
CPE 323 Module 04 © A. Milenković 1

CPE 323
MODULE 04

MSP430 ASSEMBLY LANGUAGE PROGRAMMING

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces the MSP430 assembly language. The closest to the ISA a programmer
can be is by writing assembly language programs. In this module you will learn about software
developer flows for embedded systems, assembly language directives that help you allocate
space in memory and initialize your constants, structure and organization of assembly language
programs, subroutines, allocating space on the stack, and passing parameters to subroutines.

Objectives

Upon completion of this module learners will be able to:

 Apply a proper design flow for embedded software using assembly language
programming

 Read and comprehend functionality of programs written in MSP430 assembly language

 Design and write programs in MSP430 assembly language to solve specific tasks

Contents

1 Introduction ... 3

2 Embedded software development environment and design flow ... 3

3 Assembly Language Directives .. 5

4 Decimal and Integer Addition of 32-bit Integers ... 9

5 Counting Characters ‘E’ in a String .. 15

6 Subroutines .. 18

6.1 Subroutine Nesting ... 18

6.2 Parameter Passing .. 20

7 Allocating Space for Local Variables .. 27

8 Performance, Execution Time ... 31

9 To Learn More ... 36

mailto:milenka@uah.edu
http://www.ece.uah.edu/~milenka

CPE 323 MSP430 Assembly © A. Milenković 2

10 Exercises ... 36

CPE 323 Module 04 © A. Milenković 3

1 Introduction
This module introduces the MSP430 assembly language. The closest to the ISA a programmer
can be is by writing assembly language programs that run on a bare-metal hardware platform.
Bare-metal expression is used to indicate that the platform has no operating system running on
it. In this module you will learn about software design flows for embedded systems, assembly
language directives that help you allocate space in memory and initialize your constants,
structure and organization of assembly language programs, subroutines, allocating space on the
stack, and passing parameters to subroutines. These topics are introduced using several
illustrative examples.

2 Embedded software development environment and design flow
In desktop/server computing systems we typically develop and debug software programs on
the same or a similar platform the program is going to run on. However, software for
embedded systems is typically developed on a workstation/desktop computer and then
downloaded into the target platform (embedded system) through a dedicated interface.
Debugging of embedded systems is made possible through either software emulation or
dedicated debuggers that allow us to interact with a program running on the target platform.

Software for embedded systems is typically developed using modern software development
environments (SDEs) that integrate editors, assembler, compiler, linker, stand-alone simulator,
embedded emulator or debugger, and flash programmer. Examples of SDEs we can use are IAR
for MSP430 and TI’s Code Composer Studio for MSP430 that is used in this course. Below is a
brief description of major components of modern SDEs.

 Editor: Allows you to enter source code (assembly, C, or C++). A good editor will have
features to help you format your code nicely to improve its readability, comply with
syntax rules, easily locate definitions and symbols, and other useful features that make
life of a software developer easier.

 Assembler: a program that translates source code written in assembly language into
executable code.

 Compiler: a program that translates source code written in C or C++ into executable
code.

 Linker: a program that combines multiple files with executable code and routines from
libraries and arranges them into memory that complies with rules for a specific
microcontroller.

 Simulator: a program that simulates operation of the microcontroller on a desktop
computer, thus alleviating the need to have actual hardware when testing software.
Simulators vary in functionality – some include support only for the processor, whereas
others can also simulate behavior of peripheral devices.

 Flash Programmer: a program that downloads the embedded software into flash
memory of the microcontroller.

CPE 323 MSP430 Assembly © A. Milenković 4

 Embedded emulator/debugger: a program running on the desktop computer that
controls execution of the program on the target platform. This typically involves
allowing the program under development to run one instruction before returning
control to the debugger or to run until a breakpoint is reached. It controls running of the
program on the target through a special interface, e.g., JTAG for MSP430.

Figure 1 shows a typical development flow that starts from assembly code residing in one or
more input files (with extension .asm or .s43 for MSP430 assembly programs). These files are
translated into object files using assembler. The object files together with libraries are tied
together by linker that produces an executable file. The executable file is then loaded into the
simulator or downloaded into the target platform using flash programmer.

Figure 1. Design flow for embedded software: from assembly programs to machine code in memory.

ASM file
(*.asm)

Assembler

Object File

ASM file
(*.asm)

Assembler

Object File

ASM file
(*.asm)

Assembler

Object File

Linker Static Libraries

Executable File

Loader

Machine Code
in Memory

CPE 323 Module 04 © A. Milenković 5

Things to remember 2-1. Design flow.

Understand the design flow and the role of various components in a software development
environment, namely assembler, linker, and loader.

3 Assembly Language Directives
Assembly language directives tell the assembler to set the data and program at particular
addresses, allocate space in memory for variables, allocate space in memory and initialize
constants, define synonyms, or include additional files.

Asm430 (TI CCStudio MSP430 assembler) has predefined sections into which various parts of a
program are assembled. Uninitialized data is assembled into the .bss section, initialized data
into the .data section, and executable code into the .text section. A430 (IAR MSP430 assembler)
similarly uses sections or segments, but there are no predefined segment names. However, it is
convenient to adhere to the names used by C compiler: DATA_16_Z for uninitialized data,
CONST for constant (initialized) data, and CODE for executable code. Table 1 lists main sections
and section directives used by ASM430 and A430.

Table 1. Sections and section directives in ASM430 and A430.

Description ASM430 (CCS) A430 (IAR)

Reserve size bytes in the uninitialized sect. .bss -

Assemble into the initialized data section .data RSEG const

Assemble into a named initialized data section .sect RSEG

Assemble into the executable code .text RSEG code

Reserve space in a named (uninitialized) section .usect -

Align on byte boundary .align 1 -

Align on word boundary .align 2 EVEN

Table 2 describes most frequently used assembly language directives for defining constants.
The constants can be placed in either the .text section which resides in the Flash memory and
then they cannot be changed or in the .data section that is in RAM memory and the data can be
programmatically changed.

Table 2. Constant initialization directives.

Description ASM430 (CCS) A430 (IAR)

Initialize one or more successive bytes or text strings .byte or .string DB/DC8

CPE 323 MSP430 Assembly © A. Milenković 6

Initialize 32-bit IEEE floating-point .float DF

Initialize a variable-length field .field -

Reserve size bytes in the current location .space DS/DS8

Initialize one or more 16-bit integers .word DW/DC16

Initialize one or more 32-bit integers .long DL/DC32

The example below shows assembly language directives for allocating space in RAM memory
for two variables in RAM memory using A430 (IAR) and ASM430 (CCS).

Example 3-1. Allocating space in RAM memory using IAR and CCS assemblers.

; IAR

 RSEG DAT16_N ; switch to DATA segment

 EVEN ; make sure it starts at even address

MyWord: DS 2 ; allocate 2 bytes / 1 word

MyByte: DS 1 ; allocate 1 byte

; CCS Assembler (Example #1)

MyWord: .usect “.bss”, 2, 2 ; allocate 2 bytes / 1 word

MyByte: .usect “.bss”, 1 ; allocate 1 byte

; CCS Assembler (Example #2)

 .bss MyWord,2,2 ; allocate 2 bytes / 1 word

 .bss MyByte,1 ; allocate 1 byte

An example in Code 1 shows a sequence of assembly language directives that populate Flash
memory with 8-bit constants (.byte directive), 16-bit constants (.word directive), and 32-bit
constants (.long directive). We can specify decimal constants (number without any prefix or
suffix), binary numbers (suffix b), octal numbers (suffix q), and hexadecimal numbers (suffix h or
prefix 0x). ASCII characters are specified using single quotes, whereas a string under double
quotes is a series of ASCII characters. Two single quotes in line 21 represent a NULL character
with ASCII code 0x00 that is added at the end of the string “ABCD”. Table 3 illustrates the
content of the flash memory after these directives are carried out. Please note that assembler
decided to place these constants in the Flash memory starting at the address 0x3100 in case of
MSP430FG4618 (the start address of the flash memory). As a result of parsing this sequence,
the assembler creates a table of symbols (synonyms) shown in Table 4. The table of symbols is
an internal structure of the assembler and it helps resolve symbolic names used in assembly
language programs.

;-- 1
; define data section with constants 2
 3
b1: .byte 5 ; allocates a byte in memory and initialize it with 5 4

CPE 323 Module 04 © A. Milenković 7

b2: .byte -122 ; allocates a byte with constant -122 5
b3: .byte 10110111b ; binary value of a constant 6
b4: .byte 0xA0 ; hexadecimal value of a constant 7
b5: .byte 123q ; octal value of a constant 8
tf: .equ 25 9
 .align 2 ; move a location pointer to the first even address 10
w1: .word 21 ; allocates a word constant in memory; 11
w2: .word -21 12
w3: .word tf 13
dw1: .long 100000 ; allocates a long word size constant in memory; 14
 ; 100000 (0x0001_86A0) 15
dw2: .long 0xFFFFFFEA 16
 .align 2 17
s1: .byte 'A', 'B', 'C', 'D' ; allocates 4 bytes in memory with string ABCD 18
s2: .byte "ABCD", '' ; allocates 5 bytes in memory with string ABCD + NULL19

Code 1. Assembly language directives for allocating constants (or initialized data section in RAM).

