
 

 

 

 

 

SPEC CPU2017:  

PERFORMANCE, ENERGY AND  

EVENT CHARACTERIZATION ON  

MODERN PROCESSORS  
 

 

by 

 

 

RANJAN HEBBAR SEETHUR RAVIRAJ 

 

 

 

 

 

A THESIS 

 

 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Engineering 

in 

The Department of Electrical & Computer Engineering 

to 

The School of Graduate Studies 

of 

The University of Alabama in Huntsville 

 

 

 

 

 

 

 

HUNTSVILLE, ALABAMA 

 

2018



ii 

In presenting this thesis in partial fulfillment of the requirements for a master’s de-

gree from The University of Alabama in Huntsville, I agree that the Library of this 

University shall make it freely available for inspection. I further agree that permis-

sion for extensive copying for scholarly purposes may be granted by my advisor or, in 

his/her absence, by the Chair of the Department or the Dean of the School of Graduate 

Studies. It is also understood that due recognition shall be given to me and to The 

University of Alabama in Huntsville in any scholarly use which may be made of any 

material in this thesis. 

 

 

 

         

(student signature)    (date)  



iii 

THESIS APPROVAL FORM 
 

 

Submitted by Ranjan Hebbar Seethur Raviraj in partial fulfillment of the require-

ments for the degree of Master of Science in Engineering in Computer Engineering 

and accepted on behalf of the Faculty of the School of Graduate Studies by the thesis 

committee. 

 

We, the undersigned members of the Graduate Faculty of The University of Alabama 

in Huntsville, certify that we have advised and/or supervised the candidate on the 

work described in this thesis. We further certify that we have reviewed the thesis 

manuscript and approve it in partial fulfillment of the requirements for the degree of 

Master of Science in Engineering in Computer Engineering. 

 

 

 

          Committee Chair 

(Dr. Aleksandar Milenkovic)                       (date) 

 

 

           

(Dr. Rhonda Gaede)               (date) 

 

 

        

(Dr. B. Earl Wells)    (date) 

 

 

        

 

 

 

         Department Chair 

(Dr. Ravi Gorur)    (date) 

 

 

         College Dean 

(Dr. Shankar Mahalingam)   (date) 

 

 

         Graduate Dean 

(Dr. David Berkowitz)   (date) 

 

 

 

 

 



iv 

ABSTRACT 
 

The School of Graduate Studies 

The University of Alabama in Huntsville 

 

Degree   Master of Science in Engineering     

College/Dept.   Engineering/Electrical & Computer Engineering 

Name of Candidate Ranjan Hebbar Seethur Raviraj  

Title SPEC 2017: Performance, Energy and Event Characterization on Modern 

Processors 

Computer engineers in both academia and industry rely on a standardized set of 

benchmarks to quantitatively evaluate the performance of modern computer systems 

and research prototypes. The SPEC CPU2017 benchmark suites are the most recent 

incarnation of standard benchmarks designed to stress a system’s processor, memory 

subsystem, and compiler. This thesis describes the results of measurement-based 

studies focusing on performance and energy-efficiency of modern Intel processors us-

ing SPEC CPU2017. The studies utilize SPEC CPU2017 run utilities as well as mod-

ern Linux tools for profiling that interface on-chip performance monitoring units. The 

thesis encompasses the following aspects of performance evaluation: (a) top-view char-

acterization of individual benchmarks; (b) analysis of scalability in the context of 

speed and throughput metrics, while varying the number of threads for speed bench-

marks and copies for rate benchmarks, respectively; (c) analysis using Intel’s Top-

down Microarchitectural Analysis Method, (d) comparative performance study of dif-

ferent computers with Intel’s Core i7 and Xeon processors, and (e) analysis of perfor-

mance impact of hardware prefetching in modern processors.  

Abstract Approval: Committee Chair        

   Department Chair        

   Graduate Dean        



v 

ACKNOWLEDGMENTS 
 

The work presented in this thesis would be incomplete without thanking all 

the people who helped me directly and indirectly. First, I would like to express my 

sincere gratitude to my advisor, Dr. Aleksandar Milenkovic for his constant support 

at every stage of this work for creating an inspirational work environment in the 

LaCASA laboratory. He inspired me personally and professionally with his patience 

and his interest towards student learning. 

I will be always grateful to Dr. Ravi Gorur, Chair of the Electrical and Com-

puter Engineering Department, for encouraging me to pursue my thesis studies, and 

for providing me with financial support through the teaching assistantship during 

Fall-2017, Spring-2018 and Summer-2018 semesters. 

I would like to thank Mrs. Mounika Ponugoti, Mr. Prawar Poudel and Dr. Ar-

men Dzhagaryan for their constant support and for helping me to get started in the 

laboratory. 

I would like to thank Dr. Rhonda Gaede and Dr. Buren Wells for teaching me 

valuable skills and serving on my committee. I would also like to thank all the profes-

sors and staff members who helped me during my time at the University of Alabama 

in Huntsville. 

Finally, I would like to express my deepest gratitude to my parents, Raviraj 

Hebbar and Jyothi Hebbar, for their unconditional love and support. I would like to 

thank my grandparents, Subramanya T S and Jayashree T S, for providing continuous 

support and encouragement for higher studies. 

  



vi 

Dedicated to the memory of my grandmother, T S Jayashree,  

who will forever be in our hearts. 



vii 

TABLE OF CONTENTS 

                                                                                                                         Page 

LIST OF FIGURES.…………………………………………………………………………..ix 

LIST OF TABLES.…………………………………………………………………………....xii 

CHAPTER 

CHAPTER 1 INTRODUCTION ................................................................................. 1 

1.1 Background and Motivation ........................................................................... 1 

1.2 Scope of This Thesis ........................................................................................ 3 

1.3 Contributions .................................................................................................. 5 

1.4 Findings .......................................................................................................... 5 

1.5 Outline ............................................................................................................ 7 

CHAPTER 2 SPEC CPU2017 .................................................................................... 8 

2.1 Background ..................................................................................................... 8 

2.2 History and Evolution of SPEC CPU ............................................................10 

2.3 CPU2017 ........................................................................................................12 

CHAPTER 3 TEST ENVIRONMENT & PROFILING TOOLS ...............................18 

3.1 Experimental Goals .......................................................................................18 

3.2 Intel Microarchitectures: An Overview .........................................................19 

3.2.1 Intel Ivy Bridge .......................................................................................21 

3.2.2 Intel Haswell Microarchitecture ............................................................30 

3.2.3 Intel Skylake Microarchitecture .............................................................33 

3.2.4 Intel Kaby Lake ......................................................................................36 

3.2.5 Intel Coffee Lake .....................................................................................36 

3.3 Systems under Test .......................................................................................38 

3.4 Tools and Applications ...................................................................................41 



viii 

3.4.1 Linux perf ................................................................................................41 

3.4.2 Likwid .....................................................................................................44 

3.4.3 Intel VTune Amplifier ............................................................................45 

CHAPTER 4 BASELINE SPEC EVALUATION ......................................................49 

4.1 Top-down Microarchitectural Analysis Method ............................................49 

4.2 Thread Affinity ..............................................................................................53 

4.3 Baseline Evaluation .......................................................................................56 

4.3.1 SPEC CPU2017 Speed Benchmark Suites .............................................57 

4.3.2 SPEC CPU2017 Rate Benchmark Suites ...............................................60 

CHAPTER 5 SPEC CPU2017 BENCHMARKS CHARACTERIZATION ...............63 

5.1 SPEC CPU2017 Speed Benchmarks Characterization .................................64 

5.1.1 General View of Benchmarks .................................................................64 

5.1.2 Control-Flow Instructions and Branch Prediction Accuracy .................67 

5.1.3 Cache Hierarchy .....................................................................................69 

5.1.4 Top-down Microarchitectural Analysis Method Results ........................71 

5.1.5 Clock Rates, Energy, and Power ............................................................76 

5.2 SPEC CPU2017 Rate Benchmarks Characterization ...................................79 

5.2.1 General View of Benchmarks .................................................................79 

5.2.2 Control-Flow Instructions and Branch Prediction Accuracy .................82 

5.2.3 Cache Hierarchy .....................................................................................84 

5.2.4 Top-down Microarchitectural Analysis Method Results ........................86 

5.2.5 Clock Rates, Energy, and Power ............................................................92 

CHAPTER 6 ARCHITECTURAL EVALUATION ...................................................95 

6.1 SPEC CPU2017 Execution Evaluation on Test System ...............................95 

6.1.1 SPEC CPU2017 fp_speed ........................................................................97 

6.1.2 SPEC CPU2017 int_speed .................................................................... 107 



ix 

6.1.3 SPEC CPU2017 fp_rate ........................................................................ 115 

6.1.4 SPEC CPU2017 int_rate ....................................................................... 123 

6.2 Impact of Hardware Prefetching ................................................................. 131 

CHAPTER 7 CONCLUSIONS ................................................................................ 136 

REFERENCES ........................................................................................................... 139 

 

  



x 

LIST OF FIGURES 

 

 
Figure Page 

Figure 3.1 Tick-Tock Model Representation [7]. .........................................................20 

Figure 3.2 Die Map of a Quad-Core Ivy Bridge Processor [9] .....................................22 

Figure 3.3 Sandy Bridge/Ivy Bridge CPU Core Block Diagram [6] ............................23 

Figure 3.4 Die Map of a Quad-Core Haswell Processor[12] ........................................31 

Figure 3.5 Haswell CPU Core Block Diagram [6] .......................................................32 

Figure 3.6 Skylake Microarchitecture CPU Core Block Diagram [6] .........................35 

Figure 3.7 Die Map of a Hexa-Core Coffee Lake Processor ........................................37 

Figure 3.8 Turbo-Bin Allocation in Multi-Cores [13] ..................................................38 

Figure 4.1 Pipeline Slots, 100% Utilization ................................................................50 

Figure 4.2 Pipeline Slots, 50% Utilization ..................................................................50 

Figure 4.3 General Top-Down Microarchitecture Analysis Method [6] ......................51 

Figure 4.4 Top-Down Analysis Flowchart [6] ..............................................................52 

Figure 4.5 Software Thread Assignment on Logical Cores for compact 1,0 [24] ........54 

Figure 4.6 Software Thread Assignment on Logical Cores for scatter [24] ................55 

Figure 4.7 Use of Affinity in Speed Benchmarks ........................................................56 

Figure 4.8 Use of Affinity in Rate Benchmarks ..........................................................56 

Figure 4.9 Baseline Evaluation of Speed benchmarks on Core Processors. ...............58 

Figure 4.10 Baseline Evaluation of Speed Benchmarks on Xeon Processors .............59 

Figure 4.11 Baseline Evaluation of Rate benchmarks on Core Processors ................61 

Figure 4.12 Baseline Evaluation of Rate benchmarks on Xeon Processors ...............62 

Figure 5.1 Top-Level View of Single-Threaded Speed Benchmarks ...........................72 

Figure 5.2 Top-Level View of Six-Threaded Speed Benchmarks ................................73 



xi 

Figure 5.3 Back-End Level View of Single-Threaded Speed Benchmarks .................74 

Figure 5.4 Back-End Level View of Six-Threaded Speed Benchmarks ......................74 

Figure 5.5 Memory Level View of Single-Threaded Speed Benchmarks ....................75 

Figure 5.6 Memory Level View of Six-Threaded Speed Benchmarks .........................76 

Figure 5.7 Top-Level View of Single-Copy Rate Benchmarks ....................................87 

Figure 5.8 Top-Level View of Six-Copy Rate Benchmarks .........................................88 

Figure 5.9 Back-End Level View of Single-Copy Rate Benchmarks ..........................89 

Figure 5.10 Back-End Level View of Six-Copy Rate Benchmarks .............................90 

Figure 5.11 Memory Level View of Single-Copy Rate Benchmarks ...........................91 

Figure 5.12 Memory Level View of Six-Copy Rate Benchmarks ................................91 

Figure 6.1 Speedup of fp_speed Benchmarks in Core i7-4770 .................................. 100 

Figure 6.2 Speedup of fp_speed Benchmarks in Core i7-8700K ............................... 101 

Figure 6.3 Speedup of fp_speed Benchmarks in Xeon E3-1240 V2 ........................... 102 

Figure 6.4 Speedup of fp_speed Benchmarks in Xeon E5-2643 V3 ........................... 103 

Figure 6.5 SPECspeed2017_fp_base Results on all Test Systems ............................ 104 

Figure 6.6 SPEC CPU2017 Report Excerpt for Single-Threaded fp_speed .............. 106 

Figure 6.7 SPEC CPU2017 Report Excerpt for Six-Threaded fp_speed ................... 106 

Figure 6.8 Speedup of int_speed Benchmarks in Core i7-4770 ................................. 108 

Figure 6.9 Speedup of int_speed Benchmarks in Core i7-8770K .............................. 109 

Figure 6.10 Speedup of int_speed Benchmarks in Xeon E3-1240 V2 ....................... 110 

Figure 6.11 Speedup of int_speed Benchmarks in Xeon E5-2643 V3 ....................... 111 

Figure 6.12 SPECspeed2017_int_base Results on all Test Systems......................... 112 

Figure 6.13 SPEC CPU2017 Report Excerpt for Single-Threaded int_speed ........... 114 

Figure 6.14 SPEC CPU2017 Report Excerpt for Six-Threaded int_speed ................ 114 

Figure 6.15 Speedup of fp_rate Benchmarks in Core i7-4770 ................................... 116 



xii 

Figure 6.16 Speedup of fp_rate Benchmarks in Core i7-8700K ................................ 117 

Figure 6.17 Speedup of fp_rate Benchmarks in Xeon E3-1240 V2 ........................... 118 

Figure 6.18 Speedup of fp_rate Benchmarks in Xeon E5-2643 V3 ........................... 119 

Figure 6.19 SPECrate2017_fp_base Results on all Test Systems ............................ 120 

Figure 6.20 SPEC CPU2017 Report Excerpt for Single-Copy fp_rate ...................... 122 

Figure 6.21 SPEC CPU2017 Report Excerpt Six-Copy fp_rate ................................ 122 

Figure 6.22 Speedup of int_rate Benchmarks in Core i7-4770 ................................. 124 

Figure 6.23 Speedup of int_rate Benchmarks in Core i7-8700K .............................. 125 

Figure 6.24 Speedup of int_rate Benchmarks in Xeon E3-1240 V2 .......................... 126 

Figure 6.25 Speedup of int_rate Benchmarks in Xeon E5-2643 V3 .......................... 127 

Figure 6.26 SPECrate2017_int_base Results on all Test Systems ........................... 128 

Figure 6.27 SPEC CPU2017 Report Excerpt for Single-Copy int_rate .................... 130 

Figure 6.28 SPEC CPU2017 Report Excerpt for Six-Copy int_rate ......................... 130 

Figure 6.29 Impact of Hardware Prefetching on 1-Thread Speed Benchmarks ...... 132 

Figure 6.30 Impact of Hardware Prefetching on 6-Thread Speed Benchmarks ...... 132 

Figure 6.31 Impact of Hardware Prefetching on 1-Copy Rate Benchmarks ............ 133 

Figure 6.32 Impact of Hardware Prefetching on 6-Copy Rate Benchmarks ............ 134 

Figure 6.33 SPEC2017_ratio_base Numbers for Prefetching Evaluation ................ 135 

  



xiii 

LIST OF TABLES 

 

 
Table Page 

Table 2.1 Benchmark Suites in SPEC CPU2017 [4] ...................................................14 

Table 2.2 Integer Benchmark Details [4] ....................................................................15 

Table 2.3 Floating-point Benchmark Details [4] .........................................................16 

Table 3.1 Components of the Front-End of Intel Ivy Bridge [6] .................................24 

Table 3.2 Dispatch Port and Execution Stacks [6] ......................................................28 

Table 3.3 Best Case Cache Latency/ Load Latency [6] ...............................................29 

Table 3.4 L1 Data Cache Components [6] ...................................................................29 

Table 3.5 Systems Under Test [15] [16] [17] [10] ........................................................40 

Table 3.6 Architectural Performance Events [20] .......................................................43 

Table 5.1 General Parameters for fp_speed Benchmarks ...........................................65 

Table 5.2 General Parameters for int_speed Benchmarks ..........................................66 

Table 5.3 Branch Characteristics for fp_speed ............................................................68 

Table 5.4 Branch Characteristics for int_speed ..........................................................68 

Table 5.5 L2 and LLC Instruction Breakdown for fp_speed .......................................70 

Table 5.6 L2 and LLC Instruction Breakdown for int_speed ......................................70 

Table 5.7 Energy and Power Analysis for fp_speed ....................................................78 

Table 5.8 Energy and Power Analysis for int_speed ...................................................78 

Table 5.9 General Parameters for fp_rate Benchmarks .............................................80 

Table 5.10 General Parameters for int_rate Benchmarks ..........................................81 

Table 5.11 Branch Characteristics for fp_rate ............................................................82 

Table 5.12 Branch Characteristics for int_rate ...........................................................83 

Table 5.13 L2 and LLC Instruction Breakdown for fp_rate ........................................84 



xiv 

Table 5.14 L2 and LLC Instruction Breakdown for int_rate ......................................85 

Table 5.15 Machine Parameters for fp_rate ................................................................93 

Table 5.16 Machine Parameters for int_rate ...............................................................94 

Table 6.1 Runtime CPU Clock Frequency for all Test Systems. ................................97 

Table 6.2 Runtime and Speedup of fp_speed in Core i7-4770 ................................... 100 

Table 6.3 Runtime and Speedup of fp_speed in Core i7-8700K ................................ 101 

Table 6.4 Runtime and Speedup of fp_speed in Xeon E3-1240 V2 ........................... 102 

Table 6.5 Runtime and Speedup of fp_speed in Xeon E5-2643 V3 ........................... 103 

Table 6.6 SPECspeed2017_fp_base on all Test Systems ........................................... 104 

Table 6.7 Relative Speedups for fp_speed on Different Test Machines. ................... 105 

Table 6.8 Runtime and Speedup of int_speed in Core i7-4770 .................................. 108 

Table 6.9 Runtime and Speedup of int_speed in Core i7-8700K ............................... 109 

Table 6.10 Runtime and Speedup of int_speed in Xeon E3-1240 V2 ........................ 110 

Table 6.11 Runtime and Speedup of int_speed in Xeon E5-2643 V3 ........................ 111 

Table 6.12 SPECspeed2017_int_base on all Test Systems ....................................... 112 

Table 6.13 Relative Speedups for int_speed on Different Test Machines ................. 113 

Table 6.14 Runtime and Speedup of fp_rate in Core i7-4770 ................................... 116 

Table 6.15 Runtime and Speedup of fp_rate in Core i7-8700K ................................. 117 

Table 6.16 Runtime and Speedup of fp_rate in Xeon E3-1240 V2 ............................ 118 

Table 6.17 Runtime and speedup of fp_rate in Xeon E5-2643 V3 ............................ 119 

Table 6.18 SPECrate2017_fp_base on all Test Systems ........................................... 120 

Table 6.19 Relative Speedups for fp_rate on Different Test Machines. .................... 121 

Table 6.20 Runtime and Speedup of int_rate in Core i7-4770 .................................. 124 

Table 6.21 Runtime and Speedup of int_rate in Core i7-8700K ............................... 125 

Table 6.22 Runtime and Speedup of int_rate in Xeon E3-1240 V2 ........................... 126 



xv 

Table 6.23 Runtime and Speedup of int_rate in Xeon E5-2643 V3 ........................... 127 

Table 6.24 SPECrate2017_int_base on all Test Systems .......................................... 128 

Table 6.25 Relative Speedups for int_rate on Different Test Machines ................... 129 

Table 6.26 SPEC2017_ratio_base for Prefetching Evaluation .................................. 135 

 

 



 

1 

CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background and Motivation 

Computing has been constantly evolving as major forces shaping it, technology, 

applications, and markets, continue to change and advance. Semiconductor technol-

ogy processes that have been improving exponentially for almost six decades are ap-

proaching their limits. Two observations, known as Moore’s Law and Dennard’s Law, 

that succinctly describe exponential semiconductor scaling and that were true for 

many decades no longer hold. Moore’s Law states that the number of transistors dou-

bles with every 18-24 months. Dennard’s Law states that the power density is con-

stant for a given area of silicon – a larger number of transistors is compensated by 

their smaller size. Unfortunately, these “golden” years of semiconductor scaling are 

now over. Changes in markets and applications have been perhaps even more dra-

matic. Applications people could only dream of a decade ago are now a reality. Mobile 

and cloud computing have emerged as dominant computing models in the last decade. 

