
SPEC CPU2017: Performance, Event, and Energy
Characterization on the Core i7-8700K

Ranjan Hebbar S R
Electrical and Computer Engineering,

The University of Alabama in Huntsville;
rr0062@uah.edu

Aleksandar Milenković
Electrical and Computer Engineering,

The University of Alabama in Huntsville;
milenka@uah.edu

ABSTRACT
Computer engineers in academia and industry rely on a stand-
ardized set of benchmarks to quantitatively evaluate the perfor-
mance of computer systems and research prototypes. SPEC
CPU2017 is the most recent incarnation of standard benchmarks
designed to stress a system’s processor, memory subsystem, and
compiler. This paper describes the results of measurement-based
studies focusing on characterization, performance, and energy-
efficiency analyses of SPEC CPU2017 on the Intel’s Core i7-
8700K. Intel and GNU compilers are used to create executable
files utilized in performance studies. The results show that exe-
cutables produced by the Intel compilers are superior to those
produced by GNU compilers. We characterize all the bench-
marks, perform a top-down microarchitectural analysis to identi-
fy performance bottlenecks, and test benchmark scalability with
respect to performance and energy. Findings from these studies
can be used to guide future performance evaluations and com-
puter architecture research.

CCS CONCEPTS
• General and reference → Measurement; Evaluation; Per-
formance; Metrics; • Computer systems organization →
Multicore architectures • Hardware → Energy metering

KEYWORDS
Benchmarks, Energy-efficiency, Microarchitectural analysis.

ACM Reference format:

R. Hebbar and A. Milenković. 2019. SPEC CPU-2017: Performance, Event
and Energy Characterization on the Core i7-8700K. In Proceedings of 10th
ACM/SPEC International Conference on Performance Engineering, Mumbai,
India, April 2019, 8 pages. DOI: http://dx.doi.org/10.1145/3297663.3310314

1 INTRODUCTION
Computing has been constantly evolving as technology, applica-
tions, and markets continue to change and advance. The demise
of Moore’s and Dennard’s Laws that for long described the semi-
conductor scaling is accompanied by perhaps even more dra-
matic changes in markets and applications. Mobile, IoT, and

cloud computing promise to be major drivers of innovations in
years to come. Still, processors that power contemporary laptop,
desktop, and server computers remain one of the most important
components in computing ecosystems. Understanding their per-
formance and limitations is important for application developers,
system analysts, and computer designers alike.

Benchmarking is the most widely used technique for measur-
ing and comparing performance across different architectures
[13]. We rely on it to evaluate current systems for bottlenecks
and proposed enhancements in future systems. It is thus of ut-
most importance to have standardized benchmarks that are rep-
resentative of real-life applications. Standardized Performance
Evaluation Corporation (SPEC) is one of the most successful
efforts in standardizing benchmark suites and SPEC CPU
benchmarks have been consistently used by industry and aca-
demia to evaluate performance of modern processors [13]. Stud-
ies conducted on previous generations of SPEC CPU have been
useful tools for evaluating the improvements in computer sys-
tems. Each new generation of SPEC CPU benchmarks has been
more complex with larger input sets, spanning more diverse
application domains than its predecessors [8]. Characterization
studies on CPU2000 and CPU2006 have shown that they match
real-life application trends [4] [5].

SPEC CPU2017 is the most recent incarnation of standard
benchmarks designed to stress a system’s processor, memory
subsystem, and compiler. It includes four benchmark suites or-
ganized in floating-point and integer speed suites, used for com-
paring time for a computer to complete a single task, and float-
ing-point and integer rate suites used to measure the throughput
or work per unit time. Reflecting a shift in computing from sin-
gle-core to multicores, CPU2017 speed suites include a significant
number of benchmarks that are multithreaded.

There have been several academic studies of the SPEC
CPU2017. Studies from the University of Texas [7] and the Uni-
versity of Arizona [6] focus on reducing the working set by us-
ing statistical techniques to identify redundant benchmarks and
input sets. Both studies used the GNU’s C/C++ and Fortran com-
pilers in their analyses. However, almost all reportable runs on
the SPEC website rely on Intel’s C/C++ and Fortran compilers.
Other studies have explored expanding the workloads of the
benchmarks [1].

This paper aims to provide a comprehensive SPEC CPU2017
performance analysis and characterization using a workstation
with a recent Intel’s i7 8700K processor. The paper encompasses
the following aspects of performance evaluation. (a) We perform
performance comparison of CPU2017 executables created by
Intel and GNU compilers using SPEC derived performance met-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

ICPE ’19, April 7-11, 2019, Mumbai, India.

© 2019 Association of Computing Machinery.

ACM ISBN 978-1-4503-6239-9/19/04...$15.00.

DOI: http://dx.doi.org/10.1145/3297663.3310314

rics (Section 3). (b) We perform a general top-view characteriza-
tion of all the individual benchmarks by counting the instruc-
tions, branch instructions, memory reads and writes, as well as
misses in branch predictor structures and cache hierarchy (Sec-
tion 4). (c) We perform an in-depth performance analysis using
Intel’s Top-down Microarchitectural Analysis Method to identify
bottlenecks in Core i7-8700K (Section 5). (d) Finally, we perform
analysis of scalability in the context of speed, throughput, and a
combined energy delay metric, while varying the number of
threads for speed benchmarks and the number of copies for rate
benchmarks (Section 6). Using speedup metrics, defined in Sec-
tion 2.4, that capture the scalability of individual speed and rate
benchmarks as a function of the number of threads and copies,
respectively, the benchmarks are classified into those that “scale
very well,” “scale moderately,” and those that “scale poorly”.

The main insights from these studies are as follows. (a) We
find that Intel compilers produce CPU2017 executables that are
faster than the equivalent GNU executables, on average ~65% for
the floating-point suites and ~25% for the integer suites, mainly
due to the efficient utilization of advanced vector extensions in
the instruction set. (b) The floating-point benchmarks are largely
bounded by stalls in memory hierarchy and limited memory
bandwidth. The integer benchmarks are bounded by front-end
stalls and memory bound stalls. (c) We find that performance of
a few floating-point speed benchmarks scales very well with an
increase in the number of threads, whereas a significant number
of floating-point and integer rate benchmarks scales very well
with an increase in the number copies. Good performance scal-
ing typically results in increased energy-efficiency. Benchmarks
that are bounded by limited memory bandwidth scale poorly in
performance and energy and should not be run in multithreaded
or multi-copy configurations.

2 BACKGROUND, MOTIVATION AND GOALS

2.1 SPEC CPU2017
The SPEC CPU2017 contains 43 benchmarks, organized into four
suites as shown in Table 1. The fp_speed/fp_rate include bench-
marks with predominantly floating-point data types designed to
stress speed and throughput of modern computers, respectively,
whereas int_speed/int_rate include benchmarks with predomi-
nantly integer data types. The benchmarks written in C, C++,
and Fortran programming languages are derived from a wide
variety of application domains.

A single copy of a speed benchmark (name ending with a suf-
fix “_s”), SBi, is run on a test machine using the reference input
set; the SPECspeed(SBi) metric reported by the running script is
calculated as the ratio of the benchmark execution times on the
reference machine [14] and the test machine, 𝑇(𝑅𝑒𝑓) 𝑇(𝑇𝑒𝑠𝑡)⁄ . A
composite single number is also reported for an entire suite; it is
calculated as the geometric mean of the individual SPECspeed
ratios of all benchmarks in that suite. When running speed
benchmarks, a performance analyst has an option to specify the
number of OpenMP threads, NT, as many of benchmarks support
multithreaded execution. Multiple copies (NC) of a rate bench-
mark (name ending with a suffix “_r”), RBi, are typically run on a

test machine, and the SPECrate(RBi, NC) metric is defined as the
ratio of the execution times of a single-copy on the reference
machine and NC-copy on the test machine, multiplied by the
number of copies: 𝑁𝐶 ∙ 𝑇(𝑅𝑒𝑓, 1) 𝑇(𝑇𝑒𝑠𝑡, 𝑁𝐶)⁄ .

