

CPE 323: Clocks, Timers © A. Milenković 1

CPE 323
MODULE 09

MSP430 Clocks, Time & Timers
(Watchdog Timer, Timer_A, Timer_B)

Aleksandar Milenković

The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module discusses time in embedded systems, starting from clock sources and clock
subsystems through specialized peripherals such as watchdog timer, TimerA, and TimerB. You
will learn about hardware and software aspects of these components and how to utilize them in
embedded programs for time keeping, time stamping, and generating signals of desired shape.

Objectives

 Learners will understand hardware and software aspects of clock sources and timer
peripherals

 Learners will be able to configure and interact with clock sources

 Learners will be able to configure and interact with timer peripherals (Watchdog Timer,
Timer_A, Timer_B)

Contents

1 Introduction ... 3

2 Clocks, Counters .. 3

3 Watchdog Timer .. 9

4 Watchdog Timer Example Programs ... 11

5 Timer_A ... 15

5.1 Timer Block ... 15

5.2 Capture & Compare Block .. 19

5.3 Timer_A Interrupts ... 23

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka

CPE 323 Module 09

6 Timer_A Example Programs .. 24

6.1 Toggle an Output Using Timer_A ... 24

6.2 Additional Timer_A Functionality .. 27

7 Exercises .. 31

CPE 323: Clocks, Timers © A. Milenković 3

1 Introduction

In this section we will discuss time and timers in embedded systems. One of the key
characteristics of embedded computer systems is that they maintain some notion of time. E.g.,
your microwave oven displays the current wall-clock time. You can use menu options to set the
current time or to set the cook time. Next, assume you are tasked to design a smart road-side
sensor that keeps track of traffic. This sensor should keep track of individual vehicles - for every
passing vehicle it records and reports the moment the vehicle has been detected and perhaps
its size. By collecting information from a network of widely deployed road-side sensors and
analyzing them, transportation authorities will be in position to develop better plans for
managing traffic or better plans for investing in infrastructure. Yet another example of an
embedded system with a need for time keeping is when we want to trigger certain events to
occur at specific time. E.g., we want a clock alarm to sound off at 4:30 AM (just kidding), or we
want a robotic hand to rotate for 45 degrees. In all these examples, time and timers play a
critical role.

Embedded computer systems usually have at least one timer peripheral device. You can think
of timers as simple digital counters. In an active mode they increment or decrement their value
at a specified clock frequency. Before using a timer in our application, we need to initialize it by
setting its control registers. During initialization we need to specify timer’s operating mode
(whether they increment or decrement their value on each clock, pause, etc.), the clock
frequency, and whether it will raise an interrupt request once the counter reaches zero or a
value predetermined by software. Timers may have comparison logic to compare the value of
the running counter to a specific value held in a separate register that is also set by software.
When the values match, the timer may take certain actions, e.g., roll back to zero, toggle its
output signal, request an interrupt, to name just a few possibilities. Timers are instrumental in
generating pulse width modulated (PWM) signals used to control the speed of motors. Next,
timers can be configured to capture the current value of the running counter when a certain
event occurs (e.g., the input signal changes from a logic zero to a logic one). Timers can also be
used to trigger execution of the corresponding interrupt service routines. The MSP430 family
supports several types of timer peripheral devices, namely the Watchdog Timer, Basic Timer 1,
Real Time Clock, Timer A, and Timer B.

2 Clocks, Counters

To measure time we rely on a system clock. The resolution of time measurements is
determined by the clock frequency of the system clock. The MSP430 family includes a range of
clock subsystems that vary in complexity, number and type of clock sources, and configurability.
The clock subsystems often include on-chip digitally controlled oscillators that can generate
higher clock frequencies while relying on relatively slow and inexpensive external clock sources.
Common to all clock subsystems is that they provide three clocks to the rest of the MSP430:

 MCLK – main clock used by the processor core and select peripherals;

CPE 323 Module 09

 SMCLK – sub-main clock used by a variety of peripherals; and

 ACLK – auxiliary clock used by a variety of peripherals.

Figure 1 illustrates a clock signal named MCLK that has period of 1 s. It is 0.5 s at logic ‘1’ and

0.5 s is at logic ‘0’. The duty cycle of a periodic signal is defined as the time the signal is at logic

‘1’ divided by the signal period (0.5 s/1 s). Thus, the duty cycle of the MCLK clock in this
example is 50%. Upon powering up the MSP430 we typically have MCLK and SMCLK set to 220

Hz or 1,048,576 Hz. The clock cycle time is thus slightly below 1 s. The ACLK is typically set to
215 Hz or 32,768 Hz. An MSP430 clock subsystem is very sophisticated allowing developers to
increase/decrease the clock frequency on-the-fly by setting certain bits in its control registers.
This means that the frequency of individual clocks can be changed smoothly without stopping
the system.

T = 1 s

MCLK

F = 1/T = 1 MHz

Figure 1. An example of a clock signal.

The clock period is TMCLK = 1 s and the clock frequency FMCLK = 1/TMCLK = 1 MHz.

Things to remember 2-1. Clocks and MSP430 Clocks.

A clock signal is a square wave (oscillates between a low and a high state) that is used as a
metronome to coordinate actions of digital circuits. An MSP430 Clock Subsystem provides three
clock signals to other components: MCLK – main clock, SMCLK – submain clock, and ACLK –
auxiliary clock. Clocks in MSP430 are configurable and can be changed on-the-fly without
stopping the processor.

Figure 2 shows a 16-bit binary counter that counts up on every rising edge of the input clock
signal, CLK. When the counter reaches its maximum 0xFFFF (65,535) it rolls back to 0x0000 and
repeats the counting. The timer thus overflows every 65,536 (216) clock cycles. The time
between any two count values is the elapsed time. The elapsed time in our example from

Figure 2 is t = N*TCLK, where N = 65,533.

When illustrating the counting up on every rising edge of the clock, we often use a ramp-like
signal as shown on the bottom of Figure 2, rather than specifying the counter value in every
clock cycle.

