

CPE 323: Serial Communication © A. Milenković 1

CPE 323
MODULE 10

UART Serial Communication

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces various aspects of communication in embedded systems. You will learn
about types of communication (parallel vs. serial, asynchronous vs. synchronous, unidirectional
vs. bidirectional) and communication interfaces used in the MSP430 family of microcontrollers.
A special emphasis is on serial communication protocols: UART, SPI, and I2C.

Objectives

 Learners will understand hardware and software aspects of serial communication

 Learners will be able to configure and interact with serial communication interfaces

 Learners will be able to evaluate pros and cons of each serial communication protocol
(speed complexity)

Contents

1 Introduction ... 2

2 Universal Asynchronous Receiver/Transmitter (UART) .. 3

3 Serial Interfaces in MSP430F5529 ... 5

4 USCI: UART Mode .. 6

4.1 USCI Initialization: UART Mode .. 8

4.2 USCI UART Error Conditions ... 9

4.3 UART Baud Rate Generation .. 9

4.4 USCI Control Registers .. 13

5 Code Examples ... 17

6 Exercises .. 22

mailto:milenka@uah.edu

CPE 323: Module 10 © A. Milenković 2

1 Introduction

Ability to communicate data is one of the core functionalities of all embedded computer systems.
The others are sensing the environment, processing data, and storing data. When building
embedded systems we often need to provide means to exchange data between different
components on a single board (e.g., between a microcontroller and a sensor), between different
embedded computer systems (e.g., controller units in your car are all connected through a
Controller Area Network bus), or between an embedded computer system and a workstation. To
meet a diverse set of requirements and design constraints, a multitude of communication
protocols have been developed and used over time.

We can classify communication techniques in embedded systems using different criteria.
Depending on the medium used to transfer data, the communication can be wired when data is
communicated by sending logic signals through wires, or wireless when data is turned into radio
waves through antennas and transferred wirelessly. Here we will focus on wired communication.
Based on the number of bits sent or received at a time, we can distinguish between serial
communication, where one bit is sent/received at a time, and parallel communication, where
multiple bits (>1) are sent/received at a time. Serial communication limits the number of bits that
can be communicated in unit of time (typically 1 bit of data is sent/received each clock cycle), but
it is less expensive because fewer traces need to be routed on the printed circuit board which
reduces the size and the manufacturing cost or fewer wires are needed to connect to external
system. With parallel communication we can transfer more data bits at a time, but it will cost us
more. Next, based on the flow of data, communication can be unidirectional, a.k.a. simplex,
where data always flow in one direction, e.g., from device A to device B, or bidirectional, a.k.a.
duplex, where data can flow in both directions (A to B and B to A). Further, duplex communication
can be half-duplex – data can flow in both directions but only in one direction at a time because
the same set of wires is shared to carry information from device A to B and from device B to A,
or full-duplex – data can flow in both directions at the same time because separate sets of wires
are provided for data flow in each direction. Finally, depending on whether communicating
parties share a common clock, communication can be asynchronous when there is no common
clock or synchronous where the communicating parties share a common clock.

In this module we exclusively focus on wired serial communication protocols routinely used in
embedded systems, such as Universal Asynchronous Receiver/Transmitter (UART), Serial
Peripheral Interface (SPI), and Inter-Integrated Circuit Bus (I2C). The MSP430 family of devices
provide several communication peripherals that include hardware support for serial
communication. They are Universal Serial Communication Interface (USCI), Universal Serial
Interface (USI), and Universal Synchronous/Asynchronous Receiver/Transmitter (USART).

Things to remember 1-1. Data communication in embedded systems.

Data communication is one of the key functionalities in embedded systems. It can be classified
using different criteria: wired vs. wireless, serial vs. parallel, asynchronous vs. synchronous,

CPE 323: Serial Communication © A. Milenković 3

simplex vs. half-duplex vs. full-duplex. In embedded systems a number of protocols are used
to connect different components on a board (intra-board) as well as different systems.

2 Universal Asynchronous Receiver/Transmitter (UART)

Asynchronous serial communication is very popular type of communication in embedded
systems. It can be used to exchange data between components on the same board or between
different systems.

