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Overview 

This module introduces main concepts of analog-to-digital (AD) and digital-to-analog (DA) 
conversion. You will learn hardware aspects as well as software aspects of the analog-to-digital 
and digital-to-analog conversion and AD and DA converters. You will understand how to configure 
and utilize MSP430 ADC12 and DAC12 peripherals in your programs.    

Objectives 

 Learners will understand  hardware and software aspects of analog-to-digital and digital-
to-analog converters 

 Learners will understand how to configure and interact with MSP430 ADC peripheral  

 Learners will understand how to configure and interact with MSP430 DAC peripheral 
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1 AD Conversion: An Introduction 

Embedded computer systems typically a part of other systems or devices. We often refer to four 
main tasks of any embedded computer system (or any computer system in general) as: (1) 
sensing the external physical world through sensors; (2) processing information; (3) storing 
information; and (4) communicating information and acting on the environment. Sensors or 
transducers are used to convert physical quantities (e.g., force, atmospheric pressure, sound, 
light, temperature, and others) into electrical signals (e.g., voltage or current) that we can 
measure. The electrical signals are often either noisy, weak, or both noisy and weak, so signal 
conditioning circuits are responsible to remove undesired harmonics of continual electrical 
signals (filtering) and amplify them (amplification) so they can be properly measured. Once the 
electrical signals are ready and in a desired range, a critical step is to convert them into 
corresponding digital values that can be further processed, stored, and/or communicated using 
digital computers. The process of converting analog electrical signals into binary numbers that 
correspond to the magnitude of the input signals is known as analog-to-digital conversion and is 
carried out using dedicated peripherals called analog-to-digital converters (ADCs).  

One outcome of data processing is that we may need to act on the environment. For example, 
think about the air conditioning system at your house – a sensor continually measures the 
temperature (sensing), and if the temperature rises above a certain threshold (processing), a 
controller sends a signal to your AC unit to start pumping in cool air (acting on the environment). 
Once the temperature is lowered, the controller sends a signal to the AC unit to stop its 
operation. Acting on the environment sometimes requires that we generate analog electrical 
signals of certain amplitude and frequency. To generate such signals we conduct digital-to-analog 
conversion and for that we rely on peripheral devices called digital-to-analog converters (DACs).  

In this module you will learn hardware aspects as well as software aspects of the analog-to-digital 
and digital-to-analog converters. You will understand how to configure and utilize MSP430 ADC 
and DAC peripherals in your programs. The very name MSP that stands for Mixed Signal Processor 
underscores the fact that MSP430 family of microcontrollers integrates a processor, non-volatile 
and volatile memories, and peripherals that deal with both analog and digital electrical signals.  

 

Things to remember 1-1. Analog-to-digital conversion. 

Analog-to-digital conversion is a process of converting analog continuous input signals 
(typically voltage or current) into discrete digital numbers that represent the magnitude of the 
input signal.   

 

Things to remember 1-2. Digital-to-analog conversion. 

Digital-to-analog conversion is a process of converting digital numbers into a continuous 
analog output signal.   
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2 AD Conversion: An Example 

Let us consider an input analog signal, 𝑎0, as shown in Figure 1. The ramp like signal is periodic 
with the period of 𝑇𝑎0 = 0.5 𝑚𝑠. The frequency of the input signal is 𝐹𝑎0 = 1 𝑇𝑎0⁄ = 2,000 𝐻𝑧. 
The signal rises from 0 to 2.5 V in 0.3 ms and falls back to 0 V in 0.2 ms. Please note that the signal 
is bounded between 0 and 2.5 V. Analog-to-digital conversion assumes that we want to convert 
this continual analog input signal into a sequence of binary numbers, where each binary number 
corresponds to the magnitude of the input signal at a given moment. Two important questions 
related to the process of analog-to-digital conversion are as follows: (a) how many bits do we 
want in the binary representation (resolution of AD conversion); and (b) how many discrete 
samples do we want to get per each signal period (sampling frequency). By increasing the number 
of bits, we increase the resolution and accuracy of the AD conversion. By increasing the sampling 
frequency, we can recreate input signal more faithfully.  

Let us assume the following parameters of an AD conversion: the bit length of the binary 
representation is 8 bits and the number of samples per single period of the input signal is 5. This 
is equivalent to having 10,000 samples per second (2,000 Hz * 5 samples/period = 10,000 samples 
per second, or 𝐹𝑠 = 10,000 sps). The sampling period is the the time distance between two 
consecutive samples and in this example is: Δ𝑡𝑠 = 1 𝐹𝑠⁄ = 0.1 𝑚𝑠.  

 

 

Figure 1. An example input analog signal. 

Figure 2 shows a block-box representation of analog-to-digital conversion. An analog input 
voltage signal 𝑎0 is periodically sampled by an AD converter. The sampling is controlled by a 
control signal named Sample/Hold. The reference voltages of the AD converter ideally match the 
input signal bounds, i.e., 𝑉𝑅− ≤ 𝑎0  ≤ 𝑉𝑅+. The AD converter produces an N-bit binary 
representation that corresponds to the magnitude of the input signal at the moment it has been 
sampled. This binary output is then read by the processor core using one of the I/O interfacing 
approaches (polling, ISRs, DMA transfer).  
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Figure 2. Analog-to-digital conversion: a top view. 