Please note that we can often configure the counter to count up to a certain constant value set
by the software developer. For example, we can have 16-bit counter that counts from 0 up to
49,999 and then back to 0. This way the counter overflows every 50,000 clock cycles. Assuming

CPE 323: Clocks, Timers © A. Milenković 5

TCLK = 1 s, the counter overflows every 50 ms (50,000*1 s = 50 ms). If we configure the
counter in such a way, we can use it to create a periodic signal with the period TS=50 ms (FS = 20
Hz).

0x0000

CLK

Counter 0x0001 0x0002 . . . 0xFFFE 0xFFFF 0x0000 0x0001

Clock
Period

TCLK t = N*TCLK

Elapsed
time

0xFFFF

0x0000

Figure 2. An example of a 16-bit counter counting up from 0x0000 to 0xFFFF.
The counter counts up on every rising edge of the input clock, CLK, and rolls back to 0 after
0xFFFF - it overflows every 65,536 clock cycles. The time elapsed between any two count

values is N*TCLK (N=65,534-1=65,533 in this example).

Things to remember 2-2. Counters.

A counter is a component that counts the number of times a particular event has occurred. For
example, an UP counter can increment its value on every rising edge of the clock signal, thus
counting the number of clock cycles. Counters can be configured as modulus counters. Modulus
counters count through a particular number of states that can be different from the maximum
number of states determined by their size.

One typical use of timers is to precisely timestamp external events in the so-called capture
mode illustrated in Figure 3. Events are translated into digital input changes (rising edge, falling
edge, or both). For example, let us assume we want to precisely timestamp when a car enters a
parking lot. A car entering the parking lot triggers a change of an input signal from a logic 0 to a
logic 1. This input signal is brought to our timer device. Let us further assume that our timer’s
counter is configured as described above – it repeatedly counts up from 0 to 49,999. The
internal logic detects a rising edge of the input signal and then triggers loading the value from
the running counter into a dedicated register called Capture Register in Figure 3. The value
captured in this register is a precise timestamp of the event and we can read the value of this
register and further process it in software. Thus, a timer working in the capture mode is used to

CPE 323 Module 09

precisely timestamp external or internal events. The resolution of this timestamp is determined

by the resolution of the timer clock (1 s in this example). By doing this in hardware we achieve
the maximum accuracy and we do not have to use processor for monitoring external events. In
addition, precise time measurements purely in software are a challenging proposition for
various reasons (e.g., interrupts).

0

16-bit counter
CLK

EQU.Period

CLK

Counter 1 2 . . . 39,999 40,000 . . . 49,999

49,999

0x0000

Period (49,999)

Capture Register

=?

reset.cnt

0

15,429

CAPTURE MODE

. . .

Even
DetectionExternal

Signal

Load

Time

Figure 3. Timer capture mode. Description: Counter is set to count from 0 to 49,999 (50,000
clock cycles). The module is configured to capture the value of the running counter when a
rising edge of an external signal is detected. The event detection logic triggers loading the

current value of the running counter in the Capture Register. This way we can precisely
timestamp events with resolution of a single clock cycle. In this example we know that an

event occurred at clock cycle 15,429 – 15,429*1 s or 15.429 ms from the beginning of the
current 50 ms period.

CPE 323: Clocks, Timers © A. Milenković 7

Things to remember 2-3. Timer Capture Mode.

In the capture mode a value from the running counter is captured (stored) in a separate capture
register when a particular event of interest occurs (e.g., an external input goes from a low state
to a high state). This way the moment when this event occurs can be precisely timed
(timestamped).

The timer modules operating in the so-called compare mode can be used to shape output
signals up by controlling their period and duty cycle as illustrated in Figure 4. For example, let
us assume we want to generate a periodic output signal with a period of 50 ms and the duty
cycle of 80% (the signal is 40 ms on logic ‘1’ and 10 ms on logic ‘0’). The period of 50 ms
corresponds to 50,000 clock cycles. The 80% of that is 40,000 clock cycles. Consequently we can
have another register called Duty Cycle initialized to 39,999 (40,000-1). The output signal OUT is
set to a logic ‘1’. When the running counter reaches 39,999 the output of the comparator
indicates that it matches the value stored in the Duty Cycle register. This triggers the output
signal to go to a logic ‘0’. When the running counter reaches 49,999 it rolls back to 0 and the
output signal OUT is set a logic ‘1’. The output signal is held at logic ‘1’ for 40,000 clock cycles
and at logic ‘0’ for 10,000 clock cycles, thus producing the desired signal. Timers in the compare
mode are used to generate pulse width modulated signal (PWM) that are widely used in robotic
applications.

CPE 323 Module 09

0

16-bit counter
CLK

EQU.Period

CLK

Counter 1 2 . . . 39,999 40,000 . . . 49,999

49,999

0x0000

Period (49,999)

Duty Cycle (39,999)

=?

=?

reset.cnt

EQU.DutyCyle

0

39,999

Output (PWM)

COMPARE MODE

. . .

Output
Mode Logic Output

EQU.PeriodEQU.DutyCyle

Figure 4. Timer in a compare mode configured to generate a signal with period of 50 ms and
duty cycle of 80%. Counter is set to count from 0 to 49,999 (50,000 clock cycles) - the register

Limit is initialized to 49,999. The register DutyCycle is set to 39,999. The control logic is
configured to generate an output signal OUT that has period of 50 ms and the duty cycle of

80% (40 ms at logic 1 and 10 ms at logic 0).

Things to remember 2-4. Timer Compare Mode.

In the compare mode, a value from the running timer is compared to a predefined value stored
in a compare register. When the two values match, a change on an output signal is triggered
(set, reset, or toggle). Timers working in this mode are used to create Pulse-Width-Modulated
output signals.

CPE 323: Clocks, Timers © A. Milenković 9

Figure 5 shows a block diagram of the MSP430F5529 device. The Unified Clock System provides
three clock signals. The SYS module includes the Watchdog timer. In addition, it includes three
Timer A devices, TA0, TA1, and TA2, one Timer B device, TB0, and a real-time clock, RTC_A. In
the following sections we will discuss the Watchdog timer and Timer A.

