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ABSTRACT 
The protection of confidential information has become very im-
portant with the increase of data sharing and storage on public 
domains. Data confidentiality is accomplished through the use of 
ciphers that encrypt and decrypt the data to impede unauthor-
ized access. Emerging heterogeneous platforms provide an ideal 
environment to use hardware acceleration to improve applica-
tion performance. In this paper, we explore the performance 
benefits of an AES hardware accelerator versus the software 
implementation for multiple cipher modes on the Zynq 7000 All-
Programmable System-on-a-Chip (SoC). The accelerator is im-
plemented on the FPGA fabric of the SoC and utilizes DMA for 
interfacing to the CPU. File encryption and decryption of vary-
ing file sizes are used as the workload, with execution time and 
throughput as the metrics for comparing the performance of the 
hardware and software implementations. The performance eval-
uations show that the accelerated AES operations achieve a 
speedup of 7 times relative to its software implementation and 
throughput upwards of 350 MB/s for the counter cipher mode, 
and modest improvements for other cipher modes.  

CCS CONCEPTS 
• Security and privacy → Block and stream ciphers; • Security 
and privacy → Hardware security implementation; • Hardware 
→ Hardware accelerators 
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1 INTRODUCTION 
The Digital Age has seen an ever increasing amount of data 
stored and transmitted across publicly accessed mediums. A 
large portion of this data is confidential information that could 
harm individuals, corporations, and even governments if ac-
cessed by a malicious party. The critical importance of securing 
this data has led to the utilization of data encryption algorithms. 
Over time, there has been a multitude of encryption algorithms 
designed each with the goal of securing the data. The Advanced 
Encryption Standard (AES) has emerged as a highly secure and 
easy to implement algorithm that is used by many corporations 
and government entities to secure their confidential information. 
Software implementations are the simplest and most common 
form of the AES algorithm; however, hardware implementations 
of the algorithm often improve speed, throughput, or save ener-
gy relative to their software counterparts. 

Recently, the computing industry has seen a significant rise 
in interest and manufacturing of heterogeneous computing sys-
tems that offer more flexibility to developers and can achieve 
higher computational and data throughputs than a homogeneous 
system. One type of heterogeneous computing systems are the 
all-programmable Systems-on-a-Chip (SoCs), which contain a 
hard processor system and FPGA fabric on the same silicon die. 
These all-programmable chips allow designers to combine the 
strengths of the software programmability of hard processor 
system and the hardware programmability of the FPGA fabric 
within a single chip. A common design approach is to offload 
computational overhead from the hard processor system to a 
hardware accelerator in the FPGA fabric to perform tasks faster 
and efficiently. 

This paper explores the performance benefits of implement-
ing AES encryption and decryption for multiple cipher modes in 
hardware on the Zynq-7000 All-Programmable SoC. The AES 
cipher modes implemented are the Electronic Codebook (ECB), 
Cipher Block Chaining (CBC), and Counter (CTR) mode. The 
ciphers are implemented in both software and hardware and the 
performance of each are compared to analyze the improvements 
achieved through the hardware accelerated ciphers. The soft-
ware implementation of the ciphers is accomplished through the 
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use of the OpenSSL cryptography library. The OpenSSL library is 
highly optimized and widely used due to its user-friendly appli-
cation programming interface and performance-minded imple-
mentation. The hardware accelerated implementation of the AES 
ciphers is achieved through the use of open source cores availa-
ble from OpenCores [1] and Secworks [2] that interface to the 
hard processor system through the use of the Xillybus IP core [3] 
for data streaming.  

Data files of different sizes were encrypted and decrypted 
separately using the software and hardware implementations for 
all three cipher modes. The performance metrics used to evalu-
ate both implementations are execution times and data through-
put of the cipher modes. The results of the performance analysis 
demonstrate that the hardware accelerated AES algorithms for 
all three ciphers perform up to 7 times better than the corre-
sponding software implementations. 

The remaining sections of this paper are organized as follows. 
Section 2 discusses related work. Section 3 discusses the ciphers 
that are implemented and analyzed. Section 4 gives the specifics 
of the hardware implementations. Section 5 describes the exper-
imental environment and Section 6 gives the main results of the 
experimental evaluation. Finally, Section 7 gives the concluding 
remarks and discusses future work. 

