
CPE 323:
MSP430 Serial

Communication
Aleksandar Milenkovic

Electrical and Computer Engineering
The University of Alabama in Huntsville

milenka@ece.uah.edu

http://www.ece.uah.edu/~milenka

mailto:milenka@ece.uah.edu
http://www.ece.uah.edu/~milenka

Outline

• Introduction

• UART: Universal Asynchronous Receiver/Transmitter

• UART Demo

• RS232

• SPI

• I2C

CPE 323 Intro to Embedded Computer Systems 2

Introduction UART UART Demos RS232 SPI I^2C

MSP430xG461x Microcontroller

CPE 323 Intro to Embedded Computer Systems 3

Introduction UART UART Demos RS232 SPI I^2C

Communication in Embedded Systems

• Sense => Process => Store/Memorize =>
Communicate => Act

• Internet-of-Things (connected things)

• Transportation, Home, Infrastructure in Cities, …

• How to communicate with the development workstation?

• Inter board comm. (several feet)

• How to communicate with other components on-board?

• Inter-chip comm. (several millimeters)

CPE 323 Intro to Embedded Computer Systems 4

Introduction UART UART Demos RS232 SPI I^2C

Inter-chip Communication

• Parallel vs. Serial

• Metrics: Cost, Bandwidth, Latency

• Types of communication

• Duplex

• Half-duplex

• Simplex

• Handshaking

• RDY (ready data)

• ACK (acknowledge data)

CPE 323 Intro to Embedded Computer Systems 5

Introduction UART UART Demos RS232 SPI I^2C

Handshaking Example

• Simplex communication
(from A to B)

• Handshaking in time

• A: set data

• A: set Rdy

• B: get data

• B: set Ack

• A: de-assert Rdy, Data

• B: de-assert Ack

A BData(7:0)

Rdy

Ack

Rdy

Ack

Data

CPE 323 Intro to Embedded Computer Systems 6

Introduction UART UART Demos RS232 SPI I^2C

Serial Communication

• Common types of serial communication

• Asynchronous serial communication
(UART – Universal Asynchronous Receiver/Transmitter)

• Serial Peripheral Interface (SPI)

• Inter-integrated circuit (I2C) bus

CPE 323 Intro to Embedded Computer Systems 7

Introduction UART UART Demos RS232 SPI I^2C

MSP430 Comm. Peripherals

• Universal Serial Interface (USI)

• Small module (F20x2, F20x3 devices)

• SPI and I2C (needs some help from SW)

• Universal Serial Communication Interface (USCI)

• Contains two channels USCI_A, USCI_B

• USCI_A: UART, IrDA, SPI

• USCI_B: SPI, I2C

• Universal Synchronous/Asynchronous
Receiver/Transmitter (USART)

• UART, SPI (and I2C in some devices)

CPE 323 Intro to Embedded Computer Systems 8

Introduction UART UART Demos RS232 SPI I^2C

Asynchronous Serial Communication

• Popular in embedded systems (uart)

• Single wire for each direction (RxD, TxD) and
common ground (Gnd)

• Duplex link (data can be sent simultaneously
in both directions)

A B

RxD

RxD

TxD

TxD

Gnd

CPE 323 Intro to Embedded Computer Systems 9

Introduction UART UART Demos RS232 SPI I^2C

Asynchronous Serial Interface

• Asynchronous

• Transmitted and received data are not synchronized over any
extended period of time

• No synchronization between receiver and transmitter clocks

• Serial

• Usually character oriented

• Data stream divided into individual bits at the transmitter side

• Individual bits are grouped into characters at the receiving side

• Information is usually transmitted as
ASCII-encoded characters

• 7 or 8 bits of information plus control bits

CPE 323 Intro to Embedded Computer Systems 10

Introduction UART UART Demos RS232 SPI I^2C

How does it work?
Transmitter wants to send a byte to Receiver

• 1. Microcontroller (T side): Writes
the byte into the Transmit Data
Buffer (visible to the programmer) of
the Serial I/O interface

• 2. Serial I/O interface (T side): Loads
the data from the Transmit Data
Buffer into a shift register (parallel-
in/serial-out); The data are shifted
out of this register using TBITCLOCK

clock signal

• 3. Serial I/O interface (R side): The
data from a single transmission line
that goes from device T to device R
are shifted in the serial-in/parallel
out shift register. The data is shifted
on every RBITCLOCK cycle. It is assumed
that TBITCLOCK = RBITCLOCK

• 4. Serial I/O interface (R side): When
all 8 bits are received in the shift
register, the data is transferred to the
Receive Data Buffer in parallel.

• 5. Microcontroller (R side): Reads the
byte from the Receive Data Buffer
(visible to the programmer) of the
Serial I/O interface.