Internet-of-Things (IoT) promises to be a major driver for innovation in the years to 

come. In these conditions, complexity, and sophistication of the software stack con-

tinue to dramatically increase. Five distinct classes of computing have emerged: 

IoT/Embedded, Personal Mobile, Desktop, Server, and Cluster/Warehouse. Each is 



 

2 

characterized by its unique application sets, performance requirements, prices, form 

factors, and operating conditions.  

Modern processors that power contemporary laptop, desktop, and server com-

puters remain one of the most important components in computing ecosystems. Un-

derstanding their performance and limitations is important for application develop-

ers, system analysts, and computer designers alike. Even regular consumers may 

want to be able to quantitatively assess processor performance when making informed 

decisions about what computer to buy. Evaluating new systems by comparing their 

performance while executing relevant workloads – a mixture of real programs that 

users would run – is often not possible or practical. Instead, benchmark programs – 

well-established programs with well-defined inputs – are typically used to establish 

the relative performance of systems under test. Thus, developing standardized bench-

mark suites is particularly important to enable fair and through performance analy-

sis. 

SPEC (Standardized Performance Evaluation Corporation) is one of the most 

successful efforts in standardizing benchmark suites. Its origins arose from an effort 

to create a standardized set of benchmarks for comparing processor performance, but 

in the meantime, SPEC has evolved to developing benchmark suites applicable areas 

beyond processor performance analysis. There have been six generations of SPEC 

CPU benchmarks, starting from CPU89, via CPU92, CPU95, CPU2000, and CPU2006 

to the most recent SPEC CPU2017. SPEC CPU benchmarks are portable across many 

machines and operating systems and they are designed to stress processor perfor-

mance and minimize the impact of I/O on performance. Though SPEC CPU is per-

ceived as a CPU intensive benchmark suit, it does emphasize memory and compiler 



 

3 

efficiency as well. The most recent SPEC CPU, CPU2017, has been in development 

for many years and is expected to be a cornerstone in performance evaluation of desk-

top and server computers in the years to come.  

1.2 Scope of This Thesis 

This thesis focuses on performance evaluation of modern processors using the 

SPEC CPU2017 benchmark suites. First, the history and evolution of SPEC CPU 

benchmarks are given, and then the composition and metrics of SPEC CPU2017 are 

discussed. SPEC CPU2017 includes four groups of benchmarks that differ in types of 

data processed (integer vs. floating point) and types of performance metrics of interest 

(speed vs. throughput).  These four groups are:  

• SPECspeed2017 Integer (int_speed for short)  

• SPECspeed2017 Floating Point (fp_speed for short) 

• SPECrate2017 Integer (int_rate), and 

• SPECrate2017 Floating Point (fp_rate). 

The measurement-based studies performed in this thesis rely on SPEC utilities 

to report execution times and SPEC CPU composite performance metrics. In addition, 

a set of modern tools for event-based sampling and profiling is used, including Linux 

utilities perf and likwid, and Intel’s VTune Amplifier. These tools interface and gather 

information from on-chip performance monitoring units (PMU) that are part of mod-

ern processors’ fabric. Statistics collected by PMU registers during benchmark execu-

tion include the number of clock cycles, the number of instructions executed, as well 



 

4 

as a myriad of microarchitecture-specific events that capture the behavior of a proces-

sor’s front-end and back-end resources, such as branch predictors, functional units, 

and memory hierarchy.  

This thesis includes several aspects of performance evaluation of modern pro-

cessors using the SPEC CPU2017 benchmark suites as described below. 

• The SPEC CPU2017 suites are run on a set of desktop and server comput-

ers featuring recent generations of Intel’s Core i7 (Core i7-4700 and Core 

i7-8700K) and Xeon processors (Xeon E3-1240 V2 and Xeon E5-2643 V3). 

Performance of individual benchmarks and benchmark suites, in general, 

are analyzed and reported using SPEC CPU2017 metrics.  

• Comparative performance analysis of multiple test systems is performed 

using SPEC CPU2017 metrics.  

• The Intel VTune Amplifier’s Top-down Microarchitectural Analysis Method 

is used to identify performance bottlenecks for each benchmark, including 

both single-threaded and multi-threaded variants when possible. 

• SPEC CPU2017 includes a number of benchmarks that can execute multi-

ple threads. Thus, to understand the scalability of these parallel bench-

marks, they are run while varying the number of threads. In throughput-

oriented computing, multiple copies of the same benchmark are run, and 

corresponding performance metrics are analyzed.  

• The effectiveness of hardware prefetching is quantitatively assessed for 

both single-threaded and multi-threaded benchmark runs. 



 

5 

1.3 Contributions 

The main contributions of this work are as follows. 

• Characterization of the SPEC CPU2017 benchmark suites executed on the 

latest 8th generation of Intel’s Core i7-8700K.  

• A Top-down analysis of the SPEC CPU2017 benchmark suites using Intel 

VTune Amplifier aimed at characterizing the performance of the individual 

processor components when running a diverse set of benchmarks.  

• Experimental evaluation of the scalability of the SPEC CPU2017 bench-

marks when varying the number of threads for the speed benchmarks and 

the number of copies for the rate benchmarks.   

• Comparative performance analysis of the SPEC CPU2017 on four test ma-

chines, featuring different generations of Intel’s Core i7 and Xeon proces-

sors.  

• Performance evaluation of the effectiveness of hardware prefetching on the 

latest 8th generation of Intel’s Core i7-8700K.   

1.4 Findings 

• For each of 43 benchmarks in the speed and rate suites, a top view with 

important performance and power metrics is given.   

• The findings from the Top-down Microarchitectural Analysis Method are 

as follows. In general, single-threaded fp_speed benchmarks are mainly 

bound by stalls in the processor back-end. The number of instructions re-

tired per clock cycle ranges from less than 1 to ~3.5. Single-threaded 

int_speed benchmarks are mainly bound by stalls in the front-end and bad 



 

6 

speculation. By increasing the number of threads in fp_speed benchmarks, 

the back-end stalls from memory hierarchy become an even more dominant 

source of stalls.  

• The results from the scalability analysis show that several fp_speed bench-

marks scale well, as long as the number of threads does not exceed the 

number of physical cores. However, other parallelized benchmarks showed 

little or no performance improvements.  In all cases, the impact of hyper-

threading on performance improvements has been limited.  

• The fp_rate and int_rate benchmarks scale well as the number of copies 

increase up to the number of physical cores. The results indicate that the 

fp_rate benchmarks do not benefit from hyper-threading, whereas int_rate 

benchmarks see some performance improvements when the number of cop-

ies exceeds the number of physical cores but does not exceed the number of 

logical cores.  

• Analyzing performance across different machines, the following observa-

tions can be made. (a) Clock frequency is the biggest driving force in per-

formance improvements. The fp_speed benchmarks show performance 

gains of up to ~30% for the newest generation Core processor, whereas 

int_speed gains are marginal at ~8%. (b) The performance of the rate bench-

marks is heavily affected by the size of last level cache (L3 in this case).   

• Hardware-supported prefetching is very effective in the single-threaded 

speed and rate benchmarks. Disabling hardware prefetching significantly 

reduces the overall performance. Its impact on performance decreases as 



 

7 

the number of threads increases in the speed benchmarks or the number of 

copies in the rate benchmarks.  

1.5 Outline 

The rest of the thesis is organized as follows, CHAPTER 2 introduces the SPEC 

CPU benchmark suits, its history, and evolution and finally gives a detailed view of 

the latest iteration, SPEC CPU2017. CHAPTER 3 establishes experimental goals, 

gives a brief introduction to the Intel microarchitectures and their evolution, describes 

test systems, and finally describes the tools used in the experimental evaluation. 

CHAPTER 4 introduces the Top-down Microarchitectural Analysis Method, the con-

cept of thread affinity, and discusses the results of the baseline SPEC CPU2017 eval-

uation. CHAPTER 5 describes an in-depth performance and power analysis of the 

SPEC CPU2017 individual suites using a test system with the latest 8th generation of 

Intel Core i7-8700K processor. In addition, events from the processor’s performance 

monitoring unit are gathered to characterize the behavior of individual processor com-

ponents. CHAPTER 6 describes the results of a study that compares scalability and 

performance of SPEC CPU2017 for different test machines and running conditions. 

Finally, CHAPTER 7 concludes the thesis and discusses future directions. 

 

 

  



 

8 

CHAPTER 2  

 

SPEC CPU2017 

 

This chapter gives a more detailed view of the SPEC CPU benchmark suits 

and the implications of their usage in this research. Section 2.1 gives a brief back-

ground on the need to have real application benchmarks for performance analysis and 

architectural research. Further discussion in Section 2.2 revolves around the history 

and evolution of SPEC CPU over many generations. Section 2.3 explores the latest 

iteration of SPEC CPU and gives a breakdown of its organization.   

2.1 Background 

With each new generation of modern processors, semiconductor technology 

nodes get smaller and more refined, resulting in an exponential increase in the num-

ber of transistors on a single chip. Unable to extract more parallelism from single-

threaded programs and to cope with thermal issues of high-frequency deeply pipelined 

superscalar designs, chip manufacturers turned their focus to designing multicore and 

many-core processors that integrate multiple processor cores, DRAM controllers, 

cache hierarchies and even graphics controllers on a single chip [1]. However, recent 

trends have shown that there is a slowdown in further technology node reduction and 

that we are nearing the end of Moore’s prediction (commonly known as Moore’s Law) 

in semiconductors as we have known it for the last 50 years. Other performance im-

provements need to be explored. Though design complexity has increased rapidly over 

the years in the quest for higher performance, productivity and hardware utilization 



 

9 

have not been able to keep up with Moore’s Law. Finding ways to utilize all the hard-

ware resources available is one of the biggest challenges in computing.  

Performance and energy driven designs in modern processors make it ever so 

complicated to profile and evaluate computing platforms. As architectural enhance-

ments evolve, the method of comparing performance based on mere hardware specifi-

cations becomes obsolete. Benchmarking is the most widely used technique for meas-

uring and comparing performance across different architectures. Benchmarks are de-

signed to mimic a specific type of workload on a system. Synthetic benchmarks can be 

created to pinpoint workloads to a particular component. An application benchmark 

is a real-world program that could be used for performing system-wide analysis. 

Benchmarking has many uses. It acts as a useful tool when it comes to application-

specific hardware purchases. An informed hardware purchase, focusing on application 

requirements saves time, money and energy. Benchmarking is also of great im-

portance in CPU design. It allows the architects and designers to evaluate perfor-

mance and make trade-offs in micro-architectural decisions. The architectural re-

search relies on benchmarking to evaluate current systems for bottlenecks and eval-

uate enhancements proposed designs of future systems. It is thus of utmost im-

portance to have standardized benchmarks that are representative of real-life appli-

cations.  

With workloads and computing needs varying and evolving over time with the 

never-ending demand to process more data in less time, the world of performance 

evaluation is always evolving. Performance evaluations play a major role in determin-

ing bottlenecks and hotspots during program execution. Hence, it becomes extremely 



 

10 

important to have benchmarks that adapt and stay relevant even with shifts in com-

puting needs.  

The use of benchmarks is widespread and is accepted throughout the compu-

ting industry. For the above-stated reason, there are various suites available for dif-

ferent platforms and architectures. In the past, manufacturers have been known to 

use tricks to get better results for benchmarks which in other cases would not result 

in meaningful performance improvements. Hence it is preferable to have an unbiased 

benchmark suite that is portable across architectures and platforms. One such suite 

is SPEC CPU. SPEC CPU benchmarks, known to be uniform and considered a stand-

ard, offer CPU intensive workloads for measuring and comparing performance using 

the metrics of speed and throughput across different architectures. 

2.2 History and Evolution of SPEC CPU 

The System Performance Evaluation Cooperative, now named the Standard 

Performance Evaluation Corporation (SPEC), was founded in 1988. It is a non-profit 

organization that aims to “establish, maintain and endorse standardized benchmarks 

and tools to evaluate performance and energy efficiency” for computing systems [2]. 

SPEC initially consisted of a small number of workstation vendors who understood 

the need for standardized performance tests. Over time, SPEC has grown into a per-

formance standardization entity with more than 60 member companies. Defining met-

rics which are fair and meaningful in the analysis helps differentiate systems under 

test. The path chosen by SPEC is an attempt to balance requiring strict compliance 

and allowing vendors to showcase engineering advantage. For comparisons to be in-

terpreted as fair, the source codes are distributed so that the user can compile it in 



 

11 

the test environment. A pre-compiled set of binaries (executables) from a trusted 

source can also be used. 

There have been six iterations of the SPEC CPU benchmarks namely CPU89, 

CPU92, CPU95, CPU2000, CPU2006, and CPU2017. With each new iteration, the 

benchmarks were updated in terms of complexity and workloads to keep up with ad-

vances in software and hardware. The first official set of CPU benchmarks was re-

leased in 1989 called SPEC Benchmark Release 1 suite, later identified as CPU89. 

CPU89 provided a standardized measure of compute-intensive microprocessor perfor-

mance. This product replaced the vague and confusing MIPS and MFLOPS ratings 

then used in the computer industry [3]. These benchmarks were derived from real 

applications and were provided as source code to allow compilation on various work-

stations. Various running utilities ensured that all platforms would perform precisely 

the same task, providing comparability and uniformity across different architectures. 

CPU89 metrics did capture performance of the memory subsystem and the compiler 

too. As time progressed, SPEC CPU gained recognition and was adopted widely. But 

during this period compiler and processor technology improved drastically, requiring 

new benchmarks. Recognizing the shift, SPEC obsoleted CPU89 and released CPU92 

in January 1992. In a similar trend, CPU95 was released in the summer of 1995. 

CPU95 incorporated subcomponents CINT95 and CFP95, which focused on integer 

and floating-point operation, respectively. CPU95, like its predecessor, was rolled out 

in the form of source code to be utilized in a wide range of computer platforms. Base-

line results were introduced for the integer and floating-point benchmarks to main-

tain uniformity in test condition, in terms of compilers.  



 

12 

Though SPEC CPU is perceived as a CPU intensive benchmark suite, it does 

emphasize memory and compiler efficiency as well. In 2000, CPU2000 was released 

which consisted of 26 benchmarks divided into two subcomponents namely CINT2000 

and CFP2000, like its predecessor. The next iteration, SPEC CPU2006, came out in 

2006 and included two subcomponents namely, the SPECint benchmarks and the 

SPECfp benchmarks. The SPECint 2006 benchmark contains 12 and the SPECfp 2006 

contains 19 benchmarks. SPEC CPU2006 gives an option to test both speed and 

throughput metrics. The SPECspeed metrics (e.g., the SPECint 2006 benchmark) are 

used for comparing the ability of a computer to complete a single task. The SPE-

Crate metrics (e.g., the SPECint_rate 2006 benchmark) are used for comparing the 

ability of a computer to complete multiple tasks. CPU2006 was retired in 2017 with 

the release of its successor CPU2017. 

2.3 CPU2017 

The SPEC CPU2017 benchmark suites contains SPEC's latest, industry-stand-

ardized, CPU intensive suites for measuring and comparing compute intensive per-

formance, stressing a system's processor, memory subsystem, and compiler. Building 

on CPU2006, CPU2017 contains 43 benchmarks, organized into four suites. A suite 

consists of a set of benchmarks that are run as a group and whose performance can 

be captured by a single number. Of the four suites in CPU2017, two are speed bench-

marks namely SPECspeed2017 Integer (int_speed for short) and SPECspeed2017 

Floating Point (fp_speed for short).  For calculating SPECspeed metrics, one copy of 

the benchmark in a suite is run. The tester has the option of choosing the number of 

OpenMP threads for testing in hyper-threaded and multicore systems. A high score 



 

13 

means that less time is required to complete the suite. For each speed benchmark, 

𝑆𝐵𝑖, after a successful run, a performance ratio, 𝑃𝑒𝑟𝑓. 𝑅𝑎𝑡𝑖𝑜(𝑆𝐵𝑖) is calculated as 

shown in Eq.2.1, where 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑟𝑒𝑓) is the execution time on the reference machine 

and 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑠𝑢𝑡) is the execution time on the system under test. 

𝑃𝑒𝑟𝑓. 𝑅𝑎𝑡𝑖𝑜(𝑆𝐵𝑖) =  
𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑟𝑒𝑓)

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑠𝑢𝑡)
        𝐸𝑞. 2.1 

The remaining two suites of the SPEC CPU2017 are rate benchmarks namely 

SPECrate 2017 Integer (int_rate for short) and SPECrate 2017 Floating Point (fp_rate 

for short). For SPECrate metrics calculation, OpenMP is disabled. The tester has the 

option to select the number of concurrent copies of the same benchmark to run on the 

system. A high score means that more work is done per unit of time. For each rate 

benchmark, 𝑅𝐵𝑖, after a successful run, a performance ratio, 𝑃𝑒𝑟𝑓. 𝑅𝑎𝑡𝑖𝑜(𝑅𝐵𝑖) is calcu-

lated as shown in Eq.2.2, where 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑟𝑒𝑓) is the execution time on the reference 

machine, 𝑁 is the number of copies executed and 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑠𝑢𝑡) is the execution time 

on the system under test. 

𝑃𝑒𝑟𝑓. 𝑅𝑎𝑡𝑖𝑜(𝑅𝐵𝑖) =  
𝑁 ∗ 𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑟𝑒𝑓)

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑠𝑢𝑡)
        𝐸𝑞. 2.2 

A reference machine is used to normalize the performance metrics used in all 

the CPU2017 suites. Each benchmark is run on the reference machine and a measure 

of execution time is taken and is used as the reference time. The reference machine is 

a historical Sun Microsystems server, the Sun Fire V490 with 2100 MHz Ul-

traSPARC-IV+ chips. The UltraSPARC-IV+ was introduced in 2006 and is newer than 

the processor used in the CPU2000 and CPU2006 reference machines (the 300 MHz 



 

14 

1997 UltraSPARC II) [4]. Each benchmark is run and measured on this machine to 

establish a reference time for that benchmark. These times are then used in the SPEC 

calculations. The benchmark suites in SPEC CPU2017 are shown in Table 2.1. 

 

Table 2.1 Benchmark Suites in SPEC CPU2017 [4] 

Short Tag Suite Contents Metrics # Threads/Copies 

int_speed SPECspeed 

2017 Integer 

10 integer 

benchmarks 

SPECspeed2017_int_base 

SPECspeed2017_int_peak 

SPECspeed suites al-

ways run one copy of 

each benchmark. 

