 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 =
255 𝑜𝑟 0𝑥𝐹𝐹.

ADC

a0
Sample Value

VR+

Analog input
(voltage)

N

VR-

Sample/Hold

CPE 323: Module 11 © A. Milenković 6

Example 2-1. Find binary representation of samples in one period for

signal 𝑎0 assuming 𝑁 = 8, 𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The initial sample is

taken at 𝑡0 = 0 s.

Sample 0 at time 𝑡0 = 0 𝑚𝑠: 𝑎0 = 0 𝑉 => 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
0

2.5 𝑉
) = 0 (0𝑥00)

Sample 1 at time 𝑡1 = Δ𝑡𝑠 = 0.1 𝑚𝑠: 𝑎0 =
2.5

3
= 0.8333 =>

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
0.8333 𝑉

2.5 𝑉
) = 85 (0𝑥55)

Sample 2 at time 𝑡2 = 2 ∙ Δ𝑡𝑠 = 0.2 𝑚𝑠: 𝑎0 =
2∙2.5

3
= 1.6666 =>

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
1.666 𝑉

2.5 𝑉
) = 170 (0𝑥𝐴𝐴)

Sample 3 at time 𝑡3 = 3 ∙ Δ𝑡𝑠 = 0.3 𝑚𝑠: 𝑎0 =
3∙2.5

3
= 2.5 =>

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
2.5 𝑉

2.5 𝑉
) = 255 (0𝑥𝐹𝐹)

Sample 4 at time 𝑡4 = 4 ∙ Δ𝑡𝑠 = 0.4 𝑚𝑠: 𝑎0 =
1∙2.5

2
= 1.25 =>

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
1.25 𝑉

2.5 𝑉
) = 127 (0𝑥7𝐹).

Note: to find values of the input signal use simple proportions. For the input signal in i*0.1 ms
+ k*0.5 ms (i=0, 1, 2, 3, k=0, 1, 2, 3, …) the proportion is i*2.5/3. For the input signal at i*0.1
ms + k*0.5 ms (i=4, k=0, 1, 2, …), the proportion is 2.5/2.

Figure 3 illustrates the input signal overlapped with the samples taken at 𝑡𝑖 = 𝑖 ∙ Δ𝑡𝑠. If we were
to create an output analog signal using a DA converter based on samples acquired by the AD
conversion, the signal would look like the one shown in red. The ramp shape of the input signal
is quite distorted and this is captured by the signal-to-noise ratio metric. One way to improve
accuracy of the signal is to take more samples per one signal period. Repeat the exercise from
Example 2-1 if 𝐹𝑠 = 20,000 sps. Also, repeat the exercise assuming N=16 bits. In general, we
are always limited with the number of bits in the binary representation as well as with how many
samples we can acquire in any period of time, so our “digitized” interpretation of the real physical
world is never perfect.

CPE 323: AD&DA Conversion © A. Milenković 7

Figure 3. An example input analog signal sampled every 0.1 ms.

3 Analog-to-Digital Conversion Flow

Figure 4 illustrates an analog-to-digital conversion flow. We are embedded into physical world
and want to quantify and measure it. Sensors or transducers are used to convert physical
quantities into electrical signals such as voltage or current that we can further act on. Examples
of sensors are many. Just pick-up your smartphone and try to list all sensors it has. We have a 3D
accelerometer that measures force, a 3D gyroscope that measures angular velocity, a 3D
magnetic field sensor that measures strength of Earth’s magnetic field. These 3 sensors together
are used in navigation and orientation and are sometimes referred to as inertial sensors (9
degrees of freedom term comes for these 3 sensors, each having x, y, and z components). Next
you have a microphone, a camera or rather multiple cameras, and a proximity sensor. We have
seen a tremendous progress in sensor technology with rise of so-called MEMS devices – Micro-
Electro-Mechanical Systems. Taking advantages of semiconductor innovations and
miniaturization we can now have a single chip that integrates multiple sensors, replacing multiple
older mechanical sensors that are both cumbersome and heavy. As an example, next time you
visit the U.S. Rocket and Space Museum across the street, please pay attention to the gyroscope
used in Saturn-V rocket.

Figure 4. Analog-to-digital conversion flow.