Table 3. Memory content (a word-view).

Label Address Memory[15:8] Memory[7:0]

b1 0x3100 0x86 0x05

b3 0x3102 0xA0 0xB7

b5 0x3104 -- 0x51

w1 0x3106 0x00 0x15

w2 0x3108 0xFF 0xEB

w3 0x310A 0x00 0x19

dw1 0x310C 0x86 0xA0

0x310E 0x00 0x01

dw2 0x3110 0xFF 0xEA

0x3112 0xFF 0xFF

s1 0x3114 0x42 0x41

0x3116 0x44 0x43

s2 0x3118 0x42 0x41

0x311A 0x44 0x43

0x311C -- 0x00

Table 4. Table of symbols (maintained by assembler).

Symbol Value [hex]

b1 0x3100

b2 0x3101

b3 0x3102

b4 0x3103

CPE 323 MSP430 Assembly © A. Milenković 8

b5 0x3104

tf 0x0019

w1 0x3106

w2 0x3108

w3 0x310A

dw1 0x310C

dw2 0x3110

s1 0x3114

s2 0x3118

To allocate space in RAM memory we use directives as shown in Code 2. Table 5 shows the
content of the RAM after allocation (it is not initialized) and Table 6 shows the table of symbols
created by the assembler upon parsing these directives. Note #1. Assembler placed allocated
space at the address of 0x1100, which is the starting address of the RAM memory in the
MSP430FG4618. Note #2: RAM memory is built out of SRAM cells; upon powering chip up these
cells take a state of either logic 1 or logic 0 in a random fashion, but for us the memory cells do
not have meaningful content as they are still not initialized. Note #3: When using .data directive
that defines initialized variables in RAM, the assembler will automatically generate machine
instructions that are responsible for initializing these locations. These machine instructions are
carried out before your program execution starts.

 .bss v1b,1,1 ; allocates a byte in memory, equivalent to DS 1 1
 .bss v2b,1,1 ; allocates a byte in memory 2
 .bss v3w,2,2 ; allocates a word of 2 bytes in memory 3
 .bss v4b,8,2 ; allocates a buffer of 8 bytes 4
 .bss vx,5

Code 2. Assembly language directives for allocating space in memory that is not initialized.

Table 5. Memory content (a word-view).

Label Address Memory[15:8] Memory[7:0]

v1b 0x1100 -- --

v3w 0x1102 -- --

v4b 0x1104 -- --

0x1106 -- --

0x1108 -- --

0x110A -- --

0x110C

Table 6. Table of symbols (maintained by assembler).

Symbol Value [hex]

CPE 323 Module 04 © A. Milenković 9

v1b 0x1100

v2b 0x1101

v3w 0x1102

v4b 0x1104

vx 0x110C

Things to remember 3-1. Assembly language directives.

Assembly language directives help developers organize their software: they tell the
assembler to set the data and program at particular addresses (code sections), allocate space
in memory and initialize constants, allocate space in memory for uninitialized variables,
define synonyms, or include additional files.

Things to remember 3-2. Common assembly language directives for allocating
and initializing constants.

Commonly used assembly language directives for allocating memory and initializing are .byte,
.word, .long, .float. To align current location pointer to a first even address we use .align 2.

4 Decimal and Integer Addition of 32-bit Integers
In this section we will design an assembly language program that sums up two 32-bit integers
(lint1, and lint2) producing two 32-bit results, one assuming these integers represent regular
binary coded 32-bit integers (lsumi) and one assuming these integers represent packed binary
coded decimal numbers (BCD). Our first step is to define the input variables lint1 and lint2 as
shown in Code 3, lines 27 and 28. We use .long directive followed by their values given in the
hexadecimal number system. They are defined as constants and the assembler will place these
variables at the first address that belongs to the Flash memory (0x4400 in case of
MSP430F5529 or 0x3100 in case of MSP430FG4618). Thus, lint1 is at the memory location with
address 0x4400 and lint2 is at 0x0x4404. Assume they are initialized as shown in Code 3 (lines
27 and 28). Table 7 illustrates the content of relevant memory locations before the program
execution starts. The output variables lsumd and lsumi are allocated in RAM as shown in lines
31 and 32. Please note that the results cannot be written into the Flash memory which is
considered as read-only memory. These variables are stored at the starting address of RAM,
which is 0x2400 (lsumd) and 0x2404 (lsumi) in case of MSP430F5529. Now, we have our
variables taken care of, we can move on designing the program.

As MSP430 performs only operations on 8-bit bytes and 16-bit words, to find decimal and
binary sums in this example, we will need to perform the requested operations in two rounds –
one to sum up lower words and one to sum up upper words of input variables. First, lower 16-
bit of lint1 (address with label lint1) is loaded into register R8 (line 40). Please note the source
operand is specified using the symbolic addressing mode, thus R8<=M[lint1]. Next, decimal

CPE 323 MSP430 Assembly © A. Milenković 10

addition DADD.W instruction is used to add the lower 16-bit of lint2 to R8, R8<=R8+M[lint2]+C
(line 41). Note: DADD instruction performs the following operation: src+dst+C => dst
(decimally), where C is the current value of the Carry bit from the program status register (R2).
Now register R8 contains the lower 16-bit of the decimal sum and it is moved to lsumd,
M[lsumd]<=R8 (line 42). In the next round, we reach to upper 16-bit of lint1 residing at lint1+2,
as well as upper 16-bit of lint2 and store the result to lsumd+2. Please note that the DADD.W
instruction in line 41 produces a carry bit that needs to be used by the DADD.W instruction in
line 44 to have a correct sum. Luckily, the two move instructions in between do not affect the
Carry flag, so that the Carry flag produced in line 41 remains unchanged until it is used by
DADD.W in line 44. Consequently, to make this code work properly, we clear carry status
register R2 before we start computation (line 39).

Table 7. Memory content (a word-view) before the start of program execution.

Label Address Memory[15:0]

lsumd 0x2400 0x????
0x2402 0x????

lsumi 0x2404 0x????

0x2406 0x????

. . .

. . .

lint1 0x4400 0x8923

0x4402 0x4567

lint2 0x4404 0x6789

0x4406 0x2345

A similar sequence of steps is performed for binary addition. Here, we use the ADD.W
instruction in the first round and the ADDC.W instruction in the second round instead of
DADD.W instructions. Also, note that the Carry flag generated by the ADD.W instruction in line
47 is used by the ADDC in line 50. The upper 16-bits of the result is written back to lsumi+2 in
line 51.

;-- 1
; File : LongIntAddition.asm 2
; Function : Sums up two long integers represented in binary and BCD 3
; Description: Program demonstrates addition of two operands lint1 and lint2. 4
; Operands are first interpreted as 32-bit decimal numbers and 5
; and their sum is stored into lsumd; 6
; Next, the operands are interpreted as 32-bit signed integers 7
; in two's complement and their sum is stored into lsumi. 8
; Input : Input integers are lint1 and lint2 (constants in flash) 9
; Output : Results are stored in lsumd (decimal sum) and lsumi (int sum) 10
; Author : A. Milenkovic, milenkovic@computer.org 11
; Date : August 24, 2018 12

CPE 323 Module 04 © A. Milenković 11

;--- 13
 .cdecls C,LIST,"msp430.h" ; Include device header file 14
 15
;--- 16
 .def RESET ; Export program entry-point to 17
 ; make it known to linker. 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
;--- 26
lint1: .long 0x45678923 27
lint2: .long 0x23456789 28
;--- 29
;--- 30
lsumd: .usect ".bss", 4,2 ; allocate 4 bytes for decimal result 31
lsumi: .usect ".bss", 4,2 ; allocate 4 bytes for integer result 32
;--- 33
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 34
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 35
;--- 36
; Main code here 37
;--- 38
 clr.w R2 ; clear status register 39
 mov.w lint1, R8 ; get lower 16 bits from lint1 to R8 40
 dadd.w lint2, R8 ; decimal addition, R8 + lower 16-bit of lint2 41
 mov.w R8, lsumd ; store the result (lower 16-bit) 42
 mov.w lint1+2, R8 ; get upper 16 bits of lint1 to R8 43
 dadd.w lint2+2, R8 ; decimal addition 44
 mov.w R8, lsumd+2 ; store the result (upper 16-bit) 45
 mov.w lint1, R8 ; get lower 16 bite from lint1 to R8 46
 add.w lint2, R8 ; integer addition 47
 mov.w R8, lsumi ; store the result (lower 16 bits) 48
 mov.w lint1+2, R8 ; get upper 16 bits from lint1 to R8 49
 addc.w lint2+2, R8 ; add upper words, plus carry 50
 mov.w R8, lsumi+2 ; store upper 16 bits of the result 51
 52
 jmp $; jump to current location '$' 53
 ; (endless loop) 54
 55
 56
;--- 57
; Stack Pointer definition 58
;--- 59
 .global __STACK_END 60
 .sect .stack 61
 62
;--- 63
; Interrupt Vectors 64
;--- 65
 .sect ".reset" ; MSP430 RESET Vector 66
 .short RESET 67
 68

CPE 323 MSP430 Assembly © A. Milenković 12

 69

Code 3. Decimal and integer addition (first implementation).

