

CPE 323 Module 03 © A. Milenković 1

CPE 323
MODULE 03

MSP430 INSTRUCTION SET ARCHITECTURE (ISA)

Aleksandar Milenković

Email: milenka@uah.edu

Web: http://www.ece.uah.edu/~milenka

Overview

This module introduces the MSP430 Instruction Set Architecture (ISA). MSP430 is a family of
microcontrollers designed by Texas Instruments. It is a system-on-a-chip encompassing a
processor core, flash memory, RAM memory, and a number of IO peripheral devices including
parallel ports, timers, serial communication interfaces, analog-to-digital and digital-to-analog
converters, LCD display controllers, and others. To write programs in assembly or C/C++
programming languages, engineers need to have a good understanding of processor's ISA - an
interface between hardware and software. An ISA encompasses the following aspects of
processor: registers, memory, data types, addressing modes, instruction set, instruction
encoding, and exception mechanism.

Objectives

Upon completion of this module learners will be able to:

 Specify ISA and its aspects (registers, memory, data types, addressing modes, instruction
set, instruction encoding, and exception mechanism)

 Distinguish between logical and physical organization of memory in general and MSP430
in particular

 Demonstrate comprehension of all aspects of MSP430 ISA

Contents

1 Introduction .. 3

2 Class of ISA .. 4

3 Memory Architecture ... 6

4 Registers .. 9

5 Operands and Data Types ... 13

6 Basic Instruction Encoding .. 15

7 Addressing Modes .. 16

mailto:milenka@uah.edu

CPE 323 MSP430 ISA © A. Milenković 2

8 Instruction Set and Instruction Encoding ... 22

8.1 Double-Operand Instructions ... 22

8.2 Single-Operand Instructions ... 31

8.3 Control-Flow Instructions ... 34

8.4 Emulated Instructions .. 36

9 Additional Notes On Constant Generator .. 38

10 To Learn More ... 40

11 Exercises .. 40

CPE 323 Module 03 © A. Milenković 3

1 Introduction
Computers cannot directly execute high-level language (HLL) constructs found in C or C++.
Rather, they execute a relatively small set of machine instructions, such as, addition,
subtraction, Boolean operations (bitwise or, xor, and), and data transfers. The statements from
a HLL are translated into sequences of machine code instructions by a compiler. The compiler is
a program that takes source code written in a HLL and produces an equivalent sequence of
machine code instructions. A machine code instruction is represented by a binary string.
Reading these binary strings is hard for humans. A human-readable form of the machine code is
assembly language. In addition to machine instructions, assembly language may also include
some constructs that help programmers write a better and more efficient code, faster.

Instruction set architecture, or ISA for short, refers to a portion of a computer that is visible to
low-level programmers, such as assembly language programmers or compiler writers. It is an
abstract view of the computer describing what it does rather than how it does it. Note:
Computer Organization describes how the computer achieves the specified functionality, but it
is out of scope in this course. The CPE 221 and CPE 431 courses cover computer organization
topics of interest.

The ISA aspects include:

(a) class of ISA,

(b) memory model,

(c) registers,

(d) types and sizes of operands,

(e) instruction set - data processing and control flow operations supported by machine
instructions,

(f) instruction encoding,

(g) addressing modes, and

(h) exception processing (this topic is further discussed in Module 06).

In this module we will discuss the ISA aspects for the MSP430 family of devices.

Before we start discussing the MSP430 ISA, let us first introduce MSP430. MSP430 stands for
Mixed-Signal Processor and it is a microcontroller family developed by Texas Instruments. An
MSP430 microcontroller is a system-on-a-chip – a monolithic piece of silicon that combines a
16-bit low-power processor core, Flash and RAM memories, and a rich set of analog and digital
input/output (I/O) peripherals. The common peripherals include digital input/output ports,
serial communication interfaces supporting various serial communication protocols, timers,
liquid crystal display controllers, analog-to-digital converters (ADCs), digital-to-analog
converters (DACs), comparators, and even operational amplifiers. The MSP430 family targets
low-cost and low-power battery-powered embedded applications. Microcontrollers from the
MSP430 family are used in a range of consumer and industrial applications, such as utility
metering, medical instruments, wearables, home appliances, and others. The MSP430 family

CPE 323 MSP430 ISA © A. Milenković 4

includes over 230 parts that range from those that cost as low as 10 cents to those that cost
over $10 in high volumes. The individual parts vary in the type and capacity of memory and the
number and type of I/O peripheral devices.

Things to remember 1-1. ISA Definition.

Instruction Set Architecture specifies an interface between the hardware and software
worlds and includes the following aspects:

(a) class of ISA,

(b) memory model,

(c) registers,

(d) types and sizes of operands,

(e) instruction set - data processing and control flow operations supported by machine
instructions,

(f) instruction encoding,

(g) addressing modes, and

(h) exception processing (this topic is further discussed in Module 06).

When you are learning a new ISA, start by figuring out aspects of ISA described above.

2 Class of ISA
Virtually all recent instruction set architectures have a set of general-purpose registers visible to
programmers. These architectures are known as general-purpose register architectures.
Machine instructions in these architectures specify all operands in memory or general-purpose
registers explicitly. In older architectures, machine instructions specified one or more operands
implicitly on the stack – so-called stack architectures, or in the accumulator – so-called
accumulator architectures. The stack architectures use PUSH and POP operations to put
operands to and remove them from the stack, respectively, whereas all other operations find
their operands on the stack. Thus, arithmetic-logic instructions do not specify operands
explicitly as they are implicitly always on the top of the stack. In accumulator architectures, one
operand is always defined implicitly in a special register called accumulator. The other operand
is specified explicitly by the instruction.

There are many reasons why general-purpose register architectures dominate in today’s
computers. Keeping frequently used variables, pointers, and intermediate results of
calculations in registers reduces memory traffic; improves processor performance since
registers are much faster than memory; and reduces code size since naming registers requires
fewer bits than naming memory locations directly. A general trend in recent architectures is to
increase the number of general-purpose registers.

CPE 323 Module 03 © A. Milenković 5

The following example illustrates how a simple statement in a HLL that computes Z = X + Y is
implemented in the three architectures: the stack, the accumulator, and the general-purpose
register.

Example 2-1. Stack, accumulator, and general-purpose register
architectures.

Consider a problem where we have to compute Z = X + Y. All three variables are in memory.
Below are code snippets in assembly for the stack, accumulator, and general-purpose register
architectures.

Stack machine (instructions find their operands on the top of the stack, specified implicitly):

 PUSH X ; read X from memory and put it to the top of the stack (TOS)

 PUSH Y ; read Y from memory and put it to the TOS

 ADD ; pops two operands from the TOS, sums them up,
 ; and writes the result back to the TOS

 POP Z ; pops the result from the TOS and writes it to memory location Z

Accumulator machine (one operand is in the accumulator, specified implicitly):

 LOAD X ; Accumulator M[X]

 ADD Y ; Accumulator Accumulator + M[Y]

 STORE Z ; M[Z] Accumulator

General-purpose register machine (2-address instructions):

 MOV X, R5 ; R5 M[X]

 ADD Y, R5 ; R5 M[Y] + R5

 MOV R5, Z ; M[Z] R5

General-purpose register architectures can be classified into register-memory and load-store
architectures, depending on the location of operands used in typical arithmetic and logic
instructions. In register-memory architectures arithmetic and logic machine instructions can
have one or more operands in memory. In load-store architectures only load and store
instructions can access memory, and common arithmetic and logic instructions are performed
on operands in registers. Depending on the number of operands that can be specified by an
instruction, ISAs can be classified into 2-operand or 3-operand architectures. With 2-operand
architectures, typical arithmetic and logic instructions specify one operand that is both a source
and the destination for the operation result, and another operand is a source. For example, the
arithmetic instruction ADD R1, R2 adds the operands from the registers R1 and R2 and writes
the result back to the register R2. With 3-operand architectures, instructions can specify two
source operands and the destination operand. For example, the arithmetic instruction ADD R1,
R2, R3 adds the operands from the registers R1 and R2 and writes the result to the register R3.

The MSP430 belongs to register-memory type of architectures, which means that machine
instructions find their operands in either general-purpose registers or memory locations. The
number of operands that can be specified by machine instructions is maximum two. We

CPE 323 MSP430 ISA © A. Milenković 6

distinguish between double-operand (two-operand), single-operand, and jump instructions. In
double-operand instructions, the first operand is usually referred to as source (src) and the
second operand is referred to as destination (dst) or source/destination (src/dst), depending on
instruction type. In single-operand instructions, the only operand is usually referred to as
source/destination (src/dst) operand.

Things to remember 2-1. Types of Architectures.

Types of architectures:

(a) stack

(b) accumulator

(c) general-purpose register.

Based on the number of operands explicitly specified by an instruction we can have:

(a) null-operand architectures (stack)

(b) single-operand architectures (accumulator)

(c) two-operand architectures (one source, one source/destination)

(d) three-operand architecture (two sources, one destination).

Things to remember 2-2. Type of MSP430 Architecture.

MSP430 is a register-memory architecture with 2-operand instructions.

3 Memory Architecture
The MSP430 family uses the Von-Neumann architecture – the program and data share a single
address space. An alternative to the Von-Neumann architecture is the Harvard architecture
where the program and data occupy separate address spaces. The operations can be performed
on byte- or word-sized operands and the smallest addressable unit is a byte. All addresses are
16-bit long, and the address space is thus 65,536 (216) bytes. The address space is divided into
several sections: for special-purpose system registers (typically occupy byte addresses
0x0000 – 0x000F), 8-bit peripheral device registers (0x0010 – 0x00FF), 16-bit peripheral device
registers (0x0100 – 0x01FF), RAM memory (volatile, read/write), and Flash (non-volatile, read-
only) memory. The processor communicates with memory and I/O peripherals through a 16-bit
address bus, a 16-bit data bus, and a control bus.