2 RELATED WORK 
There has been an exceptionally large amount of research work 
done in the area of hardware acceleration for cryptographic op-
erations, specifically AES.  The majority of the accelerator im-
plementations were completed on an FPGA and others on a gen-
eral purpose graphics processing unit (GPGPU).  Most of the 
implementations included multiple cipher modes such as ECB, 
CBC, CTR, GCM, and XTS. 

Some of the prior AES coprocessor designs used softcore pro-
cessors in an FPGA for interfacing to an AES hardware core.  
Hodjat et. al. [4] [5] used the LEON soft processor in the 
ThumbPod SOC to achieve a maximum throughput of 3.84 
Gbit/s. Baskaran et. al. [6] implemented the AES operations us-
ing the Picoblaze microprocessor and other hardware cores on a 
Spartan 3E in order to achieve a very low-cost resource crypto-
graphic design of only 460 slices on the FPGA.  These softcore 
design approaches used the FPGA for microprocessor and AES 
implementations with custom software executed on the micro-
processor. 

A couple other designs also used softcore processors, but in-
stead of using custom software for cipher control certain crypto-
graphic software libraries were extended to target the hardware 
accelerators as opposed to performing all the operations in soft-
ware. Pedraza et. al. [7] ran Linux on a PowerPC softcore proces-
sor using a Virtex II FPGA and extended the functionality of the 
CryptoAPI Linux cryptographic library to utilize the AES hard-
ware accelerators with a maximum throughput of 100 MB/s. 
Nambiar et. al. [8] extended the encryption function of the 
OpenSSL cryptographic library on the NIOS II softcore micro-
processor running uClinux RTOS. It utilized a memory-mapped 

interface to the AES core inside the FPGA running at 50 MHz. 
They achieved a 2-3 times improvement over full software im-
plementation of OpenSSL. Hodjat et. al. [9] interfaced a hard 
CPU processor to an AES FPGA hardware accelerator for use in 
VPN and IPSec applications.  They were able to achieve a 
throughput of 3.84 Gbit/s with a power consumption of 86 mW. 
Irwansyah et. al. extended the instruction set of the Nios II RISC 
processor to support AES encryption and decryption [10]. The 
designs in [8] and [10] only implement the base AES encryption 
and decryption algorithms. 

Our work is different than the previously mentioned designs 
because we are using the Zynq 7000 All Programmable SoC that 
contains both a hardened dual core ARM processor with an 
FPGA fabric.  The ARM cores use the AES coprocessor by pass-
ing data across the AXI data bus. Some of the previous designs 
only implement the base AES operations; whereas, our design 
implements fully functional AES ciphers of ECB, CBC, and CTR 
in the FPGA and requires no additional interaction with the 
ARM cores aside from the transfer of the raw data for the en-
cryption or decryption. Our design also makes use of Xillybus 
which is an interface between the ARM cores and the FPGA 
fabric via either DMA or memory mapped interfaces. Our cur-
rent design only makes use of the DMA interface of Xillybus 
which offloads the data transfer process from the CPU; whereas, 
the previous designs required the CPU to participate in the data 
transfer. Most of the previous designs used a softcore processor, 
but our design uses hardened ARM core processors that com-
municate with the FPGA via a bus architecture as opposed to the 
FPGA fabric that is used by the softcore processors. 

3 BACKGROUND AND METHODOLOGY 
The cryptographic algorithm implemented was the Advanced 
Encryption Standard (AES). AES is one of the most commonly 
used and trusted cryptographic algorithms for protecting sensi-
tive information for governments, corporations, and individuals 
alike. The algorithm performs multiple rounds of operations on 
the raw data based on the bit width of the cipher key. The per-
formance of the hardware and software AES implementations 
are compared by using file encryption and decryption as a work-
load. Encryption is the process of encoding the raw data using a 
private cipher key so that the data cannot be viewed by non-
authenticated users. Decryption is the process of decoding the 
encrypted data using the same private key so that the user can 
view the raw data. OpenSSL is an open source cryptographic 
library that implements the AES operations in a highly opti-
mized manner for different instruction set architectures. 
OpenSSL is used as the baseline software implementation due to 
its optimized performance and common use across the industry. 

