CPE 323
MODULE 05
C Programming Language and MSP430 Assembly

Aleksandar Milenkovi¢

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module reviews C/C++ language for embedded systems and its relationship to MSP430
assembly language. Specifically, you will learn about the design flows for embedded software
using C programming language, data types, storage classes, and storage modifiers, and how
data is allocated and handled.

Objectives
Upon completion of this module learners will be able to:
e Apply a proper design flow for embedded software using C/C++ programming languages

e Read and comprehend functionality of programs written in C/C++ for embedded systems
e Design and write programs in C/C++ to solve specific tasks

Contents

1 Design FIOW USiNg C/CH+ SOUICE FIlES....cccuiiieiieecieeceiee ettt e et et eetee et evee e ereeeeaeeeenaeeens 2
2 MSP430 C/C++ Language Implementation: Data TYPeS.....cceeeceeeecieeeeieieeeiee e 4
I DF- 1 = WAL o Yot Lu o] o I oV T Y] L= 5
4 Global and Local Variables, Passing Parameters by Value/Reference.........ccccceevveeereeecnneennee. 9
5 Translation of High-Level Language CONSLrUCESuuvieeiiiiciiiiiiiee e 14
6 POINTErs iN CLANBUAEE ..coooeie it s e s s e e s e s e s e s e s e e s e e s e e e s e s e s e s e s e s e e e s e e e s eeesenenas 18
2 =5 (= o]] 1P 21

CPE 323 Module 05 © A. Milenkovié 1

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka

1 Design Flow Using C/C++ Source Files

In this module we will discuss how high-level language constructs, specifically those found in C
programming language, are translated into low-level MSP430 machine instructions. Embedded
software developers typically use C programming language when developing their software
solutions. In the previous module (MSP430 Assembly Language) we have discussed modern
software development environments (SDEs) that integrate editors, assembler, compiler, linker,
stand-alone simulator, embedded emulator or debugger, and flash programmer and you have
learned how to use them for developing assembly language programs.

Figure 1 shows a typical development flow using C/C++ marked by gray area and it is very
similar to the one discussed in Module 04. It starts from one or more C/C++ source files (with
extensions .c or .cpp). These files are translated into assembly program files using a C/C++
Compiler. Assembly codes are translated using an Assembler into object files. The object files
together with libraries are tied together by a Linker that produces an executable object file. The
executable file is then downloaded into a MSP430 device using a flash programmer. Finally the
target device executes the code. Below is a detailed description of all blocks from Figure 1,
including side branches of development flow dealing with libraries.

e The compiler accepts C/C++ source files and produces MSP430 assembly language
codes.

e The assembler translates assembly language files into machine language relocatable
object files.

e The linker combines relocatable object files into a single absolute executable object file.
As it creates the executable file, it performs relocation and resolves external references.
The linker accepts relocatable object files and object libraries as input.

e The archiver allows you to collect a group of files into a single archive file, called a
library. The archiver allows you to modify such libraries by deleting, replacing,
extracting, or adding members. One of the most useful applications of the archiver is
building a library of object files.

e The library-build utility automatically builds the run-time-support library if compiler and
linker options require a custom version of the library. The run-time-support libraries
contain the standard ISO C and C++ library functions, compiler-utility functions, floating-
point arithmetic functions, and C I/O functions that are supported by the compiler.

e The hex conversion utility converts an object file into other object formats. You can
download the converted file to an EPROM programmer.

e The absolute lister accepts linked object files as input and creates .abs files as output.
You can assemble these .abs files to produce a listing that contains absolute, rather than
relative, addresses. Without the absolute lister, producing such a listing would be
tedious and would require many manual operations.

e The cross-reference lister uses object files to produce a cross-reference listing showing
symbols, their definitions, and their references in the linked source files.

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 2

e The C++ name demangler is a debugging aid that converts names mangled by the
compiler back to their original names as declared in the C++ source code. As shown in
Figure 1-1, you can use the C++ name demangler on the assembly file that is output by
the compiler; you can also use this utility on the assembler listing file and the linker map

file.
e The disassembler decodes object files to show the assembly instructions that they
represent.
C/C++
source
files
Macro
source CiC++
files compiler
II
k
C/C++ name
Assembler demangling
source utility
Macro
library Assembler

Object Li br:tri}iri -‘build Del::glg ing
files y
! L
M Run-time-
Librﬂr}i Df Suppnrt
object library
files
I 1

Executable
object file

Hex-conversion

utility

EFROM

Cross-reference Object file
programmer lister utilities

Absolute lister

Figure 1. Design flow from C/C++ files to machine code.

CPE 323 Module 05 © A. Milenkovic 3

2 MSP430 C/C++ Language Implementation: Data Types

header file limits.h. All single-byte data can be stored at any address in address space, even or
odd (alignment is 8). All multi-byte data are stored at even address (alignment is 16).

Table 1. MSP430 C/C++ Data Types.

_ Minimum Maximum
signedchar 8 8 Binary 128 127
_ 8 8 AsCll 0 255
Cunsigned char 8 8 Binary 0 255
_ 8 8 Binary 0 (false) 1 (true)
_ 8 8 Binary 0 (false) 1 (true)
_ 8 8 Binary 0 (false) 1 (true)
_ 16 16 2s complement -32,768 32,767
‘unsignedshort 16 16 Binary 0 65,535
_ 16 16 2’s complement -32,768 32,767
‘unsignedint 16 16 Binary 0 65,535
_ 32 16 2’s complement -2,147,483,648 2,147,483,647
_ 32 16 Binary 0 4,294,967,295
- 64 16 2’s complement -9,223,372,036, 9,223,372,036,
854,775,808 854,775,807
- 64 16 Binary 0 18,446,744,073,
709,551,615
_ varies 16 2’s complement varies varies
_ 32 16 IEEE 32-bit 1.175494e-38 3.40282346e+38
_ 64 16 |EEE 64-bit 2.22507385e-308 1.79769313e+308

CPE 323 MSP430 C Lang. & Assembly

© A. Milenkovic

https://www.ti.com/lit/pdf/SLAU132Y

(R

RPOWOWOLONOOUTE, WN P

MSP430 devices support multiple data and code memory models. The code and data model
affects the size, alighnment, and storage space used for function pointers, data pointers, the
size_t type, and ptrdiff_t type. For large code and data models (address space is 2%° bytes)
pointers are always stored in units with a size of a power of 2; thus, 20-bit code and data
pointers are stored in 32-bits. All multi-byte data are aligned to even addresses (alignment is
16). In this course all assignments will typically use small code and small data model, i.e., the
baseline MSP430 ISA is will suffice to implement them.