Memory is organized in such a way that in one bus operation an entire 16-bit word can be read
from or written to. All words are aligned – i.e., a 16-bit word must be aligned to an even
address in the address space – no word size operand can be placed at an odd address in the
address space. A byte operand can be placed at any address (odd or even) in address space.

CPE 323 Module 03 © A. Milenković 7

An important question is how to store multi-byte objects in memory. For example, let us
assume that you have a 16-bit constant 0x4567 and you want to store it in memory at the
address 0x0600. The question is how do you do it? You can place the lower byte of the operand
(0x67) to the byte location at the address 0x0600 and the upper byte 0x45 to the byte location
at the address 0x0601 (see Figure 1). This placement policy is known as little-endian - the lower
byte is placed at a lower address in address space. Alternatively, you can place the upper byte
of the operand 0x45 to the location at 0x600 and the lower byte 0x67 to the location at 0x601.
This placement policy is known as big-endian. Whereas Figure 1 shows a byte view of address
space, we will often see the address space as a collection of words or two bytes.

Little-endian placement Big-endian placement

Address Content M[7 . . . 0] Address Content M[7 . . . 0]

0x0600 0x67 0x0600 0x45

0x0601 0x45 0x0601 0x67

Figure 1. Little-endian vs. big-endian.

In MSP430 ISA multi-byte objects are stored in memory using little-endian policy (the lower
byte of the object is stored at a memory location with lower address).

Let us consider address mapping of an MSP430 with the following characteristics:

 16 KiB of flash memory placed at the top of address space (the uppermost quarter of
address space),

 4KiB of RAM memory that is placed at the based address 0x3100.

The address space of 64 KiB can be viewed as a collection of 16-bit words, placed at word
addresses 0x0000, 0x0002, 0x0004, and so on, up to 0xFFFE. Figure 2 shows how actual
memory modules map into the 64 KiB address space. Blue blocks represent actual physical
locations, whereas green blocks represent portions of address space that are not occupied, i.e.,
there is no physical storage residing in these areas. As discussed above, the first 256 bytes of
address space is reserved for special-purpose registers and registers of 8-bit I/O peripherals.
This block occupies the address range from 0x0000 – 0x00FE (we use here word addresses,
rather than byte addresses). The next 256 bytes is reserved for registers of 16-bit I/O
peripherals; it occupies a block starting at the address 0x0100 (one word above the previous
block) and ending at the address 0x01FE. The RAM memory starts at the address 0x3100. This
means that we do not have any physical memory in the address range from 0x0200 to 0x30FE.
Consequently, your program should never try to read from or write to these locations. The size
of the RAM memory is 4 KiB or 212 bytes. If we were to place this block at the address 0x0000, it
would have the range from 0x0000 to 0x0FFE (212 – 2 in hex is 0x0FFE). However, as the RAM
block starts at 0x3100, the RAM memory address range is from 0x3100 to 0x40FE
(0x3100+0x0FFE). The 16 KiB flash memory is placed at the uppermost quarter of the 64 KiB

CPE 323 MSP430 ISA © A. Milenković 8

address space. Thus, the flash memory occupies the address range from 0xC000 to 0xFFFE. An
easy way to reason about the flash memory address range is to recall address decoding. The 16-
bit memory address with individual address bits A15 to A0 can be divided into 4 sub-sections, 16
KiB each (64 KiB/4 = 16 KiB). Common for all addresses in the first quarter is that A15=0 and
A14=0, common for all addresses in the second quarter is that A15=0 and A14=1, common for all
addresses in the third quarter is that A15=1 and A14=0, and common for all addresses in the
fourth quarter is that A15=1 and A14=1. Thus the first address in the fourth quarter is
1100_0000_0000_0000 in binary or 0xC000 in hex and the last address is
1111_1111_1111_1110 or 0xFFFE.

Please note that this is just an example, and different MSP430 parts will have different address
ranges depending on the size of RAM and Flash memory modules.

Figure 2. Address mapping of an example MSP430.

Warning!

Very often students provide an incorrect answer when determining address ranges in the
address space. The address range asks you to determine the address of the first byte (word)
and the last byte (word) within the module. Let us assume that we have a 256 byte memory
module that is placed at the the address 0x0200 in the 64 KiB address space. 256 bytes = 28
bytes, which is equivalent to 1_0000_0000 b or 0x0100. The address range for this memory
module is thus 0x0200 – 0x02FF (using byte addresses) or 0x0200-0x02FE (using word
addresses). Often students will offer an incorrect answer, as follows: 0x0200 + 0x0100 =
0x0300, thus the last address within the module is 0x0300. This is wrong! Make sure you

Flash
Memory

--

RAM
Memory

16-bit I/Os

8-bit I/Os

--

15 14 1 0

0x0000

0x00FE

0x0100
0x01FE
0x0200

0x30FE

0x3100

0x40FE

0xC000

0xFFFE

0x4100

0xBFFE

CPE 323 Module 03 © A. Milenković 9

understand why. Hint: if I give you a module of just two bytes and you place it at address
0x0000, is the address range 0x0000-0x0001 or 0x0000-0x0002?

Things to remember 3-1. MSP430 Address Space.

MSP430 address space is byte-addressable (the smallest unit that can be addressed in
address space), word-aligned (16-bit words are aligned to even addresses), and little-endian
(multi-byte objects are placed using little-endian placement policy).

Things to remember 3-2. MSP430 Address Space Sections.

MSP430 address space is partitioned into sections reserved for non-volatile read-only flash
memory holding code and constant data, volatile read/write RAM memory holding data, and
registers for input/output peripheral devices.

4 Registers
Figure 3 shows a block diagram of the MSP430 processor’s datapath with registers and ALU.
The MSP430 has sixteen 16-bit registers named R0 – R15 that are all visible to programmers.
Some of these registers are reserved for special functions as follows: the register R0 serves as
the program counter (PC), the register R1 serves as the stack pointer (SP), and the register R2
serves as the status register (SR). The R3 register is used for constant generation, while the
remaining registers R4-R15 serve as general-purpose registers (i.e., they can be used by
programmers freely for storing local variables and addresses).

A relatively large number of general-purpose registers, compared to other microcontrollers,
allows the majority of program computation to take place on operands in general-purpose
registers, rather than operands in main memory. This helps improve performance and reduce
code size.

Register-register operations (both operands are in registers) are performed in a single clock
cycle. For example, ADD R4, R5 instruction will read the contents of registers R4 and R5; the
register R4 goes to the src input of the arithmetic-logic unit (ALU) and register R5 goes to the
dst input of the ALU. The result shows up on the ALU output and the memory data bus (MDB),
and it is stored back in the register R5.

Program counter (PC/R0). PC always points to the next instruction to be executed. MS430
instructions can be encoded with 2 bytes, 4 bytes, or 6 bytes depending on addressing modes
used for source (src) and source/destination (src/dst) operands. The MSP430 has byte-
addressable architecture (the smallest unit in memory that can be addressed directly is a byte).
Hence, the instructions always have an even number of bytes (they are word-aligned), so the
least significant bit of the PC is always zero as shown in Figure 4.

CPE 323 MSP430 ISA © A. Milenković 10

Figure 3. MSP430 CPU Datapath: Registers and ALU.

R0/PC – Program Counter 0

15 1 0

R1/SP – Stack Register 0

R2/SR – Status Register

R3/CG2 – Constant Generator

R4 – General Purpose Register

R5 – General Purpose Register

R6 – General Purpose Register

R7 – General Purpose Register

R8 – General Purpose Register

R9 – General Purpose Register

R10 – General Purpose Register

R11 – General Purpose Register

R12 – General Purpose Register

R13 – General Purpose Register

R14 – General Purpose Register

R15 – General Purpose Register

MAB - Memory
Address Bus

MDB - Memory
Data Bus

ALU

srcdst

CPE 323 Module 03 © A. Milenković 11

Program Counter 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4. Program Counter.

Stack pointer (SP/R1). The program stack is a dynamic LIFO (Last-In-First-Out) structure
allocated in RAM memory. The program stack is used to store the return addresses of
subroutine calls and interrupts. In addition, the stack is used as the storage for local data
allocated in subroutines and for passing input parameters to subroutines and returning results
from subroutines.

The MSP430 architecture assumes the following stack convention: the SP points to the last full
location on the top of the stack and the stack grows towards lower addresses in memory. The
stack is also word-aligned, so the LSB bit of the SP is always 0.

Two main stack operations are PUSH and POP as shown in Table 1. The PUSH operation pushes
content to the top of the stack and the POP operation retrieves the content from the top of the
stack. Please note that even when you are pushing a single byte to the stack, it will occupy an
entire word in memory.

Table 1. Example instructions dealing with the program stack.

Instruction RTL Description

PUSH R7 SP SP - 2

M[SP] R7

Decrement SP to allocate a new word
on the stack; copy the content of the
register R7 to the location on the top of
the stack

POP R6 R6 M[SP]

SP SP + 2

Retrieve the content from the top of
the stack and copy it to R6; increment
SP by 2 to move SP to point to the new
top of the stack.

Let us consider the instruction PUSH R7. This instruction pushes the content of the register R7
to the stack. Since the SP points to the last full (occupied) location on the stack, the first step is
to decrement SP to point to the next free location on the stack. Since the stack is growing

towards lower addresses in RAM memory, the SP is decremented as follows: SP SP – 2. The
next step is to copy the content of the register R7 into the memory location that SP is pointing

to. We describe this step as follows: M[SP] R7, or the memory location with the address
contained in SP/R1 is loaded with the content of register R7.