 

Without lack of generality, we assume that samples are taken at times:  𝑡𝑖 = 𝑖 ∙ Δ𝑡𝑠, for i=0, 1, 2, 
3, and so on. In a general case the function of an AD converter can be described by the following 
transfer function:  

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 −  𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
) 

where 𝑁 is the resolution of the AD converter (the number bits in the output binary 
representation), 𝑎0 is the value of the analog input at a given time, and 𝑉𝑅+ and 𝑉𝑅− are the 
reference voltages of the AD converter. The 𝑛𝑖𝑛𝑡 stands for the nearest integer. In our example 
we assume the following parameters: 𝑁 = 8, 𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0 𝑉. The transfer function 
is thus as follows:   

Sample Value = 𝑛𝑖𝑛𝑡 (255 ∙
𝑎0

2.5 𝑉
) 

Consequently, if 𝑎0 = 0 𝑉, 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 = 0 𝑜𝑟 0𝑥00; if 𝑎0 = 2.5 𝑉, 𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 =
255 𝑜𝑟 0𝑥𝐹𝐹.  

 

ADC

a0
Sample Value

VR+

Analog input
(voltage)

N

VR-

Sample/Hold



 

 

CPE 323: Module 11 © A. Milenković 6 

 

Example 2-1. Find binary representation of samples in one period for 

signal 𝑎0 assuming 𝑁 = 8,  𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The initial sample is 

taken at 𝑡0 = 0 s. 

Sample 0 at time 𝑡0 = 0 𝑚𝑠: 𝑎0 = 0 𝑉 => 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
0

2.5 𝑉
) = 0 (0𝑥00) 

Sample 1 at time 𝑡1 = Δ𝑡𝑠 = 0.1 𝑚𝑠: 𝑎0 =
2.5

3
= 0.8333  => 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
0.8333 𝑉

2.5 𝑉
) = 85 (0𝑥55) 

Sample 2 at time 𝑡2 = 2 ∙ Δ𝑡𝑠 = 0.2 𝑚𝑠: 𝑎0 =
2∙2.5

3
= 1.6666  => 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
1.666 𝑉

2.5 𝑉
) = 170 (0𝑥𝐴𝐴) 

Sample 3 at time 𝑡3 = 3 ∙ Δ𝑡𝑠 = 0.3 𝑚𝑠: 𝑎0 =
3∙2.5

3
= 2.5  => 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
2.5 𝑉

2.5 𝑉
) = 255 (0𝑥𝐹𝐹) 

Sample 4 at time  𝑡4 = 4 ∙ Δ𝑡𝑠 = 0.4 𝑚𝑠: 𝑎0 =
1∙2.5

2
= 1.25  => 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑖𝑛𝑡 (255 ∙
1.25 𝑉

2.5 𝑉
) = 127 (0𝑥7𝐹). 

 

Note: to find values of the input signal use simple proportions. For the input signal in i*0.1 ms 
+ k*0.5 ms (i=0, 1, 2, 3, k=0, 1, 2, 3, …) the proportion is i*2.5/3. For the input signal at i*0.1 
ms + k*0.5 ms (i=4, k=0, 1, 2, …), the proportion is 2.5/2. 

 

Figure 3 illustrates the input signal overlapped with the samples taken at 𝑡𝑖 = 𝑖 ∙ Δ𝑡𝑠. If we were 
to create an output analog signal using a DA converter based on samples acquired by the AD 
conversion, the signal would look like the one shown in red. The ramp shape of the input signal 
is quite distorted and this is captured by the signal-to-noise ratio metric. One way to improve 
accuracy of the signal is to take more samples per one signal period. Repeat the exercise from 
Example 2-1 if 𝐹𝑠 = 20,000 sps. Also, repeat the exercise assuming N=16 bits. In general, we 
are always limited with the number of bits in the binary representation as well as with how many 
samples we can acquire in any period of time, so our “digitized” interpretation of the real physical 
world is never perfect. 
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Figure 3. An example input analog signal sampled every 0.1 ms. 

 

3 Analog-to-Digital Conversion Flow 

Figure 4 illustrates an analog-to-digital conversion flow. We are embedded into physical world 
and want to quantify and measure it. Sensors or transducers are used to convert physical 
quantities into electrical signals such as voltage or current that we can further act on. Examples 
of sensors are many. Just pick-up your smartphone and try to list all sensors it has. We have a 3D 
accelerometer that measures force, a 3D gyroscope that measures angular velocity, a 3D 
magnetic field sensor that measures strength of Earth’s magnetic field. These 3 sensors together 
are used in navigation and orientation and are sometimes referred to as inertial sensors (9 
degrees of freedom term comes for these 3 sensors, each having x, y, and z components). Next 
you have a microphone, a camera or rather multiple cameras, and a proximity sensor. We have 
seen a tremendous progress in sensor technology with rise of so-called MEMS devices – Micro-
Electro-Mechanical Systems. Taking advantages of semiconductor innovations and 
miniaturization we can now have a single chip that integrates multiple sensors, replacing multiple 
older mechanical sensors that are both cumbersome and heavy. As an example, next time you 
visit the U.S. Rocket and Space Museum across the street, please pay attention to the gyroscope 
used in Saturn-V rocket.  

 

 

Figure 4. Analog-to-digital conversion flow. 
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Electrical signals coming from sensors often need to be filtered to remove undesired harmonics 
and/or to be amplified so we can measure them. For example, if you are interested in getting an 
ECG (electrocardiogram) signal from humans, its amplitude is ~1 mV. So even if you hook yourself 
up on an oscilloscope, you are not going to see your ECG signal because it is buried in electrical 
noise. Before proceeding we have to remove undesired harmonics through filtering and amplify 
the signal perhaps 1,000 times to bring it to 1 V. For this we can use an external specialized chip 
designed for ECG filtering and amplification (often referred to as bio amplifiers becasue they can 
work with other types of physiological electrical signals: EEG – electroencephalogram that 
represents macroscopic electrical activity of the brain underneath; and EMG – electromyogram 
that represents skeletal muscle activity).  