Table 2. Data Sizes for MSP430 Pointers

_ function pointer 16 16 16
_ function pointer 20 32 16
_ data pointer 16 16 16
smalldatamodel | size_t 16 16 16
small datamodel | ptrdiff_t 16 16 16
_ data pointer 20 32 16
large datamodel size_t 2 32 16
large datamodel | ptrdiff_t 2 32 16

Things to remember 2-1. C/C++ common data types and code/data models.

Understand common data types in C/C++ and MSP430 code and data models.

3 Data Allocation Examples

Let us consider a C program that includes several declarations with scalar data types and
several C statements that initialize the data as shown in Code 1. The program does not result in
any useful output (either direct or indirect), so with optimization switches on, the compiler may
entirely eliminate the code. If you turn the optimizations off and in the assembler options ask
for assembly code to be generated, you will get an assembler file (CDataAllocationDemo.asm)
as shown in Code 2.

/**

* File: (CDataAllocationDemo.c (C Data Allocation Demo Program)
Board: MSP-EXP430F5529LP Development Kit

Description: Program illustrates how C compiler allocates space in memory

* X ¥ ¥ *

* Author: Aleksandar Milenkovic, milenkovic@computer.org

* Date: September 2018
stk ok ok stk sk skt sk ok stk ok ok sk skt ok sk stk ok sk ok kol ok sk stk sk sk stk skl ok sk stk skt stk ko sk skok ok ok

CPE 323 Module 05 © A. Milenkovic 5

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

OCooONOTUTPEWNE

#include <msp430.h>

int main(void) {
int i1, i2;
unsigned int uil;
short int sinti1;
long int lint2;
int a[4];
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
il = 2; i2 = -2;
uil=65535;
sint1=127;
1lint2=128243;
a[e]=20; a[1]=9;
return 0;

}

Code 1. C program that declares several scalar data types (CDataAllocationDemo.c).

The commented line in the assembly file (starting with “;”) contain a detailed compiler-
generated commentary as well as C program statements inter-listed with assembly instructions.
Thus, before the main program entry label (line 32), the compiler lists registers affected by this
program (registers SP, SR, and R12) as well as the stack frame occupying 20 bytes. Going
through the list of variables in the C code, the integer variables i1, i2 require 4 bytes (2
variables, 2 bytes each), uil requires 1x2 = 2 bytes, sintl requires 1x2 bytes, lint2 requires
1x4=4 bytes, and integer array a requires 4x2=8 bytes, for the total of 20 bytes. The first
instruction in line 34 reserves 20 bytes on the top of the stack by executing SUB.W #20, SP.
After stopping the watchdog timer, a series of machines instructions initializes variables. By
working line-by-line we can determine an exact order of variables on the stack. Table 3
illustrates the content of the stack once all variables are allocated and initialized. Its layout is
inferred by analyzing the assembly instructions from Code 2. At the end of the program a
constant O is placed into R12 (return 0), the stack frame is freed (which instruction is used for
that?), and a RET instruction executed.

o skok ok ko ok ok ok ok ok ok ok o ok oK oK ok ok ok ok ok ok oK ok ok ok sk sk o oK oK ok ok ok sk ok ok ok ok ok ok ok ok ok ok oK ok ok ok ok sk ok ok oK ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok K
J

;* MSP430 G3 C/C++ Codegen PC
v20.2.2.LTS *
;* Date/Time created: Sat Sep 26 15:08:21 2020 *

5 okt ke ke ok ok ke kol stk stk ok stk ok stk skl stk ok ok skl skl stk ok ok stk okt sl stk okl skt ok skt ok skl ok

.compiler_opts --abi=eabi --diag_wrap=off --hll_source=on --
mem_model:code=small --mem_model:data=small --object_format=elf --
silicon_errata=CPU21 --silicon_errata=CPU22 --silicon_errata=CPU40 --
silicon_version=msp --symdebug:none

; C:\ti\ccs1010\ccs\tools\compiler\ti-cgt-msp430 20.2.2.LTS\bin\acpia430.exe -
@C:\\Users\\milenka\\AppData\\Local\\Temp\\{1ABO6A9D-E49D-40E4-80D9-D2234B6AOF33}
.sect ".text:main"
.clink
.global main

;24 | int main(void) {
;25 | int i1, i2;

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 6

| unsigned int uil;

| short int sinti;
; 28 | long int lint2;
; |

|

;29 int a[4];
; 30 | // Stop watchdog timer to prevent time out reset
; __

5 kot skt e ke kot ks ok ks ks sk ke sk sk ke sk ks ks sk ok sk kst sk ok sk ke ks sk ks ko ek sk sk sk ok o