The user can set the 

number of threads. 

fp_speed SPECspeed 

2017 Floating 

Point 

10 floating 

point bench-

marks 

SPECspeed2017_fp_base 

SPECspeed2017_fp_peak 

int_rate SPECrate 

2017 Integer 

10 integer 

benchmarks 

SPECrate2017_int_base 

SPECrate2017_int_peak 

SPECrate suites run 

all the benchmarks 

single threaded.  The 

tester selects how 

many concurrent 

copies to run. 

fp_rate SPECrate 

2017 Floating 

Point 

13 floating 

point bench-

marks 

SPECrate2017_fp_base 

SPECrate2017_fp_peak 

 

The nominal memory requirements for SPEC CPU2017 are as follows:  

• SPECrate: 2GB of memory per copy, if compiled for a 64-bit address space. 

• SPECspeed: 16GB of main memory on the system, process limits must allow 

large stacks. 

The integer benchmarks in the CPU2017 suites are derived from a wide variety 

of application fields (Table 2.2). The use of different programming languages offers a 

better range of compiler optimization techniques to be explored. The speed bench-

marks focus on how fast a system’s functional unit can execute instructions using all 

the available hardware resources. The speed benchmarks and rate benchmarks within 

the same pair (5nn benchmark for rate and 6nn, the benchmark for speed) are like 



 

15 

each other. Differences can be found in compile flags, run rules and size of the input 

workloads; generally, speed benchmarks require more memory than their rate coun-

terparts.  Table 2.2 lists the integer benchmarks in both the speed and rate suites, 

describes their source code type and size expressed in Kilo Lines of Code (KLOC), and 

gives their application field. 

 

Table 2.2 Integer Benchmark Details [4] 

SPECrate 2017 

Integer 

SPECspeed 2017 

Integer 

Language KLOC Application Area 

500.perlbench_r 600.perlbench_s C 362 Perl interpreter 

502.gcc_r 602.gcc_s C 1304 GNU C compiler 

505.mcf_r 605.mcf_s C 3 Route planning 

520.omnetpp_r 620.omnetpp_s C++ 134 
Discrete Event simulation - 

computer network 

523.xalancbmk_r 623.xalancbmk_s C++ 520 
XML to HTML conversion via 

XSLT 

525.x264_r 625.x264_s C 96 Video compression 

531.deepsjeng_r 631.deepsjeng_s C++ 10 
Artificial Intelligence: alpha-

beta tree search (Chess) 

541.leela_r 641.leela_s C++ 21 
Artificial Intelligence: Monte 

Carlo tree search (Go) 

548.exchange2_r 648.exchange2_s Fortran 1 
Artificial Intelligence: recursive 

solution generator (Sudoku) 

557.xz_r 657.xz_s C 33 General data compression 

 

The floating-point benchmarks in the CPU2017 suites are also derived from a 

wide variety of application fields. Similar to the integer benchmarks, the floating-

point benchmarks also have similar differences between SPECfpspeed and 

SPECfprate benchmarks. The SPECspeed benchmarks need large stacks, both for the 



 

16 

main process and the OpenMP threads. Table 2.3 lists the floating-point benchmarks 

in both the speed and rate suites, describes their source code type and size expressed 

in Kilo Lines of Code (KLOC), and gives their application field. Some of these bench-

marks can be run with several inputs. The different inputs are explored in further 

sections. 

 

Table 2.3 Floating-point Benchmark Details [4] 

SPECrate 2017 

Floating Point 

SPECspeed 2017 

Floating Point 

Language KLOC Application Area 

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling 

507.cactuBSSN_r 607.cactuBSSN_s 
C++, C, 

Fortran 

257 Physics: relativity 

508.namd_r  C++ 8 Molecular dynamics 

510.parest_r  C++ 427 
Biomedical imaging: optical to-

mography with finite elements 

511.povray_r  C++, C 170 Ray tracing 

519.lbm_r 619.lbm_s C 1 Fluid dynamics 

521.wrf_r 621.wrf_s Fortran, C 991 Weather forecasting 

526.blender_r  C++, C 1,577 3D rendering and animation 

527.cam4_r 627.cam4_s Fortran, C 407 Atmosphere modeling 

 628.pop2_s Fortran, C 338 
Wide-scale ocean modeling (cli-

mate level) 

538.imagick_r 638.imagick_s C 259 Image manipulation 

544.nab_r 644.nab_s C 24 Molecular dynamics 

549.fotonik3d_r 649.fotonik3d_s Fortran 14 
Computational Electromagnet-

ics 

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling 

 



 

17 

The SPEC CPU2017 suites as a whole gives metrics for both speed and 

throughput using real-life applications to be used as a strong reference point for sys-

tem evaluations. The large inputs representing modern workloads pose the issue of 

long runtimes. While experimenting with various parameters, it is challenging to 

evaluate multiple changes as runtimes can be extremely long. So, it becomes ex-

tremely important to choose metrics that uncover major bottlenecks and avoid getting 

diminishing results out of optimization. To do so efficiently, a baseline run is carried 

out and the results are analyzed using various tools to determine true bottlenecks and 

hotspots, providing insights so that an informed decision to minimize all known bot-

tlenecks to get the best possible results can be obtained [5]. 

 

  



 

18 

CHAPTER 3  

 

TEST ENVIRONMENT & PROFILING TOOLS 

 

This chapter gives a detailed overview of the objective of this study, experi-

mental setup, the tools used for profiling, and the metrics used for evaluation. Section 

3.1 describes the experimental goals of this research. Section 3.2 explains the micro-

architectures and hardware changes over different generations. Section 3.3 gives in-

formation about the systems used for measurements and the conditions used during 

profiling. Section 3.4 covers all the tools used for the study. All the measurements 

were carried out on the test systems sponsored by the LaCASA Laboratory at UAH. 

3.1 Experimental Goals 

The measurement-based studies performed in this thesis rely on SPEC utilities 

to report execution times and SPEC CPU composite performance metrics. In addition, 

a set of modern tools for event-based sampling and profiling is used, including Linux 

utilities perf and likwid, and Intel VTune Amplifier. These tools interface and gather 

information from on-chip performance monitoring units (PMU) that are part of mod-

ern processors’ fabric. Statistics collected by PMU registers during benchmark execu-

tion include the number of clock cycles, the number of instructions executed, as well 

as a myriad of microarchitecture-specific events that capture the behavior of a proces-

sor’s front-end and back-end resources, such as branch predictors, functional units, 

and memory hierarchy.  



 

19 

This thesis includes several aspects of performance evaluation of modern pro-

cessors using SPEC CPU2017 benchmark suite as described below. 

• The SPEC CPU2017 suites are run on a set of desktop and server computers 

featuring recent generations of Intel’s Core i7 (Core i7-4700 and Core i7-

8700K) and Xeon processors (Xeon E3-1240 V2 and Xeon E5-2643 V3). Per-

formance of individual benchmarks and benchmarks suites, in general, are 

analyzed and reported using SPEC CPU2017 metrics.  

• Comparative performance analysis of multiple computers is performed using 

SPEC CPU2017 metrics.  

• The Intel VTune Amplifier’s Top-down Microarchitectural Analysis Method 

is used to identify performance bottlenecks for each benchmark, including 

both single-threaded and multi-threaded variants when possible. 

• SPEC CPU2017 includes a number of benchmarks that can execute multiple 

threads. Thus, to understand the scalability of these parallel benchmarks, 

they are run while varying the number of threads. In throughput-oriented 

computing, multiple copies of the same benchmark are run, and correspond-

ing performance metrics are analyzed.  

• The effectiveness of hardware prefetching is quantitatively assessed for both 

single-threaded and multi-threaded benchmark runs.  

3.2 Intel Microarchitectures: An Overview 

This section gives a bird’s eye view of the different microarchitectures produced 

by Intel over the years. The discussion starts from the Ivy Bridge Microarchitecture 

released in 2012 and looks at all further improvements over the years and ends with 



 

20 

the Coffee-Lake Microarchitecture released in 2017. Intel processors are based on a 

“tick-tock” development process. At first, a “tock” comes with a new microarchitecture 

that uses the same technology node as before. The next generation is followed by a 

“tick” which comes with a new smaller technology node but the same microarchitec-

ture. This type of development allows both sources of improvements to mature and 

cuts cost. The “tick-tock” representation is as shown in Figure 3.1 below. It should also 

be noted that the conventional notation of representing a technology node, the dis-

tance between drain and source, does not specifically apply for a three-dimensional 

MOSFET. Conventionally, transistor size reduction has played a key role in speed and 

energy improvements. But for four full generations of the Intel lineup, the same tech-

nology node was used with refinements. This shows a break from the “tick-tock” ap-

proach. Though size has lately remained the same, other forms of performance en-

hancements such as better parallelization, faster memory interconnect, and larger 

caches have maintained a nearly 30% improvement in performance and 15-20% power 

reduction each generation. All the information about the internal structure is ob-

tained from the Intel Optimization Reference manual [6]. 

 

Figure 3.1 Tick-Tock Model Representation [7]. 

Intel Microarchitecture 
Codename Nehelam

Intel Microarchitecture 
Codename Sandy Bridge 

Nehalem
45nm

Westmere
32 nm

Sandy 
Bridge
32 nm

Ivy Bridge
22 nm

Tock Tick Tock Tick

Intel Microarchitecture 
Codename Skylake

Skylake
14 nm

Kaby 
Lake

14+ nm

Coffee 
Lake

14++ nm

2009 2010 2011 2012

Intel Microarchitecture 
Codename Haswell

Haswell
22 nm

Broadwell
14 nm

Tock Tick

2013 2014

Tock - -

2015 2016 2017

New Microarchitecture New Process Technology



 

21 

Each generation of Intel microarchitecture contains two variants, the microar-

chitecture for the Core processors and for the Xeon processors. Though the internal 

core architecture is similar, the design of the Xeon is oriented towards prolonged us-

age and lower power consumption. To achieve that, a Xeon is usually clocked at a 

lower clock frequency to have a lower operating temperature, whereas a Core i7 is 

usually clocked at a higher clock frequency and operates at higher temperatures. Most 

Xeons also do not come with an on-chip graphics processing unit, thus requiring 

discrete graphics cards. With larger cache memory, the Xeons are better suited for 

server applications.  Xeon processors are qualified to handle heavier, more intensive 

loads day in and day out. For the serious workstation user, this can translate to better 

longevity over their Core i7 counterparts. Error Checking and Correction (ECC) RAM 

detects and corrects most common data corruption before it occurs, eliminating the 

cause of many systems crashes and translating to more stable overall performance. 

Only Xeon processors support ECC RAM. 

3.2.1 Intel Ivy Bridge  

The Intel Ivy Bridge was the upgrade to the Sandy Bridge microarchitecture 

moving to a new 22-nm technology node from the previous 32-nm technology node. It 

was released in the second quarter of 2012. As it was a “tick” in Intel’s processor cycle, 

the internal microarchitecture remained the same as Sandy Bridge with minor 

tweaks. A Core i7-4770 has about 1.4 billion transistors in about 160 mm2  [8]. Proces-

sors based on Ivy Bridge are commonly known as the third-generation core processors.  

Figure 3.2 shows an annotated die map of a quad-core Ivy Bridge processor. A 

similar die map can be seen across all quad-cores in that generation, apart from some 

of the version 2 Xeon lineup that does not include the onboard graphics processor. A 



 

22 

significant increase in on-chip graphics area for the core processors results in faster 

graphics control. 

 

Figure 3.2 Die Map of a Quad-Core Ivy Bridge Processor [9] 

 

As the Intel Ivy Bridge processors are based on the Intel Sandy Bridge micro-

architecture, an internal look at the Sandy Bridge microarchitecture is given in this 

section.  The Intel Sandy Bridge microarchitecture specifies an out of order 

superscalar design which can dispatch up to six micro-instructions to execution units 

per CPU clock cycle. It has a 14-stage pipeline (16 with fetch/retire). The dispatched 

instructions are reordered to “dataflow” order so that they can execute as their respec-

tive sources are available. Instructions with no data dependencies will generally exe-

cute as they come using first in first out (FIFO) policy. The data cache is non-blocking 

and can handle multiple simultaneous misses [6]. Each processor with enabled hyper-

threading will have two logic cores. Figure 3.3 depicts the internal CPU block diagram 

of a Sandy Bridge processor. The internal functional units can be segregated into the 

front-end and the back-end. 

Processor 
Graphics

Core Core Core Core

Shared L3 Cache**

Memory Controller I/O

System 
agent and 
Memory

Controller

Including DMI, 
Display & Misc. 

I/O



 

23 

 

Figure 3.3 Sandy Bridge/Ivy Bridge CPU Core Block Diagram [6] 

 

The front-end of the processor is responsible for fetching instructions from 

memory and translating them into micro-operations. These translated micro-

operations are then fed to the back-end of the processor. The back-end handles sched-

uling, execution and retiring of instructions. The flow of an instruction through the 

pipeline can be illustrated as follows. Initially, the branch prediction unit (BPU) 

chooses the next 16-byte block of instructions for execution. The processor then 

searches for instructions in the Decode ICache, Instruction Cache, L2 cache, last level 

cache (LLC) and memory in that order, as necessary. The instructions fetched from 

the L1I cache or above are then converted into micro-operations and sent to the re-

name/retirement block. They enter the scheduler in program-order but execute out of 

32 K  L1 Instruction Cache Pre-decode Instr Queue

Decoders

1.5K uOP Cache

Branch Predictor

Load 
Buffer

Store 
Buffer

Reorder 
Buffers

Scheduler

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

ALU

V-Mul

V-Shuffle

Fdiv

256-FP MUL

256-FP Blend

ALU

V-Add

V-Shuffle

256-FP Add

ALU

JMP

256-FP Shuf

256-FP Bool

256-FP Blend

Load

StAddr

Load

StAddr

STD

Memory Control

256K L2 Cache (Unified)
Line Fill 
Buffer 32K L1 Data Cache

Allocate / Rename / Retire

48 bytes/cycle

In-order

Out-of-order

Front-End

Back-End



 

24 

order. Branch mispredictions are found at branch executions and they redirect the 

front-end as necessary. Memory operations are parallelized for maximum perfor-

mance. Exceptions are signaled at retirement of the faulting instruction. The common 

components of the front-end are as shown in Table 3.1. 

 

Table 3.1 Components of the Front-End of Intel Ivy Bridge [6] 

Component Function 

Instruction Cache  32-Kbyte backing store of instruction bytes. 

Legacy Decode Pipeline 
Decode instructions to micro-operations, delivered to the micro-oper-

ation queue and the Decoded ICache. 

Decoded ICache Provide a stream of micro-operations to the micro-operation queue. 

MSROM 
Complex instruction micro-operation flow store, accessible from both 

Legacy Decode Pipeline and Decoded ICache 

Branch Prediction Unit 

(BPU) 

Determine next block of code to be executed and drive lookup of De-

coded ICache and legacy decode pipelines. 

Micro-op queue 
Queues micro-operations from the Decoded ICache and the legacy 

decode pipeline. 

 

The Legacy Decode Pipeline is comprised of the instruction translation lookaside 

buffer (ITLB), instruction cache (ICache), instruction pre-decode, and instruction de-

code units. An instruction fetch is a 16-byte aligned lookup through the ITLB and into 

the instruction cache. The pre-decode unit accepts the 16 bytes for each cycle from the 

instruction cache and determines the length of the instructions. There are four decod-

ing units that decode instructions into micro-operations. The first unit can decode all 

IA-32 and Intel 64 instructions, producing up to four micro-operations. The remaining 

three decoding units handle single micro-operation instructions.  

  



 

25 

Micro-fusion fuses multiple micro-operations from the same instruction into a 

single complex micro-operation. The complex micro-operation is dispatched in the out-

of-order execution core as many times as it would if it were not micro-fused. Micro-

fusion enables the use of memory-to-register operations, also known as the complex 

instruction set computer (CISC) instruction set, to express the actual program opera-

tion without worrying about a loss of decode bandwidth.  

Macro-fusion allows the processor to merge common x86 instruction pairs into 

one micro-operation that can be executed in a single clock on a single ALU. At first, 

the instructions are read from the instruction queue. A fusible pair of instructions is 

sent to a single decoder. The obtained single micro-operation represents two instruc-

tions.  

Micro-operations emitted by the decoders are directed to the micro-operation 

queue and to the Decoded ICache. Instructions longer than four micro-operations gen-

erate their micro-operations from the MSROM. The Decoded ICache is essentially an 

accelerator of the legacy decode pipeline. By storing decoded instructions, the Decoded 

ICache enables reduced latency on branch mispredictions, increased micro-operation 

delivery bandwidth to the out-of-order engine, and reduced front-end power consump-

tion.  

Branch prediction predicts the branch target and enables the processor to begin 

executing instructions long before its true execution path is known. All branches uti-

lize the branch prediction unit (BPU). The BPU predicts the target address not only 

based on the EIP (EIP refers to the next instruction to be executed) of the branch but 

also based on the execution path through which execution reached this EIP.  

  



 

26 

The BPU can efficiently predict the following branch types: 

• Conditional branches. 

• Direct calls and jumps. 

• Indirect calls and jumps. 

• Returns. 

The dynamic branch prediction unit consists of two major parts: a branch target 

buffer (BTB) for the prediction of branch targets, and an outcome predictor for the 

prediction of branch outcomes. The BTB is a cache structure, where a part of the 

branch address is used as the cache index, and the last target address of that branch 

is the cache data [10]. Unfortunately, the branch predictor organization and operation 

are not disclosed by the manufacturer. With the use of experimental reverse 

engineering, it is found that the branch predictor unit used in the Intel processors is 

a 4096-entry bimodal predictor [11]. 

The micro-operation queue decouples the front-end and the out of order engine. 

It stays between the micro-operation generation and the Renamer. The micro-opera-

tion queue provides post-decode functionality for certain instruction types. 

The back-end, also known as the out-of-order (OOO) engine, can detect depend-

ency chains and sends those chain of instructions for execution while maintaining 

data-flow. If a dependency chain is waiting for resources, micro-instructions from a 

secondary dependency chain are sent for execution to increase the instruction per cy-

cle (IPC). The major components of the back-end are the Renamer, Scheduler and the 

Retirement unit. The Renamer component moves up to four micro-operations every 

cycle from the front-end to the execution core. It eliminates false dependencies among 

micro-operations, thereby enabling out-of-order execution of micro-operations.  The 



 

27 

Scheduler component queues micro-operations until all source operands are ready and 

schedules and dispatches ready micro-operations to the available execution units in 

as close to a first in first out (FIFO) order as possible. Depending on the availability 

of dispatch ports and write-back buses, and the priority of ready micro-operations, the 

scheduler selects which micro-operations are dispatched every cycle. The Retirement 

component retires instructions and micro-operations in order and handles faults and 

exceptions. 

The execution core is superscalar and can process instructions out-of-order. 

When a dependency chain causes the machine to wait for a resource (such as a second-

level data cache line), the execution core executes other instructions, increasing the 

overall rate of instructions executed per cycle (IPC).  The out-of-order core consists of 

three execution stacks, where each stack encapsulates a certain type of data: a gen-

eral-purpose integer, an SIMD integer and floating-point, and an X87. The execution 

core also contains connections to and from the cache hierarchy. The loaded data is 

fetched from the caches and written back into one of the stacks.  

The scheduler can dispatch up to six micro-operations every cycle, one on each 

port. Table 3.2 summarizes which operations can be dispatched on which port. After 

execution, the data is written back on a write-back bus corresponding to the dispatch 

port and the data type of the result. When a source of a micro-operation executed in 

one stack comes from a micro-operation executed in another stack, a one or two-cycle 

delay can occur. The cache hierarchy contains a first level instruction cache, a first 

level data cache (L1 DCache) and a second level (L2) cache, that is private to each 

core.  



 

28 

The caches may be shared by two logical processors if the processor is hyper-

threaded. The L2 cache is shared by instructions and data. All cores in a physical 

processor package connect to a shared last level cache (LLC) via a ring connection. L2 

is not inclusive of the data in L1. Only the LLC is inclusive of all the levels above it. 