The instruction POP R6 retrieves the content from the current top of the stack and copies it into

the register R6. We describe that step as follows: R6 M[SP]. To free the location on the top

of the stack, the SP register is updated as follows: SP SP + 2. The location above the original
top of the stack becomes a new top of the stack.

CPE 323 MSP430 ISA © A. Milenković 12

Status register (SR/R2). The status register keeps the content of arithmetic flags (C, V, N, Z), as
well as some control bits, such as, SCG1, SCG0, OSCOFF, CPUOFF, and GIE. The exact format of
the status register is shown in Figure 5. Table 2 describes the status register flags and their
meaning.

Reserved V SCG1 SCG0
OSC
OFF

CPU
OFF

GIE N Z C

15 8 7 6 5 4 3 2 1 09

Figure 5. Status register format (top) and bits description (bottom).

Table 2. Description of the status register flags.

Flag Bits Description

Reserved 15 – 9 Reserved.

V 8 Overflow. This bit is set when the result of arithmetic operations on signed
integers overflows.

SCG1 7 System clock generator 1. Can be used to enable or disable functions in the
clock subsystem depending on the device.

SCG0 6 System clock generator 0. Can be used to enable or disable functions in the
clock subsystem depending on the device.

OSCOFF 5 Oscillator off. When set, it turns off LFXT1CLK when it is not used for MCLK
or SMCLK clocks.

CPUOFF 4 CPU off. When set, it turns off the CPU.

GIE 3 Global Interrupt Enable . When set, it enable maskable interrupts.

N 2 Negative. The bit is set when the result of an operation is negative.

Z 1 Zero. The bit is set when the result of an operation is equal to 0.

C 0 Carry. This bit is set when the result of an operation produced a carry.

Constant generator (R2-R3). Registers R2 and R3 with certain combination of addressing modes
can be used to create common constants in hardware thus reducing the size of instructions.
More information about this is given at the end of this module.

General-purpose registers (R4-R15). These registers can be used to store temporary data
values, addresses of memory locations or index values, and can be accessed with BYTE or
WORD instructions.

Things to remember 4-1. MSP430 Registers.

MSP430 has 16 16-bit register R0-R15. Registers R0-R3 are special-purpose and R4-R15 are
general-purpose registers. R0 is program counter, R1 is stack pointer, R2 is status register,
and register R3 is constant generator.

CPE 323 Module 03 © A. Milenković 13

Things to remember 4-2. MSP430 Stack.

MSP430 stack is a Last-In-First-Out abstraction placed at the top of RAM memory that uses
the following stack policy: SP points to the last full location on the top of the stack, and the
stack is growing from higher to lower addresses.

5 Operands and Data Types
Data transfer, arithmetic and logic instructions of the MSP430 instruction set can operate on
either BYTE operands or WORD (2 byte) operands. Instructions operating on word operands use
suffix .W (.w) and instructions operating on byte operands use suffix .B (.b). The instructions
without any suffix by default refer to word operands. Byte or word operands represent
unsigned and signed 8-bit and 16-bit integers. There is only one instruction that operates on
data encoded as unsigned BCD integers. Thus, the only data types that machine instructions can
operate on are 8-bit and 16-bit signed and unsigned integers in binary and 8-bit and 16-bit
unsigned integers in the BCD format.

The MSP430 ISA follows specific rules when dealing with byte and word operands in registers
and memory as discussed below. The byte operands in registers deal with a lower byte (bits 7
to 0) of the 16-bit register.

Let us consider a byte register-memory operation (src is in a register, src/dst is in memory, byte
size) using the following instruction (assume the following initial conditions: R5=0xA28F,
R6=0x0202, and M[0x0203]=0x12):

ADD.B R5, 1(R6)

Figure 6, top illustrates the content of relevant registers and memory locations before and after
the instruction execution. The suffix .B indicates that the operation should be performed on
byte-size operands. This instruction specifies that the src operand is the register R5 (lower 8 bits
of R5), and the src/dest operand is in memory at the address (R6+1). Thus, a lower byte from
the register R5, 0x8F, is added to the byte read from the memory location M[0x0203]=0x12,
and the result is written back to memory, so the new value of the memory location at the
address 0x0203 is M[0x0203]=0xA1. The content of the register R5 remains intact. You will
notice that a side effect of this instruction is a new value in register R2 (SR) - the result is a
negative, so the N bit is set.

Let us now consider an instruction that operates on words:

ADD.W R5, 0(R6)

Figure 6, bottom illustrates the content of relevant registers and memory locations before and
after the instruction execution. The source operand is the content of register R5, which is
0xA28F. The source/destination operand is the word from memory location R6+0=0x0202,

CPE 323 MSP430 ISA © A. Milenković 14

which is 0x1245. The result of addition is 0xB4D4 and this result should be written back to
memory.

Example of a register-memory instruction: ADD.B R5, 1(R6)

src: R5.lower = 0x8F
src/dst: M[1+R6] = M[0x0203] = 0x12

 0x8F

+0x12

 0xA1 C=0, V=0, N=1, Z=0

Initial Conditions

ADD.B R5, 1(R6)

0xA28FR5

0x0202R6 0x1245

Registers

0x55C6

0x0001

0x0202

. . .

R0 0x3110

data

instruction

0x3100

0x3102

Memory

Conditions after instruction execution

R1

R2 0x0000 ADD.B R5, 1(R6)

0xA28FR5

0x0202R6 0xA145

Registers

0x55C6

0x0001

0x0202

. . .

R0 0x3114

data

instruction

0x3100

0x3102

Memory

R1

R2 0x0004

Example of a register-memory instruction: ADD.W R5, 0(R6)

src: R5.lower = 0xA28F
src/dst: M[0+R6] = M[0x0202] = 0x1245

 0xA28F

+0x1245

 0xB4D4 C=0, V=0, N=1, Z=0

Initial Conditions

ADD.W R5, 0(R6)

0xA28FR5

0x0202R6 0x1245

Registers

0x5586

0x0000

0x0202

. . .

R0 0x3110

data

instruction

0x3100

0x3102

Memory

Conditions after instruction execution

R1

R2 0x0000 ADD.W R5, 0(R6)

0xA28FR5

0x0202R6 0xB4D4

Registers

0x5586

0x0000

0x0202

. . .

R0 0x3114

data

instruction

0x3100

0x3102

Memory

R1

R2 0x0004

Figure 6. Examples of a byte and a word register-memory instruction.

Let us now consider a byte memory-register operation (src is in memory, src/dst is in a register)
using the following instruction (assume the following initial conditions: R5=0xA28F, R6=0x0202,
and M[0x0202]=0x1245):

ADD.B 1(R6), R5

Figure 7, top illustrates the content of relevant registers and memory locations before and after
the instruction execution. This instruction specifies a source operand in memory at the address
contained in R6+1, and the source/destination operand is in the register R5. A suffix .B indicates
that the instruction uses byte-sized operands. As shown below, a byte value M[0x0203]=0x12 is
added to the lower byte of R5, 0x8F. The result 0x12+8F=0xA1 is zero extended to a 16-bit
word, and the result is written back to register R5. So, the upper byte is always cleared in case
of byte-sized memory-register operations. This brings as to the MSP430 specific rule that you
should remember: instructions operating on bytes with destination in memory store the result
into the specified memory location of size one byte; instructions operating on bytes with the
destination in a register store the result in lower 8 bits and clear upper 8 bits of the destination
register.

Let us now consider an instruction that operates on words:

ADD.W @R6, R5

CPE 323 Module 03 © A. Milenković 15

Figure 7, bottom illustrates the content of relevant registers and memory locations before and
after the instruction execution. The source operand is in memory, M[R6]=0x1245 and the
source/destination operand is in register R5, 0xA28F. The result of addition 0xB4D4 is written
back to the register R5.

Figure 7. Examples of a byte and a word memory-register instruction.

Things to remember 5-1. Byte and word operands.

MSP430 instructions can operate on byte- and word-sized operands representing 8-bit signed
and unsigned integers given in binary and unsigned integers given in BCD. Byte instructions
end with a suffix .b and word instruction end with a suffix .w. instruction. Byte instructions
operate on lower 8 bits of general-purpose registers. The result of a byte instruction is
written back to lower 8 bit of the specified register and the upper 8 bits is always cleared.

6 Basic Instruction Encoding
Depending on addressing modes, double-operand instructions can be 1, 2, or 3 words long. The
first-word instruction format is shown in Figure 8.

Figure 8. First-word instruction format for double-word instruction.

Example of a memory-register instruction: ADD.B 1(R6), R5

src: M[1+R6] = M[0x0203] = 0x12
src/dst: R5.lower = 0x8F

 0x8F

+0x12

 0xA1 C=0, V=0, N=1, Z=0

Initial Conditions

ADD.B 1(R6), R5

0xA28FR5

0x0202R6 0x1245

Registers

0x5655

0x0001

0x0202

. . .

R0 0x3110

data

instruction

0x3100

0x3102

Memory

Conditions after instruction execution

R1

R2 0x0000

0x00A1R5

0x0202R6 0x1245

Registers

0x5655

0x0001

0x0202

. . .

R0 0x3114

data

instruction

0x3100

0x3102

Memory

R1

R2 0x0004

Example of a memory-register instruction: ADD.W @R6, R5

Initial Conditions

ADD.W @R6, R5

0xA28FR5

0x0202R6 0x1245

Registers

0x5625

0x0202

. . .

R0 0x3110

data

instruction
0x3100

0x3102

Memory

Conditions after instruction execution

R1

R2 0x0000

0xB4D4R5

0x0202R6 0x1245

Registers

0x5625

0x0202

. . .

