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Overview 

This module introduces various aspects of communication in embedded systems. You will learn 
about types of communication (parallel vs. serial, asynchronous vs. synchronous, unidirectional 
vs. bidirectional) and communication interfaces used in the MSP430 family of microcontrollers. 
A special emphasis is on serial communication protocols: UART, SPI, and I2C.  

Objectives 

 Learners will understand hardware and software aspects of serial communication 

 Learners will be able to configure and interact with serial communication interfaces  

 Learners will be able to evaluate pros and cons of each serial communication protocol 
(speed complexity) 
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1 Introduction 

Ability to communicate data is one of the core functionalities of all embedded computer systems. 
The others are sensing the environment, processing data, and storing data. When building 
embedded systems we often need to provide means to exchange data between different 
components on a single board (e.g., between a microcontroller and a sensor), between different 
embedded computer systems (e.g., controller units in your car are all connected through a 
Controller Area Network bus), or between an embedded computer system and a workstation. To 
meet a diverse set of requirements and design constraints, a multitude of communication 
protocols have been developed and used over time.  

We can classify communication techniques in embedded systems using different criteria. 
Depending on the medium used to transfer data, the communication can be wired when data is 
communicated by sending logic signals through wires, or wireless when data is turned into radio 
waves through antennas and transferred wirelessly. Here we will focus on wired communication. 
Based on the number of bits sent or received at a time, we can distinguish between serial 
communication, where one bit is sent/received at a time, and parallel communication, where 
multiple bits (>1) are sent/received at a time. Serial communication limits the number of bits that 
can be communicated in unit of time (typically 1 bit of data is sent/received each clock cycle), but 
it is less expensive because fewer traces need to be routed on the printed circuit board which 
reduces the size and the manufacturing cost or fewer wires are needed to connect to external 
system. With parallel communication we can transfer more data bits at a time, but it will cost us 
more. Next, based on the flow of data, communication can be unidirectional, a.k.a. simplex, 
where data always flow in one direction, e.g., from device A to device B, or bidirectional, a.k.a. 
duplex, where data can flow in both directions (A to B and B to A). Further, duplex communication 
can be half-duplex – data can flow in both directions but only in one direction at a time because 
the same set of wires is shared to carry information from device A to B and from device B to A, 
or full-duplex – data can flow in both directions at the same time because separate sets of wires 
are provided for data flow in each direction. Finally, depending on whether communicating 
parties share a common clock, communication can be asynchronous when there is no common 
clock or synchronous where the communicating parties share a common clock.  

In this module we exclusively focus on wired serial communication protocols routinely used in 
embedded systems, such as Universal Asynchronous Receiver/Transmitter (UART), Serial 
Peripheral Interface (SPI), and Inter-Integrated Circuit Bus (I2C). The MSP430 family of devices 
provide several communication peripherals that include hardware support for serial 
communication. They are Universal Serial Communication Interface (USCI), Universal Serial 
Interface (USI), and Universal Synchronous/Asynchronous Receiver/Transmitter (USART).  

 

Things to remember 1-1. Data communication in embedded systems. 

Data communication is one of the key functionalities in embedded systems. It can be classified 
using different criteria: wired vs. wireless, serial vs. parallel, asynchronous vs. synchronous, 
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simplex vs. half-duplex vs. full-duplex. In embedded systems a number of protocols are used 
to connect different components on a board (intra-board) as well as different systems.  

 

2 Universal Asynchronous Receiver/Transmitter (UART) 

Asynchronous serial communication is very popular type of communication in embedded 
systems. It can be used to exchange data between components on the same board or between 
different systems.  

Figure 1 illustrates a system view of UART style of communication between two devices, called A 
and B. The devices are physically connected using two wires that carry information from A to B 
(top wire) and from B to A (middle wire). The communicating parties need to share a common 
ground (Gnd). In this configuration we have a full-duplex asynchronous communication. Each 
device requires two ports: TxD (Transmit Data) for data transmission and RxD (Receive Data) for 
receiving data. The TxD port of A is connected to the RxD of B and RxD of A is connected to the 
TxD of B.  

 

 

Figure 1. UART communication: a system view. 

