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Title   An Implementation and Experimental Evaluation of Hardware Accelerated 
Ciphers in All-Programmable SoCs on Embedded and Workstation Computer 
Platforms  
 

The protection of confidential information has become very important with 

the increase of data sharing and storage on public domains. Data confidentiality is 

accomplished through the use of ciphers that encrypt and decrypt the data to impede 

unauthorized access. Emerging heterogeneous platforms provide an ideal 

environment to use hardware acceleration to improve application performance. This 

thesis explores the performance benefits of hardware accelerated ciphers versus 

their software counterparts for multiple cipher modes. The hardware accelerated 

ciphers are implemented on the FPGA fabric of the Zynq-7000 All-Programmable 

System-on-a-Chip (SoC) and utilizes DMA for communicating with the host 

processor. The design is implemented within an embedded and workstation 

computing environment. File encryption and decryption of varying file sizes and a 

hardware sink test are used as the workloads for testing the software and hardware 

ciphers, with execution time, speedup, and throughput as the metrics for comparing 

the performance of each. The performance evaluations show that the hardware 

accelerated ciphers performed significantly better than the software ciphers in the 

embedded environment with speedups upwards of 30x, but only achieved moderate 

improvements for the workstation environment with speedups upwards of 1.5x. 
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CHAPTER 1  

 

INTRODUCTION 

 

The Digital Age has seen an ever increasing amount of data stored and 

transmitted across publicly accessed mediums, such as the Internet. A large portion 

of this data is confidential information that could harm individuals, corporations, 

and even governments if accessed by a malicious party. The critical importance of 

securing this data has led to the utilization of data encryption algorithms. Over 

time, there has been a multitude of cryptographic algorithms each designed with the 

goal of securing data more effectively. One such algorithm is the Advanced 

Encryption Standard (AES) which has emerged as a highly secure and easy to 

implement algorithm that is used by many corporations and government entities to 

secure their confidential information. AES, with the use of different cipher modes, 

has become the most widely used block cipher for securing information. Software 

implementations are the simplest and most common form of the AES algorithm; 

however, hardware implementations of the algorithm often improve speed, 

throughput, or save energy relative to their software counterparts, especially within 

an embedded computing environment with limited resources. The goal of this thesis 

is to explore any performance benefits of implementing hardware accelerated 

ciphers that use AES on an FPGA within an embedded and workstation 

environment. The rest of the Introduction section discusses the motivation, 

technology trends, the work done in the thesis and overview of the results, lists the 

contributions of this thesis, and gives the outline of the remainder of the thesis. 
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1.1 Need for Data Encryption 

The cyber hacking of data and information has become a common occurrence 

in the twenty first century. So many companies and even governments store 

confidential information about their customers and constituents, respectively. Also, 

with the increased use of the Internet for things such as shopping, etc. the sharing of 

personal information on the Internet is on the rise. Unfortunately, there are 

individuals and groups of people that exploit vulnerabilities in the computing 

systems that store and transmit this confidential information in order to gain access 

to the data for personal gain. It has become very difficult to identify and correct all 

possible vulnerabilities of a system that contains this data especially as attackers 

continue to invent new techniques for attacking systems and mediums. Therefore, it 

has become extremely important to be able to protect the data itself regardless of the 

system it resides on. This is accomplished through the use of data encryption. Data 

encryption is the process of using a private key to transform readable data into a 

code that cannot be read or understood by a human or computing device. The only 

way for the encrypted data to be placed back into a readable form is to decrypt the 

data using the original private key used to encrypt the data. Therefore, if the private 

key is kept secret then only the original user can view the actual data. Many 

different encryption algorithms have been developed in the past few decades, such 

as DES, AES, IDEA, MD5, SHA 1, and many more. Some of the algorithms have 

emerged as being more secure and harder to hack than others. Data encryption does 

not control who can access data and information, but rather it controls who can view 

it. Indeed, as long as data is correctly encrypted before being transmitted or stored 



3 
 

on an accessible medium or device then even if another party gains access to the 

data it will be in an unknown and unusable form. 

1.2 Technology Trends 

Software implementations of cipher modes and block ciphers have long been 

the most common and easiest form of protecting data. However, the requirements for 

higher bandwidth and performance and lower power consumption in modern 

applications led to more hardware implementations of these ciphers. Most notably, 

Intel introduced the AES New Instructions (AESNI) that extends the x86 

instruction set architecture. AESNI instructions invoked by software rely on 

dedicated hardware in the chipset that is used to perform the cryptographic 

operations. This allows for the cryptographic operations to be performed much faster 

than in software implemented algorithms. The computing industry has also seen a 

significant rise in interest and manufacturing of heterogeneous computing systems 

that offer more flexibility to developers and can achieve higher computational and 

data throughputs than a homogeneous system. These heterogeneous platforms may 

have alternative processors on the same integrated circuit (IC) as the main processor 

or off-chip to the main processor. An example of an off-chip heterogeneous system is 

a workstation that contains a general purpose graphics processing unit (GPGPU) 

that resides on the PCIe bus. An example of an integrated heterogeneous platform is 

an All-Programmable System-on-a-Chip (APSoC), which contains a hard processor 

system and FPGA fabric on the same silicon die. These all-programmable chips 

allow designers to combine the strengths of the software programmability of a hard 

processor system and the hardware programmability of the FPGA fabric. A common 

design approach is to offload computational overhead from the hard processor 
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system to a hardware accelerator in the FPGA fabric to perform tasks faster and 

more efficiently. 

1.3 What Has Been Achieved 

In this thesis, an experimental performance evaluation of software and 

hardware implementations of three AES-based cipher modes is performed. The 

ciphers are evaluated within an embedded and workstation environment. The three 

cipher modes that are implemented are the Electronic Codebook (ECB), Cipher 

Block Chaining (CBC), and Counter (CTR) mode. Each of the cipher modes uses AES 

as the block cipher. The OpenSSL open-source cryptographic library is used for the 

software implementation of each cipher and the hardware implementations are 

hosted on the FPGA fabric of the Zynq-7000 All-Programmable System-on-a-Chip. 

There are two software applications for testing the performance of the ciphers. One 

application is multithreaded whose purpose is to attempt to achieve maximum 

throughput for the hardware accelerated ciphers. The second application uses an 

extension added to OpenSSL to simplify the programming API used for accessing 

both software and hardware ciphers. Furthermore, there are two tests executed 

within each software application. A file encryption/decryption test and a hardware 

sink test. The file encryption/decryption test is designed to evaluate the performance 

of each cipher in the scenario of protecting data at rest and the hardware sink test is 

designed to test each cipher in the scenario of protecting data prior to sending data 

out from the computer. The performance of the software and hardware ciphers are 

compared using metrics of execution time, speedup, and throughput. 
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1.4 Contributions 

This thesis makes the following contributions to the field of hardware 

accelerated cryptographic processing and heterogeneous computing on embedded 

and workstation computing environments: 

• Provides an accurate performance comparison of highly optimized 

software cipher implementations and FPGA hardware accelerated cipher 

implementations using modern processors and FPGAs. 

• Evaluates the potential performance improvements of hardware 

accelerated ciphers on embedded and workstation platforms through the 

use of heterogeneous computing. 

• Evaluates the effects of bus architectures, system hard drives, and FPGA 

families on the performance of hardware accelerated ciphers. 

• Creates environment for experimental-based evaluation of applications 

utilizing software and hardware accelerated ciphers. 

1.5 Outline of the Thesis 

The remaining sections of this thesis are organized as follows. CHAPTER 2 

discusses the background and motivation for the thesis. CHAPTER 3 discusses the 

related work from the open literature. CHAPTER 4 discusses the methodology for 

how the thesis work is accomplished. CHAPTER 5 discusses the specifics of the 

system designs for the embedded and workstation designs. CHAPTER 6 discusses 

the architecture and flow of the software applications used for testing and 

measuring the performance of the cipher implementations. CHAPTER 7 provides 

details regarding the embedded and workstation experimental environments for 

testing the implementations. CHAPTER 8 discusses the results of the micro-
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benchmarking tests on different components of the system designs. CHAPTER 9 

discusses the results for each test and software application combination. Finally, 

CHAPTER 10 discusses possible future work and conclusions drawn from the thesis 

work. 
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CHAPTER 2  

 

BACKGROUND AND MOTIVATION 

 

Data security is the process of protecting private or confidential information 

from being accessed by an unauthorized party on a public domain or private computer. 

Computers are owned in many more households and businesses now than ever before 

and they all contain personal information of individuals or proprietary information of 

companies and needs to be protected. Information is also transferred across public 

communication domains in extremely large amounts on a daily basis where some of 

the information transferred is not sensitive; however, much of the information is 

confidential to one or both of the communicating parties. Some of the information that 

is passed across the Internet domain includes banking information, personal 

identifiable information, tax information, and much more so it is very important to 

use data sharing techniques and algorithms in order to protect this information to 

guarantee that a malicious party that intercepts the data cannot read the information. 

A technique that has been used for many years is data encryption. There are many 

different data encryption algorithms and have all been successful at protecting the 

data entrusted to their algorithm. However, some have been more successful than 

others due to the evolution of more sophisticated software and hardware attacks 

against computers, networks, and the encryption algorithms themselves. Some 

examples of the software attacks are ciphertext only attack, known plaintext attack, 

chosen plaintext attack, chosen ciphertext attack, side channel attacks, brute force 
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attack, and birthday attacks. Examples of hardware attacks are man-in-the-middle 

attack, electromagnetic attack, and power analysis attacks [1]. 

Users can either use software-based or hardware-based encryption to protect 

data. Software encryption programs or much more prevalent than hardware 

solutions because it is cost effective, easily distributed, easy to use, upgrade, and 

update so it makes a good solution for individuals as well as large companies. 

Software encryption solutions are also readily available for all major operating 

systems. However, software solutions tend to only be as strong as the operating 

system of the base device and can also be very computationally intensive.  Software 

solutions also have the possibility of being turned off by users or circumvented by 

attackers making them extremely vulnerable to attacks. The other option is 

hardware-based encryption solutions. Hardware solutions tend to be self-contained 

and does not require any additional software support making it essentially free from 

the possibility of contamination, malicious code infection, or vulnerability [2]. 

2.1 Advanced Encryption Standard (AES) 

Symmetric cryptography is split into block ciphers and stream ciphers. 

Stream ciphers encrypt bits individually, as shown in Figure 2.1. This is achieved by 

adding a bit from a key stream to a plaintext bit. On the other hand, block ciphers 

encrypt an entire block of plaintext bits at a time with the same key, as shown in 

Figure 2.2.  This means that the encryption of any plaintext bit in a given block 

depends on every other plaintext bit in the same block. Block ciphers are much more 

common than stream ciphers for public communication domains such as the 

Internet. Stream ciphers are smaller, faster, and better suited for embedded devices 
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with little computational power; whereas, block ciphers require more compute and 

storage resources and are thus more suited for workstation environments [3]. 

 

Figure 2.1  Stream Cipher [3] 

 

 

Figure 2.2  Block Cipher [3] 

 

The Advanced Encryption Standard (AES) is the most widely used symmetric 

block cipher today. It is the standard block cipher for the US government and is also 

used in many industries and commercial systems. AES is used as the encryption 

standard for many protocols including Internet Protocol Security suite (IPsec), 

Transport Layer Security (TLS), the WLAN security protocols (IEEE 802.11i), and 

the secure shell network protocol (SSH) [3]. 

AES was developed by Joan Daemen and Vincent Rijmen and was adopted by 

the US National Institute of Standards and Technology (NIST) in 2001 as the new 
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encryption standard for the US government. AES has three different key sizes of 

128, 192, and 256 bits. The block size is 128 bits, or 16 bytes. A basic block diagram 

of AES is shown in Figure 2.3. The number of internal rounds of the cipher is a 

function of the key length and it is 10, 12, or 14 rounds for key length sizes of 128, 

192, and 256 bits, respectively. The AES algorithm consists of so-called layers where 

each layer manipulates all 128 bits of the data block. The data block is also referred 

to as the state. There are three different layers and each round of the algorithm, 

with the exception of the first round, executes all three layers. The three layers are 

the Byte Substitution layer (S-Box), Diffusion layer, and the Key Addition layer. The 

Byte Substitution layer is where each byte in the state is substituted with another 

byte from a known lookup table that contains values with special mathematical 

properties. This byte substitution is a nonlinear transformation. The Diffusion layer 

has two sublayers of ShiftRows and MixColumn which perform linear operations on 

the state. The ShiftRows sublayer permutes the data on a byte level and the 

MixColumn sublayer is a matrix operation that combines blocks of four bytes used 

for mixing the data. Lastly, the Key Addition layer is where a 128-bit round key, 

derived from the main key, is XORed with the state. The round keys, or subkeys, for 

each round are generated by taking the original cipher key, any of the three lengths, 

and performing the key scheduling operation to produce a unique 128-bit subkey [3]. 
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Figure 2.3  AES Block Cipher [3] 

2.2 Cipher Modes of Operation 

Block ciphers, such as AES, can be used as the base building block for a 

multitude of encryption schemes and to even create stream ciphers. The different 

ways of encryption are referred to as modes of operation. For this research, the 

modes of operation that were implemented were the Electronic Codebook (ECB), 

Cipher Block Chaining (CBC), and Counter Mode (CTR). AES is the block cipher 

used to implement the different modes of operation. 

2.3 Electronic Codebook (ECB) 

Electronic Codebook (ECB) is the most straightforward and simple way of 

encrypting data. Figure 2.4 shows the functional block diagram of the ECB cipher 

mode. ECB just uses the cipher key to encrypt each block of data. Each block of data 

is encrypted or decrypted independently from each other with the same key. Thus, 

data synchronization between the sender and receiver is not necessary for the ECB 

mode because even if some encrypted blocks are not fully received the rest of the 

encrypted data is not corrupted and can still be fully decrypted. ECB mode also has 

the ability to be parallelized since there are no data dependencies between different 
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blocks of data. However, for this research, the ECB mode was not parallelized due to 

hardware resource constraints which will be discussed in a later section. On the 

other hand, the ECB cipher has a few cryptographic weaknesses. The biggest 

weakness is that the cipher mode is highly deterministic. In other words, the same 

block of plaintext data will be encrypted identically to produce the same output 

ciphertext. Therefore, a potential attacker could perform a traffic analysis attack by 

just looking at the output ciphertext to determine if the same data was used 

multiple times. Next, due to the lack of data dependency between the data blocks 

and the absence of a message authentication code, the data blocks could be 

reordered or replaced by an attacker and the receiver would have no means to be 

able to detect it [3]. 