0.1

[V]

0.5

1

2

1.5

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ms

0
0

Sensors
a0Signal

Condititioning
(filter&lify)

Physical
world

Input
MUX

a1

a15

Select INCH

Sample/Hold

Sample/Hold

ADC Core

VR+ VR-

Convert Clock

Samples

N
Buffers

CPE 323: Module 11 © A. Milenković 8

Electrical signals coming from sensors often need to be filtered to remove undesired harmonics
and/or to be amplified so we can measure them. For example, if you are interested in getting an
ECG (electrocardiogram) signal from humans, its amplitude is ~1 mV. So even if you hook yourself
up on an oscilloscope, you are not going to see your ECG signal because it is buried in electrical
noise. Before proceeding we have to remove undesired harmonics through filtering and amplify
the signal perhaps 1,000 times to bring it to 1 V. For this we can use an external specialized chip
designed for ECG filtering and amplification (often referred to as bio amplifiers becasue they can
work with other types of physiological electrical signals: EEG – electroencephalogram that
represents macroscopic electrical activity of the brain underneath; and EMG – electromyogram
that represents skeletal muscle activity).

It is cost-prohibitive and unnecessary to have an AD converter for each analog signal you might
be interested in a system. Rather, multiple analog signals can be brought to a single AD converter.
An analog multiplexer can select one analog signal at a time using Select INCH (select input
channel) control bits. This way, we can handle multiple analog inputs, by converting one input
signal at a time.

Once the input channel is selected, the selected analog input signal is brought to the next block
called Sample&Hold. The input analog signals are continuous, meaning they are not fixed in time.
Converting a signal that constantly changes is not an option. So the purpose of the Sample&Hold
block is to quickly capture the true value of the analog input (Sample mode) and then present
that signal to the ADC core (Hold mode), where the conversion takes place. A good abstraction
for the Sample&Hold module is shown in Figure 5. An analog input goes through a switch, a
resistor with resistance R, and a capacitor with capacitance C. During sampling, the switch is
closed. The capacitor is charged so that the output voltage from the capacitor (Vout) matches as
closely as possible the voltage at the input channel (Vout). Holding the switch closed longer than
needed will capture continual changes of the input signal and will limit our ability to get as many
samples as possible. Opening the switch to early, will result in discrepancy between the true value
of the input signal and the voltage presented to the ADC core. Once sampling is done, the switch
is opened, thus disconnecting the capacitor from the input channel. The further changes at the
input channel are thus not going to affect the charge on the capacitor that presents the fixed
voltage to the AD core.

Figure 5. Sample&Hold Module.

R C

Vin Voutfrom
analog
MUX

to ADC
core

CPE 323: AD&DA Conversion © A. Milenković 9

Things to remember 3-1. Sample and hold

The sample&hold block is responsible to capture the true value of the input signal (sampling
phase) and decouple the analog input from the AD core logic during conversion (holding
phase).

The AD core implements the transfer function as described above (and repeated here):

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
)

Figure 6 illustrates an ideal transfer function for a 4-bit AD converter. The entire input range
(𝑉𝑅+ − 𝑉𝑅−) is divided into 16 ranges, 0 to 0.5VLSB, 0.5VLSB to 1.5VLSB, 1.5VLSB to 2.5VLSB, . . .
14.5VLSB to 16VLSB that correspond to binary outputs 0000, 0001, … 1111, respectively.

Finally, once the AD core produces an N-bit sample, it is stored into a buffer register and
appropriate flags are set to alert the processor core to read them before the next sample can
perhaps overwrite the existing one.

Figure 6. Ideal AD Transfer Function (N=4). The input voltage is divided into 16 (24 levels) with
16 digital representations on the output. Please note that the input range 0 to 0.5VLSB

corresponds to binary 0000, 0.5VLSB to 1.5VLSB to 0001, and so on. The input range of 14.5VLSB
to 16 VLSB corresponds to 1111. Please note asymmetricity of input ranges for 0000 and 1111.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

VLSB 2VLSB 3VLSB 4VLSB 5VLSB 6VLSB 7VLSB 8VLSB 9VLSB 10VLSB 11VLSB 12VLSB 13VLSB 14VLSB 15VLSB 16VLSB Analog
Input

Binary
Output

CPE 323: Module 11 © A. Milenković 10

Things to remember 3-2. AD Transfer Function

The transfer function of an AD converter that converts an analog input voltage 𝑎0 into a binary
representation is described by the following equation:

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
)

where N is the number of bits in the binary representation, and 𝑉𝑅+ and 𝑉𝑅− are reference
voltages (𝑉𝑅− ≤ 𝑎0 ≤ 𝑉𝑅+). nint is the nearest integer function.

When dealing with AD converters, you will sometimes find terms such as resolution, accuracy,
aperture time, conversion time, and the maximum sampling frequency.

AD Resolution. The resolution of an AD converter defines how finely the value measured can be
represented and it is defined as follows:

V𝐿𝑆𝐵 =
V𝑅+ − V𝑅−

2𝑁

The quantization error is thus always present and can be quantified as ±0.5V𝐿𝑆𝐵.