Figure 1 illustrates a system view of UART style of communication between two devices, called A
and B. The devices are physically connected using two wires that carry information from A to B
(top wire) and from B to A (middle wire). The communicating parties need to share a common
ground (Gnd). In this configuration we have a full-duplex asynchronous communication. Each
device requires two ports: TxD (Transmit Data) for data transmission and RxD (Receive Data) for
receiving data. The TxD port of A is connected to the RxD of B and RxD of A is connected to the
TxD of B.

Figure 1. UART communication: a system view.

UART communication is asynchronous because devices A and B do not have a common clock. In
addition, they can be completely different types of devices, each with their own clock subsystem.
UART communication is typically character-oriented, where up to 8-bit characters are divided
into individual bits that are sent one by one from the transmitter. The individual bits are grouped
into characters at the receiving side.

How does UART communication work? Both the transmitter and receiver should properly
initialize their respective communication interfaces for UART type of communication. The
initialization involves steps to set up the baud rates (or bit rates) that define at what speed the
communication interfaces transmit/receive data (they should be the same for the transmitter
and receiver), format of characters, and how to handle errors in communication. Upon
initialization, the transmitter device (e.g., A) writes a byte of data into a TXBUF (transmit data
buffer) register of its serial communication interface. This character is then typically moved into

A B

RxD

RxD

TxD

TxD

Gnd

CPE 323: Module 10 © A. Milenković 4

a shift register and the control logic of the communication interface takes care of transmitting
data, one bit at a time. The communication interface of the receiver shifts in one bit of data at a
time in its shift register. When all bits in a character are received, the character is moved into a
RXBUF (receive data buffer) register and a flag is set to indicate that a new character has been
received.

How does a receiver know that new transmission is underway? To answer this question, let us
take a look how the signal look like during transmission of one character as observed on the TxD
port pin. Figure 2 shows a format of a character. When there is no transmission the TxD port is
held a logic ‘1’. When a new character transmission starts, a START (ST) bit is transmitted – one
bit period at a logic ‘0’. Then the character bits are sent (D0-D7), followed by optional address bit
(AD) and a parity bit (PA). The character is terminated by one or two stop bits. Thus, to transmit
one 8-bit character with a parity bit and 2 stop bits, we need in total 1 (start) + 8 (data) + 1 (parity)
+ 2 (stop) = 12 bits. The transmission takes 12 ∙ 𝑇𝐵𝐼𝑇𝐶𝐿𝐾. The serial communication interface is
responsible for inserting the start, stop, and parity bits, but both transmitter and receiver should
use the same character format.

Figure 2. Format of a character in UART mode of communication. The transmission starts with
a start bit (ST - logic 0) and ends with one or two stop bits (SP – logic 1). Data can be sent LSB
(D0) first or MSB first (D7). The parity bit PA can be optionally included as well as address bit

(AD) that supports multiprocessing.

Things to remember 2-1. UART communication and character format.

UART stands for Universal Asynchronous Receiver/Transmitter. It is a widely used serial
asynchronous communication protocol for transmitting 8-bit data (character oriented
protocol). The TxD pin of the transmitter is connected to the RxD pin of the receiver. The TxD
line is held at a logic ‘1’ when there is no data to be sent. The start of a character is marked by
the START bit (a logic ‘0’ for 1-bit period) and the character is terminated by one or two STOP
bits (logic ‘1’). The data character (7-bit or 8-bit) can be sent LSB first or MSB first. An optional
parity bit can also be sent before the STOP bits.

CPE 323: Serial Communication © A. Milenković 5

The receiver uses the start bit to detect that a new character is being received. Its control logic
typically works in such a way that RxD input is sampled multiple times during one bit period (e.g.,
16 times). If a majority of consecutive samples is at logic ‘0’, the receiver assumes that a new
character is being received. The every incoming bit is sampled ideally in the middle of bit period
𝑇𝐵𝐼𝑇𝐶𝐿𝐾. The challenge we face with serial communication is that though both receiver and
transmitter use the same 𝑇𝐵𝐼𝑇𝐶𝐿𝐾, there are always discrepancies between the bit period on the
transmitter side and the bit period on the receiver side. These discrepancies accumulate with
every new incoming bit, and they may lead to erroneous interpretation on the receiver side in
presence of electrical noise and signal distortion on long wires. That is the main reason why we
limit the length of data in UART mode to a single character (up to 8 data bits).

