
 

CPE 323 Module 01  © A. Milenković 1 

CPE 323  
MODULE 01  

COMPUTER SYSTEMS: A BRIEF REVIEW 
 

Aleksandar Milenković 

Email: milenka@uah.edu 

Web: http://www.ece.uah.edu/~milenka 

 

Overview 

This module reviews main components of a computer system (processor, memory, input/output 
peripherals, and interconnect) and principles of stored-program execution.    

Objectives  

Upon completion of this module learners will be able to: 

 Describe 4 main components of a computer system 

 Describe main steps of an instruction execution 

 

Contents 

1 Introduction ............................................................................................................................. 2 

2 Four Components of a Computer System ............................................................................... 2 

3 CPU .......................................................................................................................................... 3 

4 Memory ................................................................................................................................... 5 

5 I/O Peripherals ......................................................................................................................... 8 

6 Bus ........................................................................................................................................... 9 

7 Exercises ................................................................................................................................ 10 

 

 

mailto:milenka@uah.edu


 

CPE 323 Computer System: A Brief Review © A. Milenković 2 

1 Introduction 
Computers or computing devices have become an indispensable parts of our lives. They come 
in many forms: starting from wearable electronics (e.g., fitness trackers), smart watches, 
smartphones, personal computers, to warehouse-scale computers running the majority of 
cloud-based services such as email, file sharing, photo sharing, social networks, shopping web 
sites, and others. Computers are also present in many other devices we interact with every day 
– in cars, smart speakers, TVs, and others. Broadly speaking, computers can be classified into 
the following major categories: embedded computers, personal devices, personal computers, 
and servers/warehouse scale computers. The embedded computers refer to computing devices 
that are a part of other devices (e.g., car, microwave oven, refrigerator, network router, to 
name just a few), and are not necessarily perceived as computing devices. Embedded 
computers are highly specialized and designed to perform a single task (or a subset of tasks) 
throughout their lifetime.  

2 Four Components of a Computer System 
Regardless of functionality, size, or cost, any computer system includes four major components: 
the processor (a.k.a., central processing unit or CPU), memory, input/output peripherals, and 
an interconnect. Figure 1 shows a block diagram of a computer system that uses a bus 
(collection of wires) to interconnect major components. The CPU is the brain of a computer 
system responsible for executing machine instructions. The main memory stores programs and 
data. Input/Output (I/O) peripheral devices enable interfacing to the outside world (e.g., 
switches, LEDs – light emitting diodes, LCDs – liquid crystal displays, and others). The 
interconnect fabric connects all these components together.  

 

CPU
(Central Processing Unit)

Memory

I/O Peripherals

Address Bus

Data Bus

Control Bus

I/O Peripherals
I/O Peripherals

 

Figure 1. Block diagram of a computer system with 4 major components. 

 



 

CPE 323 Module 01  © A. Milenković 3 

Things to remember 2-1. Four components of a computer system. 

The four main components of any computer system are: CPU, memory, I/O peripherals, and 
interconnect fabric.  

 

3 CPU 
The Central Processing Unit (CPU) is the brain of a computer system, responsible for executing 
machine instructions. It can be divided into two major sub-modules: the datapath and the 
control unit. The datapath includes registers, functional units (e.g., integer ALU – arithmetic 
logic unit, floating-point adders, floating-point multiplier, etc.), and internal buses connecting 
these logic blocks. Thus, the datapath is where instructions are executed and temporary data 
are stored and processed. The control unit includes a sequencer and combinational logic 
responsible for generating control signals needed to carry out machine instructions in the 
datapath. You can think about resources of datapath as individual members of an orchestra and 
about the control unit as a conductor of the orchestra.  

To execute a machine instruction the CPU goes through a sequence of steps as follows: 

1. Fetch Instruction 

2. Decode Instruction 

3. Fetch Operands 

4. Execute Instruction 

5. Store Result(s) 

6. Process Exceptions or Interrupts. 

Fetch Instruction. Machine instructions are stored in the main memory. Thus, the first step of 
the instruction execution is fetching the next instruction from memory. For this purpose, the 
CPU typically maintains a special register called Program Counter (PC). This register always 
points to the next instruction to be executed, i.e., its content is the address of memory location 
that contains the next instruction. Fetching an instruction involves placing the content of the PC 
on the address bus, setting a control signal to trigger a read from memory (RD line on the 
control bus is asserted), and then waiting for memory to respond. The memory responds by 
placing the instruction on the data bus. The CPU takes the content from the data bus (the 
fetched instruction) and stores it into a dedicated register, let us call it, the Instruction Register 
(IR). The PC is then incremented to point to the next instruction in the program. 