 

UART communication is asynchronous because devices A and B do not have a common clock. In 
addition, they can be completely different types of devices, each with their own clock subsystem. 
UART communication is typically character-oriented, where up to 8-bit characters are divided 
into individual bits that are sent one by one from the transmitter. The individual bits are grouped 
into characters at the receiving side.   

How does UART communication work? Both the transmitter and receiver should properly 
initialize their respective communication interfaces for UART type of communication. The 
initialization involves steps to set up the baud rates (or bit rates) that define at what speed the 
communication interfaces transmit/receive data (they should be the same for the transmitter 
and receiver), format of characters, and how to handle errors in communication. Upon 
initialization, the transmitter device (e.g., A) writes a byte of data into a TXBUF (transmit data 
buffer) register of its serial communication interface. This character is then typically moved into 
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a shift register and the control logic of the communication interface takes care of transmitting 
data, one bit at a time. The communication interface of the receiver shifts in one bit of data at a 
time in its shift register. When all bits in a character are received, the character is moved into a 
RXBUF (receive data buffer) register and a flag is set to indicate that a new character has been 
received.  

How does a receiver know that new transmission is underway? To answer this question, let us 
take a look how the signal look like during transmission of one character as observed on the TxD 
port pin. Figure 2 shows a format of a character. When there is no transmission the TxD port is 
held a logic ‘1’. When a new character transmission starts, a START (ST) bit is transmitted – one 
bit period at a logic ‘0’. Then the character bits are sent (D0-D7), followed by optional address bit 
(AD) and a parity bit (PA). The character is terminated by one or two stop bits. Thus, to transmit 
one 8-bit character with a parity bit and 2 stop bits, we need in total 1 (start) + 8 (data) + 1 (parity) 
+ 2 (stop) = 12 bits. The transmission takes 12 ∙ 𝑇𝐵𝐼𝑇𝐶𝐿𝐾. The serial communication interface is 
responsible for inserting the start, stop, and parity bits, but both transmitter and receiver should 
use the same character format. 

 

 

Figure 2. Format of a character in UART mode of communication. The transmission starts with 
a start bit (ST - logic 0) and ends with one or two stop bits (SP – logic 1). Data can be sent LSB 
(D0) first or MSB first (D7). The parity bit PA can be optionally included as well as address bit 

(AD) that supports multiprocessing.   

Things to remember 2-1. UART communication and character format. 

UART stands for Universal Asynchronous Receiver/Transmitter. It is a widely used serial 
asynchronous communication protocol for transmitting 8-bit data (character oriented 
protocol). The TxD pin of the transmitter is connected to the RxD pin of the receiver. The TxD 
line is held at a logic ‘1’ when there is no data to be sent. The start of a character is marked by 
the START bit (a logic ‘0’ for 1-bit period) and the character is terminated by one or two STOP 
bits (logic ‘1’). The data character (7-bit or 8-bit) can be sent LSB first or MSB first. An optional 
parity bit can also be sent before the STOP bits. 
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The receiver uses the start bit to detect that a new character is being received. Its control logic 
typically works in such a way that RxD input is sampled multiple times during one bit period (e.g., 
16 times). If a majority of consecutive samples is at logic ‘0’, the receiver assumes that a new 
character is being received. The every incoming bit is sampled ideally in the middle of bit period 
𝑇𝐵𝐼𝑇𝐶𝐿𝐾. The challenge we face with serial communication is that though both receiver and 
transmitter use the same 𝑇𝐵𝐼𝑇𝐶𝐿𝐾, there are always discrepancies between the bit period on the 
transmitter side and the bit period on the receiver side. These discrepancies accumulate with 
every new incoming bit, and they may lead to erroneous interpretation on the receiver side in 
presence of electrical noise and signal distortion on long wires. That is the main reason why we 
limit the length of data in UART mode to a single character (up to 8 data bits).  

To help detect when an error occurs in transmission a parity bit is often used. The parity bit is 
computed on the transmitter side using one of the following policies: (a) EVEN parity – parity bit 
is determined in such a way that the total number of transferred bits with logic ‘1’ is EVEN; or (b) 
ODD parity – the parity bit is determined so that the total number of transferred bits with logic 
‘1’ is ODD. The receiver computes its own parity bit from the incoming data and compares it with 
the parity bit that is received. If the two match, the likelihood of errorless transmission is very 
high. If they do not match, we know that we had error in one bit (very likely), or in 3 bits (less 
likely), or 5 bits, and so on. What happens if we have error on two bits – the parity bit will not 
help us detect this type of error, but the communication theory teaches us that this event is less 
likely than having no errors. The parity bit thus can give us reasonable assurances that 
communication was without errors but cannot detect all errors and can correct them. For that 
we can use error correction codes that is studies in communication.   