R0 0x3112

data

instruction
0x3100

0x3102

Memory

R1

R2 0x0004

src: M[R6] = M[0x0202] = 0x1245
src/dst: R5 = 0xA28F

 0x1245

+0xA28F

 0xB4D4 C=0, V=0, N=1, Z=0

ADD.W @R6, R5

ADD.B 1(R6), R5

Op-code S-reg Ad B/W As D-Reg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPE 323 MSP430 ISA © A. Milenković 16

The meaning of individual fields is as follows.

 Op-code – Encodes the instruction (type of operation like MOV, ADD, ..)

 src – The source operand is specified by As and S-reg

o As – Specifies the addressing mode used for the source (src)

o S-reg – Specifies a general-purpose register used for the source (src)

 dst – The destination operand is specified by Ad and D-reg

o Ad – Specifies the addressing mode used for the destination (dst)

o D-reg – Specifies a general-purpose register used for the destination (dst)

 B/W – Byte or word operation:

o 0: word operation

o 1: byte operation

7 Addressing Modes
The MSP430 architecture supports a relatively rich set of addressing modes. Seven addressing
modes can be used to specify a source operand in a register or any location in memory (Table
3), and the first four of these can be used to specify the source/destination operand. Table 3
also illustrates the syntax and gives a short description of the addressing modes. The addressing
modes are encoded using As (2-bit long) and Ad (1-bit long) address specifiers in the instruction
word, and the first column shows how they are encoded.

Table 3. Addressing Modes.

Addressing
Mode

Address
Specifier

As/Ad

Syntax Description

Register 00/0 Rn Operand is in register Rn. Instruction specifies
register index n.

Indexed 01/1 X(Rn) Operand is in memory at the address
EA=Rn+X. Instruction specifies register index n
and offset X (the next word of instruction)

Symbolic 01/1 ADDR Operand is in memory at the address
ADDR=EA=PC+X. This is a special case of the
indexed mode (Rn=R0, As=01).

Absolute 01/1 &ADDR Operand is in memory at the address X, which
is specified in the next instruction word. This

CPE 323 Module 03 © A. Milenković 17

is also treated as a special case of the indexed
mode (Rn=R2, As=01).

Indirect
register

10/- @Rn Operand is in memory at the address
contained in register Rn. The instruction
specifies Rn. Applies only to src operand.

Indirect
autoincrement

11/- @Rn+ Operand is in memory at the address
contained in register Rn. After getting the
operand, the register is incremented for the
size of the operand (1 for byte, 2 for word)

Immediate 11/- #N The operand is a constant encoded in the next
instruction word. To distinguish from
autoincrement, the S-reg is set to PC.

Register mode. The fastest and shortest mode is used to specify operands in registers. The
address field specifies the register number (4 bits – 0000b for R0, 1111b for R15). Address
specifiers are As=00 for source operand and Ad=0 for destination operand.

Example 7-1. MOV.B R5, R7; R7 R5

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: register, register id: 5 => As=00, S-reg=0101

 Destination addressing mode: register, register id: 7 => Ad=0, D-reg=0111

 Operation: the content of register R5 is copied into R7 (R7 R5; read as “R7 gets R5”)

 Machine code: 0100_0101_0100_0111 or 0x4547

Indexed mode. The operand is located in memory and its address is calculated as a sum of the
specified address register and the displacement X, which is specified in the next instruction
word. The effective address of the operand is EA, EA=Rn+X.

Example 7-2. MOV.B 10(R5), 12(R7); M[R7+12] M[R5+10]

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: indexed, register id: 5, offset=10 =>
As=01, S-reg=0101, 2nd instruction word=10;
The effective address of the src operand EA.src = R5 + 10

 Destination addressing mode: indexed, register id: 7, offset=12 =>
Ad=1, D-reg=0111; 3rd instruction word=12;
The effective address of the dst/src operand is EA.src/dst = R7+12

CPE 323 MSP430 ISA © A. Milenković 18

 Operation: the source operand (a single byte) from a memory location at the address
R5+10 is read and copied into the destination operand in memory at the address
R7+12;

 Machine code (3-word instruction):
1st word: 0100_0101_1101_0111;
2nd word: 0000_0000_0000_1010;
3rd word: 0000_0000_0000_1100; or
0x4547; 0x000A; 0x000C

Symbolic mode. This addressing mode can be considered as a subset of the indexed mode. The
only difference is that the address register is PC, and thus ea=PC+Offset, that is, the address of
the operand is specified relatively to the current PC.

Example 7-3. MOV.B TONI, EDE; M[EDE] M[TONI]

Assume TONI and EDE are symbolic names for addresses 0x0200 and 0x0300, respectively.

Next, assume that this instruction starts at the address 0xE000 (address of the first
instruction word).

This instruction requires 3 words, where the second and third ones carry the offsets to the
source and destination operand, relatively to the current PC. The second word is at the
address 0xE002 and the third word is at 0xE004.

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: symbolic, register id: 0, offset=Offset.src =>
As=01, S-reg=0000, 2nd instruction word=Offset.src;
The effective address of the src operand EA.src = 0x0200 = PC + 2 + Offset.src
=> EA.src=0x0200 = 0xE002+Offset.src=> Offset.src=0x0200-0xE002=0x21FE

 Destination addressing mode: symbolic, register id: 0, offset=Offset.src/dst =>
Ad=1, D-reg=0000; 3rd word=Offset.src/dst;
The effective address of the dst/src operand is EA.src/dst = 0x0300 = PC + 4 +
Offset.src/dst =>
EA.dst=0x0300 = 0xE004+Offset.src/dst => Offset.src/dst=0x0300-0xE004=0x22FC

 Operation: the source operand (a single byte) from a memory location at the address
0x0200 (TONI) is read and copied into the destination operand in memory at the
address 0x0300 (EDE);

 Machine code (3-word instruction):
1st word: 0100_0000_1101_0000;
2nd word: 0010_0001_1111_1110;

CPE 323 Module 03 © A. Milenković 19

3rd word: 0010_0010_1111_1100; or
0x4040; 0x21FE; 0x22FC

Absolute mode. The instruction specifies the absolute (or direct) address of the operand in
memory. The instruction includes a word that specifies this address. This mode can also be
considered as a special-case of indexed mode. As the instruction specifies the address of the
operand directly, the first instruction word uses register R2 (status register) as the address
register.

Example 7-4. MOV.B &TONI, &EDE; M[EDE] M[TONI]

Assume TONI and EDE are symbolic names for addresses 0x0200 and 0x0300, respectively.

This instruction requires 3 words, where the second and third ones carry the absolute
addresses of the source and destination operands, respectively.

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: absolute, register id: 2, As=01, S-reg=0010,
2nd instruction word=EA.src = 0x0200;

 Destination addressing mode: absolute, register id: 2 =>
Ad=1, D-reg=0010; 3rd word=EA.src/dst = 0x0300;

 Operation: the source operand (a single byte) from a memory location at the address
0x0200 (TONI) is read and copied into the destination operand in memory at the
address 0x0300 (EDE);

 Machine code (3-word instruction):
1st word: 0100_0010_1101_0010;
2nd word: 0000_0010_0000_0000;
3rd word: 0000_0011_0000_0000; or
0x4242; 0x0200; 0x0300

Please note that indexed, symbolic, and absolute mode all share the same address specifiers
As=01 and Ad=1. How do we distinguish between them? We have shown that the symbolic
addressing mode is just a special case of the indexed mode where the PC (or R0) is used as the
base register in calculating the operand address. However, the absolute addressing mode does
not compute the address of the operand, rather it is given directly in the instruction. Note that
register R2 is the status register and one would never ever use this register to calculate an
operand address – it would be meaningless. This fact can be used so that when register R2 is
specified as the address register, the hardware actually interprets this as the additional address
field to select absolute addressing mode. So, the instruction decoder would check not only the
As field to determine which source addressing mode is used, but also the source register field
(src).This way, a unique combination of S-reg and As or D-reg and Ad fields helps us distinguish
the absolute addressing mode from the indexed addressing mode. What is the rationale behind

CPE 323 MSP430 ISA © A. Milenković 20

this complex encoding? You will notice that we have 7 addressing modes that would normally
require at least 3 bits for encoding them fully. To make instruction fit in single word, the
MSP430 architects decided to squeeze as much information as possible in one instruction word.

Indirect register mode. It can be only used for source operands, and the instruction specifies
the address register Rn, and the ea=Rn.

Example 7-5. MOV.B @R5, &EDE; M[EDE] M[R5]

Assume EDE is a symbolic name for addresses 0x0300; Assume R5=0x0200.

This instruction requires 2 words, where the second one carries the absolute address of the
destination operand.

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: register indirect, register id: 5, As=10, S-reg=0101 =>
EA.src = R5 = 0x0200

 Destination addressing mode: absolute, register id: 2 =>
Ad=1, D-reg=0010; 2nd word=EA.src/dst = 0x0300;

 Operation: the source operand (a single byte) from a memory location at the address
contained in register R5 is read and copied into the destination operand in memory at
the address 0x0300 (EDE);

 Machine code (2-word instruction):
1st word: 0100_0101_1110_0010;
2nd word: 0000_0011_0000_0000; or
0x45E2; 0x0300

Indirect autoincrement. The effective address of the operand in memory is the content of the
specified address register Rn, but the content of the register is incremented afterwards by +1
for byte operations and by +2 for word operations.

Example 7-6: MOV.B @R5+, &EDE; M[EDE] M[R5]; R5 R5 + 1;

Assume EDE is a symbolic name for addresses 0x0300; Assume R5=0x0200.

This instruction requires 2 words, where the second one carries the absolute address of the
destination operand.