It is cost-prohibitive and unnecessary to have an AD converter for each analog signal you might 
be interested in a system. Rather, multiple analog signals can be brought to a single AD converter. 
An analog multiplexer can select one analog signal at a time using Select INCH (select input 
channel) control bits. This way, we can handle multiple analog inputs, by converting one input 
signal at a time.  

Once the input channel is selected, the selected analog input signal is brought to the next block 
called Sample&Hold. The input analog signals are continuous, meaning they are not fixed in time. 
Converting a signal that constantly changes is not an option. So the purpose of the Sample&Hold 
block is to quickly capture the true value of the analog input (Sample mode) and then present 
that signal to the ADC core (Hold mode), where the conversion takes place. A good abstraction 
for the Sample&Hold module is shown in Figure 5. An analog input goes through a switch, a 
resistor with resistance R, and a capacitor with capacitance C. During sampling, the switch is 
closed. The capacitor is charged so that the output voltage from the capacitor (Vout) matches as 
closely as possible the voltage at the input channel (Vout). Holding the switch closed longer than 
needed will capture continual changes of the input signal and will limit our ability to get as many 
samples as possible. Opening the switch to early, will result in discrepancy between the true value 
of the input signal and the voltage presented to the ADC core. Once sampling is done, the switch 
is opened, thus disconnecting the capacitor from the input channel. The further changes at the 
input channel are thus not going to affect the charge on the capacitor that presents the fixed 
voltage to the AD core.  

 

Figure 5. Sample&Hold Module. 
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Things to remember 3-1. Sample and hold 

The sample&hold block is responsible to capture the true value of the input signal (sampling 
phase) and decouple the analog input from the AD core logic during conversion (holding 
phase).  

 

The AD core implements the transfer function as described above (and repeated here):  

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
) 

Figure 6 illustrates an ideal transfer function for a 4-bit AD converter. The entire input range 
(𝑉𝑅+ − 𝑉𝑅−) is divided into 16 ranges, 0 to 0.5VLSB, 0.5VLSB to 1.5VLSB, 1.5VLSB to 2.5VLSB, . . . 
14.5VLSB to 16VLSB that correspond to binary outputs 0000, 0001, … 1111, respectively.  

Finally, once the AD core produces an N-bit sample, it is stored into a buffer register and 
appropriate flags are set to alert the processor core to read them before the next sample can 
perhaps overwrite the existing one.  

 

Figure 6. Ideal AD Transfer Function (N=4). The input voltage is divided into 16 (24 levels) with 
16 digital representations on the output. Please note that the input range 0 to 0.5VLSB 

corresponds to binary 0000, 0.5VLSB to 1.5VLSB to 0001, and so on. The input range of 14.5VLSB 
to 16 VLSB corresponds to 1111. Please note asymmetricity of input ranges for 0000 and 1111.    
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Things to remember 3-2. AD Transfer Function 

The transfer function of an AD converter that converts an analog input voltage 𝑎0 into a binary 
representation is described by the following equation:  

Sample Value = 𝑛𝑖𝑛𝑡 ((2𝑁 − 1) ∙
𝑎0 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
) 

where N is the number of bits in the binary representation, and  𝑉𝑅+ and 𝑉𝑅− are reference 
voltages (𝑉𝑅− ≤ 𝑎0  ≤ 𝑉𝑅+). nint is the nearest integer function.  

 

When dealing with AD converters, you will sometimes find terms such as resolution, accuracy, 
aperture time, conversion time, and the maximum sampling frequency.  

AD Resolution. The resolution of an AD converter defines how finely the value measured can be 
represented and it is defined as follows:  

V𝐿𝑆𝐵 =
V𝑅+ − V𝑅−

2𝑁
 

The quantization error is thus always present and can be quantified as ±0.5V𝐿𝑆𝐵. 

AD Accuracy. The AD accuracy refers to how much the value under measurement deviates from 
its true value due to AD converter inaccuracies. The AD converters are not ideal, they can have 
issues with offset, gain, they may not be perfectly linear or may have some missing codes in the 
binary output. In addition, there is also some finite amount of noise within the converter.  

Aperture Time. The aperture time is the time the Sample&Hold signal is looking at the input 
signal. This time should be long enough so that the captured voltage at the output of the 
sample&hold module is as close as possible to the voltage at the input channel. This error caused 
by finite sampling time (aperture time) should be less than 0.5V𝐿𝑆𝐵. If not, we would not fully 
utilize the AD converter’s resolution.  

Conversion Time. The conversion in the AD core itself takes a finite amount of time. Depending 
on the implementation of the AD core, this time can be directly proportional to the resolution of 
the AD converter (e.g., takes N+1 clock cycles), or can be rather fast requiring a single clock cycle. 
The design space usually includes trade-offs – faster implementations require more sophisticated 
circuitry and will cost more.  