Real delay is a factor of how far the required data is from the core. Each cache line in 

the LLC holds an indication of the cores that may have this line in their L2 and L1 

caches. If there is an indication in the LLC that other cores may hold the line of inter-

est and its state might have to modify, there is a lookup into the L1 DCache and L2 of 

these cores too. 

 

Table 3.2 Dispatch Port and Execution Stacks [6] 

 Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer ALU, Shift ALU,  

Fast LEA, 

Slow LEA, 

MUL 

Load_Addr 

Store_addr 

Load_Addr 

Store_addr 

Store_data ALU, 

Shift, 

Branch, 

Fast LEA 

SSE-Int, 

AVX-Int, 

MMX 

Mul, Shift, 

STTNI, Int-

Div,  

128b-Mov 

ALU, Shuf, 

Blend,  

128b-Mov 

  Store_data ALU, Shuf, 

Shift, Blend, 

128b-Mov 

SSE-EP, 

AVX-FP_low 

Mul,Div, 

Blend, 

256b- Mov 

Add, CVT   Store_data Shuf, Blend, 

256b-Mov 

X87, 

AVX-FP_High 

Mul,Div, 

Blend,  

256b- Mov 

Add, CVT   Store_data Shuf, Blend, 

256b-Mov 

 

Table 3.3 shows the best-case cache latency in the correct lookup order. Real 

delay is a factor of how far the required data is from the core.  



 

29 

Table 3.3 Best Case Cache Latency/ Load Latency [6] 

Level Latency (cycles) Bandwidth (per core per cycle) 

L1 Data 4 2 x16 bytes 

L2 (Unified) 12 1 x 32 bytes 

Third Level (LLC) 26-31 1 x 32 bytes 

L2 and L1 DCache in other 

cores if applicable 

43 - clean hit; 

60 - dirty hit 

 

 

The L1 DCache is the first level data cache. It manages all load and store re-

quests from all types through its internal data structures. The L1 DCache enables 

loads and stores to issue speculatively and out-of-order ensures that retired loads and 

stores have the correct data upon retirement and ensures that loads and stores follow 

the memory ordering rules of the IA-32 and Intel 64 instruction set architecture. The 

common load latency for L1 DCache is five cycles. Table 3.4 shows the components of 

the L1 Data Cache. 

 

Table 3.4 L1 Data Cache Components [6] 

Component Intel microarchitecture code name Sandy Bridge 

Data Cache Unit (DCU) 32KB, 8 ways 

Load buffers 64 entries 

Store buffers 36 entries 

Line fill buffers (LFB) 10 entries 

 

The L1 DCache architecture can service two loads per cycle, each of which can 

be up to 16 bytes. The LLC consists of multiple cache slices. The number of slices is 

equal to the number of IA cores. Each slice has both logic and data array portions. The 

logic portion handles data coherency, memory ordering, access to the data array por-

tion, LLC misses, writeback to memory, and more. The data array portion stores cache 

lines. Each slice contains a full cache port that can supply 32 bytes/cycle. The physical 



 

30 

addresses of the data kept in the LLC data arrays are distributed among the cache 

slices by a hash function, such that addresses are uniformly distributed. The data 

array in a cache block may have 4/8/12/16 ways corresponding to the 

0.5M/1M/1.5M/2M block size. 

Data can be speculatively loaded into the L1 DCache using software prefetch-

ing, hardware prefetching, or any combination of the two. The various hardware 

prefetching mechanisms provided by the Intel microarchitecture code name Sandy 

Bridge and their improvement over previous processors are discussed further. The 

goal of the prefetchers is to automatically predict which data the program is about to 

consume. If this data is not close-by to the execution core or inner cache, the prefetch-

ers bring it from the next levels of cache hierarchy and memory. Two hardware 

prefetchers load data to the L1 DCache. The first one is a data cache unit (DCU) 

prefetcher. This prefetcher, also known as the streaming prefetcher, is triggered by 

an ascending access to very recently loaded data. The processor assumes that this 

access is part of a streaming algorithm and automatically fetches the next line. The 

second one is the instruction pointer (IP) based stride prefetcher. This prefetcher 

keeps track of individual load instructions. If a load instruction is detected to have a 

regular stride, then a prefetch is sent to the next address which is the sum of the 

current address and the stride. This prefetcher can prefetch forward or backward and 

can detect strides of up to 2K bytes. 

3.2.2 Intel Haswell Microarchitecture  

The Intel Haswell microarchitecture was the successor to the Intel Ivy Bridge. 

As it was a “tock” in Intel’s processor cycle, the technology node remained the same as 



 

31 

the previous generation (Ivy Bridge) but the microarchitecture went through a rede-

sign.  Processors based on the Haswell microarchitecture are commonly known as 

fourth-generation core processors.  Figure 3.4 shows an annotated die map of a quad-

core Haswell processor.  

 

Figure 3.4 Die Map of a Quad-Core Haswell Processor[12] 

 

Figure 3.5 shows the internal CPU Core Block Diagram of the Haswell micro-

architecture. As a redesign from Ivy Bridge, multiple aspects have been improved in 

the Haswell architecture. It included added support to the Intel Advanced Vector Ex-

tension 2. The new microarchitecture can dispatch up to 8 micro-operations per cycle. 

It has two branch execution units.   

The front-end of the Haswell microarchitecture builds on the Ivy Bridge. Addi-

tional enhancements are portrayed here. It has a 14-stage pipeline (16 with fetch/re-

tire). The micro-operation cache (or decoded ICache) is partitioned equally between 

two logical processors. The instruction decoders will alternate between each active 

logical processor. If one sibling logical processor is idle, the active logical processor 

uses the decoders continuously. The loop stream detector (LSD) in the micro-op queue 

Processor 
Graphics

Core Core Core Core

Shared L3 Cache**

Memory Controller I/O

System 
agent, 
Display 
Engine 

and 
Memory

Controller

Including DMI, 
Display & Misc. 

I/O



 

32 

(or IDQ) can detect small loops of up to 56 micro-operations. The 56-entry micro-oper-

ation queue is shared by two logical processors if hyper-threading technology is active 

(Ivy Bridge provides duplicated 28-entry micro-operation queues in each core). 

 

Figure 3.5 Haswell CPU Core Block Diagram [6] 

 

The key components and significant improvements to the out-of-order engine 

are summarized as follows. The Renamer moves micro-operations from the micro-op-

eration queue to bind to the dispatch ports in the Scheduler with execution resources.  

The Scheduler controls the dispatch of micro-operations onto the dispatch 

ports. There are eight dispatch ports to support the out-of-order execution core. Four 

of the eight ports provide execution resources for computational operations. The other 

4 ports support memory operations of up to two 256-bit load and one 256-bit store 

32 K L1 Instruction Cache Pre-Decode Instruction Queue MSROM

Decoder

Uop Cache (DSB)

IDQ

BPU

Load Buffers, Store Buffers, 
Reorder Buffers

Allocate/Rename/Retire/Move 
Elimination/ ZeroIdiom

Scheduler

Port 0 Port 1 Port 5 Port 6 Port 4 Port 2 Port 3 Port 7

ALU,
SHIFT,

VEC LOG,
VEC SHFT,

FP mul,
FMA,
DIV,

STTNI,
Branch 2

ALU,
Fast LEA,
VEC ALU,
VEC LOG,
FP mul,
FMA,

FP add,
Slow Int

ALU,
Fast LEA,
VEC ALU,
VEC LOG,

VEC 
SHUF,

ALU, Shft

Primary
Branch

STD LD/STA LD/STA STA

Memory Control

256 K L2 Cache (Unified) Line Fill Buffers 32 K L1 Data Cache



 

33 

operation in a cycle. The scheduler can dispatch up to eight micro-operations every 

cycle, one on each port. Of the four ports providing computational resources, each pro-

vides an ALU, two of these execution pipes provided dedicated fused multiply-add 

(FMA) units. With the exception of division/square-root, most floating-point and inte-

ger SIMD execution units are 256-bit wide. The four dispatch ports servicing memory 

operations includes two dual-use ports for load and store-address operation, a dedi-

cated 3rd store-address port, and one dedicated store-data port. All memory ports can 

handle 256-bit memory micro-operations. Peak floating-point throughput, at 32 sin-

gle-precision operations per cycle and 16 double-precision operations per cycle using 

FMA, is twice that of Sandy Bridge. The out-of-order engine can handle 192 micro-

operations in flight compared to 168 in Sandy Bridge. 

The cache hierarchy is like prior generations, including an instruction cache, 

a first-level data cache and a second-level unified cache in each core, and a third-level 

unified cache with size dependent on specific product configuration. The third-level 

cache is organized as multiple cache slices, the size of each slice may depend on prod-

uct configurations, connected by a ring interconnect. The L1 data cache can handle 

two 256-bit load and one 256-bit store operations each cycle. The unified L2 can ser-

vice one cache line (64 bytes) for each cycle. Additionally, there are 72 load buffers 

and 42 store buffers available to support micro-operation executions in-flight. 

3.2.3 Intel Skylake Microarchitecture  

The latest iteration of architectural improvement comes in the form of the Sky-

lake architecture. Released in 2015, Skylake is the successor to Broadwell (successor 

of Haswell Microarchitecture) in terms of technology node and is built on the advance-

ments in the Haswell architecture. Skylake was a “tock” in Intel’s cycle, hence it used 



 

34 

the same 14-nm technology node used in Broadwell with refinements. Skylake micro-

architecture chips are commonly known as sixth-generation processors. Some of the 

major changes include larger internal buffers to enable deeper out-of-order (OOO) ex-

ecution and higher cache bandwidth. It has improved front-end throughput, branch 

predictor, and lower power consumption. Figure 3.6 gives the CPU core block diagram 

of the Skylake microarchitecture. 

The front-end in the Skylake microarchitecture has the following enhance-

ments over previous generations. The Legacy Decode Pipeline delivers 5 micro-opera-

tions per cycle to the IDQ compared to 4 micro-operations delivered in previous gen-

erations. The distributed shared buffer (DSB) delivers 6 micro-operations to the IDQ 

instead of 4 micro-operations in previous generations. The IDQ can hold 64 micro-

operations per logical processor vs. 28 micro-operations per logical processor in previ-

ous generations when two sibling logical processors in the same core are active (2x64 

vs. 2x28 per core). If only one logical processor is active in the core, the IDQ can hold 

64 micro-operations (64 vs. 56 micro-operations in ST operation). The LSD in the IDQ 

can detect loops up to 64 micro-operations per logical processor irrespective single-

threaded (ST) or simultaneous multi-threaded (SMT) operation. 

The out-of-order (OOO) and execution engine changes in Skylake microarchitec-

ture include larger buffers to enable deeper OOO execution compared to previous gen-

erations, improved throughput and latency for divide/sqrt and approximate recipro-

cals, identical latency and throughput for all operations running on FMA units. 

Longer pause latency enables better power efficiency and better SMT performance 

resource utilization.  

 



 

35 

 

Figure 3.6 Skylake Microarchitecture CPU Core Block Diagram [6] 

 

The cache hierarchy of the Skylake microarchitecture has the following en-

hancements; higher cache bandwidth compared to previous generations, simultane-

ous handling of more loads and stores enabled by enlarged buffers, L3 write band-

width increased from 4 cycles per line in the previous generation to 2 per line, and L2 

associativity changed from 8 way to 4 way. 

MSROM

BPU
32 K L1 instriuction 

Cache

Decode Icache (DSB)
Legacy Decode 

Pipeline

Instruction Decode Queue(IDQ, or micro-op queus)

Allocate/Rename/Retire/MoveElimination/ZeroIdion

Scheduler

Int ALU,
Int Shft,
Branch 1

Int ALU,
Vec FMA,
Vec MUL,
Vec Add,
Vec Shft,
Divide,

Branch2

Int ALU,
Fast LEA,
Vec FMA,
Vec MUL,
Ved Add,
Vec ALU,
Vec Shft,
Int MUL,
Slow LEA

Int ALU,
Fast LEA,

Vec SHUF,
Vec ALU,

CVT

Port 2 
LD/STA

Port 3 
LD/STA

Port 4 
STD

Port 7 STA

32 K L1 Data 
Cache

256K L2 Cache 
(Unified)

4 uops/cyle 6 uops/cycle 5 uops/cycle

Port 0 Port 1 Port 5 Port 6



 

36 

3.2.4 Intel Kaby Lake   

The Intel Kaby Lake processors were released in 2016 and are the successor to 

the Skylake microarchitecture. The Kaby Lake lineup is commonly known as seventh-

generation core processors. As it was a “tick” it was expected to have a new technology 

node. However, due to complications in manufacturing, the old 14-nm technology node 

was used with refinements calling it “14-nm+”, signifying a break in the “tick-tock” 

convention. As the refined process resulted in the decrease in leakage current of 12%, 

it allowed the clock frequency of the cores to be pushed up by around 200 MHz in turbo 

mode. Overall, the internal architecture and memory system remained the same as 

Skylake.  

3.2.5 Intel Coffee Lake  

The Intel Coffee Lake processors were released in 2017 and are the successor 

to the Kaby Lake processors. The Coffee Lake lineup is commonly known as eighth-

generation core processors. This is the second generation of processors that do not 

involve major changes in either microarchitecture or technology node. A further re-

fined process called “14nm++” was used, resulting in a 21.5% decrease in leakage cur-

rent compared to the 14nm process. As a result, the clock frequency was an impressive 

4.70 GHz at single core turbo boost. The core count was also increased from four to six 

with parallelization in mind for the Core i7-8700K. The last level cache (L3) was 

bumped up to 12 MB to scale for the increase in core count. The general architecture 

and memory structure and the interconnect remain the same as the Skylake microar-

chitecture. Figure 3.7 shows the die map of a Coffee Lake i7-8700K processor. 



 

37 

 

Figure 3.7 Die Map of a Hexa-Core Coffee Lake Processor 

 

One of the major changes comes in the form of the Intel Turbo Boost Technol-

ogy 2.0. Turbo mode accelerates processor and onboard graphics performance for peak 

loads, automatically allowing processor cores to run faster than the rated operating 

frequency if they’re operating below power, current, and temperature specification 

limits. Whether the processor enters turbo mode and the amount of time the processor 

spends in that state depends on the workload and operating environment. With lower 

leakage current, the core frequency can be increased resulting in a larger frequency 

allocation for turbo mode. Depending on the workload, the turbo mode allocates turbo 

bins to one or multiple cores as shown in Figure 3.8.  

Consider a Core i7-8700K which has 6 physical cores with a base frequency of 

3.70 GHz. If the workload executes only on a single core, then all the turbo bins are 

allocated to that one core pushing the frequency to 4.7 GHz.  If a workload occupies 

two physical cores, then the turbo bins are equally allocated resulting in 4.6 GHz for 

Processor 
Graphics

Core Core

Core

Core

Shared L3 Cache & Ring Interconnect

Memory Controller I/O

System 
agent and 
Memory

Controller

Including DMI, 
Display & Misc. 

I/O

Core Core



 

38 

those two cores. All 6 cores can go into turbo mode with core frequencies maxing out 

at about 4.3 GHz. Note that turbo mode is a function of the operating thermal range 

which determines the duration of turbo operation. As 8th generation processors are by 

default unlocked, it is possible to overclock frequency over the turbo mode.  

 

Figure 3.8 Turbo-Bin Allocation in Multi-Cores [13] 

 

3.3 Systems under Test 

The selection of test systems representing various architecture and computing 

class is discussed in this section. As the processor industry is dominated by the amd-

x86 instruction set in desktop and server computing, this study is oriented towards 

analysis of x86 based systems. This study involves an Intel 4th generation, Haswell 

based Core-i7-4770 (LaCASA codename mtsano) and an Intel 8th generation, Coffee 

Lake based Core-i7-8700k (LaCASA codename clingmansdome) representing desktop 

computing. This pair of desktop machines gives us an opportunity to evaluate the per-

formance improvements achieved over time. The second set consists of an entry-level 

version 2, Ivy Bridge based Xeon-E3-1240 (LaCASA codename vidrak) and a version 

Dynamic Range Turbo 
Frequency Limits

Turbo Bins

Base Frequencies

Idle mode



 

39 

3, Haswell based Xeon-E5-2643 (LaCASA codename mtleconte) representing work-

station/server platforms.  

Table 3.5 shows the test systems chosen along with their hardware and soft-

ware parameters. As the i7-4770 and Xeon-E3-1240 V2 are both quad cores with a 

comparable price point, the performance differences can be studied. The same kind of 

comparison can be made between the i7-8700K and the Xeon-E5-2643 V3 as both are 

hexa-cores with similar specifications. To maintain uniformity across the test plat-

forms, factors such as the software versions and tool releases are set to the latest 

stable version on all the test systems, allowing for a hardware-oriented study.  The 

same release of Linux is used across all devices used in this study. All the test systems 

have sufficient power and cooling requirements to ensure optimal performance capa-

bilities. The SPEC CPU2017 benchmark suites are used to evaluate performance. The 

SPEC number acts as a reference point for all further insights. The choice of a com-

piler correlates with performance. A hardware-aware compiler performs better by op-

timizing the code to exploit all the hardware features such as deep pipelining, multi-

level cache hierarchy, branch predictors, out-of-order execution engines, and advanced 

floating point and multimedia units [14]. The Intel compiler is chosen as the standard 

compiler across all test machines.  

With respect to SPEC runs, a configuration file with similar performance opti-

mization flags is used across all platforms. The benchmarks are compiled using the 

Intel-2018 compiler with required tuning flags.  Benchmarks are built on each system 

and run according to system resources available. The native frequency of the chips is 

not altered, allowing the frequency governor to change frequency as required. Apart 



 

40 

from the operating system, no other tasks are run during testing to avoid discrepan-

cies in benchmark runs.   

 

Table 3.5 Systems Under Test [15] [16] [17] [10] 

Sys. Code name mtsano clingmansdome vidrak mtleconte 

Processor Core i7-4770 Core i7-8700K Xeon E3-1240 v2 Xeon E5-2643 v3 

Lithography 22nm 14nm 22nm 22nm 

Generation 4th Generation 8th Generation 3th Generation 4th Generation 

Intel Codename Haswell Coffee-Lake Ivy Bridge Haswell 

Year of release Q2-2013 Q4-2017 Q2-2012 Q3-2014 

Physical Cores 4 6 4 6*2 

Threads / Core 2 2 2 2 

Logical Cores 8 12 8 12*2 

CPU Max Freq. 3.9 GHz 4.70 GHz 3.8 GHz 3.7 GHz 

CPU Avg. Freq. 3.4 GHz 3.7 GHz 3.4 GHz 3.4 GHz 

CPU Min Freq. 0.8 GHz 0.8 GHz 1.6 GHz 1.2 GHz 

L1d cache 32K*4 32K*6 32K*4 32K*6*2 

L1i cache 32K*4 32K*6 32K*4 32K*6*2 

L2 Cache 256K*4 256K*6 256K*4 256K*6*2 

L3 Cache (LLC) 8192K 12288K 8192K 20480K 

RAM 16 GB 32 GB 16GB 64 GB 

RAM Freq. 1600 MHz 2400 MHz 1600 MHz 2400 MHz 

TDP (watts) 84 W 95 W 69 W 135 W 

Operating  

System 

Ubuntu 16.04.4 

LTS 

Ubuntu 16.04.4 

LTS 

Ubuntu 16.04.4 

LTS 

Ubuntu 16.04.4 

LTS 

OS Codename Xenial Xenial Xenial Xenial 

Kernel 4.13.0-37-generic 4.4.0-116-generic 4.4.0-116-generic 4.4.0-116-generic 

icc version 18.0.1 18.0.1 18.0.1 18.0.1 

Perf version 4.13.13 4.4.98 4.4.98 4.4.98 

 



 

41 

3.4 Tools and Applications 

A SPEC CPU2017 run generates results numbers that represent the total ex-

ecution time relative to the baseline machine as a single number. These results give 

a quick representation of the system’s performance but for an in-depth analysis, ad-

ditional tools are required. The following subsection discusses additional tools used 

for analysis. 