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: register indirect, register id: 5, As=11, S-reg=0101 =>

EA.src = R5 = 0x0200; R5 R5 + 1;

 Destination addressing mode: absolute, register id: 2 =>
Ad=1, D-reg=0010; 2nd word=EA.src/dst = 0x0300;

CPE 323 Module 03 © A. Milenković 21

 Operation: the source operand (a single byte) from a memory location at the address
contained in register R5 is read and copied into the destination operand in memory at
the address 0x0300 (EDE); Register R5 is incremented for the size of the operand (+1
for byte operation, +2 for word operation)

 Machine code (2-word instruction):
1st word: 0100_0101_1111_0010;
2nd word: 0000_0011_0000_0000; or
0x45F2; 0x0300

Immediate mode. The instruction specifies the immediate constant that is operand, and is
encoded directly in the instruction.

Example 7-7: MOV.B #45, &EDE; M[EDE] #45

Assume EDE is a symbolic name for addresses 0x0300;

This instruction requires 3 words, where the second one carries the immediate operand 45.

 Instruction: MOV.B => opcode = 0100; B/W# = 1

 Source addressing mode: register indirect with autoincrement, register id: 0, As=11, S-
reg=0000 => Operand is given as the second instruction word;

 Destination addressing mode: absolute, register id: 2 =>
Ad=1, D-reg=0010; 3rd word=EA.src/dst = 0x0300;

 Operation: the source operand encoded in the second instruction word is copied into
the destination operand in memory at the address 0x0300 (EDE);

 Machine code (2-word instruction):
1st word: 0100_0000_1111_0010;
2nd word: 0000_0000_0010_1101
2nd word: 0000_0011_0000_0000; or
0x40F2; 0x003D, 0x0300

You probably noticed that the immediate addressing mode shares the same address specifier
As=11 with the autoincrement mode. It is distinguished from the autoincrement mode because
the specified register is the R0 (PC), which is never used in the autoincrement mode (R0 is
dedicated register serving as the program counter and incrementing it during operand fetch
state would be illogical). Thus, this is another example of clever encoding where As and S-reg
fields are used together to uniquely encode an addressing mode.

Things to remember 7-1. MSP430 Addressing Modes.

MSP430 supports 7 addressing modes applicable to src operands (top 4 are applicable to
src/dst operands) as follows:

CPE 323 MSP430 ISA © A. Milenković 22

(a) register – operand is in a register

(b) indexed – operand is in memory, its address is computed as Rn+X

(c) symbolic – operand is in memory, its address is computed as PC+X

(d) absolute – operand is in memory, its address is specified directly by the instruction

(e) register indirect – operand is in memory, its address is specified by Rn

(f) register indirect with autoincrement – operand is in memory, its address is specified
by Rn, Rn is automatically updated to point to the next operand

(g) immediate – operand is encoded in the instruction.

8 Instruction Set and Instruction Encoding
The MSP430 instruction set consists of 27 core instructions and 24 emulated instructions. The
core instructions are instructions that have unique op-codes decoded by the CPU. The
emulated instructions are instructions that make code easier to write and read, but do not have
op-codes themselves; instead, they are replaced automatically by the assembler with an
equivalent core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:

 Double-operand

 Single-operand

 Jump

All single-operand and double-operand instructions can be byte or word instructions (operate
on byte-size or word-size operands) by using .B or .W extensions. Byte instructions are used to
access byte data or byte peripherals. Word instructions are used to access word data or word
peripherals. If no extension is used, the instruction is a word instruction.

8.1 Double-Operand Instructions

The fields of double-operand instructions are as follows:

 Op-code – Encodes the instruction (type of operation like MOV, ADD, ..)

 src – The source operand is specified by As and S-reg

o As – Specifies the addressing mode used for the source (src)

o S-reg – Specifies a general-purpose register used for the source (src)

 dst – The destination operand is specified by Ad and D-reg

o Ad – Specifies the addressing mode used for the destination (dst)

o D-reg – Specifies a general-purpose register used for the destination (dst)

CPE 323 Module 03 © A. Milenković 23

 B/W – Byte or word operation:

o 0: word operation

o 1: byte operation

Figure 9 shows the double-operand instruction format and Table 4 shows the list of all double-
operand core instructions. The table gives instruction mnemonics, operands, operation
performed, and how VNZC flags are updated.

Figure 9. Double-operand first-word instruction format (top) and optional 2nd and 3rd word.

Table 4. Double operand instructions. Flags are affected (*), not affected (-), cleared (0) or set (1).

Mnemonic Operands Op-code Operation Status Bits

 (binary) V N Z C

MOV(.B) src,dst 0100 src dst - - - -

ADD(.B) src,dst 0101 src + dst dst * * * *

ADDC(.B) src,dst 0110 src + dst + C dst * * * *

SUB(.B) src,dst 1000 dst + .not(src) + 1 dst * * * *

SUBC(.B) src,dst 0111 dst + .not(src) + C dst * * * *

CMP(.B) src,dst 1001 dst – src * * * *

DADD(.B) src,dst 1010 src + dst + C (decimal) dst * * * *

BIT(.B) src,dst 1011 src .and. dst 0 * * *

BIC(.B) src,dst 1100 .not(src) .and. dst dst - - - -

BIS(.B) src,dst 1101 src .or. dst dst - - - -

XOR(.B) src,dst 1110 src .xor. dst dst * * * *

AND(.B) src,dst 1111 src .and. dst dst * * * *

Below is a detailed description of the double operand instructions with examples. For examples
below we will assume that operands are in registers R5 and R7 and the initial conditions are as
follows: R5 = 0x42CE and R7=0x200F, and R2=0x0001 (C=1, N=0, Z=0, V=0). These assumptions
will apply to all examples, unless it is explicitly stated otherwise.

MOV(.B) src, dst ; dst src

Op-code S-reg Ad B/W As D-Reg

2nd Word (optional, depends on addressing modes, offset/address/immediate)

3rd Word (optional, depends on addressing modes, offset/address/immediate)

CPE 323 MSP430 ISA © A. Milenković 24

This instruction copies the source operand to the destination operand. The flags are not
affected by this instruction, i.e., they retain their original value they had before execution of the
MOV instruction.

Example 8-1: MOV.B R5, R7; R7 R5 (lower byte)

 Instruction word: 0x4547 (opcode=4, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: R7=0x00CE, R5=0x42CE (no change), R2=0x0001

Example 8-2: MOV.W R5, R7; R7 R5 (copy R5 to R7, word)

 Instruction word: 0x4507 (opcode=4, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: R7=0x42CE, R5=0x42CE (no change), R2=0x0001

ADD(.B) src, dst ; dst src + dst

This instruction adds the source operand to the destination operand and stores the result back
to the destination operand. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result, reset otherwise;

 V bit is set if the addition of positive input operands produces a negative result or if the
addition of negative operands produces a positive result; it is reset otherwise.

Example 8-3: ADD.B R5, R7; R7 R5 + R7 (byte operation)

 Instruction word: 0x5547 (opcode=5, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE + 0x0F = DD (C=0, N=1, V=0, Z=0) or R7=0x00DD, R5=0x42CE
(no change), R2=0x0004

Example 8-4: ADD.W R5, R7; R7 R5 + R7

 Instruction word: 0x5507 (opcode=5, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x42CE + 0x200F = 0x62DD (N=0, V=0, Z=0, C=0), R7=0x62DD,
R5=0x42CE (no change), R2=0x0000

ADDC.(B) src, dst ; dst src + dst + C

This instruction adds the source operand and carry to the destination operand and stores the
result back to the destination operand. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

CPE 323 Module 03 © A. Milenković 25

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result, reset otherwise;

 V bit is set if the result is negative and input operands are both positive or if the result is
positive and input operands are both negative, reset otherwise.

Example 8-5: ADDC.B R5, R7; R7 R5 + R7 + C (byte operation)

 Instruction word: 0x6547 (opcode=6, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE + 0x0F + 1= DE (C=0, N=1, V=0, Z=0) or R7=0x00DE,
R5=0x42CE (no change), R2=0x0004

Example 8-6: ADDC.W R5, R7; R7 R5 + R7 + C

 Instruction word: 0x6507 (opcode=6, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x42CE + 0x200F + 1 = 0x62DE (N=0, V=0, Z=0, C=0), R7=0x62DE,
R5=0x42CE (no change), R2=0x0000

SUB(.B) src, dst ; dst dst + (.not.src) + 1 (or dst dst - src)

This instruction subtracts the source operand from the destination operand and stores the
result back to the destination operand. This is done by adding the first complement of source to
1 and to the destination. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result, reset otherwise;

 V bit is set if the subtraction of a negative source operand from a positive destination
operand produces a negative result, or if the subtraction of a positive source from a
negative destination operand produces a positive result; reset otherwise.

Example 8-7. SUB.B R5, R7; R7 R7 + (.not.R5) + 1 (byte operation)

 Instruction word: 0x8547 (opcode=8, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0x0F + (.not.CE) + 1 = 0x0F+1+0x31=0x41 (C=0, N=0, V=0, Z=0)
or R7=0x0041, R5=0x42CE (no change), R2=0x0000

Example 8-8. SUB.W R5, R7; R7 R7 + (.not.R5) + 1

 Instruction word: 0x8507 (opcode=8, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x200F + (.not.0x42CE) + 1 = 0x200F + 1 + 0xBD31 = 0xDD41
(N=1, V=0, Z=0, C=0), R7=0xDD41, R5=0x42CE (no change), R2=0x0004

CPE 323 MSP430 ISA © A. Milenković 26

SUBC(.B) src, dst ; dst dst + (.not.src) + C or dst dst – (src – 1) + C

This instruction subtracts the source operand with carry from the destination operand and
stores the result back to the destination operand. This is done by adding the first complement
of source to the carry flag and to the destination. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result, reset otherwise;

 V bit is set if the subtraction of a negative source operand from a positive destination
operand produces a negative result, or if the subtraction of a positive source from a
negative destination operand produces a positive result; reset otherwise.