Figure 5. Block diagram of MSP430F5529 with clock and timer modules.

3 Watchdog Timer

The primary function of the watchdog-timer (WDT) is to perform a controlled-system restart
after a software problem occurs. This mode of operation is called watchdog mode. If we use the
watchdog timer in the watchdog mode, we organize our software in such a way that we always
periodically reset the counter (“petting the dog”), so it never gets to the point to reach a
predefined counter value. If the running program fails to reach the point where the counter
reset is initiated due to unpredicted behavior or system fault, the timer is going to expire and
hence cause a system reset (PUC – power up clear, “dog is biting”), thus signaling that
something went wrong.

If the watchdog function is not needed in an application, the watchdog timer can work in the
so-called interval timer mode. In this mode, when the timer reaches the predefined value it sets
the WDTIFG flag without causing a system reset. If the corresponding WDTIE flag is enabled,
this event will trigger a regular (non-resetting) interrupt request. Thus, the watchdog timer can
generate periodic events.

Figure 6 illustrates a block diagram of the watchdog timer peripheral. It features a 16-bit
control register, WDTCTL, and a 32-bit counter, WDTCNT. The watchdog timer counter
(WDTCNT) is a 32-bit up-counter that is not directly accessible by software. The WDTCNT
counter is controlled and time intervals are selected through the watchdog timer control
register WDTCTL.

CPE 323 Module 09

Things to remember 3-1. Watchdog Timer.

The MSP430 Watchdog Timer can operate in 3 modes: HALT (turned-off), watchdog mode, and
interval-time mode.

Figure 6. Block Diagram of the Watchdog Timer

Figure 7 shows the the format of the watchdog control register, WDTCTL. In includes control
bits for stopping the watchdog timer (WDTHOLD), sourcing the WDCNT counter clock
(WDTSSEL), selecting mode of operation (WDTTMSEL), clearing the WDTCNT counter
(WDTCNTCL), and the interval selection (WDTIS). The WDTIFG bit resides in SFRIFG1, bit 0 and
the corresponding WDTIE bit resides in SFRIE1, bit 0.

Setting the WDTTMSEL bit to a logic ‘1’ selects the interval timer mode. In the interval timer
mode, the WDTIFG flag is set at the expiration of the selected time interval. A PUC is not
generated in this mode at expiration of the selected timer interval and the WDTIFG enable bit
WDTIE remains unchanged. If the WDTIE bit and the GIE bit are set, the set WDTIFG flag will
request a WDT interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt

CPE 323: Clocks, Timers © A. Milenković 11

request is accepted, or it needs to be reset by software if polling is used. The interrupt vector
address associated with the interval timer mode is different from the one associated with the
interrupt vector address used in the watchdog mode.

Figure 7. Watchdog Timer Control Register. The WDT is interfaced through its 16-bit control
register. We can select mode of operation (WDTMSEL and WDTHOLD), time interval (WDTIS),

and clock source (WDTSSEL). To restart the counter we write a word into WTDCTL with the
WDTCNTCL bit set to a logic ‘1’.

4 Watchdog Timer Example Programs

Let us consider an example of using WDT ISR to toggle a LED every every second (1 s off, 1 s on).
The period is thus 2 s or the frequency of toggling is 0.5 Hz. Code 1 shows a program that
toggles a LED in the watchdog timer interrupt service routine every second. To generate an
interrupt request every second, we configure the WDT as follows: select the ACLK as the clock
source, ACLK=32,768 Hz (or 215 Hz), and select the tap to be 215; the WDT interval time will be
exactly 1 s. The WDT control word will look like this: WDTMSEL selects interval mode, WDTSSEL
selects ACLK, and WTTCNTCL clears the WDTCNT. Analyze the header file for msp430F5529.h to

CPE 323 Module 09

locate pre-defined command words for the control register (e.g., WDT_ADLY_1000,
WDT_ADLY_250, …).

/*-- 1
 * File: Lab7_D1.c (CPE 325 Lab7 Demo code) 2
 * Function: Blinking LED1 using WDT ISR (MPS430F5529) 3
 * 4
 * Description: This C program configures the WDT in interval timer mode, 5
 * clocked with the ACLK clock. The WDT is configured to give an 6
 * interrupt for every 1s. LED1 is toggled in the WDT ISR 7
 * by xoring P1.0. The blinking frequency of LED1 is 0.5Hz. 8
 * 9
 * Board: MSP-EXP430F5529 (includes 32-KHZ crystal on XT1 and 10
 * 4-MHz ceramic resonator on XT2) 11
 * 12
 * Clocks: ACLK = XIN-XOUT = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 13
 * An external watch crystal between XIN & XOUT is required for ACLK 14
 * 15
 * MSP430F5529 16
 * ----------------- 17
 * /|\| XIN|- 18
 * | | | 32kHz crystal 19
 * --|RST XOUT|- 20
 * | | 21
 * | P1.0|-->LED1(RED) 22
 * | | 23
 * Input: None 24
 * Output: LED1 blinks at 0.5 Hz frequency 25
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 26
 * Prawar Poudel 27
 * Date: December 2008 28
 --/ 29
#include <msp430.h> 30
 31
void main(void) { 32
 WDTCTL = WDT_ADLY_1000; // 1 s interval timer 33
 P1DIR |= BIT0; // Set P1.0 to output direction 34
 SFRIE1 |= WDTIE; // Enable WDT interrupt 35
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt 36
} 37
 38
// Watchdog Timer Interrupt Service Routine 39
#pragma vector=WDT_VECTOR 40
__interrupt void watchdog_timer(void) { 41
 P1OUT ^= BIT0; // Toggle P1.0 using exclusive-OR 42
} 43

Code 1. Toggling a LED using WDT_ISR.