3.1 Advanced Encryption Standard (AES) 
AES is an industry standard for encrypting electronic data for 
the purpose of data security and confidentiality. It was devel-
oped by two Belgian cryptographers Joan Daemen and Vincent 
Rijmen and was accepted as a standard in 2001 by the National 
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Institute of Standards and Technology (NIST) in the U.S. [11] and 
has quickly become the most widely used cipher due to its secu-
rity strength and optimized implementations. AES is a symmet-
ric cipher because it uses the same key to encrypt and decrypt 
the data.  

The AES cipher can be used with three different key sizes of 
128, 192, and 256 bits. The strength of the cipher increases pro-
portionally with the number of bits in the key. The base data 
component that the cipher operates on is known as the state 
matrix which consists of 128 bits of data. The cipher performs a 
number of operations on the state matrix for a specified number 
of rounds based on the key size.  There are 10, 12, and 14 rounds 
for key sizes of 128, 192, and 256 bits, respectively.  Within each 
round the cipher performs different layers of operations. Each 
layer manipulates all 128 bits of the state matrix. The different 
layers are the Key Addition layer, the Byte Substitution layer, 
and the Diffusion layer. In the Key Addition layer a 128-bit key 
that was derived from the original key is XORed to the state 
matrix. The Byte Substitution layer is just the operation of re-
placing the current byte with the value from a lookup table using 
the current byte value as the index to the lookup table. The Dif-
fusion layer performs linear operations on the state matrix.  The 
first operation is the Shift Rows operation which permutes the 
bytes within each row of the state matrix a different number of 
times based on the row number. The second is the Mix Columns 
operation which is a matrix operation that combines blocks of 
four bytes. The details of the cipher algorithm can be found in 
the Federal Information Processing Standards document FIPS 197 
[11]. The AES algorithm can be used in multiple different cipher 
modes including Electronic Codebook (ECB), Cipher Block 
Chaining (CBC), and Counter Mode (CTR) [12]. Each cipher 
mode uses AES as the encryption algorithm for securing the 
data. However, each cipher uses the AES algorithm in a slightly 
different place in its cipher implementation resulting in different 
cipher characteristics. 

3.2 File Encryption/Decryption 
Data encryption is the process of securing data by converting it 
into a cipher code that only the original owner can decode and 
read. Data decryption is the process of decoding encrypted data 
to its original form such that it can be read and understood by 
the accessing party.  

To evaluate the effectiveness of the software and hardware 
implementations of the three ciphers we use file encryption and 
decryption as a test application. Data files varying from 32 KB to 
64 MB are first encrypted and then decrypted using software-
only and hardware-accelerated implementations of the ECB, 
CBC, and CTR ciphers.  

The file encryption and decryption is performed within a sin-
gle C/C++ application which runs on the dual ARM core proces-
sor of the Zynq. The application is used for controlling whether 
the file is encrypted/decrypted via the OpenSSL software imple-
mentation or the hardware implementation of the ciphers. The 
application has multiple command line options for specifying the 
different parameters of the file encryption/decryption. These 

command line options include one for specifying whether to 
execute the cipher in software or use the hardware accelerator, 
for specifying a security password for cipher key and initializa-
tion vector generation, to specify the AES cipher mode, and to 
specify input/output file names.  

If executing fully in software, the file to be encrypt-
ed/decrypted is read incrementally and passed into the OpenSSL 
AES cipher functions which return the final data to be stored in 
the output file. If the hardware acceleration option is chosen 
then two separate threads are spawned where one thread reads 
the input file incrementally and sends the input data into the 
hardware accelerator; whereas, the second thread is continuous-
ly reading the output data from the hardware accelerator and 
writing the output data to the output file.  

The application is verified by using known test vectors and 
verifying that the output of each cipher mode was correct. The 
decrypted files were compared to the original raw data files to 
verify that the decryption process produced the same data as the 
raw input files. 

3.3 OpenSSL 
OpenSSL is an open source library for the Transport Layer Secu-
rity (TLS) and Secure Sockets Layer (SSL) protocols. It also 
serves as a general-purpose cryptography library [13]. The li-
brary is compatible with Windows, Linux, and Mac OS X operat-
ing systems (OS). The OS type is detected at compile time so that 
the software is compatible and the compiler can optimize the 
library for the specific OS. 