 

Example 2-2. Determine parity bit when transferring an ASCII character ‘0’ 
if we use ODD parity.  

 ASCII code for ‘0’: 0x30 or 0011_0000b => even number of bits with 
‘1’ 

 The parity bit should be set to P=1 so that the total number of bits 
transferred is ODD. 

 

3 Serial Interfaces in MSP430F5529 

Figure 3 shows a functional diagram of the MSP430F5529. It includes two Universal Serial 
Communication Interfaces (USCI), USCI0 and USCI1. Each USCI module supports two channels 
USCI_Ax and USCI_Bx. USCI_Ax supports UART, SPI, and IrDA (infrared) communication and 
USCI_Bx supports SPI and I2C communication protocols. Here, we will discuss USCI_Ax operating 
in UART mode of serial communication.  
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Figure 3. Functional Block Diagram of MSP430F5529. 

4 USCI: UART Mode 

The Universal Serial Communication Interface or USCI for short is a TI peripheral that supports 
several serial synchronous and asynchronous communication protocols including UART mode. 
The UART mode supports several configurable parameters as follows: 

 7 or 8-bit data 

 odd, even parity or no parity at all 

 MSB or LSB bit is sent first 

 programmable baud rate  

 status flags for error detection and suppression 

 receiver start-edge detection for auto-wake up from LPMx modes 

 support for multiprocessing modes. 

Figure 4 shows a block diagram of the USCI in the UART mode. We can identify the receiver block 
on the top with the receiver data buffer (UCAxRXBUF), the receive shift register (not visible to 
programmers), and a connection to the UCAxRXD port pin. The transmitter block at the bottom 
includes the transmit data buffer (UCAxTXBUF), the transmit shift register (not visible to 
programmers), and a connection to the UCAxTXD port pin. The middle block is baud rate 
generator that takes one of the input clocks (UCAxCLK, ACLK, SMCLK) and generates the 
communication bit clocks (Transmit clock and Receive clock) for both the transmit and receive 
blocks.  
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Figure 4. USCI_Ax block diagram: UART mode. 

 

The USCI registers visible to programmers for USIC_Ax are shown in Figure 5. USCI is an 8-bit 
peripheral device and all registers are 8-bit long. For USCI_A0 (UCA0), the notable registers are 
two control registers (UCA0CTL0 and UCA0CTL1), baud rate control registers (UCA0BR0 and 



 

 

CPE 323: Module 10 © A. Milenković 8 

 

UCA0BR1), modulation control register (UCA0MCTL), status register (UCA0STAT), receive buffer 
(UCA0RXBUF), and transmit buffer (UCA0TXBUF). 

 

Figure 5. USCI_Ax UART Mode Control and Status Registers 

Things to remember 4-1. USCI in UART mode. 

USCI stands for Universal Serial Communication Interface. It supports different types of serial 
communication protocols: UART, SPI, I2C, IrDA. USCI in UART mode includes 3 distinct 
submodules: receiver with UCAxRXBUF, transmitter with UCAxTXBUF, and the baud rate 
generator.  

 

4.1 USCI Initialization: UART Mode 

To initialize the USCI in UART mode the following sequence of steps is recommended: 

1. Set UCSWRST bit (software reset: BIS.B #UCSWRST, &UCAxCTL1) to reset the USCI state 
machine; 

2. Initialize all USCI registers with UCSWRST=1 (baud rate control, modulation control, 
control registers); 

3. Configure ports (TxD, RxD special function); 
4. Clear UCSWRST (BIS.B #UCSWRST, &UCAxCTL1); 
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5. Enable interrupts (optional) by setting UCAxRXIE and UCAxTXIE. 

The interrupt vector table contains separate entries for interrupts from the receiver and 
transmitter in the USCI. 

 

Things to remember 4-2. USCI UART mode initialization.  

It is recommended to follow guidelines when initializing USCI devices. 