3.4.1 Linux perf 

Modern processors have dedicated hardware counters for performance moni-

toring. Linux perf is a profiler tool present in all Linux-based systems after kernel 

version 2.6. It abstracts the hardware differences and provides a simple command line 

interface. Perf utilizes the perf_events interface exported by recent versions of the 

Linux kernel. It supports a list of measurable events. The tool and underlying kernel 

interface can measure events coming from various sources. Some events come from 

the processor itself and its Performance Monitoring Unit (PMU). perf provides a list 

of events to measure micro-architectural events such as the number of clock cycles, 

instructions retired, L1 cache misses and so on. Those events are called PMU hard-

ware events or hardware events for short. They vary with each processor type and 

model. Other events are counted using Linux kernel counters, and they are thus 

called software events.  

The perf tool can be used to count events on a per-thread, per-process, per-CPU 

or system-wide basis. In the per-thread mode, the counter only monitors the execution 

of a designated thread. When the thread is swapped out, monitoring stops. When a 

thread migrates from one processor to another, counters are saved for the current 

processor and are restored for the new one [19]. The per-process mode is a variant of 



 

42 

per-thread where all threads of the process are monitored. Counts and samples are 

aggregated at the process level. The perf_events interface allows for automatic inher-

itance on fork() and pthread_create(). By default, the Linux perf tool activates inher-

itance and counts all threads of a process and subsequent child processes and threads. 

Perf Hardware Event indicates one of the "generalized" hardware events provided by 

the kernel. Perf Software Event indicates one of the software-defined events provided 

by the kernel (even if no hardware support is available). Perf Hardware Cache Event 

indicates a hardware cache event that has a special encoding, described in the config 

field definition.  

The perf_events interface also provides a small set of common hardware event 

monitors. On each processor, those events get mapped onto an actual event provided 

by the CPU, if they exist, otherwise, the event cannot be used. Every processor has 

hardware counters built into it and some are event-specific registers. The user can use 

the available general-purpose registers to count user defined-events. Most events are 

model specific except the architectural performance events shown in Table 3.6. The 

parameters shown in the table are common for all the test systems used for the study. 

Table 3.6 shows hardware perf events mapping details to actual Performance Moni-

toring Unit events, their function, and register numbers and umask. umask and event 

number together help map a particular event to the registers. 

Furthermore, many events can be derived by software using available hard-

ware counters. perf_events are an event-oriented observatory tool which is extremely 

useful in solving performance issues and in troubleshooting. Many tools further dis-

cussed use perf in the lower level to generate reports and observations. 

 



 

43 

Table 3.6 Architectural Performance Events [20] 

Perf-event Event 

Num 

Umask 

Value 

Event Mask Mnemonic Definition Description & 

Comment 

instructions C0H 00H INST_RETIRED.ANY The number of in-

structions at retire-

ment. 

Counts when the 

last micro-opera-

tion of an in-

struction retires. 

cpu-cycles 3CH 00H CPU_CLK_UN-
HALTED.THREAD_ P 

Counts the number of 

thread cycles while 

the thread is not in a 

halt state. The thread 

enters the halt state 

when it executes a 

HLT instruction. The 

core frequency may 

change from time to 

time due to power or 

thermal throttling. 

Counts core clock 

cycles whenever 

the logical pro-

cessor is in C0 

state (not 

halted). The fre-

quency of this 

event varies with 

state transitions 

in the core. 

branch-in-

structions 

C4H 00H BR_INST_RE-
TIRED.ALL_BRANC HES 

Branch instructions 

at retirement. 

Counts when the 

last micro-opera-

tion of a branch 

instruction re-

tires. 

branch-

misses 

C5H 00H BR_MISP_RE-
TIRED.ALL_BRANC HES 

The number of 

mispredicted branch 

instructions at retire-

ment. 

Counts when the 

last micro-opera-

tion of a branch 

instruction re-

tires which cor-

rected mispredic-

tion of the 

branch predic-

tion hardware at 

execution time. 

cache-

misses 

2EH 41H LONG-
EST_LAT_CACHE.MISS 

This event counts 

each cache miss con-

dition for references 

to the last level 

cache. 

Accesses to the 

LLC in which the 

data is not pre-

sent (miss). 

cache-refer-

ences 

2EH 4FH LONG-
EST_LAT_CACHE.REF-

ERENCE 

This event counts re-

quests originating 

from the core that 

reference a cache line 

in the last level 

cache. 

Accesses to the 

LLC, in which 

the data is pre-

sent (hit) or not 

present (miss). 

L1-dcache-

loads 

D0H 81H MEM_INST_RE-
TIRED.ALL_LOAD 

S 

All retired load in-

structions. 

All retired 

memory read in-

structions 

L1-dcache-

stores 

D0H 82H MEM_INST_RE-
TIRED.ALL_STOR 

ES 

All retired store in-

structions. 

All retired 

memory writes 

instructions 

 

 



 

44 

3.4.2 Likwid 

Likwid (Like I Knew What I’m Doing) is a set of lightweight performance tools 

that incorporates easy to use command line tools for Linux to help programmers in 

developing high-performance applications. Likwid has a set of tools for a specific pur-

pose. Some of the tools are confined to x86 processors. The tools can be roughly 

grouped into three categories such as system information and control, performance 

and energy profiling and micro-benchmarking. Some of the tools used in this study 

are explained further. likwid-features can display and alter the state of the on-chip 

hardware prefetching units in Intel x86 processors. likwid-topology probes the hard-

ware thread and cache topology in multicore, multilocked nodes. likwid-perfctr 

measures performance counter metrics over the complete runtime of an application 

or, with support from a simple application programming interface (API), between ar-

bitrary points in the code. Counter multiplexing allows the concurrent measurement 

of many metrics, larger than the (usually small) number of available counters. Alt-

hough it is possible to specify the full, hardware-dependent event names, some prede-

fined event sets simplify matters when standard information like memory bandwidth 

or floating-point operations (FLOP) counts is needed. likwid-pin enforces thread-core 

affinity in a multithreaded application “from the outside,” i.e., without changing the 

source code. It works with all threading models that are based on POSIX threads and 

is also compatible with hybrid “MPI+threads” programming. Sensible use of likwid-

pin requires correct information about thread numbering and cache topology, which 

can be delivered by likwid-topology [21]. 



 

45 

3.4.3 Intel VTune Amplifier 

The Intel VTune Amplifier is a performance analysis tool that relies on the 

underlying hardware counters to get run-time parameters of the application under 

test. It can be used to locate or determine the following aspects of the code and system: 

• The most time-consuming functions or hot-spots in the application.  

• Sections of code that do not effectively utilize the available processor time.  

• The best sections of code to optimize for sequential performance and for 

threaded performance. 

• Synchronization objects that affect the application performance. 

• Hardware-related issues in code such as data sharing, cache misses, branch 

misprediction, and others.  

• The performance impact of different synchronization methods, different num-

bers of threads, or different algorithms.  

• Thread activity and transitions such as migrations and context-switches.  

For this study, four key features of Intel VTune Amplifier are used; Advanced 

Hotspots, HPC Performance Characterization, Memory Access Analysis and General 

Exploration. When the number of events exceeds the available counters, the tool mul-

tiplexes events and sampling is incorporated. The MUX reliability should be noted. If 

the reliability is less than 70%, then the results are not to be considered acceptable 

[22]. 

Advanced Hotspot analysis is a fast and straightforward way to identify per-

formance-critical code sections in a given application. The periodic instruction pointer 

sampling performed by Intel VTune Amplifier identifies code locations where an ap-

plication spends the most time. It creates a list of functions in the application ordered 



 

46 

by the amount of time spent in each function. By default, Advanced Hotspots analysis 

does not capture the function call stacks as the hotspots are collected, but it can be 

used to sample all processes on the system. This type of analysis uses event-based 

sampling collection and analyzes all the processes running on the system at the time, 

providing CPU time data on whole system performance. 

HPC Performance Characterization analysis is used to identify how effectively 

a compute-intensive application uses CPU, memory, and floating-point operation 

hardware resources. The HPC Performance Characterization analysis type can be 

used as a starting point for understanding the performance aspects of an application. 

During HPC Performance Characterization analysis, the data collector profiles the 

application using event-based sampling collection.  

Memory Access analysis is used to identify memory-related issues, like non-uni-

form memory access (NUMA) problems and bandwidth-limited accesses, and attribute 

performance events to memory objects (data structures). This attribution is possible 

due to instrumentation of memory allocations/de-allocations and getting static/global 

variables from the symbol information. Memory Access analysis type uses hardware 

event-based sampling to collect data. 

General Exploration analysis is used to understand how efficiently the code 

passes through the core pipeline. During General Exploration analysis, the Intel 

VTune Amplifier collects a complete list of events for analyzing a typical client appli-

cation. It calculates a set of predefined ratios used for the metrics and facilitates iden-

tifying hardware-level performance problems. The General Exploration analysis 

strategy varies by microarchitecture. For modern microarchitectures starting with Ivy 

Bridge, the General Exploration analysis is based on the Top-down Microarchitecture 



 

47 

Analysis Method (TMAM) using the Top-down Characterization (TCM) methodology. 

TCM is a hierarchical organization of event-based metrics that identify the dominant 

performance bottlenecks in an application. Superscalar processors can be conceptually 

divided into the front-end and the back-end. The front-end is where instructions are 

fetched and decoded into the operations that constitute them. The back-end is where 

the required computation is performed.  

Each cycle, the front-end generates up to four of these operations. It places 

them into pipeline slots that then move through the back-end. Thus, for a given exe-

cution duration in clock cycles, it is easy to determine the maximum number of pipe-

line slots containing useful work that can be retired in that duration. The actual num-

ber of Retiring pipeline slots containing useful work and rarely equals this maximum.  

Underutilization can be due to several factors. Pipeline slots may not be filled 

with useful work, either because the front-end could not fetch or decode instructions 

in time (Front-End Bound) or because the back-end was not prepared to accept more 

operations of a certain kind (Back-End Bound). Moreover, even pipeline slots that do 

contain useful work may not retire due to bad speculation. Front-End Bound stalls 

may be due to a large code working set, poor code layout, or microcode assists. Back-

End Bound stalls may be due to long-latency operations or other contention for exe-

cution resources. Bad Speculation occurs most frequently due to branch mispredic-

tion. 

Each cycle, each core can fill up to four of its pipeline slots with useful opera-

tions. Therefore, for any time interval, it is possible to determine the maximum num-

ber of pipeline slots that could have been filled in and issued. This analysis performs 

this estimate and breaks up all pipeline slots into four categories: 



 

48 

• Pipeline slots containing useful work that issued and retired (Retired). 

• Pipeline slots containing useful work that issued and canceled (Bad Specula-

tion). 

• Pipeline slots that could not be filled with useful work due to problems in the 

front-end (Front-End Bound). 

• Pipeline slots that could not be filled with useful work due to a backup in the 

back-end (Back-End Bound). 

 

 

 

 

 

 

 

 

 

 

  



 

49 

CHAPTER 4  

 

BASELINE SPEC EVALUATION 

 

This chapter gives a baseline SPEC evaluation and explains the conditions 

used. Section 4.1 explains the Top-down analysis method used by Intel VTune Ampli-

fier. Section 4.2 gives a theoretical view of implementing thread affinity. Section 4.3 

gives a contrast between assigned thread affinity and OS scheduling and the condi-

tions for the final compiled executable that will be used for all further measurements.  

4.1 Top-down Microarchitectural Analysis Method 

This section describes Intel’s Top-down Microarchitecture Analysis Method, or 

TMAM for short, for identifying performance bottlenecks in out-of-order processor 

cores. This method simplifies the process of identifying and quantifying performance 

bottlenecks. The use of TMAM abstracts the steep learning curve associated with each 

microarchitecture generation and a myriad of hardware events that can be observed 

through PMUs during program execution and replaces it with a bird’s eye view of true 

performance limiters [23].  

TMAM utilizes the concept of pipeline slots as shown in Figure 4.1. A pipeline 

slot represents a hardware resource needed to process one micro-operation. A CPU 

core offers multiple pipeline slots that can be utilized by micro-operations in each clock 

cycle. The number of slots is called pipeline width. Figure 4.1 illustrates a 4-wide CPU 

that executes code for 10 clock cycles. Thus, there are 40 pipeline slots in total (4 * 

10). All green circles represent a micro-operation retiring in the given slots, thus the 



 

50 

utilization is 100%.  On the other side, Figure 4.2 shows an example where 20 out of 

40 slots are stalled, i.e., they did not retire any micro-operation. This means that the 

code efficiency is only 50%: 

 

 

Figure 4.1 Pipeline Slots, 100% Utilization 

 

 

Figure 4.2 Pipeline Slots, 50% Utilization 

 

Figure 4.3 shows the general hierarchical framework of TMAM. Figure 4.4 

shows the top-level flowchart of top-down microarchitectural analysis. At the top level, 

pipeline slots are classified into four main categories: (a) Front-End Bound, (b) Back-

End Bound, (c) Bad Speculation and (d) Retiring. If a slot is utilized by an operation, 

it will be classified as either Retiring or Bad Speculation, depending on whether the 

Clockticks: 1 2 3 4 5 6 7 8 9 10

Alloc Slot 0:

Alloc Slot 1:

Alloc Slot 2:

Alloc Slot 3:

Clockticks: 1 2 3 4 5 6 7 8 9 10

Alloc Slot 0:

Alloc Slot 1:

Alloc Slot 2:

Alloc Slot 3:



 

51 

micro-operation eventually gets retired (committed). Empty or stalled slots are clas-

sified as Back-End Bound if the back-end portion of the pipeline is unable to accept 

more operations (back-end stall), or Front-End Bound if there are no micro-operations 

to be delivered to the back-end. 

 

Figure 4.3 General Top-Down Microarchitecture Analysis Method [6] 

 

Retiring denotes the slots utilized by useful micro-operations. The number of 

slots retiring in a given clock cycle directly correlates to the instructions per cycle 

(IPC) metric – the ideal performance is reached when 100% slots are retiring. Natu-

rally, this is hard to achieve. If the percentage of Retiring slots reaches 50% in a 4-

way superscalar processor, the average IPC=2. It is important to note that a high 

Pipeline Slots

Retiring Bad Speculation Front End Bound Back End Bound

Not Stalled Stalled

Base
MS-
ROM

Branch 
Mispredict

Machine 
Clears

Fetch Latency
Fetch 

Bandwidth
Core Bound Memory Bound

FP
-A

ri
th

O
th

e
r

Sc
al

ar

V
e

ct
o

r

IT
LB

 M
is

s

Ic
ac

h
e 

M
is

s

B
ra

n
ch

 R
e

st
ee

rs

Fe
tc

h 
sr

c 
1

Fe
tc

h 
sr

c 
2

D
iv

id
er

Ex
e

cu
ti

o
n 

P
o

rt
s 

U
ti

liz
at

io
n

3+
 P

o
rt

s

1 
o

r 
2 

Po
rt

s

0 
P

o
rt

s

St
o

re
 B

o
u

nd

D
R

A
M

 B
o

u
nd

L3
 B

o
u

n
d

L2
 B

o
u

n
d

L1
 B

o
u

n
d

M
e

m
o

ry
 L

at
e

nc
y

M
e

m
o

ry
 B

an
dw

id
th



 

52 

retiring fraction does not mean there is no room for speedup. For example, the perfor-

mance of a non-vectorized code with a high Retiring fraction can still be improved by 

using vectorized instructions.  

Bad Speculation denotes the slots wasted due to all aspects of incorrect specu-

lations. It includes (a) Branch Mispredicts, and (b) Machine Clears. Branch Mispre-

dicts and Machine Clears cover control-flow and data-speculation, respectively.  

 

Figure 4.4 Top-Down Analysis Flowchart [6] 

 

Front-End Bound denotes slots stalled due to the front-end’s inability to supply 

the back-end. This category is further classified into Fetch Latency and Fetch Band-

width. As the front-end stalls can have a detrimental impact on performance, many 

dedicated units are added to minimize them, including the Loop Stream Detector 

(LSD) and Decoded I-cache (DSB). Fetch Latency accounts for cases that lead to 

fetching starvation (the symptom of no micro-operation delivery) regardless of the 

cause and includes ITLB misses, misses in caches caused by instruction fetches or 

branch resteers.  

Uop 
Allocate?

Uop Ever
Retires?

Back End
Stalls?

Retiring Bad Speculation
Back End

Bound
Front End Bound

Yes No

Yes No Yes No



 

53 

Back-End Bound denotes slots stalled due to adverse events in the back-end 

when no micro-operations are being delivered to the pipeline due to lack of resources 

or lack of data. Back-End Bound are split into Memory Bound and Core Bound. This 

is achieved by breaking down back-end stalls based on execution units’ occupation at 

every cycle. Memory Bound corresponds to execution stalls related to the cache and 

memory subsystems. These stalls usually manifest with execution units getting 

starved after a short while, as in the case of a load missing all caches. The out-of-order 

scheduler can dispatch micro-operations into multiple execution units for execution. 

While these micro-operations are executing in-flight, some of the memory access la-

tency exposure for data can be hidden by keeping the execution units busy with useful 

micro-operations that do not depend on pending memory accesses. Core Bound corre-

sponds to pressure on the execution units or lack of Instruction-Level-Parallelism 

(ILP) in the program. Core Bound stalls can manifest either with short execution star-

vation periods or with sub-optimal execution port utilization, which makes it more 

difficult to identify. Core Bound issues often can be mitigated with better code gener-

ation. For example, a sequence of dependent arithmetic operations would be classified 

as Core Bound. A compiler may relieve this stall with better instruction scheduling. 

Vectorization can mitigate Core Bound issues as well. 

4.2 Thread Affinity 

Thread affinity, or thread pinning, enables binding and unbinding of a process 

or thread to the processor core or a range of processor cores. Affinity can be user as-

signed or OS-scheduled. OS-scheduled processes tend to migrate between processors 



 

54 

depending on priority and resource availability. Thread affinity is used to avoid the 

migration overhead associated with OS-scheduling.  

For thread affinity, two affinity types are used in the configuration files, ac-

counting for different hardware parameters such as processor count. Specifying com-

pact assigns OpenMP thread with index <n>+1 to a free thread context as close as 

possible to the thread context with index <n>. This is achieved using KMP_AFFIN-

ITY=compact, so that communication overhead, cache line invalidation overhead, and 

page thrashing are minimized for applications exhibiting data sharing between con-

secutive iterations of loops. Figure 4.5 illustrates this strategy of using KMP_AFFIN-

ITY=granularity=fine, compact,1,0 as a setting [24]. 

 

 

Figure 4.5 Software Thread Assignment on Logical Cores for compact 1,0 [24] 

 

Machine/Node

Package 0 Package 1

Core 0 Core 1 Core 0 Core1

0 2 4 6 1 3 5 7

Logical Cores

0 34 7

Software thread ID

2 61 5



 

55 

 

Figure 4.6 Software Thread Assignment on Logical Cores for scatter [24] 

 

Specifying scatter distributes the threads as evenly as possible across the en-

tire system which is the opposite of compact. Suppose the number of created software 

threads for an application is less than the logical cores available for the processor. It 

is desirable to avoid binding multiple threads to the same core and leaving other cores 

not utilized, as a thread would execute faster on a core with less competition for re-

sources [24]. For independent threads with no communication overhead, the use of 

scatter improves utilization. Figure 4.6 illustrates thread affinity after specifying 

KMP_AFFINITY=granularity=fine, scatter. Note that “fine” is a switch for granularity 

which is interchangeable with “thread”. 