What happens when we are done with our computation? Normally, the program exits and
returns control to the underlying shell program. However, in embedded systems our programs
typically run forever – as long as power supply is provided. Also, typically there is no shell
program to return to. Consequently, we add an extra instruction in line 53 that is basically an
infinite loop (jump to itself). Once we compute the sums, our program remains stuck in this
loop. Why is this necessary? To answer this question, ask yourself what will happen without this
line of code. Our processor will continue to fetch and execute instructions sequentially,
regardless of whether we have useful instructions in the flash memory or some random
content. To prevent this uncontrolled behavior, we terminate a program by entering this
infinite loop.

Now that we explained how we terminate program execution, let us describe how the program
execution starts. Upon powering up, a so-called PUC (power-up clear) signal in hardware is
generated. The first thing MSP430 does as a response to PUC is to fetch a word from location
0xFFFE (the top word address in the first 64 KiB of address space). This location is known as the
Reset interrupt vector. Note: the top 32 words of the 64 KiB address space are reserved for the
interrupt vector table (IVT) and the top most address is reserved for the reset vector, which is
the highest priority interrupt request in MSP430. The content of this location is moved into the
Program Counter (PC <= M[0xFFFE]). Note that our entry point in the program (address of the
first instruction) has label RESET (line 37), i.e., RESET is a symbolic name of the starting address
of our program. The value of the symbol RESET is used to initialize the reset vector in the
interrupt vector table (lines 82 and 83). Thus, when we power up the MSP430-based system,
the PUC interrupt is generated and as a result of that, the starting address of the program is
moved into the PC (R0), so the MSP430 starts execution from the first instruction in our
program.

Code 4 shows a program ready to run with all necessary directives and an alternative
implementation from the one shown in Code 3. In this implementation two rounds of adding up
components of a long integer are carried out in a loop. In this implementation we initialize the
register R4 to contain the starting address of the first integer lint1 (line 44) and the register R8
to contain the starting address of the decimal sum (lsumd, line 45). Please note what
addressing mode we use to load the address of the operands lint1 and lsumd in registers R4
and R8, respectively. Register R5 acts as a step counter and it is initialized to value 2 (we have
two rounds).

The first instruction of the loop in line 48 moves a word from the address 4+R4 into the register
R7. At the address 4+R4, we will find lower 16 bits of the integer lint2. Decimal addition is
carried out in line 50. Please note that we use the autoincrement addressing mode to read the
lower 16 bit of the variable lint1, so the register R4 is automatically adjusted to point to the
upper word of lint1 once this instruction is executed. The sum from the register R7 is moved to
the memory location reserved for lsumd (line 52). You may wonder why do we have
instructions in lines 49 and 51? They respectively restore and back up the content of the status

CPE 323 Module 04 © A. Milenković 13

register R2. As we now have a bit more complex sequence of instructions, the instruction
DADD.W in line 50 of the first iteration produces the Carry bit that should be used by the same
instruction in the second iteration of the loop. Unfortunately, our code increments the address
register R8 (R8<=R8+2) and decrements the step counter (R5<=R5-1) and both of these
instructions will overwrite the Carry bit set by DADD.W. That is the reason that we are backing
up the content of the status register that contains the valid Carry bit in line 51 and restoring it
in line 49, so that the DADD.W instruction in line 50 gets the correct value of the Carry bit.
Similar reasoning is used for integer addition.

The added benefit of this implementation is that now you can solve a problem of summing up
of any size integers. For example, if you have 128-bit long integers, you can just make a couple
of changes and set the step counter to 128/16=8 instead of 2 in this implementation and this
code will give you a correct sum.

;-- 1
; File : LongIntAdditionv2.asm 2
; Function : Sums up two long integers represented in binary and BCD 3
; Description: Program demonstrates addition of two operands lint1 and lint2. 4
; Operands are first interpreted as 32-bit decimal numbers and 5
; and their sum is stored into lsumd; 6
; Next, the operands are interpreted as 32-bit signed integers 7
; in two's complement and their sum is stored into lsumi. 8
; This version uses loops. 9
; Input : Input integers are lint1 and lint2 (constants in flash) 10
; Output : Results are stored in lsumd (decimal sum) and lsumi (int sum) 11
; Written by : A. Milenkovic, milenkovic@computer.org 12
; Date : August 24, 2018 13
;--- 14
 .cdecls C,LIST,"msp430.h" ; Include device header file 15
 16
;--- 17
 .def RESET ; Export program entry-point to 18
 ; make it known to linker. 19
;--- 20
 .text ; Assemble into program memory. 21
 .retain ; Override ELF conditional linking 22
 ; and retain current section. 23
 .retainrefs ; And retain any sections that have 24
 ; references to current section. 25
 26
;--- 27
;--- 28
lint1: .long 0x45678923 29
lint2: .long 0x23456789 30
;--- 31
;--- 32
lsumd: .usect ".bss", 4,2 ; allocate 4 bytes for decimal result 33
lsumi: .usect ".bss", 4,2 ; allocate 4 bytes for integer result 34
;--- 35
 36
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 37
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 38

CPE 323 MSP430 Assembly © A. Milenković 14

 39
;--- 40
; Main loop here 41
;--- 42
; Decimal addition 43
 mov.w #lint1, R4 ; pointer to lint1 44
 mov.w #lsumd, R8 ; pointer to lsumd 45
 mov.w #2, R5 ; R5 is a counter (32-bit=2x16-bit) 46
 clr.w R10 ; clear R10 47
lda: mov.w 4(R4), R7 ; load lint2 48
 mov.w R10, R2 ; load original SR 49
 dadd.w @R4+, R7 ; decimal add lint1 (with carry) 50
 mov.w R2, R10 ; backup R2 in R10 51
 mov.w R7, 0(R8) ; store result (@R8+0) 52
 add.w #2, R8 ; update R8 53
 dec.w R5 ; decrement R5 54
 jnz lda ; jump if not zero to lda 55
; Integer addition 56
 mov.w #lint1, R4 ; pointer to lint1 57
 mov.w #lsumi, R8 ; pointer to lsumi 58
 mov.w #2, R5 ; R5 is a counter (32-bit=2x16-bit) 59
 clr.w R10 ; clear R10 60
lia: mov.w 4(R4), R7 ; load lint2 61
 mov.w R10, R2 ; load original SR 62
 addc.w @R4+, R7 ; decimal add lint1 (with carry) 63
 mov.w R2, R10 ; backup R2 in R10 64
 mov.w R7, 0(R8) ; store result (@R8+0) 65
 add.w #2, R8 ; update R8 66
 dec.w R5 ; decrement R5 67
 jnz lia ; jump if not zero to lia 68
 69
 jmp $; jump to current location '$' 70
 ; (endless loop) 71
 72
;--- 73
; Stack Pointer definition 74
;--- 75
 .global __STACK_END 76
 .sect .stack 77
 78
;--- 79
; Interrupt Vectors 80
;--- 81
 .sect ".reset" ; MSP430 RESET Vector 82
 .short RESET 83
 84

Code 4. Decimal and integer 32-bit addition.

Things to remember 4-1. Assembly program structure.

Understand structure of an assembly program. How do we allocate and initialize input
variables? How do we define entry point in the program to be executed? How do we analyze

CPE 323 Module 04 © A. Milenković 15

a problem to be solved, solve it, and implement the solution using assembly language
program?

5 Counting Characters ‘E’ in a String
In this section we will design a program that will count the number of characters ‘E’ in a string
using the MSP430 assembly language. Our task is to develop an assembly program that will
scan a given string of characters, for example, “HELLO WORLD, I AM THE MSP430!”, and find
the number of appearances of the character ‘E’ in the string (2 in this example). A counter that
records the number of characters ‘E’ is then written to the parallel port P1. The port should be
configured as an output port, and the binary value of the port will correspond to the counter
value.