Maximum Sampling Frequency. The maximum number of samples one can get from an AD 
converter is bounded by the the sum of the aperture time and conversion time. Thus, the 
maximum sampling frequency is defined as follows: 

𝐹𝑠.𝑚𝑎𝑥 ≤
1

𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒+𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
  

Please keep in mind that this is an upper limit on how many samples your AD converter can give 
you in a unit of time. If multiple analog input channels are converted in a sequence, the maximum 
number of samples per each channel will be lower. For example, if the maximum number of 
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samples per second (sps) is 200,000 and you are sweeping across 8 different analog inputs, the 
maximum sampling frequency on each channel will be 25,000 sps. Often you will see that 
maximum sampling frequency of MSP430 ADC12 converter is 200,000 sps. Where does this 
number come from? The ADC12 can work at maximum 5,000,000 Hz clock, its conversion time is 
13 clock cycles. Assuming aperture time of 12 clock cycles, the maximum number of samples we 
can get from the ADC12 is 5,000,000/(12+13) = 200,000 sps.  

 

Things to remember 3-3. ADC properties 

When dealing with ADCs, we often discuss their properties in terms of ADC resolution (higher 
is better), ADC accuracy (higher is better), ADC aperture time (sampling time), ADC 
conversion time, and maximum sampling frequency (higher is better). Make sure you can 
define these properties.   

 

4 Analog-to-Digital Converter Types 

There are a number of analog-to-digital converter implementations differing in their properties, 
speed, and cost. In this section we will describe two types: succession approximation that is 
relatively simple to implement but slow and flash A/D that requires a lot of resources but is fast.  

4.1 Successive Approximation ADC 

The successive approximation is one of the most widely used ADC implementations. Figure 7 
shows its block diagram. It consists of a digital-to-analog converter, a comparator, and a 
successive approximation register. The conversion is performed in multiple steps. In the first step, 
we determine the most significant bit (MSB, bit position N-1), in the second step we determine 
the bit at position N-2, and so on. The last step is to determine the LSB.  In the first step the binary 
value 100…0 is written into the successive approximation register (SAR). The DAC produces the 
voltage that corresponds to 2N-1VREF, or one half of the total range. The comparator compares the 

analog input and gives a logic 1 at the output if 𝑣𝑖𝑛  ≥
1

2
𝑉𝑅𝐸𝐹 or a logic 0 otherwise. If the 

comparator output is set to a logic 1 that means that the input signal is in the upper half of the 
full scale range, and the MSB of the register should be 1. If the comparator output is a logic 0 that 
means the input voltage is in the lower half of the full scale range, and the MSB of of the SAR 
should be 0. Thus the MSB bit is determined at the end of the step 1. In the next step, we probe 
bit at position N-2, and so on until we determine all bits. The total number of step corresponds 
to the number of bits, making this implementation cost-effective but relatively slow.  
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Figure 7. Successive approximation ADC.  

 

Example 4-1. Walk through the SAR AD conversion step-by-step assuming 

a 4-bit AD converter (N=4),  𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The input voltage 
is 1.8 V. 

Step 1: SAR=1000b; 𝑉𝐷𝐴𝐶 = 8 ∙ 𝑉𝐿𝑆𝐵 = 8 ∙
2.5

16 
= 1.25 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 3 𝑖𝑠 1 

Step 2: SAR=1100b; 𝑉𝐷𝐴𝐶 = 12 ∙ 𝑉𝐿𝑆𝐵 = 12 ∙
2.5

16 
= 1.875 𝑉; 𝑉𝑖𝑛 ≤ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 2 𝑖𝑠 0 

Step 3: SAR=1010b; 𝑉𝐷𝐴𝐶 = 10 ∙ 𝑉𝐿𝑆𝐵 = 10 ∙
2.5

16 
= 1.5625 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 1 𝑖𝑠 1 

Step 4: SAR=1011b; 𝑉𝐷𝐴𝐶 = 11 ∙ 𝑉𝐿𝑆𝐵 = 11 ∙
2.5

16 
= 1.71875 𝑉; 𝑉𝑖𝑛 ≥ 𝑉𝐷𝐴𝐶 => 𝑏𝑖𝑡 0 𝑖𝑠 1 

So, the final digital value is 1011b (11). As a way of verification we can use the transfer function 
of the ideal 4-bit AD converter to confirm correctness of the final binary output: 

Sample Value = 𝑛𝑖𝑛𝑡 (15 ∙
1.8 𝑉

2.5 𝑉
) = 𝑛𝑖𝑛𝑡(10.8) = 11 

 

 

4.2 Parallel or Flash ADC 

Figure 8 shows a block diagram of a parallel or flash ADC. It implements the ADC voltage transfer 
function. The resistors in series divide the full voltage range producing 0.5VLSB, 1.5VLSB, 2.5VLSB, . 
. . to (2N-1.5)VLSB threshold voltages (the resistors in series create a voltage divider). These 
threshold voltages are brought to 2N-1 analog comparators. They are compared in parallel to the 
analog input. The outputs of comparators are brought into a 2N-to-N bit encoder that gives the 
digital output. 
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Figure 8. Parallel or flash ADC.  

 

Example 4-2. Illustrate inner workings of the flash ADC. Assume a 4-

bit flash ADC (N=4),  𝑉𝑅+ = 2.5 𝑉, and 𝑉𝑅− = 0𝑉. The input voltage is 1.8 
V. 

 

There are 15 comparators comparing the input voltage to the threshold voltages as follows: 
0.5VLSB, 1.5VLSB, 2.5VLSB, . . . to 14.5VLSB. The output of bottom 11 comparators is set to logic 1 
because input voltage is larger than 0.5VLSB, 1.5VLSB, 2.5VLSB, . . . to 10.5VLSB, respectively. The 
output of top 4 comparators is at logic 0 because the input is less than 11.5VLSB, 12.5VLSB, 
13.5VLSB, and 14.5VLSB, respectively. The outputs from comparators from 0 to 15 are thus: 
1111_1111_1110_000b. The output of the encoder will give you 1011b (11).  