Table 1: CPU2017 Benchmarks [14]
SPECrate 2017
Floating Point

SPECspeed 2017
Floating Point

SPECrate 2017
Integer

SPECspeed 2017
Integer

503.bwaves_r 603.bwaves_s 500.perlbench_r 600.perlbench_s
507.cactuBSSN_r 607.cactuBSSN_s 502.gcc_r 602.gcc_s
508.namd_r 505.mcf_r 605.mcf_s
510.parest_r
511.povray_r
519.lbm_r 619.lbm_s 520.omnetpp_r 620.omnetpp_s
521.wrf_r 621.wrf_s
526.blender_r 523.xalancbmk_r 623.xalancbmk_s

527.cam4_r 627.cam4_s 525.x264_r 625.x264_s
 628.pop2_s 531.deepsjeng_r 631.deepsjeng_s
538.imagick_r 638.imagick_s
544.nab_r 644.nab_s 541.leela_r 641.leela_s
549.fotonik3d_r 649.fotonik3d_s 548.exchange2_r 648.exchange2_s

554.roms_r 654.roms_s 557.xz_r 657.xz_s

2.2 System Under Test
The studies are performed on a workstation built around an
Intel’s 8th generation processor Core i7-8700K. It is based on
Coffee Lake architecture and is manufactured using Intel’s
14nm++ technology node [15]. The processor includes six 2-way
hyperthreaded physical cores for a total of twelve logical proces-
sor cores. Each processor core includes separate 8-way set-
associative 32 KiB level 1 caches for instructions (L1I) and data
(L1D) and a 4-way 256 KiB unified level 2 cache (L2). The last
level cache (LLC) of 12 MiB is shared among all processor cores
and is built as a 16-way set-associative structure. The processor’s
nominal clock frequency is 3.70 GHz; however, a single core
turbo boost frequency can reach 4.70 GHz. The workstation in-
cludes 32 GiB DDR4 2400MHz RAM memory. The integrated
memory controller is configured as dual-channel with a maxi-
mum bandwidth of 41 GiB/s. The workstation runs Ubuntu 16.04
LTS with Linux kernel 4.4.0. The native frequencies of the pro-
cessor and memory are not altered, allowing the frequency gov-
ernor to change frequency as required.

2.3 Tools and Evaluation Methods
The measurements performed in this study rely on SPEC utilities
to report execution times and SPEC CPU composite performance
metrics. In addition, a set of tools for event-based sampling and
profiling is used, including Linux utilities perf [16] and likwid
[9], as well as Intel VTune Amplifier [17]. These tools interface
and gather information from on-chip performance monitoring
units (PMUs) that are a part of modern processors’ fabric. Perf
and likwid-perfctr are used to collect important events such as
the number of clock cycles, instructions retired, retired branches,
and others over complete benchmark runs. Likwid-powermeter, a
tool that accesses RAPL counters for measuring power and ener-
gy, is used in power profiling [11]. Similar to the runcpu utility,
all the benchmarks are run three times and the results from the
median execution time are reported in this paper. We find the
differences between runs to be negligible (~2%).

Intel VTune Amplifier can be used to locate or determine as-
pects of the code and system, such as hot-spots in the applica-
tion; hardware-related issues in code such as data sharing, cache
misses, branch misprediction, and others; and thread activity and
transitions such as migrations and context-switches. In this
study we use General Exploration analysis to understand how
efficiently the code passes through the core pipeline. During the
General Exploration analysis, Intel VTune Amplifier collects a
complete list of events for analyzing a typical application. It cal-
culates a set of predefined ratios and facilitates identifying
hardware-level performance problems. For modern microarchi-
tectures starting with Ivy Bridge, General Exploration is based on
the Top-down Microarchitecture Analysis Method (TMAM) [12].

Superscalar processors can be conceptually divided into the
front-end and the back-end. The front-end is where instructions
are fetched and decoded into micro-operations that constitute
them. The back-end is where the required computation is per-
formed. Each clock cycle, each processor core in Core i7-8700K
can fill up to five of its pipeline slots with useful micro-
operations. Therefore, for any time interval, it is possible to de-
termine the maximum number of pipeline slots that could have
been filled in and issued. The TMAM analysis performs this es-
timate and breaks up all pipeline slots into four categories: (i)
Pipeline slots containing useful work that are issued and retired
(Retired); (ii) Pipeline slots containing useful work that are issued
and canceled (Bad Speculation); (iii) Pipeline slots that could not
be filled with useful work due to problems in the front-end
(Front-End Bound); and (iv) Pipeline slots that could not be filled
with useful work due to structural and data hazards in the back-
end (Back-End Bound).

2.4 Goals and Metrics
This paper aims to provide a comprehensive evaluation of the
SPEC CPU2017 benchmarks when executed on the most recent
Intel Core i7-8700K processor. Specifically, we focus on answer-
ing the following questions.

1. What is the impact of compilers on performance metrics? The
SPEC CPU2017 benchmarks are compiled using the Intel Parallel
Studio XE 18.0.1 and GNU compilers 5.5.0 with standard optimi-
zation parameters similar to those in the configuration files pro-
vided by SPEC (using –O3 optimization level).

2. What are the main characteristics of the SPEC benchmarks?
To answer this question, we use the Linux perf and likwid tools
to determine the number of instructions retired, the opcode mix
(branch, load, stores) as well as main parameters capturing the
behavior of branch predictor structures and cache hierarchy.

3. What are performance bottlenecks? Each benchmark is ana-
lyzed using the Intel’s Top-down Microarchitectural Analysis
(TMAM) [12]. Pipeline and clock-cycle views of each benchmark
are used to determine their bottlenecks.

4. How do benchmarks’ performance scale? As many speed
benchmarks are multithreaded, a performance scalability study is
performed by measuring benchmark execution times while vary-
ing the number of threads. To capture scalability of speed
benchmarks when running with NT threads, we use a metric

called 𝑆(𝑆𝐵𝑖, 𝑁𝑇) which is calculated as shown in Eq. (1), where
T(SBi, 1) and T(SBi, NT) are the execution times for the bench-
mark SBi when run with a single and NT threads, respectively.
The speedup metric for an individual SPEC rate benchmark, RBi,
when run with NC copies, 𝑆(𝑅𝐵𝑖, 𝑁𝐶) is calculated as shown in
Eq. (2), where T(RBi, 1) is the execution time when a single copy
of the benchmark is run, and T(RBi, NC) is the execution time
when NC copies of the benchmark are run on the test machine.

 𝑆(𝑆𝐵𝑖 , 𝑁𝑇) = 𝑇(𝑆𝐵𝑖, 1)/𝑇(𝑆𝐵𝑖, 𝑁𝑇) (1)

𝑆(𝑅𝐵𝑖 , 𝑁𝐶) = (𝑁𝐶 ∙ 𝑇(𝑅𝐵𝑖, 1))/𝑇(𝑅𝐵𝑖, 𝑁𝐶) (2)

5. How do benchmarks scale when both performance and energy
are considered? A combined metric called PE is used to capture
both performance and energy efficiency. The PE metric for an
individual SPEC speed benchmark, SBi, running with NT threads,
PE(SBi, NT) is defined as shown in Eq. (3), where E(SBi, NT) is the
processor energy in Joules needed to complete execution of the
benchmark SBi when running with NT threads. To evaluate the
performance and energy efficiency of a benchmark run with NT
threads relative to the run with a single thread, an improvement
metric defined as shown in Eq. (4) is used. A PE.I greater than
one means that runs with NT threads are desirable. The PE metric
for an individual SPEC rate benchmark, RBi, running with NC
copies, PE(RBi, NC) is defined as shown in Eq. (5). To evaluate the
performance and energy efficiency of an NC-copy benchmark
run with respect to a single-copy run, an improvement metric as
shown in Eq. (6) is used.