In the context of this paper, OpenSSL is used solely for its 
cryptographic functionality, specifically the AES implementa-
tions. The reason OpenSSL was used is because it has become an 
industry standard for software implementations of cryptographic 
algorithms that can be used for both desktop and embedded en-
vironments. The library provides a high level Application Pro-
gramming Interface (API) for interfacing to the different crypto-
graphic functions. The library was also used for generating ran-
dom cipher keys and initialization vectors during the encryption 
process by using a Password Based Key Derivation Function 
(PBKDF) available in the API. The PBKDF function implements a 
secure hashing algorithm for generating the cipher key and ini-
tialization vector. The user has to then specify the correct pass-
word when decrypting data in order for the correct cipher key 
and initialization vector to be used to correctly decode the data. 
There are only two function calls that were necessary to initial-
ize and execute the cipher for any data set. This simplified the 
use of OpenSSL when implementing the software algorithms for 
AES ECB, CBC, and CTR ciphers. Overall, OpenSSL provided a 
highly optimized, easily implemented AES software ciphers that 
are then used for performance comparison with the correspond-
ing hardware accelerated AES ciphers. 

4 AES HARDWARE ACCELERATOR 
The AES hardware acceleration design involved the use of AES 
cores with the Xillybus IP core to create the AES coprocessor. 
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The design wraps logic around the AES cores to implement the 
individual cipher modes. The ECB and CBC cipher modes use a 
non-pipelined AES core and the CTR mode uses a pipelined AES 
core. The dual ARM cores interface to the AES coprocessor via 
the AXI bus through the use of the Xillybus kernel driver code 
and the FPGA IP core. The data to be encrypted or decrypted is 
streamed to and from the FPGA over the bus and the full cipher 
functionality is performed within the AES coprocessor. 

4.1 System View 
The AES hardware accelerator is implemented in the FPGA fab-
ric on the Zynq 7000 and is composed of three main components, 
the Xillybus AXI4 module, AES wrapper cores, and AES cipher 
cores. Fig. 1 shows the block diagram of the accelerator design 
connected to the ARM processor. 

 

Figure 1: System Block Diagram 

Both the Xillybus and AES cores are treated as black boxes 
during implementation. The Xillybus module implements the 
communication interface between the ARM processor and the 
FPGA fabric through the use of Direct Memory Access (DMA). It 
contains all the necessary logic for interfacing to the AXI4 bus as 
a slave and a master depending on the direction of communica-
tion. The AES cores implement the AES algorithms for either 
encryption or decryption for a single 128 bit state matrix. There 
are two different AES cores used, a non-pipelined core used for 
ECB and CBC ciphers and a pipelined core used for the CTR 
cipher. The AES cores themselves do not implement any particu-
lar cipher mode; therefore, the AES wrapper cores are used for 
implementing the specific functionality of each cipher mode. The 
wrapper cores are also used for bridging the interface between 
the Xillybus and AES cores. Each wrapper core is tailored specif-
ically to the implementation specific features of each cipher 
mode while using an AES core for performing the actual AES 
encryption or decryption algorithm. For simplicity reasons, all 
the logic in the FPGA is clocked off of the AXI4 bus clock which 
runs at 100 MHz. The current design could run at a maximum 
clock frequency of 125 MHz which is determined by the maxi-
mum clock frequency of the non-pipelined AES core. The pipe-
lined AES core has a maximum clock frequency of 325 MHz. 

4.2 Xillybus Interface 
Xillybus is an open source Intellectual Property (IP) core devel-
oped by Xillybus, Ltd. that implements the necessary logic for 
the data passing between a Field Programmable Gate Array 
(FPGA) and a processor via an AXI4 or PCIe bus. The AXI4 bus 
logic is for implementation on a Xilinx chip such as the Zynq 
7000 System-on-a-Chip (SoC) and the PCIe bus version is for 
implementation on a PC. The desktop version is compatible on 
both Windows and Linux operating systems. Xillybus also in-
cludes the kernel driver software necessary to interface to the 
FPGA IP core logic. The Xillybus IP core that resides in the FPGA 
has the ability to function as a slave or a master on the AXI bus. 
Xillybus utilizes DMA in both the Xilinx and desktop designs to 
move data between the processor and FPGA with minimal pro-
cessor overhead [3]. The processor can initiate a DMA transac-
tion when transferring data to the FPGA and, likewise, the FPGA 
core can initiate a DMA transaction when transferring data to 
the processor. Xillybus makes the communication across the 
AXI4 or PCIe bus transparent to the software/hardware develop-
er which increases design simplicity and decreases development 
time. 

