

CPE 323: Serial Communication (SPI) © A. Milenković 1

CPE 323
MODULE 10

Synchronous Serial Interface (SPI) Communication

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module discusses the SPI synchronous communication protocol and its implementation using
the USCI peripheral (in MSP430F5529). Specifically, the following topics are covered: (a) System-
view of SPI communication; (b) Configuration of the USCI peripheral device for SPI mode; and (b)
Implementation of SPI communication between two Launchpad boards.

Objectives

 Learners will understand hardware and software aspects of serial communication

 Learners will be able to configure and interact with serial communication interfaces

 Learners will be able to evaluate pros and cons of each serial communication protocol
(speed complexity)

Contents

1 Synchronous Communication.. 2

2 SPI .. 2

3 USCI .. 4

3.1 USCI Initialization: SPI Mode .. 9

3.2 USCI Control Registers in SPI Mode ... 9

4 Code Examples ... 12

5 Exercises .. 16

mailto:milenka@uah.edu

CPE 323: Module 10 © A. Milenković 2

1 Synchronous Communication

This document continues covering communication protocols used in embedded systems, with a
focus on MSP430 family of microcontrollers. We have already discussed asynchronous
communication in UART mode and used it to communicate between an MSP-EXP430 Luanchpad
board and a development workstation. Asynchronous communication is most useful when
communication must be established between two distinct systems that each have their own
clocks and there is no clock sharing. Examples of serial, asynchronous communication systems
are USB, RS-232, Firewire (IEEE 1394), and Apple’s Thunderbolt.

Synchronous communication protocols are best suited for parts of a system when components
can share a clock. Typically, these protocols are used for communication between components
on a single board (intra-board communication), though they can also be used to connect multiple
boards (inter-board communication). Synchronous Peripheral Interface or SPI is a synchronous
serial bidirectional protocol often used for communication between microcontrollers and other
components on the board (e.g., sensors, memory modules).

Things to remember 1-1. Synchronous Peripheral Interface or SPI.

SPI is a synchronous serial bidirectional interface, typically used to connect a microcontroller
to other components (e.g., sensors, external memory modules) on a single board. The
communicating parties have a shared clock, allowing for high data bit rates (in order of ~Mbps).

2 SPI

In SPI mode, serial data is transmitted and received by two or multiple devices using a shared
clock provided by a master device. This is the simplest synchronous communication protocol.
Unlike the other synchronous communication protocol commonly used in embedded systems,
I2C, SPI is not standardized and there are several variations of SPI. Thus, you must read the data
sheet of the device to ensure that the details of the protocol are well understood.

Figure 1 illustrates a system view of SPI style of communication between two devices. Because
SPI is a synchronous protocol, a communication clock is shared between the two devices. In SPI
nomenclature, the device is called Master (M) if it provides the clock (SCLK) and initiates
communication. The other device is called Slave (S). The S device receives the clock from the M
device, but the assumption is that the S device can carry out communication steps at the given
clock rate. SPI is a bidirectional communication protocol by design – that means that data flows
from M to S and from S to M concurrently. The names of data lines are as follows:

 MISO/SOMI – Master In Slave Out/Slave Out Master In (carries data from S to M)

 MOSI/SIMO – Master Out Slave In/Slave In Master Out (carries data from M to S).

The minimum number of wires is thus 3 (SCLK, MISO, MOSI) and SPI is sometimes referred to as
a 3-wire protocol. Please note how we connect data lines. Unlike in UART mode where TxD of

CPE 323: Serial Communication (SPI) © A. Milenković 3

one device connects to RxD of the other device (or vice versa), the SPI data lines imply direction
of the data flow, so MOSI pin of the M device is connected to the MOSI pin of the S device and
MISO pin of the M device is connected to MISO pin of the S device. This is admirably clear and
makes the functions unambiguous.

The forth signal, SS#, can be used to select a slave device (as shown in Figure 1) or to enable
master device if configured as an input for the M device. It is usually active low and labeled SS
for slave select, CS for chip select, or CE for chip enable. An S device takes part in communication
and drives its output data pin only when SS# is active; the output data pin should float at other
times in case another slave is selected. In some modes of SPI, the first bit should be placed on
the output when SS becomes active to start a new transfer.

Figure 1. SPI communication: a system view.

Things to remember 2-1. SPI.