𝑃𝐸(𝑆𝐵𝑖, 𝑁𝑇) = 1/(𝑇(𝑆𝐵𝑖, 𝑁𝑇) ∙ 𝐸(𝑆𝐵𝑖, 𝑁𝑇)) (3)

𝑃𝐸. 𝐼(𝑆𝐵𝑖, 𝑁𝑇) = 𝑃𝐸(𝑆𝐵𝑖, 𝑁𝑇)/𝑃𝐸(𝑆𝐵𝑖, 1) (4)

𝑃𝐸(𝑅𝐵𝑖, 𝑁𝐶) = 1/(𝑇(𝑅𝐵𝑖, 𝑁𝐶) ∙ 𝐸(𝑅𝐵𝑖, 𝑁𝐶)) (5)

𝑃𝐸. 𝐼(𝑅𝐵𝑖, 𝑁𝐶) = (𝑁𝐶
2 ∙ 𝑃𝐸(𝑅𝐵𝑖, 𝑁𝐶))/𝑃𝐸(𝑅𝐵𝑖, 1) (6)

3 COMPILERS COMPARISON
Table 2 shows the SPECspeed_fp and SPECspeed_int metrics for
the speed benchmarks and the SPECrate_fp and SPECrate_int
metrics for the rate benchmarks compiled by the Intel Parallel
Studio (IPS) and GNU compilers and executed on the test ma-
chine with the number of threads/copies set to 1 and 6 (NT, NC=1,
NT, NC=6). These are higher is better (HB) metrics, a higher speed
metric means that less time is needed to run a benchmark, and a
higher rate metric means that more work is done in unit time

The results for fp_speed benchmarks (Table 2 top, left) show
that the Intel compilers produce executables that run significant-
ly faster than those produced by the GNU compilers. For single-
threaded benchmark runs (NT=1) significant performance im-
provements are observed in all benchmarks, most notably for
603.bwaves_s and 621.wrf_s with over 4 times improvement and
for 628.pop2_s with more than 2 times improvement. When the
number of threads is set to 6 (NT=6), thus matching the number
of physical processor cores, performance of the Intel compiled
executables still exceeds the performance of the corresponding
GNU executables in all the benchmarks, except for 619.lbm_s and
649.fotonik3d_s. Looking at the performance improvements when
increasing the number of threads from 1 to 6, several bench-

marks see significant improvements regardless of the compiler
used, e.g. 644.nab_s (speedup relative to NT=1 is ~5 times for both
compilers sets). The composite SPECspeed_fp is 18.34 for the 6-
threaded vs. 6.09 for single-threaded GNU executable runs (~3
times improvement), whereas it is 24.45 for the 6-threaded and
10.82 for single-threaded Intel executable runs (~2.25 times im-
provement). Thus, the composite SPECspeed_fp for IPS is over
75% higher than for the GNU compilers for single-threaded runs
and over 30% for six-threaded runs.

Regarding the int_speed benchmarks, the results show that
the Intel compilers provide significant performance improve-
ments for several benchmarks, such as 605.mcf_s, 625.x264_s, and
648.exchange2_s. For other benchmarks, the differences are rela-
tively modest in favor of the IPS executables, except for
600.perlbench_s and 602.gcc_s where the GNU executables run
slightly faster. As all the integer benchmarks are single-threaded
except 657.xz_s, increasing NT does not significantly change
SPECspeed_int. The composite SPECspeed_int for single-threaded
runs is 6.31 for GNU and 8.08 for IPS (~25% improvement).

Table 2. SPECspeed{fp,int} and SPECrate{fp,int} for IPS and
GNU executables with 1 and 6 threads/copies

Considering single-copy fp_rate benchmark runs, the Intel
compilers improve performance significantly for several bench-
marks such as 503.bwaves_r, 519.lbm_r, 521.wrf_r, and
527.cams_r. The only benchmark where no significant improve-
ment is observed is 508.namd_s. The composite SPECrate_fp met-
ric shows that the Intel compilers outperform the GNU compilers
by 60% in single-copy runs and by 30% for six-copy runs.

Considering single-copy int_rate benchmark runs, we find
that the Intel executables run significantly faster than the GNU
executables for several benchmarks, e.g., 525.x264_r and
548.exchange_r. However, for 500.perlbench_r and 502.gcc_r the
GNU executables perform better. The composite metric SPE-
Crate_int for the Intel executables is 27% higher than for the
ones generated by the GNU compilers with single-copy runs and
29% for six-copy runs. By analyzing opcode mix of these execut-
ables we find that the main reason for superior performance of

the Intel compilers relative to the GNU compilers is that they
take better advantage of the advanced vector instruction set
extensions. These findings are not a surprise, reportable runs
available on the SPEC CPU2017 page use almost exclusively the
Intel compilers. The rest of our analysis is performed using exe-
cutables produced by the Intel compilers.

4 BENCHMARK CHARACTERIZATION
This section gives the results of the characterization of the SPEC
CPU2017 benchmarks. The single-threaded speed and the single-
copy rate benchmarks, compiled by the Intel compilers, are run
on the test machine. In case of benchmarks that use multiple
input files (e.g., 600_perlbench_s, 602_gcc_s, 603_bwaves_s,
657_xz_s) the combined readings are provided.

Table 3 shows the main characteristics of the benchmarks,
including: (a) the dynamic number of instructions retired (IC –
instruction count); (b) the frequency of retired control-flow in-
structions (Branches); (c) the frequency of branch misses (Branch
misses) that include events caused by misses in branch predictor
structures (BTB, iBTB, RAS) or events where predictor structures
provided incorrect branch target or branch outcome predictions
[10]; (d) the frequency of memory reads and writes (Loads and
Stores); as well as (e) cache misses across the cache hierarchy (L1,
L2, and L3 misses). The instruction count is given in billions and
all other metrics are expressed in units per 1,000 (kilo) retired
instructions (PKI). Branches and Branch misses shed more light
on the processor’s front-end and its ability to provide a steady
supply of decoded instructions to its backend. L1 misses counts
the number of cache misses in L1D and L1I caches and match the
number of references in the L2 cache. L2 misses counts the num-
ber of misses in the private per-core L2 cache, and L3 misses
counts the number of misses in the shared uncore LLC cache.

The dynamic instruction count varies widely across suites
and individual benchmarks within suites. E.g., the average IC is
14.1 trillion for fp_speed (0.96 to 69.1 trillion) and 2.4 trillion for
int_speed benchmarks and significantly smaller for fp_rate and
int_rate (1.68 and 1.52 trillion, respectively). The dynamic ICs
reported in this study are notably lower than the corresponding
ones reported in earlier studies that used GNU compilers [7][6].
This is especially true for a selected set of benchmarks, such as
603.bwaves_s, 621.wrf_s, 625.x264_s, 628.pop2_s, and 654.roms_s.

Several observations can be made regarding the frequency of
branches and branch misses. (a) First, benchmarks in the float-
ing-point suites have a rather low fraction of branches - only
62.9 in fp_speed and 81.7 PKI in fp_rate – and a very small frac-
tion of them result in misses - the average miss rate is 0.64 (from
0 to 3.2) PKI for fp_speed and 1.54 (from 0 to 5.6) PKI for fp_rate.
(b) The integer benchmarks have a significantly higher fraction
of branches, ~180 PKI on average. The benchmarks with a signif-
icant fraction of branch misses are 605.mcf_s/505.mcf_r and
641.leela_s/541.leela_r, are good candidates for studies targeting
front-end architectural improvements.