The Xillybus website [14] provides a link called the IP Core 
Factory where one can create a custom IP core with an arbitrary 
number of interfaces. The core designer can specify the interface 
names, their use (i.e. coprocessing, data acquisition, etc.), and 
their expected bandwidth requirements. The website then uses 
this information to auto generate the VHDL and Verilog code for 
the FPGA IP core along with the kernel software driver code for 
interfacing with the FPGA core. This provides the user with the 
software and hardware interfaces for efficient communication 
between the processor and FPGA for a wide range of applica-
tions. 

For this research, the Xillybus AXI4 version was used for im-
plementation on the Zynq 7000 SoC. The use of the Xillybus IP 
core and kernel driver software greatly simplified the design 
process for the AES hardware acceleration because all the neces-
sary code for communicating between the processor and FPGA 
was provided so more time and effort could be spent on the de-
velopment of the AES ciphers. The interface between the proces-
sor and FPGA can be accessed from software in the form of 
standard block device files (i.e. in the /dev directory in Linux) 
and can be accessed with the standard open, read, write, close 
system calls. 

The processor sends data to the FPGA by sending data to 
DMA buffers in RAM that are then transferred to the FPGA by 
the DMA engine. The Xillybus core stores the data received on 
the AXI4 bus in generic 32 bit FIFOs and provides an interface to 
these FIFOs at its backend for the user to interface to. The same 
applies when the user needs to send data back up to the proces-
sor from the FPGA. The data is stored in FIFOs that the Xillybus 
core has access to and the core initiates a DMA transaction 
which copies the data into DMA buffers in RAM. This means 
that the processor only ever has to interface to RAM when 
communicating with the FPGA fabric since the DMA engine 
handles the actual data transferring between RAM and the 
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FPGA. This significantly improves performance over the case 
where the processor is handling all transactions over the AXI4 
bus since the processor does not have to wait for AXI4 transac-
tions to complete before continuing with execution. Fig. 2 shows 
a high level block diagram for Xillybus with the AXI4 bus used 
for this particular implementation. The before mentioned user 
FIFOs for interfacing to Xillybus are shown here as the Applica-
tion FIFOs. 

 

Figure 2: Xillybus Block Diagram 

4.3 AES Cores 
There are two AES cores used to implement the AES ciphers in 
the FPGA. One is downloaded from OpenCores.org [1] and the 
other from Secworks [2]. Both are shown in Fig. 3. The Secworks 
core is fully pipelined and only implements the encryption algo-
rithm; whereas, the OpenCores core is non-pipelined and im-
plements both the encryption and decryption algorithms. The 
non-pipelined core can only operate on a single state matrix at a 
time, but the pipelined core can operate on multiple state matri-
ces at any given time. The AES cores are treated as a black box 
during implementation. However, they were validated by using 
known test vectors and verifying the output of the encryption 
and decryption algorithms were correct. 

Fig. 3 shows all the input/output (I/O) signals for the non-
pipelined AES core. Due to its sequential functionality, it can 
only operate on a single state matrix at a time so it must com-
plete the encryption/decryption on the current state matrix be-
fore beginning the process on the next state matrix. The core has 
the ability to dynamically swap between 128 and 256 bit keys 
and to load different key values. Our implementation only used a 
256 bit key so the KEY_LENGTH signal was hardcoded to reflect 
this. The MODE signal tells the core whether to perform encryp-
tion or decryption on the input data so this signal is set based on 
the desired operation. This core is used to implement the ECB 
and CBC cipher modes. 

Fig. 3 shows all the I/O signals for the pipelined AES core. 
The pipelined core can operate on multiple state matrices at a 
time; therefore, increasing its overall throughput through the 
core. A drawback to this core is that it only implements the en-
cryption algorithm which eliminates its use for ciphers that re-
quire both encryption and decryption. However, it is adequate 
for the CTR cipher mode since it only requires the encryption 
operation when encrypting or decrypting data. The core can 
accept a new state matrix every clock cycle. There are 29 pipe-
line stages so the ciphertext for a corresponding input state ma-

trix is available 29 clock cycles after being input into the core. 
The core, however, does not have any control signals for hand-
shaking with the core for input or output data. In order to con-
trol the flow of data into and out of the core, a wrapper has been 
developed around the core synchronizing the time at which new 
data is sent to the core so it knows what time to read the output 
state matrix from the core. 