Using so-called Register-Transfer-Level (RTL) notation that captures movement of data and 
instructions inside the CPU, we can describe the instruction fetch phase as follows: 

1. IR  M[PC]    

2. PC  PC + Size_Of_Instruction 



 

CPE 323 Computer System: A Brief Review © A. Milenković 4 

We can describe the first step as follows: “IR gets the next instruction fetched from memory 
from the address currently contained in register PC.” The second step is updating PC to point to 
the next instruction in sequence. Here we provided a simplified view of the instruction fetching 
that involves one read operation from memory. Generally, an instruction fetch can involve 
multiple reads from memory in case that the instruction size exceeds the size of data that can 
be read from memory in one read operation.  

Decode Instruction. Once fetched, the instruction is decoded. The instruction is encoded in 
binary. The binary contains multiple fields that tell us the following: (a) what the instruction is 
(e.g., ADD, SUB, MOV, …), (b) where the operands are (registers or memory), and (c) if the 
operands are in memory, what addresses they are placed at. The CPU relies on decoders that 
analyze individual fields of the instruction to figure out answers to these questions.  

Fetch Operand(s). If the operands are in the main memory, the processor issues reads from the 
memory to fetch operands. The CPU determines the address of a source operand (Effective 
Address of Source – EAS) and then reads the operand from memory: the EAS is placed on the 
address bus and a memory read control signal is asserted (set to active value). Once the 
memory responds by placing the operand on the data bus, it is grabbed by the CPU and stored 
into a temporary register, let us call it, S1.  

Using the RTL notation, we can describe the operand fetch as follows: 

1. S1  M[EAS]    

We can describe this step as follows: “S1 gets the value of the operand from memory from the 
address of the source operand, EAS.” If the instruction specifies multiple operands in memory, 
multiple “trips” to memory are made to fetch all source operands. 

Execute Instruction. This stage involves actual instruction execution. For arithmetic-logic 
instructions, the specified operation is performed using corresponding functional units. For 
transfer instructions that read from or write into the main memory, the effective address of the 
operand(s) is calculated. For control-flow instructions, a branch condition is evaluated, and if 
the condition is true, a new target address is computed and stored into the PC (branch is 
taken). Thus, this phase is instruction-specific. In the case of arithmetic-logic instructions, the 
result of the instruction is ready at the end of this stage.  

Store Result. If the result of the instruction is to be stored in a general-purpose register, it is 
done so at the end of instruction execution stage. If the result is to be stored in the main 
memory, the CPU carries out a memory write operation. The address of the destination 
operand is placed on the address bus, the result is placed on the data bus, and a control signal 
to initiate write into memory (WR) is asserted. Once the memory updates its content, this step 
is over. The result of an instruction may also include some side-effects. E.g., in CPUs that 
support flags that indicate correct or incorrect results, these flags are set accordingly. The flags 
are typically held in a dedicated register called Status Register – SR. 

Processing Exceptions (Interrupts). The last stage of an instruction execution is to check for 
pending exceptions (interrupts). Typically there are no exceptional situations (e.g., irregular 
conditions, incorrect results, etc.) and the CPU can go back and repeat the sequence of steps 



 

CPE 323 Module 01  © A. Milenković 5 

for the next instruction. However, if there are pending interrupts, the processor needs to 
handle them. Handling interrupts involves a sequence of steps carried out in hardware. First, 
the CPU saves the context of the current program, so it can be resumed. Next, the CPU 
determines what event needs to be serviced first in case multiple events are pending. After 
that, the starting address of the corresponding handler or Interrupt Service Routine (ISR) is 
fetched from a so-called Interrupt Vector table. And finally, the starting address of the 
corresponding ISR is moved into PC. Thus, at the end of this stage the flow of the program 
execution is changed and the CPU continues execution of instructions from the corresponding 
ISR. Once the ISR is executed, the program resumes its execution from the following instruction. 
Think about ISRs as special subroutines designed to handle exception events. More about this 
will be discussed later in the course. 