Benchmarks in the floating-point suites have a relatively high
fraction of loads. Thus, the average number of loads is 431.9 PKI
in fp_speed and 398.1 in fp_rate. The average fraction of memory

fp_speed 1T (gnu) 1T (ips) 6T (gnu) 6T (ips) int_speed 1T (gnu) 1T (ips) 6T (gnu) 6T (ips)

603.bwaves_s 11.61 49.80 34.39 66.75 600.perlbench_s 7.71 7.35 7.72 7.27

607.cactuBSSN_s 10.07 12.55 41.95 48.27 602.gcc_s 11.72 11.35 11.72 11.35

619.lbm_s 5.75 6.55 5.50 5.44 605.mcf_s 9.89 14.96 9.91 15.03

621.wrf_s 3.53 14.48 14.97 35.42 620.omnetpp_s 4.83 5.32 4.84 5.30

627.cam4_s 4.55 6.31 17.80 21.06 623.xalancbmk_s 6.25 6.73 6.19 6.68

628.pop2_s 5.33 11.70 22.88 30.38 625.x264_s 6.27 14.82 6.27 14.82

638.imagick_s 2.99 3.38 15.97 18.01 631.deepsjeng_s 4.90 6.57 4.91 6.56

644.nab_s 6.21 10.13 31.49 53.87 641.leela_s 4.54 5.13 4.53 5.13

649.fotonik3d_s 10.75 14.14 14.04 14.08 648.exchange2_s 8.01 15.07 7.99 14.95

654.roms_s 6.06 10.37 12.61 14.08 657.xz_s 3.30 3.52 10.39 10.90
SPECspeed_fp 6.09 10.82 18.34 24.45 SPECspeed_int 6.31 8.08 7.07 9.02

fp_rate 1C (gnu) 1C (ips) 6C (gnu) 6C (ips) int_rate 1C (gnu) 1C (ips) 6C (gnu) 6C (ips)

503.bwaves_r 20.03 56.25 57.65 63.43 500.perlbench_r 6.87 6.63 33.46 31.96

507.cactuBSSN_r 7.09 8.91 31.39 33.76 502.gcc_r 8.23 7.88 30.12 29.25

508.namd_r 6.00 6.04 32.20 32.17 505.mcf_r 6.62 9.29 20.10 37.59

510.parest_r 7.39 10.82 18.98 20.37 520.omnetpp_r 3.89 3.93 13.00 13.21

511.povray_r 7.40 9.61 39.60 51.68 523.xalancbmk_r 4.53 5.09 18.30 20.04

519.lbm_r 6.44 13.85 6.52 14.24 525.x264_r 6.23 15.88 33.99 85.56

521.wrf_r 3.46 13.99 17.93 31.99 531.deepsjeng_r 4.85 6.15 25.49 32.30

526.blender_r 7.08 7.80 35.34 38.16 541.leela_r 4.41 4.97 24.07 27.09

527.cam4_r 5.75 11.41 28.56 42.40 548.exchange2_r 7.12 13.38 38.91 72.69

538.imagick_r 8.10 11.98 43.07 65.70 557.xz_r 3.84 4.19 17.28 17.92

544.nab_r 5.92 9.27 32.21 50.95 SPECrate_int 5.47 6.95 24.15 31.31

549.fotonik3d_r 12.87 13.68 17.59 18.52

554.roms_r 6.17 10.70 12.60 13.57

SPECrate_fp 7.28 11.82 25.12 32.49

writes is 94.3 in fp_speed and 91.4 in fp_rate. These relatively
frequent memory accesses turn into misses in the cache hierar-
chy. The average fraction of L1 misses is 213.4 for fp_speed and
114 PKI for fp_rate, whereas the average fraction of L2 misses is
54 PKI for fp_speed and 27 for fp_rate. The average fraction of L3
misses is 31.7 for fp_speed and 14.1 for fp_rate. These results re-
flect the fact that the floating-point rate benchmarks have small-
er working sets that fit in the cache hierarchies better than their
speed counterparts. Several benchmarks (both speed and rate
variants), such as bwaves, lbm, fotonik3d, and roms, have a signif-
icant portion of misses across all levels of caches.

Table 3: General Parameters for CPU2017 Benchmarks

Benchmarks in the integer suites have a somewhat smaller
fraction of memory reads (~289.5 PKI) and writes (~116 PKI) than
those in the floating-point suites. The average fraction of L1
misses is 98.7 for int_speed and 88.7 PKI for int_rate, whereas the
average fraction of L2 misses is 31 PKI for int_speed and 27 for

int_rate. The average fraction of L3 misses is 9.4 for int_speed
and 8.2 for int_rate. From these observations, we can conclude
that benchmarks in the integer suites present fewer memory
requests and fewer cache misses are observed. Two benchmarks
that see a bit more cache misses are mcf and omnetpp (both the
speed and rate variants).

5 TMAM ANALISYS
Figure 1 shows the results of TMAM for all the speed bench-
marks executed with one thread (NT=1) as well as the average
instruction per cycle (IPC) on the secondary y-axis. With TMAM,
the product of the number of pipeline slots (5 in Coffee Lake
architecture) and the number of clock cycles needed to execute a
benchmark constitutes 100% of possible pipeline slots. Each pipe-
line slot is then marked as either Retiring (orange), Bad Specula-
tion (gray), Front-End Bound (yellow), or Back-End Bound stalls.
The Back-End Bound stalls are further broken down into (i) Core
Bound stalls (light blue) that are caused by pressures on execu-
tion units or lack of instruction-level parallelism, and (ii) Memory
Bound stalls (royal blue) that are caused by stalls related to cach-
es and memory subsystems. Memory latency and limited
memory bandwidth are major factors contributing to a large
number of Memory Bound slots.

For fp_speed benchmarks, the percentage of Retiring slots var-
ies from as low as 23% in 654.rom_s (IPC=0.81) to 92% in
638.imagick_s (IPC=3.41). There is a strong correlation between
the Retiring slots and IPC – the higher the percentage of Retiring
slots, the higher IPC. Relatively small fractions of pipeline slots
are wasted due to Bad Speculation or Front-end misses. The por-
tion of Back-End Bound slots highly correlates with the number
of cache misses. Thus, the Back-End Bound slots account for a
significant portion of pipeline slots in several benchmarks such
as 619.lbm_s, 649.fotonik3d_s, and 654.rom_s (over 70%). An ex-
ception is 638.imagick_s that has only 5% of Back-End Bound
slots. For the int_speed benchmarks, the portion of slots marked
as Bad Speculation and Front-End Bound is significantly higher
than in fp_speed – the averages are around 15% and 16%, respec-
tively. The percentage of Retiring slots varies from as high as
59% in 625.x264_s (IPC=2.43) to as low as 17% in 620.omnetpp_s
(IPC=0.70). The percentage of Back-End Bound slots is on average
33% for the int_speed benchmarks, and it varies from 9% in
648.exchange2_s to 70% in 623.xalancmbk_s. Averaging across
fp_speed benchmarks, the Memory Bound stalls account for 31%
and Core Bound for 19% of the total slots. For int_speed
benchmarks, the Memory Bound stalls account for 19% and Core
Bound stalls account for 11%.