 

4.2 USCI UART Error Conditions 

The USCI peripheral can detect framing errors, parity errors, overrun errors, and break conditions 
when receiving characters as shown in Figure 6. The USCI can be configured to generate an 
interrupt when received erroneous character conditions are detected (UCRXEIE bit in the 
UCAxCTL1 register).  When UCFE, UCPE, UCOE, and UCBRK or UCRXERR is set, the bit remains set 
until user software resets it or UCAxRXBUF is read. To detect overflows (a new character is 
received while the previous one has not been read yet) the following flow is recommended. After 
a character is received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags 
including OCOE. Read UCAxRXBUF next. This will clear all error flags except UCOE if UCAxRXBUF 
was overwritten between the read access to UCAxSTAT and the read access to UCAxRXBUF. To 
detect this condition (buffer overwrite between these two reads), the OCOE bit should be read 
after reading UCAxRXBUF.   

 

 

Figure 6. Receive Error Conditions 

4.3 UART Baud Rate Generation 

The USCI baud rate generator can produce standard baud rates from non-standard source 
frequencies. It provides two modes of operation: low-frequency mode (UCOS16 = 0) and over-
sampling mode (UCOS16 = 1).  

The low-frequency mode allows generation of baud rates from low frequency clock sources that 
reduce energy consumed by the communication interface. For example, we may have FBAUD=9600 
bps, and the source clock is BRCLK=ACLK= 32,768 Hz. By dividing 32,768 with 9,600 we get 
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N=3.41. The challenge is that the baud rate divider cannot use fractions. Instead we initialize the 
baud rate registers UCBRx = INT(N) = 3, and the UCBRSx field UCBRSx = round((N – INT(N))*8)=3. 
The UCBRSx 3-bit field controls the second modulation stage.  The way this works is as follows: 5 
bits (or 8 – UCBRSx bits) will have duration of 3 source clock periods (BRCLK) and 3 bits (UCBRSx 
bits) will have duration of 4 (N+1 in general) source clock periods, BRCLK, providing an average 
to be close to 3.41. Thus, some bits during transmission take 3 BRCLK periods and some take 4 
BRCLK periods. The duration is modulated in such a way to minimize the error in communication 
from the targeted bit rate for each bit period. Figure 7 shows common combinations of clock 
sources and baud rates and how to set the baud rate control registers. 

 

 

Figure 7. Commonly user baud rates and settings in low-frequency mode (UCOS16=0) – for 
full table see User’s Guide, Table 36-5.  

For oversampling mode, the baud rate generator first generates a clock fBIT16CLK that is 16 times 
fbaud. To illustrate settings for the baud rate generator, let us assume that our target baud rate is 
fbaud = 9600 Hz and the source clock is fBRCLK = 220 Hz. One bit period, Tbaud, thus contain N = 
fBRCLK/fbaud = 109.22 > 16 source clock periods. Dividing N with 16 we get 6.83, i.e., one period of 
TBIT16CLK contain 6.83 source clock periods. In this case the baud rate register UCABRx is set to 
INT(N/16) = 6, and the first stage modulator to UCBRFx= round ( (N/16 – INT(N/16))*16) = 13. 
The meaning of this is as follows: out of 16 bit periods TBIT16CLK in one TBAUD, 13 BIT16CLK cycles 
will have 7 (or N+1 in general) BRCLK clocks and 3 BIT16CLK cycles will have 6 (or N in general) 
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BRCLK clocks, giving on average 6.83 BRCLK clock cycles. The modulator ensures that these 
different BIT16CLK clocks are spread in such a way to minimize error in communication. Figure 8 
shows how to setup baud rate control registers in oversampling mode for common combinations 
of clock sources and baud rates.  

 

Things to remember 4-3. USCI UART baud rate generator.  

USCI in UART mode can operate in low-frequency (UCOS16=1) or oversampling mode 
(UCOS16=1). The modes determine how to initialize the prescalar as well as modulation control 
registers.  
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Figure 8. Commonly user baud rates and settings in oversampling mode (UCOS16=1). 
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4.4 USCI Control Registers 

Figure 9 and Figure 10 show the format and description of relevant bits for UCAxCTL0 and 
UCA0xCTL1, respectively. Figure 11 shows the format of modulation register. Figure 12 shows 
the format of UCAxSTAT register. The UCAxBR0 and UCAxBR1 registers contain lower and upper 
byte, respectively, of the prescalar setting for the baud rate generator.  