Things to remember 3-1. Datapath and control unit. 

Any CPU can be divided into two parts: (a) datapath that includes registers and functional units 
where computation takes place, and (b) control unit that generates control signals needed to 
carry out instructions.  

 

Things to remember 3-2. Phases of instruction execution. 

The main phases on an instruction execution are as follows: (a) fetch instruction; (b) decode 
instruction; (c) fetch operands; (d) execute instruction; (e) store results; and (f) process 
exceptions/interrupts.   

 

4 Memory 
The main memory stores programs (machine instructions) and data. There are many types of 
memories. You have probably heard of two terms: ROM – Read Only Memory (it is a non-
volatile memory that you can only read from) and RAM – Random Access Memory (it is a 
volatile memory that you can read from and write into). In both cases, we think about a 
memory as a collection of storage units, where each storage unit has its own address. The 
following is a list of frequently used storage units: 

 Nibble – 4 bits 

 Byte – 8 bits 

 Word – 16 bits 

 Long Word – 32 bits 

Please keep in mind that Byte is always 8-bit long, whereas Words or Long Words are processor 
specific terms. The definitions for Words and Long Words in this text correspond to the MSP430 
processor that we are using in this course. The most common addressable unit – the smallest 
unit that has an address – is a byte. There are many historical and practical reasons for that. 
Thus, we see memory as a collection or an array of byte-sized locations.  



 

CPE 323 Computer System: A Brief Review © A. Milenković 6 

Memory sizes are usually expressed in Kilobytes, Megabytes, etc. Below are common 
definitions that use a power of 2: 

KiB – 210 bytes (1 kibibyte in International Electrotechnical Commission, 1 KB JEDEC) 

MiB – 220 bytes (1 mebibyte IEC, 1 MB JEDEC) 

GiB – 230 bytes (1 gibibyte IEC, 1 GB JEDEC) 

TiB – 240 bytes  (1 tebibyte IEC) 

PiB – 250 bytes (1 pebibyte IEC) 

Please note that sometimes people will use KB to refer to 1,000 bytes, not 1,024 or 210 bytes. 
We will almost exclusively refer to memory sizes in power of 2.  

 

Check yourself 4-1 

How many bytes do you have in a 4 KiB memory? 

 

 

Figure 2 gives a logical view of a byte-addressable 64 KiB memory. The memory contains 216 or 
65,536 bytes. To distinguish between 216 locations, we need 16 bits to represent the address of 
a memory location (also, the address bus will need 16 address lines A15 … A0). The address 
range is from 0 to 65,535 decimally. We usually express addresses in hexadecimal notation for 
brevity. The first location has the address 0000_0000_0000_0000 b (binary) or 0x0000 (or 0000 
h) in hexadecimal notation and the last location has the address 1111_1111_1111_1111 b or 
0xFFFF. The bit at position 0 in a byte is referred to as the Least Significant Bit or LSB and bit 7 
as the Most Significant Bit or MSB. 



 

CPE 323 Module 01  © A. Milenković 7 

0x0000

0x0001

0x0002

0x0003

0x0004

. . . 

0xFFFE

0xFFFF

7                                    0

Bit 0 – Least Significant Bit (LSB)

Bit 7 – Most Significant Bit (MSB)
 

Figure 2. Logical view of a memory with 65,536 (216) bytes. 

Figure 3 shows an alternative logical view of a byte-addressable 64 KiB memory. Here, two 
bytes are grouped to form a single 16-bit word. This view is helpful when we have a CPU that 
can read and write words in a single memory operation. Word addresses are even 0x0000, 
0x0002, etc., pointing to the address of the first byte in a word. This view of memory is word-
aligned, little-endian – the byte at the address 0x0000 corresponds to lower 8 bits of a word 
and byte at the address 0x0001 corresponds to the upper byte in a word.   



 

CPE 323 Computer System: A Brief Review © A. Milenković 8 

0x0000

0x0002

0x0004

0x0006

0x0008

. . . 

0xFFFC

0xFFFE

15                                   8 7                                 0

 

Figure 3. Logical view of a memory with 65,536 (216) bytes organized in words. 