Whereas the top-level view describes pipeline slot utilization,
it does not directly translate into clock cycles and how they are
utilized. It is important to know where the stalls are as a precur-
sor in finding ways to eliminate them through either software
optimization or future enhancements in hardware. To address
this issue, we consider the breakdown of benchmark execution
using a clock cycles view where clock cycles are marked as either
used (orange) or unused/stalled. A clock-cycle is considered un-
used when no micro-operation begins execution during that
cycle across all ports. The unused clock cycles are further divid-

IC Branches
 Branch

misses
Loads Stores

 L1

misses

 L2

misses

 L3

misses

[Billion] [PKI] [PKI] [PKI] [PKI] [PKI] [PKI] [PKI]

603.bwaves_s 8,816.3 8.6 0.05 715.8 73.5 188.5 57.9 51.7

607.cactuBSSN_s 8,812.9 15.5 0.01 514.0 110.2 109.4 18.5 11.9

619.lbm_s 3,830.4 21.7 0.59 380.2 169.0 466.9 118.2 64.9

621.wrf_s 7,729.1 79.7 0.81 407.4 76.5 130.4 35.2 11.9

627.cam4_s 12,079.9 101.7 0.74 234.7 119.1 66.1 14.6 7.2

628.pop2_s 8,121.8 76.9 0.46 370.7 114.3 236.9 51.3 13.7

638.imagick_s 69,141.7 145.8 0.33 193.9 5.6 31.6 9.9 0.2

644.nab_s 13,489.8 108.2 3.17 369.9 81.7 23.4 4.9 1.4

649.fotonik3d_s 3,315.8 30.6 0.07 558.5 113.4 348.4 89.7 68.7

654.roms_s 5,868.0 40.1 0.19 574.0 79.4 531.9 140.3 85.4

600.perlbench_s 2,741.2 202.5 1.44 296.3 183.6 24.1 6.1 1.4

602.gcc_s 2,549.1 259.9 3.71 308.2 84.3 100.7 28.2 11.2

605.mcf_s 1,193.7 242.0 21.35 353.9 76.9 330.3 108.5 28.5

620.omnetpp_s 1,101.1 220.4 4.54 338.1 173.3 170.5 52.7 33.8

623.xalancbmk_s 964.7 238.6 0.93 283.4 59.3 243.4 88.0 5.1

625.x264_s 1,356.8 78.9 1.32 204.1 80.9 22.8 5.1 1.1

631.deepsjeng_s 1,777.0 129.6 6.01 240.9 104.8 18.8 3.6 3.5

641.leela_s 1,927.5 154.6 16.82 264.8 94.0 10.0 1.5 0.0

648.exchange2_s 2,062.6 113.1 3.37 363.7 224.0 0.2 0.0 0.0

657.xz_s 7,723.5 152.6 11.10 242.3 79.3 66.4 21.1 9.6

503.bwaves_r 1,241.9 10.7 0.04 651.2 88.8 236.2 78.8 61.6

507.cactuBSSN_r 1,065.3 17.1 0.02 513.0 112.0 132.6 18.2 8.5

508.namd_r 1,959.1 20.7 0.97 373.9 111.6 31.6 1.7 0.6

510.parest_r 2,368.7 104.0 4.68 421.9 36.5 157.4 48.8 1.3

511.povray_r 2,609.4 159.5 1.09 382.6 129.3 58.3 4.4 0.0

519.lbm_r 567.3 20.4 0.03 408.1 131.5 221.3 45.4 52.7

521.wrf_r 1,343.1 78.1 0.89 411.3 75.8 135.1 36.1 11.6

526.blender_r 1,688.8 163.8 5.57 336.4 49.4 28.3 9.5 1.4

527.cam4_r 1,500.0 115.0 1.14 285.7 99.3 111.1 25.7 3.3

538.imagick_r 2,508.4 127.7 0.96 196.8 79.5 17.9 2.1 0.0

544.nab_r 1,383.0 108.4 4.40 348.6 95.3 30.1 5.2 1.2

549.fotonik3d_r 1,401.9 25.7 0.07 581.1 116.1 330.9 118.3 62.5

554.roms_r 730.0 39.8 0.10 591.1 82.4 512.8 153.5 49.6

500.perlbench_r 2,741.4 202.8 1.44 296.3 183.4 24.4 6.2 1.4

502.gcc_r 1,172.0 239.1 3.58 286.6 130.0 105.8 32.0 9.5

505.mcf_r 677.4 226.6 22.74 336.5 118.3 241.1 70.6 24.3

520.omnetpp_r 1,101.1 220.4 4.52 338.1 173.3 171.8 53.0 34.2

523.xalancbmk_r 964.2 238.5 0.95 283.4 59.3 246.5 88.7 5.2

525.x264_r 1,275.5 81.1 1.40 216.2 86.8 25.4 5.8 1.1

531.deepsjeng_r 1,525.9 129.7 6.25 239.9 104.1 15.5 2.8 2.3

541.leela_r 1,927.9 154.6 16.82 264.8 94.0 10.7 1.6 0.0

548.exchange2_r 2,062.6 113.1 3.37 363.7 224.0 0.2 0.0 0.0

557.xz_r 1,798.6 181.6 6.34 249.0 51.5 45.8 12.5 3.6

Benchmarks

int_rate

fp_rate

int_speed

fp_speed

ed into L1 bound, L2 bound, LLC/L3 bound, DRAM bound, store
bound, and other unused (e.g., functional units are not available).
A fully optimized application should not waste any cycles. The
unused cycle ratio represents the room for improvement in both
software and hardware. Figure 2 shows the clock cycle view for
the speed suites. Most of the benchmarks spend a significant
portion of time in main memory (DRAM). Increasing memory
speed and bandwidth could help mitigate this issue.

Figure 1: Top Level View of Speed Benchmarks

Figure 2: Clock Cycle view of Speed Benchmarks

Figure 3 shows the results of TMAM for all the rate bench-
marks executed with one copy. Looking at fp_rate, the average
IPC is 1.83, ranging from 1.01 (554.roms_r) to 2.70 (508.namd_r).
Retiring slots average 49%, whereas Front-End Bound and Bad
Speculation average 5% and 6%, respectively. However, the Back-
End Bound accounts for 40% of slots. The correlation between
Retiring slots and the IPC metric seen earlier for the speed
benchmarks holds true for the rate benchmarks, too. Thus,
508.namd_r has 75% of slots in Retiring which translates into IPC
of 2.70. On the other side, 549.fotonik3d_r and 554.roms_r have
only 28% of slots in Retiring, which translates into IPC of 1.04
and 1.01 respectively. Expectedly, the majority of benchmarks in
the fp_rate suite is Back-End Bound, e.g., 549.fortonik3d_r and
554.roms_r has 70% of slots. With respect to int_rate, the average
IPC is 1.53, ranging from 0.70 (520.omnetpp_r) to 2.46
(525.x264_r). With 49% of Retiring slots, int_rate has a higher
percentage of Bad Speculation and Front-End Bound stalls at 16%
for both. The Back-End Bound stalls account for 31%. Averaging

across fp_rate, the Memory Bound stalls account for 22% and Core
Bound for 18% of the total slots. For int_rate the Memory Bound
stalls account for 19% and Core Bound stalls account for 11%.
Figure 4 shows a clock cycle view of each of the rate bench-
marks. For many rate benchmarks, the breakdown is similar to
their speed counterparts. In some cases, the stalls in the back-end
are less frequent than in their counterparts because inputs are
smaller and thus result in fewer misses in caches.

Figure 3: Top Level View of Rate Benchmarks

Figure 4: Clock Cycle View of Rate Benchmarks

6 SCALABILITY STUDY RESULTS
This section explores the impact of thread/copy count on per-
formance and energy consumption [2]. To eliminate the impact
of uneven distribution of turbo bins in the Intel’s Turbo Boost
technology, where the processor clock frequency increases are a
function of the number of active processor cores, the processor
clock frequency is set to 4.30 GHz across all the cores, regardless
of the number of threads or copies [3]. Temperature and fre-
quency monitoring show the peak package temperature to be
~57C with no thermal throttling. The execution time is obtained
directly from the SPEC CPU2017 runcpu utility when bench-
marks are run with the reference data inputs. Table 4 shows the
speedup, S, defined in Eq. (1) for fp_speed and int_speed and in
Eq. (2) for fp_rate and int_rate, when the number of
threads/copies is 1, 2, 4, 6, 8, 10, and 12. The benchmarks are
grouped based on the speedup achieved when running with 6
threads/copies, into those that “scale very well”, S 4, “scale
moderately”, 2 S < 4, and those that “scale poorly” (S < 2). We