 

5 MSP430’s ADC12_A Controller 

Figure 9 shows a block diagram of an MSP430F5529 device. It includes an ADC12_A peripheral – 
a 12-bit ADC that can sample up to 200 Ksps (kilo samples per second) and has 16 input channels. 
It also includes a comparator COMP_B and REF module that generates reference voltages for 
ADCs and DACs. Figure 10 shows a block diagram of MSP430F4618. It includes an 12-channel 
ADC12, a two-channel DAC12, an analog comparator Comparator_A, and three op amps. 
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Figure 9. Block diagram of MSP430F5529.  

 

Figure 10. Block diagram of MSP430F4618.  

The MSP430 ecosystem includes several other types of ADCs, e.g., ADC10, SD24_B, CTSD16, and 
others, but they are out of scope in this module. 

5.1 ADC12_A Organization 

Figure 11 shows a block diagram of the ADC12_A module (including the REF module). The 
ADC12_A supports 12-bit AD conversion with 16 input channels (12 external and up to 4 internal). 
It relies on a 12-bit SAR core, supports programmable sampling periods controlled by software 
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or timers, supports software-selectable internal and external reference voltages, and multiple 
modes of operations. It includes a 16-word conversion buffer (ADC12MEM0 – ADC12MEM15) 
and a 16-word control buffer (ADC12MCTL0 – ADC12MCTL15).  

 

Figure 11. Block diagram of ADC12_A.  

 

ADC12_A Core. At the heart of the ADC12 is a 12-bit switched capacitor SAR core. It is guaranteed 
monotonic with no missing codes. The ADC12 core is configured by two control registers, 
ADC12CTL0 and ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12 can be turned 
off when not in use to save power. With few exceptions the ADC12 control bits can only be 
modified when ENC = 0. ENC must be set to 1 before any conversion can take place. The BUSY 
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flag is set while sampling and conversion is in progress. The result is written to ADC12MEMx 
memory buffers.  

The core uses two programmable/selectable voltage levels (VR+ and VR−) to define the upper and 
lower limits of the conversion. The digital output (NADC) is full scale (0x0FFF) when the input signal 
is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR−. The 
input channel and the reference voltage levels (VR+ and VR−) are defined in the conversion-control 
memory. The conversion formula for the ADC result NADC is: 

𝑁𝐴𝐷𝐶 = 𝑛𝑖𝑛𝑡 (4095 ∙
𝑉𝑖𝑛 − 𝑉𝑅−

𝑉𝑅+ − 𝑉𝑅−
) 

Conversion Clock. The SAR block uses ADC12CLK signal that feeds both the sample-and-hold and 
the SAR core blocks. The ADC12_A source clock is selected using the predivider controlled by the 
ADC12PDIV bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1 
to 32 using both the ADC12DIVx bits and the ADC12PDIV bit. Possible ADC12CLK sources are 
SMCLK, MCLK, ACLK, and the ADC12OSC. The ADC12OSC refers to the MODCLK 5 MHz oscillator 
from the UCS which can vary with individual devices, supply voltage, and temperature. The user 
must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If 
the clock is removed during a conversion, the operation will not complete and any result will be 
invalid. If selected, the ADC12OSC is automatically enabled when needed and disabled when 
conversions have finished.  

ADC12_A Inputs and Multiplexer. The 12 external and 4 internal analog signals are selected as 
the channel for conversion by the analog input multiplexer. The input multiplexer is a break-
before-make type to reduce input-to-input noise injection resulting from channel switching. The 
input multiplexer is also a T-switch to minimize the coupling between channels. Channels that 
are not selected are isolated from the ADC, and the intermediate node is connected to analog 
ground (AVSS) so that the stray capacitance is grounded to eliminate crosstalk. 

The ADC12_A uses the charge redistribution method. When the inputs are internally switched, 
the switching action may cause transients on the input signal. These transients decay and settle 
before causing errant conversion. 

Analog Port Selection. The ADC12_A inputs are multiplexed with digital port pins. When analog 
signals are applied to digital gates, parasitic current can flow from VCC to GND. This parasitic 
current occurs if the input voltage is near the transition level of the gate. Disabling the digital part 
of the port pin eliminates the parasitic current flow and, therefore, reduces overall current 
consumption. The PxSEL.y bits provide the ability to disable the port pin input and output buffers.  

Voltage Reference Generator. The ADC12_A modules have a separate reference module (REF) 
that supplies three selectable voltage levels, 1.5 V, 2.0 V, and 2.5 V to the ADC12_A. Any of these 
voltages may be used internally and externally on pin VREF+. The internal AVCC can also be used 
as the reference. On devices with the REF module, the voltage reference settings can be 
controlled either by the REF module or by the ADC12_A module. This is to allow for backward 
compatibility with older families. This is handled by the REFMSTR bit in the REF module. If 
REFMSTR = 1 (default), the REF module registers control the reference settings. If REFMSTR = 0, 
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the ADC12_A reference setting define the reference voltage of the ADC12_A module (2.5 or 1.5 
V). External references may be supplied for VR+ and VR– through pins VREF+/VeREF+ and VREF-/VeREF-, 
respectively. External storage capacitors are required only if ADC12REFOUT = 1 (REFOUT = 1 
when using REF module) and the reference voltage is made available at the pins. 