 

Check yourself 4-2 

You are given memory modules with 16 KiB (16,384 x 8 bits). Using these modules you are 
asked to design a memory organized in 32 kilo 16-bit words. How many modules do you need? 
What other logic components do you need to properly connect these modules? 

 

Things to remember 4-1. Main memory. 

Main memory is organized as a collection of addressable locations. A byte or 8 bits is typically 
smallest addressable unit in modern processors.    

 

5 I/O Peripherals 
Input/Output peripherals are components of a computer system that allow us to interface with 
the outside world. Students often list keyboards and monitors as I/O peripherals, but to be 
precise, those are external devices that we interface through a standard set I/O peripherals, 
such as: 

 Parallel Ports - used to interface switches, LEDs, 7-segment displays; 

 Timers - used to measure time;  

 Serial Communication Interfaces – used to carry out communication protocols, such as 
UART, SPI, I2C, CAN bus, Ethernet, and others; 



 

CPE 323 Module 01  © A. Milenković 9 

 Analog-to-Digital Converters (ADC) - used to convert analog signals into their digital 
counterparts; and 

 Digital-to-Analog Converters (DAC) – used to convert digital values into analog signals. 

The design of each I/O peripheral is function-specific, but we typically see all peripherals 
through their control, status, and data registers that are mapped in the processor’s address 
space. To configure a peripheral to perform a certain task, we usually initialize its control 
register by setting certain bits to appropriate values. To monitor the status of a peripheral we 
can read the current value of its status register that reflects the current state of the peripheral 
(e.g., whether the task has been completed or it is still in progress). And finally, to exchange 
data between the CPU and peripheral, we read from and write into its data register(s). From 
the software perspective, there are three principal ways how we can interface I/O peripherals: 

 Using Polling; 

 Using the Interrupt Mechanism; 

 Using Direct Memory Controllers (DMAs). 

 

Things to remember 5-1. I/O peripherals. 

IO peripherals are components of a computer system that allow us to interface with the outside 
world, such as parallel ports, timers, serial communication interfaces, analog-to-digital 
converters, digital-to-analog converters, and others. Our programs interact with peripherals 
through their control, status, and data registers that are mapped in the processor’s address 
space. 

 

 

6 Bus 
The simplest type of an interconnect is a bus. The bus consists of a number of wires that carry 
signals between components. At any point of time we can have only one component to drive 
signals on the bus. When no component is driving the wire, we assume it has a high-impedance 
state (‘Z’) – neither 0 nor 1. The bus consists of address lines, data lines, and control lines. The 
address lines carry address bits. The data lines carry data bits. The control signals allow the CPU 
to issue a read from memory or an I/O peripheral (RD) or write to memory or an I/O peripheral 
(WR).  

Figure 4 illustrates a system bus with 16 address lines (A15 to A0), 16 data lines (D15 to D0), and 
control bus (typically will include RD and WR control signals, but can have more).  



 

CPE 323 Computer System: A Brief Review © A. Milenković 10 

A15-0

16

C

D15-0

16

n

 

Figure 4. System Bus with 16 address lines, 16 data lines, and control lines.  

 

Things to remember 6-1. Bus. 

A bus is the simplest form of an interconnect. It consists of a number of wires that carry signals 
between components, specifically address lines, data lines, and control lines.  

 

7 Exercises  
Q #1.  

List the 4 main components of any computer system and their functions.  

Q #2.  

What are the main phases on an instruction execution?  

Q #3.  

Assume you have a processor that includes a machine instruction that sums up two operands in 
memory at locations A and B as follows:  

ADD A, B; M[B] <= M[A] + M[B]  

Using RTL notation, describe steps taken in the Instruction Fetch stage and the Operand Fetch 
stage (assume operands A and B are fetched into temporary registers S1 and S2 inside the 
processor), the Execute Stage (assume the result is temporarily stored in register S3), and the 
Store Result stage? Assume the instruction is 6 bytes long.  

Q #4.  

Assume a processor with a 16 MiB address space. A byte is the smallest addressable unit and 
we can read 16-bits of data from memory in one read operation (providing they are aligned to 
even addresses).  

How many address lines does this processor have on its bus? 

How many data lines does this processor have on its bus? 



 

CPE 323 Module 01  © A. Milenković 11 

What is the address range of the address space (provide the address of the first and the last 
byte in the address space)? 