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
0
3
.b
w
a
ve
s_
s

60
7
.c
a
ct
uB

SS
N
_s

61
9
.lb
m
_s

62
1
.w
rf
_s

6
2
7
.c
a
m
4
_s

62
8
.p
op

2_
s

63
8
.im

a
gi
ck
_s

6
4
4
.n
a
b
_s

6
4
9
.f
o
to
n
ik
3
d
_s

65
4
.r
o
m
s_
s

6
0
0
.p
er
lb
en
ch
_s

6
0
2
.g
cc
_s

6
0
5
.m

cf
_s

62
0
.o
m
n
et
p
p_
s

6
2
3
.x
a
la
n
cb
m
k_
s

62
5
.x
26
4_
s

6
3
1
.d
ee
p
sj
en
g
_s

6
4
1
.le
el
a
_s

64
8
.e
xc
ha

ng
e2
_s

65
7
.x
z_
s

fp_speed int_speed

IPC

Top Level View of Single-Threaded Speed Benchmarks on Core i7-8700K

Retiring Bad Speculation Front-End Bound Memory Bound Core Bound IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60
3
.b
w
av
es
_s

6
0
7
.c
a
ct
u
B
SS
N
_s

6
1
9
.lb
m
_s

6
2
1
.w
rf
_s

62
7
.c
a
m
4_
s

6
2
8
.p
o
p
2
_s

6
3
8
.im

a
g
ic
k_
s

64
4
.n
ab

_s

6
4
9
.f
o
to
n
ik
3
d
_s

6
5
4
.r
o
m
s_
s

6
0
0
.p
er
lb
en
ch
_s

60
2
.g
cc
_s

60
5
.m

cf
_s

6
2
0
.o
m
n
et
p
p
_s

6
2
3
.x
a
la
n
cb
m
k_
s

6
2
5
.x
2
6
4
_s

6
3
1
.d
ee
p
sj
en
g
_s

64
1
.le
el
a
_s

6
4
8
.e
xc
h
a
n
g
e2
_s

6
5
7
.x
z_
s

fp_speed int_speed

Clock Cycle View of Single-Threaded Speed Benchmarks on Core i7-8700K

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound Other Unused Used Cycles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50
3
.b
w
av
es
_r

50
7
.c
a
ct
uB

SS
N
_r

50
8
.n
am

d_
r

5
1
0
.p
a
re
st
_r

5
1
1
.p
o
vr
a
y_
r

51
9
.lb
m
_r

5
2
1
.w
rf
_r

5
2
6
.b
le
n
d
er
_r

5
2
7
.c
a
m
4
_r

5
3
8
.im

a
g
ic
k_
r

5
4
4
.n
a
b
_r

5
4
9
.f
o
to
n
ik
3
d
_r

55
4
.r
o
m
s_
r

5
0
0
.p
er
lb
en
ch
_r

5
0
2
.g
cc
_r

5
0
5
.m

cf
_r

52
0
.o
m
n
et
p
p_
r

5
2
3
.x
a
la
n
cb
m
k_
r

5
2
5
.x
2
6
4
_r

5
3
1
.d
ee
p
sj
en
g
_r

5
4
1
.le
el
a
_r

54
8
.e
xc
ha

ng
e2
_r

55
7
.x
z_
r

fp_rate int_rate

IPC

Top Level View of Single-Copy Rate Benchmarks on Core i7-8700K

Retiring Bad Speculation Front-End Bound Memory Bound Core Bound IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
03
.b
w
a
ve
s_
r

5
07
.c
a
ct
u
B
SS
N
_r

5
08
.n
a
m
d
_r

5
10
.p
a
re
st
_r

5
11
.p
o
vr
ay
_
r

5
19
.lb
m
_r

5
21
.w
rf
_r

5
26
.b
le
n
de
r_
r

5
27
.c
a
m
4
_r

5
38
.im

a
g
ic
k_
r

5
44
.n
a
b_
r

5
49
.f
o
to
ni
k3
d
_r

5
54
.r
o
m
s_
r

5
00
.p
er
lb
en
ch
_r

5
02
.g
cc
_r

5
05
.m
cf
_r

5
20
.o
m
n
et
p
p
_r

5
23
.x
a
la
n
cb
m
k_
r

5
25
.x
26
4_
r

5
31
.d
ee
p
sj
en
g
_r

5
41
.le
el
a
_r

5
48
.e
xc
ha
n
g
e2
_r

5
57
.x
z_
r

fp_rate int_rate

Clock Cycle View of Single-Copy Rate Benchmarks on Core i7-8700K

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound Other Unused Used Cycles

also identify benchmarks that continue scaling when the number
of threads/copies exceeds the number of physical cores.

Speedup for fp_speed/int_speed. For fp_speed just two
benchmarks can be classified as those that scale very well
(638.imagick_s and 644.nab_s). Their speedup continues increas-
ing even when the number of threads exceeds the number of
physical cores. Benchmarks that belong to the moderately scal-
ing group (607.cactuBSSN_s, 621.wrf_s, 627.cam4_s, and
628.pop2_s) see little or no benefits when the number of threads
exceeds the number of physical cores. The remaining bench-
marks scale poorly (603.bwaves_s, 619.lbm_s, 649.fotonik3d_s, and
654.roms_s) and their performance degrades as the number of
threads exceeds the number of physical cores. For 619.lbm_s
running with NT>1 will hurt performance (S<1). In the case of a
perfectly parallelizable application that is memory intensive,
increase in the number of threads might end up hurting perfor-
mance. The fp_speed benchmarks with poor scalability have a
significant number of cache misses and are bounded by limited
memory bandwidth. The integer benchmarks are not parallel-
ized, except 657.xz_s that scales moderately.

Speedup for fp_rate. For fp_rate a number of benchmarks
scales well, including 507.cactuBSSN_r, 508.namd_r, 511.povray_r,
526.blender_r, 527.cam4_r, 538.imagick_r, and 544.nab_r. These
benchmarks scale up until the number of copies matches the
number of logical cores and are not bounded by memory. Two
benchmarks 510.parest_r and 521.wrf_r belong to the moderately
scaling group. The remaining benchmarks are bounded by off-
chip memory accesses and scale poorly (503.bwaves_r, 519.lbm_r,
549.fotonik3d_r, and 554.roms_r).

Speedup for int_rate. For int_rate, the speedup of 12-copy
benchmarks is found to be the best, ranging from 3.57
(520.omnetpp_r) to 7.78 (541.leela_r). All benchmarks scale very
well except 520.omnetpp_r that scales moderately. All bench-
marks except 505.gcc_r and 505.mcf_r continue to scale when the
number of copies exceeds the number of physical cores.

Looking at the scalability results for the test machine, we see
that the best performance is achieved when NT=6 for fp_speed
and NT=12 for int_speed. For fp_rate and int_rate the best per-
formance is achieved when NC=12. Hence, for PE.I analysis we
consider runs with the number of thread/copies set to 1, 6, and
12. Table 5 shows the execution time, energy, the speedups S,
and the PE.I metrics, when the number of threads/copies is set to
1, 6, and 12. When PE.I > S >1 for a given benchmark, that means
that multithreaded and multi-copy executions not only save
time, but also reduce the overall energy consumed for computa-
tion. We retain the classification of benchmarks from above and
discuss the changes in PE.I.

PE.I for fp_speed/int_speed. The benchmarks that scale very
well in performance (638.imagick_s and 644.nab_s) also reduce
the overall energy, so PE.I > 8 for NT=6. They also take advantage
of hyper-threading when the number of threads exceeds the
number of physical cores, especially 644.nab_s that reaches PE.I
of 12.95 when NT=12. In a group of moderately scaling bench-
marks some of them (607.cactuBSSN_s, 627.wrf_s) provide energy
savings when running with 6 and 12 threads (PE.I > S) and some

of them do not (621.wrf_s, and 628.pop2_s). Finally, the last group
with poorly scaling benchmarks results in energy losses when
increasing the number of threads (PE.I < S). PE.I for these
benchmarks falls far below 1, indicating that multithreaded runs
of these benchmarks are inferior to single-threaded runs when
both performance and energy are considered together. In es-
sence, memory intensive benchmarks scale poorly when the
required memory bandwidth goes beyond the maximum availa-
ble bandwidth, causing significant losses in energy.