To help detect when an error occurs in transmission a parity bit is often used. The parity bit is
computed on the transmitter side using one of the following policies: (a) EVEN parity – parity bit
is determined in such a way that the total number of transferred bits with logic ‘1’ is EVEN; or (b)
ODD parity – the parity bit is determined so that the total number of transferred bits with logic
‘1’ is ODD. The receiver computes its own parity bit from the incoming data and compares it with
the parity bit that is received. If the two match, the likelihood of errorless transmission is very
high. If they do not match, we know that we had error in one bit (very likely), or in 3 bits (less
likely), or 5 bits, and so on. What happens if we have error on two bits – the parity bit will not
help us detect this type of error, but the communication theory teaches us that this event is less
likely than having no errors. The parity bit thus can give us reasonable assurances that
communication was without errors but cannot detect all errors and can correct them. For that
we can use error correction codes that is studies in communication.

Example 2-2. Determine parity bit when transferring an ASCII character ‘0’
if we use ODD parity.

 ASCII code for ‘0’: 0x30 or 0011_0000b => even number of bits with
‘1’

 The parity bit should be set to P=1 so that the total number of bits
transferred is ODD.

3 Serial Interfaces in MSP430F5529

Figure 3 shows a functional diagram of the MSP430F5529. It includes two Universal Serial
Communication Interfaces (USCI), USCI0 and USCI1. Each USCI module supports two channels
USCI_Ax and USCI_Bx. USCI_Ax supports UART, SPI, and IrDA (infrared) communication and
USCI_Bx supports SPI and I2C communication protocols. Here, we will discuss USCI_Ax operating
in UART mode of serial communication.

CPE 323: Module 10 © A. Milenković 6

Figure 3. Functional Block Diagram of MSP430F5529.

4 USCI: UART Mode

The Universal Serial Communication Interface or USCI for short is a TI peripheral that supports
several serial synchronous and asynchronous communication protocols including UART mode.
The UART mode supports several configurable parameters as follows:

 7 or 8-bit data

 odd, even parity or no parity at all

 MSB or LSB bit is sent first

 programmable baud rate

 status flags for error detection and suppression

 receiver start-edge detection for auto-wake up from LPMx modes

 support for multiprocessing modes.

Figure 4 shows a block diagram of the USCI in the UART mode. We can identify the receiver block
on the top with the receiver data buffer (UCAxRXBUF), the receive shift register (not visible to
programmers), and a connection to the UCAxRXD port pin. The transmitter block at the bottom
includes the transmit data buffer (UCAxTXBUF), the transmit shift register (not visible to
programmers), and a connection to the UCAxTXD port pin. The middle block is baud rate
generator that takes one of the input clocks (UCAxCLK, ACLK, SMCLK) and generates the
communication bit clocks (Transmit clock and Receive clock) for both the transmit and receive
blocks.

CPE 323: Serial Communication © A. Milenković 7

Figure 4. USCI_Ax block diagram: UART mode.

The USCI registers visible to programmers for USIC_Ax are shown in Figure 5. USCI is an 8-bit
peripheral device and all registers are 8-bit long. For USCI_A0 (UCA0), the notable registers are
two control registers (UCA0CTL0 and UCA0CTL1), baud rate control registers (UCA0BR0 and

CPE 323: Module 10 © A. Milenković 8

UCA0BR1), modulation control register (UCA0MCTL), status register (UCA0STAT), receive buffer
(UCA0RXBUF), and transmit buffer (UCA0TXBUF).

Figure 5. USCI_Ax UART Mode Control and Status Registers

Things to remember 4-1. USCI in UART mode.

USCI stands for Universal Serial Communication Interface. It supports different types of serial
communication protocols: UART, SPI, I2C, IrDA. USCI in UART mode includes 3 distinct
submodules: receiver with UCAxRXBUF, transmitter with UCAxTXBUF, and the baud rate
generator.