The implementation of thread affinity in speed benchmarks is done as shown 

in Figure 4.7. The integer speed benchmarks are set to the fine, scatter, as most of the 

benchmarks are not multithreaded and the floating-point speed benchmarks are set 

Machine/Node

Package 0 Package 1

Core 0 Core 1 Core 0 Core1

0 2 4 6 1 3 5 7

Logical Cores

0 34 7

Software thread ID

2 6 1 5



 

56 

to fine, compact, 1,0 for hyper-threaded systems. All the test systems in this study 

support hyper-threading and simultaneous multithreading is enabled by default. 

 

%ifdef %{intspeedaffinity} 

    preENV_KMP_AFFINITY    = granularity=fine, scatter 

%else 

    %if defined(%{smt-on}) 

        preENV_KMP_AFFINITY    = granularity=fine, compact,1,0 

    %else 

        preENV_KMP_AFFINITY    = granularity=fine, compact 

    %endif 

  %endif 

Figure 4.7 Use of Affinity in Speed Benchmarks 

 

The implementation of thread affinity in rate benchmarks is done as shown in 

Figure 4.8. As rate benchmarks run multiple independent copies/processes, there are 

not any data dependencies across them. With that in mind, copies are pinned based 

on topology. Different switches are used for NUMA machines. 

 
 default: 

 submit=numactl --localalloc --physcpubind=$SPECCOPYNUM --$command 

 

 %ifdef %{no-numa} 

    submit = taskset -c $SPECCOPYNUM $command 

 %endif 

Figure 4.8 Use of Affinity in Rate Benchmarks 

 

4.3 Baseline Evaluation 

To select one set of baseline executables for further analysis, two variants of 

SPEC runs are tested for this study. Keeping all other parameters, the same, one 

configuration file include thread affinity as described above and another configuration 



 

57 

file does not specify any affinity leaving the OS scheduler in charge of thread affinity. 

The SPEC run yielding better performance is chosen for all further analysis. Next, to 

determine the scalability of the benchmark suite, the speed benchmarks are run with 

multiple threads and rate benchmarks are run with multiple copies. To evaluate the 

difference in performance with thread affinity and OS-scheduling, all four suites of 

the SPEC CPU2017 were run on all the test systems. For quad-core machines 1, 4, 6 

and 8 threads/copies were run. For hexa-core machines 1, 4, 6 and 12 threads/copies 

were run. For the machine with two hexa-cores 1, 4, 6, 8, 12, 16 and 24 threads/copies 

were run. 

The SPEC CPU2017 run results obtained are discussed in this section. For 

simplicity in presentation, the results for Core processors and Xeon processors are 

shown separately.  

4.3.1 SPEC CPU2017 Speed Benchmark Suites 

Figure 4.9 shows the results for SPEC CPU2017 Speed benchmarks when run 

on machines with the Core i7 processors. The graph shows fp_speed and int_speed as 

a function of the number of threads. Initial observation suggests that the fp_speed 

benchmark suite does show good scalability – the performance increases as the thread 

count are increased. Peak performance is observed when the number of threads equals 

the number of physical cores, i.e., hyper-threading does not appear to increase overall 

performance. Using thread affinity shows no performance improvement for fp_speed 

benchmark suite; it actually degrades the performance for up to 25%. Hence OS-sched-

uling proves to be a better option than using thread affinity.  

The int_speed benchmark suite shows minimal performance improvements as 

the thread count increases because the majority of the integer benchmarks are not 



 

58 

parallelizable. Consequently, it does not make much of a difference whether a single 

threaded application is pinned to one core or migrates to different cores.  

Comparing the performance of the two Core processors, the 8th generation cling-

mansdome (Core i7-8700K) outperforms the 4th generation mtsano (Core i7-4770) in 

every aspect. The performance improvements are significant for fp_speed but rela-

tively small for int_speed benchmarks. 

 

Figure 4.9 Baseline Evaluation of Speed benchmarks on Core Processors. 

 

Figure 4.10 shows the results for SPEC CPU2017 Speed benchmarks when run 

on machines with Xeon processors. Similar to the trends observed on the Core proces-

sors, the performance scales well with the number of threads for fp_speed and it does 

0

5

10

15

20

25

30

1 4 6 8 1 4 6 8 1 4 6 8 12 1 4 6 8 12

fp_speed int_speed fp_speed int_speed

Core i7-4770 Core i7-8700K

Thread_Count

SPECspeed2017_suite_base for Core Processors

With_affinity Without_affinity



 

59 

not scale for int_speed. Thread affinity plays a bigger role for multithreaded applica-

tions as inter-thread communication impacts performance.  

 

Figure 4.10 Baseline Evaluation of Speed Benchmarks on Xeon Processors 

 

 In the case where the parent thread requires data from a child thread that is 

pinned to another core, the latency increases, and performance decreases. The dis-

tance between the parent thread and the child threads for an OS-scheduled thread 

placement could vary dynamically with data requirements, causing performance im-

provements. It is clearly observed in mtleconte (Xeon E5-2643 V3) which houses two 

physical processors, where thread affinity pins the threads across processors and the 

communication overhead deteriorates performance for up to 70% when compared to 

dynamic OS-scheduling. This trend is noticeable when the number of created threads 

0

5

10

15

20

25

30

1 4 6 8 1 4 6 8 1 4 6 8 12 16 24 1 4 6 8 12 16 24

fp_speed int_speed fp_speed int_speed

Xeon E3-1240 V2 Xeon E5-2643 V3

Thread_Count

SPECspeed2017_suite_base for Xeon Processors

With_affinity Without_affinity



 

60 

in benchmarks is less than or equal to the physical cores. However, when the number 

of threads reaches the number of available logical cores, the degree of improvement 

become less noticeable as the communication gap becomes unavoidable. Hence, OS-

scheduling shows performance degradation on mtleconte (Xeon E5-2643 V3) when the 

thread count matches the number of logical cores. The overhead of migration along-

side the unavailability of resources takes a toll on performance. 

4.3.2 SPEC CPU2017 Rate Benchmark Suites 

Figure 4.11 shows the results for SPEC CPU2017 Rate benchmarks when 

running on machines with the Core i7 processors. The graph shows fp_rate and 

int_rate as a function of the number of copies. The rate benchmarks do show good 

scalability – the performance increases as the number of copies increase. Peak perfor-

mance is observed when the number of copies matches the number of logical cores 

available, i.e., hyper-threading has minimal, if not no, effect on overall performance.  

Using affinity to pin copies to logical cores shows no performance improvement 

for fp_rate benchmarks, in contrast, it degrades performance up to 9%. Hence OS-

scheduling proves to be a better option. The int_rate benchmark suite shows a similar 

trend in performance. With the use of affinity, degradation of up to 10% is observed. 

Comparing the performance of the two Core processors, the 8th generation 

clingmansdome (Core i7-8700K) outperforms the 4th generation mtsano (Core i7-

4770). The performance improvements are significant when multiple copies are run 

for fp_speed. But with int_speed benchmarks, the difference is minimal as the clock 

frequency seem to be the deciding factor.  

  



 

61 

 

Figure 4.11 Baseline Evaluation of Rate benchmarks on Core Processors 

 

Figure 4.12 shows the results for SPEC CPU2017 Rate benchmarks when run 

on machines with Xeon processors. Like the trends observed on Core processors, the 

performance scales well with the number of copies for both fp_rate and int_rate. Af-

finity plays a bigger role for multiple copies as the contention for hardware resources 

impact performance. In the case where two copies are pinned to the same physical 

core, the contention in shared resources degrades performance. Dynamic OS-schedul-

ing can avoid this situation if the number of copies is less or equal to the number of 

physical cores. When the number of copies becomes more than the physical cores, then 

contention becomes unavoidable.  

0

5

10

15

20

25

30

35

40

1 4 6 8 1 4 6 8 1 4 6 8 12 1 4 6 8 12

fp_rate int_rate fp_rate int_rate

Core i7-4770 Core i7-8700K

Copies

SPECrate2017_suite_base for Core Processors

With_affinity Without_affinity



 

62 

 

Figure 4.12 Baseline Evaluation of Rate benchmarks on Xeon Processors 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

1 4 6 8 1 4 6 8 1 4 6 8 12 16 24 1 4 6 8 12 16 24

fp_rate int_rate fp_rate int_rate

Xeon E3-1240 V2 Xeon E5-2643 V3

Copies

SPECrate2017_suite_base for Xeon Processors

With_affinity Without_affinity



 

63 

CHAPTER 5  

 

SPEC CPU2017 BENCHMARKS CHARACTERIZATION 

 

This chapter gives a detailed view of characteristics of the SPEC CPU2017 

benchmark suites collected while running them on clingmansdome – a machine that 

houses the latest 8th generation of Intel Core i7 processor (Core i7-8700K) with 6 phys-

ical cores and 12 logical cores. The SPEC CPU2017 Speed benchmarks are run with 

one, six, and twelve threads. The SPEC CPU2017 Rate benchmarks are run with one, 

six and twelve copies. To maintain uniformity and fairness, no other process apart 

from operating system processes are run on the machine during benchmark evalua-

tion. The frequency governor used for the runs is on-demand power. Hyper-threading 

and hardware prefetching are enabled.  

The benchmarks are represented by the assigned number followed by the name 

and suffix “_s” for speed or “_r” for rate benchmarks as shown in Table 2.2 and Table 

2.3. If a SPEC benchmark execution involves multiple reference data inputs, statistics 

are collected for each run separately and a suffix starting with “_” followed by letters 

in alphabetical order indicates different benchmark runs. Tools described in section 

3.4 are used to gain insights into the behavior of all the benchmarks. Section 5.1 de-

scribes the results for SPEC CPU2017 Speed benchmarks characterization. Section 

5.2 describes the results for SPEC CPU2017 Rate benchmarks characterization.  



 

64 

5.1 SPEC CPU2017 Speed Benchmarks Characterization 

The results for the SPEC CPU2017 characterization are divided into five sub-

sections. Each subsection encompasses fp_speed and int_speed results in that order. 

Though the runs carried out were for 1,6 and 12 threads, results for single-thread and 

results that have significant differences from a single-thread execution are depicted 

here. Parameters that stay consistent with the change in the number of threads are 

not discussed. Execution times for multiple threads are discussed in CHAPTER 6. 

5.1.1 General View of Benchmarks 

The first set of experiments collects information about individual SPEC 

CPU2017 Speed benchmarks run under the Linux perf utility. Specifically, the follow-

ing parameters are collected: total execution time, total number of clock cycles, total 

number of retired instructions, total number of retired branch instructions, total num-

ber of retired load instructions (instructions that read at least one operand from 

memory), and total number of retired store instructions (memory write instructions).  

Table 5.1 shows the collected parameters for single-threaded fp_speed bench-

marks. The first observation regarding the execution times (column titled Time) is 

that each benchmark run takes a considerable amount of time, ranging from 584 s 

(603.bwaves_s) to 4,260 s (638.imagick_s). Accordingly, the number of executed in-

structions ranges from 3.31 trillion (649.fotonik3d_s) to 69.14 trillion (638.imagick_s). 

The number of retired load/memory-read instructions range from 13.48 trillion 

(638.imagick_s) to 49.90 trillion (644.nab_s) and the number of retired store/memory-

write instruction range from as low as 316.23 billion (603.bwaves_s_b) to 1.43 trillion 

(627.cam4_s). Please note that branches encompass all control-flow instructions, loads 

encompass all instructions that read at least one operand from memory, and stores 



 

65 

encompass instructions that write the result into the memory. If an instruction does 

both memory read, and memory writes, the counters for both loads and stores are 

incremented.  

All fp_speed benchmarks have a relatively small number of branch instruc-

tions, ranging from as low as 0.86% (603.bwaves_s_a) to 14.6% (638.imagick_s). One 

of the most interesting parameters is the average instructions per cycles (IPC) calcu-

lated as the number of instructions divided by the total number of clock cycles. The 

IPC ranges from as low as 0.83 for 654.rom_s to 3.47 for 638.imagick_s. 

 

Table 5.1 General Parameters for fp_speed Benchmarks 

fp_speed Time 

[s] 

Cycles 

[Billion] 

Instructions 

[Billion] 

Branches 

[Billion] 

Loads 

[Billion] 

Stores 

[Billion] 

IPC 

603.bwaves_s_a 584.6 2,736.40 4,543.73 38.91 3,261.23 332.07 1.66 

603.bwaves_s_b 599.0 2,800.94 4,272.56 37.23 3049.67 316.23 1.53 

607.cactuBSSN_s 1,314.4 6,150.85 8,812.93 136.57 4,530.17 970.78 1.43 

619.lbm_s 798.8 3,733.40 3,830.41 82.94 1,456.43 647.41 1.03 

621.wrf_s 919.5 4,305.56 7,729.07 615.98 3,148.75 591.10 1.80 

627.cam4_s 1,401.9 6,564.39 12,079.88 1,228.06 2,835.28 1,438.92 1.84 

628.pop2_s 1,013.9 4,730.23 8,121.75 624.82 3,010.64 928.35 1.72 

638.imagick_s 4,260.3 1,9937.4 69,141.70 10,083.48 1,3408.3 387.45 3.47 

644.nab_s 1,724.7 8,070.99 13,489.82 1,460.08 4,990.24 1,102.54 1.67 

649.fotonik3d_s 644.8 3,018.89 3,315.81 101.52 1,851.76 375.92 1.10 

654.roms_s 1,510.2 7,068.97 5,867.98 235.25 3,368.39 466.18 0.83 

 

Table 5.2 shows the collected parameters for single-threaded int_speed bench-

marks. Several benchmarks, e.g., 600.perlbench_s and 602.gcc_s, have multiple refer-

ence data inputs marked with alphabetically ordered suffixes. These benchmarks, in 

general, take less time to execute, ranging from 16.7 s (625.x264_s_a) to 953.8 s 

(657.xz_s_b). The number of loads ranges from 38.06 billion (625.x264_s_a) to 1.14 



 

66 

trillion (657.xz_s_a) and the number of stores range from as low as 16.81 billion 

(625.x264_s_a) to 462.04 billion (648.exchange2_s). The benchmarks also vary widely 

in terms of instruction frequency distribution. Thus, 625.x264_s has only 7.3 to 8 % of 

branches, whereas 602.gcc_s has 23.2 to 27.9%, depending on the input sets. The IPC 

across benchmarks varies from as low as 0.67 for 657.xz_s_b to relatively as high as 

2.59 for 600.perlbench_s_a.  

 

Table 5.2 General Parameters for int_speed Benchmarks 

int_speed Time 

[s] 

Cycles 

[Billion] 

Instructions 

[Billion] 

Branches 

[Billion] 

Loads 

[Billion] 

Stores 

[Billion] 

IPC 

600.perlbench_s_a 108.1 505.88 1,311.37 258.98 359.00 247.62 2.59 

600.perlbench_s_b 66.0 308.21 716.17 153.58 232.07 123.60 2.32 

600.perlbench_s_c 68.1 318.67 713.62 142.61 221.23 131.98 2.24 

602.gcc_s_a 194.2 907.80 1,468.41 409.75 483.08 71.77 1.62 

602.gcc_s_b 80.5 375.51 548.41 127.55 153.01 73.49 1.46 

602.gcc_s_c 76.5 357.57 532.24 125.25 149.49 69.65 1.49 

605.mcf_s 320.5 1,499.32 1,193.65 288.87 422.47 91.84 0.80 

620.omnetpp_s 299.0 1,399.21 1,101.10 242.71 372.28 190.77 0.79 

623.xalancbmk_s 211.6 989.48 964.65 230.12 273.35 57.18 0.97 

625.x264_s_a 16.7 77.86 181.92 13.31 38.06 16.81 2.34 

625.x264_s_b 49.6 231.76 570.47 45.59 113.93 44.20 2.46 

625.x264_s_c 53.2 247.95 604.38 48.19 124.94 48.73 2.44 

631.deepsjeng_s 218.5 1,022.12 1,777.00 230.38 428.05 186.21 1.74 

641.leela_s 332.8 1,557.87 1,927.53 298.07 510.41 181.13 1.24 

648.exchange2_s 195.3 913.54 2,062.57 233.34 750.13 462.04 2.26 

657.xz_s_a 721.4 3,377.22 4,720.70 732.82 1,147.87 351.72 1.40 

657.xz_s_b 953.8 4,464.23 3,002.84 445.58 723.61 260.95 0.67 

 

  



 

67 

5.1.2 Control-Flow Instructions and Branch Prediction Accuracy 

Branches are often one of the key parameters determining overall performance. 

In this set of experiments, the following branch parameters are collected: (a) the num-

ber of retired branches per 1K (Kilo) instructions, (b) the number of branch misses per 

1K instructions, and (c) the percentage of branch misses. Depending on the type, fre-

quency, and distribution of branches, branch misses tend to be costly in terms of 

wasted clock cycles. As the processors under study use speculative execution, each 

misprediction requires clearing out the instructions in the pipeline for the mispre-

dicted block and re-steering the front-end to a different block, wasting numerous CPU 

clock cycles. Minimizing branch misprediction directly contributes to improved per-

formance.    

Table 5.3 and Table 5.4 shows the branch-related parameters for fp_speed and 

int_speed, respectively. As described above, the frequency of branches is relatively low 

in fp_speed benchmarks, ranging from 8.5 (603.bwaves_s_a) to 145.8 (638.imagick_s) 

per 1K instructions. The branch predictors are very accurate, and the percentage of 

branch misses is below 1% for all benchmarks except two (644.nab_s and 619.lbm_s).  

On the other hand, the frequency of branches in int_speed is significantly higher, 

ranging from 73 (625.x264_s_a) to 279 (602.gcc_s_a) per 1K instructions. The fre-

quency of branch misses varies from as low as 0.33% (600.perlbench_s_c) to 10.8% 

(641.leela_s). The int_speed benchmarks suffer from a high misprediction rate when 

compared to fp_speed. The benchmarks with relatively high branch miss rate (> 2%) 

are good candidates for research efforts targeting improved branch prediction accu-

racy.  

 



 

68 

Table 5.3 Branch Characteristics for fp_speed 

fp_speed branches per  

1K instructions 

branch misses per 

1K instructions 

% branch 

misses 

603.bwaves_s_a 8.56 0.05 0.63 

603.bwaves_s_b 8.71 0.05 0.56 

607.cactuBSSN_s 15.50 0.01 0.05 

619.lbm_s 21.65 0.59 2.70 

621.wrf_s 79.70 0.81 1.02 

627.cam4_s 101.66 0.74 0.73 

628.pop2_s 76.93 0.46 0.60 

638.imagick_s 145.84 0.33 0.22 

644.nab_s 108.24 3.17 2.93 

649.fotonik3d_s 30.62 0.07 0.23 

654.roms_s 40.09 0.19 0.49 

 

Table 5.4 Branch Characteristics for int_speed 

int_speed branches per 1K 

instructions 

branch misses per 

1K instructions 

% branch 

misses 

600.perlbench_s_a 197.49 1.90 0.96 

600.perlbench_s_b 214.45 1.36 0.63 

600.perlbench_s_c 199.84 0.67 0.33 

602.gcc_s_a 279.04 2.33 0.83 

602.gcc_s_b 232.58 5.72 2.46 

602.gcc_s_c 235.34 5.44 2.31 

605.mcf_s 242.01 21.35 8.82 

620.omnetpp_s 220.42 4.54 2.06 

623.xalancbmk_s 238.55 0.93 0.39 

625.x264_s_a 73.17 1.00 1.36 

625.x264_s_b 79.91 1.25 1.56 

625.x264_s_c 79.74 1.48 1.86 

631.deepsjeng_s 129.65 6.01 4.63 

641.leela_s 154.64 16.82 10.88 

648.exchange2_s 113.13 3.37 2.98 

657.xz_s_a 155.23 11.14 7.17 

657.xz_s_b 148.39 11.05 7.45 



 

69 

5.1.3 Cache Hierarchy 

Cache behavior is a crucial factor in determining system performance. To eval-

uate its impact, the following events are collected: (a) the number of L2 references per 

1K instructions; (b) the number of L2 misses per 1K instructions; (c) the percentage 

of L2 misses; (d) the number of last-level cache (LLC) references per 1K instructions; 

(e) the number of LLC misses per 1K instructions, and (f) the percentage of LLC 

misses. This set of parameters should give us a good insight on how many references 

are observed at L2 and LLC caches and what percentage of these references end up 

being misses.  