CPE 323 Intro to Embedded Computer Systems 11

Introduction UART UART Demos RS232 SPI I^2C

Format of Data

• Data are sent in relatively short
frames (typically 1 byte)

• Logic levels: Logic one – MARK, Logic
zero – SPACE

• If nothing to transmit, the
transmitter holds the MARK level

• Start bit: to mark the beginning of a
new character, the line changes from
the mark to the space level for one
bit time. This synchronizes the
transmitter and receiver. When the
receiver detects the start bit, it
knows to start clocking in the serial
data bits.

• Data bits: any number of bits can be
theoretically sent. In practice, it is
between 5 and 8 bits.

• Parity bit: 7 bits are needed to
encode a character. Most UARTS
allow 8 bits to be sent. The parity bit
is added to the data to make the
total of ones odd (ODD parity) or
even (EVEN parity). The parity bit is
used to detect possible errors in the
data stream.

• Stop bit: The stop bit is added at the
end of the data bits. This gives at
least one bit time period between
successive characters. Some systems
require 2 or more stop bits.

CPE 323 Intro to Embedded Computer Systems 12

Introduction UART UART Demos RS232 SPI I^2C

Format of Data

• Line idles high (MARK)

• Character format

• ST: Start bit (low, SPACE)

• 7, 8 data bits (D0-D7), LSB goes first

• SP: one stop bit (high, MARK)

• Baud rate: bits/sec

CPE 323 Intro to Embedded Computer Systems 13

Introduction UART UART Demos RS232 SPI I^2C

How does asynchronous comm. work?

• Transmitter and receiver run independently (no clock is shared)

• How do we synchronize them?

• Clock at the receiver side must run faster than the baud rate
(e.g., 16x)

• Basic procedure for receiving a frame

• 1. When falling edge of ST bit is detected, the receiver clock samples
the input line half-way through the bit (be sure that is true ST bit)

• 2. Sample the input after a half bit period to confirm the valid start
bit

• 3. Sample the input after the next bit period (lsb bit)

• 4. Repeat this until all 8 bits are received

• 5. Wait a further bit period and check that the input is high as
expected (SP bit). Indicate a framing error if no valid stop bit is
detected.

CPE 323 Intro to Embedded Computer Systems 14

Introduction UART UART Demos RS232 SPI I^2C

MSP430 USCI in UART mode

• 7- or 8-bit data with odd, even, or non-parity

• Independent transmit and receive shift registers

• Separate transmit and receive buffer registers

• LSB-first or MSB-first data transmit and receive

• Built-in idle-line and address-bit communication protocols for
multiprocessor systems

• Receiver start-edge detection for auto-wake up from LPMx modes

• Programmable baud rate with modulation for fractional baud rate
support

• Status flags for error detection and suppression

• Status flags for address detection

• Independent interrupt capability for receive and transmit

CPE 323 Intro to Embedded Computer Systems 15

Introduction UART UART Demos RS232 SPI I^2C

USCI Block
Diagram

• Receive data buffer: UC0RXBUF

• Transmit data buffer: UCA0TXBUF

• Baud rate registers:
UC0BR0, UC0BR1, Modulator

CPE 323 Intro to Embedded Computer Systems 16

Introduction UART UART Demos RS232 SPI I^2C

USCI Initialization Process

• 1) Set UCSWRST

• (BIS.B #UCSWRST,&UCAxCTL1)

• 2) Initialize all USCI registers with UCSWRST = 1
(including UCAxCTL1)

• 3) Configure ports

• 4) Clear UCSWRST via software

• (BIC.B #UCSWRST,&UCAxCTL1)

• 5) Enable interrupts (optional) via UCAxRXIE and/or
UCAxTXIE

CPE 323 Intro to Embedded Computer Systems 17

Introduction UART UART Demos RS232 SPI I^2C

USCI Registers: UART mode

CPE 323 Intro to Embedded Computer Systems 18

Introduction UART UART Demos RS232 SPI I^2C

Receive Error Conditions

CPE 323 Intro to Embedded Computer Systems 19

Introduction UART UART Demos RS232 SPI I^2C

USCI_A Configuration

• UXA0CTL0

• UCSYNC = 0 (async. mode)

• UCMODExx

• 00 – standard UART mode

• 01 or 10 – multiprocessor modes

• 11- automatic baud rate detection (LIN)

• Baud rate setting

• BRCLK – the input clock (ACLK, SMCLK, UCLK)