4.1 USCI Initialization: UART Mode

To initialize the USCI in UART mode the following sequence of steps is recommended:

1. Set UCSWRST bit (software reset: BIS.B #UCSWRST, &UCAxCTL1) to reset the USCI state
machine;

2. Initialize all USCI registers with UCSWRST=1 (baud rate control, modulation control,
control registers);

3. Configure ports (TxD, RxD special function);
4. Clear UCSWRST (BIS.B #UCSWRST, &UCAxCTL1);

CPE 323: Serial Communication © A. Milenković 9

5. Enable interrupts (optional) by setting UCAxRXIE and UCAxTXIE.

The interrupt vector table contains separate entries for interrupts from the receiver and
transmitter in the USCI.

Things to remember 4-2. USCI UART mode initialization.

It is recommended to follow guidelines when initializing USCI devices.

4.2 USCI UART Error Conditions

The USCI peripheral can detect framing errors, parity errors, overrun errors, and break conditions
when receiving characters as shown in Figure 6. The USCI can be configured to generate an
interrupt when received erroneous character conditions are detected (UCRXEIE bit in the
UCAxCTL1 register). When UCFE, UCPE, UCOE, and UCBRK or UCRXERR is set, the bit remains set
until user software resets it or UCAxRXBUF is read. To detect overflows (a new character is
received while the previous one has not been read yet) the following flow is recommended. After
a character is received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags
including OCOE. Read UCAxRXBUF next. This will clear all error flags except UCOE if UCAxRXBUF
was overwritten between the read access to UCAxSTAT and the read access to UCAxRXBUF. To
detect this condition (buffer overwrite between these two reads), the OCOE bit should be read
after reading UCAxRXBUF.

Figure 6. Receive Error Conditions

4.3 UART Baud Rate Generation

The USCI baud rate generator can produce standard baud rates from non-standard source
frequencies. It provides two modes of operation: low-frequency mode (UCOS16 = 0) and over-
sampling mode (UCOS16 = 1).

The low-frequency mode allows generation of baud rates from low frequency clock sources that
reduce energy consumed by the communication interface. For example, we may have FBAUD=9600
bps, and the source clock is BRCLK=ACLK= 32,768 Hz. By dividing 32,768 with 9,600 we get

CPE 323: Module 10 © A. Milenković 10

N=3.41. The challenge is that the baud rate divider cannot use fractions. Instead we initialize the
baud rate registers UCBRx = INT(N) = 3, and the UCBRSx field UCBRSx = round((N – INT(N))*8)=3.
The UCBRSx 3-bit field controls the second modulation stage. The way this works is as follows: 5
bits (or 8 – UCBRSx bits) will have duration of 3 source clock periods (BRCLK) and 3 bits (UCBRSx
bits) will have duration of 4 (N+1 in general) source clock periods, BRCLK, providing an average
to be close to 3.41. Thus, some bits during transmission take 3 BRCLK periods and some take 4
BRCLK periods. The duration is modulated in such a way to minimize the error in communication
from the targeted bit rate for each bit period. Figure 7 shows common combinations of clock
sources and baud rates and how to set the baud rate control registers.

Figure 7. Commonly user baud rates and settings in low-frequency mode (UCOS16=0) – for
full table see User’s Guide, Table 36-5.

For oversampling mode, the baud rate generator first generates a clock fBIT16CLK that is 16 times
fbaud. To illustrate settings for the baud rate generator, let us assume that our target baud rate is
fbaud = 9600 Hz and the source clock is fBRCLK = 220 Hz. One bit period, Tbaud, thus contain N =
fBRCLK/fbaud = 109.22 > 16 source clock periods. Dividing N with 16 we get 6.83, i.e., one period of
TBIT16CLK contain 6.83 source clock periods. In this case the baud rate register UCABRx is set to
INT(N/16) = 6, and the first stage modulator to UCBRFx= round ((N/16 – INT(N/16))*16) = 13.
The meaning of this is as follows: out of 16 bit periods TBIT16CLK in one TBAUD, 13 BIT16CLK cycles
will have 7 (or N+1 in general) BRCLK clocks and 3 BIT16CLK cycles will have 6 (or N in general)

CPE 323: Serial Communication © A. Milenković 11

BRCLK clocks, giving on average 6.83 BRCLK clock cycles. The modulator ensures that these
different BIT16CLK clocks are spread in such a way to minimize error in communication. Figure 8
shows how to setup baud rate control registers in oversampling mode for common combinations
of clock sources and baud rates.