;¥ FUNCTION NAME: main *
H *
e Regs Modified : SP,SR,ril12 *
e Regs Used : SP,SR,r12 *

k

3 * Local Frame Size : © Args + 20 Auto + @ Save = 20 byte

5 KRSk o ks ok ok sk ok sk ok sk sk ok sk sk sk sk ok sk sk ok sk ok sk sk ks ok sk ko ok sk ok sk ok ok ok ok o

main
;* __ *

SUB.W #20,SP 5 [

)‘ __
; 31 | WDTCTL = WDTPW + WDTHOLD;
; __

MOV . W #23168,&8WDTCTL+0 ;5 [1 |31
; __
;32 | i1 = 2; i2 = -2;

)‘ __

MOV . W #2,12(SP) ;5 [1 132]

MOV . W #65534,14(SP) ;5 [1 132]

; __
;5 33 | uil=65535;
)‘ __

MOV . W #65535,16(SP) ;5 [1 133
; __
; 34 | sint1=127;

; __

MOV . W #127,18(SP) ;5 [1 134
; __
;35 | 1int2=128243;

; __

MOV . W #62707,8(SP) ;5 [1 135

MOV . W #1,10(SP) ;5 [1 135]

; __
; 36 | a[@]=20; a[1]=9;
; __

MOV . W #20,0(SP) ;5 [1 136

MOV . W #9,2(SP) ;5 [1 136
; __
; 37 | return 0;

; __

MOV. W #0,r12 5 [1137]

ADD.W #20,SP ;5 [

RET ;5 [

5[]
5***
;* UNDEFINED EXTERNAL REFERENCES *
;***

.global WDTCTL

CPE 323 Module 05 © A. Milenkovic

73
74
75
76
77
78
79
80
81
82
83
84
85

o 3K 3K 3k 3k 3k 3k 3K 3k 3k 3k 3k 3k Sk 5k 5k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 5k 5k %k 3k 3k 3k 3k 3k >k >k 3k 3k 5k 5k %k >k 3k 3k 3k 5k 5k >k 3k 3k 5k 3k 5k >k 3k 3k 3k 5k 5k >k 3k 3k 5k 3k 5k %k %k 3k 3k 5k >k %k %k %k k >k k %k %
)

;* BUILD ATTRIBUTES *
5 ok Rk sk ok ke ok ok ke kol ok stk ok ok ok ok ok ok ok ok kol skl stk ok ok stk okl ok ok skl kR sk Rk kR ok skl ok

.battr "TI", Tag File, 1, Tag_LPM_INFO(1)

.battr "TI", Tag File, 1,
Tag_PORTS_INIT_INFO("012345678901ABCDEFGHIJ]000000000000111100000000000000000000000000
e0")

.battr "TI", Tag File, 1, Tag_LEA_INFO(1)

.battr "TI", Tag File, 1, Tag HW_MPY32_INFO(2)

.battr "TI", Tag File, 1, Tag HW_MPY_ISR_INFO(1)

.battr "TI", Tag File, 1, Tag HW_MPY_INLINE_INFO(1)

.battr "mspabi", Tag File, 1, Tag_enum_size(3)

Code 2. Assembly code produced by the C compiler (CDataAllocationDemo.asm).

Table 3. Variables allocated on the program stack for CDataAllocationDemo.c when executed on
MSP430F5529.

Address Memory[15:0] Offset relative Variable

[hex] to current SP
o0x4400 --- Original Top of the Stack
OxX43FE OXO00FF 18 sintl
Ox43FC OXFFFF 16 uil
Ox43FA OXFFFE 14 i2
Ox43F8 0x0002 12 il
0x43F6 | 0x0001 10 lint2 (upper)
Ox43F4 OxFAF3 8 lint2 (lower)
Ox43F2 - 6 a[3]
Ox43F0 - 4 a[2]
OX43EE 0x0009 2 a[1]
Ox43EC 0x0014 @ <= SP a[o]

The code executed on MSP430F5529 with small code and data model (address space is 64 KB)
will have the original top of the stack placed right above the physical RAM memory (address is
0x4400). Please note that from Table 3 you can determine the addresses of these variables in
memory. Thus, the base address of the long integer lint2 is 0x43F4. Please note that though this
variable occupies two words at address 0x43F4 (contains the lower 16 bits of the variable) and
0x43F6 (contains the upper 16 bits of the variable), the base address is 0x43F4 (address of the
first byte a multi-byte object occupies). Also, you can see the little-endian placement policy in
action. Next, please note how integer array a is placed in memory. Expectedly, the element
with index 0, a[0], is placed at the address 0x43EC, the element with index 1, a[1], is placed at
the next word address 0x43EE, the element with index 2, a[2], is placed at the address 0x43FO0,
and the element with index 3, a[3], is placed at the address 0x43F2.

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 8

The C programming language supports storage class specifiers as shown in Table 4. We have
already seen in action the auto specifier: all variables in the CDataAllocationDemo.c were
deallocated before exiting the main function. Although the register specifier is also automatic,
the compiler did not allocate any of the variables in general-purpose registers. Try to modify
the CDataAllocationDemo.c program, line 15 as follows: register int i1, i2. Analyze the
corresponding assembly code. Is the assembly code different? If yes, what are the differences?
Also, changing optimization levels in the C/C++ compiler may also result in different data
allocations.

Table 4. C Storage Class Specifiers

Variable is no longer required once a block has been left; default.

Hint to compiler to allocate a variable in a register; typically automatic, but there are not
guarantees that compiler will do so. Such variables cannot be accessed by means of
pointers.

Allows a local variable to retain its value when a block is reentered; initialized once by the
compiler.

Indicates that the variables is defined outside the current block

Table 5 shows C storage class modifiers with their description. Type conversions are dealing
with C statements that perform operations on variables with different data types. E.g., what
happens when you have an integer variable (2 bytes) that receives a value of a long integer (4
bytes)? C programming language typically allows automatic type conversions, but they may not
always be a safe thing to use, especially when our understanding on how these conversions
work does not match particular compiler implementations. Thus, using explicit type conversions
is strongly encouraged (and many modern compilers will actually force you to do so).