Code 2 shows the program that also toggles the LED1 every second in the WDT ISR. However,
the watchdog timer uses the SMCLK as the clock source and the tap of 32,768 (215). The WDT
generates an interrupt request every 32 ms. To toggle the LED1 every second we need to use a
static local variable that is incremented every time we enter the ISR. When we collect 32

CPE 323: Clocks, Timers © A. Milenković 13

periods of 32 ms we have approximately 1 second of elapsed time, and we can then toggle
LED1. Analyze the header file msp430f5529.h to locate pre-defined command word
WDT_MDLY_32. What bits of the control register are set with WDT_MDLY_32? What is the
purpose of using static variable in the ISR? What happens if we use a dynamically allocated
variable?

/*-- 1
 * File: Lab7_D2.c (CPE 325 Lab7 Demo code) 2
 * 3
 * Function: Toggling LED1 using WDT ISR (MPS430F5529) 4
 * 5
 * Description: This C program configures the WDT in interval timer mode, 6
 * clocked with SMCLK. The WDT is configured to give an 7
 * interrupt for every 32ms. The WDT ISR is counted for 32 times 8
 * (32*32.5ms ~ 1sec) before toggling LED1 to get 1 s on/off. 9
 * The blinking frequency of LED1 is 0.5Hz. 10
 * 11
 * Clocks: ACLK = XT1 = 32768Hz, MCLK = SMCLK = DCO = default (~1MHz) 12
 * An external watch crystal between XIN & XOUT is required for ACLK 13
 * 14
 * MSP430xF5529 15
 * ----------------- 16
 * /|\| XIN|- 17
 * | | | 32kHz 18
 * --|RST XOUT|- 19
 * | | 20
 * | P1.0|-->LED1(RED) 21
 * | | 22
 * Input: None 23
 * Output: LED1 blinks at 0.5Hz frequency 24
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 25
 * Prawar Poudel 26
 * Date: December 2008 27
 --/ 28
#include <msp430.h> 29
 30
void main(void) 31
{ 32
 WDTCTL = WDT_MDLY_32; // 32ms interval (default) 33
 P1DIR |= BIT0; // Set P1.0 to output direction 34
 SFRIE1 |= WDTIE; // Enable WDT interrupt 35
 36
 _BIS_SR(LPM0_bits + GIE); // Enter LPM0 with interrupt 37
} 38
 39
// Watchdog Timer interrupt service routine 40
#pragma vector=WDT_VECTOR 41
__interrupt void watchdog_timer(void) { 42
 static int i = 0; 43
 i++; 44
 if (i == 32) { // 31.25 * 32 ms = 1s 45
 P1OUT ^= BIT0; // Toggle P1.0 using exclusive-OR 46
 // 1s on, 1s off; period = 2s, f = 1/2s = 0.5Hz 47
 i = 0; 48

CPE 323 Module 09

 } 49
} 50

Code 2. Toggling the LED1 using WDT_ISR.

Code 3 shows the program that also toggles LED1 every second. The WDT is still configured in
the interval mode and sets the WDTIFG every 1 s. The program however does not use the
interrupt service routine (the interrupt from WDT remains disabled). Instead, the main program
polls repeatedly the status of the WDTIFG. If it is set, LED1 is toggled and the WDTIFG is cleared.
Otherwise, the program checks the WDTIFG status again. The program spends majority of time
waiting for the flag to be set and this approach is known as software polling. It is inferior to
using interrupt service routines, but sometimes can be used to interface various peripherals.
What are the advantages of using interrupts over software polling?

/*-- 1
 * File: Lab7_D3.c (CPE 325 Lab7 Demo code) 2
 * Function: Blinking LED1 using software polling. 3
 * Description: This C program configures the WDT in interval timer mode and 4
 * it is clocked with ACLK. The WDT sets the interrupt flag (WDTIFG) 5
 * every 1 s. LED1 is toggled by verifying whether this flag 6
 * is set or not. After it is detected as set, the WDTIFG is cleared. 7
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (2^20 Hz) 8
 * An external watch crystal between XIN & XOUT is required for ACLK 9
 * 10
 * MSP430F5529 11
 * ----------------- 12
 * /|\| XIN|- 13
 * | | | 32kHz 14
 * --|RST XOUT|- 15
 * | | 16
 * | P1.0|-->LED1(RED) 17
 * | | 18
 * Input: None 19
 * Output: LED1 blinks at 0.5Hz frequency 20
 * 21
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 22
 * Revised by: Prawar Poudel 23
 --/ 24
#include <msp430.h> 25
 26
void main(void) 27
{ 28
 WDTCTL = WDT_ADLY_1000; // 1 s interval timer 29
 P1DIR |= BIT0; // Set P2.2 to output direction 30
 31
 for (;;) { 32
 // Use software polling 33
 if ((SFRIFG1 & WDTIFG) == 1) { 34
 P1OUT ^= BIT0; 35
 SFRIFG1 &= ~WDTIFG; // Clear bit WDTIFG in IFG1 36
 } 37
 } 38
} 39

CPE 323: Clocks, Timers © A. Milenković 15

Code 3. Toggling LED1 using WDT and Software Polling on WDTIFG.

5 Timer_A

In addition to the watchdog timer, the MSP430 family supports several types of other timer
peripheral devices, such as, Real Time Clock, Timer A, Timer B and Timer D. In this part of the
tutorial we will be studying Timer A and B.

We have seen that we rely on timer peripherals to measure time, timestamp external or
internal events, generate periodic events, and generate digital outputs of desired period and
duty cycle. A timer can use a different clock signal from the one used by the processor, so it is
possible either to turn off the processor or to work on other computations while the timer is
counting. This saves energy and reduces code complexity. Note that a MSP430 can have
multiple timers and each timer can be utilized independently from the other timers.
Furthermore, each timer has several modes of counting.

Figure 8 shows a block diagram of Timer A peripheral. It consists of a timer block and up to
seven configurable capture and compare blocks (TAxCCR0 – TAxCCR6). The MSP430F5529 has
three Timer A peripherals as follows: TA0 with 5 capture and compare blocks, TA1 with 3
capture and compare blocks, and TA2 with 3 capture and compare blocks. Thus, TAxCCR0 can
mean any of TA0CCR0, TA1CCR0 or TA2CCR0. Timer B is similar to Timer A and has 7 capture
and compare registers.