• BITCLK – fBITCLK = fBaud

• BITCLK16 – fBITCLK16 = 16*fBITCLK

• Challenge: BITCLK is rarely close to being perfect
factor of BRCLK

CPE 323 Intro to Embedded Computer Systems 20

Introduction UART UART Demos RS232 SPI I^2C

USCI_A Configuration: Baud Rate

• Oversampling mode, UCOS16 = 1

• BRCLK is first divided to give BITCLK16, which is further
divided by a factor of 16

• Low frequency mode, UCOS16 = 0

• BRCLK if used directly as the sampling clock and is divided
to give BITCLK

• BRCLK division

• UCA0BR0 and UCA0BR1: provides main divider

• UCBRFx: modulates the divider that gives BITCLK16 in
oversampling mode

• UCBRSx: modulates the divider that gives BITCLK

CPE 323 Intro to Embedded Computer Systems 21

Introduction UART UART Demos RS232 SPI I^2C

Oversampling Mode (UCOS16=1)

• Assume: fbaud = 9600 Hz, fBRCLK = 220 Hz

• fBIT16CLK = 16* fbaud = 153.6 KHz

• N = fBRCLK/ fbaud = 109.22 > 16

• N/16 = 109.22/16 = 6.83

• UCBRx = INT(N/16) = 6

• UCBRFx= round ((N/16 – INT(N/16))*16) = 13

• => 13 BITCLK16 cycles will have 7 (or N+1 in general)
BRCLK clocks and 3 BITCLK16 cycles will have 6 (or N in
general) BRCLK clocks

CPE 323 Intro to Embedded Computer Systems 22

Introduction UART UART Demos RS232 SPI I^2C

Commonly Used Baud Rates (UCOS16=1)

CPE 323 Intro to Embedded Computer Systems 23

Introduction UART UART Demos RS232 SPI I^2C

Low-frequency Mode (UCOS16=0)

• Use when fBRCLK < 16*fbaud

• E.g., ACLK = 32,768 Hz, fbaud = 9,600 Hz

• N = fBRCLK / fbaud = 3.41 =>
cannot make the length of each BITCLK correct

• UCBRx = INT (N) = 3

• UCBRSx = round ((N – INT(N))*8) = round((3.41 – 3)*8) = 3

• 5 bits (8 – UCBRSx) with duration 3 BRCLK (or N in
general), UCBRSx bits with duration of 4 (or N+1 in
general) BRCLK (~3.4 average)

CPE 323 Intro to Embedded Computer Systems 24

Introduction UART UART Demos RS232 SPI I^2C

Commonly Used Baud Rates (UCOS16=0)

CPE 323 Intro to Embedded Computer Systems 25

Introduction UART UART Demos RS232 SPI I^2C

UCAxCTL0

CPE 323 Intro to Embedded Computer Systems 26

Introduction UART UART Demos RS232 SPI I^2C

UCAxCTL1

CPE 323 Intro to Embedded Computer Systems 27

Introduction UART UART Demos RS232 SPI I^2C

Baud Rate Control Registers

CPE 323 Intro to Embedded Computer Systems 28

Introduction UART UART Demos RS232 SPI I^2C

Demo #1 (Echo a Character)

#include <msp430xG46x.h>

void main(void)

{

volatile unsigned int i;

WDTCTL = WDTPW+WDTHOLD; // Stop WDT

P2SEL |= BIT4 + BIT5; // P4.7,6 = USCI_A0 RXD/TXD

UCA0CTL1 |= UCSSEL_2; // SMCLK

UCA0BR0 = 0x09; // 1MHz 115200

UCA0BR1 = 0x00; // 1MHz 115200

UCA0MCTL = 0x01; // Modulation

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

_BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled

}

// Echo back RXed character, confirm TX buffer is ready first

#pragma vector=USCIAB0RX_VECTOR

__interrupt void USCIA0RX_ISR (void)

{

while(!(IFG2&UCA0TXIFG));

UCA0TXBUF = UCA0RXBUF; // TX -> RXed character

}

CPE 323 Intro to Embedded Computer Systems 29

Introduction UART UART Demos RS232 SPI I^2C

Interface Standards

• UART mode for on-board communication

• Logic levels: VSS (logic 0), VCC (logic 1)

• Devices share ground and power supply

• Communication between separate devices
(e.g., dev. board and PC)

• Need a standard interface (e.g. RS232)

• Defines logic levels, connector types, …

• External circuits are needed to connect MSP430 to an
RS-232 port (e.g. RS232 line driver MAX3222 + charge
pumps that make ± 2*VCC)

CPE 323 Intro to Embedded Computer Systems 30

Introduction UART UART Demos RS232 SPI I^2C

RS-232 Interface Standard

• Bi-polar:

• +3 to +12V (ON, 0-state, or SPACE condition)

• -3 to –12V (OFF, 1-state, or MARK condition)