 

Figure 2.4  ECB Encryption/Decryption Block Diagrams 
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2.4 Cipher Block Chaining (CBC) 

Cipher Block Chaining (CBC) is a mode in which encryption of all the blocks 

are chained together such that the current block is not only dependent on the 

previous encrypted block, but also on every other encrypted block before it. CBC 

uses a cipher key along with an initialization vector (IV) in order to encrypt the 

data. Figure 2.5 shows the functional block diagram of the CBC mode. The IV is 

used at the beginning of the encryption operation to XOR with the first plaintext 

block which is then passed through the block cipher, or AES in this case, to produce 

the output ciphertext. Furthermore, for each additional block of data to follow, the 

output ciphertext from the previous block is XORed with the current plaintext block 

before passed through the block cipher. The decryption process of CBC is just the 

inverse of the encryption process. The ciphertext is sent through the block cipher for 

decryption and then the output of the block cipher is then XORed with the input 

ciphertext from the previous data block. The last data block is XORed with the 

original IV to decrypt the data block. The end result is the original decoded data set. 

The strength of the CBC mode comes when a unique IV is used to encrypt each new 

data set. This is important because the same data set can be encrypted with a 

different IV and the resulting ciphertext outputs will be completely different which 

makes it impossible for an attacker to perform any sort of pattern detection. 

However, the IV does not have to be kept secret; only the cipher key must be kept 

secret [3].  
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Figure 2.5  CBC Encryption/Decryption Block Diagrams 
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input to the block cipher (i.e. the same counter value) then he could compute the key 

to the block cipher and have the ability to decrypt all the other ciphertext output 

blocks. In order to guarantee a unique counter value for each block of data a large 

bit-width counter is used, such as 32 or 64 bits wide, so that a very large set of data 

(greater than ~32GB) can be encrypted before having to change the IV.  The counter 

value is just incremented by one with each new block of data and then concatenated 

with the IV. The concatenated value is then encrypted by passing through the block 

cipher. The encrypted output from the block cipher is XORed with the input 

plaintext block of data which produces the output ciphertext. This process is 

completed for each input plaintext block. The CTR mode is highly parallelizable and 

does not contain any data dependencies or feedback requirements between the 

different blocks of data. The only requirement is that the same IV and counter value 

combination cannot be used to encrypt two different blocks of data within the same 

data set [3]. 
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Figure 2.6  CTR Encryption/Decryption Block Diagrams 
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detected at compile time so that the software is compatible and the compiler can 

optimize the library for the specific OS. The library is mainly used from within C 

and C++ applications, but can also be used within other languages such as Python, 

Perl, and PHP. One can also use OpenSSL from the command line [5]. 

In the context of this research, OpenSSL is used solely for its cryptographic 

functionality, specifically the highly optimized AES implementations. The reason 

OpenSSL is used is because it has become an industry standard for software 

implementations of cryptographic algorithms that can be used for both desktop and 

embedded environments. The library provides a high level Application Programming 

Interface (API) for interfacing to the different cryptographic functions. The high 

level API is known as EVP which provides the developer with similar function calls 

regardless of the cipher mode of operation in use. The library is also used for 

generating random cipher keys and initialization vectors during the encryption 

process by using a Password Based Key Derivation Function (PBKDF) available in 

the API. The PBKDF function implements a secure hashing algorithm for 

generating the cipher key and initialization vector [5]. The user has to then specify 

the correct password when decrypting data in order for the correct cipher key and 

initialization vector to be used to correctly decode the data. 

2.7 All-Programmable SoCs (Zynq-7000) 

Heterogeneous computing has emerged as computing platforms of choice that 

harness the Moore’s Law to offer increased level of integration, customization, and 

computing power at minimal power consumption. Modern processor chips begin to 

reach their power consumption limits, which is inhibiting the clock rates from 

increasing any further. Heterogeneous computing allows for increasing 



18 
 

computational bandwidth, but does so with minimal power consumption compared 

to its homogeneous counterpart. An All-Programmable System-on-a-Chip (APSoC) is 

a type of heterogeneous computing platform that contains a hardened central 

processing unit (CPU) and a programmable logic fabric such as an FPGA. An 

example of an APSoC is the Zynq 7000 designed and manufactured by Xilinx, Inc. 

The Zynq 7000 APSoC is a single integrated circuit that contains a hardened 

processor system (HPS) that includes a dual core ARM Cortex A9 and a 

programmable logic (PL) fabric to create a full heterogeneous computing system. 

Figure 2.7 shows an overview of the system architecture of the Zynq-7000 APSoC. 

The dual core ARM processors include multi-level cache hierarchy that maintains 

coherency between the two CPU cores, 256 KB of on-chip memory, 512 MB of DDR3 

external memory, 8 channel DMA controller, vector processing units, and a large set 

of peripheral connectivity interfaces. Its peripheral interfaces include a gigabit 

Ethernet port, USB interfaces, CAN bus interfaces, SD card interface, and I2C 

interfaces. The PL, or FPGA fabric, on the Zynq 7000 is comparable to that of either 

the Artix-7 or Kintex-7 depending on the chip version. The FPGA fabric contains a 

host of block RAM units, hundreds of DSP slices, programmable I/O blocks, JTAG 

interface, PCI express block, high speed serial transceivers, and two analog-to-

digital converters. It provides a low power and high design flexibility for embedded 

designs with its large number of resources [6]. The ARM cores and the 

programmable logic communicate via a version of the Advanced Microcontroller Bus 

Architecture (AMBA) known as Advanced Extensible Interface (AXI). The AXI bus 

protocol provides a separate address and data channel for both the read and write 

operations and has a data width of up to 64 bits. The processors and FPGA can 

communicate in both directions simultaneously without any loss of throughput. The 
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Zynq contains both general purpose and high performance ports for communication 

with the FPGA fabric. The general purpose ports are 32 bits wide, where the ARM 

cores are the master and the PL is the slave. The high performance ports are 64 bits 

wide where the PL is the master and the memory interfaces on the HPS are the 

slave. 

 

Figure 2.7  Zynq-7000 APSoC System Architecture 
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2.8 Xillybus 

Xillybus is an open source Intellectual Property (IP) core developed by 

Xillybus, Ltd. that implements the necessary logic for the data transfer between IP 

cores implemented on a Field Programmable Gate Array (FPGA) and a host 

processor running Linux or Microsoft Windows [7]. Xillybus is provided with both a 

hardware IP core and a kernel driver module for full interaction between the host 

and FPGA. The host application and the FPGA design interact with well-known 

interfaces. The FPGA application logic connects to the Xillybus IP core through 

standard FIFO interfaces. The host application performs basic file I/O operations on 

pipe-like device files (i.e. open, read, write, close) such that there is no specific API 

for the Xillybus driver [8]. 

Xillybus works on both Xilinx and Altera FPGA’s and System-on-a-Chip 

(SoCs). It is compatible with transport protocols of PCIe, AXI3, and AXI4. It can 

achieve maximum data throughput of 3.5 GB/s simultaneously in both directions 

depending on the FPGA and host capabilities [9]. It is compatible with Linux 

operating systems with kernel version greater than or equal to 2.6.36 and on 

Windows 7, 8, and 10. The applications that Xillybus is most suited for are data 

acquisition and playback, interfacing with hardware, custom computer peripherals, 

in-hardware logic verification, and coprocessing [7]. 

The AXI4 bus logic is for implementation on a Xilinx chip such as the Zynq-

7000 APSoC and the PCIe bus version is for implementation within a workstation 

environment. The Xillybus IP core that resides in the FPGA has the ability to 

function as a slave or a master on the AXI4 bus. This dual functionality is very 

useful because Xillybus utilizes Direct Memory Access (DMA) in both the embedded 
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and workstation designs to move data between the processor and FPGA with 

minimal processor overhead [10]. Xillybus also provides a slower, memory mapped 

interface between the host and FPGA for basic register level access. 

DMA is the process of transferring data to or from some destination without 

the interaction of the CPU. DMA not only decreases the computational load of the 

CPU, but also allows for an increase in the data throughput achieved by the 

communication interface because it makes use of burst transactions. With a burst 

transaction a large set of data is transferred from a source to a destination with a 

single address phase occurring on the bus, thus effectively increasing the effective 

bus throughput. If the CPU is involved in the data transfer it has to perform an 

addressing phase on the bus for every data transfer. This ultimately decreases the 

overall data throughput achieved on the bus which is why DMA is very appealing in 

high throughput applications. 

Figure 2.8 shows a high level block diagram for Xillybus with the AXI4/PCIe 

bus. In the Xillybus design, the processor can initiate a DMA transaction when 

transferring data to the FPGA which behaves as the slave on the bus. The host 

processor will provide the DMA engine on the HPS with the memory address of the 

start of the data set to be transferred and a DMA burst transaction will transfer the 

data across the bus. A similar process is used for transferring data from the FPGA to 

the host processor. The user FPGA code just streams data into the provided Xillybus 

FIFOs, shown in Figure 2.8 as the Application FIFOs, and Xillybus uses an AXI 

DMA engine for initiating a DMA transfer across the bus. The data from the FPGA 

is transferred into a memory location in DRAM and the host processor can then 

access it. This means that the latencies experienced by the processor(s) when 

communicating with the FPGA is mainly affected by the latency of interfacing to the 
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DRAM and only when the DMA buffers are full is the latency affected by the actual 

bus latency. This significantly improves performance over the case where the 

processor is handling all transactions over the AXI4 bus since the processor does not 

have to wait for AXI4 transactions to complete before continuing with execution. 

Xillybus makes the communication across the AXI4 or PCIe bus transparent to the 

software/hardware developer which increases design simplicity and decreases 

development time. The only difference is in the bus protocol and possibly the DMA 

engine hardware on the host. 

 

Figure 2.8  Xillybus Functional Block Diagram 
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hardware interface solutions for efficient communication between the processor and 

FPGA for a wide range of applications. 

For this research, both the Xillybus AXI4 and PCIe versions are used for 

implementation on the Zynq-7000 APSoC on the Zedboard and ZC706 development 

boards, respectively. The use of the Xillybus IP core and kernel driver software 

greatly simplify the design process for the cipher hardware acceleration because all 

the necessary code for communicating between the processor and FPGA is provided, 

so more time and effort is spent on the development of the other system components.  

2.9 Opportunity: Cryptographic Hardware Acceleration 

Hardware accelerated cryptographic functionality is appealing because it not 

only can provide a stronger and more resilient form of security, but can also improve 

system performance and power consumption when performing cryptographic 

operations. Embedded computing is the most common form of computing, but it 

contains the least amount of resources and computing power compared to 

workstations, servers, etc. Therefore, the task of performing cryptographic 

operations on large amounts of data can be a very consuming task for embedded 

processors. Therefore, the possibility of offloading these cryptographic operations 

from the embedded CPU onto another form of computing platform can return large 

dividends in terms of performance and power consumption. Heterogeneous 

computing platforms provide and ideal environment for offloading such operations to 

a secondary computing platform. In this specific example, the cryptographic 

operations can be offloaded onto the secondary processing unit. Modern 

heterogeneous platforms, such as the Zynq-7000 APSoC, offer chipsets containing 

both a CPU and FPGA on the same die. The FPGA fabric of the Zynq can be used to 
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implement the cryptographic operations which has the potential to perform the 

operations faster while consuming considerably less power than the CPU. 

  



25 
 

CHAPTER 3  

 

RELATED WORK 

 

There has been an exceptionally large amount of research work done in the 

area of hardware acceleration for cryptographic operations, specifically AES.  The 

majority of the accelerator implementations were completed on an FPGA and others 

on a general purpose graphics processing unit (GPGPU).  Most of the 

implementations included multiple cipher modes such as ECB, CBC, CTR, GCM, 

and XTS that use AES as the block cipher. 

Some of the prior AES coprocessor designs used soft-core processors in an 

FPGA for interfacing to an AES hardware core.  Hodjat et. al. [13] [14] used the 

LEON soft processor in the ThumbPod SoC to implement the ECB, CBC, and OFB 

ciphers through a memory-mapped interface. They used a non-pipelined AES core 

clocked at 330 MHz to achieve a maximum throughput of 3.84 Gbit/s. Baskaran et. 

al. [15] implemented the AES block cipher using the Picoblaze microprocessor and 

other hardware cores on a Spartan 3E in order to achieve a very low-cost resource 

cryptographic design of only 460 slices on the FPGA.  These softcore design 

approaches used the FPGA for the microprocessor and AES implementations with 

custom software executed on the soft-core microprocessor specifically designed for 

interfacing to the AES or cipher hardware implementations. 

Other designs extended certain cryptographic software libraries to target the 

hardware accelerators as opposed to developing custom software for accessing and 

utilizing hardware coprocessors. Pedraza et. al. [16] ran Linux on a PowerPC hard 
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processor core using a Virtex II FPGA and extended the functionality of the 

CryptoAPI Linux cryptographic library to utilize the AES and DES hardware 

accelerators for implementing a secure file system. They were able to achieve a 

maximum throughput of 100 MB/s. Nambiar et. al. [17] extended the encryption 

function of the OpenSSL cryptographic library on the NIOS II soft-core 

microprocessor running uClinux real-time operating system (RTOS). It utilized a 

memory-mapped interface to the AES core inside the FPGA running at 50 MHz. 

They achieved a 2-3 times improvement over the full software implementation of 

OpenSSL. Hodjat et. al. [18] interfaced a hard CPU processor to an AES FPGA 

hardware accelerator for use in VPN and IPSec applications. They implemented the 

ECB, CBC, CTR, and CCM ciphers. They were able to achieve a throughput of 3.43 

Gbit/s with a power consumption of 86 mW. Irwansyah et. al. [19] extended the 

instruction set of the Nios II reduced instruction set computer (RISC) processor to 

support AES encryption and decryption. The designs in [17] and [19] only implement 

the base AES encryption and decryption algorithms and not full cipher modes such 

as ECB or CBC. 

An initial version of just the embedded design from this research was 

completed and published by myself et. al. [20] at an ACM Southeast Conference. 

This initial design did not have the ability to dynamically provide a private key or 

initialization vector to the FPGA from software, was only implemented on the 

Zedboard embedded platform, and did not include the necessary hardware and 

software for conducting the hardware sink test present in this Thesis. 