Table 5. C Storage Class Modifiers

Placing keyword volatile in front of the declaration of a variable indicates that it can be
changed externally (e.g., a location is associated with a peripheral). The compiler will
never put such variables in processor registers.

Indicates that the variable may not be changed during program execution. Such
variables cannot be changed unintentionally in a program, but can be changed
externally as a result of an 1/0 operation

Conversion between different data types are either done automatically or explicitly
using cast operations.

Things to remember 3-1. C/C++ storage class specifiers and modifiers.

CPE 323 Module 05 © A. Milenkovic

Vo]

OCooNOTUTPWN R

NNNNNNNNNR R R R R R R R R
ONOUVBERWNROWLONITUNEWNRLO

Understand storage class specifiers in C (auto, register, static, extern) and modifiers (volatile,
const). Be aware of implicit type conversions — it is always better to handle type conversions
explicitly.

4 Global and Local Variables, Passing Parameters by Value/Reference

Local variables are defined within functions or code sub-blocks within a function. Their scope is
the particular function they are defined in (or the sub-block of a function) and cannot be used
from outside the function. They are normally lost when a return from the function is made (an
exception are local variable defined with the static modifier). Global variables are defined
outside functions. They can be accessed both from inside and outside a function.

To illustrate global and local variables, we consider a C program shown in Code 3. In this
program we first declare a global variable gi of type int initialized to 5. Inside the main, a local
variable /i1 of type int, as well as two char variables ch1 and ch2 are declared. The main
function calls two functions Ic2uc and plus10. The prototype of the Ic2uc function indicates that
this function accepts a pointer to a character as an input and returns a character. The prototype
of the plus10 function indicates that it accepts one integer input parameter (int i) and returns
an integer.

[A KKK KK KKK K SRR K R KKK KR KK KR KKK SRR SK R K K K KR KSR R KK KK K SR KR K SRR K K K KR K Sk Kk K o

* File: GLVarsFunctionsDemo.c (Illustrates global, local variables, function
calls)
*

* Board: MSP-EXP430F5529LP Development Kit

*

* Description: Program illustrates how C compiler allocates space in memory
*

*

Author: Aleksandar Milenkovic, milenkovic@computer.org
* Date: September 2020
sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk s s s s sk s sk s sk skttt skofokokok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk s sk s s sk s s sk sk sk sk ks ok
#include <msp430.h>
#include <stdio.h>

int gi = 5; // global variable, initialized to 5

char 1lc2uc(char *pc); // function prototype
int plusle(int i); // function prototype

void main(void) {
int 1i1 = 2; // local var, 1lil=2
char chl = 'a'; // local var, chil='a'
char ch2; // local var, ch2 not initialized

// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;

ch2 = 1c2uc(&chl); // call lc2uc function

1i1 = 1li1 + gi; // update 1i1l

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 10

1lil = plusie(1lil); // call plusl@ function
printf("1il=%d, gi=%d\n", 1il, gi);
printf("chl=%c, ch2=%c\n", chl, ch2);

}
char 1lc2uc(char *pc) {

char tc;

tc = *pc;

if ((tc >= 'a') && (tc <= "z")) tc = tc + ('A" - 'a'); // convert lowercase to
uppercase

*pc = tc; //

return (tc+1);

}

int plusle(int i) {
i=1+ 10;
gi = gi + 10;
return 20;

}

Code 3. C program illustrating global/local variables and function calls (GLVarsFunctionsDemo.c).

The function Ic2uc declares a local variable tc of type char, which is initialized to take the value
of a character passed as an input parameter passed by a reference (the Ic2uc gets a pointer to
the input parameter), tc = *pc. The code inside this function converts a lower case character
into its upper case counterpart. Using the statement *pc = tc, the variable declared in a caller
is updated by the new value. This is an example of passing parameters by reference, where
statements inside the function have global effects. The function then returns (tc+1). The
function plus10 takes an input parameter (int i) passed by value, adds 10 to the input
parameter, adds 10 to the global variable gi, and returns constant 20.

Inline 27, ch2 = 1c2uc(&chl), we call Ic2uc and pass the address of the character ch1. Thus,
the Ic2uc is going to update chli, so its original value ‘a’ is updated with its uppercase
counterpart ‘A’. In addition, /c2uc returns (tc+1), meaning that ch2 gets 'B’. In line 28, 1i1 =
lil+gi, a new value of the variable /i1 is determined, li1=2+5=7. Next, in line 29, 1i1 =
plus10(1il), a copy of /i1 is passed into the plus10 function. A copy of this variable is then
increased by 10, the global variable gi is increased by 10, and the function returns constant 20.
Thus, lil is going to have value 20 (please note that actions on the local copy inside the function
plus10 do not have global effects). You should see the following output on the console:

1lil1=20, gi=15
chl=A, ch2=B

Code 4 shows the interlisted assembly code created by the compiler for
GLVarsFunctionsDemo.c. Please note how the global variable gi is defined in the initialized data
section of the assembly program. As such, it is visible to all functions. Analyze assembly code for
the plus10 function (lines 32-38). How does it receive its input parameter? What happens with

a C statement adding 10 to a local copy passed into the plus10 function? How does the
compiler pass the parameter into the p/us10 function? How does the compiler pass the
parameter into Ic2uc?