Figure 13 shows the format of registers related to the UART interrupts. The UCTXIFG interrupt 
flag is set by the transmitter to indicate that the UCAxTXBUF is ready to accept another character. 
The Interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset 
if a character is written to UCAxTXBUF. The UCRXIFG flag is set when a new character is received 
and loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. 
UCRXIFG is automatically reset when UCAxRXBUF is read.  

 

 

Figure 9. UCAxCTL0.  
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Figure 10. UCAxCTL1. 

 

 

Figure 11. UCAxMCTL. UCBRFx field defines modulation in oversampling mode (UCOS16=1). 
UCBRSx field defines modulation for low-frequency mode (UCOS16=0). 
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Figure 12. UCAxSTAT.  
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Figure 13. UCAxIFG, UCAxIE, and UCAxIV Registers.  

 

The following examples illustrate how to determine initial values for the prescalar and 
modulation registers.  

 

Example 4-1. Determine UCAxBR0, UCAxBR1, UCAxMCTL registers under the 
following conditions. Source clock is SMCLK=220 Hz, Baud rate is 38,400.  

 Step 1: N = 220/38400 = 27.3066  

 Step 2: N = 27.3066; this is >16, but only slightly  
=> use the low-frequency mode, UCOS16=0 

 Step 2: UCAxBRx=INT(N) = 27 (UCAxBR0=27, UCAxBR1=0) 
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 Step 3: UCBRS = round[(N – INT(N))*8]=round(0.3066*8)=round(2.453)=2 
UCAxMCTL |= UCBRS_2  

 

Example 4-2. Determine UCAxBR0, UCAxBR1, UCAxMCTL registers under the 
following conditions. Source clock is SMCLK=222 Hz, Baud rate is 38,400.  

 Step 1: N = 222/38400 = 109.2266  

 Step 2: N = 109.2266; this is >16 => use the oversampling mode, 
UCOS16=1 

 Step 2: N/16 = 6.82 => UCAxBRx=INT(N/16) = 6 (UCAxBR0=6, UCAxBR1=0) 

 Step 3: UCBRF = round[(N/16 – INT(N/16))*16] = round(0.82*16) = 
round(13.2266) = 13 
UCAxMCTL |= UCBRF_13 | UCOS16 

 

5 Code Examples 

Code 1 shows a program that echoes a character received from the developer workstation using 
the MSP-EX430F529 launchpad. Connect the board as described in the program header below. 
We initialize the UCA0 for UART communication with 115,200 baud rate. As we use the default 
SMCLK of 220 Hz, we will use the low-frequency mode. Thus, the prescalar value is 0x0009 
(BR0=0x09, BR1=0x00). The modulation filed is 0x01 (or bit 1 of the UCA0MCTL register should 
be set). It helps to write a subroutine that includes all steps necessary to initialize of UCA0 
(UART_Setup).  

The main program calls the UART_Setup() and enters an infinite loop. In the loop, we use polling 
to detect when a new character is received. The while statement in line 69 checks the register 
UCA0IFG, bit UCRXIFG. If no character is received we check again. Once the character is received 
we exit the while loop. The next step is to check whether the transmit buffer is ready as we want 
to echo the character (send it back to the workstation). If it is ready, we read the character from 
the UCA0RXBUF and write it into UCA0TXBUF. Please note that we do not need to explicitly clear 
the flag for UCRXIFG even though we are using polling. The flag is automatically cleared once we 
read from the UCA0RXBUF. The LED1 is toggled.  