The research presented in this Thesis is different than the previously 

mentioned designs in several different areas. The differences include that it uses a 

more modern and powerful chipset in the Zynq-7000 APSoC, it uses direct memory 
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access (DMA) for transferring data to/from the hardware ciphers, implements the 

design in both an embedded and workstation environment, utilizes two different bus 

architectures for data transfer. The Zynq-7000 APSoC contains both a hardened 

dual core ARM processor with an FPGA fabric on the same chip. Pedraza et. al. [16] 

used a PowerPC RISC hard processor on a Virtex II FPGA, but this research utilizes 

the ARM cores of the Zynq-7000 which are more powerful and full featured than the 

PowerPC processor. The FPGA fabric of the Zynq-7000 is also larger with more 

modern fabric technology than the legacy FPGAs that were used in the previously 

discussed designs. Another difference between this research and past research is the 

use of DMA for transferring data to/from the FPGA hardware accelerator. Most of 

the previous work used some form of a memory-mapped interface for interfacing the 

processor to the FPGA cores that caused the CPU to play a role in the transfer of 

data. The use of DMA in this research allows for data to be transferred to/from the 

FPGA without the CPU having to participate in the transfer. This increases the 

effective throughput of the data transfer and decreases the load on the CPU. This 

research also implements the same hardware acceleration design on both an 

embedded and workstation platform. The embedded implementation uses a 

Zedboard and the workstation implementation uses a Dell Precision Tower 7910 

with the ZC706 development board. Both designs use the Zynq-7000 APSoC for 

implementing the hardware acceleration on the FPGA with either the ARM cores or 

Intel cores as the host processors for the embedded and workstation 

implementations, respectively. All the previously discussed research implemented 

the designs within an embedded environment, but did not attempt to implement the 

designs on multiple platforms. Based on the platform that the design is implemented 

on also determines the bus architecture that is used for transferring the data to/from 
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the FPGA hardware accelerator. The embedded platform utilized the AXI4 bus 

within the Zynq-7000 SoC, but the workstation platform utilized the PCIe bus. Even 

though a different bus architecture is used for each platform implementation, the 

overall system design and architecture of the hardware acceleration and the 

software for driving the experimental setup is the same. This portability of the 

design is possible through the use of Xillybus. This portability is unique to this 

research as none of the previously discussed research made any mention as to their 

designs being compatible on multiple computing platforms. This research also 

implements multiple ciphers; ECB, CBC, and CTR ciphers, whereas, some of the 

previous work only implemented and tested the AES block cipher independent of 

any cipher implementation. Nambiar et. al. [17] extended just the encryption 

function of the AES block cipher with the OpenSSL library; however, this research 

extends both the encryption and decryption function of the ECB, CBC, and CTR 

ciphers. 
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CHAPTER 4  

 

METHODOLOGY 

 

The main goals of this research is to experiment with the possible 

performance improvements of hardware accelerated ciphers compared to the 

equivalent software-only counterparts. There are three cipher modes implemented 

and tested for this research; the ECB, CBC, and CTR cipher modes with the 256-bit 

key AES as the block cipher. All three of the cipher modes are implemented in both 

software and hardware. The software ciphers use the OpenSSL cryptographic 

library while the hardware ciphers reside on the FPGA fabric of the Zynq-7000 

APSoC. In order to test the software and hardware ciphers, two different tests are 

executed inside the software applications. One test is used for performing file 

encryption and decryption while the second test is used for sending 

encrypted/decrypted data to a hardware sink. The file encryption/decryption test 

evaluates the full functionality of the cipher modes implemented in software and 

hardware along with the performance of each. It is also used to test the use case of 

encrypting/decrypting data at rest on a computing platform, such as data on the 

hard drive. On the other hand, the test for sending encrypted/decrypted data to a 

hardware sink is used to experiment with the use case where raw data is sent to a 

hardware peripheral, such as an Ethernet port, and the cryptographic operations are 

performed in the hardware prior to arriving at the peripheral. This situation 

eliminates the case where the CPU has to wait for the return of the data from the 

hardware. The performance results of each test for the software and hardware 
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ciphers are recorded and then compared in order to analyze any performance 

improvements achieved by the hardware ciphers over the software ciphers. 

Each of the two tests, file encryption/decryption and hardware sink test, are 

contained inside a single software application. Furthermore, there are two different 

software applications, or architectures, that are used for testing the software and 

hardware ciphers. Each software application can execute both types of tests. One 

software architecture is designed to maximize the data throughput of the hardware 

acceleration; whereas, the second software architecture is designed to present a 

more simplistic programming API to the software developer by extending the well-

established OpenSSL EVP API. These two software architectures are used to 

conduct the tests on the ciphers using different programming models. 

There are also two different hardware setups used for implementing the 

software and hardware ciphers. There is an embedded and workstation hardware 

setup. The embedded environment is hosted on the Zynq-7000 APSoC on the 

Zedboard development platform which uses the dual ARM core processors for the 

software ciphers and the FPGA for the hardware accelerated ciphers. The 

workstation hardware setup uses an Intel CPU to host the software ciphers and also 

uses the FPGA fabric of the Zynq-7000 APSoC to host the hardware accelerated 

ciphers similar to the embedded hardware setup. The workstation hardware setup 

uses the ZC706 development board, which contains a Zynq-7000 APSoC, to interface 

to the Intel CPU for the hardware acceleration.  
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CHAPTER 5  

 

SYSTEM DESIGNS 

 

There are two main system designs for this research. There is an embedded 

design and a workstation design. Both designs utilize the Zynq-7000 APSoC 

heterogeneous platform for implementing the hardware accelerated cipher modes on 

the FPGA fabric, but each system design consists of a different processor host for the 

software. The embedded design is implemented on the Zedboard development 

platform so it uses the dual ARM core processor to host the software portion of the 

system and communicates with the hardware accelerator via the AXI4 bus. The 

workstation design has the hardware accelerated ciphers implemented on the ZC706 

development board and an Intel Workstation platform hosts the software portion of 

the system and communicates with the hardware accelerator via the PCIe bus. 

The architecture of the system is similar between the two system designs 

with the exception of the bus architecture and host CPU. The embedded design 

utilizes the AXI4 bus and an ARM CPU; whereas, the workstation design utilizes 

the PCIe bus and an Intel CPU. The overall data flow and control of the systems are 

the same between the two designs. The main components of the system designs are 

the host processor, the Xillybus interface solution, the cipher mode cores, and the 

AES block cipher IP cores. The host processors and the Xillybus software and 

hardware cores are different between the embedded and workstation designs, but 

the cipher mode cores and AES IP cores are the exact same between the two designs. 

The software that executes on the host processor for each design is the same as well 
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with the exception of the memory mapped interface for providing the cipher key and 

initialization vector to the FPGA. The one feature of the designs that allows for this 

compatibility in functionality across the two design environments is the use of the 

Xillybus interface solution. Xillybus provides a full software and hardware solution 

for interfacing across the AXI4 and PCIe buses and provides the same software and 

hardware interfaces to the developer regardless of the bus type. Therefore, the same 

system architecture can be applied around the Xillybus solution transparent to the 

target platform. 

There are two different AES block cipher IP cores used in the designs. There 

is a non-pipelined and a fully pipelined core. The non-pipelined core is used for the 

ECB and CBC cipher modes. Two instantiations of the non-pipelined core are 

present in each of the ECB and CBC cipher mode cores. One instantiation is used 

solely for the encryption process and the other is used solely for the decryption 

process. This allows for the simultaneous use of both the encryption and decryption 

process for these cipher modes. The fully pipelined core is used for the CTR cipher 

mode. Only one instantiation of the AES core is present for the CTR mode because 

the pipelined core consumes a large amount of resources so there was not enough 

resources in the FPGA fabric on the Zedboard. Therefore, the encryption and 

decryption processes can only be executed one at a time for the CTR cipher. 

The following two sections, Section 3 and Section 5.2, will discuss both the 

embedded and workstation system designs in more detail. Each section will discuss 

details of each of the main components of the system and the roles each played in 

the overall design. The section discussing the workstation design will only elaborate 

on the parts of the system that is different from the embedded system. 
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5.1 Embedded System Design 

The embedded system design is implemented on the Zedboard development 

platform and uses the onboard Zynq-7000 APSoC for hosting the software and 

hardware portions of the system design. The top level functional block diagram for 

the embedded system is shown in Figure 5.1. It shows how the dual ARM core 

processor is connected to the FPGA fabric via the AXI4 bus. The design uses the 

hardened DMA engine for transferring data from the CPU to the FPGA which uses a 

32-bit General Purpose (GP) port for the data transfer. For transferring data from 

the FPGA to the CPU, the Xillybus IP core implemented in the FPGA design uses an 

AXI DMA engine. This DMA engine interfaces to the HPS of the Zynq-7000 via a 64-

bit Accelerated Coherency Port (ACP) which allows the FPGA to transfer data 

directly into the DRAM memory without having to go through the CPU. The 

Xillybus IP core interfaces to each of the three cipher mode cores and the cipher 

mode cores interface to an AES block cipher IP core. The ECB and CBC cipher mode 

cores interface to the non-pipelined AES core and the CTR cipher mode core 

interfaces to the pipelined AES core.  
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Figure 5.1  Top Level System View of Zedboard Embedded Design 
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achieve 2.5*1000 = 2,500 DMIPS. This produces a combined throughput of 5000 

DMIPS across both cores. For the design implemented for this research, each core 

was provided a clock at a rate of 666 MHz. The Zynq also maintains memory 

coherency across both processors. The Cortex A9 cores implement the ARMv7-A 

hardware architecture which contains TrustZone security features and the Thumb-2 

instruction set architecture (ISA). The cores also contain the NEON vector 

processing unit for high throughput vector processing. It contains both single and 

double precision Vector Floating Point Unit (VFPU). It has three watchdog timers, 

one global timer, and two triple-timer counters. Each CPU core contains a separate 

instruction (L1I) and data (L1D) caches that are 32 KB each with a 4-way set-

associativity. Both CPU cores share a level 2 unified cache (L2U) that is 512 KB 

with an 8-way set-associativity [6]. 

The dual ARM core processors are the supporting hardware for executing the 

software test applications. The ARM cores are booted with a version of the Ubuntu 

12.04 kernel known as Xillinux. Xillinux is a Xillybus produced kernel and will be 

discussed in more detail in Section 7.2. The Xillinux OS is used for developing and 

executing the test software necessary for testing the software and hardware ciphers 

of the system design. The OS is also where the OpenSSL cryptographic library is 

installed and accessed for the software ciphers. The OS also has the Xillybus kernel 

driver software installed for access while interfacing to the hardware ciphers. 

5.1.2 Xillybus Kernel Driver 

Xillybus offers both a software and hardware package for interfacing across 

the AXI4 bus. The software package, in the form of a kernel module driver, is 

designed to present the Linux host with a simple and well-known interface. The host 
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kernel driver generates device files that behave like named pipes. They are opened, 

read from and written to just like any file, but behave much like pipes between 

processes or TCP/IP streams. To the program running on the host, the difference is 

that the other side of the stream is not another process (over the network or on the 

same computer), but a FIFO in the FPGA. Just like a TCP/IP stream, the Xillybus 

stream is designed to work well with high-rate data transfers as well as single bytes 

arriving or sent occasionally [21]. 

The interface to the Xillybus driver software from any user application is 

done through device files. The device files are auto generated by the kernel driver 

when it is loaded into the OS and detects a Xillybus compatible device on the bus. 

Also at driver load, the DMA buffers for bus communication are allocated in DRAM 

and their location(s) are provided to the Xillybus IP core for all the Xillybus streams 

present. During application execution, a handshake protocol between the FPGA and 

host makes an illusion of a continuous data stream. However, behind the scenes, 

DMA buffers are filled, handed over, and acknowledged in both directions, thus 

hiding the latency experienced by the transfer of data across the bus [21]. 

For the embedded design on the Zedboard, there are seven Xillybus interfaces 

present. One of the interfaces is a Xillybus Lite interface, which is the memory-

mapped interface, for providing the cipher key and initialization vector to the 

hardware ciphers after being generated in software. The memory-mapped 

transactions are handled by the CPU and not the DMA engine. The other six 

interfaces are stream interfaces for sending and receiving data to and from the 

hardware ciphers. There is a separate interface for the encryption process and an 

interface for the decryption process for each cipher. Thus, each cipher has two 

separate full-duplex interfaces. The AXI4 bus is a full duplex bus so data can be 
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transferred in both directions without a decrease in bandwidth. Since there are 

separate interfaces for each of the ciphers and separate interfaces for the encryption 

and decryption process, multiple operations can be executed simultaneously. 

However, by performing multiple operations on the hardware accelerated ciphers 

the overall throughput of each operation will be diminished since the bus is shared 

for all data streams. Each of the stream interfaces are configured to achieve 

maximum bandwidth on the AXI4 bus and in order to do so Xillybus reserves DMA 

buffers in the DRAM. For each of the six stream interfaces in the embedded design 

there are 32 x 128 KB, or 4 MB, buffers reserved for the DMA buffers. 

The host processor sends data to the FPGA through the use of DMA 

transactions. A DMA transaction is initiated by the processor by providing the DMA 

engine with the DRAM memory location for the beginning of the data set to be 

transferred across the bus. The DMA engine then initiates a DMA transaction on 

the AXI4 bus and transfers the entire data set to the FPGA, or at least a data block 

for which there is room in the FPGA FIFOs. The data is transferred from the host to 

the FPGA via the 32-bit general purpose (GP) AXI ports where the DMA engine is 

the master and the FPGA is the slave. If there is not enough room in the FPGA 

FIFOs to receive all the data from the processor then the DMA only transfers what 

it can and waits until the next transaction to send the remaining data. 

5.1.3 AXI4 Bus 

The Advanced eXtensible Interface (AXI) protocol is part of the ARM 

Advanced Microcontroller Bus Architecture (AMBA) which is proprietary to ARM. 

The AXI protocol is designed and used for inter device communication via a bus 

interface for high throughput communication. The first version of AXI was released 
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in 2003 and the second version (AXI4) was released in 2010. The Zynq-7000 APSoC 

uses the AXI4 architecture. There are three types of AXI4 interface; AXI4, AXI4-

Lite, and AXI4-Stream. The base AXI4 interface is used for high-performance 

memory-mapped interfaces, the AXI4-Lite interface is for simple, low-throughput 

memory-mapped interfaces, and the AXI4-Stream interface is for high-speed data 

streaming [22]. 

The AXI bus protocol allows for any number of devices to reside on the bus. 

Furthermore, for any transaction to occur on the bus, there has to be a master that 

initiates the transaction and a slave that is the recipient of the transaction from the 

master node. Both the AXI4 and AXI4-Lite interfaces consist of five different signal 

channels: read address channel, write address channel, read data channel, write 

data channel, and write response channel. Data can be transferred in both directions 

on the bus between the master and slave devices simultaneously. The separate 

address and data lines for both the read and write channels is what allows for this 

simultaneous bidirectional communication [22]. 