Sample and Conversion Timing. An analog-to-digital conversion is initiated with a rising edge of 
the sample input signal SHI. The source for SHI is selected with the SHSx bits and includes the 
following:  

 ADC12SC bit 

 Up to three timer outputs (see the device-specific data sheet for available timer sources) 

The ADC12_A supports 8-bit, 10-bit, and 12-bit resolution modes selectable by the ADC12RES 
bits. The analog-to-digital conversion requires 9, 11, and 13 ADC12CLK cycles, respectively. The 
polarity of the SHI signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal 
controls the sample period and start of conversion. When SAMPCON is high, sampling is active. 
The high-to-low SAMPCON transition starts the analog-to-digital conversion. Two different 
sample-timing methods are defined by control bit ADC12SHP, extended sample mode and pulse 
mode. See the device-specific data sheet for available timers for SHI sources. 

The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls 
SAMPCON and defines the length of the sample period tsample (Figure 12). When SAMPCON is 
high, sampling is active. The high-to-low SAMPCON transition starts the conversion after 
synchronization with ADC12CLK.  

 

Figure 12. Extended Sample Mode. 

The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the 
sampling timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the 
sampling timer that defines the SAMPCON sample period tsample. The sampling timer keeps 
SAMPCON high after synchronization with AD12CLK for a programmed interval tsample. The total 
sampling time is tsample plus tsync (see Figure 13). The ADC12SHTx bits select the sampling time in 
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4× multiples of ADC12CLK. ADC12SHT0x selects the sampling time for ADC12MCTL0 to 
ADC12MCTL7. ADC12SHT1x selects the sampling time for ADC12MCTL8 to ADC12MCTL15. 

 

Figure 13. Pulse Sample Mode. 

Sample Timing Considerations. When SAMPCON = 0, all inputs are high impedance. When 
SAMPCON = 1, the selected Ax input can be modeled as an RC low-pass filter during the sampling 

period as shown in Figure 14. An input resistance RI ~ 1.8 K, CI ~ 25 pF. The capacitor voltage VC 
must be charged to within one half of VLSB of the source voltage VS for an accurate N-bit 
conversion. The following equation can be used to calculate the minimum sampling time: 

𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ≥ (𝑅𝑆 + 𝑅𝐼) ∙ 𝐶𝐼 ∙ ln(2𝑁+1) + 800𝑛𝑠 

 

 

Figure 14. Analog input equivalent circuit. 

Conversion Memory. Conversions are specified and the results are stored as follows. There are 
16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx is 
configured with an associated ADC12MCTLx control register. The SREFx bits in the control register 
define the voltage reference and the INCHx bits select the input channel. The EOS bit defines the 
end of sequence when a sequential conversion mode is used. A sequence rolls over from 
ADC12MEM15 to ADC12MEM0 when the EOS bit in ADC12MCTL15 is not set. The CSTARTADDx 

RI CI

VC

VI – input voltage at pin Ax
VS – external source voltage 
RS – external source resistance
RI – internal MUX input resistance
CI – input capacitance
VC – capacitance-charging voltage

RS

VS
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bits define the first ADC12MCTLx used for any conversion. If the conversion mode is single-
channel or repeat-single-channel the CSTARTADDx points to the single ADC12MCTLx to be used. 

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels, 
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not 
visible to software, is incremented automatically to the next ADC12MCTLx in a sequence when 
each conversion completes. The sequence continues until an EOS bit in ADC12MCTLx is processed 
- this is the last control byte processed. When conversion results are written to a selected 
ADC12MEMx, the corresponding flag in the ADC12IFGx register is set. 

Modes of operation. The ADC12_A has 4 conversion modes specified by the CONSEQx control 
bits as shown in Table 1. Consult the corresponding user guide for more information on individual 
modes of operation.  

Table 1. Conversion Modes. 

CONSEQx Mode Operation Description 

00 Single channel 
single-conversion 

A single channel is 
converted once 

A single channel is sampled and 
converted once.  
a. The ADC result is written 

to the ADC12MEMx 
defined by the 
CSTARTADDx bits. 

b. When ADC12SC triggers a 
conversion, successive 
conversions can be 
triggered by the ADC12SC 
bit.  

c. When any other trigger 
source is used, ENC must 
be toggled between each 
conversion. 

01 Sequence-of-
channels 

A sequence of 
channels is converted 
once 

A sequence of channels is 
sampled and converted once.  

a.-c. (from above) 

d. The sequence stops after the 
measurement of the channel 
with a set EOS bit.  

10 Repeat single-
channel 

A single channels is 
converted repeatedly 

A single channel is sampled and 
converted continuously. The 
ADC results are written to the 
ADC12MEMx defined by the 
CSTARTADDx bits. It is 
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necessary to read the result 
after the completed 
conversion because only one 
ADC12MEMx memory is used 
and is overwritten by the next 
conversion. 

11 Repeat sequence 
of channels 

A sequence of 
channels is converted 
repeatedly 

A sequence of channels is 
sampled and converted 
repeatedly. The ADC results are 
written to the conversion 
memories starting with the 
ADC12MEMx defined by the 
CSTARTADDx bits. The 
sequence ends after the 
measurement of the channel 
with a set EOS bit and the next 
trigger signal re-starts the 
sequence. 