AD Accuracy. The AD accuracy refers to how much the value under measurement deviates from
its true value due to AD converter inaccuracies. The AD converters are not ideal, they can have
issues with offset, gain, they may not be perfectly linear or may have some missing codes in the
binary output. In addition, there is also some finite amount of noise within the converter.

Aperture Time. The aperture time is the time the Sample&Hold signal is looking at the input
signal. This time should be long enough so that the captured voltage at the output of the
sample&hold module is as close as possible to the voltage at the input channel. This error caused
by finite sampling time (aperture time) should be less than 0.5V𝐿𝑆𝐵. If not, we would not fully
utilize the AD converter’s resolution.

Conversion Time. The conversion in the AD core itself takes a finite amount of time. Depending
on the implementation of the AD core, this time can be directly proportional to the resolution of
the AD converter (e.g., takes N+1 clock cycles), or can be rather fast requiring a single clock cycle.
The design space usually includes trade-offs – faster implementations require more sophisticated
circuitry and will cost more.

Maximum Sampling Frequency. The maximum number of samples one can get from an AD
converter is bounded by the the sum of the aperture time and conversion time. Thus, the
maximum sampling frequency is defined as follows:

𝐹𝑠.𝑚𝑎𝑥 ≤
1

𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒+𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

Please keep in mind that this is an upper limit on how many samples your AD converter can give
you in a unit of time. If multiple analog input channels are converted in a sequence, the maximum
number of samples per each channel will be lower. For example, if the maximum number of

CPE 323: AD&DA Conversion © A. Milenković 11

samples per second (sps) is 200,000 and you are sweeping across 8 different analog inputs, the
maximum sampling frequency on each channel will be 25,000 sps. Often you will see that
maximum sampling frequency of MSP430 ADC12 converter is 200,000 sps. Where does this
number come from? The ADC12 can work at maximum 5,000,000 Hz clock, its conversion time is
13 clock cycles. Assuming aperture time of 12 clock cycles, the maximum number of samples we
can get from the ADC12 is 5,000,000/(12+13) = 200,000 sps.

Things to remember 3-3. ADC properties

When dealing with ADCs, we often discuss their properties in terms of ADC resolution (higher
is better), ADC accuracy (higher is better), ADC aperture time (sampling time), ADC
conversion time, and maximum sampling frequency (higher is better). Make sure you can
define these properties.

4 Analog-to-Digital Converter Types

There are a number of analog-to-digital converter implementations differing in their properties,
speed, and cost. In this section we will describe two types: succession approximation that is
relatively simple to implement but slow and flash A/D that requires a lot of resources but is fast.

4.1 Successive Approximation ADC

The successive approximation is one of the most widely used ADC implementations. Figure 7
shows its block diagram. It consists of a digital-to-analog converter, a comparator, and a
successive approximation register. The conversion is performed in multiple steps. In the first step,
we determine the most significant bit (MSB, bit position N-1), in the second step we determine
the bit at position N-2, and so on. The last step is to determine the LSB. In the first step the binary
value 100…0 is written into the successive approximation register (SAR). The DAC produces the
voltage that corresponds to 2N-1VREF, or one half of the total range. The comparator compares the

analog input and gives a logic 1 at the output if 𝑣𝑖𝑛 ≥
1

2
𝑉𝑅𝐸𝐹 or a logic 0 otherwise. If the

comparator output is set to a logic 1 that means that the input signal is in the upper half of the
full scale range, and the MSB of the register should be 1. If the comparator output is a logic 0 that
means the input voltage is in the lower half of the full scale range, and the MSB of of the SAR
should be 0. Thus the MSB bit is determined at the end of the step 1. In the next step, we probe
bit at position N-2, and so on until we determine all bits. The total number of step corresponds
to the number of bits, making this implementation cost-effective but relatively slow.

CPE 323: Module 11 © A. Milenković 12

Figure 7. Successive approximation ADC.

Example 4-1. Walk through the SAR AD conversion step-by-step assuming

a 4-bit AD converter (N=4), 𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The input voltage
is 1.8 V.