To solve this problem, let us first analyze the problem statement. First, the problem implies that
we need to allocate space in memory that will keep the string. The string has 29 characters and
they are encoded using the ASCII table. To allocate and initialize a string in memory we can use
an assembly language directive, .byte or .string, e.g.: .string "HELLO WORLD, I AM THE
MSP430!". We can also put a label to mark the beginning of this string in memory, for example,
mystr: mystr .string "HELLO WORLD, I AM THE MSP430!". When assembler sees the
.string directive, it will allocate the space in memory required for the string that follows and
initialize the allocated space with the corresponding ASCII characters. We will also specify an
additional NULL ASCII character to terminate the string (ascii(NULL)=0x00). So, the total
number of bytes occupied by this string terminated by the NULL character is 30.

Our next step is to write a program that will scan the string, character by character, check
whether the current character is equal to the character ‘E’, and if yes, increment a counter. The
string scan is done in a program loop. The program ends when we reach the end of the string,
which is detected when the current character matches the NULL character (0x00).

To scan the string, we will use a register to point to the current character in the string. This
pointer register is initialized at the beginning of the program to point to the first character in
the string. The pointer will be incremented in each iteration of the program loop. Another
register, initialized to zero at the beginning, will serve as the counter, and it is incremented
every time the character ‘E’ is encountered.

After we exit the program loop, the current value of the counter will be written to the port P1,
which should be initialized at the beginning of the program as an output port.

Note: It is required that you are familiar with the MSP430 instruction set and addressing modes
to be able to solve this problem. Also, we will assume that the string is no longer than 255
characters, so the result can be displayed on an 8-bit port.

Code 5 shows the assembly code for this program. Here is a short description of the assembly
code. The comments in a single line start with a column character (;). Line 11, .cdecls
C,LIST,"msp430.h", is a C-style pre-processor directive that specifies a header file to be

CPE 323 MSP430 Assembly © A. Milenković 16

included in the source code. The header file includes all macro definitions, for example, special
function register addresses (WDTCTL), and control bits (WDTPW+WDTHOLD).

Next, in line 17 we allocate the string myStr using .string directive: myStr .string "HELLO
WORLD, I AM THE MSP430!", ''. As explained above, this directive will allocate 30 bytes in
memory starting at the address 0x3100 (when using MSP430FG4618) and initialize it with the
string content, placing the ASCII codes for the string characters in the memory. The
hexadecimal content in memory will be as follows: 48 45 4c 4c 4f 20 57 4f 52 4c 44 2c 20 49 20
41 4d 20 54 48 45 20 4d 53 50 34 33 30 21 00 (ascii(‘H’)=0x48, ascii(‘E’)=0x45, … ascii(‘!’)=0x21,
ascii(NULL)=x00).

.text is a section control assembler directive that controls how code and data are located in
memory. .text is used to mark the beginning of a relocatable code segment. This directive is
resolved by the linker.

The first instruction in line 26 initializes the stack pointer register (mov.w
#__STACK_END,SP). Our program does not use the program stack, so we could have omitted
lines 51 and 52 that define the stack section as well as this instruction. The instruction mov.w
#WDTPW|WDTHOLD,&WDTCTL sets certain control bits of the watchdog timer control register
(WDTCTL) to disable it. The watchdog timer by default is active upon reset, generating interrupt
requests periodically. As this functionality is not needed in our program, we simply need to
disable the watchdog timer.

Parallel ports in the MSP430 microcontroller can be configured as either input or output ports.
A control register PxDIR determines whether the port x is an input or an output port (we can
configure each individual port pin). Our program drives all eight pins of the port P1, so it should
be configured as an output port by setting each individual pin to 1 (P1DIR=0xFF). Register R4 is
loaded to point to the first character in the string. Register R5, the counter, is cleared before
starting the main program loop.

The main loop starts at the gnext label (line 35). The mov.b instruction reads a character from
the string and moves it to the register R6 (lower 8 bits). We use the autoincrement addressing
mode for the source operand to adjust the pointer to point to the next character in the string.
As this is a byte instruction, mov.b @R4+, R6, the register R4<=R4+1 (we increment the
address register for the size of the operand in bytes, it is 1 in this case). The current character is
kept in register R6. We then compare the current character with the NULL character (cmp.b
#0,R6). If it is the NULL character, the end of the string has been reached and we exit the loop
(JEQ lend). Pay attention that we used JEQ instruction? Why is this instruction used? Which flag
is inspected?

If it is not the end of the string, we compare the current character with ‘E’. If there is no match
we go back to the first instruction in the loop. Otherwise, we found the character ‘E’ and we
increase the value of the counter in register R5. Finally, once the end of the string has been
reached, we move the lower byte from R5 to the parallel port 1, P1OUT=R5[7:0].

;--- 1
; File : Lab4_D1.asm (CPE 325 Lab4 Demo code) 2

CPE 323 Module 04 © A. Milenković 17

; Function : Counts the number of characters E in a given string 3
; Description: Program traverses an input array of characters 4
; to detect a character 'E'; exits when a NULL is detected 5
; Input : The input string is specified in myStr 6
; Output : The port P1OUT displays the number of E's in the string 7
; Author : A. Milenkovic, milenkovic@computer.org 8
; Date : August 14, 2008 9
;--- 10
 .cdecls C,LIST,"msp430.h" ; Include device header file 11
 12
;--- 13
 .def RESET ; Export program entry-point to 14
 ; make it known to linker. 15
 16
myStr: .string "HELLO WORLD, I AM THE MSP430!", '' 17
;--- 18
 .text ; Assemble into program memory. 19
 .retain ; Override ELF conditional linking 20
 ; and retain current section. 21
 .retainrefs ; And retain any sections that have 22
 ; references to current section. 23
 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 26
 mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main loop here 30
;--- 31
main: bis.b #0FFh,&P1DIR ; configure P1.x output 32
 mov.w #myStr, R4 ; load the starting address of the string into R4 33
 clr.b R5 ; register R5 will serve as a counter 34
gnext: mov.b @R4+, R6 ; get a new character 35
 cmp #0,R6 ; is it a null character 36
 jeq lend ; if yes, go to the end 37
 cmp.b #'E',R6 ; is it an 'E' character 38
 jne gnext ; if not, go to the next 39
 inc.w R5 ; if yes, increment counter 40
 jmp gnext ; go to the next character 41
 42
lend: mov.b R5,&P1OUT ; set all P1 pins (output) 43
 bis.w #LPM4,SR ; LPM4 44
 nop ; required only for Debugger 45
 46
 47
;--- 48
; Stack Pointer definition 49
;--- 50
 .global __STACK_END 51
 .sect .stack 52
 53
;--- 54
; Interrupt Vectors 55
;--- 56
 .sect ".reset" ; MSP430 RESET Vector 57
 .short RESET 58

CPE 323 MSP430 Assembly © A. Milenković 18

 .end 59

Code 5. MSP430 Assembly Code for Count Character Program.

6 Subroutines
In a given program, it is often needed to perform a particular sub-task many times on different
data values. Such a subtask is usually called a subroutine. For example, a subroutine may sort
numbers in an integer array or perform a complex mathematical operation on an input variable
(e.g., calculate sin(x)). It should be noted, that the block of instructions that constitute a
subroutine can be included at every point in the main program when that task is needed.
However, this would be an unnecessary waste of memory space. Rather, only one copy of the
instructions that constitute the subroutine is placed in memory and any program that requires
the use of the subroutine simply branches to its starting location in memory. The instruction
that performs this branch is named a CALL instruction. The calling program is called CALLER and
the subroutine called is called CALLEE.

The instruction that is executed right after the CALL instruction is the first instruction of the
subroutine. The last instruction in the subroutine is a RETURN instruction, and we say that the
subroutine returns to the program that called it. Since a subroutine can be called from different
places in a calling program, we must have a mechanism to return to the appropriate location
(the first instruction that follows the CALL instruction in the calling program). At the time of
executing the CALL instruction we know the program location of the instruction that follows the
CALL (the program counter or PC is pointing to the next instruction). Hence, we should save the
return address at the time the CALL instruction is executed. The way in which a machine makes
it possible to call and return from subroutines is referred to as its subroutine linkage method.

The simplest subroutine linkage method is to save the return address in a specific location. This
location may be a register dedicated to this function, often referred to as the link register.
When the subroutine completes its task, the return instruction returns to the calling program
by branching indirectly through the link register.

The CALL instruction is a special branch instruction and performs the following operations:

 Stores the contents of the PC in the link register

 Branches to the target address specified by the instruction.

The RETURN instruction is a special branch instruction that performs the following operations:

 Branches to the address contained in the link register.