 
/*---------------------------------------------------------------------------------- 1 
 * File:          Lab8_D1.c 2 
 * 3 
 * Function:      Echo a received character, using polling. 4 
 * 5 
 * Description:   This program echos the character received from UART back to UART. 6 
 *                Toggle LED1 with every received character. 7 
 *                Baud rate: low-frequency (UCOS16=0); 8 
 *                1048576/115200 = ~9.1 (0x0009|0x01) 9 
 * 10 
 * Clocks:        ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 11 
 * 12 
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 * Board:         MSP-EXP430F5529 13 
 * 14 
 * Instructions: Set the following parameters in putty 15 
 * Port: COMx 16 
 * Baud rate: 115200 17 
 * Data bits: 8 18 
 * Parity: None 19 
 * Stop bits: 1 20 
 * Flow Control: None 21 
 * 22 
 * Note:       If you are using Adafruit USBtoTTL cable, look for COM port 23 
 *             in the Windows Device Manager with the following text: 24 
 *             Silicon Labs CP210x USB to UART Bridge (COM<x>). 25 
 *             Connecting Adafruit USB to TTL: 26 
 *              GND - black wire - connect to the GND pin (on the board or BoosterPack) 27 
 *              Vcc - red wire - leave disconnected 28 
 *              Rx    white wire (receive into USB, connect on TxD of the board P3.3) 29 
 *              Tx -  green wire (transmit from USB, connect to RxD of the board P3.4) 30 
 *        MSP430F5529 31 
 *     ----------------- 32 
 * /|\ |            XIN|- 33 
 *  |  |               | 32kHz 34 
 *  |--|RST        XOUT|- 35 
 *     |               | 36 
 *     |   P3.3/UCA0TXD|------------> 37 
 *     |               | 115200 - 8N1 38 
 *     |   P3.4/UCA0RXD|<------------ 39 
 *     |           P1.0|----> LED1 40 
 * 41 
 * Input:     None (Type characters in putty/MobaXterm/hyperterminal) 42 
 * Output:    Character echoed at UART 43 
 * Author:    A. Milenkovic, milenkovic@computer.org 44 
 * Date:      October 2018, modified August 2020 45 
 *--------------------------------------------------------------------------------*/ 46 
#include <msp430.h> 47 
 48 
void UART_setup(void) { 49 
 50 
    P3SEL |= BIT3 + BIT4;   // Set USCI_A0 RXD/TXD to receive/transmit data 51 
    UCA0CTL1 |= UCSWRST;    // Set software reset during initialization 52 
    UCA0CTL0 = 0;           // USCI_A0 control register 53 
    UCA0CTL1 |= UCSSEL_2;   // Clock source SMCLK 54 
 55 
    UCA0BR0 = 0x09;         // 1048576 Hz  / 115200 lower byte 56 
    UCA0BR1 = 0x00;         // upper byte 57 
    UCA0MCTL |= UCBRS0;     // Modulation (UCBRS0=0x02, UCOS16=0) 58 
 59 
    UCA0CTL1 &= ~UCSWRST;   // Clear software reset to initialize USCI state machine 60 
} 61 
 62 
void main(void) { 63 
    WDTCTL = WDTPW + WDTHOLD;       // Stop WDT 64 
    P1DIR |= BIT0;                  // Set P1.0 to be output 65 
    UART_setup();                   // Initialize UART 66 
 67 
    while (1) { 68 
       while(!(UCA0IFG&UCRXIFG));   // Wait for a new character 69 
       // New character is here in UCA0RXBUF 70 
       while(!(UCA0IFG&UCTXIFG));   // Wait until TXBUF is free 71 
       UCA0TXBUF = UCA0RXBUF;       // TXBUF <= RXBUF (echo) 72 
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       P1OUT ^= BIT0;               // Toggle LED1 73 
    } 74 
} 75 

Code 1.  Echo a character using polling.  

Code 2 shows a program that echoes the character that uses the interrupt service routine instead 
of polling. The main program initializes the UCA0 and enters a low-power mode 0 (the cpu is 
turned off). In the UART_Setup function we enable interrupts when a character is received (line 
50). When a character is received, an interrupt request is presented from UCA0 that wakes the 
processor up and the USCI_A0_VECTOR interrupt service routine is entered. Inside the ISR we 
check whether the UCA0TXBUF is ready and it it is ready, echo the received character and toggle 
the LED1. Upon exiting the ISR, the previous conditions are restored and the processor goes back 
into the low-power mode 0.  
 