CPE 323 Module 05 © A. Milenkovi¢ 11

[
RPOWLVLONOUTAWN K

N R R R R R R
cwvwoo~NOTULTh~WN

WNDNNNNNNNN
QLVWOLONOTULIA_WN P

www
WN =

w w
(S RSN

36

5 KRSk o ks ok ok sk ok sk ok Sk sk ok sk sk sk ok sk ok sk sk ok sk ok ks sk sk ks ok sk ko ook ok ook ok ok ok ok ook

;* MSP430 G3 C/C++ Codegen PC
v20.2.2.LTS *
;* Date/Time created: Sat Sep 26 23:43:47 2020 *

;**

.compiler_opts --abi=eabi --diag_wrap=off --hll_source=on --
mem_model:code=small --mem_model:data=small --object_format=elf --
silicon_errata=CPU21 --silicon_errata=CPU22 --silicon_errata=CPU23 --
silicon_errata=CPU40 --silicon_version=msp --symdebug:none

.global gi
.data
.align 2
.elfsym gi,SYM_SIZE(2)
gi:
.bits 0x5,16
; 81 @60
5 C:\ti\ccs1010\ccs\tools\compiler\ti-cgt-msp430 20.2.2.LTS\bin\opt430.exe

C:\\Users\\milenka\\AppData\\Local\\Temp\\{39F3COAC-3032-4CCC-AAC6-6D4CECABDIDE}
C:\\Users\\milenka\\AppData\\Local\\Temp\\{8B4E6015-E28B-4E52-808E-80DCBFE96C48}

.sect ".text:plusie"
.clink
.global plusile

5 kot skt e ke sk ok ks ks ks ke sk sk ke sk ks ks sk ok sk kst sk ks sk s ks sk ks ko sk sk sk sk ok o

;*¥ FUNCTION NAME: plusle *
;* *
e Regs Modified : SP,SR,rl12 *
e Regs Used : SP,SR,ri12 *

*

3 Local Frame Size : © Args + O Auto + © Save = 0 byte
;***

3KF 43 o gi += 10;
ADD.W #10,8gi+0 ; [1143]
Y e e T return 20;
MOV . W #20,r12 5 [1 144]
RET 5 [
5 [
.sect ".text:lc2uc"
.clink
.global 1c2uc

5 kR sk o bk sk ok ks ok sk ok s ko sk ok sk s sk ks ok sk sk sk sk ok sk s ks sk ks ko o sk ok sk ok ok ko o

;¥ FUNCTION NAME: lc2uc *
;* *
e Regs Modified : SP,SR,r12,r15 *
e Regs Used : SP,SR,r12,r15 *

*

3 Local Frame Size : © Args + © Auto + © Save = 0 byte
;***

lc2uc:

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢

12

106
107
108

MOV.B @r12,ris 5 [1 1351
CMP.B #97,r15 5 [1135]
Lo $CceL1 5 [1 1351
5 [1135]
;* __ *
CMP.B #123,r15 5 [1135]
JHS $CcsL 5 [1135]
5 [1135]
;* __ *
3FF 36 m-mm e tc -= 32;
SUB.B #32,r15 5 [1 136]
;* __ *
$CHL1
e L EELEE L L LR g3
3¥F 37 memmm e e *pc = tc;
MOV.B ri5,0(r12) ;5 [1 1371
3FF 38 mmmm e return (unsigned char)(tc+l);
MOV. W #1,r12 5 [1138]
ADD.B r15,r12 5 [1138]
RET ;[
5[]
.sect ".text:main"
.clink
.global main

o 5k ok ok ko o o oK oK oK ok ok o o K oK oK oK ok 3k ok K oK oK oK ok ok 3k ko K oK oK oK 3k ko ok oK oK oK ok ok ok o K oK oK oK ok ok ok o ok o oK oK ok ok sk ok ok K oK oK Kk ok ok ok K K Kk ok ko

3
;¥ FUNCTION NAME: main

*
)* *
e Regs Modified : SP,SR,rl10,rl1l1,rl12,r13,r14,r15 *
Ha Regs Used : SP,SR,r10,r11,r12,r13,r14,r15 *
Ha Local Frame Size : 6 Args + 2 Auto + 2 Save = 10 byte *
;***
main
;* __ *

PUSH.W r1e 5 11

SUB.W #8,SP 5 11
3¥*¥ 2] - - chl = 97u;

MOV.B #97,6(SP) 5 [1 121
3F* 2D e oo WDTCTL = 23168u;

MOV. W #23168,8WDTCTL+0 5 [1 125]
3EF 26 mmmmmmm e ch2 = 1lc2uc(&chl);

MOV . W SP,r12 5 [1 |26]

ADD. W #6,r12 5 [1 |26]

CALL #lc2uc 5 [1 126]

5 [1 126]

MOV . W ri2,r10 5 [1 126]
3K 27 e - 1li1l = gi+2;
GFF 28 mmm e 1i1 = plusieo(lil);

CALL #plus1o 5 [1 128]

5 [1128]

3FF 29 mmmm e printf[VA]("1il=%d, gi=%d\n", 1il, gi);

MOV . W #CSL1+0,0(SP) 5 [1 129]

MOV . W r12,2(SP) ;5 [1 129

MOV . W &gi+0,4(SP) ;5 [1 129

CALL #printf 5 [1 129]

CPE 323 Module 05 © A. Milenkovié

13

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

5 [1 129]
P T SR printf[VA]("chl=%c, ch2=%c\n", (int)chl, (int)ch2);
MOV . W #CSL2+0,0(SP) ;5 [1 130
MOV.B 6(SP),ri1s 5 [1 130]
MOV. W r15,2(SP) 5 [1 130]
MOV .B r10,r10 5 [1 |30]
MOV . W r10,4(SP) 5 [1 |30]
CALL #printf 5 [1 130]
5 [1 130]
[U U U U return;
ADD. W #8,SP HEN
POP rie HEN
RET 5 [

5 KRSk o ks ok ok sk ok sk ok ok ook ok sk sk o sk ok sk ok sk sk ok sk ok ks sk sk ks ok sk ko ok sk ok ook ok ok ok ok ook

;¥ STRINGS *
5 kot skt ek ke kot ks ks ks sk ke sk ke sk ke sk ks ks sk ok sk ke sk sk ks sk s ks sk ks ko sk ok sk e sk ok ook