The bus transactions for memory-mapped interfaces, AXI4 and AXI4-Lite, 

involve the idea of a destination address within a system memory space; therefore, 

each transaction that occurs on the bus includes an address phase and a data phase. 

The address phase specifies that target address for the data and the data phase 

provides the data for the target address. The AXI4-Lite interface only allows a single 

data transfer per transaction which makes it ideal for register access type interfaces. 

The AXI4 interface allows a burst transaction of up to 256 data transfers per 

transaction. The AXI-Stream interface is different from the memory-mapped 

interfaces in that it does not require an address phase in a transaction and the 

AXI4-Stream interface is unidirectional. The write channel of the AXI4-Stream 
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interface is modeled after the AXI4 interface, except there is no address channel and 

the Stream interface can burst an unlimited amount of data in any transaction [22]. 

The embedded design implemented on the Zedboard utilizes both the AXI4-

Lite and AXI4-Stream interfaces. The AXI4-Lite interface is used for providing the 

hardware accelerator cores with the cipher key and initialization vector prior to 

executing the cipher modes. The AXI4-Lite interface is used for this functionality 

because the basic register level access needed for providing this information to the 

hardware did not call for a high throughput interface, so the simplistic Lite interface 

is adequate. The AXI4-Stream interface is used for streaming the raw data to and 

from the hardware for performing the cipher operations on the data. The AXI4-

Stream interfaces provided the ability to burst an unlimited amount of data in any 

given transaction on the bus which allowed the system to achieve maximum 

throughput for the bus. It is also worth noting that the AXI4 bus has a maximum 

clock frequency of 125 MHz and the design implemented for this research uses a 

clock frequency of 100 MHz. 

5.1.4 Xillybus IP Core 

The Xillybus IP core is the full solution for interfacing with the host ARM 

processor via the AXI4 bus from the FPGA fabric of the Zynq-7000 APSoC. The 

overall Xillybus FPGA solution includes multiple sources and core modules all 

connected together, but for simplicity it will all be referred to as a single block box 

module which is how the solution is used in the design. The purpose of Xillybus is to 

provide the developer with a well-known and easy-to-use interface for 

communicating with the ARM processors via the AXI4 bus. 
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Xillybus contains three main components: the AXI4 slave interface, the AXI4 

master interface, and the interface to the backend user application. The AXI4 slave 

interface is used for receiving data from the host ARM processors through the 

memory-mapped or data stream interfaces. The data is received on this interface 

through the 32-bit GP ports. The memory-mapped transactions across the slave 

interface are basically just passed straight through to the user application with all 

the necessary signals for the user design to react to the transactions, but the 

Xillybus core still handles all the low level AXI4 handshaking. The data stream 

interface(s) from the CPU to the slave interface is handled much differently than the 

memory-mapped interface. Each Xillybus interface present in the design has its own 

FIFO of at least 2 KB deep in each direction to help hide the latencies of the bus 

transactions. These FIFOs are used to receive a stream of data from the processor 

through DMA transactions. The FIFOs help buffer data as it is received from the 

bus in the burst transactions just in case the backend user logic is not consuming 

the data at the same rate as the data transfer. However, eventually, if the user logic 

is consuming data too slow and the Xillybus FIFOs become full, then the DMA 

engine on the HPS will stall due to backpressure from the FPGA slave interface. The 

master AXI4 interface of the Xillybus core is naturally just the reverse of the slave 

interface. Xillybus implements an AXI DMA engine inside the core for interfacing to 

the 64-bit Accelerated Coherency Port (ACP) of the HPS. The ACP provides direct 

access to the DRAM. Therefore, the AXI DMA engine can transfer data from the 

FPGA back to the DRAM (and host processor) through the ACP interface. Thus, all 

the user logic must do when transferring data to the host is move data into the 

outgoing data FIFO provided by Xillybus and the AXI DMA engine will transfer the 

data into the DMA buffers present in the DRAM. As eluded to, the interface signals 
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that are provided to the backend user application logic are the memory-mapped 

interface signals and standard FIFO interface signals for the data stream interfaces 

for communicating in both directions. The FIFO interfaces are standard FIFOs 

without the first-word-fall-through (FWFT) feature. The entire Xillybus module is 

clocked off of the 100 MHz AXI4 bus clock. This makes the entire core synchronous 

to the AXI4 bus [23]. 

The Xillybus IP core is also the place in the design where the decision is 

made whether to send the encrypted/decrypted data back to the host processor or to 

perform the sink operation on the data. The software application writes to a register 

telling the hardware which operation to perform during the execution of the current 

test and the top level of the Xillybus IP core is modified to act based on the contents 

of that register. It will either send the output data from the cipher operations back 

to the processor via the AXI DMA engine or it will allow the data to die upon arrival 

from the cipher cores. 

5.1.5 Cipher Mode Cores 

The cipher mode cores are designed to implement the specific functionality of 

each cipher mode. The cores have an instantiation of one of the AES IP cores which 

is used as the block cipher for the cipher modes. One of the main functionalities of 

the core is to control the data flow of the hardware accelerated ciphers by interfacing 

to the Xillybus IP core and the AES cores. The cipher cores are used as control logic 

for handling the interaction and handshaking with the AES block cipher cores while 

passing data through it. As seen in Figure 5.1, there is a cipher mode core for each of 

the three cipher modes implemented in the design. Therefore, there is an 

independent cipher mode core for the ECB, CBC, and CTR ciphers. The input and 
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output (I/O) signals for the top level interface for the cipher mode cores are shown in 

Figure 5.2 and Figure 5.3. The clock signal sent into the cipher mode cores is the 100 

MHz bus clock that is driving the AXI4 bus. The only externally exposed signals 

from the cores include the input signals for the cipher key and initialization vector, 

if needed, and the signals needed to control the data flow in and out of the Xillybus 

IP core. The plaintext and ciphertext data stream interface signals are used to 

interface directly to the Xillybus IP core FIFOs for sending and receiving data to and 

from the host processor. All the implementation specific logic for the cipher modes 

are contained internal to the cores. This allowed for the easy integration with the 

Xillybus IP core by just connecting the necessary signals to the Xillybus FIFOs and 

the cipher key and init vector input signals. This results in the completion of the full 

data flow path from the processor to the cipher mode cores, to the AES block cipher 

cores, and then back.  
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Figure 5.2  I/O Signals for ECB Cipher Mode IP Core 
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Figure 5.3  I/O Signals for CBC and CTR Cipher Mode IP Cores 
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The first major operation of receiving the data from the processor is the same 

for all three cipher modes. Both AES cores require an entire 128 bit state matrix as 

the data input into the core. The maximum data width of the Xillybus IP core for 

receiving data from the processor is 32 bits since it uses the general-purpose ports 

on the AXI bus. This introduces the need to buffer multiple 32 bit words until an 

entire state matrix is received. Thus, the first responsibility of the cipher mode cores 

is to perform such a task; to concatenate four 32-bit words that are received from the 

HPS in order to create a single 128-bit word to pass into the AES core for encryption 

or decryption. The cipher core can continuously receive data from the Xillybus core 

as long as data does not back up further downstream (i.e. the AES core or the return 

path of Xillybus) and stall the flow of data. 

The second operation of sending the data through the AES core is different 

for each of the cipher modes. This is because each cipher mode requires different 

operations to be performed on the data specific to the cipher algorithm before 

executing the encryption or decryption operation on the data. The ECB cipher is able 

to just send the input state matrix directly into the AES core because it just encrypts 

each state matrix separately. The CBC cipher XORs either the initialization vector 

or the previously generated ciphertext to the plaintext prior to encrypting the data. 

For decryption, CBC decrypts the ciphertext and then XORs either the initialization 

vector or previous ciphertext to the decryption output. The CTR cipher core encrypts 

a concatenated initialization vector and incrementing counter value which is then 

XORed with either the plaintext (for encryption) or ciphertext (for decryption). The 

CTR cipher core buffers up multiple encrypted values for the initialization vector 

and counter value so that the incoming plaintext or ciphertext can immediately be 

XORed and sent back to the processor. This hides the latency present in the 
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pipelined AES core used for the CTR cipher because the incoming data does not have 

to wait for the data to progress through the pipeline of the AES core.  

The CTR cipher uses the pipelined AES core and the other two ciphers use 

the non-pipelined core. The ECB and CBC cipher cores cannot send a new state 

matrix into the AES core until it receives the output for the previous state matrix. 

This causes the data flow to stall while waiting for the AES core to complete its 

operation. This can create backpressure on the Xillybus FIFOs once all the hardware 

FIFOs fill up, which could ultimately result in the stalling of the DMA controller 

when trying to send new data to the FPGA. The AES cores are the bottleneck for the 

ECB and CBC cipher modes. On the other hand, for the CTR cipher, the AXI4 bus 

becomes the bottleneck since the CTR cipher uses the fully pipelined AES core. 

The final operation in the state machine of sending the output data to the 

processor is the same for each cipher mode as it was for receiving data from the 

processor. Each output state matrix is a 128-bit word which has to be broken into 

four 32-bit words and written into the Xillybus FIFOs for transmission back to the 

processor. Figure 5.4 and Figure 5.5 show the control and data flow paths of the 

ECB/CBC and CTR cipher mode cores, respectively. 
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Figure 5.4  Control and Data Flow of the ECB/CBC Cipher Mode Cores 
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Figure 5.5  Control and Data Flow of the CTR Cipher Mode Core 
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5.1.6.1 Non-Pipelined Core 

The non-pipelined AES IP core is an open-source Verilog core that is 

downloaded from a GitHub repository called secworks/aes [24]. The core can only 

operate on a single block of data at any given time. This means that the core must 

complete the current operation on the current state matrix before accepting the next 

state matrix. One feature of the non-pipelined core is that it implements both the 

encryption and decryption algorithms for the AES block cipher. This makes the core 

a good solution for both the ECB and CBC ciphers since both ciphers require both 

the AES encryption and decryption algorithms for encrypting and decrypting data, 

respectively. The ECB cipher mode has the ability to be implemented in a pipelined 

architecture, but the pipelined AES core does not implement the decryption 

algorithm for AES so the non-pipelined core is used. 

The non-pipelined core has both the 128-bit and 256-bit key versions of AES 

implemented. For this design, the 256-bit key implementation of AES is used as the 

block cipher for the ECB and CBC ciphers.  

Figure 5.6 shows all the input/output (I/O) signals for the non-pipelined AES 

IP core. The CLOCK signal is the signal used by the core for clocking the logic. The 

clock frequency has a documented maximum clock frequency of 100 MHz for the 

Xilinx Spartan 6 FPGA. Therefore, if another FPGA model is used other than the 

Spartan 6 then the maximum clock frequency would vary. For this design, the Zynq-

7000 contains an Artix 7 FPGA so the core is provided a clock frequency of 100 MHz. 

This is the documented maximum clock frequency for the core, but since the Artix 7 

is a much newer FPGA model than the Spartan 6 the actual maximum clock 

frequency is 125 MHz. The RESET signal just forces the core back to an initialized 
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state. The KEY_LENGTH signal tells the core which length of key, either 128 or 

256, based on the value of the signal. This signal is hardcoded to a value of “1” to 

program to core for the 256-bit key implementation. The KEY signal is the input 

signal for passing in the cipher key into the core. The MODE signal is used to tell 

the core which AES operation to perform whether encryption or decryption. A value 

of “0” is used for decryption and a value of “1” for encryption. The INIT signal is used 

to instruct the core to latch the values that are present on the KEY_LENGTH and 

MODE input signals and configure the core for the configuration specified by those 

input signals. The UNIT_READY output signal signifies when the core is ready to 

accept new data and perform the requested operation. The STATE input vector is 

how the input state matrix is passed into the core. The START input signal is used 

to instruct the core to use the vector present on the state input lines and perform the 

desired AES operation. Lastly, when the core has completed the operation on the 

input data, it signals that the output data is ready via the RESULT_READY signal 

and provides the output state matrix on the RESULT output lines [24].  

 

Figure 5.6  I/O Signals for Non-Pipelined AES IP Core 
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5.1.6.2 Pipelined Core 

The pipelined AES IP core is an open-source Verilog core that is downloaded 

from OpenCores.com [25]. The core can operate on multiple state matrices at any 

given time; therefore, increasing its overall throughput through the core. A 

drawback to this core is that it only implements the AES encryption algorithm 

which rules out its use for ciphers that require both encryption and decryption 

algorithms such as ECB and CBC. However, the CTR cipher mode only requires the 

encryption algorithm to both encrypt and decrypt data. This fact, along with the fact 

that the CTR cipher mode does not have any data dependencies between any two 

blocks of data makes the pipelined AES IP core the ideal option for implementing 

the CTR cipher mode. 

The pipelined core has an implementation for the 128-bit, 192-bit, and 256-

bit key versions of AES, but for this design only the 256-bit key version is used. The 

core consists of two pipelines. The first pipeline manipulates the 16-byte state 

matrix and the second pipeline computes the 16-byte expanded key used in each 

round. The pipelined architecture of the core allows the core to accept a new state 

matrix every clock cycle. There are 29 pipeline stages implemented in the core so the 

ciphertext for a corresponding input state matrix is available 29 clock cycles after 

being input into the core. The core, however, does not have any control signals for 

handshaking with the core for input or output data. In order to control the flow of 

data into and out of the core, a wrapper has been developed around the core 

synchronizing the time at which new data is sent to the core so it knows the time 

that its corresponding output data is ready to be received from the core. 
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Figure 5.7 shows all the I/O signals available for the pipelined AES core. The 

CLOCK signal is the signal used by the core for clocking the logic. The maximum 

documented clock frequency the core can accept is 324.6 MHz for a Xilinx Virtex 6 

FPGA. However, if the core is implemented within a different FPGA then the 

maximum clock frequency may vary slightly. For this design, an Artix 7 FPGA is 

used and the core is provided a clock with a frequency of 100 MHz. This clock 

frequency is used because the AXI bus is limited to the 100 MHz clock frequency and 

with the pipelined architecture of the core the limiting factor for performance of the 

core is the AXI bus. Therefore, there is no need to provide the core with a clock 

faster than the 100 MHz provided to the AXI bus. The RESET signal just forces the 

core back to an initialized state. The KEY signal is where the core is provided the 

256-bit key for the AES block cipher. The STATE signal is where the 16-byte state 

matrix is passed into the core. The signals present at the key and state input lines of 

the core are clocked into the pipeline at every rising clock edge. Furthermore, the 

RESULT output signal is driven with a new output state matrix every clock cycle. 