Step 1: SAR=1000b; 𝑉𝐷𝐴𝐶 = 8 ∙ 𝑉𝐿𝑆𝐵 = 8 ∙
2.5

16
= 1.25 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 3 𝑖𝑠 1

Step 2: SAR=1100b; 𝑉𝐷𝐴𝐶 = 12 ∙ 𝑉𝐿𝑆𝐵 = 12 ∙
2.5

16
= 1.875 𝑉; 𝑉𝑖𝑛 ≤ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 2 𝑖𝑠 0

Step 3: SAR=1010b; 𝑉𝐷𝐴𝐶 = 10 ∙ 𝑉𝐿𝑆𝐵 = 10 ∙
2.5

16
= 1.5625 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 1 𝑖𝑠 1

Step 4: SAR=1011b; 𝑉𝐷𝐴𝐶 = 11 ∙ 𝑉𝐿𝑆𝐵 = 11 ∙
2.5

16
= 1.71875 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 0 𝑖𝑠 1

So, the final digital value is 1011b (11). As a way of verification we can use the transfer function
of the ideal 4-bit AD converter to confirm correctness of the final binary output:

Sample Value = 𝑛𝑖𝑛𝑡 (15 ∙
1.8 𝑉

2.5 𝑉
) = 𝑛𝑖𝑛𝑡(10.8) = 11

4.2 Parallel or Flash ADC

Figure 8 shows a block diagram of a parallel or flash ADC. It implements the ADC voltage transfer
function. The resistors in series divide the full voltage range producing 0.5VLSB, 1.5VLSB, 2.5VLSB, .
. . to (2N-1.5)VLSB threshold voltages (the resistors in series create a voltage divider). These
threshold voltages are brought to 2N-1 analog comparators. They are compared in parallel to the
analog input. The outputs of comparators are brought into a 2N-to-N bit encoder that gives the
digital output.

Digital-to-Analog
Converter

Comparator

Successive Approximation
Register

Clock

Ref

...

Digital
Output

Analog
input

MSB

LSB

CPE 323: AD&DA Conversion © A. Milenković 13

Figure 8. Parallel or flash ADC.

Example 4-2. Illustrate inner workings of the flash ADC. Assume a 4-

bit flash ADC (N=4), 𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The input voltage is 1.8
V.

There are 15 comparators comparing the input voltage to the threshold voltages as follows:
0.5VLSB, 1.5VLSB, 2.5VLSB, . . . to 14.5VLSB. The output of bottom 11 comparators is set to logic 1
because input voltage is larger than 0.5VLSB, 1.5VLSB, 2.5VLSB, . . . to 10.5VLSB, respectively. The
output of top 4 comparators is at logic 0 because the input is less than 11.5VLSB, 12.5VLSB,
13.5VLSB, and 14.5VLSB, respectively. The outputs from comparators from 0 to 15 are thus:
1111_1111_1110_000b. The output of the encoder will give you 1011b (11).

5 MSP430’s ADC12_A Controller

Figure 9 shows a block diagram of an MSP430F5529 device. It includes an ADC12_A peripheral –
a 12-bit ADC that can sample up to 200 Ksps (kilo samples per second) and has 16 input channels.
It also includes a comparator COMP_B and REF module that generates reference voltages for
ADCs and DACs. Figure 10 shows a block diagram of MSP430F4618. It includes an 12-channel
ADC12, a two-channel DAC12, an analog comparator Comparator_A, and three op amps.

R/2

R

R

3R/2

Ref

2N-to-N-bit
Encoder

. . .

.

.

.

Digital
Output

2N-1
Comparators

Analog
Input

.

.

.

CPE 323: Module 11 © A. Milenković 14

Figure 9. Block diagram of MSP430F5529.

Figure 10. Block diagram of MSP430F4618.

The MSP430 ecosystem includes several other types of ADCs, e.g., ADC10, SD24_B, CTSD16, and
others, but they are out of scope in this module.

5.1 ADC12_A Organization

Figure 11 shows a block diagram of the ADC12_A module (including the REF module). The
ADC12_A supports 12-bit AD conversion with 16 input channels (12 external and up to 4 internal).
It relies on a 12-bit SAR core, supports programmable sampling periods controlled by software

CPE 323: AD&DA Conversion © A. Milenković 15

or timers, supports software-selectable internal and external reference voltages, and multiple
modes of operations. It includes a 16-word conversion buffer (ADC12MEM0 – ADC12MEM15)
and a 16-word control buffer (ADC12MCTL0 – ADC12MCTL15).

Figure 11. Block diagram of ADC12_A.

ADC12_A Core. At the heart of the ADC12 is a 12-bit switched capacitor SAR core. It is guaranteed
monotonic with no missing codes. The ADC12 core is configured by two control registers,
ADC12CTL0 and ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12 can be turned
off when not in use to save power. With few exceptions the ADC12 control bits can only be
modified when ENC = 0. ENC must be set to 1 before any conversion can take place. The BUSY

CPE 323: Module 11 © A. Milenković 16

flag is set while sampling and conversion is in progress. The result is written to ADC12MEMx
memory buffers.