.sect ".const:.string"
.align 2

CSL1: .string "1il=%d, gi=%d",10,0
.align 2

CSL2: .string "chl=%c, ch2=%c",10,0

5 KR SRR S sk ok o K ok ok S K R Sk o Sk Sk R S K SR R sk SRk ok Sk ok sk o Sk sk sk ko ook ok sk ok ok ok ok o

;* UNDEFINED EXTERNAL REFERENCES *
;***
.global WDTCTL
.global printf

5 KR SRR S o ok ok oo K ok R SR K R SRk R SRk sk R S K S K ok sk R Sk ok Sk ok sk Sk ks ok sk ok ook ok ok ok ok ok ook

;* BUILD ATTRIBUTES *
5 RO R Rk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kol okl kol ok ok kol ok skl kol okl kol ok sk kol ok sk ok kok

.battr "TI", Tag File, 1, Tag_LPM_INFO(1)

.battr "TI", Tag File, 1,
Tag_PORTS_INIT_INFO("©12345678901ABCDEFGHIJ000000000000111100000000000000000000000000
00")

.battr "TI", Tag File, 1, Tag_LEA_INFO(1)

.battr "TI", Tag File, 1, Tag HW_MPY32_INFO(2)

.battr "TI", Tag File, 1, Tag HW_MPY_ISR_INFO(1)

.battr "TI", Tag_File, 1, Tag_HW_MPY_INLINE_INFO(1)

.battr "mspabi", Tag_File, 1, Tag_enum_size(3)

Code 4. Assembly program created by the compiler by translating GLVarsFunctionsDemo.c.

Things to remember 4-1. Local vs. global variables, passing parameters by
value vs. passing parameters by reference.

Understand difference between global and local variables. Understand the difference
between passing parameters to subroutine by value and by reference and implications of
each.

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 14

CooNOTUTAWNE

5 Translation of High-Level Language Constructs

In this section we will take a look how the Tl C compiler translates high-level language
constructs like a for loop and a switch statement into assembly code. Let us consider a source
code shown in Code 5. We have a for loop that sums up first 10 unsigned integers and displays
the result on port PB, which is a combination of ports P3 (lower 8 bits) and P4 (upper 8 bits).
Next, we read an input port P1 (P1IN register), and depending on its input value, assign P20UT
one of 3 possible values in a switch statement. Please note that MSP430 parallel ports are 8-bit
long and consist of PxOUT (output register), PxIN (input register), and PxDIR (direction register).
On power-up all parallel ports are configured as inputs (PxDIR=0x00), meaning that the state of
physical port pins is latched in the corresponding PxIN register — if an individual port pin is
grounded the corresponding bit in the PxIN register is set to a logic ‘0’; if the port pinison a
high voltage, the corresponding bit in the PxIN register is set to a logic ‘1’. Please note that for
ports P3 and P4, their corresponding P3DIR and P4DIR are not set to OxFF, so the value written
in registers P30OUT and P4OUT will not be visible on physical port pins.

KK oK o K o o Ko K o K oK K o K R K o KoK K K R KK K K K K KK K KR KK KK KK Rk ko

* File: C2ASMDemo.c (Illustrates translation of HLL constructs into assembly)
Board: MSP-EXP430F5529LP Development Kit

Description: Program illustrates how the C compiler translates high-level
language constructs into assembly code

Clocks: ACLK = 32.768kHz, MCLK = SMCLK = default DCO
MSP430F5529

| |
| |
-|RST |
| |
| |

¥ X X X X X X XK X X X X ¥ X ¥ X ¥

Author: Aleksandar Milenkovic, milenkovic@computer.org

* Date: September 2020
sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s s s s sk sk sk sk sk sk sttt stofokokok ok ook sk sk sk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk skl s sk s s sk s sk sk sk sk sk sk sk

#include <msp430.h>

int main(void) {
WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer

unsigned int i = O;
unsigned char ch;

unsigned int sum = 0;

for(i=0; i<10; i++) sum += i;
PBOUT = sum; // PB port includes P3 (lower byte) and P4 (upper byte)

ch=P1IN;

CPE 323 Module 05 © A. Milenkovi¢ 15

37
39
40
41

43

OCooNOTUTEWN K

WWWWWNNNNNNNNNNRRPRRPRRRERRRRER
PRWUNROWLVONOUVRWNROLVLOENOULIAWNER O

switch(ch) {
case 0: P20UT=0x01; break;
case 1: P20UT=0x02; break;
default: P20UT=0x80;

}

return 0;
}
Code 5. C2ASM.c Demo Program.

Code 6 shows the assembly program generated by the C compiler for the program shown in
Code 5. Analyze the program and answer the following questions: (a) How does the compiler
handle variables i and sum? (b) How does the compiler implement the for loop (hint: look at
lines 43-60)? (c) How does the compiler test whether the input variable ch is equal to 0 or 1?
Please note JHS assembly mnemonic is synonym with JC (jump if carry). Why do you think that
instruction is used? Go to the MSP430 Compiler Optimization settings in the Project Properties
and select Local Optimizations. Analyze the newly generated assembly code? How is the new
code different from the one shown in Code 6?