The FPGA resources that are consumed by the core is approximately 6,800 slice 

registers, 6500 slice LUTs, 500 bonded IOBs, 120 block RAMs, and 1 BUFG. The 

expected throughput of the core if clocked with a 300 MHz clock frequency is 38.4 

Gbps. Since this design clocks the core with a 100 MHz clock frequency then the 

nominal throughput of the core becomes 38.4/3 = 12.8 Gbps [25]. 
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Figure 5.7  I/O Signals for Pipelined AES IP Core 
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Figure 5.8  Top Level System View of Workstation Design 
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memory channels and achieve a maximum memory bandwidth of 68 GB/s. The 

processor also has support for x4, x8, and x16 PCIe configurations with a maximum 

of 40 PCIe lanes [26]. 

5.2.2 Xillybus Kernel Driver 

The Xillybus kernel driver module for the workstation design is very similar 

to that of the embedded design. The software interface provided to the software 

developer for accessing the kernel driver is identical to that of the kernel driver for 

the embedded design. The kernel driver is still accessed via device files on Linux 

with the same calls to open, read, write, and close. The interface looks and behaves 

the exact same as the kernel driver in the embedded design. The workstation design 

contains the same seven Xillybus interfaces. It contains one memory-mapped 

interface and six streaming interfaces. The only difference in the kernel driver 

module for the workstation design compared to the embedded design is the software 

calls that are made inside of the kernel module. The workstation kernel driver is 

interfacing to the PCIe bus and the DMA engine that is present on the workstation 

platform. This only difference is transparent to the software developer interfacing to 

the kernel module in the workstation design because all the specific functionality for 

interfacing to the bus is contained inside the kernel module. The DMA buffers 

allocated in the host RAM is 64 x 128 KB, or 8 MB, for each of the six stream 

interfaces present. The specifics of the Xillybus kernel module driver software and 

interface is explained in Section 5.1.2. The majority of the details discussed in that 

section are common in the Xillybus kernel module between the workstation and 

embedded designs except for the previously mentioned differences.  
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5.2.3 PCIe Bus 

The Peripheral Component Interconnect Express (PCIe) bus actually does not 

function like a bus, but more like a network. It is still referred to as a bus in many 

instances because multiple devices can reside on the PCIe interconnect which gives it 

that bus feel. Instead of multiple devices communicating on the same data lines, the 

PCIe bus provides dedicated connections to all the peripherals and the data lines all 

run into a switch that controls the routing of data to the correct destination. This 

allows for much higher bandwidths than the legacy PCI bus because peripherals do 

not share the bandwidth of a single bus. At boot-up, a computer enumerates all the 

devices present on the PCIe bus so the switch knows where how to route the traffic. 

Every PCIe link contains four pairs of wires; one pair for transmit and the other for 

receive. Each set of transmit and receive lines construct a link. A single transmit and 

receive pair is an x1 link; whereas, an x2 link will have two transmit lines and two 

receive lines resulting in eight total wires. PCIe allows for up to x32 lanes meaning 

there are 32 transmit and receive pairs [27]. 

5.2.4 Xillybus IP Core 

The Xillybus IP core for the workstation design is also almost identical to 

that implemented in the embedded design. Section 5.1.4 discusses the details of the 

Xillybus IP core for the embedded design where the majority of those details are still 

applicable to the Xillybus core for the workstation design. The main difference 

between the embedded and workstation cores is that the workstation Xillybus core 

interfaces to the PCIe bus instead of the AXI4 bus. The Xillybus core uses the Xilinx 

PCIe IP core available for the Kintex 7 FPGA on the ZC706 development board. The 

PCIe core is used to interface directly to the PCIe bus for communicating with the 
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host PC. The only other difference with the workstation Xillybus core is the clock 

rate that drives the core. This core is driven with a 250 MHz clock as opposed to the 

100 MHz clock in the embedded design. All the interfaces for communicating with 

the Xillybus core via the memory-mapped interface and the data stream FIFOs are 

exactly the same between the workstation and the embedded Xillybus cores. This 

allows for the rest of the FPGA VHDL code to interface to the Xillybus cores in both 

designs the same way without having to modify any code. 

5.2.5 Cipher Mode Cores 

The cipher mode cores implemented in the workstation design are identical to 

those implemented in the embedded design with just one exception. The only 

difference in the cipher mode cores between both designs is the clock provided to the 

cores for clocking the logic. The clock provided to all the cipher cores in the 

embedded design is the raw 100 MHz AXI4 bus clock, but the clock provided to the 

cipher cores in the workstation design differs between the cipher cores. The ECB 

and CBC cipher cores use the non-pipelined AES block cipher core which has a 

maximum clock rate of 100 MHz which means these cipher cores could not use the 

raw bus clock from Xillybus which is 250 MHz. Therefore, the design divides the 250 

MHz Xillybus bus clock down to 100 MHz and provides the divided clock to the ECB 

and CBC cipher cores. On the other hand, the CTR cipher core uses the pipelined 

AES core so it is able to use the 250 MHz clock from Xillybus. This increases the 

theoretical throughput of the CTR cipher, but maintains the same throughput for 

the ECB and CBC ciphers since they have the same clock frequency. The 

implemented functionality of the cipher cores are identical between the designs. The 

functionality of the cipher cores are discussed in detail in Section 5.1.5. 



58 
 

5.2.6 AES IP Cores 

The AES block cipher IP cores used in the workstation design are the same 

as the ones used in the embedded design. The same non-pipelined and pipelined 

cores are used. The specific details of each core is discussed in Section 5.1.6.1 and 

Section 5.1.6.2 for the non-pipelined and pipelined core, respectively. The non-

pipelined core is used for the ECB and CBC ciphers and the pipelined core is used 

for the CTR cipher. The only minor difference between the way the AES cores are 

used in the embedded and workstation designs is the workstation design provides a 

250 MHz clock to the pipelined AES core and a 100 MHz clock to the non-pipelined 

AES core instead of the same 100 MHz clock provided to both AES cores as in the 

embedded design. 
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CHAPTER 6  

 

SOFTWARE ARCHITECTURE 

 

There are two different software architectures that are developed to 

experiment with the performance of the hardware accelerated ciphers compared to 

the OpenSSL software ciphers. The first software architecture is designed to 

maximize the overall data throughput of the hardware accelerator by maximizing 

the throughput of the Xillybus interface. The second software architecture utilizes 

an extension of the OpenSSL software where the top level application only interfaces 

to the OpenSSL library for utilizing both software and hardware cryptographic 

functionality. 

6.1 Maximum Throughput 

The first software architecture maintains the goal of maximizing the data 

throughput of the hardware accelerated ciphers through the use of programming 

techniques for maximizing the throughput of the Xillybus interface. As a result of 

the Xillybus interface using DMA transactions to move data to and from the FPGA 

and CPU a multithreaded software technique can be used to send data to the FPGA 

at the same time it is receiving output data from the FPGA [21]. This is a direct 

benefit of using DMA to perform data transfer because this does not require the 

CPU to be involved in the transfer of data so it can just focus on reading and writing 

the data to the DRAM memory that is used by the DMA engine for the DMA data 

transfers. The multithreaded technique used to maximize the data throughput of the 

Xillybus interface is successful because it is able to hide the latency of both the bus 
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communication interface with the presence of DMA buffers and the FPGA 

cryptographic logic since it can produce and consume data to and from the FPGA 

simultaneously. 

This software application contains separate code for accessing the OpenSSL 

software library and accessing the hardware accelerated ciphers. If the software 

ciphers are selected at runtime then the application will execute specific code for 

sending the data through the OpenSSL EVP API for performing the appropriate 

cipher mode and then writing the output data to the output file or to the hardware 

sink. On the other hand, if the hardware accelerated ciphers are selected at runtime 

then the software will spawn two additional threads. One thread is incrementally 

reading from the input file and sending the data to the FPGA that will perform the 

cipher algorithm on the data. The second thread is continuously polling for output 

data from the FPGA and writing the received output data to the output file. The 

second thread is only used if conducting the file encryption/decryption test. Upon 

receiving the last output data from the FPGA the main thread joins the two worker 

threads and completes the application execution. Figure 6.1 shows a flow chart for 

the software execution for this software architecture. Note that Figure 6.1 

specifically shows the software flow for the file encryption and decryption test. The 

test using the hardware sink will only spawn a single thread for reading the input 

file and writing the data to the FPGA. 
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Figure 6.1  Flow Chart for Maximum Throughput Software Architecture 
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6.2 OpenSSL Extension 

The main focus and goal of the second software architecture is to provide a 

more simplistic API to the software developer by only requiring the developer to 

interface to the well-known OpenSSL EVP API for accessing both the software and 

hardware cryptographic functionality. This is achieved by both modifying the 

OpenSSL library software along with the top level application software to only 

interface to the OpenSSL library as opposed to having separate code for interfacing 

to Xillybus. The OpenSSL cryptographic library is modified to be able to utilize the 

hardware accelerated ciphers at the same software level that the equivalent 

software algorithms are executed. The EVP API of OpenSSL is slightly modified to 

include two additional parameters in the initialization function call that specifies 

whether to execute the software or hardware ciphers and also to specify whether to 

use the hardware sink in the hardware design or not. The software/hardware 

selection parameter at initialization of OpenSSL will trigger the initialization of 

Xillybus if the hardware option is selected. OpenSSL will fully initialize the Xillybus 

interface and provide the hardware accelerator with the cipher key and initialization 

vector, if necessary, so that in subsequent calls into OpenSSL with data all that is 

needed is to pass the data into Xillybus and then wait for the return of the data from 

the FPGA. OpenSSL will also provide the information to the hardware accelerator 

whether to use the hardware sink option or not. This software architecture 

experiences a major decrease in throughput compared to the previous software 

architecture because OpenSSL forces the interaction with Xillybus and the FPGA to 

become synchronous, or sequential, as opposed to asynchronous. Figure 6.2 shows a 

flow chart for the software execution for this software architecture.  
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Figure 6.2  Flow Chart for OpenSSL Extension Software Architecture 
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CHAPTER 7  

 

EXPERIMENTAL ENVIRONMENT 

 

The experimental environment sections include information on the 

development platforms used for both the embedded and workstation designs along 

with the approach used for testing the software and hardware ciphers. The 

embedded environment is discussed first, then the workstation environment, 

followed by the specifics of the experimental tests and performance metrics. 

7.1 Zedboard 

The Zedboard is a low cost development board designed and built by Digilent. 

It includes a Zynq-7000 All-Programmable (AP) SoC and an array of peripherals and 

standardized connectors including USB, HDMI, VGA, Ethernet, audio connectors, 

etc. The Zynq chip is the XC7Z020 version which contains an FPGA with the 

equivalent amount of resources as that of an Artix 7 generation FPGA. The Zynq-

7000 has a dual core ARM processor with an adjacent FPGA fabric connected via an 

AXI4 bus. The board has an additional 512 MB of DDR3 RAM external to the Zynq, 

256 Mb Quad-SPI flash memory, SD card interface, onboard USB-JTAG 

programming, 10/100/1000 Ethernet, USB OTG 2.0 and USB-UART, and multiple 

displays including HDMI, VGA, and a 128 x 32 OLED [28]. The Zedboard can be 

programmed using the Xilinx software tool suites of Vivado and SDK. The target 

applications that the Zedboard is suited for is video processing, motor control, 

software acceleration, Linux/Android/RTOS development, embedded ARM 
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processing, and Zynq-7000 APSoC prototyping. Figure 7.1 shows a photo of the 

Zedboard. 

The Zedboard is the development platform that the embedded system design 

is implemented on. The FPGA hardware design and operating system are stored on 

an SD card and the Zedboard is loaded with the information from the SD card. After 

booting the hardware design and the operating system, the SD card then operates as 

the hard drive for the system. 

 

Figure 7.1  Zedboard Development Board [29] 

7.2 Xillinux 

The Zynq-7000 APSoC is booted with a special Linux distribution kernel 

developed by Xillybus. This Linux kernel is called Xillinux. Xillinux is a software + 

FPGA code kit for running a full-blown graphical desktop on the Zedboard and some 

other development boards that contain a Zynq-7000. Xillinux is based on Ubuntu 

LTS 12.04 kernel for ARM and allows the Zedboard to behave like a PC with the SD 
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card as its hard disk drive. A keyboard and mouse can be plugged into the Zedboard 

for full desktop interaction with either a Linux test console or the full blown Gnome 

desktop environment [30]. The VGA output port of the Zedboard is used for the 

computer’s display output. As a result of Xillinux being developed by Xillybus, it 

comes pre-installed with the Xillybus kernel driver software for interfacing to the 

Xillybus IP core on the FPGA. Xillinux is used as the operating system in the 

embedded design on the Zedboard because it is free for evaluation purposes, easy to 

implement, and comes installed with the Xillybus software. Documentation is 

provided by Xillinux for how to download, compile, and boot the Xillinux kernel on 

the Zedboard [31]. 

7.3 ZC706 

The ZC706 Evaluation board is a very feature rich engineering board 

containing many different hardware peripherals with a Zynq-7000 APSoC at the 

heart of it. The Zynq-7000 chip is the XC7Z045 version which contains a much larger 

FPGA than the 7020 chip that comes installed on the Zedboard. The FPGA on the 

7045 chip on the ZC706 board is equivalent in the amount of resources as that of the 

Kintex-7 generation FPGA. It contains 1 GB of DDR3 memory SODIMM on the PL 

side of the chip so that the FPGA can interface to the memory. It also contains 1 GB 

of DDR3 component memory on the hardened processor side for it to interface to. 

The board also contains two 128 Mb Quad SPI (QSPI) flash memory chips. It 

contains a USB 2.0 transceiver along with a micro-B USB connector as well. It has a 

Secure Digital (SD) connector with a USB JTAG interface. The board also has a PCI 

Express endpoint connectivity for either Gen1 4-lane (x4) and a Gen2 4-lane (x4). It 

has an SFP+ connector for high speed Ethernet, HDMI connector, I2C bus, a 
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multitude of GPIO pins, and dual 12-bit analog to digital converters [32]. Figure 7.2 

shows a photo of the ZC706 board. 

 

Figure 7.2  ZC706 Development Board [33] 

 

For this research, the ZC706 board is used for its PCIe connectivity for 

interfacing to the Intel processor for the hardware accelerated ciphers for the 

workstation system design. The Xillybus IP core can be configured to operate on the 

PCIe bus the same as it does on the AXI4 bus. The Xillybus IP core is capable of 

utilizing the full 4-lane bus width of the ZC706 PCIe interface at the 66 MHz bus 

clock. Although the ZC706 development board has the Zynq-7000 APSoC chip with 

the dual-core ARM processors available, the ARM cores are not used in the 

workstation design for the hardware accelerated ciphers. This is because the host 

software is executed on the Intel processor host and the data flows from the host PC 

to the ZC706 board via the PCIe bus. Thus, the data is received by the ZC706 board 

through the PCIe core inside the FPGA fabric of the Zynq which then passes the 
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data through the hardware ciphers and ultimately back to the PC. Therefore, the 

ARM cores are never needed to perform the cipher operations in the workstation 

system design. 