The core uses two programmable/selectable voltage levels (VR+ and VR−) to define the upper and
lower limits of the conversion. The digital output (NADC) is full scale (0x0FFF) when the input signal
is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR−. The
input channel and the reference voltage levels (VR+ and VR−) are defined in the conversion-control
memory. The conversion formula for the ADC result NADC is:

𝑁𝐴𝐷𝐶 = 𝑛𝑖𝑛𝑡 (4095 ∙
𝑉𝑖𝑛 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
)

Conversion Clock. The SAR block uses ADC12CLK signal that feeds both the sample-and-hold and
the SAR core blocks. The ADC12_A source clock is selected using the predivider controlled by the
ADC12PDIV bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1
to 32 using both the ADC12DIVx bits and the ADC12PDIV bit. Possible ADC12CLK sources are
SMCLK, MCLK, ACLK, and the ADC12OSC. The ADC12OSC refers to the MODCLK 5 MHz oscillator
from the UCS which can vary with individual devices, supply voltage, and temperature. The user
must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If
the clock is removed during a conversion, the operation will not complete and any result will be
invalid. If selected, the ADC12OSC is automatically enabled when needed and disabled when
conversions have finished.

ADC12_A Inputs and Multiplexer. The 12 external and 4 internal analog signals are selected as
the channel for conversion by the analog input multiplexer. The input multiplexer is a break-
before-make type to reduce input-to-input noise injection resulting from channel switching. The
input multiplexer is also a T-switch to minimize the coupling between channels. Channels that
are not selected are isolated from the ADC, and the intermediate node is connected to analog
ground (AVSS) so that the stray capacitance is grounded to eliminate crosstalk.

The ADC12_A uses the charge redistribution method. When the inputs are internally switched,
the switching action may cause transients on the input signal. These transients decay and settle
before causing errant conversion.

Analog Port Selection. The ADC12_A inputs are multiplexed with digital port pins. When analog
signals are applied to digital gates, parasitic current can flow from VCC to GND. This parasitic
current occurs if the input voltage is near the transition level of the gate. Disabling the digital part
of the port pin eliminates the parasitic current flow and, therefore, reduces overall current
consumption. The PxSEL.y bits provide the ability to disable the port pin input and output buffers.

Voltage Reference Generator. The ADC12_A modules have a separate reference module (REF)
that supplies three selectable voltage levels, 1.5 V, 2.0 V, and 2.5 V to the ADC12_A. Any of these
voltages may be used internally and externally on pin VREF+. The internal AVCC can also be used
as the reference. On devices with the REF module, the voltage reference settings can be
controlled either by the REF module or by the ADC12_A module. This is to allow for backward
compatibility with older families. This is handled by the REFMSTR bit in the REF module. If
REFMSTR = 1 (default), the REF module registers control the reference settings. If REFMSTR = 0,

CPE 323: AD&DA Conversion © A. Milenković 17

the ADC12_A reference setting define the reference voltage of the ADC12_A module (2.5 or 1.5
V). External references may be supplied for VR+ and VR– through pins VREF+/VeREF+ and VREF-/VeREF-,
respectively. External storage capacitors are required only if ADC12REFOUT = 1 (REFOUT = 1
when using REF module) and the reference voltage is made available at the pins.

Sample and Conversion Timing. An analog-to-digital conversion is initiated with a rising edge of
the sample input signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

 ADC12SC bit

 Up to three timer outputs (see the device-specific data sheet for available timer sources)

The ADC12_A supports 8-bit, 10-bit, and 12-bit resolution modes selectable by the ADC12RES
bits. The analog-to-digital conversion requires 9, 11, and 13 ADC12CLK cycles, respectively. The
polarity of the SHI signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal
controls the sample period and start of conversion. When SAMPCON is high, sampling is active.
The high-to-low SAMPCON transition starts the analog-to-digital conversion. Two different
sample-timing methods are defined by control bit ADC12SHP, extended sample mode and pulse
mode. See the device-specific data sheet for available timers for SHI sources.

The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls
SAMPCON and defines the length of the sample period tsample (Figure 12). When SAMPCON is
high, sampling is active. The high-to-low SAMPCON transition starts the conversion after
synchronization with ADC12CLK.

Figure 12. Extended Sample Mode.

The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the
sampling timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the
sampling timer that defines the SAMPCON sample period tsample. The sampling timer keeps
SAMPCON high after synchronization with AD12CLK for a programmed interval tsample. The total
sampling time is tsample plus tsync (see Figure 13). The ADC12SHTx bits select the sampling time in

CPE 323: Module 11 © A. Milenković 18

4× multiples of ADC12CLK. ADC12SHT0x selects the sampling time for ADC12MCTL0 to
ADC12MCTL7. ADC12SHT1x selects the sampling time for ADC12MCTL8 to ADC12MCTL15.