 

Figure 3: Non-Pipelined and Pipelined AES Cores 

4.4 AES Wrapper 
The AES wrapper core is used to control the data flow of the 
AES hardware accelerator by creating a bridge between the Xil-
lybus core and the AES cores. The core is also used as control 
logic for handling the interaction and handshaking with the AES 
cores. As seen in Figure 1 there is an AES wrapper core for each 
cipher mode implemented. The I/O signals for the wrapper core 
for each cipher mode is shown in Fig. 4. The cores are written in 
such a way that only the plaintext and cipher text data flow in-
terfaces are externally exposed and all the implementation spe-
cific logic for the ciphers are contained internally. This allows 
for easy integration with the Xillybus IP core because the data 
flow signals only need to be connected to the data FIFOs provid-
ed by Xillybus and the data flow from the processor to the AES 
cores is complete.  

 

Figure 4: AES Wrapper Core 

The wrapper core implements a state machine for both the 
encryption and decryption process. The state machines follow 
the same basic flow of operations of receive data from the pro-
cessor, send data through the AES core, and then send the out-
put data from the AES core back to the processor. The main dif-
ferences between each of the cipher wrapper cores is the specific 
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logic needed to implement the functionality of the cipher and 
then interfacing to the AES core in use. The ECB and CBC ci-
phers interface to the same AES core, but the CTR cipher inter-
faces to a completely different core. 

The first major operation of receiving the data from the pro-
cessor is the same for all three cipher modes. Both AES cores 
require an entire 128 bit state matrix as its input for AES opera-
tion. The maximum data width of the Xillybus IP core is 32 bits 
since it uses the general-purpose ports on the AXI bus which 
introduces the need to buffer multiple 32 bit words until an en-
tire state matrix is received. Thus, the first responsibility of the 
AES wrapper core is to perform such a task; to concatenate four 
32-bit words that were received from the ARM processor in or-
der to create a single 128-bit word to pass into the AES core for 
encryption or decryption. The wrapper core can continuously 
receive data from the Xillybus core as long as data does not back 
up further downstream and stall the flow of data. 

The second operation of sending the data through the AES 
core is different for each of the cipher modes. This is because 
each cipher mode requires different operations to be performed 
before executing the encryption/decryption operation on the 
data. The ECB cipher is able to just send the input state matrix 
directly into the AES core because it just encrypts each state 
matrix separately. The CBC cipher XORs either the initialization 
vector or the previously generated ciphertext to the plaintext 
prior to encrypting the data. For decryption, CBC decrypts the 
ciphertext and then XORs either the initialization vector or pre-
vious ciphertext to the decryption output. CTR cipher mode 
encrypts a concatenated initialization vector and incrementing 
counter value which is then XORed with either the plaintext (for 
encryption) or ciphertext (for decryption). The wrapper core for 
the CTR cipher buffers up multiple encrypted values for the ini-
tialization vector and counter value so that the incoming 
plaintext or ciphertext can immediately be XORed and sent back 
to the processor. This hides the latency present in the AES core 
used for the CTR cipher because the incoming data does not 
have to wait for the AES core to complete its operation.  

The CTR cipher uses the pipelined AES core and the other 
two modes use the non-pipelined core. The wrapper cores for 
the ECB and CBC ciphers cannot send a new state matrix into 
the AES core until it receives the output for the previous state 
matrix. This causes the data flow to stall while waiting for the 
AES core to complete its operation. This can create significant 
backpressure on the Xillybus FIFOs which could ultimately re-
sult in the stalling of the DMA controller when trying to send 
new data to the FPGA. On the other hand, the wrapper core for 
the CTR mode can push new data to the pipelined core every 
clock cycle to buffer up encrypted blocks for later use. This 
makes the AXI bus the limiting factor on performance for CTR 
mode because it becomes the component with the highest laten-
cy in the system. 

The final operation in the state machine of sending the out-
put data to the processor is the same for each cipher mode as it 
was for receiving data from the processor. Each AES core out-
puts the resultant state matrix as a 128 bit word which has to be 

broken into four 32 bit words and written into the Xillybus 
FIFOs for transmission back to the processor. 