7.4 Workstation 

The workstation that is used for the implementation of the software and 

hardware ciphers is the Dell Precision Tower 7910 high end personal computer. It 

contains an octa-core Intel Xeon processor, 32 GB of RAM, and a 1 TB solid state hard 

drive. The workstation runs the Ubuntu 14.04 Linux operating system. There are 

several expansion slots in the workstation for adding peripheral cards on the 

PCI/PCIe bus. The ZC706 board sits on the PCIe bus for the workstation design. 

7.5 Measurement Setup 

The performance metrics used for comparing the software and hardware ciphers 

are the execution time, data throughput, and speedup. The execution time to 

complete the file encryption/decryption test or hardware sink test for each of the 

cipher modes is recorded and then used for calculating data throughput and 

speedup. Each of the software applications, as discussed in CHAPTER 6, are 

executed for each test and cipher. Based on the test being executed, either file 

encryption/decryption or hardware sink, determines how the execution time is 

computed in the application. For the file encryption/decryption test, the execution 

time for the software ciphers is computed as the time spent executing inside of the 

API calls into OpenSSL and the execution time for the hardware ciphers is 

computed as the time spent in the API “write” call of Xillybus. For the hardware 

sink test, the execution time for the software ciphers is computed as the time spent 
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inside the API calls into OpenSSL and the time spent in the API “write” call of 

Xillybus. The execution time for the hardware ciphers remains just the time spent 

inside the Xillybus “write” API function. Note, the execution times for the hardware 

ciphers are highly influenced by the speed of the file I/O operations on the platform 

executing the software applications because the Xillybus “write” API call initiates a 

transfer of data into DMA buffers in RAM and then a DMA transaction for 

transferring data across the bus. However, if data is written to the DMA buffers at a 

faster rate than can be transferred across the bus then the DMA buffers will cause 

the “write” function of Xillybus to stall which causes the execution time to increase. 

This is the case for the workstation platform and will be discussed further in the 

micro-benchmarking and results sections. The file encryption/decryption test is 

discussed in more detail in Section 7.6 and the hardware sink test is discussed in 

further detail in Section 7.7. 

Each test is executed for every combination of the input parameters of the 

software applications. The input parameters that are varied for all the tests are the 

file size, cipher mode, block cipher operation, and cipher implementation. There are 

sixteen different file sizes ranging from 32 KB to 1 GB as shown inTable 7.1. There 

are three cipher modes (ECB, CBC, CTR), two block cipher operations (encryption 

and decryption), and two cipher implementations (software and hardware). All the 

varied parameters result in 16*3*2*2 = 192 different parameter configurations. All 

the different parameter configurations are executed on both the embedded and 

workstation designs. 

The execution time of the software and hardware ciphers are used to compute 

the throughputs of each along with the speedup of the hardware ciphers relative to 

the software ciphers. Throughput is defined as the amount of data that passes 
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through the ciphers within the time period of a second. Throughput is computed by 

dividing the amount of data from the input file by the execution time to complete the 

test. Speedup is defined as the performance improvement, in terms of execution 

time, of the hardware ciphers relative to the software ciphers. Speedup is computed 

as the execution time of the software ciphers divided by the execution time of the 

hardware ciphers. 

Table 7.1  File Sizes used for Test Applications 

File Sizes 
32 KB 
64 KB 

128 KB 
256 KB 
512 KB 
1 MB 
2 MB 
4 MB 
8 MB 

16 MB 
32 MB 
64 MB 
128 MB 
256 MB 
512 MB 

1 GB 

7.6 File Encryption/Decryption Test 

One of the tests used to evaluate the performance of the software and hardware 

ciphers is file encryption and decryption. Data files varying from 32 KB to 1 GB are 

encrypted and then decrypted using either the software or hardware ciphers.  

The two C++ software test applications are used to control the file encryption or 

decryption process by either interfacing to the OpenSSL library API or interfacing to 

the hardware accelerated ciphers in the FPGA. The application has multiple 
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command line options that can be passed into the software at run-time. These 

command line options include selecting which cipher mode to execute (i.e. ECB, 

CBC, CTR), which cryptographic operation to perform (i.e. encryption/decryption), 

whether to perform the operation in software or hardware, to specify a password for 

the cipher key and initialization vector generation or authentication, to specify the 

file name of the output file for the output data (either encrypted or decrypted) to be 

written to, and finally the name of the input file containing the data to be 

manipulated. After processing the command line parameters, the application begins 

by generating the cipher key and initialization vector to be used in the cipher 

operation. If preparing for the encryption operation, the application uses the 

Password-Based Key Derivation Function (PBKDF) available in the OpenSSL 

library to derive a cipher key and initialization vector from the password specified 

by the user. If preparing for the decryption operation, the application still generates 

the cipher key and initialization vector from the specified password, but after doing 

so it compares the output for each against the hashed values read from the input file 

in order to authenticate the password that is provided by the user. If the values do 

not match, then the user did not specify the correct password in order to successfully 

decrypt the data file and the application aborts. 

Once the application has the cipher key and initialization vector it can continue 

to perform the necessary cryptographic operation specified by the user. The 

application incrementally reads the data from the input file and passes the data 

buffer through the cryptographic operation. The cryptographic operation can either 

be performed in software by OpenSSL or in hardware on the FPGA. The data is 

passed into the OpenSSL library via the EVP API function calls provided by the 

OpenSSL library which then just returns a data buffer with the output data from 
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the operation. The interface to the FPGA hardware acceleration is accomplished 

through the use of function calls into the Xillybus kernel module driver. The 

hardware accelerated ciphers on the FPGA manipulate the data set and then 

transfers the data back to the CPU. The output data from either OpenSSL or the 

FPGA is then written to the output file. This process is repeated as many times as 

necessary to read the entire input file and perform the cipher operation on all the 

input data. The same process of events are performed for both the maximum 

throughput and OpenSSL extension software applications, but the OpenSSL 

extended software only interfaces to the OpenSSL EVP API and the OpenSSL 

library uses either the software or hardware ciphers. 

During the execution of the applications for the file encryption/decryption test, 

the execution time is computed in order to do post-analysis of the performance of the 

software and hardware ciphers. The execution time is recorded for the amount of 

time it takes to complete the cipher operations on the entire input data file. The 

application reads the input file in increments so the system time is latched right 

before passing the data to the ciphers and then latched again once the data is 

returned from the ciphers and the delta between the two times is then added to the 

overall execution time. For the OpenSSL extension application, the execution time is 

just the period of time spent calling the OpenSSL EVP functions. The same applies 

for the maximum throughput application when accessing the OpenSSL software 

ciphers. The execution time is computed differently for the hardware ciphers for the 

maximum throughput application because it operates in a multithreaded 

environment. In order to not capture the latencies involved with the file I/O 

operations, which are present in both threads interfacing with Xillybus, the 

execution time is computed as the time spent making calls into the “write” function 
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of the Xillybus kernel module plus the period of time between the write thread 

joining with the main thread and the read thread joining with the main thread. The 

execution time being computed in this manner is highly influenced by the file I/O 

operations of the platform because if data is read from the platform hard drive at a 

fast enough rate and written to the DMA buffers then once the DMA buffers become 

full the application will stall in the “write” function of Xillybus and cause the 

execution time to increase. 

7.7 Hardware Sink Test 

The hardware sink test is used to experiment with the situation where data is 

sent to a hardware peripheral that communicates externally to the host platform 

(i.e. an Ethernet port). Assuming the data being transmitted by the hardware 

peripheral needs to be encrypted then the data will have to be encrypted in software 

or hardware prior to transmission. Logically, if the data is encrypted in software 

then it must be transferred to the hardware peripheral after the necessary software 

operations, but if the data is encrypted in hardware then the raw data can 

immediately be transferred to the hardware and forgotten because the hardware 

performs the remaining operations needed before passing it to the peripheral. This is 

simulated with the hardware sink test. For this test, the same software applications 

are used, but given the command line option for the hardware sink test. For the 

software ciphers, the same process is executed as in the file encryption/decryption 

test, but instead of sending the output data to an output file the data is sent across 

the bus to the FPGA to a hardware sink. This simulates the case where the software 

has to encrypt data and then send the data to a hardware peripheral. Utilizing the 

hardware accelerated ciphers works differently. The process is the same as the file 
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encryption/decryption test up to where the input data is sent to the FPGA. Once the 

data is sent to the FPGA it never returns to the host processor because it is sent to 

the hardware sink after being sent through the cipher. This simulates the “send it 

and forget it” situation where the processor can send the raw data to the hardware 

accelerated ciphers that encrypts the data and then sends it to a peripheral without 

the processor ever touching the data again. 

The execution times for this test are recorded in a similar manner to the file 

encryption/decryption test. For the software ciphers, the time required to perform 

the cipher in the OpenSSL library and then send the data to the FPGA is recorded 

as the execution time. For the hardware ciphers, just the time required to send the 

data to the FPGA is recorded as the execution time. 
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CHAPTER 8  

 

MICRO-BENCHMARKING 

 

A set of micro-benchmarking tests are executed within each of the different 

design environments to better understand the influence different components of the 

system have on the performance of the overall design. The components that are 

analyzed are the bus architectures, the hard drives, and the hardware accelerated 

ciphers. The bus architectures and the hard drives are evaluated using actual 

experimental data retrieved through micro-benchmarking applications, but the 

hardware ciphers are evaluated using analytical techniques. 

8.1 Embedded Design Micro-benchmarking 

The embedded design components that are evaluated include the AXI4 bus, the 

SD card used by the Zedboard as the hard drive, and the ciphers implemented on the 

FPGA fabric of the Zynq-7000 APSoC. 

8.1.1 AXI4 Bus 

The AXI4 bus in the context of the micro-benchmarking refers to the bus 

architecture itself and the Xillybus interface solution that wraps the bus 

architecture. Due to the use of Xillybus, there was no other way to test the 

performance of the AXI4 bus without using the Xillybus interface since their kernel 

module is what drives the DMA transactions on the bus. Furthermore, the 

performance of the AXI4 bus as seen from the perspective of the software developer 

includes the use of the DMA engine and the available DMA buffers allocated in the 
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system. These greatly improve the performance of the AXI4 bus because the DMA 

buffers allow the software to just transfer data around in the DRAM memory and 

the DMA engine performs large bursts across the bus. The application used to test 

the performance of just the AXI4 bus incrementally reads a 1 GB data file and 

streams the data across the bus. The total execution time to complete all the “write” 

function calls into the Xillybus kernel module for writing all the data across the bus 

is used to compute the throughput of the AXI4 bus which is found to be 500 MB/s. 

8.1.2 Zedboard HDD (SD Card) 

The Zedboard uses an SD memory card as the hard drive for the embedded 

system. The performance of the file I/O operations using the SD card affect the 

overall system performance because it affects how fast the test application can 

provide new data to the ciphers and retrieve output data from the ciphers. The test 

applications must read from an input file before providing new data to the ciphers 

and must write to an output file before it can retrieve more output data from the 

ciphers. The test application used to test the performance of the SD card attempts to 

read the 1 GB file into DRAM and the execution time to complete the file reading is 

used to calculate the throughput of the file I/O which is found to be about 11 MB/s. 

8.1.3 Hardware Accelerated Ciphers 

The ECB and CBC ciphers use the non-pipelined AES core and the CTR cipher 

mode uses the pipelined AES core. Thus, the ciphers have different performance 

characteristics. Some analytical techniques are used to evaluate the throughputs of 

each of the cipher modes based on the implementations and timing of the cipher 

cores and the AES cores. By taking the clock rate of the AES cores and the number 
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of clock cycles it takes to complete the cipher for any input state matrix the 

throughput is calculated. The ideal throughputs of the ECB and CBC ciphers are 

found to be about 35 MB/s and the ideal throughput of the CTR cipher is about 1.6 

GB/s. These throughputs are computed using the 100 MHz clock used in the 

embedded design. 

8.2 Workstation Design Micro-benchmarking 

The workstation design components that are evaluated include the PCIe bus, 

the spinning disk hard drive of the workstation, and the ciphers implemented on the 

FPGA fabric of the Zynq-7000 APSoC on the ZC706. 

8.2.1 PCIe Bus 

The micro-benchmarking of the PCIe bus is similar to that of the AXI4 bus for 

the embedded design. It also includes the bus architecture itself and the Xillybus 

interface solution that wraps the PCIe bus. Therefore, the results of the micro-

benchmarking include the use of the DMA engine and the available DMA buffers 

allocated in the system by Xillybus. The application used to test the performance of 

just the PCIe bus incrementally reads a 1 GB data file and streams the data across 

the bus. The total execution time to complete all the “write” function calls into the 

Xillybus kernel module for writing all the data across the bus is used to compute the 

throughput of the PCIe bus which is found to be 600 MB/s. 

8.2.2 Workstation HDD 

The workstation uses a spinning disk hard drive. The rate at which the 

workstation can perform file I/O operations affects the overall system performance 

because it affects how fast the test application can provide new data to the ciphers 
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and retrieve output data from the ciphers. The test application used to test the 

performance of the hard drive attempts to read the 1 GB file into RAM and the 

execution time to complete the file reading is used to calculate the throughput of the 

file I/O which is found to be about 1.7 GB/s. 

8.2.3 Hardware Accelerated Ciphers 

The performance of the hardware ciphers in the workstation design is 

computed the same as it is for the embedded design through the use of analytical 

techniques. The ideal throughputs of the ECB and CBC ciphers are found to be 

about 35 MB/s which is the same as for the embedded design because the same 100 

MHz clock frequency is used by these cores in both designs. However, the ideal 

throughput of the CTR cipher is about 4 GB/s which is greater than the CTR cipher 

in the embedded design because the workstation design provides a 250 MHz clock to 

the CTR cipher instead of the 100 MHz clock. These throughputs are based on the 

throughput of the hardware ciphers if they were standalone and were not affected by 

anything else in the system. 
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CHAPTER 9  

 

RESULTS 

 

The results section discusses the performance results of the software and 

hardware ciphers. The following sections will provide plots for the throughputs 

achieved by both the software and hardware ciphers and also the speedups of the 

hardware ciphers compared to the software ciphers. Section 9.1 and its subsections 

will discuss the results for the embedded design hosted on the Zedboard 

development board. Section 9.2 and its subsections will discuss the results for the 

workstation design hosted on an Intel workstation and ZC706 development board. 