Figure 13. Pulse Sample Mode.

Sample Timing Considerations. When SAMPCON = 0, all inputs are high impedance. When
SAMPCON = 1, the selected Ax input can be modeled as an RC low-pass filter during the sampling

period as shown in Figure 14. An input resistance RI ~ 1.8 K, CI ~ 25 pF. The capacitor voltage VC
must be charged to within one half of VLSB of the source voltage VS for an accurate N-bit
conversion. The following equation can be used to calculate the minimum sampling time:

𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ≥ (𝑅𝑆 + 𝑅𝐼) ∙ 𝐶𝐼 ∙ ln(2𝑁+1) + 800𝑛𝑠

Figure 14. Analog input equivalent circuit.

Conversion Memory. Conversions are specified and the results are stored as follows. There are
16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx is
configured with an associated ADC12MCTLx control register. The SREFx bits in the control register
define the voltage reference and the INCHx bits select the input channel. The EOS bit defines the
end of sequence when a sequential conversion mode is used. A sequence rolls over from
ADC12MEM15 to ADC12MEM0 when the EOS bit in ADC12MCTL15 is not set. The CSTARTADDx

RI CI

VC

VI – input voltage at pin Ax
VS – external source voltage
RS – external source resistance
RI – internal MUX input resistance
CI – input capacitance
VC – capacitance-charging voltage

RS

VS

CPE 323: AD&DA Conversion © A. Milenković 19

bits define the first ADC12MCTLx used for any conversion. If the conversion mode is single-
channel or repeat-single-channel the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not
visible to software, is incremented automatically to the next ADC12MCTLx in a sequence when
each conversion completes. The sequence continues until an EOS bit in ADC12MCTLx is processed
- this is the last control byte processed. When conversion results are written to a selected
ADC12MEMx, the corresponding flag in the ADC12IFGx register is set.

Modes of operation. The ADC12_A has 4 conversion modes specified by the CONSEQx control
bits as shown in Table 1. Consult the corresponding user guide for more information on individual
modes of operation.

Table 1. Conversion Modes.

CONSEQx Mode Operation Description

00 Single channel
single-conversion

A single channel is
converted once

A single channel is sampled and
converted once.
a. The ADC result is written

to the ADC12MEMx
defined by the
CSTARTADDx bits.

b. When ADC12SC triggers a
conversion, successive
conversions can be
triggered by the ADC12SC
bit.

c. When any other trigger
source is used, ENC must
be toggled between each
conversion.

01 Sequence-of-
channels

A sequence of
channels is converted
once

A sequence of channels is
sampled and converted once.

a.-c. (from above)

d. The sequence stops after the
measurement of the channel
with a set EOS bit.

10 Repeat single-
channel

A single channels is
converted repeatedly

A single channel is sampled and
converted continuously. The
ADC results are written to the
ADC12MEMx defined by the
CSTARTADDx bits. It is

CPE 323: Module 11 © A. Milenković 20

necessary to read the result
after the completed
conversion because only one
ADC12MEMx memory is used
and is overwritten by the next
conversion.

11 Repeat sequence
of channels

A sequence of
channels is converted
repeatedly

A sequence of channels is
sampled and converted
repeatedly. The ADC results are
written to the conversion
memories starting with the
ADC12MEMx defined by the
CSTARTADDx bits. The
sequence ends after the
measurement of the channel
with a set EOS bit and the next
trigger signal re-starts the
sequence.

5.2 ADC12_A Control Registers

The ADC12_A peripheral is a 16-bit peripheral device with three control registers ADC12CTL0
(Figure 15), ADC12CTL1 (Figure 16), and ADC12CTL2 (Figure 17), 16 data registers ADC12MEM0-
ADC12MEM15 (Figure 18), and 16 channel control registers ADC12MCTL0 – ADC12MCTL15
(Figure 19). In addition, it has ADC12IE (Figure 20), ADC12IFG (Figure 21), and ADC12IVT (Figure
22) registers.

CPE 323: AD&DA Conversion © A. Milenković 21

CPE 323: Module 11 © A. Milenković 22

Figure 15. Control Register ADC12CTL0.

Figure 16. Control Register ADC12CTL1.

CPE 323: AD&DA Conversion © A. Milenković 23

Figure 17. Control Register ADC12CTL2.

CPE 323: Module 11 © A. Milenković 24

Figure 18. Data Register ADC12MEMx.

Figure 19. Control Register ADC12MCTLx.

CPE 323: AD&DA Conversion © A. Milenković 25

Figure 20. ADC12IE Register (ADC12IEx = 0 – interrupt is disabled, 1 – interrupt is enabled
when ADC12IFGx is set).