6.1 Subroutine Nesting

A common programming practice, called subroutine nesting, is to have one subroutine calls
another. In this case, the return address of the second call is also stored in the link register
destroying the previous contents. Hence, it is essential to save the contents of the link register
in some other location before calling another subroutine. Subroutine nesting can be carried out
to any depth. Consider an example in Figure 2. The main program calls subroutine A (subA), the

CPE 323 Module 04 © A. Milenković 19

subA calls the subroutine B (subB), the subB calls the subroutine C. In this case, the sequence of
instructions executed follows the arrows shown in Figure 2. The last subroutine C completes its
computations and returns to the subroutine B that called it. Next, B completes its execution and
returns to the subroutine A that called it. Finally, the subroutine A returns to the main. The
sequence of return addresses are generated in the last-in-first-out order. This suggests that the
return addresses associated with subroutine calls should be pushed onto a stack. Many
processors do this automatically. A particular register is designated as the stack pointer, or SP,
that is implicitly used in this operation. The stack pointer points to a stack called the processor
stack.

Figure 2. Illustration of subroutine nesting.

The CALL instruction is a special branch instruction and performs the following operations:

 Pushes the contents of the PC on the top of the stack

 Updates the stack pointer

 Branches to the target address specified by the instruction

The RETURN instruction is a special branch instruction that performs the following operations:

 Pops the return address from the top of the stack into the PC

 Updates the stack pointer.

Things to remember 6-1. CALL and RETURN instructions.

The CALL instruction in MSP430 pushes the content of PC to the top of the stack, decrements

register SPSP – 2, and moves the target address specified by the CALL instruction to PC.

The RET instruction in MSP430 retrieves the content from the current top of the stack, and

updates SP, SPSP + 2. Please note that RET is an emulated instruction and it is equivalent to
the following instruction: MOV @SP+, PC. Please note that RET instruction should always find

Main:

MAIN_INS1
MAIN_INS2
MAIN_INS3
CALL SubA
MAIN_INS5
. . .

SubA:

SubA_INS1
SubA_INS2
. . .
CALL SubB
SubA_INSx
. . .
RET

SubB:

SubB_INS1
SubB_INS2
. . .
CALL SubC
SubB_INSy
. . .
RET

SubC:

SubC_INS1
SubC_INS2
. . .

SubC_INSn
. . .
RET

CPE 323 MSP430 Assembly © A. Milenković 20

the corresponding return address on the top of the stack that is pushed by the corresponding
CALL instruction.

6.2 Parameter Passing

When calling a subroutine, a calling program needs a mechanism to provide the input
parameters, the operands that will be used in computation in the subroutine or their addresses,
to the subroutine. Later, the subroutine needs a mechanism to return output parameters, the
results of the subroutine computation. This exchange of information between a calling program
and a subroutine is referred to as parameter passing. Parameter passing may be accomplished
in several ways. The parameters can be placed in registers or in memory locations, where they
can be accessed by subroutine. Alternatively, the parameters may be placed on a processor
stack.

Let us consider the following program shown in Code 6. We have two integer arrays arr1 and
arr2. The program finds the sum of the integers in arr1 and displays the result on the ports P1
and P2, and then finds the sum of the integers in arr2 and displays the result on the ports P3
and P4. It is obvious that we can have a single subroutine that will perform this operation and
thus make our code more readable and reusable. The subroutine needs to get two input
parameters: what is the starting address of the input array and how many elements the array
has. It should return the sum to the caller.

Let us next consider the main program (Code 7) where we pass the parameters through the
registers. Passing parameters through the registers is straightforward and efficient. Two input
parameters are placed in registers as follows: R12 keeps the starting address of the input array,
R13 keeps the array length. The calling program places the parameters in these registers, and
then calls the subroutine using the CALL #suma_rp instruction. The subroutine shown in Code 8
uses the register R14 to hold the sum of the array elements and to return the result back to the
caller. We do not need any other registers and since all these registers are used in passing
parameters, we do not need to push any register onto the stack. However, generally it is a good
practice to save all the general-purpose registers used as temporary storage in the subroutine
as the first thing in the subroutine, and to restore their original contents (the contents pushed
on the stack at the beginning of the subroutine) just before returning from the subroutine. This
way, the calling program will find the original contents of the registers as they were before the
CALL instruction.

;--- 1
; File : Lab5_D1.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays 3
; Description: The program initializes ports, 4
; sums up elements of two integer arrays and 5
; display sums on on parallel port output registers 6
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 7
; Output : P1OUT&P2OUT displays sum of arr1, P3OUT&P4OUT displays sum of arr2 8
; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 10

CPE 323 Module 04 © A. Milenković 21

;--- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
;--- 14
 .def RESET ; Export program entry-point to 15
 ; make it known to linker. 16
;--- 17
 .text ; Assemble into program memory. 18
 .retain ; Override ELF conditional linking 19
 ; and retain current section. 20
 .retainrefs ; And retain any sections that have 21
 ; references to current section. 22
 23
;--- 24
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 25
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 26
 27
;--- 28
; Main code here 29
;--- 30
main: 31
 ; load the starting address of the array1 into the register R4 32
 mov.w #arr1, R4 33
 ; load the starting address of the array2 into the register R5 34
 mov.w #arr2, R5 35
 ; Sum arr1 and display 36
 clr.w R7 ; holds the sum 37
 mov.w #8, R10 ; number of elements in arr1 38
lnext1: add.w @R4+, R7 ; add the current element to sum 39
 dec.w R10 ; decrement arr1 length 40
 jnz lnext1 ; get next element 41
 mov.b R7, P1OUT ; display lower byte of sum of arr1 42
 swpb R7 ; swap bytes 43
 mov.b R7, P2OUT ; display upper byte of sum of arr1 44
 ; Sum arr2 and display 45
 clr.w R7 ; Holds the sum 46
 mov.w #7, R10 ; number of elements in arr2 47
lnext2: add.w @R5+, R7 ; get next element 48
 dec.w R10 ; decrement arr2 length 49
 jnz lnext2 ; get next element 50
 mov.b R7, P3OUT ; display lower byte of sum of arr2 51
 swpb R7 ; swap bytes 52
 mov.b R7, P4OUT ; display upper byte of sum of arr2 53
 jmp $ 54
 55
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 56
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 57
 58
;--- 59
; Stack Pointer definition 60
;--- 61
 .global __STACK_END 62
 .sect .stack 63
 64
;--- 65
; Interrupt Vectors 66

CPE 323 MSP430 Assembly © A. Milenković 22

;--- 67
 .sect ".reset" ; MSP430 RESET Vector 68
 .short RESET 69
 .end 70
 71

Code 6. Assembly program for summing up two integer arrays.

;--- 1
; File : Lab5_D2_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using a subroutine. 3
; Description: The program calls suma_rp to sum up elements of integer arrays and 4
; then displays the sum on parallel ports. 5
; Parameters to suma_rp are passed through registers, R12, R13. 6
; The subroutine suma_rp return the result in register R14. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OU displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 (revised August 2020) 11
;--- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_rp 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
 25
;--- 26
RESET: mov.w #__STACK_END,SP ; Initialize stackpointer 27
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 28
 29
;--- 30
; Main code here 31
;--- 32
main: 33
 mov.w #arr1, R12 ; put address into R12 34
 mov.w #8, R13 ; put array length into R13 35
 call #suma_rp 36
 ; P1OUT is at address 0x02, P2OUT is address 0x03 37
 ; we can write the 16-bit result to both at the same time 38
 ; P2OUT contains the upper byte and P1OUT the lower byte 39
 mov.w R14, &P1OUT ; result goes to P2OUT&P1OUT 40
 41
 mov.w #arr2, R12 ; put address into R12 42
 mov.w #7, R13 ; put array length into R13 43
 mov.w #1, R14 ; display #0 (P3&P4) 44
 call #suma_rp 45
 mov.w R14, &P3OUT ; result goes to P4OUT&P3OUT 46
 jmp $ 47

CPE 323 Module 04 © A. Milenković 23

 48
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 49
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 50
 51
;--- 52
; Stack Pointer definition 53
;--- 54
 .global __STACK_END 55
 .sect .stack 56
 57
;--- 58
; Interrupt Vectors 59
;--- 60
 .sect ".reset" ; MSP430 RESET Vector 61
 .short RESET 62
 .end 63
 64

Code 7. Main assembly program for summing up two integer arrays using a subroutine suma_rp.