• Modern computers accept 0V as MARK

• “Dead area” between –3V and 3V is designed to absorb line
noise

• Originally developed as a standard for communication between
computer equipment and modems

• From the point of view of this standard:

• MODEM: data communications equipment (DCE)

• Computer equipment: data terminal equipment (DTE)

• Therefore, RS-232C was intended for DTE-DCE links
(not for DTE-DTE links, as it is frequently used now)

CPE 323 Intro to Embedded Computer Systems 31

Introduction UART UART Demos RS232 SPI I^2C

RS-232 Interface Standard

CPE 323 Intro to Embedded Computer Systems 32

Introduction UART UART Demos RS232 SPI I^2C

RS-232 Interface Standard

• Each manufacturer may choose to implement only a subset of
functions defined by this standard

• Two widely used connectors: DB-9 and DB-25

• Three types of link

• Simplex

• Half-duplex

• Full-duplex

• Basic control signals

• RTS (Request to send): DTE indicates to the DCE that it wants to send data

• CTS (Clear to send): DCE indicates that it is ready to receive data

• DSR (Data set ready): indication from the DCE (i.e., the modem) that it is on

• DTR (Data terminal ready): indication from the DTE that it is on

CPE 323 Intro to Embedded Computer Systems 33

Introduction UART UART Demos RS232 SPI I^2C

RS-232 Interface Standard

• Let’s take a look at DB-9

CPE 323 Intro to Embedded Computer Systems 34

Introduction UART UART Demos RS232 SPI I^2C

The Minimal RS-232 Function

7

2

7

2

DTE DCEDTE to DCE in simplex mode

7

2

7

3

DTE DTEDTE to DTE in simplex mode

CPE 323 Intro to Embedded Computer Systems 35

Introduction UART UART Demos RS232 SPI I^2C

The Minimal RS-232 Function

7

2

7

2

DTE DCEDTE to DCE in full-duplex mode

3 3

7

2

7

3

DTE DTEDTE to DTE in full-duplex mode

3 2

CPE 323 Intro to Embedded Computer Systems 36

Introduction UART UART Demos RS232 SPI I^2C

The Minimal RS-232 Function

7

2

DTE DCEDTE to DCE with remote control

3

4

5

TxD

RxD

RTS

CTS

7

2

3

4

5

RxD

TxD

CTS

RTS

7

2

DTE DTEDTE to DTE with remote control

3

4

5

TxD

RxD

RTS

7

2

3

4

5

TxD

RxD

RTS

CPE 323 Intro to Embedded Computer Systems 37

Introduction UART UART Demos RS232 SPI I^2C

Handshaking Between RTS and CTS

CPE 323 Intro to Embedded Computer Systems 38

Introduction UART UART Demos RS232 SPI I^2C

Null Modem

• Null-modem simulates a DTE-DCE-DCE-DTE circuit

CPE 323 Intro to Embedded Computer Systems 39

Introduction UART UART Demos RS232 SPI I^2C

Serial Peripheral Interface

• Serial Peripheral Interface – SPI

• It is a synchronous serial data link standard named by Motorola that
operates in full duplex mode

• Devices communicate in master/slave mode where the master
device initiates the data frame. Multiple slave devices are allowed
with individual slave select (chip select) lines.

• SPI specifies four logic signals

• SCLK — Serial Clock (output from master)

• MOSI/SIMO — Master Output, Slave Input (output from master)

• MISO/SOMI — Master Input, Slave Output (output from slave)

• SS — Slave Select (active low; output from master)

CPE 323 Intro to Embedded Computer Systems 40

Introduction UART UART Demos RS232 SPI I^2C

http://en.wikipedia.org/wiki/Image:SPI_single_slave.svg

SPI Mode in USCI: Signal Definition

• UCxSIMO Slave in, master out

• Master mode: UCxSIMO is the data output line

• Slave mode: UCxSIMO is the data input line

• UCxSOMI Slave out, master in

• Master mode: UCxSOMI is the data input line

• Slave mode: UCxSOMI is the data output line

• UCxCLK USCI SPI clock

• Master mode: UCxCLK is an output

• Slave mode: UCxCLK is an input

• UCxSTE Slave transmit enable.

• Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode.