5.1 Timer Block

The timer block includes a 16-bit counter TAxR that increments or decrements on the rising
edge of every clock cycle. This counter can be read or written with software. The timer block
supports 4 counting modes: STOP (MCx=00), UP (MCx=01), Continuous (MCx=10), and
UP/DOWN (MCx=11). The Up mode allows for setting timer periods through TAxCCR0 (see
Figure 9). The timer repeatedly counts up to the value in TAxCCR0 for the period of TAxCCR0+1
clock cycles. The Continuous mode repeatedly counts from 0x0000 up to 0xFFFF as shown in
Figure 10. The Up/Down mode is used when the period is different from 0xFFFF and
symmetrical pulse generation is needed. The timer repeatedly counts up to the value in
TAxCCR0 and back down to 0x0000. The period is twice the value in TAxCCR0 as shown in Figure
11. To illustrate this, let us assume that TAxCCR0=4. The counting states in one period are

01234321 (2*4 = 8 states).

The source clock can be selected from multiple options (TAxSEL bits), and the selected clock can
be further divided by 1 (IDx=00), 2 (IDx=01), 4 (IDx=10), and 8 (IDx=11). The timer block is
configured using TAx control register, TAxCTL, which contains control bits TAxSEL, IDx, CNTLx,
and others. Please examine the format of this register (Figure 12).

CPE 323 Module 09

Figure 8. Timer_A Block Diagram

CPE 323: Clocks, Timers © A. Milenković 17

Figure 9. Up mode and flag settings. The TAxCCR0 CCIFG is set when counting from TAxCCR0-1
to TAxCCR0 and TAIF is set when counting from TAxCCR0 to 0.

Figure 10. Continuous mode and flag settings. TAIFG is set when counting from 0xFFFF to
0x0000.

CPE 323 Module 09

Figure 11. Up/Down mode and flag settings. TAIFG is set when counting from 0x0001 to
0x0000 and TAxCCR0 CCIFG is set when counting from CCR0-1 to CCR0.

CPE 323: Clocks, Timers © A. Milenković 19

Figure 12. TAxCTL. The TAxCTL includes bits for selecting input clock source (TASSEL), input
clock divider (ID), and counting mode (MC). We can also force counter reset by writing a word

with TACLR bit set. Bits 1 and 0 are reserved for TAxIE and TAxIFG.

5.2 Capture & Compare Block

Each Capture and Compare block (CCn, n from 0 to 6) contains a 16-bit latch register TAxCCRn
and corresponding control logic enabling two type of operations CAPTURE and COMPARE. Each
capture and compare block n is controlled by its own control register, TAxCCTLn.

Capture refers to an operation where the value of the running counter (TAxR) is captured in the
TAxCCRn on a hardware event (e.g., external input changes its state from a logic 1 to a logic 0 or
from a logic 0 to a logic 1) or on a software trigger (e.g., setting some control bits).

Compare refers to an operation where actions are triggered at specific moments in time. As
discussed above, this operation is crucial for generating Pulse-Width-Modulated signals (PWMs)
– periodic signals where the period and duty cycle is fully controlled. In the compare mode of
operation, the corresponding latch register, TAxCCRn, is initialized to a certain value. When the
value in the running counter (TAR) reaches the value in TAxCCRn, an output signal can change
its state (set, reset, or toggle).

The shape of the output signal is controlled by the OUTMOD control bits, the values in TAxCCRn
registers, and the counting mode. Let us consider an example of the timer running in UP mode
and using TAxCCR1 to create a PWM signal at OUT1 as shown in Figure 13. The OUT1 signal is

CPE 323 Module 09

changed when the timer counts up to the TAxCCR1 value and rolls from TAxCCR0 to zero,
depending on the output mode. In Output Mode 1: Set, the output is asserted when the
running counter reaches the value in TAxCCR1 (EQU1 is asserted). EQU1 is the output of the
comparator in TAxCCR1 block that compares the value in the TAxCCR1 register and the current
value of the running timer (TAxR). In Output Mode 2: Toggle/Reset, the output OUT1 signal is
toggled when EQU1 is set, and then reset when the counter rolls over to zero (EQU0 is
asserted). EQU0 is asserted when TAxCCR0 matches the value in the running counter. In Output
Mode 3: Set/Reset, the output OUT1 signal is set when EQU1 is set and then reset when EQU0
is asserted. The Output Mode 4: Toggle changes the output signal OUT1 only when EQU1 is
asserted. Similar rules apply to other output modes. If the counter is running in the continuous
mode, the output mode logic acts in the same way, except that the period is now 65,536 clock
cycles. What is the period of the output signal created in Output Mode 3? What is the period of
of the output signal created in Output Mode 4?

Multiple capture and compare blocks can work concurrently, each generating its own output
signal. Please note that they all share a single timer block, implying that the period of output
signals will be the same, but their shape and duty cycle can be individually controlled.

Figure 14 illustrates the OUT2 signal for different OUTMOD settings when the timer block is
running in UP/DOWN mode. Please note that events triggering changes on the OUT2 signal are
when the running counter matches the value in TAxCCR0 (EQU0 is asserted) and when the
running counter matches the value in TACCR2 (EQU2 is asserted). When interpreting the
naming convention please note that first word describes what happens with the output when
EQU2 is asserted and the second word describes what happens with the output when EQU0 is
asserted.

CPE 323: Clocks, Timers © A. Milenković 21

Figure 13. Output Example – timer in UP mode.

CPE 323 Module 09

Figure 14. Output Example – timer in UP/DOWN mode.

Every capture and compare block of Timer_A has its own control register, TAxCCTn as described
in Figure 15. The control register allows for selecting capture mode (CM bits), capture/compare
input select (CCIS), synchronize capture source (SCS), mode of operation (CAP), output mode
(OUTMOD), output state (OUT), capture and compare interrupt enable (CCIE) and interrupt
flage (CCIFG).