Example 8-9: SUBC.B R5, R7; R7 R7 + (.not.R5) + C (byte operation)

 Instruction word: 0x7547 (opcode=7, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0x0F + (.not.CE) + 1 = 0x0F+1+0x31=0x41 (C=0, N=0, V=0, Z=0)
or R7=0x0041, R5=0x42CE (no change), R2=0x0000

Example 8-10: SUBC.W R5, R7; R7 R7 + (.not.R5) + C

 Instruction word: 0x7507 (opcode=7, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x200F + (.not.0x42CE) + 1 = 0x200F + 1 + 0xBD31 = 0xDD41
(N=1, V=0, Z=0, C=0), R7=0xDD41, R5=0x42CE (no change), R2=0x0004

(Note: the results match the ones for the SUB instruction in this example because we assume
that the Carry bit is initially set to 1.)

CMP(.B) src, dst ; dst + (.not.src) + 1 or dst – src

This instruction subtracts the source operand from the destination operand and set flags
accordingly. It does not write the result back into the destination. This is done by adding the
first complement of source to 1 and to the destination. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result, reset otherwise;

 V bit is set if the subtraction of a negative source operand from a positive destination
operand produces a negative result, or if the subtraction of a positive source from a
negative destination operand produces a positive result; reset otherwise.

Example 8-11: CMP.B R5, R7; R7 + (.not.R5) + 1 (byte operation)

CPE 323 Module 03 © A. Milenković 27

 Instruction word: 0x9547 (opcode=9, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0x0F + (.not.CE) + 1 = 0x0F+1+0x31=0x41 (C=0, N=0, V=0, Z=0)
or R7=0x200F (no change), R5=0x42CE (no change), R2=0x0000

Example 8-12: CMP.W R5, R7; R7 + (.not.R5) + 1

 Instruction word: 0x9507 (opcode=9, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x200F + (.not.0x42CE) + 1 = 0x200F + 1 + 0xBD31 = 0xDD41
(N=1, V=0, Z=0, C=0), R7=0x200F (no change), R5=0x42CE (no change),
R2=0x0004

DADD(.B) src, dst ; dst src + dst + C (decimally)

This instruction adds the source operand with carry to the destination operand decimally and
stores the result back to the destination operand. This instruction assumes that source and
destination operands contain valid BCD (Binary-Coded-Decimal) positive numbers. The flags are
affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise
(meaning set to one if the result is > 0x79 for byte operands or > 0x7999 for word
operands);

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if there is a carry out from the MSB bit of the result (>0x99 or >0x9999), reset
otherwise;

 V bit is undefined (could be anything, thus it is not meaningful).

Example 8-13: DADD.B R5, R7; R7 R5 + R7 (byte operation), decimally

 Assume C=1, R5=0x4492, R7=0x9025;

 Instruction word: 0xA547 (opcode=0xA, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0x92 + 0x25 + 1 = 28 (C=1, N=0, V=?, Z=0) or R7=0x0018,
R5=0x4492 (no change), R2=0x0001 (please note that the Carry bit here
indicates that the result is actually 118)

Example 8-14: DADD.W R5, R7; R7 R5 + R7 + C (decimally)

 Assume C=1, R5=0x4492, R7=0x9025;

 Instruction word: 0xA507 (opcode=0xA, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x4492 + 0x9025 = 0x3528 (N=0, V=?, Z=0, C=1), R7=0x3528,
R5=0x4492 (no change), R2=0x0001 (the Carry bit indicates that the
results is 0x13528).

CPE 323 MSP430 ISA © A. Milenković 28

BIT(.B) src, dst ; src .AND. dst

This instruction tests bits that are set in the source operand in the destination operand. This
operation is carried out by determining the result of the bitwise logical AND between the
source and destination operands. The instruction set the status bits (flags) in the status register,
but the result is not stored. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if the results in not 0, reset otherwise;

 V bit is reset.

Example 8-15: BIT.B R5, R7; R5 .AND. R7 (byte operation)

 Instruction word: 0xB547 (opcode=0xB, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE .and. 0x0F = 0x0E (C=1, N=0, V=0, Z=0) or R7=0x200F (no
change), R5=0x42CE (no change), R2=0x0001

Example 8-16: BIT.W R5, R7; R5 .AND. R7

 Instruction word: 0xB507 (opcode=0xB, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x42CE .and. 0x200F = 0x000E (N=0, V=0, Z=0, C=1), R7=0x200F
(no change), R5=0x42CE (no change), R2=0x0001.

The BIT instruction is typically used when you want to test value of an individual bit of an
operand. Let’s say you want to test the sign bit (MSB) in a byte operand in the register R7. You
will use the following instruction to test the sign bit: BIT.B #128, R7. The constant 128
corresponds to the bit vector 1000_0000 that actually provides a correct mask for bit 7. If the
MSB bit is set, we will have a non-zero result (C=1 and Z=0); if the MSB bit is reset, the result of
bitwise AND operation is equal to 0 (C=0, Z=1). By inspecting either the C status bit or the Z
status bit you can act accordingly. What constant would you use to test bit 5?

BIC(.B) src, dst ; dst (.not. src) .AND. dst

This instruction clears bits that are set in the source operand in the destination operand. This
operation is carried out by calculating the result of the bitwise logical AND between the first
complement of the source operand and the destination operand. The result is stored into the
destination operand. The instruction does not affect the status bits (flags) in the status register.

Example 8-17: BIC.B R5, R7; R7 (.not.R5) .AND. R7 (byte operation)

 Instruction word: 0xC547 (opcode=0xC, S-reg=5, D-reg=7, AdB/W#As=0100)

CPE 323 Module 03 © A. Milenković 29

 Result: (.not.0xCE) .and. 0x0F = 0x31 .and. 0x0F = 0x01,
or R7=0x0001, R5=0x42CE (no change), R2=0x0001 (no change).

Example 8-18: BIC.W R5, R7; R7 (.not.R5) .AND. R7

 Instruction word: 0xC507 (opcode=0xC, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: (.not.0x42CE) .and. 0x200F = 0xBD31 .and. 0x200F = 0x2001,
R7=0x2001, R5=0x42CE (no change), R2=0x0001 (no change).

The BIC instruction is typically used when you want to clear a certain bit in an operand. Let’s say
you want to clear the N status bit in R2. To do so, you will use the following instruction: BIC.W
#4, R2. The source operand is the constant 4 that creates the bit vector 0x0004 that will keep all
other bits of R2 unchanged, except the bit 2 that will be forced to 0. Recall that bit 2 of R2 is the
N flag.

BIS(.B) src, dst ; dst src .OR. dst

This instruction sets bits that are set in the source operand in the destination operand. This
operation is carried out by calculating the result of the bitwise logical OR between the source
operand and the destination operand. The result is stored into the destination operand. The
instruction does not affect the status bits (flags) in the status register.

Example 8-19: BIS.B R5, R7; R7 R5 .OR. R7 (byte operation)

 Instruction word: 0xD547 (opcode=0xD, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE .or. 0x0F = 0xCF,
or R7=0x00CF, R5=0x42CE (no change), R2=0x0001 (no change).

Example 8-20: BIS.W R5, R7; R7 R5 .OR. R7

 Instruction word: 0xD507 (opcode=0xD, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x42CE .and. 0x200F = 0x62CF, R7=0x62CF, R5=0x42CE (no
change), R2=0x0001 (no change).

The BIS instruction is typically used when you want to force a certain bit in an operand to a logic
1. Let’s say you want to set bit 4 of a byte operand in the register R7. To do so, you will use the
following instruction: BIS.B #16, R7. The source operand is the constant 16 that creates the bit
vector 0x0010 that will keep all other bits of R7 unchanged, except the bit 4 that will be forced
to 1.

XOR(.B) src, dst ; dst src .XOR. dst

CPE 323 MSP430 ISA © A. Milenković 30

This instruction carries out bitwise logical XOR operation between the source and the
destination operand and stores the result into the destination operand. The flags are affected
as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if the results in not 0, reset otherwise;

 V bit is set if both operands are negative before execution, reset otherwise.

Example 8-21: XOR.B R5, R7; R7 R5 .XOR. R7 (byte operation)

 Instruction word: 0xE547 (opcode=0xE, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE .xor. 0x0F = 0xC1 (C=1, N=1, V=0, Z=0) or R7=0x00C1,
R5=0x42CE (no change), R2=0x0005

Example 8-22: XOR.W R5, R7; R7 R5 .XOR. R7

 Instruction word: 0xE507 (opcode=0xE, S-reg=5, D-reg=7, AdB/W#As=0000)

 Result: 0x42CE .xor. 0x200F = 0x62C1 (N=0, V=0, Z=0, C=1), R7=0x62C1,
R5=0x42CE (no change), R2=0x0001.

AND(.B) src, dst ; dst src .AND. dst

This instruction carries out bitwise logical AND operation between the source and the
destination operand and stores the result into the destination operand. This instruction is the
same as BIT, except that it stores the result in addition to setting the flags. The flags are
affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is set if the results in not 0, reset otherwise;

 V bit is reset.

Example 8-23. AND.B R5, R7; R7 R5 .AND. R7 (byte operation)

 Instruction word: 0xF547 (opcode=0xF, S-reg=5, D-reg=7, AdB/W#As=0100)

 Result: 0xCE .and. 0x0F = 0x0E (C=1, N=0, V=0, Z=0) or R7=0x000E,
R5=0x42CE (no change), R2=0x0001

Example 8-24. AND.W R5, R7; R7 R5 .AND. R7

 Instruction word: 0xF507 (opcode=0xF, S-reg=5, D-reg=7, AdB/W#As=0000)

CPE 323 Module 03 © A. Milenković 31

 Result: 0x42CE .and. 0x200F = 0x000E (N=0, V=0, Z=0, C=1), R7=0x000E,
R5=0x42CE (no change), R2=0x0001.