CPE 323 Intro to Embedded Computer Systems 41

Introduction UART UART Demos RS232 SPI I^2C

USCI: SPI Mode

CPE 323 Intro to Embedded Computer Systems 42

Introduction UART UART Demos RS232 SPI I^2C

SPI Mode: Initialization Sequence

• 1) Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

• 2) Initialize all USCI registers with UCSWRST=1
(including UCxCTL1)

• 3) Configure ports

• 4) Clear UCSWRST via software
(BIC.B #UCSWRST,&UCxCTL1)

• 5) Enable interrupts (optional) via UCxRXIE and/or
UCxTXIE

CPE 323 Intro to Embedded Computer Systems 43

Introduction UART UART Demos RS232 SPI I^2C

SPI Master Mode

• 1) Move data to UCxTXBUF to initiate transfer

• 2) UCxTXBUF data is moved to the TX shift register when the TX shift register is empty,
initiating data transfer on UCxSIMO starting with either the MSB or LSB

• 3) Data on UCxSOMI is shifted into the receive shift register on the opposite clock edge

• 4) When the character is received, the receive data is moved from the RX shift register to
UCxRXBUF and the receive interrupt flag, UCxRXIFG, is set, indicating the RX/TX operation is
complete

• (Note #1: A set transmit interrupt flag, UCxTXIFG, indicates that data has moved from
UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It does not indicate
RX/TX completion)

• (Note #2: To receive data into the USCI in master mode, data must be written to UCxTXBUF
because receive and transmit operations operate concurrently)

CPE 323 Intro to Embedded Computer Systems 44

Introduction UART UART Demos RS232 SPI I^2C

4-pin SPI Master Mode

• UCxSTE is used to prevent conflicts with another master and controls
the master

• When UCxSTE is in the master-inactive state:

• UCxSIMO and UCxCLK are set to inputs and
no longer drive the bus

• The error bit UCFE is set indicating a communication integrity violation to be
handled by the user

• The internal state machines are reset and the shift operation is aborted

• If data is written into UCxTXBUF while the master is held inactive by
UCxSTE, it will be transmit as soon as UCxSTE transitions to the
master-active state.

• If an active transfer is aborted by UCxSTE transitioning to the master-
inactive state, the data must be re-written into UCxTXBUF to be
transferred when UCxSTE transitions back to the master-active state.

CPE 323 Intro to Embedded Computer Systems 45

Introduction UART UART Demos RS232 SPI I^2C

SPI Slave Mode

• UCxCLK is used as the input for the SPI clock and must be supplied by the external
master

• UCxTXBUF moved to the TX shift register before the start of UCxCLK

• Transmitted on UCxSOMI.

• Data on UCxSIMO is shifted into the receive shift register on the opposite edge of
UCxCLK and moved to UCxRXBUF when the set number of bits are received

• When data is moved from the RX shift register to UCxRXBUF, the UCxRXIFG interrupt
flag is set, indicating that data has been received

• (Note #1: The overrun error bit UCOE is set when the previously received data is not
read from UCxRXBUF before new data is moved to UCxRXBUF).

CPE 323 Intro to Embedded Computer Systems 46

Introduction UART UART Demos RS232 SPI I^2C

4-pin SPI Slave Mode

• In 4-pin slave mode, UCxSTE is used by the slave to enable
the transmit and receive operations and is provided by the
SPI master

• When UCxSTE is in the slave-active state, the slave
operates normally

• When UCxSTE is in the slave-inactive state:

• Any receive operation in progress on UCxSIMO is halted UCxSOMI
is set to the input direction

• The shift operation is halted until the UCxSTE line transitions into
the slave transmit active state

CPE 323 Intro to Embedded Computer Systems 47

Introduction UART UART Demos RS232 SPI I^2C

SPI Mode

• When the USCI module is enabled by clearing the UCSWRST bit it is ready to receive and
transmit

• In master mode the bit clock generator is ready, but is not clocked nor producing any clocks.

• In slave mode the bit clock generator is disabled and the clock is provided by the master.

• A transmit or receive operation is indicated by UCBUSY = 1. The UCBUSY flag is set by writing
UCxTXBUF in master mode and in slave mode with UCCKPH=1. In slave mode with UCCKPH=0
UCBUSY is set with the first UCLK edge. UCBUSY is reset by the following conditions:

• In master mode when transfer completed and UCxTXBUF empty.

• In slave mode with UCCKPH=0 when transfer completed.

• In slave mode with UCCKPH=1 when transfer completed and UCxTXBUF empty.

• Transmit Enable

• In master mode, writing to UCxTXBUF activates the bit clock generator and the data will begin to
transmit.

• In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCxSTE is in the slave-active state.

• Receive Enable

• The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

CPE 323 Intro to Embedded Computer Systems 48

Introduction UART UART Demos RS232 SPI I^2C

Serial Clock Control

• UCxCLK is provided by the master on the SPI bus

• When UCMST = 1, the bit clock is provided by the USCI bit clock
generator on the UCxCLK pin. The clock used to generate the bit clock is
selected with the UCSSELx bits.

• When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the
master, the bit clock generator is not used, and the UCSSELx bits are
don’t care.