CPE 323: Clocks, Timers © A. Milenković 23

Figure 15. TAxCCTLn Register.

5.3 Timer_A Interrupts

Two interrupt vectors are associated with 16-bit Timer_A:

CPE 323 Module 09

 TAxCCR0 for TAxCCR0 CCIFG (single-sourced interrupt);

 TAxIV for all other CCIFG flags and TAIFG (multi-sourced interrupt).

In capture mode, the corresponding CCIFG flag is set when a timer value is captured in the
associated TAxCCRn register. In compare mode, the corresponding CCIFG flag is set if TAxR
counts to the associated TAxCCRn value. Software may also set or clear any CCIFG flag. All
CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are also set.

6 Timer_B

Timer_B is identical to Timer_A with the following exceptions:

 the length of TImer_B counter is programmable to be 8, 10, 12, or 16 bits;

 Timer_B TBxCCRn registers are double-buffered and can be grouped;

 All Timer_B outputs can be put into a high-impedance state;

 The SCCI bit function is not implemented in Timer_B.

For learning more about Timer_B, please consult the corresponding User’s guide.

7 Timer_A Example Programs

7.1 Toggle an Output Using Timer_A

Let us first consider an example where we utilize the Timer A2 (TA2) device to toggle an output
on the MSP-EXP430F5529LP board. For this example, we will be toggling the channel 1
(Capture&Compare Block 1) of Timer A2, i.e. TA2.1. TA2.1 is multiplexed with the digital I/O pin
P2.4.

P2.4 should be periodically turned on for 0.065 seconds and then turned off for 0.065 seconds
(one period is ~0.13 seconds, or toggling rate is ~7.6 Hz). We have learned how to execute the
toggling using a software delay or by using the watchdog timer. Now, we would like to utilize
the MSP430’s TA2 peripheral device.

Code 4 shows a program that toggles P2.4 as specified. P2.4 is multiplexed with TA2.1 output
signal, so its special special function should be selected. To configure P2.4 as special function,
the P2 selection register, P2SEL, pin 4 is set to its special I/O function instead of its common
digital I/O function (P2SEL |= BIT4;). This way we ensure that the P2.4 mirrors the behavior of
the TA2.1 output signal.

The capture and compare block 1 can be configured to set/reset or toggle the output signal
TA2.1 when the value in the running counter reaches the value in the capture and control
register TA2CCR1. Thus, when a value in the Timer A2 counter is equal to the value in TA2CCR1,
we can configure the Timer A2 to toggle its output, TA2.1, automatically. The default value in
TA2CCR1 is 0, thus, the output will be toggled every time the counter rolls over to 0x0000.

The next step is to configure clock sources. The MSP430 clocks MCLK, SMCLK, and ACLK have
default frequencies as follows: MCLK = SMCLK ~ 1 MHz and ACLK = 32 KHz. Timer A2 is

CPE 323: Clocks, Timers © A. Milenković 25

configured to use the SMCLK as its clock input and to operate in the continuous mode. Timer
A2’s counter will count from 0x0000 to 0xFFFF. When the counter value reaches 0x0000, the
EQU1 will be asserted indicating that the counter has the same value as the TA2CCR1 (here it is
not set because by default it is cleared). We can select the output mode 4 (toggle) that will
toggle the output every time EQU1 is asserted. This way we can determine the time period
when the TA2.1 is reset and set. The TA2.1 will be set for 65,536*1/2^20 = 0.0625 seconds and
will be reset for 65,536*1/2^20 = 0.0625 seconds. Please note that we do not need to use an
interrupt service routine to toggle the signal in this case. The Timer A2 will toggle the P2.4
independently, and we can go into a low power mode and remain there for the rest of the
application lifetime.

To visualize the output, you can use the Grove Boosterpack. P2.4 is connected to header J14 on
the digital section of the board. Using the connecter cable to hook the Buzzer in the pack, you
can notice the output in the note played in Buzer.

/*-- 1
 * File: Lab7_D4.c (CPE 325 Lab7 Demo code) 2
 * 3
 * Function: Toggling signal using Timer_A2 in continuous mode (MPS430F5529) 4
 * 5
 * Description: In this C program, Timer_A2 is configured for continuous mode. In 6
 * this mode, the timer TA2 counts from 0 up to 0xFFFF (default 2^16). 7
 * So, the counter period is 65,536*1/2^20 = 62.5ms when SMCLK is 8
 * selected. The TA2.1 output signal is configured to toggle every 9
 * time the counter reaches the maximum value, which corresponds to 10
 * 62.5ms. TA2.1 is multiplexed with the P2.4, and there is a extension 11
 * header from this pin. 12
 * 13
 * Thus the output frequency on P2.4 will be f = SMCLK/(2*65536) ~ 8 Hz. 14
 * Please note that once configured, the Timer_A toggles the signal 15
 * in pin P2.4 automatically even when the CPU is in sleep mode. 16
 * Please use oscillator to see this. 17
 * 18
 * Using the Grove Boosterpack, you can hook-up the Buzzer to the 19
 * J14 header. This connects the Signal Pin of buzzer to P2.4. 20
 * The buzzer produces sound when the signal value is high 21
 * and vice versa. 22
 * 23
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (2^20 Hz) 24
 * An external watch crystal between XIN & XOUT is required for ACLK 25
 * 26
 * MSP430F5529 27
 * ----------------- 28
 * /|\| XIN|- 29
 * | | | 32kHz 30
 * --|RST XOUT|- 31
 * | | 32
 * | P2.4/TA2.1|-->Buzzer 33
 * | | 34
 * Input: None 35
 * Output: Toggle output at P2.4 at 8Hz frequency using hardware TA2 36
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 37

CPE 323 Module 09

 * Prawar Poudel 38
 --/ 39
#include <msp430F5529.h> 40
 41
void main(void) { 42
 WDTCTL = WDTPW +WDTHOLD; // Stop WDT 43
 44
 P2DIR |= BIT4; // P2.4 output (TA2.1) 45
 P2SEL |= BIT4; // P2.4 special function (TA2.1 output) 46
 47
 TA2CCTL1 = OUTMOD_4; // TA2.1 output is in toggle mode 48
 TA2CTL = TASSEL_2 + MC_2; // SMCLK is clock source, Continuous mode 49
 50
 _BIS_SR(LPM0_bits + GIE); // Enter Low Power Mode 0 51
} 52

Code 4. C Program for Toggling Pin2.4 Using TimerA, Continuous Mode

Try to modify the code from Code 4 by selecting a different source clock for Timer A. What
happens if we use the following command: TA2CTL = TASSEL_1 + MC_2? What is the period of
toggling the signal? Explain your answer. Try using divider for the clock source.