5 KR SRR St sk ok o K Sk R SR K S K R SR K sk sk K s K R Sk K SR R SRk ok sk ok SRk sk sk ok Sk K Sk ok ok o

;¥ MSP430 G3 C/C++ Codegen PC
v20.2.2.LTS *
;¥ Date/Time created: Sat Sep 26 19:03:11 2020 *

;**
.compiler_opts --abi=eabi --diag_wrap=off --hll source=on --
mem_model:code=small --mem_model:data=small --object_format=elf --
silicon_errata=CPU21 --silicon_errata=CPU22 --silicon_errata=CPU23 --
silicon_errata=CPU4@ --silicon_version=msp --symdebug:none
; C:\ti\ccs1010\ccs\tools\compiler\ti-cgt-msp430_20.2.2.LTS\bin\opt430.exe
C:\\Users\\milenka\\AppData\\Local\\Temp\\{4018CF22-9B41-4BAB-9D0OA-4D4112BCA31A}
C:\\Users\\milenka\\AppData\\Local\\Temp\\{4744528D-4FD2-4348-BDEB-14CCCD4AOFC3}
.sect ".text:main"
.clink
.global main

,' __
; 18 | int main(void) {

)

;***

;¥ FUNCTION NAME: main *
5* *
Ha Regs Modified : SP,SR,r12,r14,r15 *
e Regs Used : SP,SR,rl12,r14,r15 *
3% Local Frame Size : © Args + © Auto + © Save = 0 byte *
;***
main

e K L e e e e e e e e e e e e e *
B

; __

; 19 | WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer

; 21 | unsigned int i = @;
;5 22 | unsigned char ch;

MOV. W #23168, 8WDTCTL+0 5 [1 119]

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 16

3
;23 | unsigned int sum = Q;
3

MOV . W #0,r14 5 [0 123]
3
;25 | for(i=0; i<1@; i++) sum += i;
3

MOV . W #0,r15 5 [1 125]

CMP.W #10,r15 5 [1125]

JHS $CL2 5 [1 125]

5 [1 125]

;* __
;¥ BEGIN LOOP CL1
o %
3
3 * Loop source line : 25
M Loop closing brace source line : 25
3 * Known Minimum Trip Count 01
3 * Known Maximum Trip Count : 4294967295
3 * Known Max Trip Count Factor 1
;* __
$CHL1

ADD.W ri5,ri4 ;5 [1 25|

ADD.W #1,r15 5 [1 125]

CMP. W #10,r15 5 [1 125]

jLo $CeLl 5 [1125]

5 [1 125]

;* __
$CHL2
3

; 26 | PBOUT = sum; // PB port includes P3 (lower byte) and P4 (upper byte)

; _____________________________________
MOV. W r14,8&PBOUT+0
; _____________________________________
; 28 | ch=P1IN;
; _____________________________________
MOV.B &PAIN_L+0,r15
§
;29 | switch(ch) {
; 30 | case @: P20UT=0x01; break;
; 31 | case 1: P20UT=0x02; break;
§ e
MOV.B rl5,rl15
TST.W ri5
JEQ $C3LA
e K e e e e e e e —————————— -
B
SUB.W #1,r15
JEQ $CHL3
*

MOV.B #128,&PA0OUT_H+0
MP CL5

5 [1 126]
; [1 128]
5 [1 129]
5 [1129]
5 [1 129]
5 [1 129]
5 [1 129]
5 [1 129]
5 [1 129]
5 [1132]
5 [1133]

CPE 323 Module 05 © A. Milenkovic

17

5 [1133]
;* __ k3
CL3
MOV.B #2,&PAOUT_H+0 ; [1 131]
IMP CL5 ; [1 131]
5 [1 131]
;* __ B3
CcLA
MOV.B #1,&PAOUT_H+0 5 [1 130]
o K L L L o o o o o o e e e e e e e e E3
)
CL5

MOV. W #0,r12 5 [1 134]

RET 5 [

5 [
;***
;* UNDEFINED EXTERNAL REFERENCES *
5***

.global PAIN_L
.global PAOUT_H
.global PBOUT
.global WDTCTL

5 kot skt ek ke kot ks ks ks sk ko sk kol sk ks sk ks ks sk ok sk ke sk sk ke sk s ks sk ks ko sk ok sk e sk ok ook

;* BUILD ATTRIBUTES *

5 KR SRR SR ok ok ook Sk R SR K R Sk R SRk sk S K S K R sk R Sk ok Sk ok sk Sk sk sk ok ook ok sk ok ok ok ook

.battr "TI", Tag File, 1, Tag_LPM_INFO(1)

.battr "TI", Tag_File, 1,
Tag_PORTS_INIT_INFO("012345678901ABCDEFGHIJ]000000000000111100000000000000000000000000
e0")

.battr "TI", Tag File, 1, Tag_ LEA_INFO(1)

.battr "TI", Tag File, 1, Tag HW_MPY32_INFO(2)

.battr "TI", Tag_File, 1, Tag_HW_MPY_ISR_INFO(1)

.battr "TI", Tag_File, 1, Tag_HW_MPY_INLINE_INFO(1)

.battr "mspabi", Tag File, 1, Tag_enum_size(3)

Code 6. Compiler-generated assembly code for C2ZASM.c Demo Program.

6 Pointersin C Language

Data pointers in C are variables that contain an address of an object of certain type. Let us
consider a code snippet shown in Code 7. We declare a number of variables of different types.
They all have a modifier volatile that will force the compiler to allocate them in the main
memory rather than any of the general-purpose registers. For simplicity we are going to assume
that SP initially points to 0x4400. In addition, we are going to assume that the variables are
allocated on the stack in the order of appearance in the program (please note that we have
already seen that the compiler usually does not do that, rather it has its own policy regarding
ordering data on the stack).

int main(void) {

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 18

[

RPOWLWOLONOOULIARWN

volatile unsigned int a = 4, b = 2;

volatile long int c = -4, d = 2;

volatile char mych]4] = {‘4°, 3°, 2°, ‘1’};
volatile long int *pli = &d;

volatile int *pi = &b;

pli = pli + 1;
pi = pi - 6;
*pi = a + *pi;

[

Code 7. Pointers Demo Code.