5 EXPERIMENTAL ENVIRONMENT 
The AES coprocessor is implemented on the Zynq 7000 All Pro-
grammable SoC. The AES operations are implemented on the 
FPGA fabric and the ARM cores are used for initializing the AES 
coprocessor and streaming the data to the coprocessor. The Zed-
board is used as the development platform for the design. It con-
tains the Zynq 7000 chip along with many more hardware pe-
ripherals at the disposal of the developer. The Zynq ARM cores 
are booted with a flavor of Ubuntu Linux called Xillinux which is 
produced by Xillybus to be used on the Zedboard. The test pa-
rameters that are used to test the performance of the three ci-
phers are file size and cipher operation (i.e. encryption or de-
cryption). 

5.1 Zedboard and Zynq 7000 AP SoC 
The ZedBoard is a low cost development board designed and 
built by Digilent.  It includes a Zynq-7000 All Programmable 
(AP) SoC and an array of peripherals and standardized connect-
ors including USB, HDMI, VGA, Ethernet, audio connectors, etc. 
The Zynq-7000 has a dual core ARM processor with an adjacent 
FPGA fabric connected via an AXI4 bus. The board has an addi-
tional 512 MB of DDR3 RAM external to the Zynq and includes 
many more design features [15]. The Zedboard can be pro-
grammed using the Xilinx software tool suites of Vivado and 
SDK. 

The Zynq 7000 All Programmable (AP) System on a Chip 
(SoC) is a single integrated circuit manufactured by Xilinx that 
contains a hardened dual core ARM Cortex A9 processor (PS) 
and a programmable logic (PL) fabric to create a full heterogene-
ous computing system. The dual core ARM processors are fea-
ture-rich including multi-level cache hierarchy, 8 channel DMA 
controller, vector processing units, on-chip memory, external 
memory interfaces, and a large set of peripheral connectivity 
interfaces. The FPGA fabric on the Zynq 7000 is comparable to 
that of either the Artix-7 or Kintex-7 depending on the chip ver-
sion [16]. It provides a low power and high design flexibility for 
embedded designs with its large number of resources. The ARM 
cores and the programmable logic communicate via a version of 
the Advanced Microcontroller Bus Architecture (AMBA) known 
as Advanced Extensible Interface (AXI). The AXI bus protocol 
provides a separate address and data channel for both the read 
and write operations and has a data width of up to 64 bits [16]. 

5.2 Xillinux 
The Zynq 7000 SoC was booted with a special Linux distribution 
kernel developed by Xillybus. Xillinux is a software + FPGA code 
kit for running a full-blown graphical desktop on the Zedboard 
and some other development boards that contain a Zynq 7000 
[17]. Xillinux is based on Ubuntu LTS 12.04 kernel for ARM and 
allows the Zedboard to behave like a PC with the SD card as its 
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hard disk drive. A keyboard and mouse can be plugged into the 
Zedboard for full desktop interaction with either a Linux test 
console or the full blown Gnome desktop environment. The 
VGA output port of the Zedboard is used for the computer’s 
screen output. Xillinux comes with the Xillybus (discussed in 
Section 4.2) driver software installed in the kernel for interfacing 
to the Xillybus IP core. Xillinux is used because it is free for 
evaluation purposes and is fairly easy to implement. Documenta-
tion was provided by Xillinux for how to download, compile, and 
boot the Xillinux kernel on the Zedboard [17]. 

5.3 Measurement Setup 
The performance metrics that are of interest are the execution 
time and data throughput for each of the AES cipher modes for 
both the software and hardware implementations. The parame-
ters that are varied between measurements are the file size, AES 
cipher mode, and cipher implementation. There are 7 different 
file sizes (32 KB to 64 MB), 3 cipher modes (ECB, CBC, CTR), 2 
cipher operations (encryption and decryption), and 2 cipher im-
plementations (software and hardware); resulting in 84 different 
parameter configurations. The C/C++ application is executed for 
each parameter configuration and the execution time of each run 
is recorded. As a result of the program executing within the Xil-
linux OS, there is a very small variability in the execution times 
between runs with the same parameter configuration. To ac-
count for this variability, each parameter configuration is exe-
cuted 3 times and the mean execution time is recorded for post 
analysis.  