;--- 1
; File : Lab5_D2_RP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_rp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are: 5
; R12 -- array starting address 6
; R13 -- the number of elements (>= 1) 7
; Output : The output result is returned in register R14 8
; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 (revised on August 2020) 10
;-- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
 .def suma_rp 14
 15
 .text 16
 17
suma_rp: 18
 clr.w R14 ; clear register R14 (keeps the sum) 19
lnext: add.w @R12+, R14 ; add a new element 20
 dec.w R13 ; decrement step counter 21
 jnz lnext ; jump if not finished 22
lend: ret ; return from subroutine 23
 .end 24
 25

Code 8. Subroutine for summing up an integer array (suma_rp).

If many parameters are passed, there may not be enough general-purpose registers available
for passing parameters into the subroutine. In this case we use the stack to pass parameters.
Code 9 shows the calling program (Lab5_D3_main.asm) and Code 10 shows the subroutine
suma_sp (Lab5_D3_SP.asm). Before calling the subroutine, we place parameters on the stack

CPE 323 MSP430 Assembly © A. Milenković 24

using PUSH instructions (the array starting address, array length), and allocate the space for the
sum returned by the subroutine (lines 32, 33 and 34 in Code 9). Please note how we allocate
space for the result on the stack. We refer to this code section as a prologué – steps we carry
out in the caller to prepare input parameters for the callee. The CALL instruction pushes the
return address on the stack.

The subroutine pushes the contents of the registers R7, R6, and R4 on the stack (another 6
bytes) to save their original content as these registers are used in the subroutine. The next step
is to retrieve input parameters (array starting address and array length). They are on the stack,
but to know exactly where, we need to know the current state of the stack and its organization
(how it grows, and where SP points to). Figure 3 illustrates the content of the stack once the
processor finished execution of line 21 in the subroutine suma_sp (Code 10). The original values
of the registers pushed onto the stack occupy 6 bytes, the return address pushed by the CALL
instruction 2 bytes, the space for the result occupies 2 bytes, and the input parameters occupy
4 bytes. The total distance between the current top of the stack marked by a blue arrow and
the location on the stack where we placed the starting address is 12 bytes. So the instruction
MOV 12(SP), R4 loads the register R4 with the first parameter (the array starting address).
Similarly, the array length can be retrieved by MOV 10(SP), R6. Once the elements are
summed up, the result is written into the reserved location on the stack: mov.w R7, 8(SP). The
register values are restored before returning from the subroutine (notice the reverse order of
POP instructions). Once we are back in the calling program, we read the sum from the top of
the stack and then we can free 6 bytes on the stack used in the prologué (code that proceeds
the CALL instruction that prepares parameters). The instructions executed in the caller to free
the stack up and retrieve the results are often referred to as epilogué.

CPE 323 Module 04 © A. Milenković 25

Figure 3. Illustration of the stack after instruction in line 21 of the subroutine suma_sp is executed.
The green box illustrates the locations on the stack prepared by the caller (main program), blue box is
the return address pushed by the CALL instruction, and the red box shows the registers backed up on
the stack by the subroutine suma_sp. Note: we assume that initial SP=0x2400 (OTOS stands for the
original top-of-the-stack).

;--- 1
; File : Lab5_D3_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using a subroutine suma_sp 3
; Description: The program calls suma_sp to sum up elements of integer arrays and 4
; stores the respective sums in parallel ports' output registers. 5
; Parameters to suma_sp are passed through the stack. 6
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 7
; Output : P2OUT&P1OUT stores the sum of arr1, P4OUT&P3OUT stores the sum of arr2 8
; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 (revised August 2020) 10
;--- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
;--- 14
 .def RESET ; Export program entry-point to 15
 ; make it known to linker. 16
 .ref suma_sp 17
;--- 18

Address Stack

0x2400 OTOS

0x23FE #arr1

0x23FC 0008

0x23FA ????

0x23F8 Ret. Addr.

0x23F6 (R7)

0x23F4 (R6)

0x23F2 (R4)

CPE 323 MSP430 Assembly © A. Milenković 26

 .text ; Assemble into program memory. 19
 .retain ; Override ELF conditional linking 20
 ; and retain current section. 21
 .retainrefs ; And retain any sections that have 22
 ; references to current section. 23
;--- 24
RESET: mov.w #__STACK_END,SP ; Initialize stack pointer 25
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 26
 27
;--- 28
; Main code here 29
;--- 30
main: 31
 push #arr1 ; push the address of arr1 32
 push #8 ; push the number of elements 33
 sub.w #2, SP ; allocate space for the sum 34
 call #suma_sp 35
 mov.w @SP, &P1OUT ; store the sum in P2OUT&P1OUT 36
 add.w #6,SP ; collapse the stack 37
 38
 push #arr2 ; push the address of arr1 39
 push #7 ; push the number of elements 40
 sub #2, SP ; allocate space for the sum 41
 call #suma_sp 42
 mov.w @SP, &P3OUT ; store the sume in P4OUT&P3OUT 43
 add.w #6,SP ; collapse the stack 44
 45
 jmp $ 46
 47
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 48
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 49
 50
;--- 51
; Stack Pointer definition 52
;--- 53
 .global __STACK_END 54
 .sect .stack 55
 56
;--- 57
; Interrupt Vectors 58
;--- 59
 .sect ".reset" ; MSP430 RESET Vector 60
 .short RESET 61
 .end 62
 63
 64

Code 9. Main program for summing up two integer arrays using a subroutine suma_sp.

;--- 1
; File : Lab5_D3_SP.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_sp is a subroutine that sums elements of an integer array 4
; Input : The input parameters are on the stack pushed as follows: 5
; starting address of the array 6
; array length 7
; Output : The result is returned through the stack 8

CPE 323 Module 04 © A. Milenković 27

; Author : A. Milenkovic, milenkovic@computer.org 9
; Date : September 14, 2008 (revised August 2020) 10
;-- 11
 .cdecls C,LIST,"msp430.h" ; Include device header file 12
 13
 .def suma_sp 14
 15
 .text 16
suma_sp: 17
 ; save the registers on the stack 18
 push R7 ; save R7, temporal sum 19
 push R6 ; save R6, array length 20
 push R4 ; save R5, pointer to array 21
 clr.w R7 ; clear R7 22
 mov.w 10(SP), R6 ; retrieve array length 23
 mov.w 12(SP), R4 ; retrieve starting address 24
lnext: add.w @R4+, R7 ; add next element 25
 dec.w R6 ; decrement array length 26
 jnz lnext ; repeat if not done 27
 mov.w R7, 8(SP) ; store the sum on the stack 28
lend: pop R4 ; restore R4 29
 pop R6 ; restore R6 30
 pop R7 ; restore R7 31
 ret ; return 32
 .end 33
 34

Code 10. Subroutine for summing up an integer array (parameters are passed through the stack).

Things to remember 6-2. Passing parameters.

Passing parameter defines the way the caller and callee communicate with each other – you
can think about it as a contract between them. The parameters can be passed through
registers (fastest approach) or through the stack (or combining the two approaches).

7 Allocating Space for Local Variables
Subroutines often need local workspace. So far we have looked at relatively simple subroutines
and managed to develop them by using only a subset of general-purpose registers to keep local
variables. However, what are we going to do if we have arrays and matrices as local variables in
subroutines? Allocating space in RAM memory is an obvious solution, but the question is how
to manage such a space. Assigning a portion of RAM residing at a fixed address is not a good
option. First, it will make our code tied to this particular address – different members of
MSP430 family may have different sizes and address mapping of RAM memory, so the code
may not be portable. In addition, subroutines may be called recursively, so that multiple
instances of local variables need to be kept separately. Clearly, having a reserved portion of
RAM at a fixed address is not amiable for relocatable, reentrant, and recursive subroutines. The

CPE 323 MSP430 Assembly © A. Milenković 28

solution is to use so-called dynamic allocation. Local variables in a subroutine (those that exist
during the lifetime of subroutines) are allocated on the stack once we enter the subroutine and
de-allocated (removed) form the stack before we exit the subroutine.

The storage allocated by a subroutine for local storage is called stack frame. To manage space
on the stack frame we typically use a general purpose register that acts as stack frame pointer.
Let us assume we want to use register R12 as the frame pointer and that we want to allocate
local space for an integer array of 10 elements (20 bytes in MSP430). The first step done in the
subroutine is to push the R12 onto the stack (thus, saving its original content) and then redirect
R12 to point to the current top of the stack (where its original copy is kept on the stack). After
that, allocating space is simply moving the stack pointer 20 bytes below the current top of the
stack. The following sequence of instructions performs required operations.

mysub: PUSH R12 ; save R12

 MOV.W SP, R12 ; R12 points to TOS

 SUB.W #20, SP ; allocate 20 bytes for local storage

This way register R12 can act as an anchor or address register through which we can reach
input variables on the stack (residing on the stack above the anchor) or local variables (residing
on the stack below the anchor in the stack frame). One advantage of this approach is that we
do not have to use SP to reach local variables or input parameters. Using SP to reach input and
local variables requires developers to track distance between the current SP and locations of
interest on the stack, which could be a burden when the stack is growing or shrinking
dynamically inside the subroutine. Register R12 is anchored and does not change its value
during subroutine execution.