Things to remember 4-3. USCI UART baud rate generator.

USCI in UART mode can operate in low-frequency (UCOS16=1) or oversampling mode
(UCOS16=1). The modes determine how to initialize the prescalar as well as modulation control
registers.

CPE 323: Module 10 © A. Milenković 12

Figure 8. Commonly user baud rates and settings in oversampling mode (UCOS16=1).

CPE 323: Serial Communication © A. Milenković 13

4.4 USCI Control Registers

Figure 9 and Figure 10 show the format and description of relevant bits for UCAxCTL0 and
UCA0xCTL1, respectively. Figure 11 shows the format of modulation register. Figure 12 shows
the format of UCAxSTAT register. The UCAxBR0 and UCAxBR1 registers contain lower and upper
byte, respectively, of the prescalar setting for the baud rate generator.

Figure 13 shows the format of registers related to the UART interrupts. The UCTXIFG interrupt
flag is set by the transmitter to indicate that the UCAxTXBUF is ready to accept another character.
The Interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset
if a character is written to UCAxTXBUF. The UCRXIFG flag is set when a new character is received
and loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set.
UCRXIFG is automatically reset when UCAxRXBUF is read.

Figure 9. UCAxCTL0.

CPE 323: Module 10 © A. Milenković 14

Figure 10. UCAxCTL1.

Figure 11. UCAxMCTL. UCBRFx field defines modulation in oversampling mode (UCOS16=1).
UCBRSx field defines modulation for low-frequency mode (UCOS16=0).

CPE 323: Serial Communication © A. Milenković 15

Figure 12. UCAxSTAT.

CPE 323: Module 10 © A. Milenković 16

Figure 13. UCAxIFG, UCAxIE, and UCAxIV Registers.

The following examples illustrate how to determine initial values for the prescalar and
modulation registers.

Example 4-1. Determine UCAxBR0, UCAxBR1, UCAxMCTL registers under the
following conditions. Source clock is SMCLK=220 Hz, Baud rate is 38,400.

 Step 1: N = 220/38400 = 27.3066

 Step 2: N = 27.3066; this is >16, but only slightly
=> use the low-frequency mode, UCOS16=0

 Step 2: UCAxBRx=INT(N) = 27 (UCAxBR0=27, UCAxBR1=0)

CPE 323: Serial Communication © A. Milenković 17

 Step 3: UCBRS = round[(N – INT(N))*8]=round(0.3066*8)=round(2.453)=2
UCAxMCTL |= UCBRS_2

Example 4-2. Determine UCAxBR0, UCAxBR1, UCAxMCTL registers under the
following conditions. Source clock is SMCLK=222 Hz, Baud rate is 38,400.

 Step 1: N = 222/38400 = 109.2266

 Step 2: N = 109.2266; this is >16 => use the oversampling mode,
UCOS16=1

 Step 2: N/16 = 6.82 => UCAxBRx=INT(N/16) = 6 (UCAxBR0=6, UCAxBR1=0)

 Step 3: UCBRF = round[(N/16 – INT(N/16))*16] = round(0.82*16) =
round(13.2266) = 13
UCAxMCTL |= UCBRF_13 | UCOS16

5 Code Examples

Code 1 shows a program that echoes a character received from the developer workstation using
the MSP-EX430F529 launchpad. Connect the board as described in the program header below.
We initialize the UCA0 for UART communication with 115,200 baud rate. As we use the default
SMCLK of 220 Hz, we will use the low-frequency mode. Thus, the prescalar value is 0x0009
(BR0=0x09, BR1=0x00). The modulation filed is 0x01 (or bit 1 of the UCA0MCTL register should
be set). It helps to write a subroutine that includes all steps necessary to initialize of UCA0
(UART_Setup).