The execution time of the ciphers are measured by latching 
the system time of the Zynq at the start and end of the cipher 
operation and then computing the difference between the two 
times. This technique of computing the execution time was used 
for both the software and hardware implementations. The execu-
tion time involved in the generation of the cipher key and initial-
ization vector is not of interest since the hardware accelerator 
modules did not implement these functions. The throughput of 
the AES ciphers is calculated by dividing the file size that is en-
crypted/decrypted by the recorded execution time. 

6 RESULTS 
The performance measurements of all the runs show that the 
AES hardware acceleration did improve the performance of the 
data encryption and decryption. However, the ECB and CBC 
ciphers did not experience a significant performance improve-
ment as did the CTR cipher. 

The speedups of the AES hardware accelerated implementa-
tions for the three cipher modes is shown in Fig. 5 for the en-
cryption and decryption processes. The ECB and CBC ciphers 
only achieved a speedup of about 1.3 for encryption and 1.1 for 
decryption. The reason these ciphers did not achieve a signifi-
cant speedup is mainly attributed to the use of the non-pipelined 
AES core. This core forced the encryption and decryption to 
operate on one state matrix at a time which created a major bot-
tleneck in the hardware implementation. Therefore, the latency 

involved with encrypting/decrypting a state matrix in the non-
pipelined core is the main contributing factor to the lack of 
speedup in the hardware implementation of the ECB and CBC 
ciphers. The CTR cipher, on the other hand, did experience sig-
nificant speedup for the hardware implementation over the 
OpenSSL software implementation. It achieved a speedup be-
tween 6 and 7 for encryption and about 6 for decryption. The 
CTR cipher achieved significant speedup because it uses the 
pipelined AES core so it is capable of encrypting/decrypting the 
state matrix in a single clock cycle once it’s received from the 
processor. It can do this because the encrypted values from the 
initialization vector and counter value are pre-computed and 
buffered. The bottleneck for the CTR cipher becomes the AXI4 
bus because there has to be four write transactions to create a 
complete state matrix for the algorithm to operate on so the AES 
logic must idle while it waits for the state matrix. The speedup 
for all the ciphers for file sizes less than or equal to 128 KB was 
less than 1. The reason for the slower execution times for these 
file sizes is due to the latency involved with launching the 
threads used to stream data to and from the FPGA or the data 
size is too small to hide the latency of the bus transfer. 

 

Figure 5: Hardware Accelerated Encryption/Decryption 
Speedup 

The throughput for both the hardware and software imple-
mentations of the three ciphers is shown in Figs. 6, 7, and 8. Figs. 
6 and 7 show the throughputs for the ECB and CBC cipher 
which are approximately 18 MB/s for the OpenSSL implementa-
tion and about 20 to 25 MB/s for the hardware implementation. 
This further illustrates that the hardware implementation of 
these cipher modes did not achieve substantial performance 
improvements. It is expected that the hardware implementation 
of these ciphers experienced roughly the same throughput be-
cause they used the same AES core. The CTR cipher achieved a 
throughput of about 55 MB/s for the OpenSSL implementation 
and about 350 MB/s for the hardware implementation. This was 
expected since the CTR hardware implementation was fully 
pipelined and should not have experienced the same data 
streaming stalls the ECB and CBC modes did. As noted, the 
FPGA clock rate was limited to 100 MHz. 
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Figure 6: Throughput of ECB Cipher 

 

Figure 7: Throughput of CBC Cipher 

 

Figure 8: Throughput of CTR Cipher 

7 CONCLUSIONS AND FUTURE WORK 
The AES ECB, CBC, and CTR ciphers are implemented on the 
Zynq 7000 AP SoC using software and hardware implementa-
tions. The OpenSSL cryptography library is used for the software 
implementations of the AES ciphers, and AES cores from Open-
Cores and Secworks are used for the hardware implementations. 

File sizes ranging from 32 KB to 64 MB are encrypted and de-
crypted using the software and hardware implementations of 
three ciphers. The speedup and throughput is measured for each 
implementation. The results show moderate speedups for the 
hardware accelerated ECB and CBC ciphers; however, the CTR 
cipher achieves up to a 7x speedup and 350 MB/s throughput. 

Some possible modifications to the design could be to in-
crease the clock rate for the non-pipelined AES core and the AXI 
bus to decrease its latency of encryption or data transfers. Lastly, 
the design could be ported to other embedded or desktop plat-
forms that the Xillybus IP core and driver are compatible with. 
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