Before we exit the subroutine, we need to de-allocate the local stack frame and restore the
original value of R12 as follows.

 MOV.W R12, SP ; free the stack frame

 POP.W R12 ; restore R12

 RET ; retrieve the return address from the stack

To demonstrate practical use of the stack frame we will rewrite the subroutine for summing up
elements of an integer array from Code 10. This time we assume that the total array sum and
the loop counter are not kept in general-purpose registers, but rather are local variables for the
subroutine kept on the stack frame. Code 11 shows the subroutine sum_spsf that expects the
input parameters passed through the stack, but allocates 4 bytes in the stack frame for the total
sum (at the address SFP-4) and the counter (at the address SFP-2). Figure 4 illustrates the
content of the stack after the instruction in line 25 of Code 11 is executed.

Code 12 shows the implementation of the caller program – it is practically the same as the one
in Code 9, except that suma_spsf is called instead of suma_sp.

CPE 323 Module 04 © A. Milenković 29

Figure 4. Illustration of the stack after instruction in line 25 of the subroutine suma_spsf is executed.
The green box illustrates the locations on the stack prepared by the caller (main program), blue box is
the return address pushed by the CALL instruction, and the red box shows the stack frame register (R12
in this example). The local variables of the subroutine counter and sum are allocated on the stack, right
below the stack frame. We refer to them relative to the stack frame.

--- 1
; File : Lab5_D4_SPSF.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of an input integer array 3
; Description: suma_spsf is a subroutine that sums elements of an integer array. 4
; The subroutine allocates local variables on the stack: 5
; counter (SFP-2) 6
; sum (SFP-4) 7
; Input : The input parameters are on the stack pushed as follows: 8
; starting address of the array 9
; array length 10
; Output : The result is returned through the stack 11
; Author : A. Milenkovic, milenkovic@computer.org 12
; Date : September 14, 2008 (revised on August 2020) 13
;-- 14
 .cdecls C,LIST,"msp430.h" ; Include device header file 15
 16
 .def suma_spsf 17

Address Stack

0x2400 OTOS

0x23FE #arr1

0x23FC 0008

0x23FA 0000

0x23F8 Ret. Addr.

0x23F6 (R12)

0x23F4 counter

0x23F2 sum

0x23F0 (R4)

R12

SP

CPE 323 MSP430 Assembly © A. Milenković 30

 18
 .text 19
suma_spsf: 20
 ; save the registers on the stack 21
 push R12 ; save R12 - R12 is stack frame pointer 22
 mov.w SP, R12 ; R12 points on the bottom of the stack frame 23
 sub.w #4, SP ; allocate 4 bytes for local variables 24
 push R4 ; pointer register 25
 clr.w -4(R12) ; clear sum, sum=0 26
 mov.w 6(R12), -2(R12) ; get array length 27
 mov.w 8(R12), R4 ; R4 points to the array starting address 28
lnext: add.w @R4+, -4(R12) ; add next element 29
 dec.w -2(R12) ; decrement counter 30
 jnz lnext ; repeat if not done 31
 mov.w -4(R12), 4(R12) ; write the result on the stack 32
 pop R4 ; restore R4 33
 add.w #4, SP ; collapse the stack frame 34
 pop R12 ; restore stack frame pointer 35
 ret ; return 36
 .end 37
 38

Code 11. Subroutine for summing up an integer array that uses local variables sum and counter
allocated on the stack.

;--- 1
; File : Lab5_D4_main.asm (CPE 325 Lab5 Demo code) 2
; Function : Finds a sum of two integer arrays using a subroutine suma_spsf 3
; Description: The program initializes ports and 4
; calls suma_spsf to sum up elements of integer arrays and 5
; display sums on parallel ports. 6
; Parameters to suma_spsf are passed through the stack. 7
; Input : The input arrays are signed 16-bit integers in arr1 and arr2 8
; Output : P1OUT&P2OUT displays sum of arr1, P3OUT&P4OUT displays sum of arr2 9
; Author : A. Milenkovic, milenkovic@computer.org 10
; Date : September 14, 2008 11
;--- 12
 .cdecls C,LIST,"msp430.h" ; Include device header file 13
 14
;--- 15
 .def RESET ; Export program entry-point to 16
 ; make it known to linker. 17
 .ref suma_spsf 18
;--- 19
 .text ; Assemble into program memory. 20
 .retain ; Override ELF conditional linking 21
 ; and retain current section. 22
 .retainrefs ; And retain any sections that have 23
 ; references to current section. 24
;--- 25
RESET: mov.w #__STACK_END,SP ; Initialize stackpointer 26
StopWDT: mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer 27
 28
;--- 29
; Main code here 30

CPE 323 Module 04 © A. Milenković 31

;--- 31
main: push #arr1 ; push the address of arr1 32
 push #8 ; push the number of elements 33
 sub.w #2, SP ; allocate space for the sum 34
 call #suma_spsf 35
 mov.w @SP, &P1OUT ; move result from the TOS to P2OUT&P1OUT 36
 add.w #6,SP ; collapse the stack 37
 push #arr2 ; push the address of arr1 38
 push #7 ; push the number of elements 39
 sub.w #2, SP ; allocate space for the sum 40
 call #suma_spsf 41
 mov.w @SP, &P3OUT ; move result from the TOS to P4OUT&P3OUT 42
 add.w #6,SP ; collapse the stack 43
 44
 jmp $ 45
 46
arr1: .int 1, 2, 3, 4, 1, 2, 3, 4 ; the first array 47
arr2: .int 1, 1, 1, 1, -1, -1, -1 ; the second array 48
 49
;--- 50
; Stack Pointer definition 51
;--- 52
 .global __STACK_END 53
 .sect .stack 54
 55
;--- 56
; Interrupt Vectors 57
;--- 58
 .sect ".reset" ; MSP430 RESET Vector 59
 .short RESET 60
 .end61

Code 12. Main program calling subroutine suma_spsf.

Things to remember 7-1. Local variables.

Local variables in subroutines are typically allocated dynamically on the stack. For that
purpose we use a register as stack frame pointer that is pushed on the stack at the beginning
of the subroutine. The local variables are allocated on the stack beneath the frame pointer
and are removed from the stack before we exit the subroutine.

8 Performance, Execution Time
In this section we will briefly discuss the notion of performance. Computer engineers define
performance as an ability of a computer to perform a task. There are two typical definitions of
performance: user-centric or speed-centric that focuses on how long does it take to complete a
task, and system-centric or throughput-centric that focuses on how many tasks can be
completed in a unit of time. In this text we will focus on the speed flavor of performance,
where we are interested in completing a task in minimum amount of time. Thus, performance a
machine achieves while executing a program under test (let’s call it PUT) is a reciprocal of the

CPE 323 MSP430 Assembly © A. Milenković 32

time needed to execute the program, also known as ET (Execution Time). Performance is a
“higher-is-better” metric, whereas the execution time is a “lower-is-better” metric.

We can formally define performance as:

𝑃(𝑃𝑈𝑇) =
1

𝐸𝑇(𝑃𝑈𝑇)

The execution time can be calculated as a product of the number of processor clock cycles
needed to execute the program PUT and the clock cycle time (CCT – clock cycle time), which is a
reciprocal of the processor clock frequency (CF), CCT=1/CF. Next, the number of processor clock
cycles to execute the program PUT is a product of the number of instructions executed in the
program or Instruction Count (IC) and the average number of clock Cycles per Instruction
executed, CPI. Consequently, we can write the following equation that is often referred to as
the Iron Law of processor performance:

𝐸𝑇(𝑃𝑈𝑇) = 𝐼𝐶 ∙ 𝐶𝑃𝐼 ∙ 𝐶𝐶𝑇 =
𝐼𝐶 ∙ 𝐶𝑃𝐼

𝐶𝐹

In units, the equation can be looked at as follows:

𝐸𝑇(𝑃𝑈𝑇) =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
∙

𝐶𝑦𝑐𝑙𝑒

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
∙

𝑆𝑒𝑐𝑜𝑛𝑑

𝐶𝑦𝑐𝑙𝑒
=

𝑆𝑒𝑐𝑜𝑛𝑑

𝑃𝑟𝑜𝑔𝑟𝑎𝑚

Generally, we are interested to complete tasks as soon as possible. This way, we can have more
satisfied users, we can meet stringent time deadlines (e.g., not to miss important events,
remember the story about Moon landing and control processor being over tasked), or we can
spend more time in a low-power modes, thus saving energy and consequently extending the
operating time of battery powered devices.