Figure 21. ADC12IFG Register. ADC12IFGx bit is set when ADC12MEMx is loaded with a
conversion result. This bit is reset if the ADC12MEMx is accessed, or it may be reset with

software (0 - no interrupt is pending, 1 – interrupt is pending).

CPE 323: Module 11 © A. Milenković 26

Figure 22. ADC12IVT Register. ADC12_A has 18 different interrupt sources.

6 Code Example

Code 1 shows a C program that measures temperature of the MSP430F5529 chip and reports it
via serial asynchronous communication interface. The MSP430F5529 chip has an on-chip
temperature sensor. Its transfer function is shown in Figure 23. The voltage from the temperature
sensor connected to the input channel 10 (INCHx=1010). The temperature sensor is calibrated
using the internal voltage references. Each reference voltage (1.5V/2.5V/2.5V) contains a

measured value for two temperatures 30 C  3 C and 85 C  3 C and these are available in
the TLV structure (device descriptor table residing in the flash memory containing calibration
data provided by the manufacturer). The characteristic equation of the temperature sensors
voltage in mV is as follows:

𝑉𝑆𝐸𝑁𝑆𝐸 = 𝑇𝐶𝑆𝐸𝑁𝑆𝑂𝑅 ∙ 𝑇𝑒𝑚𝑝 + 𝑉𝑆𝐸𝑁𝑆𝑂𝑅

where 𝑇𝐶𝑆𝐸𝑁𝑆𝑂𝑅 represents the temperature coefficient in mV/C and 𝑉𝑆𝐸𝑁𝑆𝑂𝑅 represents the y-

intercept of the equation. Thus, the temperature in C can be computed as follows:

𝑇𝑒𝑚𝑝 = (𝐴𝐷𝐶(𝑟𝑎𝑤) − 𝐶𝐴𝐿_𝐴𝐷𝐶_30) ∙
85 − 30

𝐶𝐴𝐿_𝐴𝐷𝐶_85 − 𝐶𝐴𝐿_𝐴𝐷𝐶_35
+ 30

CPE 323: AD&DA Conversion © A. Milenković 27

Figure 23. Typical Temperature Sensor Transfer Function.

/*-- 1
 * File: Lab10_D1.c (CPE 325 Lab10 Demo code) 2
 * 3
 * Function: Measuring the temperature (MPS430F5529) 4
 * 5
 * Description: This C program samples the on-chip temperature sensor and 6
 * converts the sampled voltage from the sensor to temperature in 7
 * degrees Celsius and Fahrenheit. The converted temperature is 8
 * sent to HyperTerminal over the UART by using serial UART. 9
 * 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 11
 * An external watch crystal between XIN & XOUT is required for ACLK 12
 * 13
 * Instructions:Set the following parameters in HyperTerminal 14
 * Port : COM1 15
 * Baud rate : 115200 16
 * Data bits: 8 17
 * Parity: None 18
 * Stop bits: 1 19
 * Flow Control: None 20
 * 21
 * MSP430F5529 22
 * ------------------- 23
 * /|\| XIN|- 24
 * | | | 32kHz 25
 * --|RST XOUT|- 26

CPE 323: Module 11 © A. Milenković 28

 * | | 27
 * | P3.3/UCA0TXD|------------> 28
 * | | 115200 - 8N1 29
 * | P3.4/UCA0RXD|<------------ 30
 * | | 31
 * Input: Character Y or y or N or n 32
 * 33
 * Output: Displays Temperature in Celsius and Fahrenheit in HyperTerminal 34
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 35
 * Prawar Poudel 36
 --/ 37
 38
#include <msp430.h> 39
#include <stdio.h> 40
 41
#define CALADC12_15V_30C *((unsigned int *)0x1A1A) // Temperature Sensor 42
Calibration-30 C 43
 //See device datasheet for TLV 44
table memory mapping 45
#define CALADC12_15V_85C *((unsigned int *)0x1A1C) // Temperature Sensor 46
Calibration-85 C 47
 48
char ch; // Holds the received char from UART 49
unsigned char rx_flag; // Status flag to indicate new char is received 50
 51
char gm1[] = "Hello! I am an MSP430. Would you like to know my temperature? (Y|N)"; 52
char gm2[] = "Bye, bye!"; 53
char gm3[] = "Type in Y or N!"; 54
 55
long int temp; // Holds the output of ADC 56
long int IntDegF; // Temperature in degrees Fahrenheit 57
long int IntDegC; // Temperature in degrees Celsius 58
 59
char NewTem[25]; 60
 61
void UART_setup(void) { 62
 63
 P3SEL |= BIT3 + BIT4; // Set USCI_A0 RXD/TXD to receive/transmit data 64
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 65
 UCA0CTL0 = 0; // USCI_A0 control register 66
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 67
 68
 UCA0BR0 = 0x09; // 1048576 Hz / 115200 lower byte 69
 UCA0BR1 = 0x00; // upper byte 70
 UCA0MCTL = 0x02; // Modulation (UCBRS0=0x01, UCOS16=0) 71
 72
 UCA0CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 73
 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt 74
} 75
 76
void UART_putCharacter(char c) { 77
 while (!(UCA0IFG&UCTXIFG)); // Wait for previous character to transmit 78
 UCA0TXBUF = c; // Put character into tx buffer 79
} 80