The main program calls the UART_Setup() and enters an infinite loop. In the loop, we use polling
to detect when a new character is received. The while statement in line 69 checks the register
UCA0IFG, bit UCRXIFG. If no character is received we check again. Once the character is received
we exit the while loop. The next step is to check whether the transmit buffer is ready as we want
to echo the character (send it back to the workstation). If it is ready, we read the character from
the UCA0RXBUF and write it into UCA0TXBUF. Please note that we do not need to explicitly clear
the flag for UCRXIFG even though we are using polling. The flag is automatically cleared once we
read from the UCA0RXBUF. The LED1 is toggled.

/*-- 1
 * File: Lab8_D1.c 2
 * 3
 * Function: Echo a received character, using polling. 4
 * 5
 * Description: This program echos the character received from UART back to UART. 6
 * Toggle LED1 with every received character. 7
 * Baud rate: low-frequency (UCOS16=0); 8
 * 1048576/115200 = ~9.1 (0x0009|0x01) 9
 * 10
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 11
 * 12

CPE 323: Module 10 © A. Milenković 18

 * Board: MSP-EXP430F5529 13
 * 14
 * Instructions: Set the following parameters in putty 15
 * Port: COMx 16
 * Baud rate: 115200 17
 * Data bits: 8 18
 * Parity: None 19
 * Stop bits: 1 20
 * Flow Control: None 21
 * 22
 * Note: If you are using Adafruit USBtoTTL cable, look for COM port 23
 * in the Windows Device Manager with the following text: 24
 * Silicon Labs CP210x USB to UART Bridge (COM<x>). 25
 * Connecting Adafruit USB to TTL: 26
 * GND - black wire - connect to the GND pin (on the board or BoosterPack) 27
 * Vcc - red wire - leave disconnected 28
 * Rx white wire (receive into USB, connect on TxD of the board P3.3) 29
 * Tx - green wire (transmit from USB, connect to RxD of the board P3.4) 30
 * MSP430F5529 31
 * ----------------- 32
 * /|\ | XIN|- 33
 * | | | 32kHz 34
 * |--|RST XOUT|- 35
 * | | 36
 * | P3.3/UCA0TXD|------------> 37
 * | | 115200 - 8N1 38
 * | P3.4/UCA0RXD|<------------ 39
 * | P1.0|----> LED1 40
 * 41
 * Input: None (Type characters in putty/MobaXterm/hyperterminal) 42
 * Output: Character echoed at UART 43
 * Author: A. Milenkovic, milenkovic@computer.org 44
 * Date: October 2018, modified August 2020 45
 --/ 46
#include <msp430.h> 47
 48
void UART_setup(void) { 49
 50
 P3SEL |= BIT3 + BIT4; // Set USCI_A0 RXD/TXD to receive/transmit data 51
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 52
 UCA0CTL0 = 0; // USCI_A0 control register 53
 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 54
 55
 UCA0BR0 = 0x09; // 1048576 Hz / 115200 lower byte 56
 UCA0BR1 = 0x00; // upper byte 57
 UCA0MCTL |= UCBRS0; // Modulation (UCBRS0=0x02, UCOS16=0) 58
 59
 UCA0CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 60
} 61
 62
void main(void) { 63
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT 64
 P1DIR |= BIT0; // Set P1.0 to be output 65
 UART_setup(); // Initialize UART 66
 67
 while (1) { 68
 while(!(UCA0IFG&UCRXIFG)); // Wait for a new character 69
 // New character is here in UCA0RXBUF 70
 while(!(UCA0IFG&UCTXIFG)); // Wait until TXBUF is free 71
 UCA0TXBUF = UCA0RXBUF; // TXBUF <= RXBUF (echo) 72

CPE 323: Serial Communication © A. Milenković 19

 P1OUT ^= BIT0; // Toggle LED1 73
 } 74
} 75

Code 1. Echo a character using polling.