SPI involves at least 2 devices. A device that initiates communication and drives clock SCLK is
called the master or M device. The other device is called slave or S device. On every SCLK clock
one bit of data is sent from M to S over the MOSI data line and one bit of data is sent from S
to M over the MISO data line. SCLK, MOSI, and SIMO are used in 3-wire configuration. In 4-wire
configuration, an additional signal SS# is used to select a slave device in case that more than
one S-device is connected in the system.

Figure 2 illustrates SPI data transmission. Logically we can think about SPI data exchange as
having two shift registers (M shift and S shift registers) connected in series. Let us assume that
the M shift register contains character ‘M’ and the S shift register contains character ‘S’. Once
the M shift register has data, it starts generating SCLK. On every SCLK clock cycle one bit of data
flows from M to S (over MOSI data line) and in return one bit of data flows from S to M (over
MISO data line). Thus in 8 clock cycles the M and S device will exchange data, the M shift register

Master (M) Slave (S)

SCLK

MISO/SOMI

SCLK

MISO/SOMI

Gnd

MOSI/SIMO MOSI/SIMO

SS# SS#

CPE 323: Module 10 © A. Milenković 4

contains ‘S’ and the S shift register contains ‘M’. Here we assume that each device has exactly
one data register. This a bit simplified view because we typically have separate transmit and
receive shift registers.

Figure 2. SPI data transmission.

3 USCI

The MSP430’s Universal Serial Communication Interface (USCI) can be configured to work in SPI
mode. Both channels A and B support SPI mode. An MSP430 may include more than one USCI
device. For example an MSP430 with two USCI devices will have communication channels UCA0,
UCB0, UCA1, UCB1, all capable to carry out SPI communication if the UCSYNC bit is set and SPI
mode is selected with the UCMODEx bits (3-wire or 4-wire). SPI mode allows us to specify the
following: 7-bit or 8-bit data length; LSB-first or MSB-first; 3-pin or 4-pin operation; M or S mode;
selectable clock polarity and phase control; and a programmable clock frequency.

Figure 3 shows a block diagram of USCI when configured in SPI mode. Its resources are the same
as seen in UART mode: the double-buffered transmit portion (TXBUF and the corresponding shift
register), the double-buffered receive portion (RXBUF and the corresponding shift register), and
the baud rate generator. The data pins and clock pins are: UCxSOMI, UCxSIMO, UCxCLK, and
UCxSTE.

In SPI mode, serial data is transmitted and can be received by multiple devices using a shared
clock provided by the M device. The signals are as follows:

 UCxSIMO – slave in, master out (M – output data pin, S – input data pin)

 UCxSOMI – slave out, master in (M – input data pin, S – output data pin)

 SCxCLK – USCI SPI clock (M – output clock, S – input clock)

 UCxSTE – slave transmit enable (unused in 3 wire mode).

0 0 1 1 0 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

1 1 0 0 1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

‘M’=0x4C ‘S’=0x53

MOSI

MISO

M device S device

SCLK

CPE 323: Serial Communication (SPI) © A. Milenković 5

Figure 3. Block diagram of USCI in SPI mode.

The operation of UCxSTE is specified by Table 1. To support various implementation of SPI mode,
the UCxSTE can be active at a logic ‘1’ (high) or at a logic ‘0’ (low). It is an input pin and can be
used for both S and M devices.

CPE 323: Module 10 © A. Milenković 6

Table 1. UCxSTE Operation. UCMODEx=01 means that UCxSTE is active high: 0 – inactive (S) /
active (M), 1 – active (S) / inactive (M). UCMODEx=10 means that UCxSTE is active low: 0 –

active (S) / inactive (M), 1 – inactive (S) / active (M)

SPI Master Mode. Figure 4 shows the USCI as a master in both 3-pin and 4-pin configurations.
The USCI initiates data transfer when data is moved to UCxTXBUF (namely UCAxTXBUF or
UCBxTXBUF). The data from the UCxTXBUF is moved into the transmit shift register when it is
empty, and then it is transferred bit-by-bit over UCxSIMO pin (either MSB-first or LSB-first,
depending on the UCMSB setting). Data bit on UCxSOMI is shifted into the receive shift register
on the opposite edge of the clock. When the entire character is received (7-bit or 8-bit), the data
is moved from the receive shift register to the UCxRXBUF and the receive interrupt flag UCRXIFG
is set, indicating that the transfer is complete. Please note that to receive data from the S device,
the M device must send something to the S device by writing into its UCxTXBUF (even though
this data may not be useful to the S device).