Table 4: Speedup, S, of CPU2017 Benchmarks (HB metric)

PE for fp_rate. For fp_rate, all the benchmarks that scale
well provide significant energy savings when running with 6 and
12 copies. The moderately scaling benchmarks have PE.I < S indi-
cating that performance improvements come at the cost of in-
creased overall energy. Finally, the poorly scaling benchmarks
increase the total energy consumed resulting in PE.I to be signif-
icantly lower than S. Resource and memory contention degrades
performance and increases energy overhead to such an extent
that running NC concurrent copies of these benchmarks is inferi-
or to running a single copy NC times sequentially.

PE for int_rate. The int_rate benchmarks all see energy sav-
ings when running with 6 and 12 copies (PE.I > S). These bench-
marks are not memory intensive and do not cause significant
contention on shared resources. As noted in the text above
505.gcc_r and 505.mcf_r has S and PE.I degraded when increasing
the number of copies from 6 to 12.

1 T 2 T 4 T 6 T 8 T 10 T 12 T

603.bwaves_s 1.00 1.44 1.36 1.41 1.41 1.38 1.36

607.cactuBSSN_s 1.00 1.92 3.16 3.57 3.66 3.95 4.34

619.lbm_s 1.00 0.93 0.89 0.87 0.85 0.84 0.81

621.wrf_s 1.00 1.74 2.37 2.43 2.49 2.56 2.61

627.cam4_s 1.00 1.89 2.89 3.38 3.54 3.55 3.56

628.pop2_s 1.00 1.45 2.58 2.58 2.44 2.39 2.32

638.imagick_s 1.00 2.13 3.94 5.44 5.46 5.77 5.97

644.nab_s 1.00 2.10 3.75 5.33 5.83 6.44 7.12

649.fotonik3d_s 1.00 1.09 1.06 1.04 1.03 1.02 0.98

654.roms_s 1.00 1.21 1.45 1.39 1.39 1.37 1.22

int_speed 657.xz_s 1.00 1.85 2.67 3.34 3.64 3.69 3.71

1 C 2 C 4 C 6 C 8 C 10 C 12 C

503.bwaves_r 1.00 1.16 1.17 1.16 1.14 1.15 1.10

507.cactuBSSN_r 1.00 1.91 3.19 4.23 4.33 4.50 4.71

508.namd_r 1.00 2.17 4.00 5.74 6.38 6.52 6.78

510.parest_r 1.00 1.97 2.30 2.09 1.90 1.85 1.63

511.povray_r 1.00 2.12 4.01 5.73 5.97 6.02 6.49

519.lbm_r 1.00 1.19 1.19 1.17 1.14 1.17 1.10

521.wrf_r 1.00 1.90 2.52 2.41 2.28 2.30 2.07

526.blender_r 1.00 2.10 3.77 5.38 5.86 6.03 6.43

527.cam4_r 1.00 2.05 3.42 4.04 3.67 3.60 3.30

538.imagick_r 1.00 2.16 4.00 5.62 5.89 5.95 6.20

544.nab_r 1.00 2.15 4.01 5.75 6.64 6.70 7.23

549.fotonik3d_r 1.00 1.32 1.41 1.40 1.34 1.30 1.22

554.roms_r 1.00 1.56 1.53 1.45 1.30 1.29 1.04

500.perlbench_r 1.00 2.03 3.64 5.00 5.52 5.72 6.03

502.gcc_r 1.00 1.97 3.19 4.03 4.12 3.85 3.58

505.mcf_r 1.00 2.02 3.43 4.51 4.55 4.52 4.48

520.omnetpp_r 1.00 1.82 2.88 3.37 3.49 3.46 3.57

523.xalancbmk_r 1.00 2.01 3.23 4.21 4.63 4.70 4.76

525.x264_r 1.00 2.23 3.97 5.65 6.21 6.40 6.91

531.deepsjeng_r 1.00 2.11 3.78 5.29 6.01 6.15 7.15

541.leela_r 1.00 2.13 3.98 5.73 6.43 7.10 7.98

548.exchange2_r 1.00 2.11 3.99 5.92 6.04 6.25 6.54

557.xz_r 1.00 1.98 3.46 4.70 5.27 5.80 6.10

Threads

fp_speed

Copies

fp_rate

int_rate

Table 5: PE Analysis for CPU2017 Benchmarks

7 CONCLUSIONS
This paper includes a number of experimental studies performed
on a test machine with an Intel’s Core i7-8700K processor when
running CPU2017 benchmarks. The findings of the study are as
follows. (a) Compiler comparison: We determine that Intel com-
pilers produce executables that run faster than those produced
by GNU compilers, mainly due to better utilization of advanced
vector extensions in the Intel64 ISA. (b) Characterization: We
characterize the benchmarks in terms of their resource require-
ments by providing a top-view that includes SPEC metrics, exe-
cution time, and frequency of events with a significant impact on
performance. This characterization may help computer architec-
ture researchers to identify benchmarks that are a suitable target
for their architectural enhancements. (c) TMAM Analysis: Intel’s
Top-down Microarchitecture Analysis Method shows an in-
depth analysis of the utilization of internal processor resources.
These results reveal effectiveness of the i7-8700K pipeline and
bottlenecks exposed by the CPU2017 benchmarks, including a
breakdown to memory bound, core-bound, and front-end bound
pipelines slots. We find that the floating-point benchmarks are
mainly back-end bound (memory and core), whereas the integer

benchmark are bound by the front-end and memory. (d) Scalabil-
ity: We analyze the impact of increasing the number of
threads/copies on performance, energy, and a combined metric
called PE.I that considers the scalability of benchmarks when
both performance and energy efficiency are considered together.
The results reveal how CPU2017 benchmarks scale as we in-
crease the number of threads/copies in i7-8700K and how to
perform trade-offs between energy and power. Considering the
size and complexity of the SPEC CPU2017 benchmark suits, the
scalability findings can be used to guide future architectural
simulations by selecting suitable benchmarks and their running
parameters.

REFERENCES
[1] J. N. Amaral, E. Borin, D. R. Ashley, C. Benedicto, E. Colp, J. H. S. Hoffmam,

M. Karpoff, E. Ochoa, M. Redshaw, and R. E. Rodrigues. 2018. The Alberta
Workloads for the SPEC CPU 2017 Benchmark Suite. In 2018 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
159–168. DOI:https://doi.org/10.1109/ISPASS.2018.00029

[2] A. Dzhagaryan and A. Milenković. 2014. Impact of Thread and Frequency
Scaling on Performance and Energy in Modern Multicores: A Measurement-
based Study. In Proceedings of the 2014 ACM Southeast Regional Conference
(ACM SE ’14), 14:1–14:6. DOI:https://doi.org/10.1145/2638404.2638473

[3] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley. 2011.
Looking Back on the Language and Hardware Revolutions: Measured Power,
Performance, and Scaling ∗. Proceedings of the sixteenth international confer-
ence on Architectural support for programming languages and operating sys-
tems (March 2011), 319–332.