Code 2 shows a program that echoes the character that uses the interrupt service routine instead
of polling. The main program initializes the UCA0 and enters a low-power mode 0 (the cpu is
turned off). In the UART_Setup function we enable interrupts when a character is received (line
50). When a character is received, an interrupt request is presented from UCA0 that wakes the
processor up and the USCI_A0_VECTOR interrupt service routine is entered. Inside the ISR we
check whether the UCA0TXBUF is ready and it it is ready, echo the received character and toggle
the LED1. Upon exiting the ISR, the previous conditions are restored and the processor goes back
into the low-power mode 0.

/*-- 1
 * File: Lab8_D2.c 2
 * 3
 * Function: Echo a received character, using receiver ISR. 4
 * Description: This program echos the character received from UART back to UART. 5
 * Toggle LED1 with every received character. 6
 * Baud rate: low-frequency (UCOS16=0); 7
 * 1048576/115200 = ~9.1 (0x0009|0x01) 8
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO 9
 * 10
 * Instructions: Set the following parameters in putty 11
 * Port: COMx 12
 * Baud rate: 115200 13
 * Data bits: 8 14
 * Parity: None 15
 * Stop bits: 1 16
 * Flow Control: None 17
 * 18
 * MSP430f5529 19
 * ----------------- 20
 * /|\ | XIN|- 21
 * | | | 32kHz 22
 * |--|RST XOUT|- 23
 * | | 24
 * | P3.3/UCA0TXD|------------> 25
 * | | 115200 - 8N1 26
 * | P3.4/UCA0RXD|<------------ 27
 * | P1.0|----> LED1 28
 * 29
 * Input: None (Type characters in putty/MobaXterm/hyperterminal) 30
 * Output: Character echoed at UART 31
 * Author: A. Milenkovic, milenkovic@computer.org 32
 * Date: October 2018 33
 --/ 34
#include <msp430.h> 35
 36
// Initialize USCI_A0 module to UART mode 37
void UART_setup(void) { 38
 39
 P3SEL |= BIT3 + BIT4; // Set USCI_A0 RXD/TXD to receive/transmit data 40
 UCA0CTL1 |= UCSWRST; // Set software reset during initialization 41
 UCA0CTL0 = 0; // USCI_A0 control register 42

CPE 323: Module 10 © A. Milenković 20

 UCA0CTL1 |= UCSSEL_2; // Clock source SMCLK 43
 44
 UCA0BR0 = 0x09; // 1048576 Hz / 115200 lower byte 45
 UCA0BR1 = 0x00; // upper byte 46
 UCA0MCTL |= UCBRS0; // Modulation (UCBRS0=0x02, UCOS16=0) 47
 48
 UCA0CTL1 &= ~UCSWRST; // Clear software reset to initialize USCI state machine 49
 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt 50
} 51
 52
void main(void) { 53
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT 54
 P1DIR |= BIT0; // Set P1.0 to be output 55
 UART_setup(); // Initialize USCI_A0 in UART mode 56
 57
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled 58
} 59
 60
// Echo back RXed character, confirm TX buffer is ready first 61
#pragma vector = USCI_A0_VECTOR 62
__interrupt void USCIA0RX_ISR (void) { 63
 while(!(UCA0IFG&UCTXIFG)); // Wait until can transmit 64
 UCA0TXBUF = UCA0RXBUF; // TXBUF <-- RXBUF 65
 P1OUT ^= BIT0; // Toggle LED1 66
} 67

Code 2. Echo a character using receiver ISR

Code 3 shows a program that utilizes UCA0 and TA0 to implement a real-time clock that sends
time via UART to the workstation. The time is measured with resolution of a decisecond (1/10th
of a second). The main program is organized as follows. We configure UCA0 for serial
communication in UART mode for 9,600 bps. We configure TA0 to generate an interrupt every
100 ms (1/10th of a second).

The main loop of the program starts with an entering a low power mode. The ISR for TA0 is
entered once every 100 ms. Inside we update the variables that keep track of current time (tsec
and sec) and change the copy of the status register on the program stack to make sure that once
we exit the ISR we do not go back to the low-power mode, but rather remain in active mode. Line
97 reaches to the top of the stack and changes the bits in the copy of the status register. Once
we exit the ISR, we continue execution in the main loop by invoking SendTime(). Here the current
time is printed into a character array using sprintf library function. The time message is then sent
over UART character by character.