In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the
master as described in Table 1. Please note that the master may use digital I/O pins (Px.x.)
connected to corresponding slaves’ UCxSTE pins to select a particular slave in case it interfaces
multiple slave devices.

Figure 4. SPI Master Mode.

CPE 323: Serial Communication (SPI) © A. Milenković 7

SPI Slave Mode. Figure 5 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK
is used as the input for the SPI clock and must be supplied by the external master. Data written
in UCxTXBUF of the S device is moved into the transmit shift register before the start of UCxCLK.
It is shifted out through UCxSOMI. Data on UCxSIMO is shifted into the receive shift register on
the opposite edge of UCxCLK and moved to UCxRXBUF when the specified number of bits is
received (UCRXIFG flag is set). In 4-pin slave mode, UCxSTE is used to enable transmit and receive
operations and is provided by the master. When the UCxSTE is in the slave-active state, the slave
operates normally. When UCxSTE is in the slave-inactive mode (see Table 1), any receive
operation on UCxSIMO is halted and UCxSOMI is set to input direction.

Figure 5. SPI Slave Mode.

The bit clock generator is activated when we write to the UCxTXBUF of the master device. In slave
mode, transmission begins when a master provides a clock (providing UCxSTE is active in 4-pin
mode). The 16-bit value of UCxBRx (UCxBR0 and UCxBR1) is the division factor of the USCI clock
source, BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should always be cleared.
The clock frequency is determined as follows (if UCBRx=0, the bit clock is equal to source clock):

𝑓𝐵𝑖𝑡𝐶𝑙𝑜𝑐𝑘 = 𝑓𝐵𝑅𝐶𝐿𝐾/𝑈𝐶𝐵𝑅𝑥

The polarity and phase of the UCxCLK are independently configured via the UCCKPL and UCCKPH
control bits of the USCI. Timing for each of the four possible cases is shown in Figure 6. As
discussed above, SPI is not standardized, and 4 combinations for clock polarity and phase are
available, so you can configure your USCI device to match any implementation that could be used
by the other communicating party. Please note that not all combinations could be used or make
sense in 3-wire mode (e.g., using CKKPH=1 in S mode in a 3-wire protocol does not make sense
because there is not trigger to start data shifting).

CPE 323: Module 10 © A. Milenković 8

Figure 6. USCI SPI Timing with UCMSB=1. UCCKPH (Clock Phase Select): 0 (Active/Inactive) -
data is changed on the first UCxCLK edge and captured on the following edge; 1

(Inactive/Active) – data is captured on the first edge and changed on the following edge; CKPL
(Clock Polarity): 0 - idles at 0, 1 - idles at 1.

The USCI registers visible to programmers for USIC_Ax are shown in Figure 7. USCI is an 8-bit
peripheral device and all registers are 8-bit long. For USCI_A0 (UCA0), the notable registers are
two control registers (UCA0CTL0 and UCA0CTL1), baud rate control registers (UCA0BR0 and
UCA0BR1), modulation control register (UCA0MCTL), status register (UCA0STAT), receive buffer
(UCA0RXBUF), and transmit buffer (UCA0TXBUF).

CPE 323: Serial Communication (SPI) © A. Milenković 9

Figure 7. USCI_Ax SPI Mode Control and Status Registers

3.1 USCI Initialization: SPI Mode

To initialize the USCI in SPI mode the following sequence of steps is recommended:

1. Set UCSWRST bit (software reset: BIS.B #UCSWRST, &UCAxCTL1) to reset the USCI state
machine;

2. Initialize all USCI registers with UCSWRST=1 (UCxBRx, UCxCTL1);
3. Configure ports;
4. Clear UCSWRST (BIS.B #UCSWRST, &UCAxCTL1);
5. Enable interrupts (optional) by setting UCAxRXIE and UCAxTXIE.

3.2 USCI Control Registers in SPI Mode

You should already be familiar with programmer’s view of the USCI device in UART mode. The
following are programmer’s view of these registers in SPI mode. Figure 8 and Figure 9 show the
format and description of relevant bits for UCAxCTL0 and UCA0xCTL1, respectively. Figure 10
shows the format of modulation register that should always be cleared in SPI mode. Figure 11
shows the format of UCAxSTAT register. The UCAxBR0 and UCAxBR1 registers contain lower and
upper byte, respectively, of the prescalar setting. Typically, the source clock is just divided by the
value in these registers to create the SPI clock. These registers should be configured only if the
device is working in the Master mode.