[4] J. L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (September 2006), 1–17.
DOI:https://doi.org/10.1145/1186736.1186737

[5] A. Kejariwal, A. V. Veidenbaum, A. Nicolau, X. Tian, M. Girkar, H. Saito, and
U. Banerjee. 2008. Comparative architectural characterization of SPEC
CPU2000 and CPU2006 benchmarks on the intel® CoreTM 2 Duo processor. In
International Conference on Embedded Computer Systems: Architectures, Mod-
eling, 132–141. DOI:https://doi.org/10.1109/ICSAMOS.2008.4664856

[6] A. Limaye and T. Adegbija. 2018. A Workload Characterization of the SPEC
CPU2017 Benchmark Suite. In 2018 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 149–158.
DOI:https://doi.org/10.1109/ISPASS.2018.00028

[7] R. Panda, S. Song, J. Dean, and L. K. John. 2018. Wait of a Decade: Did SPEC
CPU 2017 Broaden the Performance Horizon? In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 271–282.
DOI:https://doi.org/10.1109/HPCA.2018.00032

[8] T. K. Prakash and L. Peng. 2008. Performance Characterization of SPEC
CPU2006 Benchmarks on Intel Core 2 Duo Processor. In ISAST Trans. Com-
put. Softw. Eng. (1), 36–41.

[9] J. Treibig, G. Hager, and G. Wellein. 2010. LIKWID: A Lightweight Perfor-
mance-Oriented Tool Suite for x86 Multicore Environments. In 2010 39th In-
ternational Conference on Parallel Processing Workshops, 207–216.
DOI:https://doi.org/10.1109/ICPPW.2010.38

[10] V. Uzelac and A. Milenkovic. 2009. Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures. In 2009 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS’09), 207–217. DOI:https://doi.org/10.1109/ISPASS.2009.4919652

[11] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore. 2012. Measuring Energy and Power with PAPI. In 2012
41st International Conference on Parallel Processing Workshops, 262–268.
DOI:https://doi.org/10.1109/ICPPW.2012.39

[12] A. Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In IEEE International Symposium on Performance Analysis of Sys-
tems and Software, 35–44. DOI:https://doi.org/10.1109/ISPASS.2014.6844459

[13] 2010. White-Paper Using SPEC CPU2006 Benchmark Results to Compare the
Compute Performance of Servers.

[14] SPEC CPU® 2017. Retrieved March 19, 2018 from
https://www.spec.org/cpu2017/

[15] Intel® CoreTM i7-8700K Processor Product Specifications. Intel® ARK (Product
Specs). Retrieved March 24, 2018 from https://tinyurl.com/ybcw5vc8

[16] Perf : Linux profiling with performance counters. Perf Wiki. Retrieved March
19, 2018 from https://perf.wiki.kernel.org/index.php/Main_Page

[17] Intel® VTuneTM Amplifier 2018 User’s Guide. Retrieved June 1, 2018 from
https://tinyurl.com/y76ondwo

Time Energy Time Energy Time Energy

[s] [J] [s] [J] [s] [J]

603.bwaves_s 1,230 22,783 873 35,415 904 39,716 1.41 0.91 1.36 0.78

607.cactuBSSN_s 1,498 24,003 419 19,454 345 19,370 3.57 4.41 4.34 5.38

619.lbm_s 844 15,403 976 39,944 1,041 43,748 0.87 0.33 0.81 0.29

621.wrf_s 996 19,333 411 19,974 381 21,301 2.43 2.35 2.61 2.37

627.cam4_s 1,544 27,724 457 22,245 434 24,430 3.38 4.21 3.56 4.04

628.pop2_s 1,105 22,565 429 22,971 477 27,359 2.58 2.53 2.32 1.91

638.imagick_s 4,711 84,870 866 53,047 789 53,612 5.44 8.71 5.97 9.46

644.nab_s 1,887 30,193 354 18,575 265 16,608 5.33 8.66 7.12 12.95

649.fotonik3d_s 667 13,247 644 26,687 679 29,563 1.04 0.51 0.98 0.44

654.roms_s 1,593 32,096 1,147 52,324 1,311 63,978 1.39 0.85 1.22 0.61

600.perlbench_s 247 5,897 244 5,848 243 5,823 1.01 1.02 1.02 1.03

602.gcc_s_a 352 7,715 352 7,718 352 7,716 1.00 1.00 1.00 1.00

605.mcf_s 328 7,263 328 7,164 330 7,230 1.00 1.02 0.99 1.00

620.omnetpp_s 335 7,083 336 7,085 336 7,014 1.00 1.00 1.00 1.01

623.xalancbmk_s 211 4,401 210 4,372 212 4,413 1.00 1.01 0.99 0.99

625.x264_s 131 2,778 130 2,793 130 2,776 1.00 1.00 1.01 1.01

631.deepsjeng_s 240 5,412 241 5,433 241 5,421 1.00 0.99 1.00 1.00

641.leela_s 334 7,503 335 7,525 334 7,506 1.00 0.99 1.00 1.00

648.exchange2_s 196 4,613 197 4,608 196 4,602 1.00 1.00 1.00 1.01

657.xz_s 1,984 30,328 593 21,942 534 20,054 3.34 4.62 3.71 5.62

503.bwaves_r 178 3,740 922 37,596 1,942 88,150 1.16 0.69 1.10 0.56

507.cactuBSSN_r 158 2,661 224 11,727 403 25,743 4.23 5.76 4.71 5.84

508.namd_r 171 3,034 179 11,756 303 23,347 5.74 8.88 6.78 10.57

510.parest_r 262 5,117 754 36,144 1,936 90,892 2.09 1.77 1.63 1.10

511.povray_r 264 5,302 276 19,526 488 40,574 5.73 9.34 6.49 10.18

519.lbm_r 84 1,951 429 20,912 910 50,929 1.17 0.66 1.10 0.51

521.wrf_r 173 3,368 430 21,359 1,002 52,018 2.41 2.28 2.07 1.61

526.blender_r 218 3,872 243 14,150 407 26,578 5.38 8.83 6.43 11.24

527.cam4_r 169 3,247 251 14,743 615 37,504 4.04 5.34 3.30 3.43

538.imagick_r 228 4,164 244 14,719 442 31,273 5.62 9.54 6.20 9.90

544.nab_r 197 3,144 205 11,381 327 22,318 5.75 9.53 7.23 12.22

549.fotonik3d_r 296 5,649 1,271 51,361 2,920 127,853 1.40 0.92 1.22 0.65

554.roms_r 163 3,371 675 31,174 1,885 92,145 1.45 0.94 1.04 0.46

500.perlbench_r 263 4,715 315 18,756 523 37,994 5.00 7.55 6.03 8.98

502.gcc_r 194 3,192 288 14,329 648 34,657 4.03 5.39 3.58 3.96

505.mcf_r 190 2,964 253 12,953 509 27,548 4.51 6.19 4.48 5.79

520.omnetpp_r 348 5,595 619 27,808 1,169 57,652 3.37 4.07 3.57 4.16

523.xalancbmk_r 226 3,670 321 14,728 568 29,890 4.21 6.30 4.76 7.02

525.x264_r 126 2,272 134 8,145 219 16,366 5.65 9.45 6.91 11.51

531.deepsjeng_r 206 3,671 234 13,203 346 24,137 5.29 8.83 7.15 13.05

541.leela_r 363 6,341 380 21,749 546 37,447 5.73 10.02 7.98 16.21

548.exchange2_r 212 3,861 215 13,503 389 28,173 5.92 10.16 6.54 10.76

557.xz_r 307 4,786 391 18,571 604 34,701 4.70 7.27 6.10 10.09

 PE.I

[12]

fp_rate

int_rate

Benchmarks

{NT | NC}=1 {NT | NC}=6 {NT | NC}=12

fp_speed

int_speed

 S

[6]

 PE.I

[6]

 S

[12]

	1 INTRODUCTION
	2 BACKGROUND, MOTIVATION AND GOALS
	2.1 SPEC CPU2017
	2.2 System Under Test
	2.3 Tools and Evaluation Methods
	2.4 Goals and Metrics

	3 COMPILERS COMPARISON
	4 BENCHMARK CHARACTERIZATION
	5 TMAM ANALISYS
	6 SCALABILITY STUDY RESULTS
	7 CONCLUSIONS
	REFERENCES