• The 16-bit value of UCBRx in the bit rate control registers UCxxBR1
and UCxxBR0 is the division factor of the USCI clock source, BRCLK.
The maximum bit clock that can be generated in master mode is
BRCLK.

• Modulation is not used in SPI mode and UCAxMCTL should be cleared
when using SPI mode for USCI_A. The UCAxCLK/UCBxCLK frequency is
given by F(BRCLK)/UCBRx

CPE 323 Intro to Embedded Computer Systems 49

Introduction UART UART Demos RS232 SPI I^2C

USCI SPI Timing

• Polarity and phase of UCxCLK can be controlled by
UCCKPH and UCCKPL control bits

CPE 323 Intro to Embedded Computer Systems 50

Introduction UART UART Demos RS232 SPI I^2C

SPI Registers

CPE 323 Intro to Embedded Computer Systems 51

Introduction UART UART Demos RS232 SPI I^2C

SPI Registers (cont’d)

CPE 323 Intro to Embedded Computer Systems 52

Introduction UART UART Demos RS232 SPI I^2C

CPE 323 Intro to Embedded Computer Systems 53

Introduction UART UART Demos RS232 SPI I^2C

CPE 323 Intro to Embedded Computer Systems 54

Introduction UART UART Demos RS232 SPI I^2C

Demo #1 (SPI Master)
//**

// MSP430xG46x Demo - USCI_A0, SPI 3-Wire Master Incremented Data

//

// Description: SPI master talks to SPI slave using 3-wire mode. Incrementing

// data is sent by the master starting at 0x01. Received data is expected to

// be same as the previous transmission. USCI RX ISR is used to handle

// communication with the CPU, normally in LPM0. If high, P5.1 indicates

// valid data reception. Because all execution after LPM0 is in ISRs,

// initialization waits for DCO to stabilize against ACLK.

// ACLK = 32.768kHz, MCLK = SMCLK = DCO ~ 1048kHz. BRCLK = SMCLK/2

//

// Use with SPI Slave Data Echo code example. If slave is in debug mode, P5.2

// slave reset signal conflicts with slave's JTAG; to work around, use IAR's

// "Release JTAG on Go" on slave device. If breakpoints are set in

// slave RX ISR, master must stopped also to avoid overrunning slave

// RXBUF.

//

// MSP430FG4619

// -----------------

// /|\| XIN|-

// | | | 32kHz xtal

// --|RST XOUT|-

// | |

// | P7.1|-> Data Out (UCA0SIMO)

// | |

// LED <-|P5.1 P7.2|<- Data In (UCA0SOMI)

// | |

// Slave reset <-|P5.2 P7.3|-> Serial Clock Out (UCA0CLK)

//

//

// K. Quiring/ M. Mitchell

// Texas Instruments Inc.

// October 2006

// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.41A

//**

CPE 323 Intro to Embedded Computer Systems 55

Introduction UART UART Demos RS232 SPI I^2C

Demo #1 (SPI Master)
#include <msp430xG46x.h>

unsigned char MST_Data,SLV_Data;

void main(void) {

volatile unsigned int i;

WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer

FLL_CTL0 |= XCAP14PF; // Configure load caps

// Wait for xtal to stabilize

do {

IFG1 &= ~OFIFG; // Clear OSCFault flag

for (i = 0x47FF; i > 0; i--); // Time for flag to set

}

while ((IFG1 & OFIFG)); // OSCFault flag still set?

for(i=2100;i>0;i--); // Now with stable ACLK, wait for

// DCO to stabilize.

P5OUT = 0x04; // P5 setup for LED and slave reset

P5DIR |= 0x06; //

P7SEL |= 0x0E; // P7.3,2,1 option select

UCA0CTL0 |= UCMST+UCSYNC+UCCKPL+UCMSB; //3-pin, 8-bit SPI master

UCA0CTL1 |= UCSSEL_2; // SMCLK

UCA0BR0 = 0x02; // /2

UCA0BR1 = 0; //

UCA0MCTL = 0; // No modulation

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

P5OUT &= ~0x04; // Now with SPI signals initialized,

P5OUT |= 0x04; // reset slave

for(i=50;i>0;i--); // Wait for slave to initialize

MST_Data = 0x001; // Initialize data values

SLV_Data = 0x000; //

UCA0TXBUF = MST_Data; // Transmit first character

_BIS_SR(LPM0_bits + GIE); // CPU off, enable interrupts

}

CPE 323 Intro to Embedded Computer Systems 56

Introduction UART UART Demos RS232 SPI I^2C

Demo #1 (SPI Master)
#pragma vector=USCIAB0RX_VECTOR

__interrupt void USCIA0RX_ISR (void)

{

volatile unsigned int i;

while (!(IFG2 & UCA0TXIFG)); // USART1 TX buffer ready?