/*---------------------------------------------------------------------------------- 1 
 * File:          Lab8_D2.c 2 
 * 3 
 * Function:      Echo a received character, using receiver ISR. 4 
 * Description:   This program echos the character received from UART back to UART. 5 
 *                Toggle LED1 with every received character. 6 
 *                Baud rate: low-frequency (UCOS16=0); 7 
 *                1048576/115200 = ~9.1 (0x0009|0x01) 8 
 * Clocks:        ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 9 
 * 10 
 * Instructions: Set the following parameters in putty 11 
 * Port: COMx 12 
 * Baud rate: 115200 13 
 * Data bits: 8 14 
 * Parity: None 15 
 * Stop bits: 1 16 
 * Flow Control: None 17 
 * 18 
 *        MSP430f5529 19 
 *     ----------------- 20 
 * /|\ |            XIN|- 21 
 *  |  |               | 32kHz 22 
 *  |--|RST        XOUT|- 23 
 *     |               | 24 
 *     |   P3.3/UCA0TXD|------------> 25 
 *     |               | 115200 - 8N1 26 
 *     |   P3.4/UCA0RXD|<------------ 27 
 *     |           P1.0|----> LED1 28 
 * 29 
 * Input:     None (Type characters in putty/MobaXterm/hyperterminal) 30 
 * Output:    Character echoed at UART 31 
 * Author:    A. Milenkovic, milenkovic@computer.org 32 
 * Date:      October 2018 33 
 *--------------------------------------------------------------------------------*/ 34 
#include <msp430.h> 35 
 36 
// Initialize USCI_A0 module to UART mode 37 
void UART_setup(void) { 38 
 39 
    P3SEL |= BIT3 + BIT4;   // Set USCI_A0 RXD/TXD to receive/transmit data 40 
    UCA0CTL1 |= UCSWRST;    // Set software reset during initialization 41 
    UCA0CTL0 = 0;           // USCI_A0 control register 42 
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    UCA0CTL1 |= UCSSEL_2;   // Clock source SMCLK 43 
 44 
    UCA0BR0 = 0x09;         // 1048576 Hz  / 115200 lower byte 45 
    UCA0BR1 = 0x00;         // upper byte 46 
    UCA0MCTL |= UCBRS0;     // Modulation (UCBRS0=0x02, UCOS16=0) 47 
 48 
    UCA0CTL1 &= ~UCSWRST;   // Clear software reset to initialize USCI state machine 49 
    UCA0IE |= UCRXIE;       // Enable USCI_A0 RX interrupt 50 
} 51 
 52 
void main(void) { 53 
    WDTCTL = WDTPW + WDTHOLD; // Stop WDT 54 
    P1DIR |= BIT0;            // Set P1.0 to be output 55 
    UART_setup();             // Initialize USCI_A0 in UART mode 56 
 57 
    _BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 58 
} 59 
 60 
// Echo back RXed character, confirm TX buffer is ready first 61 
#pragma vector = USCI_A0_VECTOR 62 
__interrupt void USCIA0RX_ISR (void) { 63 
    while(!(UCA0IFG&UCTXIFG));  // Wait until can transmit 64 
    UCA0TXBUF = UCA0RXBUF;      // TXBUF <-- RXBUF 65 
    P1OUT ^= BIT0;              // Toggle LED1 66 
} 67 

Code 2.  Echo a character using receiver ISR 

Code 3 shows a program that utilizes UCA0 and TA0 to implement a real-time clock that sends 
time via UART to the workstation. The time is measured with resolution of a decisecond (1/10th 
of a second). The main program is organized as follows. We configure UCA0 for serial 
communication in UART mode for 9,600 bps. We configure TA0 to generate an interrupt every 
100 ms (1/10th of a second).  

The main loop of the program starts with an entering a low power mode. The ISR for TA0 is 
entered once every 100 ms. Inside we update the variables that keep track of current time (tsec 
and sec) and change the copy of the status register on the program stack to make sure that once 
we exit the ISR we do not go back to the low-power mode, but rather remain in active mode. Line 
97 reaches to the top of the stack and changes the bits in the copy of the status register. Once 
we exit the ISR, we continue execution in the main loop by invoking SendTime(). Here the current 
time is printed into a character array using sprintf library function. The time message is then sent 
over UART character by character.  