 

5.2 ADC12_A Control Registers 

The ADC12_A peripheral is a 16-bit peripheral device with three control registers ADC12CTL0 
(Figure 15), ADC12CTL1 (Figure 16), and ADC12CTL2 (Figure 17), 16 data registers ADC12MEM0-
ADC12MEM15 (Figure 18), and 16 channel control registers ADC12MCTL0 – ADC12MCTL15 
(Figure 19). In addition, it has ADC12IE (Figure 20), ADC12IFG (Figure 21), and ADC12IVT (Figure 
22) registers. 
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Figure 15. Control Register ADC12CTL0. 

 

 

Figure 16. Control Register ADC12CTL1. 
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Figure 17. Control Register ADC12CTL2. 
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Figure 18. Data Register ADC12MEMx. 

 

 

 

Figure 19. Control Register ADC12MCTLx. 
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Figure 20. ADC12IE Register (ADC12IEx = 0 – interrupt is disabled, 1 – interrupt is enabled 
when ADC12IFGx is set). 

 

 

Figure 21. ADC12IFG Register. ADC12IFGx bit is set when ADC12MEMx is loaded with a 
conversion result. This bit is reset if the ADC12MEMx is accessed, or it may be reset with 

software (0 - no interrupt is pending, 1 – interrupt is pending). 
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Figure 22. ADC12IVT Register. ADC12_A has 18 different interrupt sources. 

 

6 Code Example 

Code 1 shows a C program that measures temperature of the MSP430F5529 chip and reports it 
via serial asynchronous communication interface. The MSP430F5529 chip has an on-chip 
temperature sensor. Its transfer function is shown in Figure 23. The voltage from the temperature 
sensor connected to the input channel 10 (INCHx=1010). The temperature sensor is calibrated 
using the internal voltage references. Each reference voltage (1.5V/2.5V/2.5V) contains a 

measured value for two temperatures 30 C  3 C and 85 C  3 C and these are available in 
the TLV structure (device descriptor table residing in the flash memory containing calibration 
data provided by the manufacturer). The characteristic equation of the temperature sensors 
voltage in mV is as follows:  

 

𝑉𝑆𝐸𝑁𝑆𝐸 = 𝑇𝐶𝑆𝐸𝑁𝑆𝑂𝑅 ∙ 𝑇𝑒𝑚𝑝 + 𝑉𝑆𝐸𝑁𝑆𝑂𝑅  

where 𝑇𝐶𝑆𝐸𝑁𝑆𝑂𝑅 represents the temperature coefficient in mV/C and 𝑉𝑆𝐸𝑁𝑆𝑂𝑅 represents the y-

intercept of the equation. Thus, the temperature in C can be computed as follows: 

 

𝑇𝑒𝑚𝑝 = (𝐴𝐷𝐶(𝑟𝑎𝑤) − 𝐶𝐴𝐿_𝐴𝐷𝐶_30) ∙
85 − 30

𝐶𝐴𝐿_𝐴𝐷𝐶_85 − 𝐶𝐴𝐿_𝐴𝐷𝐶_35
+ 30  
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Figure 23. Typical Temperature Sensor Transfer Function. 

 