The given example may not be suitable if you want to control the period of toggling since the
counter in the continuous mode always counts from 0x0000 to 0xFFFF. This problem can be
solved by opting for the UP mode. The counter will count from 0x000 up to the value specified
in the TA2CCR0. This way we can control the time period. Let us consider an example where we
want the buzzer to be 1 second on and 1 second off (toggling rate is 0.5 Hz).

Code 5 shows the C code for this example. Note the changes. How do we specify UP mode?
How do we select the ACLK clock as the TimerA source clock? What output mode do we use? Is
it better to use ACLK instead of SMCLK in this example? Explain your answers.

/*-- 1
 * File: Lab7_D5.c (CPE 325 Lab7 Demo code) 2
 * 3
 * Function: Toggle signal using Timer_A2 in up mode (MPS430F5529) 4
 * 5
 * Description: In this C program, Timer_A2 is configured for UP mode. In this 6
 * mode, the timer TA2 counts from 0 up to value stored in TA2CCR0. 7
 * So, the counter period is CCR0*1us. The TA2.1 output signal is 8
 * configured to toggle every time the counter reaches the value 9
 * in TA2CCR1. TA2.1 is multiplexed with the P2.4. Thus, the output 10
 * frequency on P2.4 will be f = ACLK/(2*CCR0) = 0.5Hz. Please note 11
 * that once configured, the Timer_A2 toggles the signal automatically 12
 * even when the CPU is in sleep mode. 13
 * 14
 * Using the same connection as in Lab7_D4.c, you should be able to 15
 * hear Buzzer ON for 1s and OFF for 1s continuously. 16
 * 17
 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (2^20 Hz) 18
 * An external watch crystal between XIN & XOUT is required for ACLK 19

CPE 323: Clocks, Timers © A. Milenković 27

 * 20
 * MSP430xF5529 21
 * ----------------- 22
 * /|\| XIN|- 23
 * | | | 32kHz 24
 * --|RST XOUT|- 25
 * | | 26
 * | P2.4/TA2.1|--> Buzzer 27
 * | | 28
 * Input: None 29
 * Output: Toggle output at P2.4 at 0.5Hz frequency using hardware TA2 30
 * Author: Aleksandar Milenkovic, milenkovic@computer.org 31
 * Prawar Poudel 32
 --/ 33
#include <msp430F5529.h> 34
 35
void main(void) { 36
 WDTCTL = WDTPW +WDTHOLD; // Stop WDT 37
 38
 P2DIR |= BIT4; // P7.4 output 39
 P2SEL |= BIT4; // P7.4 special function (TB0.2 output) 40
 41
 TA2CCTL1 = OUTMOD_4; // TB0.2 output is in toggle mode 42
 TA2CTL = TBSSEL_1 + MC_1; // ACLK is clock source, UP mode 43
 TA2CCR0 = 32767; // Value to count upto for Up mode 44
 45
 _BIS_SR(LPM3_bits + GIE); // Enter Low Power Mode 3 46
} 47

Code 5. C Program for Toggling Pin2.4 Using TIMER_A (UP MODE)

7.2 Additional Timer_A Functionality

As already seen, Timer A is quite powerful due to the selectable clocks, automated outputs, and
adjustable maximum count value. The Timer A peripheral has additional features which greatly
expand its functionality and versatility. These features include:

 Multiple capture/compare modules

 Multiple output control modes

 Ability to call multiple interrupts at different count values

 Ability to select from multiple counting modes

Often times, it will be necessary to perform multiple tasks with a single timer peripheral.
Fortunately, the Timer A system has multiple channels that can be set up to perform their tasks
at designated count values. The MSP430F5529 has 3 instantiations of Timer A, namely TA0, TA1
and TA2. Each of these Timer A devices has different number of channels. TA0 has 5 channels,
TA1 has 3 channels and TA2 has 3 channels. Each channel normally has a shared output pin
similar to what we saw with the TA2.1 pin in the examples above. In Figure 16 below, note that

CPE 323 Module 09

some of the pins are shared with TA1 channels. This means that capture/compare channel can
directly control output devices connected to these pins.

Figure 16. Port pins shared with TA1 channels

If you further examine the MSP-EXP430F5529LP experimenter board schematic, you can find
where the other channel output pins are located. In order to use other channels in each
instantiation of each of TA0, TA1 and TA2, channel 0 must still be set up in each of them. All of
the channels have their own configuration register and their own count value register. Each
channel can be configured to use its output pin directly (as in above example Lab7_D5), but
they can also be used to call interrupt service routines. An interrupt vector is dedicated to
channel 0, but other channels each of the timers can be configured to call a separate ISR.

It is important to think about how the counting methods affect the interrupt calls from the
different capture/compare channels. The user’s guide contains definitive information about the
Timer B including examples that demonstrate how the various functions work. In general, the
counting modes work as follows:

Counting mode 0 – Stop mode – The timer is inactive

Counting mode 1 – Up mode – The timer counts up to the value for channel 0. An interrupt for
each channel set up is called at the corresponding count value on the way up. At the maximum
value an interrupt for channel 0 is called, and at the next timer count a general interrupt is
generated. Remember that these interrupts may correspond to output pin control or interrupt
service routine vectoring depending on the channel configuration.