Things to remember 8-1. MSP430 double operand instructions.

MSP430 supports 12 double-operand core instructions. Their size ranges from 1 to 3 words,
depending on the addressing modes.

8.2 Single-Operand Instructions

Figure 10 shows the single-operand instruction format and Table 5 lists all single-operand core
instructions. Please note that these instruction use a different encoding format. The single-
operand is referred to as source/destination, and there is one address specifier Ad which is 2-
bit long. The encoding for Ad is the same as for As in Table 3.

Figure 10. Single-operand first-word instruction format.

Table 5. Single-operand instructions. Flags are affected (*), not affected (-), cleared (0) or set (1).

Mnemonic Operands Op-code, B/W Operation Status Bits

 V N Z C

RRC(.B) dst 0001_0000_0,
B/W

C MSB … LSB C 0 * * *

RRA(.B) dst 0001_0001_0,
B/W

MSB MSB … LSB C 0 * * *

PUSH(.B) src 0001_0010_0,
B/W

SP - 2 SP;

src M[SP]

- - - -

SWPB dst 0001_0000_1, 0 Swap byte of the word operand - - - -

CALL dst 0001_0010_1, 0 SP – 2 SP;

PC M[SP]; push ret. adr.

dst PC; target address to
PC

- - - -

RETI - 0001_0011_0, 0 M[SP] SR; SP + 2 SP;

M[SP] PC; SP + 2 SP;

* * * *

SXT dst 0001_0001_1, 0 Bit7 Bit8… Bit15 0 * * *

Op-code B/W Ad S/D-Reg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2nd Word (optional, depends on addressing modes, offset/address/immediate)

CPE 323 MSP430 ISA © A. Milenković 32

Below is a detailed description of the single operand instructions with examples.

RRC(.B) dst ; shift to the right by one bit position through Carry

This instruction carries out rotate right through carry bit on the operand. The operand is shifted
to the right by one bit position. The MSB bit gets the current value of the Carry bit, and the LSB
bit is shifted out into the Carry bit. The flags are affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is loaded from the LSB;

 V bit is reset.

Example 8-25. RRC.B R7;

 Initial conditions: R7=0x200F, C=1

 Instruction word: 0x1047 (opcode=0001_0000_0b, B/W#=1, Ad=00, D-reg=7)

 Result: 0x0F .. 1 => 0x87 (C=1, N=1, V=0, Z=0) or R7=0x0087,
R2=0x0005

Example 8-26. RRC.W R7;

 Initial conditions: R7=0x200F, C=1

 Instruction word: 0x1007 (opcode=0001_0000_0b, B/W#=0, Ad=00, D-reg=7)

 Result: 0x200F .. 1 => 0x9007 (C=1, N=1, V=0, Z=0) or R7=0x9007,
R2=0x0005

RRA(.B) dst ; rotate right arithmetic

This instruction carries out rotate right arithmetic on the destination operand. The destination
operand is shifted to the right by one bit position. The MSB bit is shifted back into the MSB bit
position as well as shifted to the right. The LSB bit is shifted out into the Carry bit. The flags are
affected as follows:

 N bit is set (1) if the result is negative (in 2’s complement) and reset (0) otherwise;

 Z bit is set if the result is equal to 0, reset otherwise;

 C bit is loaded from the LSB;

 V bit is reset.

Example 8-27. RRA.B R7;

 Initial conditions: R7=0xC00F, C=1

 Instruction word: 0x1147 (opcode=0001_0001_0b, B/W#=1, Ad=00, D-reg=7)

 Result: 0x0F => 0x07 (C=1, N=0, V=0, Z=0) or R7=0x0007, R2=0x0001

CPE 323 Module 03 © A. Milenković 33

Example 8-28. RRA.W R7;

 Initial conditions: R7=0xC00F, C=1

 Instruction word: 0x1107 (opcode=0001_0001_0b, B/W#=0, Ad=00, D-reg=7)

 Result: 0xC00F => 0xE007 (C=1, N=1, V=0, Z=0) or R7=0xE007,
R2=0x0005

The RRA preserves the sign bit of the destination operand. You can divide your signed operands
by 2 using this instruction.

PUSH(.B) dst ; push dst to the stack SP SP – 2; M[SP] dst

This instruction pushes the operand to the stack. As described above, the first step is to
decrement SP by 2 and then copy the content of the operand to the stack. This instruction does
not affect the flags. Please note that even if you push a single byte, an entire word is reserved
on the stack.

Example 8-29. PUSH.B R7; SP SP – 2; M[SP] R7 (byte operation)

 Initial conditions: R7=0xC00F, R1=0x0800; M[0x07FE] = 0x3320

 Instruction word: 0x1247 (opcode=0001_0010_0b, B/W#=1, Ad=00, D-reg=7)

 Result: SP=R1=0x07FE; M[0x07FE] = 0x330F; R7=0xC00F; Please note
that upper byte of the memory word at the address 0x07FE is going to
retain its original value;

Example 8-30. PUSH.W R7; SP SP – 2; M[SP] R7

 Initial conditions: R7=0xC00F, R1=0x0800; M[0x07FE] = 0x3320

 Instruction word: 0x1207 (opcode=0001_0010_0b, B/W#=0, Ad=00, D-reg=7)

 Result: SP=R1=0x07FE; M[0x07FE] = 0xC00F; R7=0xC00F (no change);

SWPB dst ; swap bytes

This instruction swaps the lower and the upper bytes in the destination operand. It does not
affect flags. The operand is a word (this instruction is meaningless for byte-sized operands).

Example 8-31. SWPB R7;

 Initial conditions: R7=0xC00F;

 Instruction word: 0x1087 (opcode=0001_0000_1b, B/W#=0, Ad=00, D-reg=7)

 Result: R7=0x0FC0;

CPE 323 MSP430 ISA © A. Milenković 34

CALL dst ; call subroutine, temp dst; SP SP – 2; M[SP] PC; PC
temp

This instruction calls a subroutine specified by the dst. A subroutine call is made from an
address in the lower 64 KiB to a subroutine address in the lower 64 KiB. All seven source
addressing modes can be used. The call instruction is a word instruction. The current PC is
pushed to the stack, the subroutine target address is determined based on the addressing
mode, and the PC is then loaded with the starting address of the subroutine. This instruction
does not affect the flags. The return is made with the RET instruction. The RET is an emulated
instruction which is equivalent to MOV.W @SP+, PC.

Example 8-32. CALL R7;

 Initial conditions: R7=0xC000; PC=0xE000; SP=R1=0x0800

 Instruction word: 0x1287 (opcode=0001_0010_1b, B/W#=0, Ad=00, D-reg=7)

 Result: SP=0x07FE; M[0x07FE]=0xE000; PC=0xC000

RETI ; return from interrupt, SR M[SP]; SP SP + 2; PC M[SP]; SP SP
+ 2

This instruction is the last instruction inside interrupt service routines. During exception
processing when interrupt is accepted, both the PC (R0) and SR (R2) registers are pushed to the
stack. Consequently, the RETI expects to find these two registers on the top of the stack. The
first value popped from the stack goes into the SR and the next one goes into PC.

Example 8-33. RETI;

 Initial conditions: SP=0x07FC; M[0x07FC]=0x0005; M[0x07FE]=0xC000; PC=0xEF08;
SR=0x0000

 Instruction word: 0x1300 (opcode=0001_0011_0b, B/W#=0, Ad=00, D-reg=0)

 Result: SP=0x0800; PC=0xC000; SR=0x0005;

Things to remember 8-2. MSP430 single-operand instructions.

MSP430 supports 7 single-operand core instructions. Their size ranges from 1 to 2 words,
depending on the addressing modes.

8.3 Control-Flow Instructions

Figure 11 shows the jump instruction format and Table 6 shows the list of all jump core
instructions. Conditional jumps support program branching relative to the PC and they do not
affect the status bits. The possible jump range is from −511 to +512 words relative to the PC

CPE 323 Module 03 © A. Milenković 35

value at the jump instruction. The 10-bit program-counter offset is treated as a signed 10-bit
value that is doubled and added to the program counter:

PCnew = PCold + 2 + PCoffset × 2

JNE/JNZ jumps to label if the Z flag is reset (condition=000b), JEQ/JZ jumps to label if the Z flag
is set (condition=001b), JNC jumps to label if the C bit is reset (condition=010b), JC (jump if
higher of same, condition=011b), and so on. Please note that based on the type of operands
you are using in your program you should use appropriate control-flow conditions. Thus,
inspecting N and V bits is meaningful only if your operands are signed integers, whereas
inspecting C bit is meaningful if your operands are unsigned integers.

Op-code 10-bit Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Condition

Figure 11. Jump instruction format (top) and instruction table (bottom).

Table 6. Control-flow instructions (Op-code=001).

Mnemonic Operands Condition
(binary)

Operation

JNE/JNZ Label 000 Jump to label if Z bit is reset

JEQ/JZ Label 001 Jump to label if Z bit is set

JNC Label 010 Jump to label if C bit is reset

JC Label 011 Jump to label if C bit is set

JN Label 100 Jump to label if N bit is set

JGE Label 101 Jump to label if (N .xor. V)=0

JL Label 110 Jump to label if (N .xor. V)=1

JMP Label 111 Jump to label unconditionally

In addition to these control-flow instruction, we can always use MOV instruction to change the
flow of the program unconditionally if our destination is PC. Let us consider several examples
shown in Table 7.

Table 7. Examples of unconditional branches using MOV instruction.