Determining of the number of clock cycles needed to execute a program is relatively easy in
Code Composer. You have a cycle counter that is updated as you execute every instruction. The
time to execute an instruction in MSP430 is deterministic and specified in the user manual. An
instruction can take between 1 clock cycle to execute (instructions operating on operands in
registers) to 6 clock cycles, depending on the instruction type (double-operand, single-operand,
branch) and the addressing modes. Figure 5 shows instruction lengths and the number of clock
cycles Type I (double operand) instructions take to execute. As you can see the number of clock
cycles is solely a function of the addressing mode, e.g., MOV.W R5, R8 takes just one clock
cycle, whereas MOV.W &EDE, &TONI takes 6 clock cycles. How many clock cycles does MOV.W
@R5, TONI takes? Why? All MSP430 branch instructions are 1 instruction word long and take
exactly 2 clock cycles to execute, regardless of the branch outcome (taken or not taken). Figure
6 shows instruction lengths and the number of clock cycles Type II instructions take to execute,
whereas Figure 7 shows these for RET/RETI instructions.

The following example illustrates how you can apply this information to determine a program
execution time and other metrics of interest. Assume that an input string has 20 ASCII
characters (including the NULL that terminates it) and our task is to determine the execution
time of this code snippet that copies the source string to a destination address contained in
register R15.

CPE 323 Module 04 © A. Milenković 33

; R14 points to the beginning of the source string (terminated by a NULL)

; R15 to the beginning of the destination string

lstrcopy: mov.b @R14+, 0(R15) ;

 tst.b 0(R15) ;

 jz lfin ;

 inc.w R15 ;

 jmp lstrcopy ;

lfin:

The first step is to determine how many instructions are executed in this code snippet. Based
on the problem we have that the main loop will execute 19 times, each with 5 instructions. The
last iteration will execute 3 instructions, plus the ret instruction. Thus,

𝐼𝐶 = 19 ∗ 5 + 3 = 95 + 3 + 1 = 99 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

Next, using information about execution time of individual instructions, we can write the
following.

; R15 to the beginning of the destination string

lstrcopy: mov.b @R14+, 0(R15) ; 4 cc (see note in the table)

 tst.b 0(R15) ; 4 cc (an emulated instruction)

 jz lfin ; 2 cc

 inc.w R15 ; 1 cc

 jmp lstrcopy ; 2 cc

lfin: ret ; 4 cc

𝐶𝑦𝑐𝑙𝑒𝑠 = 19 ∗ (4 + 4 + 2 + 1 + 2) + 4 + 4 + 2 + 4 = 19 ∗ 13 + 14 = 261 𝑐𝑦𝑐𝑙𝑒𝑠

Assuming 1 s clock cycle time, this code snippet takes:

𝐸𝑇 = 𝐶𝑦𝑐𝑙𝑒𝑠 ∗ 𝐶𝐶𝑇 = 261 ∗ 1 = 261 s = 0.261 ms = 0.261 ∙ 10−3 𝑠

Now we can determine CPI for this code snippet:

𝐶𝑃𝐼 =
𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝐶
=

261

99
 = 2.64

CPE 323 MSP430 Assembly © A. Milenković 34

Figure 5. Type I (double operand) instruction lengths and cycles.

CPE 323 Module 04 © A. Milenković 35

Figure 6. Type II (single operand) instruction lengths and cycles.

Figure 7. RET/RETI instruction lengths and cycles.

Things to remember 8-1. Performance (speed flavor).

Performance captures how quickly a processor can execute a task. It is reciprocal of the
program execution time. The program execution time, ET, is computed as follows:

𝐸𝑇 = 𝐼𝐶 ∙ 𝐶𝑃𝐼 ∙ 𝐶𝐶𝑇 =
𝐼𝐶 ∙ 𝐶𝑃𝐼

𝐶𝐹

where IC is the number of executed instructions in a program, CPI is the average number of
clock cycles per instruction, and CCT is the processor clock cycle time.

Sometimes you will see metrics such as MIPS used in reporting performance. MIPS stands for
Million of Instructions Per Second, thus we can write:

𝑀𝐼𝑃𝑆 =
𝐼𝐶

𝐸𝑇 ∙ 106
=

𝐼𝐶

𝐼𝐶 ∙ 𝐶𝑃𝐼 ∙ 𝐶𝐶𝑇 ∙ 106
=

𝐶𝐹

𝐶𝑃𝐼 ∙ 106
=

𝐶𝐹 [𝑀𝐻𝑧]

𝐶𝑃𝐼

Please note that MIPS could be quite misleading when comparing performance of a task
executed on processors with different ISAs. The equation above suggests that processors with
ISAs resulting in a small CPIs would always perform better than processor with more complex
ISAs resulting in a larger CPI. This is simply not true.

Let’s say you want to sum up two single-precision floats in MSP430 – it will take thousands of
instructions to do so using MSP430 ISA (assume it takes 3,000 instructions), but the CPI would

be relatively small, e.g., CPI 2.0. So the total time to complete this task is 3,000x2 = 6,000
clock cycles. Now, imagine we design an MSP430fp that adds a functional unit and
corresponding instructions to perform addition on floats. Such an instruction may take for
example 100 clock cycles to execute, inflating the program’s CPI to a large number, but it will
take just a single instruction to complete this operation. MIPS would misled you to say that the
plain MSP430 would be a better choice. However, that is not true because it will just take you
100 clock cycles to do so on the improved MSP430fp (or 20x faster). Please note that we
assume that the clock frequency remains constant, i.e., both the plain MSP430 and this
hypothetical MSP430fn run at the same clock frequency.

CPE 323 MSP430 Assembly © A. Milenković 36

A cousin of MIPS is FLOPS that stands for Floating-Point Instructions Per Second and is often
used in scientific computing because it captures information on how many floating-point
operations a machine can execute in one second.

9 To Learn More
1. MSP430x5xx and MSP430x6xx Family User’s Guide, https://www.ti.com/lit/slau208

2. MSP430x4xx Family User’s Guide, https://www.ti.com/lit/pdf/slau056

10 Exercises
Problem #1.

Consider the following code segment. Reverse engineer the code. What does this code do?
Determine the total execution time in second for the code sequence concluding with line 16.

01 bis.b #0xFF, &P1DIR

02 bis.b #0xFF, &P2DIR

03 mov.w #UIArr, R14

04 mov.w #UIArrA, R13

05 sub.w R14, R13

06 rra R13

07 mov.w #0x0, R7

08 LNext: mov.w @R14+, R15

09 cmp.w R7, R15

10 jnc Lskip

11 mov.w R15, R7

12 Lskip: dec.w R13

13 jnz LNext

14 mov.b R7, P1OUT

15 swpb R7

16 mov.b R7, P2OUT

17 jmp $

18 UIArr: .word 4, 5, 200, 500, 60000

19 UIArrA:

Problem #2.

Design and write an MSP430 assembly language subroutine unsigned int asciihex2ui(char* mya) that
processes an ASCII array with 4 elements and converts its value into an unsigned integer. The ASCII array
ahex contains a hexadecimal representation of the number in ASCII format – e.g., “AB34” is an array of 4
ASCII characters (0x41,0x42, 0x33,0x34) that should be converted into an unsigned integer with value
0xAB34 (1010.1011.0011.0100b).

What does the main program do with the returned value? What is the input parameter and how is it
passed to the subroutine?

RESET mov.w #__STACK_END,SP ; Initialize stackpointer

https://www.ti.com/lit/slau208
https://www.ti.com/lit/pdf/slau056

CPE 323 Module 04 © A. Milenković 37

StopWDT mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer

 bis.b #0xFF, &P1DIR ; set P1 as output port

 bis.b #0xFF, &P2DIR ; set P2 as output port

 push #ahex ;

 call #asciihex2ui ;

 mov.b R12, &P1OUT

 swpb R12

 mov.b R12, &P2OUT

 jmp $

ahex: .byte 'A', 'B', '3', '4' ; ASCII array for input

Problem #3.

Design and write an MSP430 assembly language subroutine int hex_num (int *myw) that processes an
integer to determine the number of numerical symbols (0-9) in its hexademical representation. For
example, hex_num(0xABBA)=0, and hex_num(0x345A)=3. The main program that calls the subroutine is
shown below.

What does the main program do with the returned value? How do we pass the input parameter?

RESET mov.w #__STACK_END,SP ; Initialize stack pointer

StopWDT mov.w #WDTPW|WDTHOLD,&WDTCTL ; Stop watchdog timer

 bis.b #0xFF, &P1DIR ; set P1 as output port

 push #myw ;

 call #hex_num ;

 mov.b R7, &P1OUT

 jmp $

myw: .word 0xAB3D ;