Table 6 illustrates the content of stack once all variables are allocated and initialized (lines 1-6
in Code 7). Line 5 declares a variable with the name pli of type “pointer to a long int” and
initializes it with the address of the long int variable d. Please note that in this example we
assume the small data model — address space is 64KB and pointers are 16-bit long. Thus, to
allocate space for pli one word is used and its initial value is the address of the variable d. In our
case it is 0x43F4 (the base address of d). Similarly, line 6 declares a variable with the name pi of
type “point to an int” and initializes with the address of variable b. Again, the size of variable pi
is the size of the address (one word), and the the address of b is 0x43FC.

Table 6. Variables allocated on the program stack for example in Code 7 after lines 1-6 are carried out.

Address Memory[15:0] Offset relative Variable
[hex] to current SP

Original Top of the Stack
0x0004 18 a

0x0002 16 b

OxFFFF 14 ¢, upper word
OxFFFC 12 ¢, lower word
0x0000 10 d, upper word
0x0002 8 d, lower word
0x3132 6 mych[3], mych([2]
0x3334 4 mych[1], mych[0]
Ox43F2 2 pli

0x43FC 0<=SP pi

Let us now consider C statement is lines 8-10. In line 8, pli = pli + 1, the pointer pli is
incremented by 1. The meaning of this statement in Cis “increment the pointer so it points to
the next object of the declared type.” As the size of the long int type is 4 bytes, in practice we
want to add 1x4=4 bytes to the current value of pli. Thus the statement in line 8 can be
translated into assembly as follows:

ADD.W #4, 2(SP) ; move to the next element of type long int

CPE 323 Module 05 © A. Milenkovic 19

What if we have a statement pli = pli + 4? In this case we will say pli is of type long int, the size
of long int is 4 bytes, thus, we want to add 4x4=16 bytes to the current value of pli. As you can
see pointers are blind — they see entire address space as a collection of objects of their type.
Thus, if original pli points to an element of a long integer array with index i, say lia[i], after
adding 4 to pli, it will point to an element of the long integer array with index i+4.

In line 9, pi = pi — 6, we decrement 6 from pi. The variable pi is declared as a pointer to int and
the sizeof(int)=2 bytes. Thus, this statement will subtract 6x2=12 from the current value of pi,
thus the new value of pi is 0x43FC-0x000C = 0x43FO0. This way, we have pi to point to a location
where we originally have the first two characters of mych. The equivalent assembly language
statement is as follows:

SUB.W #12, @(SP) ; move back for 6 elements of type int

In line 10, we have *pi = a + *pi. The expression *pi indicates an integer variable reached
through the pointer pi. The statement says, “add the variable a to the variable the pointer pi is
pointing to and store the result of addition back to the variable the pointer pi is pointing to.” In
our example, we will have the following:

0x3334 ; *pi
+0x0004 ;a

0x3338 ; *pi
M[0x43F0] = 0x3338

If you want to print the content of mych[0] you will see that it now contains an ASCII code for
digit 8. Table 7 shows the updated view of the stack once the statements in lines 8-10 are
executed.

How would compiler translate the statement in line 10 into assembly code. The compiler knows
where pi and a are located. The following assembly code will do the work (this is a bit optimized
version and the compiler may initially use more assembly instructions):

MOV.W @(SP), R12 ; R12 get the value of pi
ADD.W 18(SP), ©(R12); add a to the variable pi is pointing to

Table 7. Variables allocated on the program stack for example in Code 7 after statements in lines 8,9,
and 10 are carried out.

Address Memory[15:0] Offset relative Variable

[hex] to current SP
0x4400 - Original Top of the Stack
Ox43FE 0x0004 18 a
0x43FC 0x0002 16 b
Ox43FA OXFFFF 14 ¢, upper word
0x43F8 OxFFFC 12 ¢, lower word

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢ 20

0x43F6 0x0000 10 d, upper word

O0x43F4 0x0002 8 d, lower word
0x43F2 0x3132 6 mych[3], mych[2]
0x43F0 0x3338 4 mych[1], mych[O]
Ox43EE 0x43F8 2 pli

Ox43EC Ox43F0 0<=SP pi

Things to remember 6-1. Pointers and pointer arithmetic.

Pointers are variables stored in memory that contain addresses of other variables. When we
increment a pointer variable, the intent is to update the value of the pointer, so it points to
the next variable of the same type in memory. In practice this means that if the size of your
variable that pointer is pointing to is 4 bytes, the pointer value after the increment operation
will the original value + 4.

7 Exercises

Problem 1. Pointers

Consider the following C program. Assume that the register SP at the beginning points to 0x1100.
Answer the following questions. Assume all variables are allocated on the stack, and in the order as they
appear in the program (a, b, uli, mych, puli, pc). ASCII code for character ‘0’ is 48 (0x30).

int main(void) {

volatile unsigned long int uli = 5;

volatile int a= -4, b= -3;

volatile char mych[4] = {‘0’, ‘2', ‘4’', ‘6'};

volatile unsigned long int *puli = &uli;

volatile char *pc = mych;

pc = pc + 2; //

*pc = 4 + *pc;

O [0 |J (o) |O | (W N [

puli = puli - 1;

=
o

*puli = *puli + uli;

=
=
—

Fill in the following table with answers to the questions.

Question? Answer

CPE 323 Module 05 © A. Milenkovi¢ 21

The number of bytes allocated on the stack for the variables declared in
line 2.

The number of bytes allocated on the stack for the character array
declared in line 4.

The number of bytes allocated on the stack for all variables declared in
lines 2-6.

Value of mych([2] after initialization performed in line 4.

Address of variable uli (&uli).

Value of pc at the moment after the statement in line 6 is executed.

Value of pc at the moment after the statement in line 7 is executed.

Value of mych[2] at the moment after the statement in line 8 is executed.

O ([0 | N || 0| b

Value of puli after the statement in line 9 is executed.

Value of variable b after the statement in line 10 is executed.

CPE 323 MSP430 C Lang. & Assembly © A. Milenkovi¢

22