Figure 12 shows the format of registers related to the interrupts. The UCTXIFG interrupt flag is
set by the transmitter to indicate that the UCAxTXBUF is ready to accept another character. The
interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a
character is written to UCAxTXBUF. The UCRXIFG flag is set when a new character is received and

CPE 323: Module 10 © A. Milenković 10

loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set.
UCRXIFG is automatically reset when UCAxRXBUF is read.

Figure 8. UCAxCTL0.

Figure 9. UCAxCTL1.

CPE 323: Serial Communication (SPI) © A. Milenković 11

Figure 10. UCAxMCTL. Should be always cleared in SPI mode.

Figure 11. UCAxSTAT.

CPE 323: Module 10 © A. Milenković 12

Figure 12. UCAxIFG, UCAxIE, and UCAxIV Registers.

4 Code Examples

Code 1 shows a demo program for the SPI master that carries out communication in SPI mode
between two MSP-EX430F529 launchpad boards using the USCI0, channel A (UCA). The code
initializes the master for SPI Master-mode in the SPI_Master_UCA0_Setup() subroutine as
follows:

 Specify port special functions: P3.3 is SIMO, P3.4 is SOMI, and P2.7 is SCLK;

 Master mode, 8-bit data, clock polarity is high, MSB-first;

 Bit clock is set to SMCLK/2 (219 Hz).

The program first waits for the slave device to get ready (a positive pulse on P1.2). The MST_Data
is initially set to 0x01 and SLV_Data to 0x00. The communication is carried out in the infinite loop
using polling. The master waits for the transmit buffer to get ready, and then writes MST_Data
into UCA0TXBUF. This will trigger SPI exchange as described above. The program waits for RXIFG
to get ready, and then reads data received from the slave. The received data should be equal to
the character that the master previously sent to the slave (in the previous exchange). The correct
exchange keeps LED1 on and toggles LED2. If the received data does not match, the LED1 is off
and LED2 is not toggled. The MST_Data and SLV_Data are updated and the cycle repeats after a
delay of 100,000 clock cycles. This delay is inserted just for us to be able to observe data
exchange.

CPE 323: Serial Communication (SPI) © A. Milenković 13

//** 1
// MSP430F5529 Demo Program - USCI_A0, SPI 3-Wire Master Incremented Data 2
// 3
// Description: SPI master talks to SPI slave using 3-wire mode. Incrementing 4
// data is sent by the master starting at 0x01. Received data is expected to 5
// be same as the previous transmission. 6
// Once UCA0 is initialized in SPI Master mode, as follows: 7
// BRCLK=SMCLK/2, 3-wire mode, clock polarity is high, MSB is sent first. 8
// The main loop is entered if P1.2 is at logic 1 which indicates that 9
// the slave device is ready. 10
// Communication is handled in the infinite loop, as follows: 11
// A new character in MST_Data is written into TXBUF if it is empty. 12
// if the received data corresponds to previously sent character, 13
// the communication is carried out properly, LED1 is on, LED2 toggles. 14
// Otherwise, LED1 is off, LED2 is off. 15
// The MST_Data and SLV_Data are updated, delay is applied so we 16
// can verify program behavior through LED1&LED2. 17
// 18
// MSP430F552x 19
// ----------------- 20
// | | 21
// | | 22
// | P1.0|-> LED1 23
// | | 24
// | P3.3|-> Data Out (UCA0SIMO) 25
// | | 26
// | P3.4|<- Data In (UCA0SOMI) 27
// | | 28
// Slave RDY ->|P1.2 P2.7|-> Serial Clock Out (UCA0CLK) 29
// 30
// 31
// A. Milenkovic, milenkovic@computer.org 32
// 33
// October 2022 34
//** 35
 36
#include <msp430.h> 37
 38
unsigned char MST_Data,SLV_Data; 39
unsigned char temp; 40
 41
void SPI_Master_UCA0_Setup(void) { 42
 P3SEL |= BIT3+BIT4; // P3.3,4 option select 43
 P2SEL |= BIT7; // P2.7 option select 44
 45
 UCA0CTL1 |= UCSWRST; // **Put state machine in reset** 46
 UCA0CTL0 |= UCMST+UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI master 47
 // Clock polarity high, MSB 48
 UCA0CTL1 |= UCSSEL_2; // SMCLK 49
 UCA0BR0 = 0x02; // /2 50
 UCA0BR1 = 0; // 51
 UCA0MCTL = 0; // No modulation 52
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 53
} 54