9.1 Results for Zedboard Embedded Design 

The execution times for the software and hardware ciphers are recorded by 

the test applications on the Zedboard and used to compute the throughput and 

speedup of the ciphers. The speedup is used to show the performance improvement, 

if any, of the hardware ciphers versus the software ciphers. The results of the 

embedded design show that the hardware ciphers do achieve a considerable 

performance improvement over the software ciphers. The results show drastically 

different results for the file encryption/decryption test between the maximum 

throughput application and the OpenSSL extension application. The maximum 

throughput application achieved a maximum speedup and throughput of 25x and 

450 MB/s, respectively, for the hardware ciphers. The OpenSSL extension 

application achieved a maximum speedup and throughput of 6x and 130 MB/s, 

respectively, for the hardware ciphers. However, the results are very similar 
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between the two applications for the hardware sink test. Both software applications 

achieved a maximum speedup and throughput of 30x and 500 MB/s for the hardware 

ciphers. 

In the following subsections, the plots will be labeled with either “File” or 

“HW Sink” which just refers to the test that the plots correspond to. The label “File” 

corresponds to the file encryption/decryption test and the label “HW Sink” 

corresponds to the hardware sink test. 

9.1.1 Results for File Encryption/Decryption Test using Maximum 

Throughput Application 

The results for the file encryption/decryption test using the maximum 

throughput software application are shown in Figure 9.1 to Figure 9.2. Figure 9.1 

(A) and (B) show the throughputs of the software ciphers for encryption and 

decryption, respectively. The ECB and CBC ciphers have a throughput of about 18 

MB/s and the CTR cipher has a throughput of about 22 MB/s. Figure 9.1 (C) and (D) 

show the throughputs of the hardware ciphers for encryption and decryption, 

respectively. They show that all three hardware ciphers achieved throughputs of 

about 400 MB/s. The reason all three hardware ciphers achieved about the same 

throughput even though the CTR cipher is fully pipelined and has a better nominal 

throughput is due to the effects of the use of DMA and the latency involved with file 

I/O on the SD card of the Zedboard. For the hardware ciphers, the execution time is 

computed as the total time spent in the “write” function call to Xillybus which just 

transfers memory within the DRAM and then begins transferring data to the FPGA. 

Since it takes a significant amount of time for the processor to read another block of 

data from the input file most of the data has already been transferred across the bus 
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and even possibly returned from the FPGA. This effectively hides the latency 

involved with performing the ciphers in the FPGA. 

Figure 9.2 shows the speedups achieved by the hardware ciphers for 

encryption and decryption, respectively. They show that the ECB and CBC ciphers 

achieved speedups of about 25x for both processes. The CTR cipher achieved a 

speedup of about 20x. The reason the ECB and CBC ciphers achieved a higher 

speedup even though these hardware ciphers have a lower throughput than the CTR 

cipher is because the performance of these ciphers in OpenSSL are considerably less 

than the OpenSSL implementation of the CTR cipher. Therefore, in comparison, the 

hardware ECB and CBC ciphers have a greater overall improvement over OpenSSL 

than the CTR cipher. 
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(A) (B) 

  
(C) (D) 

Figure 9.1  (A) Encryption Throughput of Software Ciphers (File), (B) Decryption 

Throughput of Software Ciphers (File), (C) Encryption Throughput of Hardware 

Ciphers (File), (D) Decryption Throughput of Hardware Ciphers (File) 
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(A) (B) 

Figure 9.2  (A) Encryption Speedup of Hardware Ciphers (File), (B) Decryption 

Speedup of Hardware Ciphers (File) 
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9.1.2 Results for Hardware Sink Test using Maximum Throughput 

Application 

The results for the hardware sink test using the maximum throughput 

software application are shown in Figure 9.3 and Figure 9.4. Figure 9.3 shows the 

throughputs of the software and hardware ciphers while using the hardware sink. 

Figure 9.3 (A) and (B) show that the ECB and CBC software ciphers have a 

throughput of about 17 MB/s and the CTR cipher has a throughput of about 21 

MB/s. These throughputs are less than that achieved for the file 

encryption/decryption test which is expected because the data must be encrypted or 

decrypted before it is sent across the bus to the hardware sink. This adds an extra 

step to the process; therefore, decreasing the overall throughput. Figure 9.3 (C) and 

(D) show that the ECB and CBC hardware ciphers achieved a throughput of about 

450 MB/s; whereas, the CTR cipher achieved a throughput of about 500 MB/s. This 

is expected because as the processor continuously reads data from the input file and 

transfers it into the DMA buffers the non-pipelined functionality of the ECB and 

CBC ciphers could cause the DMA buffers to fill up and put backpressure on the 

processor from transferring more data into the DMA buffers. This causes the 

application to stall while waiting on space to become available in the DMA buffers to 

receive the current data block. However, this is not occurring with the CTR cipher 

because it is fully pipelined and is clocked off the same clock as the AXI4 bus so data 

will never get backed up in the FPGA and thus will not cause the DMA buffers in 

RAM to become full. 

Figure 9.4 shows the speedups achieved by the hardware ciphers for 

encryption and decryption, respectively. The plots show that the ECB and CBC 
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ciphers achieved speedups of about 30x for encryption and decryption. The CTR 

cipher achieved a speedup of about 20x to 25x. The reason the ECB and CBC ciphers 

achieved a higher speedup than the CTR cipher is the same reason as in the file 

encryption/decryption test. It is because the performance of the CTR cipher in 

OpenSSL is better than the ECB and CBC ciphers so the comparative improvements 

are better for the ECB and CBC ciphers. 
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(A) (B) 

  
(C) (D) 

Figure 9.3  (A) Encryption Throughput of Software Ciphers (HW Sink), (B) 

Decryption Throughput of Software Ciphers (HW Sink), (C) Encryption Throughput 

of Hardware Ciphers (HW Sink), (D) Decryption Throughput of Hardware Ciphers 

(HW Sink) 
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(A) (B) 

Figure 9.4  (A) Encryption Speedup of Hardware Ciphers (HW Sink), (B) Decryption 

Speedup of Hardware Ciphers (HW Sink) 
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9.1.3 Results for File Encryption/Decryption Test using OpenSSL Extension 

Application 

The results for the file encryption/decryption test using the OpenSSL 

extension software application are shown in Figure 9.5 and Figure 9.6. The 

throughputs for the software and hardware ciphers are shown in Figure 9.5. Figure 

9.5 (A) and (B) show the software ciphers achieved throughputs of about 18 MB/s for 

the ECB and CBC ciphers and 21 MB/s for the CTR cipher. Comparatively, the 

hardware ciphers, shown in Figure 9.5 (C) and (D), achieved throughputs of about 18 

MB/s for the ECB and CBC ciphers and 130 MB/s for the CTR cipher. 

The speedups of the hardware accelerated ciphers for encryption and 

decryption are shown in Figure 9.6. The ECB and CBC hardware ciphers did not 

experience any speedup over their software counterparts and the CTR cipher only 

achieved a speedup of 6x. This is due to the sequential nature of the OpenSSL 

library. The extension to the OpenSSL library allows for the utilization of both the 

software and hardware ciphers through the same API to the top level application. 

Therefore, the top level application must wait until the data is returned from the 

OpenSSL library before continuing execution regardless of performing the ciphers in 

software or hardware. Thus, the use of DMA buffers that hid the latency of the bus 

transfers and hardware ciphers in the maximum throughput application are now 

present in the OpenSSL extension application which results in a decreased 

performance when using the hardware ciphers compared to the maximum 

throughput application. 
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(A) (B) 

  
(C) (D) 

Figure 9.5  (A) Encryption Throughput of Software Ciphers (File), (B) Decryption 

Throughput of Software Ciphers (File), (C) Encryption Throughput of Hardware 

Ciphers (File), (D) Decryption Throughput of Hardware Ciphers (File) 
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(A) (B) 

Figure 9.6  (A) Encryption Speedup of Hardware Ciphers (File), (B) Decryption 

Speedup of Hardware Ciphers (File) 
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9.1.4 Results for Hardware Sink Test using OpenSSL Extension Application 

The results for the hardware sink test using the OpenSSL extension software 

application are shown in Figure 9.7 and Figure 9.8. The throughputs for the 

software and hardware ciphers are shown in Figure 9.7. The software ciphers 

achieved throughputs of about 17 to 18 MB/s for the ECB and CBC ciphers and 20 

MB/s for the CTR cipher. The hardware ciphers achieved throughputs of about 450 

to 500 MB/s for all three ciphers. 

The speedups of the hardware ciphers for encryption and decryption are 

shown in Figure 9.8. The ECB and CBC ciphers achieved a speedup upwards of 30x 

and the CTR cipher achieved a speedup of about 20x. The reason why the ECB and 

CBC ciphers have a higher speedup than the CTR cipher is because the ECB and 

CBC ciphers in OpenSSL do not perform as well as the CTR cipher so there is more 

room for improvement with those two ciphers. All three hardware ciphers achieved 

very high speedups which is attributed to the fact that with the hardware sink the 

software is able to send the data into the DMA buffers and immediately return 

control to the top level application from the OpenSSL library. This is because for the 

hardware sink test OpenSSL does not have to wait for the data to return from the 

FPGA before returning control to the top level application. This removes the latency 

involved with actually performing the ciphers in the FPGA from the computation of 

the execution time. 
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(A) (B) 

  
(C) (D) 

Figure 9.7  (A) Encryption Throughput of Software Ciphers (HW Sink), (B) 

Decryption Throughput of Software Ciphers (HW Sink), (C) Encryption Throughput 

of Hardware Ciphers (HW Sink), (D) Decryption Throughput of Hardware Ciphers 

(HW Sink) 
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(A) (B) 

Figure 9.8  (A) Encryption Speedup of Hardware Ciphers (HW Sink), (B) Decryption 

Speedup of Hardware Ciphers (HW Sink) 
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9.2 Results for ZC706 Workstation Design 

The execution times for the ciphers for the OpenSSL software 

implementations and the FPGA hardware implementations are recorded by the test 

applications on the Intel workstation using the ZC706 for the hardware accelerated 

design. The execution times are used to compute the speedup and throughput of the 

ciphers. The speedup is used to show the performance improvement, if any, of the 

hardware ciphers versus the software ciphers. The Intel AESNI hardware 

acceleration option for Intel processors is available on the workstation used for this 

design so it is also used for performance comparisons with the FPGA hardware 

acceleration. The OpenSSL library is used for executing the software ciphers with 

and without the AESNI option. The option with the use of AESNI is referred to in 

this paper as the software+ option. 

The results of the workstation design show that the hardware ciphers do not 

achieve a considerable performance improvement over the software ciphers and 

experience a drastic decrease in performance compared to the software+ ciphers. The 

results are similar between the maximum throughput application and the OpenSSL 

extension application. The hardware accelerated ECB and CBC ciphers experienced 

speedups of less than 1 while the CTR cipher achieved speedups upwards of 1.5x. 

The software+ ciphers produced speedups between 9x and 14x compared to the 

software ciphers and about 150x compared to the hardware accelerated ECB and 

CBC ciphers and 7x compared to the hardware accelerated CTR cipher. The software 

ciphers achieved throughputs upwards of 350 MB/s, the software+ ciphers have 

throughputs upwards of 3.3 GB/s, and the hardware ciphers have throughputs 

upwards of 550 MB/s. 
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In the following subsections, the plots will be labeled with either “File” or 

“HW Sink” which just refers to the test that the plots correspond to. The label “File” 

corresponds to the file encryption/decryption test and the label “HW Sink” 

corresponds to the hardware sink test. 

9.2.1 Results for File Encryption/Decryption Test using Maximum 

Throughput Application 

The results for the file encryption/decryption test using the maximum 

throughput software application are shown in Figure 9.9 through Figure 9.12. The 

throughputs for the software and hardware ciphers are shown in Figure 9.9 and 

Figure 9.10. Figure 9.9 (A) and (B) show the software ciphers achieved throughputs 

of about 225 MB/s for the ECB and CBC ciphers and 350 MB/s for the CTR cipher. 

Figure 9.9 (C) and (D) show that the software+ ciphers achieved throughputs of 

about 3 to 3.5 GB/s. The encryption process shows a decreased throughput for the 

CBC cipher down to about 2.25 GB/s. Lastly, Figure 9.10 shows that the hardware 

ciphers achieved throughputs of about 22 MB/s for the ECB and CBC ciphers and 

500 MB/s for the CTR cipher. 

 Figure 9.11 shows the speedup of the software+ ciphers for encryption and 

decryption. The ECB cipher achieved a speedup of about 14x and the CBC and CTR 

ciphers have a speedup of about 10x. Figure 9.12 (A) and (B) show the speedups of 

the hardware ciphers relative to the software ciphers where the ECB and CBC 

hardware ciphers have a speedup of about 0.1x and the CTR cipher has a speedup of 

about 1.5x. Figure 9.12 (C) and (D) show the speedups of the hardware ciphers 

relative to the software+ ciphers where the ECB and CBC ciphers have a speedup of 

about 0.005x and the CTR cipher has a speedup of about 0.15x. The hardware CTR 
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cipher has a much greater throughput than the ECB and CBC ciphers which is why 

the CTR cipher does not have as low of a speedup when compared to the software+ 

ciphers. 

The reason for the decrease in performance of the ECB and CBC hardware 

ciphers compared to the software ciphers can be attributed to a couple different 

factors. One is the non-pipelined functionality of the ciphers and the second is the 

performance of the file I/O operations on the workstation. The PCIe data transfers 

over the x4 interface are providing data to the FPGA at a much faster rate than the 

non-pipelined ciphers can consume the data thus causing the buffers in the FPGA 

and, ultimately, the DMA buffers in RAM to get backed up. Also, the workstation 

HDD performs file I/O operations so much faster than the PCIe bus can transfer 

data to the FPGA that the application is writing new data into the DMA buffers in 

RAM faster than the PCIe interface can transfer data causing the buffers to fill up 

and the proceeding calls to the Xillybus write function will have to block until space 

becomes available in the DMA buffers. Recalling that the execution time for these 

runs is the time spent in the Xillybus write function means that these memory stalls 

cause the execution time to increase. These results clearly show the presence of 

bottlenecks in the system for the hardware accelerated ciphers. For the ECB and 

CBC ciphers, the bottleneck is the AES block cipher core since it is non-pipelined. 