CPE 323: AD&DA Conversion © A. Milenković 29

 81
void sendMessage(char* msg, int len) { 82
 int i; 83
 for(i = 0; i < len; i++) { 84
 UART_putCharacter(msg[i]); 85
 } 86
 UART_putCharacter('\n'); // Newline 87
 UART_putCharacter('\r'); // Carriage return 88
} 89
 90
void ADC_setup(void) { 91
 REFCTL0 &= ~REFMSTR; // Reset REFMSTR to hand over control 92
to 93
 // ADC12_A ref control registers 94
 ADC12CTL0 = ADC12SHT0_8 + ADC12REFON + ADC12ON; 95
 // Internal ref = 1.5V 96
 ADC12CTL1 = ADC12SHP; // enable sample timer 97
 ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_10; // ADC i/p ch A10 = temp sense i/p 98
 ADC12IE = 0x001; // ADC_IFG upon conv result-ADCMEMO 99
 __delay_cycles(100); // delay to allow Ref to settle 100
 ADC12CTL0 |= ADC12ENC; 101
} 102
 103
void main(void) { 104
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer 105
 UART_setup(); // Setup USCI_A0 module in UART mode 106
 ADC_setup(); // Setup ADC12 107
 108
 rx_flag = 0; // RX default state "empty" 109
 _EINT(); // Enable global interrupts 110
 while(1) { 111
 sendMessage(gm1, sizeof(gm1));// Send a greetings message 112
 113
 while(!(rx_flag&0x01)); // Wait for input 114
 rx_flag = 0; // Clear rx_flag 115
 sendMessage(&ch, 1); // Send received char 116
 117
 // Character input validation 118
 if ((ch == 'y') || (ch == 'Y')) { 119
 120
 ADC12CTL0 &= ~ADC12SC; 121
 ADC12CTL0 |= ADC12SC; // Sampling and conversion start 122
 123
 _BIS_SR(CPUOFF + GIE); // LPM0 with interrupts enabled 124
 125
 //in the following equation, 126
 // ..temp is digital value read 127
 //..we are using double intercept equation to compute the 128
 //.. .. temperature given by temp value 129
 //.. .. using observations at 85 C and 30 C as reference 130
 IntDegC = (float)(((long)temp - CALADC12_15V_30C) * (85 - 30)) / 131
 (CALADC12_15V_85C - CALADC12_15V_30C) + 30.0f; 132
 133
 IntDegF = IntDegC*(9/5.0) + 32.0; 134

CPE 323: Module 11 © A. Milenković 30

 135
 // Printing the temperature on HyperTerminal/Putty 136
 sprintf(NewTem, "T(F)=%ld\tT(C)=%ld\n", IntDegF, IntDegC); 137
 sendMessage(NewTem, sizeof(NewTem)); 138
 } 139
 else if ((ch == 'n') || (ch == 'N')) { 140
 sendMessage(gm2, sizeof(gm2)); 141
 break; // Get out 142
 } 143
 else { 144
 sendMessage(gm3, sizeof(gm3)); 145
 } 146
 } // End of while 147
 while(1); // Stay here forever 148
} 149
 150
#pragma vector = USCI_A0_VECTOR 151
__interrupt void USCIA0RX_ISR (void) { 152
 ch = UCA0RXBUF; // Copy the received char 153
 rx_flag = 0x01; // Signal to main 154
 LPM0_EXIT; 155
} 156
 157
#pragma vector = ADC12_VECTOR 158
__interrupt void ADC12ISR (void) { 159
 temp = ADC12MEM0; // Move results, IFG is cleared 160
 _BIC_SR_IRQ(CPUOFF); // Clear CPUOFF bit from 0(SR) 161
} 162
 163
 164

Code 1. Program measuring MSP430 chip temperature using on-chip temperature sensor. Try
rubbing the chip package by your pointer finger and observe what happens.

7 Exercises