if (UCA0RXBUF==SLV_Data) // Test for correct character RX'd

P5OUT |= 0x02; // If correct, light LED

else

P5OUT &= ~0x02; // If incorrect, clear LED

MST_Data++; // Increment data

SLV_Data++;

UCA0TXBUF = MST_Data; // Send next value

for(i=30;i>0;i--); // Add time between transmissions to

} // make sure slave can keep up

CPE 323 Intro to Embedded Computer Systems 57

Introduction UART UART Demos RS232 SPI I^2C

Demo #1 (SPI Slave)

CPE 323 Intro to Embedded Computer Systems 58

Introduction UART UART Demos RS232 SPI I^2C

//**

// MSP430xG46x Demo - USCI_A0, SPI 3-Wire Slave Data Echo

//

// Description: SPI slave talks to SPI master using 3-wire mode. Data received

// from master is echoed back. USCI RX ISR is used to handle communication,

// CPU normally in LPM4. Prior to initial data exchange, master pulses

// slaves RST for complete reset.

// ACLK = 32.768kHz, MCLK = SMCLK = DCO ~ 1048kHz

//

// Use with SPI Master Incremented Data code example. If the slave is in

// debug mode, the reset signal from the master will conflict with slave's

// JTAG; to work around, use IAR's "Release JTAG on Go" on slave device. If

// breakpoints are set in slave RX ISR, master must stopped also to avoid

// overrunning slave RXBUF.

//

// MSP430FG4619

// -----------------

// /|\| XIN|-

// | | | 32kHz xtal

// | | XOUT|-

// Master---+-|RST |

// | P7.1|<- Data In (UCA0SIMO)

// | |

// | P7.2|-> Data Out (UCA0SOMI)

// | |

// | P7.3|<- Serial Clock In (UCA0CLK)

//

//

// K. Quiring/ M. Mitchell

// Texas Instruments Inc.

// October 2006

// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.41A

//**

Demo #1 (SPI Slave)

CPE 323 Intro to Embedded Computer Systems 59

Introduction UART UART Demos RS232 SPI I^2C

#include <msp430xG46x.h>

void main(void) {

volatile unsigned int i;

WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer

FLL_CTL0 |= XCAP14PF; // Configure load caps

// Wait for xtal to stabilize

do

{

IFG1 &= ~OFIFG; // Clear OSCFault flag

for (i = 0x47FF; i > 0; i--); // Time for flag to set

}

while ((IFG1 & OFIFG)); // OSCFault flag still set?

for(i=2100;i>0;i--); // Now with stable ACLK, wait for

// DCO to stabilize.

while(!(P7IN&0x08)); // If clock sig from mstr stays low,

// it is not yet in SPI mode

P7SEL |= 0x00E; // P7.3,2,1 option select

UCA0CTL1 = UCSWRST; // **Put state machine in reset**

UCA0CTL0 |= UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI master

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

_BIS_SR(LPM4_bits + GIE); // Enter LPM4, enable interrupts

}

// Echo character

#pragma vector=USCIAB0RX_VECTOR

__interrupt void USCIA0RX_ISR (void)

{

while (!(IFG2 & UCA0TXIFG)); // USCI_A0 TX buffer ready?

UCA0TXBUF = UCA0RXBUF;

}

I2C: Inter-Integrated Circuit Bus

• I2C – introduced by Philips (NXP) Semiconductors

• a.k.a. two-wire interface

• True bus, with well-defined specification

• Two bidirectional lines

• SDA: Serial Data

• SCL: Serial Clock

• More complex than SPI, more HW resources (e.g., in
USCI_B), slower than SPI

CPE 323 Intro to Embedded Computer Systems 60

Introduction UART UART Demos RS232 SPI I^2C

I2C Operation

• Each I2C device is recognized by a unique address and can operate as
either a transmitter or a receiver.

• A device connected to the I2C bus can be considered as the master or
the slave when performing data transfers

• A master initiates a data transfer and generates the clock signal SCL.

• Any device addressed by a master is considered a slave.

• I2C uses two bidirectional lines connected to a positive supply voltage
through a pullup transistor (wired-and)

• Serial data pin (SDA)

• Serial clock pin (SCL)

CPE 323 Intro to Embedded Computer Systems 61

Introduction UART UART Demos RS232 SPI I^2C

I2C Serial Transfer

• One clock pulse is generated by the master device for each data bit
transferred. The I2C mode operates with byte data. Data is transferred
most significant bit first.

• The first byte after a START condition consists of a 7-bit slave address
and the R/#W bit

• When R/#W = 0, the master transmits data to a slave.

• When R/#W = 1, the master receives data from a slave.

• The ACK bit is sent from the receiver after each byte on the 9th SCL
clock.