The throughput of these ciphers are comparable to the 35 MB/s theoretical 

throughputs for these ciphers found in the micro-benchmarking section. On the 

other hand, the bottleneck for the CTR ciphers shifts to the PCIe bus. Since the CTR 

cipher is fully pipelined it can consume data at the same rate the PCIe bus can 

provide it; thus, making the PCIe bus the limiting factor of the performance for the 
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CTR cipher. This is supported by the fact that it achieves a throughput of 500 MB/s 

in this test and the PCIe bus has a theoretical throughput of about 600 MB/s. 
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(A) (B) 

  
(C) (D) 

Figure 9.9  (A) Encryption Throughput of Software Ciphers (File), (B) Decryption 

Throughput of Software Ciphers (File), (C) Encryption Throughput of Software+ 

Ciphers (File), (D) Decryption Throughput of Software+ Ciphers (File) 

  



99 
 

  
(A) (B) 

Figure 9.10  (A) Encryption Throughput of Hardware Ciphers (File), (B) Decryption 

Throughput of Hardware Ciphers (Decryption) 
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(A) (B) 

Figure 9.11  (A) Encryption Speedup of Software+ Ciphers (File), (B) Decryption 

Speedup of Software+ Ciphers (File) 
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(C) (D) 

Figure 9.12  (A) Encryption Speedup of Hardware Ciphers (File), (B) Decryption 

Speedup of Hardware Ciphers (File), (C) Encryption Speedup of Hardware Ciphers 

relative to Software+ Ciphers (File), (D) Decryption Speedup of Hardware Ciphers 

relative to Software+ Ciphers (Decryption) 
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9.2.2 Results for Hardware Sink Test using Maximum Throughput 

Application 

The results for the hardware sink test using the maximum throughput 

software application are shown in Figure 9.13 through Figure 9.15. The throughputs 

for the software and hardware ciphers are shown in Figure 9.13 and Figure 9.14. 

Figure 9.13 (A) and (B) show the software ciphers achieved throughputs of about 225 

MB/s for the ECB and CBC ciphers and 325 MB/s for the CTR cipher. It is unclear 

why the ECB and CBC cipher throughputs in Figure 9.13 (B) differ so much in the 

decryption process. It could possibly be attributed to the variability in the OS for 

those runs. Figure 9.13 (C) and (D) show that the software+ ciphers achieved 

throughputs of about 1 GB/s which is drastically lower than the throughput 

achieved in the file encryption/decryption test. This can be attributed to the fact that 

the data is sent to the hardware sink via the PCIe bus after OpenSSL performs the 

cipher operations on the data; thus, showing that data transfer to the FPGA is the 

limiting factor for the throughput for this implementation. The encryption process 

shows a decreased throughput for the CBC cipher which could possibly be OS 

variability as seen in the software cipher throughput plots. Lastly, Figure 9.14 

shows that the hardware ciphers achieved throughputs of about 22 MB/s for the 

ECB and CBC ciphers and 500 MB/s for the CTR cipher which is the same as the file 

encryption/decryption test. 

Figure 9.15 (A) and (B) show the speedups of the hardware ciphers relative to 

the software ciphers for encryption and decryption, respectively. The ECB and CBC 

ciphers have a speedup of about 0.1x and the CTR cipher has a speedup of about 

1.5x which are similar to the file encryption/decryption test. Figure 9.15 (C) and (D) 
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show the speedups of the hardware ciphers relative to the software+ ciphers. The 

plots show speedups of 0.02x for the ECB and CBC ciphers and 0.5x for the CTR 

cipher. It is expected that the ECB and CBC software+ ciphers have a much greater 

improvement over the hardware accelerated ECB and CBC ciphers than for the CTR 

cipher since the CTR cipher in the FPGA has much greater throughput. 
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(C) (D) 

Figure 9.13  (A) Encryption Throughput of Software Ciphers (HW Sink), (B) 

Decryption Throughput of Software Ciphers (HW Sink), (C) Encryption Throughput 

of Software+ Ciphers (HW Sink), (D) Decryption Throughput of Software+ Ciphers 

(HW Sink) 
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(A) (B) 

Figure 9.14  (A) Encryption Throughput of Hardware Ciphers (HW Sink), (B) 

Decryption Throughput of Hardware Ciphers (HW Sink) 

  



106 
 

  
(A) (B) 

  
(C) (D) 

Figure 9.15  (A) Encryption Speedup of Hardware Ciphers (HW Sink), (B) 

Decryption Speedup of Hardware Ciphers (HW Sink), (C) Encryption Speedup of 

Hardware Ciphers relative to Software+ Ciphers (HW Sink), (D) Decryption 

Speedup of Hardware Ciphers relative to Software+ Ciphers (HW Sink) 
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9.2.3 Results for File Encryption/Decryption Test using OpenSSL Extension 

Application 

The results for the file encryption/decryption test for the OpenSSL extension 

software application are shown in Figure 9.16 through Figure 9.19. Figure 9.16 (A) 

and (B) show the throughputs of the software ciphers for encryption and decryption, 

respectively, to be about 225 MB/s and 300 MB/s for the ECB and CBC ciphers. The 

CTR cipher has a throughput of 350 MB/s for both operations. Figure 9.16 (C) and 

(D) show the throughputs for the software+ ciphers. These ciphers achieved 

throughputs for encryption of about 3.25 GB/s for the ECB and CTR ciphers and 

about 2.25 GB/s for CBC. For decryption, all three ciphers achieved throughputs of 

about 3.25 GB/s. Finally, the throughputs of the hardware ciphers are shown in 

Figure 9.17. The CTR cipher has a throughput of about 400 MB/s; whereas, the ECB 

and CBC ciphers only have throughputs of about 20 MB/s. 

 Figure 9.18 shows the speedups achieved by the software+ ciphers relative to 

the software ciphers. The plots show that for encryption the ECB cipher achieved a 

speedup of about 14x and the CBC and CTR cipher have a speedup of about 10x. For 

decryption, all three ciphers have a speedup between 9x and 11x. Figure 9.19 (A) 

and (B) show the speedups of the hardware ciphers relative to the software ciphers. 

It can be seen that the CTR cipher is the only cipher to achieve a positive speedup, 

but it is still very minimal at about 1.1x. The ECB and CBC ciphers both achieved a 

speedup of about 0.1x. The hardware ciphers did not perform any better than the 

software ciphers because of the latencies involved with transferring data across the 

PCIe bus and also due to the fast file I/O operations of the workstation which causes 

the DMA buffers to fill up causing the test application to spend more time in the 
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Xillybus write function. As expected, the performance of the hardware ciphers are 

even more diminished compared to the software+ ciphers. The speedups of the 

hardware ciphers relative to the software+ cipher is shown in Figure 9.19 (C) and 

(D). The speedups for encryption and decryption are about 0.005x for the ECB and 

CBC ciphers and about 0.125x for the CTR cipher. 
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(C) (D) 

Figure 9.16  (A) Encryption Throughput of Software Ciphers (File), (B) Decryption 

Throughput of Software Ciphers (File), (C) Encryption Throughput of Software+ 

Ciphers (File), (D) Decryption Throughput of Software+ Ciphers (File) 
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Figure 9.17  (A) Encryption Throughput of Hardware Ciphers (File), (B) Decryption 

Throughput of Hardware Ciphers (File) 
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(A) (B) 

Figure 9.18  (A) Encryption Speedup of Software+ Ciphers (File), (B) Decryption 

Speedup of Software+ Ciphers (File) 
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(C) (D) 

Figure 9.19  (A) Encryption Speedup of Hardware Ciphers (File), (B) Decryption 

Speedup of Hardware Ciphers (File), (C) Encryption Speedup of Hardware Ciphers 

relative to Software+ Ciphers (File), (D) Decryption Speedup of Hardware Ciphers 

relative to Software+ Ciphers (File) 
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9.2.4 Results for Hardware Sink Test using OpenSSL Extension Application 

The results for the hardware sink test using the OpenSSL extension software 

application are shown in Figure 9.20 through Figure 9.22. Figure 9.20 (A) and (B) 

show the throughputs of the software ciphers which turned out to be roughly the 

same as for the file encryption/decryption test except a little slower due to the added 

step of sending the data to the hardware sink. The throughputs for the ECB and 

CBC ciphers are about 215 MB/s and 275 MB/s for encryption and decryption, 

respectively. The CTR cipher has a throughput of 325 MB/s for both operations. 

Figure 9.20 (C) and (D) show the throughputs for the software+ ciphers. The 

software+ ciphers achieve throughputs for encryption and decryption of about 1 

GB/s; however, the CBC cipher only has a throughput of 800 MB/s for encryption. 

These throughputs are much less than for the file encryption/decryption test which 

is due to having to send the data across the bus to the hardware sink. The DMA 

buffers and PCIe bus become the bottleneck for this test and cause the throughput 

for the software+ ciphers to decrease dramatically. Lastly, the throughputs of the 

hardware ciphers are shown in Figure 9.21. The CTR cipher has a throughput of 

about 580 MB/s; whereas, the ECB and CBC ciphers only have throughputs of about 

20 MB/s. 

Figure 9.22 (A) and (B) show the speedups achieved by the hardware ciphers 

relative to the software ciphers for encryption and decryption, respectively. The plots 

show that the ECB and CBC ciphers have a speedup of about 0.1x and the CTR 

cipher has a speedup of about 1.5x. The speedups of the hardware ciphers relative to 

the software+ ciphers are shown in Figure 9.22 (C) and (D). The ECB and CBC 

ciphers have a speedup of 0.02x and the CTR cipher has a speedup of 0.5x. This 
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illustrates that the cost of having to transfer data across the PCIe bus is very costly 

to performance over executing the operations locally to the processor with AESNI. 
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(A) (B) 

  
(C) (D) 

Figure 9.20  (A) Encryption Throughput of Software Ciphers (HW Sink), (B) 

Decryption Throughput of Software Ciphers (HW Sink), (C) Encryption Throughput 

of Software+ Ciphers (HW Sink), (D) Decryption Throughput of Software+ Ciphers 

(HW Sink) 
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(A) (B) 

Figure 9.21  (A) Encryption Throughput of Hardware Ciphers (HW Sink), (B) 

Decryption Throughput of Hardware Ciphers (HW Sink) 
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(A) (B) 

  
(C) (D) 

Figure 9.22  (A) Encryption Speedup of Hardware Ciphers (HW Sink), (B) 

Decryption Speedup of Hardware Ciphers (HW Sink), (C) Encryption Speedup of 

Hardware Ciphers relative to Software+ Ciphers (HW Sink), (C) Decryption Speedup 

of Hardware Ciphers relative to Software+ Ciphers (HW Sink) 
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CHAPTER 10  

 

FUTURE WORK AND CONCLUSIONS 

 

For this thesis, a heterogeneous Zynq-7000 APSoC is used to implement 

hardware accelerated ciphers for the ECB, CBC, and CTR cipher modes. The 

performance of the hardware accelerated ciphers are compared to the software 

ciphers from the OpenSSL cryptographic library using metrics of execution time, 

throughput, and speedup. Performance evaluations are completed for both 

embedded and workstation computing environments. The Zedboard development 

platform is used for implementing the hardware accelerated ciphers in an embedded 

environment. The ARM processor of the Zynq-7000 is used on the Zedboard as the 

host processor. The ZC706 development board is used for implementing the 

hardware accelerated ciphers in a workstation environment. Only the FPGA fabric 

of the Zynq-7000 is used on the ZC706 board and the Intel processor of the 

workstation is the host processor. 

Two different software applications are used for testing the performance of 

the software and hardware ciphers. One application is used for attempting to 

maximize the throughput of the hardware accelerated ciphers while the second 

application is used for simplifying the programming interface for accessing both the 

software and hardware ciphers. There are also two different tests that are run by 

each software application. The first is just a basic file encryption/decryption where 

data is either encrypted or decrypted from an input file and the resultant data is 

written to an output file. This test simulates the case of protecting data-at-rest on a 
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computing platform. The second test is a hardware sink test which simulates the 

case of protecting data that will be transmitted to some platform external to the host 

platform. 

The results of this thesis show that the hardware accelerated ciphers on the 

embedded platform experienced significant performance improvements over the 

software ciphers; however, the same hardware accelerated ciphers did not achieve 

significant performance improvements on the workstation platform. On the 

embedded Zedboard platform, the ECB and CBC ciphers achieved a maximum 

speedup of about 30x with a maximum throughput of about 450 MB/s. The CTR 

cipher achieved a maximum speedup of about 28x compared to its software 

counterpart with a maximum throughput of about 500 MB/s. On the workstation 

platform the hardware accelerated ciphers do not offer any performance 

improvement. Thus, the ECB and CBC ciphers achieved a maximum speedup of 

about 0.1x relative to the software ciphers and about 0.02x relative to the software+ 

ciphers. The ECB and CBC ciphers achieved a maximum throughput of about 22 

MB/s. The hardware-accelerated CTR cipher achieved a maximum speedup of about 

1.5x relative to the corresponding software CTR cipher and 0.5x versus the 

software+ CTR cipher. The CTR cipher achieved a maximum throughput of about 

500 MB/s. 

The overall conclusion that can be made from the work accomplished in this 

thesis is that the hardware accelerated ciphers are much more beneficial when used 

in an embedded environment than in a workstation environment. Embedded 

computing platforms are usually resource limited and cannot afford to have a very 

powerful processor due to power limitations; therefore, it becomes very 

advantageous to offload computationally intensive operations, such as cryptographic 
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operations, to an alternative computing platform that could perform such operations 

faster while consuming less power. On the other hand, the processors in a 

workstation environment, along with modern cryptographic hardware extensions, 

perform these operations at a very high level which makes it difficult to use off-chip 

alternative platforms for these operations and achieve significant performance 

improvements. 

Some future efforts that could emanate from the work accomplished in this 

thesis could include trying to modify the ciphers in the FPGA design to improve 

performance. This could involve either using other open-source IP core(s) that have 

better performance statistics through higher operational clock rates, shorter/longer 

pipelines, or better optimized algorithms. A custom AES block cipher core could be 

developed to meet new/improved design and performance criteria if no open-source 

IP cores are available to meet the criteria. One could also explore the possibility of 

implementing the ECB cipher with a fully pipelined AES core which could elevate 

its performance to be comparable to the CTR cipher in the design used in this thesis. 

Another possible option for future work could be to experiment with altering the 

parameters in the Xillybus IP Core Factory [12] to increase the size of the DMA 

buffers in RAM and DMA FIFOs on the FPGA to try and improve the effective 

throughput of the bus architectures. Other future work could involve using the 

ZC706 development board with the ARM processors as the host for the design and 

utilizing the larger FPGA for allocating more resources to the ciphers for a potential 

performance improvement. Lastly, work could be done to improve the fidelity of the 

timing measurements with the experimental setup in order to remove any affects 

the file I/O operations have on the measured execution times for the ciphers. 
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