Counting mode 2 – Continuous mode – The timer counts up to its maximum value (65535 for 16
bit mode). Along the way, corresponding interrupts are called at each channel’s count value
register. At 0 a general Timer Ax interrupt is set.

Counting mode 3 – Up/Down mode – The timer counts up to the value in the channel 0 register,
and then it counts back down to 0 again. The channel interrupts are called when the value is
reach on the up count and the down count. The general Timer A interrupt is called when 0 is
reached.

In Code 6 below, channels 0 and 1 are used to call two separate ISRs. Since the timer is in
up/down mode, the channel 0 ISR is only called once per counting cycle (on the max value set
by the CCR0 register) while the channel 1 ISR is called twice per counting cycle if its CCR1 value
is less than CCR0. It is called on the up count and the down count. This mode is especially useful
when creating PWM signals since the count register value determines the duty cycle of the
output signal.

/*--

CPE 323: Clocks, Timers © A. Milenković 29

 * File: Lab7_D6.c (CPE 325 Lab7 Demo code)

 *

 * Function: Blinking LED1 & LED2 using Timer_A0 with interrupts (MPS430F5529)

 *

 * Description: In this C program, Timer_A0 is configured for up/down mode with

 * ACLK source and interrupts for channel 0 and channel 1 are

 * enabled. In up/down mode timer TA0 counts the value from 0 up to

 * value stored in TA0CCR0 and then counts back to 0. The interrupt

 * for TA0 is generated when the counter reaches value in TA0CCR0.

 * The interrupt TA0.1 is generated whenever the counter reaches value

 * in TA0CCR1. Thus, TA0.1 gets two interrupts while counting upwards

 * and counting downwards. This simulates a PWM control - adjusting

 * the TA0.1 and TA0.0 CCR register values adjusts the duty cycle of the

 * PWM signal.

 *

 * Clocks: ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = default (2^20 Hz)

 * An external watch crystal between XIN & XOUT is required for ACLK

 *

 * MSP430x5529x

 * -----------------

 * /|\| XIN|-

 * | | | 32kHz

 * --|RST XOUT|-

 * | |

 * | P1.0|--> LED1(RED)

 * | P4.7|--> LED2(GREEN)

 * Input: None

 * Output: LED1 blinks at 1.64Hz with 20-80% duty cycle and LED2 blinks at

 * 0.82Hz with 50-50% duty cycle.

 *

 * Author: Aleksandar Milenkovic, milenkovic@computer.org

 * Prawar Poudel

 --/

#include <msp430F5529.h>

void main(void) {

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 _EINT(); // Enable interrupts

 P1DIR |= BIT0; //LED1 as output

 P4DIR |= BIT7; //LED2 as output

 P1OUT &= ~BIT0; // ensure LED1 and LED2 are off

 P4OUT &= ~BIT7;

 TA0CCTL0 = CCIE; // TA0 count triggers interrupt

 TA0CCR0 = 10000; // Set TA0 (and maximum) count value

 TA0CCTL1 = CCIE; // TA0.1 count triggers interrupt

 TA0CCR1 = 2000; // Set TA0.1 count value

 TA0CTL = TASSEL_1 | MC_3; // ACLK is clock source, UP/DOWN mode

 _BIS_SR(LPM3); // Enter Low Power Mode 3

}

CPE 323 Module 09

#pragma vector = TIMER0_A0_VECTOR

__interrupt void timerISR(void) {

 P4OUT ^= BIT7; // Toggle LED2

}

#pragma vector = TIMER0_A1_VECTOR

__interrupt void timerISR2(void) {

 P1OUT ^= BIT0; // Toggle LED1

 TA0CCTL1 &= ~CCIFG; // Clear interrupt flag

}

Code 6. Code Using Multiple Timer B CC Channels and ISRs to Toggle LEDs

CPE 323: Clocks, Timers © A. Milenković 31

8 Exercises

Problem 1.

Consider the following code segment that utilizes the watchdog timer in the interval mode with a period
set in line 4 of the code.
1. #include <msp430xG46x.h>

2. void main(void) {

3. int p = 0;

4. WDTCTL = WDT_ADLY_250; // check the meaning of this constant in the include file

5. P2DIR |= BIT2; // Set P2.2 to output direction

6. P2OUT &= ~BIT2; //

7. for (;;) {

8. if ((IFG1 & WDTIFG) == 1) {

9. p++;

10. IFG1 &= ~WDTIFG;

11. if (p == 4) P2OUT ^= BIT2;

12. if (p == 13) { P2OUT ^= BIT2; p=0;}

13. }

14. }

15. }

A. What does the code segment do? What does the code in line 10 do?

B. How would you implement the given functionality using an interrupt service routine.

C. You would like to generate two periodic pulse-width modulated (PWM) signals P1 and P2, with
frequency of 400 Hz (one period is 2.5 ms). Assume that an 2^20 Hz clock on SMCLK is used by TimerB.
Can you do this using TimerB? If yes, describe a TimerB configuration (content of control and data
registers) that will carry out signal generation? Note: use English and waveforms to describe your
solution.

P1

P2

 0ms 0.5ms 1.0ms 1.5ms 2ms 2.5ms

CPE 323 Module 09

Problem 2.

Consider the following code segment. Assume that processor clock in the active mode is set to
1,000,000 Hz. Assume that P3 is configured as output and initially P30UT, bit 5 is set to a logic
‘1’.
1. while(1) {

2. int i;

3. for(i = 2000; i>0; i--); // one loop iteration takes 5 clock cycles

4. P3OUT ^= BIT5; //

5. for (i = 1000; i>0; i--); // Delay

6. P3OUT |= BIT5; //

7. }

A. What does the code segment do assuming that P3.5 is configured as a digital output. You
may ignore delay needed to execute instructions in lines 4 and 6.

B. How would you implement functionality achieved by the code segment above using TimerB.
Port P3.5 is multiplexed with the output signal from the capture and compare block 4 of
TimerB. Give details. How would you initialize the system? What would you do in the main
loop? Assume the SMCLK is used which is 2^20 =1,048,576 Hz.