 
/*-------------------------------------------------------------------------------- 1 
 * File:          Lab8_D3.c 2 
 * Function:      Displays real-time clock in serial communication client. 3 
 * Description:   This program maintains real-time clock and sends time 4 
 *                (10 times a second) to the workstation through 5 
 *                a serial asynchronous link (UART). 6 
 *                The time is displayed as follows: "sssss:tsec". 7 
 * 8 
 *                Baud rate divider with 1048576hz = 1048576/(16*9600) = ~6.8 [16 from UCOS16] 9 
 * Clocks:        ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 1048576Hz 10 
 * Instructions:  Set the following parameters in putty/hyperterminal 11 
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 * Port: COMx 12 
 * Baud rate: 19200 13 
 * Data bits: 8 14 
 * Parity: None 15 
 * Stop bits: 1 16 
 * Flow Control: None 17 
 * 18 
 *        MSP430F5529 19 
 *     ----------------- 20 
 * /|\ |            XIN|- 21 
 *  |  |               | 32kHz 22 
 *  |--|RST        XOUT|- 23 
 *     |               | 24 
 *     |   P3.3/UCA0TXD|------------> 25 
 *     |               | 9600 - 8N1 26 
 *     |   P3.4/UCA0RXD|<------------ 27 
 *     |           P1.0|----> LED1 28 
 * 29 
 * Author:      A. Milenkovic, milenkovic@computer.org 30 
 * Date:        October 2018 31 
--------------------------------------------------------------------------------*/ 32 
#include <msp430.h> 33 
#include <stdio.h> 34 
 35 
// Current time variables 36 
unsigned int sec = 0;              // Seconds 37 
unsigned int tsec = 0;             // 1/10 second 38 
char Time[8];                      // String to keep current time 39 
 40 
void UART_setup(void) { 41 
    P3SEL = BIT3+BIT4;                        // P3.4,5 = USCI_A0 TXD/RXD 42 
    UCA0CTL1 |= UCSWRST;                      // **Put state machine in reset** 43 
    UCA0CTL1 |= UCSSEL_2;                     // SMCLK 44 
    UCA0BR0 = 6;                              // 1MHz 9600 (see User's Guide) 45 
    UCA0BR1 = 0;                              // 1MHz 9600 46 
    UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16;   // Mod. UCBRSx=0, UCBRFx=13, 47 
                                              // over sampling 48 
    UCA0CTL1 &= ~UCSWRST;                     // **Initialize USCI state machine** 49 
} 50 
 51 
void TimerA_setup(void) { 52 
    TA0CTL = TASSEL_2 + MC_1 + ID_3; // Select SMCLK/8 and up mode 53 
    TA0CCR0 = 13107;                 // 100ms interval 54 
    TA0CCTL0 = CCIE;                 // Capture/compare interrupt enable 55 
} 56 
 57 
void UART_putCharacter(char c) { 58 
    while (!(UCA0IFG&UCTXIFG));    // Wait for previous character to transmit 59 
    UCA0TXBUF = c;                  // Put character into tx buffer 60 
} 61 
 62 
void SetTime(void) { 63 
    tsec++; 64 
    if (tsec == 10){ 65 
        tsec = 0; 66 
        sec++; 67 
        P1OUT ^= BIT0;              // Toggle LED1 68 
    } 69 
} 70 
 71 
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void SendTime(void) { 72 
    int i; 73 
    sprintf(Time, "%05d:%01d", sec, tsec);// Prints time to a string 74 
 75 
    for (i = 0; i < sizeof(Time); i++) {  // Send character by character 76 
        UART_putCharacter(Time[i]); 77 
    } 78 
    UART_putCharacter('\r');        // Carriage Return 79 
} 80 
 81 
void main(void) { 82 
    WDTCTL = WDTPW + WDTHOLD;       // Stop watchdog timer 83 
    UART_setup();                   // Initialize UART 84 
    TimerA_setup();                 // Initialize Timer_B 85 
    P1DIR |= BIT0;                  // P1.0 is output; 86 
 87 
    while (1) { 88 
        _BIS_SR(LPM0_bits + GIE);   // Enter LPM0 w/ interrupts 89 
        SendTime();                 // Send Time to HyperTerminal/putty 90 
    } 91 
} 92 
 93 
#pragma vector = TIMER0_A0_VECTOR 94 
__interrupt void TIMERA_ISA(void) { 95 
    SetTime();                       // Update time 96 
    _BIC_SR_IRQ(LPM0_bits);          // Clear LPM0 bits from 0(SR) 97 
} 98 
 99 

Code 3.  Display real-time clock. 

 

6 Exercises 

 