Table 5.5 and Table 5.6 show cache-related parameters for fp_speed and 

int_speed, respectively. For fp_speed, the number of L2 references (which is equivalent 

to the number of L1 misses) ranges from as low as 23.4 (644.nab_s) to as high as 467 

(619.lbm_s) per 1K instructions. The number of L2 misses per 1K instructions ranges 

from 4.89 (644.nab_s) to 118.24 (619.lbm_s). The number of LLC references per 1K 

instructions ranges from 9.07 (644.nab_s) to 193.87 (654.roms_s). It should be noted 

that the number of LLC references exceed the number of L2 misses as it includes 

requests initiated by hardware and software data prefetchers. The number of LLC 

misses ranges from as low as 0.16 (638.imagick_s) per 1K instructions to 85.39 

(654.roms_s). For int_speed benchmarks the number of L2 references range from 0.22 

(648.exchange2_s) to 330.48 (605.mcf_s) per 1K instructions. The number of L2 misses 

per 1K instructions ranges from 0.01 (648.exchange2_s) to 108.55 (605.mcf_s). The 

number of LLC references per 1K instructions range from 0.2 (648.exchange2_s) to 

156.32 (605.mcf_s). The number of LLC misses ranger from 0.0000348 (648.ex-

change2_s) to 33.75 (620.omnetpp_s) for 1K instructions.  



 

70 

Table 5.5 L2 and LLC Instruction Breakdown for fp_speed 

fp_speed L2 ref. per 

1K Inst. 

L2 misses 

per 1K Inst. 

% L2 

misses 

LLC ref. 

per 1K Inst. 

LLC misses 

per 1K Inst. 

% LLC 

misses 

603.bwaves_s_a 182.95 57.81 31.60 84.69 52.64 62.18 

603.bwaves_s_b 194.59 58.02 29.82 82.82 50.80 61.85 

607.cactuBSSN_s 109.47 18.47 16.87 26.78 11.94 44.58 

619.lbm_s 467.04 118.24 25.32 158.36 64.94 41.01 

621.wrf_s 130.47 35.21 26.98 50.53 11.92 23.60 

627.cam4_s 66.07 14.55 22.15 22.62 7.20 31.86 

628.pop2_s 236.78 51.25 21.65 79.96 13.67 17.11 

638.imagick_s 31.65 9.88 31.03 18.37 0.16 0.85 

644.nab_s 23.45 4.89 20.86 9.07 1.37 15.11 

649.fotonik3d_s 348.55 89.70 25.75 118.45 68.67 57.93 

654.roms_s 532.03 140.30 26.38 193.87 85.39 44.04 

 

Table 5.6 L2 and LLC Instruction Breakdown for int_speed 

int_speed L2 ref. per 

1K Inst. 

L2 misses 

per 1K Inst. 

% L2 

misses 

LLC ref. 

per 1K Inst. 

LLC misses 

per 1K Inst. 

% LLC 

misses 

600.perlbench_s_a 16.72 4.27 25.53 6.95 0.35 5.04 

600.perlbench_s_b 38.55 8.47 21.98 13.34 0.31 2.32 

600.perlbench_s_c 23.36 7.24 30.99 12.15 4.39 36.37 

602.gcc_s_a 119.41 33.05 27.68 50.24 17.41 34.81 

602.gcc_s_b 80.09 22.77 28.43 37.17 2.50 6.71 

602.gcc_s_c 72.91 21.32 29.24 34.92 3.03 8.67 

605.mcf_s 330.48 108.55 32.85 156.32 28.55 18.27 

620.omnetpp_s 170.54 52.77 30.93 79.66 33.75 42.37 

623.xalancbmk_s 243.56 88.07 36.16 131.54 5.14 3.90 

625.x264_s_a 21.99 4.13 18.80 7.10 2.19 30.66 

625.x264_s_b 24.38 5.54 22.69 9.69 0.93 9.66 

625.x264_s_c 21.52 4.87 22.64 8.43 0.86 10.13 

631.deepsjeng_s 18.84 3.65 19.32 5.32 3.51 65.98 

641.leela_s 10.10 1.50 14.87 2.79 0.04 1.52 

648.exchange2_s 0.22 0.01 5.04 0.02 0.00 0.22 

657.xz_s_a 40.20 11.41 28.42 18.09 2.02 11.19 

657.xz_s_b 107.89 36.56 33.88 55.77 21.46 38.47 



 

71 

5.1.4 Top-down Microarchitectural Analysis Method Results 

This section presents the Top-down Microarchitectural Analysis Method results 

for the SPEC CPU2017 Speed benchmarks. Figure 5.1 shows the results of TMAM for 

all the speed benchmarks executed with one thread. As described in Section 4.1, all 

available pipeline slots are classified into four groups: Retiring, Bad Speculation, 

Front-End Bound, and Back-End Bound. The figure also illustrates the IPC on the 

secondary axis. It should be noted that IPC expresses the number of ISA instructions 

retired per clock cycles, whereas TMAM analysis looks at micro-operations. Typically, 

an Intel64 instruction is translated into one or more micro-operations, but multiple 

micro-operations can be fused together (even from different instructions: macro-fu-

sion).  

Looking at fp_speed, the average IPC is 1.64, ranging from 0.83 (654.roms_s) to 

3.47 (638.imagick_s). The Retiring slots averages to 45%, the Front-End Bound, and 

Bad Speculation have stalls averaging up to 3% and 2% respectively. However, the 

Back-End Bound accounts for 50% of the stalls emerging as a major bottleneck for the 

suite. There is a strong correlation between the Retiring slots and the IPC metric – 

the higher the percentage of Retiring slots, the higher IPC. Thus, 638.imagick_s has 

92% of slots in Retiring which translates into IPC of 3.47. On the other side, 654.rom_s 

has only 23% of slots in Retiring which translates into IPC of 0.83. Majority of bench-

marks in fp_speed is limited by the Back-End Bound (75% for 654.rom_s), whereas 

the impact of Front-End Bound and Bad Speculation stalls is relatively small.  

With respect to int_speed, the average aggregate IPC is 1.70, ranging from 0.67 

(657.xz_b_s) to 2.59 (600.perlbench_s_a). With 39% of Retiring slots, int_speed has a 

higher percentile of Bad Speculation and Front-End Bound stalls at 15% and 16%, 



 

72 

respectively. The Back-End Bound stalls account for 30%. Looking at individual 

benchmarks, the distribution of IPC varies less drastically when compared to 

fp_speed. 600.perlbench_s_a has the highest IPC of 2.59 with 60% Retiring slots, 12% 

Bad Speculation, 19% Front-End Bound and 8% Back-End Bound stalls. 657.xz_s_b 

has the smallest IPC of 0.67 as it has just 14% of Retiring slots, 17% of slots wasted 

for Bad Speculation, 4% for Front-End Bound and a 65% delay caused by Back-End 

Bound stalls.     

 

Figure 5.1 Top-Level View of Single-Threaded Speed Benchmarks 

 

 A view of the speed benchmarks executed with six threads is seen in Figure 

5.2. Though the general behavior remains identical for single-threaded fp_speed, a 

huge increase in Back-End Bound stalls is observed. On the other hand, int_speed 

does not show any change because all the benchmarks but one, are single threaded.  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
0

3.
b

w
a

ve
s_

s_
a

6
0

3.
b

w
a

ve
s_

s_
b

6
0

7.
ca

ct
u

B
SS

N
_

s

6
1

9.
lb

m
_s

6
2

1.
w

rf
_

s

6
2

7.
ca

m
4

_
s

6
2

8.
p

o
p

2
_

s

6
3

8.
im

ag
ic

k_
s

6
4

4.
n

ab
_

s

6
4

9.
fo

to
n

ik
3

d
_

s

6
5

4.
ro

m
s_

s

6
0

0.
p

er
lb

en
ch

_s
_

a

6
0

0.
p

er
lb

en
ch

_s
_

b

6
0

0.
p

er
lb

en
ch

_s
_

c

6
0

2.
gc

c_
s_

a

6
0

2.
gc

c_
s_

b

6
0

2.
gc

c_
s_

c

6
0

5.
m

cf
_

s

6
2

0.
o

m
n

et
p

p
_

s

6
2

3.
xa

la
n

cb
m

k_
s

6
2

5.
x2

6
4

_s
_

a

6
2

5.
x2

6
4

_s
_

b

6
2

5.
x2

6
4

_s
_

c

6
3

1.
d

ee
p

sj
e

n
g_

s

6
4

1.
le

e
la

_
s

6
4

8.
ex

ch
a

n
ge

2
_

s

6
5

7.
xz

_
s_

a

6
5

7.
xz

_
s_

b

fp_speed int_speed

Top Level View of Single-Threaded Speed Benchmarks 

Retiring Bad Speculation Front-End Bound Back-End Bound IPC



 

73 

 

Figure 5.2 Top-Level View of Six-Threaded Speed Benchmarks 

 

With most of the speed benchmarks having the Back-End Bound stalls as the 

bottleneck for both single-threaded execution and six thread execution, a deeper look 

at Back-End Bound is required. Figure 5.3 shows the Back-End Bound stalls break-

down for all the speed benchmarks executed single-threaded. The Back-End Bound 

stalls are further divided into Core Bound and Memory Bound stalls. Averaging across 

fp_speed benchmarks, the Memory Bound stalls account for 31% and Core Bound for 

19% of the total slots. For int_speed benchmarks, the Memory Bound stalls account 

for 19% and Core Bound stalls account for 11%. 

Figure 5.4 shows the Back-End Bound stall breakdown for speed benchmarks 

executed with six threads. Memory Bound stalls average increases to 60% for fp_speed 

and Core Bound stall average reduces to just 10% during six thread execution. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60
3.

bw
av

es
_s

_
a

60
3.

bw
av

es
_s

_
b

60
7.

ca
ct

u
B

SS
N

_s

61
9.

lb
m

_
s

62
1.

w
rf

_
s

62
7.

ca
m

4_
s

62
8.

po
p

2_
s

63
8.

im
ag

ic
k_

s

64
4.

na
b

_s

64
9.

fo
to

n
ik

3d
_s

65
4.

ro
m

s_
s

60
0.

pe
rl

b
en

ch
_s

_a

60
0.

pe
rl

b
en

ch
_s

_b

60
0.

pe
rl

b
en

ch
_s

_c

60
2.

gc
c_

s_
a

60
2.

gc
c_

s_
b

60
2.

gc
c_

s_
c

60
5.

m
cf

_s

62
0.

om
ne

tp
p

_s

62
3.

xa
la

nc
b

m
k_

s

62
5.

x2
6

4_
s_

a

62
5.

x2
6

4_
s_

b

62
5.

x2
6

4_
s_

c

63
1.

de
ep

sj
en

g_
s

64
1.

le
el

a_
s

64
8.

ex
ch

an
ge

2_
s

65
7.

xz
_

s_
a

65
7.

xz
_

s_
b

fp_speed int_speed

Top Level View of Six-Threaded Speed Benchmarks 

Retiring Bad Speculation Front-End Bound Back-End Bound IPC



 

74 

 

Figure 5.3 Back-End Level View of Single-Threaded Speed Benchmarks 

 

 

Figure 5.4 Back-End Level View of Six-Threaded Speed Benchmarks 

0%

10%

20%

30%

40%

50%

60%

70%

80%

6
0

3.
b

w
a

ve
s_

s_
a

6
0

3.
b

w
a

ve
s_

s_
b

6
0

7.
ca

ct
u

B
SS

N
_

s

6
1

9.
lb

m
_s

6
2

1.
w

rf
_

s

6
2

7.
ca

m
4

_
s

6
2

8.
p

o
p

2
_

s

6
3

8.
im

ag
ic

k_
s

6
4

4.
n

ab
_

s

6
4

9.
fo

to
n

ik
3

d
_

s

6
5

4.
ro

m
s_

s

6
0

0.
p

er
lb

en
ch

_s
_

a

6
0

0.
p

er
lb

en
ch

_s
_

b

6
0

0.
p

er
lb

en
ch

_s
_

c

6
0

2.
gc

c_
s_

a

6
0

2.
gc

c_
s_

b

6
0

2.
gc

c_
s_

c

6
0

5.
m

cf
_

s

6
2

0.
o

m
n

et
p

p
_

s

6
2

3.
xa

la
n

cb
m

k_
s

6
2

5.
x2

6
4

_s
_

a

6
2

5.
x2

6
4

_s
_

b

6
2

5.
x2

6
4

_s
_

c

6
3

1.
d

ee
p

sj
e

n
g_

s

6
4

1.
le

e
la

_
s

6
4

8.
ex

ch
a

n
ge

2
_

s

6
5

7.
xz

_
s_

a

6
5

7.
xz

_
s_

b

fp_speed int_speed

Back-End Level View of Single-Threaded Speed Benchmarks 

Memory Bound Core Bound

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60
3.

bw
av

es
_s

_
a

60
3.

bw
av

es
_s

_
b

60
7.

ca
ct

u
B

SS
N

_s

61
9.

lb
m

_
s

62
1.

w
rf

_
s

62
7.

ca
m

4_
s

62
8.

po
p

2_
s

63
8.

im
ag

ic
k_

s

64
4.

na
b

_s

64
9.

fo
to

n
ik

3d
_s

65
4.

ro
m

s_
s

60
0.

pe
rl

b
en

ch
_s

_a

60
0.

pe
rl

b
en

ch
_s

_b

60
0.

pe
rl

b
en

ch
_s

_c

60
2.

gc
c_

s_
a

60
2.

gc
c_

s_
b

60
2.

gc
c_

s_
c

60
5.

m
cf

_s

62
0.

om
ne

tp
p

_s

62
3.

xa
la

nc
b

m
k_

s

62
5.

x2
6

4_
s_

a

62
5.

x2
6

4_
s_

b

62
5.

x2
6

4_
s_

c

63
1.

de
ep

sj
en

g_
s

64
1.

le
el

a_
s

64
8.

ex
ch

an
ge

2_
s

65
7.

xz
_

s_
a

65
7.

xz
_

s_
b

fp_speed int_speed

Back-End Level View of Six-Threaded Speed Benchmarks 

Memory Bound Core Bound



 

75 

For most of the speed benchmarks, memory bound stalls were the biggest bot-

tleneck. Whereas the Top-level view describes pipeline slot utilization, it does not di-

rectly translate into clock cycles spent on memory reference operations. However, a 

Memory-Level view from Intel VTune Amplifier shown in Figure 5.5 quantifies the 

percentages of the total clock cycles wasted (stalled) in different levels of the memory 

hierarchy, including L1 cache, L2 cache, L3 cache, Memory, or store buffers for single 

threaded execution. Most of the benchmarks spend a high percentage of time in main 

memory (DRAM). Increasing memory speed and bandwidth could help mitigate this 

issue. 

 

Figure 5.5 Memory Level View of Single-Threaded Speed Benchmarks 

 

Figure 5.6 gives the Memory-Level view for the speed benchmarks for six 

thread execution. Similar to single threaded execution, most of the benchmarks spend 

0%

10%

20%

30%

40%

50%

60%

70%

6
0

3.
b

w
a

ve
s_

s_
a

6
0

3.
b

w
a

ve
s_

s_
b

6
0

7.
ca

ct
u

B
SS

N
_

s

6
1

9.
lb

m
_s

6
2

1.
w

rf
_

s

6
2

7.
ca

m
4

_
s

6
2

8.
p

o
p

2
_

s

6
3

8.
im

ag
ic

k_
s

6
4

4.
n

ab
_

s

6
4

9.
fo

to
n

ik
3

d
_

s

6
5

4.
ro

m
s_

s

6
0

0.
p

er
lb

en
ch

_s
_

a

6
0

0.
p

er
lb

en
ch

_s
_

b

6
0

0.
p

er
lb

en
ch

_s
_

c

6
0

2.
gc

c_
s_

a

6
0

2.
gc

c_
s_

b

6
0

2.
gc

c_
s_

c

6
0

5.
m

cf
_

s

6
2

0.
o

m
n

et
p

p
_

s

6
2

3.
xa

la
n

cb
m

k_
s

6
2

5.
x2

6
4

_s
_

a

6
2

5.
x2

6
4

_s
_

b

6
2

5.
x2

6
4

_s
_

c

6
3

1.
d

ee
p

sj
e

n
g_

s

6
4

1.
le

e
la

_
s

6
4

8.
ex

ch
a

n
ge

2
_

s

6
5

7.
xz

_
s_

a

6
5

7.
xz

_
s_

b

fp_speed int_speed

Memory Level View of Single-Threaded Speed Benchmarks 

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound



 

76 

a high percentage of time in main memory (DRAM) which proves to be a significant 

bottleneck. 

 

Figure 5.6 Memory Level View of Six-Threaded Speed Benchmarks 

 

5.1.5 Clock Rates, Energy, and Power 

The clock frequency and the number of threads vary for different executions. 

In the interest of defining the impact thread and frequency scaling on performance 

and energy consumption, a study was conducted to evaluate either impacts [25]. For 

single threaded execution, the processor makes use of all the turbo bins to clock out 

at 4.67 GHz for all the benchmarks, whereas for six thread execution, equal distribu-

tion of the turbo bins results in a clock frequency of 4.30 GHz. Therefore, a single-

threaded application will execute at higher CPU clock frequency, and the energy con-

sumption will also be higher [26]. Table 5.7 and Table 5.8  show the runtime (column 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

60
3.

bw
av

es
_s

_
a

60
3.

bw
av

es
_s

_
b

60
7.

ca
ct

u
B

SS
N

_s

61
9.

lb
m

_
s

62
1.

w
rf

_
s

62
7.

ca
m

4_
s

62
8.

po
p

2_
s

63
8.

im
ag

ic
k_

s

64
4.

na
b

_s

64
9.

fo
to

n
ik

3d
_s

65
4.

ro
m

s_
s

60
0.

pe
rl

b
en

ch
_s

_a

60
0.

pe
rl

b
en

ch
_s

_b

60
0.

pe
rl

b
en

ch
_s

_c

60
2.

gc
c_

s_
a

60
2.

gc
c_

s_
b

60
2.

gc
c_

s_
c

60
5.

m
cf

_s

62
0.

om
ne

tp
p

_s

62
3.

xa
la

nc
b

m
k_

s

62
5.

x2
6

4_
s_

a

62
5.

x2
6

4_
s_

b

62
5.

x2
6

4_
s_

c

63
1.

de
ep

sj
en

g_
s

64
1.

le
el

a_
s

64
8.

ex
ch

an
ge

2_
s

65
7.

xz
_

s_
a

65
7.

xz
_

s_
b

fp_speed int_speed

Memory Level View of Six-Threaded Speed Benchmarks 

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound



 

77 

time), the energy consumed, the average power for each benchmark executed with one 

and six threads and the PerfEE speedup (column Speedup). A metric to determine the 

overview of performance and energy efficiency is defined here, PerfEE (Performance 

and Energy Efficiency) represents the metric. The PerfEE metric for an individual 

SPEC speed benchmark, SBi, running with N threads, 𝑃𝑒𝑟𝑓𝐸𝐸. 𝑆𝑝𝑒𝑒𝑑 (𝑆𝐵𝑖, 𝑁), is de-

fined as follows:  

𝑃𝑒𝑟𝑓𝐸𝐸. 𝑆𝑝𝑒𝑒𝑑 (𝑆𝐵𝑖, 𝑁) =
1

𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑆𝐵𝑖, 𝑁) × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑆𝐵𝑖, 𝑁)
      𝐸𝑞. 5.1 

where ExeTime (SBi, N) is the execution time for the N-threaded benchmark. 