CPE 323: Module 10 © A. Milenković 14

 55
 56
int main(void) { 57
 58
 WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer 59
 60
 P1OUT = 0; // LED1 is OFF 61
 P1DIR |= BIT0; // Set P1.0 as output 62
 P4DIR |= BIT7; 63
 P4OUT &= ~BIT7; 64
 SPI_Master_UCA0_Setup(); // Initialize SPI interface 65
 66
 // Wait for Slave 67
 while (!(P1IN&BIT2)); // Wait until Slave is ready 68
 69
 MST_Data = 0x01; // Initialize data values 70
 SLV_Data = 0x00; // 71
 for (;;) { 72
 while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready? 73
 UCA0TXBUF = MST_Data; // Transmit first character 74
 75
 while(!(UCA0IFG&UCRXIFG)); // Wait for data back 76
 if (UCA0RXBUF==SLV_Data){ // Test for correct character RX'd 77
 P1OUT |= BIT0; // If correct, light LED1 78
 P4OUT ^= BIT7; // heart bit on LED2 79
 } else { 80
 P1OUT &= ~BIT0; // If incorrect, turn off LED1 81
 } 82
 MST_Data = (MST_Data + 1) % 50; 83
 SLV_Data = (SLV_Data + 1) % 50; 84
 __delay_cycles(1000000); 85
 } 86
} 87

Code 1. SPI Demo Connecting two Launchpad boards– Master Code.

Code 2 shows the slave program that carries out the SPI communication described above. Please
note that the slave does not specify the clock in the USCI setup procedure. The slave generates a
positive pulse on P1.2 to indicate that it is ready, and then enters the main loop. It checks when
a new character is received and then when TXBUF is ready, echoes the character back to the
master.

//** 1
// MSP430F552x Demo - USCI_A0, SPI 3-Wire Slave Data Echo 2
// 3
// Description: SPI slave demo using 3-wire mode. Incrementing 4
// data is sent by the master starting at 0x01. Received data is expected to 5
// be same as the previous transmission. 6
// Initialize SPI Slave mode, as follows: 7
// 3-wire mode, clock polarity is high, MSB is sent first. 8
// Slave generated a logic high pulse on P1.2 indicating it is ready. 9

CPE 323: Serial Communication (SPI) © A. Milenković 15

// Communication is handled in the infinite loop, as follows: 10
// Once a new character is received it is echoed if TXBUF is ready. 11
// LED2 is toggled providing visual indication of communication. 12
// 13
// MSP430F552x 14
// ----------------- 15
// LED1<-|P1.0 | 16
// | | 17
//Slave is Ready<-|P1.2 | 18
// | | 19
// | P3.3|-> Data Out (UCA0SIMO) 20
// | | 21
// | P3.4|<- Data In (UCA0SOMI) 22
// | | 23
// | P2.7|-> Serial Clock Out (UCA0CLK) 24
// 25
// 26
// Author: A. Milenkovic, milenkovic@computer.org 27
// 28
// Date: October 2022 29
//** 30
 31
#include <msp430.h> 32
 33
void SPI_Slave_UCA0_Setup(void) { 34
 P3SEL |= BIT3+BIT4; // P3.3,4 option select 35
 P2SEL |= BIT7; // P2.7 option select 36
 UCA0CTL1 |= UCSWRST; // **Put state machine in reset** 37
 UCA0CTL0 |= UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI slave, 38
 // Clock polarity high, MSB 39
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine** 40
} 41
 42
int main(void) { 43
 WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer 44
 45
 SPI_Slave_UCA0_Setup(); 46
 P1DIR |= BIT2 + BIT0; // Set P1.0 and P1.2 as outputs 47
 P1OUT |= BIT2 + BIT0; // LED1 is on, P1.2 is set 48
 __delay_cycles(100); 49
 P1OUT &= ~BIT2 ; // LED is on, P1.2 is off 50
 // P4.7 is heartbeat of the application (toggles on each received char) 51
 P4DIR |= BIT7; 52
 P4OUT = 0; 53
 54
 for(;;) { 55
 while(!(UCA0IFG&UCRXIFG)); // wait for a new character 56
 while(!(UCA0IFG&UCTXIFG)); // new character is received, is TXBUF ready? 57
 UCA0TXBUF = UCA0RXBUF; // echo character back if ready 58
 P4OUT ^= BIT7; // Toggle LED2 59
 } 60
} 61
 62

CPE 323: Module 10 © A. Milenković 16

Code 2. SPI Demo Connecting two Launchpad boards – Slave Code.

5 Exercises