CPE 323 Intro to Embedded Computer Systems 62

Introduction UART UART Demos RS232 SPI I^2C

I2C Serial Transfer (cont’d)

• START and STOP conditions are generated by the master

• A START condition is a high-to-low transition on the SDA line
while SCL is high.

• A STOP condition is a low-to-high transition on the SDA line
while SCL is high.

• The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

• Data on SDA must be stable during the high period of SCL

• The high and low state of SDA can only change when SCL is low, otherwise
START or STOP conditions will be generated.

CPE 323 Intro to Embedded Computer Systems 63

Introduction UART UART Demos RS232 SPI I^2C

Hardware for I2C

CPE 323 Intro to Embedded Computer Systems 64

Introduction UART UART Demos RS232 SPI I^2C

Master Reads from a Slave

CPE 323 Intro to Embedded Computer Systems 65

Introduction UART UART Demos RS232 SPI I^2C

I2C Addressing Modes

CPE 323 Intro to Embedded Computer Systems 66

Introduction UART UART Demos RS232 SPI I^2C

Slave Transmitter Mode

• Slave transmitter mode is entered when the slave address transmitted
by the master is identical to its own address with a set R/W bit (read).

• The USCI module is automatically configured as a transmitter and
UCTR and UCBxTXIFG become set

• The slave transmitter shifts the serial data out on SDA with the clock pulses that
are generated by the master device

• The slave device does not generate the clock, but it will hold SCL low
while intervention of the CPU is required after a byte has been

transmitted.

• The SCL line is held low until the first data to be sent is written into
the transmit buffer UCBxTXBUF. Then the address is acknowledged,
the UCSTTIFG flag is cleared, and the data is transmitted.

CPE 323 Intro to Embedded Computer Systems 67

Introduction UART UART Demos RS232 SPI I^2C

Slave Transmitter Mode (cont’d)

• The SCL line is held low until the first data to be sent is written into
the transmit buffer UCBxTXBUF. Then the address is acknowledged,
the UCSTTIFG flag is cleared, and the data is transmitted.

• As soon as the data is transferred into the shift register the
UCBxTXIFG is set again. After the data is acknowledged by the master
the next data byte written into UCBxTXBUF is transmitted or if the
buffer is empty the bus is stalled during the acknowledge cycle by
holding SCL low until new data is written into UCBxTXBUF.

• If the master sends a NACK succeeded by a STOP condition the
UCSTPIFG flag is set. If the NACK is succeeded by a repeated START
condition the USCI I2C state machine returns to its address-reception
state.

CPE 323 Intro to Embedded Computer Systems 68

Introduction UART UART Demos RS232 SPI I^2C

Slave Transmitter Mode

CPE 323 Intro to Embedded Computer Systems 69

Introduction UART UART Demos RS232 SPI I^2C

Slave Receiver Mode

• Slave receiver mode is entered when the slave address transmitted by the
master is identical to its own address and a cleared R/#W bit is received.

• The USCI module is automatically configured as a receiver and UCTR is
cleared. After the first data byte is received the receive interrupt flag
UCBxRXIFG is set.

• Serial data bits received on SDA are shifted in with the clock pulses that
are generated by the master device

• The slave device does not generate the clock, but it can hold SCL low if intervention of
the CPU is required after a byte has been received.

• The USCI module automatically acknowledges the received data and can
receive the next data byte.

• If the previous data was not read from the receive buffer UCBxRXBUF at
the end of a reception, the bus is stalled by holding SCL low. As soon as
UCBxRXBUF is read the new data is transferred into UCBxRXBUF, an
acknowledge is sent to the master, and the next data can be received.

CPE 323 Intro to Embedded Computer Systems 70

Introduction UART UART Demos RS232 SPI I^2C

Slave Receiver Mode (cont’d)

• Setting the UCTXNACK bit causes a NACK to be transmitted to the
master during the next acknowledgment cycle. A NACK is sent even if
UCBxRXBUF is not ready to receive the latest data.

• If the UCTXNACK bit is set while SCL is held low the bus will be
released, a NACK is transmitted immediately, and UCBxRXBUF is
loaded with the last received data.

• Since the previous data was not read that data will be lost. To avoid
loss of data the UCBxRXBUF needs to be read before UCTXNACK is
set.

• When the master generates a STOP condition the UCSTPIFG flag is set.

• If the master generates a repeated START condition the USCI I2C state
machine returns to its address reception state.

CPE 323 Intro to Embedded Computer Systems 71

Introduction UART UART Demos RS232 SPI I^2C

Slave Receiver Mode

CPE 323 Intro to Embedded Computer Systems 72

Introduction UART UART Demos RS232 SPI I^2C