 
/*------------------------------------------------------------------------------ 1 
 * File:        Lab10_D1.c (CPE 325 Lab10 Demo code) 2 
 * 3 
 * Function:    Measuring the temperature (MPS430F5529) 4 
 * 5 
 * Description: This C program samples the on-chip temperature sensor and 6 
 *              converts the sampled voltage from the sensor to temperature in 7 
 *              degrees Celsius and Fahrenheit. The converted temperature is 8 
 *              sent to HyperTerminal over the UART by using serial UART. 9 
 * 10 
 * Clocks:      ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 11 
 *              An external watch crystal between XIN & XOUT is required for ACLK 12 
 * 13 
 * Instructions:Set the following parameters in HyperTerminal 14 
 *                  Port :        COM1 15 
 *                  Baud rate :   115200 16 
 *                  Data bits:    8 17 
 *                  Parity:       None 18 
 *                  Stop bits:    1 19 
 *                  Flow Control: None 20 
 * 21 
 *                         MSP430F5529 22 
 *                      ------------------- 23 
 *                   /|\|              XIN|- 24 
 *                    | |                 | 32kHz 25 
 *                    --|RST          XOUT|- 26 
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 *                      |                 | 27 
 *                      |     P3.3/UCA0TXD|------------> 28 
 *                      |                 | 115200 - 8N1 29 
 *                      |     P3.4/UCA0RXD|<------------ 30 
 *                      |                 | 31 
 * Input:       Character Y or y or N or n 32 
 * 33 
 * Output:      Displays Temperature in Celsius and Fahrenheit in HyperTerminal 34 
 * Author:      Aleksandar Milenkovic, milenkovic@computer.org 35 
 *              Prawar Poudel 36 
 *------------------------------------------------------------------------------*/ 37 
 38 
#include  <msp430.h> 39 
#include  <stdio.h> 40 
 41 
#define CALADC12_15V_30C  *((unsigned int *)0x1A1A)   // Temperature Sensor 42 
Calibration-30 C 43 
                                                      //See device datasheet for TLV 44 
table memory mapping 45 
#define CALADC12_15V_85C  *((unsigned int *)0x1A1C)   // Temperature Sensor 46 
Calibration-85 C 47 
 48 
char ch;                   // Holds the received char from UART 49 
unsigned char rx_flag;     // Status flag to indicate new char is received 50 
 51 
char gm1[] = "Hello! I am an MSP430. Would you like to know my temperature? (Y|N)"; 52 
char gm2[] = "Bye, bye!"; 53 
char gm3[] = "Type in Y or N!"; 54 
 55 
long int temp;                      // Holds the output of ADC 56 
long int IntDegF;                   // Temperature in degrees Fahrenheit 57 
long int IntDegC;                   // Temperature in degrees Celsius 58 
 59 
char NewTem[25]; 60 
 61 
void UART_setup(void) { 62 
 63 
    P3SEL |= BIT3 + BIT4;   // Set USCI_A0 RXD/TXD to receive/transmit data 64 
    UCA0CTL1 |= UCSWRST;    // Set software reset during initialization 65 
    UCA0CTL0 = 0;           // USCI_A0 control register 66 
    UCA0CTL1 |= UCSSEL_2;   // Clock source SMCLK 67 
 68 
    UCA0BR0 = 0x09;         // 1048576 Hz  / 115200 lower byte 69 
    UCA0BR1 = 0x00;         // upper byte 70 
    UCA0MCTL = 0x02;        // Modulation (UCBRS0=0x01, UCOS16=0) 71 
 72 
    UCA0CTL1 &= ~UCSWRST;   // Clear software reset to initialize USCI state machine 73 
    UCA0IE |= UCRXIE;                         // Enable USCI_A0 RX interrupt 74 
} 75 
 76 
void UART_putCharacter(char c) { 77 
    while (!(UCA0IFG&UCTXIFG));    // Wait for previous character to transmit 78 
    UCA0TXBUF = c;                  // Put character into tx buffer 79 
} 80 
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 81 
void sendMessage(char* msg, int len) { 82 
    int i; 83 
    for(i = 0; i < len; i++) { 84 
        UART_putCharacter(msg[i]); 85 
    } 86 
    UART_putCharacter('\n');        // Newline 87 
    UART_putCharacter('\r');        // Carriage return 88 
} 89 
 90 
void ADC_setup(void) { 91 
    REFCTL0 &= ~REFMSTR;                      // Reset REFMSTR to hand over control 92 
to 93 
                                              // ADC12_A ref control registers 94 
    ADC12CTL0 = ADC12SHT0_8 + ADC12REFON + ADC12ON; 95 
                                              // Internal ref = 1.5V 96 
    ADC12CTL1 = ADC12SHP;                     // enable sample timer 97 
    ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_10;  // ADC i/p ch A10 = temp sense i/p 98 
    ADC12IE = 0x001;                          // ADC_IFG upon conv result-ADCMEMO 99 
    __delay_cycles(100);                       // delay to allow Ref to settle 100 
    ADC12CTL0 |= ADC12ENC; 101 
} 102 
 103 
void main(void) { 104 
    WDTCTL = WDTPW | WDTHOLD;         // Stop watchdog timer 105 
    UART_setup();                     // Setup USCI_A0 module in UART mode 106 
    ADC_setup();                      // Setup ADC12 107 
 108 
    rx_flag = 0;                      // RX default state "empty" 109 
    _EINT();                          // Enable global interrupts 110 
    while(1) { 111 
        sendMessage(gm1, sizeof(gm1));// Send a greetings message 112 
 113 
        while(!(rx_flag&0x01));       // Wait for input 114 
        rx_flag = 0;                  // Clear rx_flag 115 
        sendMessage(&ch, 1);          // Send received char 116 
 117 
        // Character input validation 118 
        if ((ch == 'y') || (ch == 'Y')) { 119 
 120 
            ADC12CTL0 &= ~ADC12SC; 121 
            ADC12CTL0 |= ADC12SC;                   // Sampling and conversion start 122 
 123 
            _BIS_SR(CPUOFF + GIE);      // LPM0 with interrupts enabled 124 
 125 
            //in the following equation, 126 
            // ..temp is digital value read 127 
            //..we are using double intercept equation to compute the 128 
            //.. .. temperature given by temp value 129 
            //.. .. using observations at 85 C and 30 C as reference 130 
            IntDegC = (float)(((long)temp - CALADC12_15V_30C) * (85 - 30)) / 131 
                    (CALADC12_15V_85C - CALADC12_15V_30C) + 30.0f; 132 
 133 
            IntDegF = IntDegC*(9/5.0) + 32.0; 134 



 

 

CPE 323: Module 11 © A. Milenković 30 

 

 135 
            // Printing the temperature on HyperTerminal/Putty 136 
            sprintf(NewTem, "T(F)=%ld\tT(C)=%ld\n", IntDegF, IntDegC); 137 
            sendMessage(NewTem, sizeof(NewTem)); 138 
        } 139 
        else if ((ch == 'n') || (ch == 'N')) { 140 
            sendMessage(gm2, sizeof(gm2)); 141 
            break;                      // Get out 142 
        } 143 
        else { 144 
            sendMessage(gm3, sizeof(gm3)); 145 
        } 146 
    }                                   // End of while 147 
    while(1);                           // Stay here forever 148 
} 149 
 150 
#pragma vector = USCI_A0_VECTOR 151 
__interrupt void USCIA0RX_ISR (void) { 152 
    ch = UCA0RXBUF;                 // Copy the received char 153 
    rx_flag = 0x01;                 // Signal to main 154 
    LPM0_EXIT; 155 
} 156 
 157 
#pragma vector = ADC12_VECTOR 158 
__interrupt void ADC12ISR (void) { 159 
    temp = ADC12MEM0;               // Move results, IFG is cleared 160 
    _BIC_SR_IRQ(CPUOFF);            // Clear CPUOFF bit from 0(SR) 161 
} 162 
 163 
 164 

Code 1. Program measuring MSP430 chip temperature using on-chip temperature sensor. Try 
rubbing the chip package by your pointer finger and observe what happens.   

 

7 Exercises 

 