/*-- 1
 * File: Lab8_D3.c 2
 * Function: Displays real-time clock in serial communication client. 3
 * Description: This program maintains real-time clock and sends time 4
 * (10 times a second) to the workstation through 5
 * a serial asynchronous link (UART). 6
 * The time is displayed as follows: "sssss:tsec". 7
 * 8
 * Baud rate divider with 1048576hz = 1048576/(16*9600) = ~6.8 [16 from UCOS16] 9
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 1048576Hz 10
 * Instructions: Set the following parameters in putty/hyperterminal 11

CPE 323: Serial Communication (UART) © A. Milenković 21

 * Port: COMx 12
 * Baud rate: 19200 13
 * Data bits: 8 14
 * Parity: None 15
 * Stop bits: 1 16
 * Flow Control: None 17
 * 18
 * MSP430F5529 19
 * ----------------- 20
 * /|\ | XIN|- 21
 * | | | 32kHz 22
 * |--|RST XOUT|- 23
 * | | 24
 * | P3.3/UCA0TXD|------------> 25
 * | | 9600 - 8N1 26
 * | P3.4/UCA0RXD|<------------ 27
 * | P1.0|----> LED1 28
 * 29
 * Author: A. Milenkovic, milenkovic@computer.org 30
 * Date: October 2018 31
--*/ 32
#include <msp430.h> 33
#include <stdio.h> 34
 35
// Current time variables 36
unsigned int sec = 0; // Seconds 37
unsigned int tsec = 0; // 1/10 second 38
char Time[8]; // String to keep current time 39
 40
void UART_setup(void) { 41
 P3SEL = BIT3+BIT4; // P3.4,5 = USCI_A0 TXD/RXD 42
 UCA0CTL1 |= UCSWRST; // **Put state machine in reset** 43
 UCA0CTL1 |= UCSSEL_2; // SMCLK 44
 UCA0BR0 = 6; // 1MHz 9600 (see User's Guide) 45
 UCA0BR1 = 0; // 1MHz 9600 46
 UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16; // Mod. UCBRSx=0, UCBRFx=13, 47
 // over sampling 48
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 49
} 50
 51
void TimerA_setup(void) { 52
 TA0CTL = TASSEL_2 + MC_1 + ID_3; // Select SMCLK/8 and up mode 53
 TA0CCR0 = 13107; // 100ms interval 54
 TA0CCTL0 = CCIE; // Capture/compare interrupt enable 55
} 56
 57
void UART_putCharacter(char c) { 58
 while (!(UCA0IFG&UCTXIFG)); // Wait for previous character to transmit 59
 UCA0TXBUF = c; // Put character into tx buffer 60
} 61
 62
void SetTime(void) { 63
 tsec++; 64
 if (tsec == 10){ 65
 tsec = 0; 66
 sec++; 67
 P1OUT ^= BIT0; // Toggle LED1 68
 } 69
} 70
 71

CPE 323: Module 10 © A. Milenković 22

void SendTime(void) { 72
 int i; 73
 sprintf(Time, "%05d:%01d", sec, tsec);// Prints time to a string 74
 75
 for (i = 0; i < sizeof(Time); i++) { // Send character by character 76
 UART_putCharacter(Time[i]); 77
 } 78
 UART_putCharacter('\r'); // Carriage Return 79
} 80
 81
void main(void) { 82
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 83
 UART_setup(); // Initialize UART 84
 TimerA_setup(); // Initialize Timer_B 85
 P1DIR |= BIT0; // P1.0 is output; 86
 87
 while (1) { 88
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupts 89
 SendTime(); // Send Time to HyperTerminal/putty 90
 } 91
} 92
 93
#pragma vector = TIMER0_A0_VECTOR 94
__interrupt void TIMERA_ISA(void) { 95
 SetTime(); // Update time 96
 _BIC_SR_IRQ(LPM0_bits); // Clear LPM0 bits from 0(SR) 97
} 98
 99

Code 3. Display real-time clock.

6 Exercises