Instruction RTL Description

MOV #LABEL, PC PC #LABEL The value of the symbol LABEL is copied into
PC; equivalent to unconditional jump to the
address LABEL

CPE 323 MSP430 ISA © A. Milenković 36

MOV LABEL, PC PC M[LABEL] The value contained in a memory location at
the address LABEL is moved into PC;
equivalent to branch to the address
contained in the memory location at the
address LABEL

MOV @R14, PC PC M[R14] The value contained in a memory location at
the address contained in register R14 is
moved into PC; equivalent to branch to the
address contained in memory location with
the address contained in register R14

Things to remember 8-3. MSP430 control-flow instructions.

MSP430 supports 8 control-flow core instructions. Conditional instructions evaluate a subset
of arithmetic flags (C, V, N, and Z) and jump to the target address if the condition is met. The
target is computed as PC + 2 + SignExtend(10-bit offset). All control-flow instructions are 1
word long.

In addition, a MOV instruction with PC as the destination register can be used to carry out
unconditional jump.

8.4 Emulated Instructions

The previous subsections covered all core instructions. Though the list of core instructions is
quite small compared to other architectures, you will not find yourself constrained when
developing assembly language programs. To make your development easier, you can use a
number of emulated instructions. E.g., if you want to clear the Carry bit you can used BIC
instruction by specifying bit 0 in the register R2. So, rather than saying BIC.W #1, R2 you can
simply say CLC (Clear Carry). Assembler will figure out how to encode this instruction.
Consequently, you should make yourself familiar not only with the core instructions, but also
with the emulated instructions as they will make your life easier. Table 8 lists emulated
instructions and describes their implementation.

Table 8. Emulated instructions and their implementation.

Mnemonic Operation Emulation Description

Arithmetic instructions

ADC(.B) dst dst + C dst ADDC(.B) #0,dst Add carry to destination

DADC(.B) dst dst + C dst
(decimally)

DADD(.B) #0,dst Decimal add carry to
destination

DEC(.B) dst dst - 1 dst SUB(.B) #1,dst Decrement destination

CPE 323 Module 03 © A. Milenković 37

DECD(.B) dst dst – 2 dst SUB(.B) #2,dst Decrement destination twice

INC(.B) dst dst + 1 dst ADD(.B) #1,dst Increment destination

INCD(.B) dst dst + 2 dst ADD(.B) #2,dst Increment destination twice

SBC(.B) dst dst + 0xFFFF + C

dst dst + 0xFF
dst

SUBC(.B) #0,dst Subtract source and borrow
/.NOT. carry from dest.

Logical and register control instructions

INV(.B) dst .not. dst dst XOR(.B)
#0(FF)FFh,dst

Invert bits in destination

RLA(.B) dst CMSBMSB-1 . . .

LSB+1LSB0

ADD(.B) dst,dst Rotate left arithmetically

RLC(.B) dst CMSBMSB-

1…LSB+1LSBC

ADDC(.B) dst,dst Rotate left through carry

Data instructions

CLR(.B) dst 0 dst MOV(.B) #0,dst Clear destination

CLRC 0 C BIC #1,SR Clear carry flag

CLRN 0 N BIC #4,SR Clear negative flag

CLRZ 0 Z BIC #2,SR Clear zero flag

POP(.B) dst M[SP]→dst SP+2→SP

MOV(.B) @SP+,dst Pop byte/word from stack to
destination

SETC 1 C BIS #1,SR Set carry flag

SETN 1 N BIS #4,SR Set negative flag

SETZ 1 Z BIS #2,SR Set zero flag

TST(.B) dst dst + 0FFFFh + 1dst
+ 0FFh + 1

CMP(.B) #0,dst Test destination

Program flow control

BR dst dst PC MOV dst,PC Branch to destination

DINT 0 GIE BIC #8,SR Disable (general) interrupts

EINT 1 GIE BIS #8,SR Enable (general) interrupts

NOP None MOV #0,R3 No operation

RET M[SP] PC

SP+2 SP

MOV @SP+,PC Return from subroutine

Things to remember 8-4. MSP430 emulated instructions.

MSP430 assembly allows us to use emulated instructions. These instructions do not have
their unique opcode, but they are rather derived from the existing core instructions. You
should use them to make your programs more readable and to make your task easier.

Figure 12 shows a complete list of the MSP430 core and emulated instructions.

CPE 323 MSP430 ISA © A. Milenković 38

Figure 12. The complete MSP430 Instruction Set (core + emulated instructions).

9 Additional Notes On Constant Generator

CPE 323 Module 03 © A. Milenković 39

Constant generator (R2-R3). Profiling common programs for constants shows that just a few
constants, such as 0, +1, +2, +4, +8, -1, account for the majority of constants used in programs.
However, to encode such constants we will need 16 bits in an instruction. In order to reduce
the number of bits needed to encode frequently used constants, a trick called constant
generation is used. By specifying dedicated registers R2 and R3 in combination with certain
addressing modes, we tell hardware to generate some of the most frequently used constants.
This results in a shorter instruction (we need fewer bits to encode such an instruction). Table 9
lists constants created using the constant generator (4, 8, 0, 1, 2, -1). This is achieved by clever
encoding as R2/SR is never used as an address register (As=10 and As=11) for indexed or
immediate/indirect addressing modes. Register R3 is reserved for generating various constants
with different source addressing modes.

Let’s say you want to clear a word in memory at the address dst. To do this, a MOV instruction
could be used:

MOV.W #0, dst

This instruction would have required 3 words to encode: the first contains the opcode and
addressing mode specifiers for src and src/dst operands. The second word would have
contained the constant zero, and the third word would have contained the address of the
memory location. Alternatively, the instruction

MOV.W R3, dst

performs the same task, but requires only 2 words. The combination of (As=00) and register R3
as the source register creates a constant 0 within the CPU.

Minimizing the size of a program is referred often as improving code density. We prefer our
programs to occupy as little space in memory as possible. It means that we can use chips with
smaller memory that are typically cheaper, reducing the cost of our systems and maximizing
our profits margins.

Table 9. Constant generation using registers R2 and R3 and address specifier for the source operand
As.

Register As Constant Remarks

R2 00 - Register mode (use SR)

R2 01 (0) Designates absolute addressing mode.

R2 10 0x0004 +4, used in bit processing

R2 11 0x0008 +8, used in bit processing

R3 00 0x0000 0, word processing

R3 01 0x0001 +1

R3 10 0x0002 +2, bit processing

R3 11 0xFF, 0xFFFF -1, word processing

CPE 323 MSP430 ISA © A. Milenković 40

10 To Learn More
1. MSP430x5xx and MSP430x6xx Family User’s Guide, https://www.ti.com/lit/slau208

2. MSP430x4xx Family User’s Guide, https://www.ti.com/lit/pdf/slau056

11 Exercises
Problem #1.

Consider the following instructions given in the
table below. For each instruction determine its
length (in words), the instruction words (in
hexadecimal), source operand addressing mode,
and the content of register R7 after execution of
each instruction. Fill in the empty cells in the
table. The initial content of memory is given in
the table below. Initial value of registers R5, R6,
and R7 is as follows: R5=0xF002, R6=0xF00A,
R7=0xFF88. Assume the starting conditions are the
same for each question (i.e., always start from
initial conditions in memory) and given register
values.

 Instr.
Addres
s

Instruction Instr.
Length
[words
]

Instruction Word(s)
[hex]

Source Operand
Addressing
Mode

R7=?
[HEX]

(i) 0x1116 MOV R5, R7 1 0x4507 Register 0xF002

(ii) 0x1116 MOV.B R5, R7 1 0x4447 Register 0x0002

(a) 0x1116 MOV 4(R5), R7

(b) 0x1116 MOV.B 3(R5), R7

(c) 0x1116 MOV.B -3(R6), R7

(d) 0x1116 MOV TONI, R7

(e) 0x1116 MOV.B EDE, R7

(f) 0x1116 MOV &EDE, R7

(g) 0x1116 MOV.B @R5, R7

(h) 0x1116 MOV @R5+, R7

(i) 0x1116 MOV #45, R7

(j) 0x1116 MOV.B #45, R7

Problem #2.

Consider the following instructions given in the table below. For each instruction determine
addressing modes of the source and destination operands, and the result of the operation. Fill

Label Address
[hex]

Memory[15:0]
[hex]

 0xF000 0x0504

 0xF002 0xFFEE

TONI 0xF004 0xCC06

 0xF006 0x3304

 0xF008 0xF014

 0xF00A 0x2244

EDE 0xF00C 0xABBA

 0xF00E 0xEFDD

https://www.ti.com/lit/slau208
https://www.ti.com/lit/pdf/slau056

CPE 323 Module 03 © A. Milenković 41

in the empty cells in the table. The initial content of
memory is given in the table. Initial value of registers
R2, R5, R6, and R7 is as follows: SR=R2=0x0003 (V=0,
N=0, Z=1, C=1), R5=0xC001, R6=0xC008. Assume the
starting conditions are the same for each question (i.e.,
always start from initial conditions in memory and
given register values).

Note: Format of the status register (R2) is as follows.

 Instruction Source
Addressing
Mode

Destination
Operand
Addressing
Mode

Source
Address

Dest.
Address

Result (content of memory
location or register)

(a) MOV.B &TONI,
R5

(b) SUBC.B @R6,
5(R5)

(c) RRC TONI

(d) AND #0x0AC2, -
2(R6)

Notes of setting flags: Instructions that set flags, set N and Z flags as usual. Specific details for
C and V are as follows: RRC clears V bit.

Label Address
[hex]

Memory[15:0]
[hex]

 0xC000 0x0504

 0xC002 0xFEEE

TONI 0xC004 0xA821

 0xC006 0x33F4

 0xC008 0xF014

 0xC00A 0x2244

EDE 0xC00C 0xCDDA

 0xC00E 0xEFDD