 To evaluate the performance and energy efficiency across N-thread combina-

tions with respect to 1-thread execution, a speedup ratio is used as shown in Eq.5.2 

𝑃𝑒𝑟𝑓𝐸𝐸. 𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑆𝐵𝑖, 𝑁) =
𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑆𝐵𝑖, 1) × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑆𝐵𝑖, 1)

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑆𝐵𝑖, 𝑁) × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑆𝐵𝑖, 𝑁)
        𝐸𝑞. 5.2 

A PerfEE Speedup number more than one means that running N threads 

produces better performance and energy savings. In the case of fp_speed benchmarks, 

most of the benchmarks have a good PerfEE speedup and would suggest 6-thread ex-

ecution over 1-thread execution. On the other hand, there are benchmarks like 

619.lbm_s and 649.fotonik3d_s that have a loss of performance and energy consump-

tion for 6-thread runs. As these benchmarks do not have speedup for parallel execu-

tion, and yet utilize the cores and consume energy they degrade in performance. 

In the case of the int_speed benchmarks, as all but one (657.xz_s) are single 

threaded, irrespective of the number of threads allocated, the PerfEE speedup remains 

1 for all but one.  



 

78 

Table 5.7 Energy and Power Analysis for fp_speed 

 1 Thread 6 Threads PerfEE 

fp_speed Time  

[s] 

Energy 

[J] 

Power 

[W] 

Time  

[s] 

Energy 

[J] 

Power 

[W] 

Speed 

up 

 603.bwaves_s_a  584.58 14099.45 24.58 451.47 17260.90 39.55 1.06 

 603.bwaves_s_b  599.04 14089.08 23.79 429.04 16495.40 40.03 1.19 

 607.cactuBSSN_s  1314.43 30321.58 21.28 347.04 17160.10 48.12 6.69 

 619.lbm_s  798.77 18869.83 23.07 962.27 37913.80 39.25 0.41 

 621.wrf_s  919.51 23273.49 25.32 372.74 18857.40 51.27 3.04 

 627.cam4_s  1401.87 32991.86 23.04 420.00 21556.70 50.88 5.11 

 628.pop2_s  1013.92 28493.09 26.19 399.78 21605.50 54.74 3.34 

 638.imagick_s  4260.29 103927.35 24.06 804.03 51310.40 64.17 10.73 

 644.nab_s  1724.69 35973.77 21.01 337.91 18162.60 54.42 10.11 

 49.fotonik3d_s  644.81 16581.59 25.39 644.64 26302.40 41.25 0.63 

 654.roms_s  1510.21 39697.60 25.47 1127.15 53309.00 46.28 1.00 

 

Table 5.8 Energy and Power Analysis for int_speed 
 

1 Thread 6 Threads PerfEE 

int_speed Time  

[s] 

Energy  

[J] 

Power 

[W] 

Time  

[s] 

Energy 

[J] 

Power 

[W] 

Speed 

up 

600.perlbench_s_a 108.13 2679.95 24.68 108.49 2615.17 24.00 1.02 

600.perlbench_s_b 65.96 1676.44 25.10 65.63 1643.97 24.80 1.03 

600.perlbench_s_c 68.08 1561.42 22.75 68.24 1552.49 22.69 1.00 

602.gcc_s_a 194.19 4119.30 21.22 194.48 4102.64 21.09 1.00 

602.gcc_s_b 80.46 1870.62 23.18 80.28 1848.62 23.09 1.01 

602.gcc_s_c 76.50 1775.93 23.07 76.41 1749.47 22.75 1.02 

605.mcf_s 320.51 7397.63 22.26 313.61 7174.20 21.92 1.05 

620.omnetpp_s 298.95 7145.10 21.36 298.98 7030.45 21.05 1.02 

623.xalancbmk_s 211.57 4406.91 20.70 210.91 4336.91 20.73 1.02 

625.x264_s_a 16.74 381.96 23.02 16.73 366.34 15.54 1.04 

625.x264_s_b 49.56 1179.00 23.74 49.66 1158.20 23.41 1.02 

625.x264_s_c 53.20 1249.48 23.56 53.51 1227.96 22.01 1.01 

631.deepsjeng_s 218.48 5476.70 22.82 218.52 5426.85 22.54 1.01 

641.leela_s 332.79 7519.14 22.58 332.63 7513.54 22.48 1.00 

648.exchange2_s 195.30 4676.96 23.92 196.20 4567.88 23.41 1.02 

657.xz_s_a 721.40 16861.07 22.14 255.65 10259.60 41.53 4.64 

657.xz_s_b 953.83 19767.11 18.33 307.72 11682.50 33.74 5.24 



 

79 

5.2 SPEC CPU2017 Rate Benchmarks Characterization 

Similar to the discussions for Speed benchmarks, the results for the SPEC 

CPU2017 Rate benchmarks characterization are divided into five subsections. Each 

subsection encompasses fp_rate and int_rate results in that order. Though the runs 

carried out were for 1,6 and 12 copies, results for single-copy execution are shown in 

this section for the fact that for multiple copies, most parameters are just summed up 

arithmetically. Execution times for multiple copies are discussed in CHAPTER 6. 

5.2.1 General View of Benchmarks 

The primary set of experiments collects information about individual SPEC 

CPU2017 Rate benchmarks run under the Linux perf utility. Parameters collected are 

as follows: the total execution time, total number of clock cycles, total number of re-

tired instructions, total number of retired branch instructions, total number of retired 

load instructions, and total number of retired store instructions.  

Table 5.9 shows the collected parameters for single-copy fp_rate benchmarks. 

A primary observation is that the execution time of the rate benchmarks are relatively 

small with respect to the Speed counter parts, ranging from 33.3 s (503.bwaves_r_a) 

to 285.1 s (549.fotonik3d_r). The number of retired instructions starts from as low as 

234 billion (503.bwaves_r_a) to as high as 2.6 trillion (511.povray_r). Branches range 

from 1.07% (503.bwaves_r_c) to 16.38% (526.blender_r) of the total retired instruc-

tions. Loads/memory reads range from 152.54 billion (503.bwaves_r_a) to 999.35 bil-

lion (510parest_r). Store/memory writes vary from 20.78 billion (503.bwaves_r_a) to 

337.52 billion (510parest_r). The rate benchmarks are light weight benchmarks de-

signed to be less intensive so that multiple copies are run to test throughput. The 



 

80 

average instruction per cycle (IPC) for fp_rate ranges from 1.04 for 554.roms_r to 2.68 

for 508.namd_r. 

 

Table 5.9 General Parameters for fp_rate Benchmarks 

fp_rate Time 

[s] 

Cycles 

[Billion] 

Instructions 

[Billion] 

Branches 

[Billion] 

Loads 

[Billion] 

Stores 

[Billion] 

IPC 

503.bwaves_r_a 33.3 156.23 234.00 2.52 152.54 20.78 1.50 

503.bwaves_r_b 53.1 247.46 369.82 3.99 240.24 32.94 1.49 

503.bwaves_r_c 41.5 194.57 288.44 3.11 187.49 25.70 1.48 

503.bwaves_r_d 50.3 235.58 349.62 3.73 228.45 30.86 1.48 

507.cactuBSSN_r 141.6 662.91 1,065.26 18.17 546.44 119.26 1.61 

508.namd_r 156.1 730.72 1,959.10 40.53 732.51 218.57 2.68 

510.parest_r 240.1 1,122.39 2,368.70 246.23 999.35 86.54 2.11 

511.povray_r 239.6 1,121.53 2,609.36 416.26 998.25 337.52 2.33 

519.lbm_r 75.9 355.16 567.27 11.59 231.50 74.61 1.60 

521.wrf_r 160.7 750.51 1,343.14 104.92 552.50 101.79 1.79 

526.blender_r 195.1 913.73 1,688.78 276.70 568.06 83.38 1.85 

527.cam4_r 153.4 718.66 1,499.99 172.51 428.55 148.93 2.09 

538.imagick_r 208.3 977.49 2,508.37 320.30 493.65 199.48 2.57 

544.nab_r 181.5 849.94 1,382.99 149.97 482.13 131.82 1.63 

549.fotonik3d_r 285.1 1,335.32 1,401.94 36.10 814.60 162.77 1.05 

554.roms_r 149.9 701.38 730.01 29.04 431.52 60.16 1.04 

 

Table 5.10 shows the collected parameters for single-copy int_rate benchmarks. 

Collectively int_rate is the smallest benchmark suite in SPEC CPU2017 with execu-

tion times ranging from 15.3 s (525.x264_r_a) to 310.3 s (520.omnetpp_r). The number 

of retired instructions ranges from 204.91 billion (502.gcc_r_d) to 2062.58 billion 

(548.exchange2_r). The frequency of branch instructions varies from 7.48% 

(525.x264_r_a) to 24.95% (502.gcc_r_c). The number of loads/memory-reads varies 

from 37.13 billion (525.x264_r_a) to 750.13 billion (548.exchange2_r). Stores/memory-



 

81 

writes range from 16.21 billion (525.x264_r_a) to 462.04 billion (548.exchange2_r). 

The instruction per cycle (IPC) ranges from as low as 0.76 for 520.omnetpp_r to 2.59 

for 500.perlbench_r_a. 

 

Table 5.10 General Parameters for int_rate Benchmarks 

int_rate Time 

[s] 

Cycles 

[Billion] 

Instructions 

[Billion] 

Branches 

[Billion] 

Loads 

[Billion] 

Stores 

[Billion] 

IPC 

500.perlbench_r_a 108.0 504.52 1,308.81 259.05 358.94 247.49 2.59 

500.perlbench_r_b 66.2 309.34 718.88 154.12 232.53 123.93 2.32 

500.perlbench_r_c 67.8 317.03 713.76 142.75 220.71 131.39 2.25 

502.gcc_r_a 29.6 138.08 207.27 49.07 58.04 27.16 1.50 

502.gcc_r_b 35.0 163.62 243.22 58.09 68.65 32.51 1.49 

502.gcc_r_c 34.4 160.93 259.48 64.75 76.96 26.00 1.61 

502.gcc_r_d 33.5 156.84 204.91 49.62 59.84 26.12 1.31 

502.gcc_r_e 47.8 223.53 257.11 58.66 72.37 40.56 1.15 

505.mcf_r 174.6 817.75 677.42 153.51 227.96 80.16 0.83 

520.omnetpp_r 310.3 1,452.72 1,101.09 242.71 372.28 190.77 0.76 

523.xalancbmk_r 208.0 972.63 964.21 229.93 273.28 57.19 0.99 

525.x264_r_a 15.3 71.71 169.37 12.67 37.13 16.21 2.37 

525.x264_r_b 46.0 214.84 536.91 44.15 114.08 45.26 2.50 

525.x264_r_c 49.3 230.45 569.25 46.58 124.56 49.20 2.47 

531.deepsjeng_r 186.2 870.96 1,525.87 197.95 366.10 158.92 1.75 

541.leela_r 333.0 1,559.32 1,927.88 298.13 510.42 181.14 1.23 

548.exchange2_r 195.7 915.55 2,062.58 233.34 750.13 462.04 2.25 

557.xz_r_a 87.6 408.10 361.93 52.58 83.28 31.64 0.89 

557.xz_r_b 96.0 449.73 923.11 191.04 238.07 30.01 2.05 

557.xz_r_c 74.4 347.24 513.61 82.97 126.48 31.00 1.48 

 

 

 

 

 



 

82 

5.2.2 Control-Flow Instructions and Branch Prediction Accuracy 

Table 5.11 and Table 5.12 show the branch related parameters collected during 

runtime for fp_rate and int_rate benchmarks, respectively.  As discussed in the previ-

ous section, the frequency of branches is relatively low, ranging from 10.66 

(503.bwaves_r_d) to 163.85 (526.blender_r) per 1K instructions. The misprediction 

rate ranges from as low as 0.02 (507.cactuBSSN_r and 503.bwaves_r_c) to 5.57 

(526.blender_r) per 1K instructions.   

 

Table 5.11 Branch Characteristics for fp_rate 

fp_rate branches per 1K 

instructions 

branch misses per 

1K instructions 

% branch 

misses 

503.bwaves_r_a 10.75 0.04 0.33 

503.bwaves_r_b 10.79 0.03 0.32 

503.bwaves_r_c 10.76 0.02 0.18 

503.bwaves_r_d 10.66 0.06 0.53 

507.cactuBSSN_r 17.06 0.02 0.10 

508.namd_r 20.69 0.97 4.70 

510.parest_r 103.95 4.68 4.50 

511.povray_r 159.53 1.09 0.68 

519.lbm_r 20.43 0.03 0.14 

521.wrf_r 78.11 0.89 1.14 

526.blender_r 163.85 5.57 3.40 

527.cam4_r 115.01 1.14 0.99 

538.imagick_r 127.69 0.96 0.75 

544.nab_r 108.44 4.40 4.06 

549.fotonik3d_r 25.75 0.07 0.26 

554.roms_r 39.78 0.10 0.25 

 

On the other hand, the frequency of branches in int_rate is significantly higher 

than that of its Speed counterpart. The number of retired branch instructions ranges 



 

83 

from 74.83 (525.x264_r_a) to 249.53 (502.gcc_r_c) per 1K instructions. The branch 

misses are relatively high, ranging from 0.69 (500.perlbench_r_c) to 22.74 (505.mcf_r) 

per 1K instructions. Benchmarks with relatively high branch miss rates (>4% in this 

suite) are good candidates for research for improving branch prediction units. 

 

Table 5.12 Branch Characteristics for int_rate 

int_rate branches per 

1K instructions 

branch misses per 

1K instructions 

% branch 

misses 

500.perlbench_r_a 197.93 1.90 0.96 

500.perlbench_r_b 214.39 1.35 0.63 

500.perlbench_r_c 200.00 0.67 0.34 

502.gcc_r_a 236.74 5.44 2.30 

502.gcc_r_b 238.82 4.90 2.05 

502.gcc_r_c 249.53 3.87 1.55 

502.gcc_r_d 242.14 1.78 0.73 

502.gcc_r_e 228.15 1.96 0.86 

505.mcf_r 226.61 22.74 10.03 

520.omnetpp_r 220.42 4.52 2.05 

523.xalancbmk_r 238.47 0.95 0.40 

525.x264_r_a 74.83 1.07 1.43 

525.x264_r_b 82.23 1.32 1.61 

525.x264_r_c 81.82 1.57 1.92 

531.deepsjeng_r 129.73 6.25 4.81 

541.leela_r 154.64 16.82 10.88 

548.exchange2_r 113.13 3.37 2.98 

557.xz_r_a 145.29 10.29 7.08 

557.xz_r_b 206.96 3.52 1.70 

557.xz_r_c 161.54 8.61 5.33 

 

 

 

 



 

84 

5.2.3 Cache Hierarchy 

Table 5.13 and Table 5.14 show cache-related parameters for fp_rate and 

int_rate respectively. For fp_rate, the number of L2 references per 1K instructions 

(which is equivalent to the number of L1 misses) ranges from as low as 28.36 

(526.blender_r) to as high as 512.91 (554.roms_r) per 1K instructions. The number of 

L2 misses per 1K instructions ranges from 1.65 (508.namd_r) to 153.58 (554.roms_r). 

The number of LLC references per 1K instructions ranges from 2.40 (508.namd_r) to 

206.12 (554.roms_r). Hardware and software prefetchers account for the increased 

number of LLC reference with respect to L2 misses. The number of LLC misses ranges 

from as low as 0.03 (538.imagick_r) to 62.50 (549.fotonik3d_r) per 1K instructions. 

 

Table 5.13 L2 and LLC Instruction Breakdown for fp_rate 

fp_rate L2 ref. per 

1K Inst. 

L2 misses 

per 1K Inst. 

% L2 

misses 

LLC ref. per 

1K Inst. 

LLC misses 

per 1K Inst. 

% LLC 

misses 

503.bwaves_r_a 236.23 79.00 33.44 108.30 61.87 57.20 

503.bwaves_r_b 235.22 78.57 33.40 107.78 61.38 56.85 

503.bwaves_r_c 235.27 77.90 33.09 107.30 61.64 57.45 

503.bwaves_r_d 238.14 79.65 33.44 108.41 61.57 56.81 

507.cactuBSSN_r 132.64 18.19 13.73 26.90 8.51 31.64 

508.namd_r 31.62 1.65 5.22 2.40 0.63 26.43 

510.parest_r 157.42 48.76 30.97 74.52 1.34 1.79 

511.povray_r 58.26 4.40 7.60 8.92 0.00 0.00 

519.lbm_r 221.37 45.37 20.47 68.48 52.73 77.12 

521.wrf_r 135.16 36.09 26.64 51.90 11.58 22.30 

526.blender_r 28.36 9.51 33.56 14.38 1.43 9.81 

527.cam4_r 111.31 25.74 23.07 38.39 3.28 8.53 

538.imagick_r 17.94 2.11 11.74 3.40 0.03 0.73 

544.nab_r 30.11 5.23 17.37 9.38 1.21 12.87 

549.fotonik3d_r 330.99 118.37 35.76 160.18 62.50 39.32 

554.roms_r 512.91 153.58 29.94 206.12 49.58 24.05 



 

85 

For int_rate benchmarks, the number of L2 references range from 0.23 (548.ex-

change2_r) to 241.22 (505.mcf_r) per 1K instructions. The number of L2 misses per 

1K instructions ranges from 0.02 (548.exchange2_r) to 88.73 (523.xalancbmk_r). The 

number of LLC references per 1K instructions range from 0.01 (548.exchange2_r) to 

130.85 (523.xalancbmk_r). The number of LLC misses ranges from 0.0000670 (548.ex-

change2_r) to 34.19 (520.omnetpp_r) per 1K instructions. 

 

Table 5.14 L2 and LLC Instruction Breakdown for int_rate 

int_rate L2 ref. per 

1K Inst. 

L2 misses 

per 1K Inst. 

% L2 

misses 

LLC ref. 

per 1K Inst. 

LLC misses 

per 1K Inst. 

% LLC 

misses 

500.perlbench_r_a 17.06 4.32 25.25 7.00 0.34 5.01 

500.perlbench_r_b 38.44 8.46 22.05 13.82 0.31 2.21 

500.perlbench_r_c 23.77 7.28 30.75 11.95 4.50 37.78 

502.gcc_r_a 73.99 21.51 29.06 35.21 3.80 10.79 

502.gcc_r_b 77.03 23.26 30.18 37.00 4.93 13.30 

502.gcc_r_c 82.38 25.14 30.50 40.45 5.58 13.83 

502.gcc_r_d 101.03 29.96 29.66 46.28 18.66 40.31 

502.gcc_r_e 195.85 60.05 30.66 81.70 15.29 18.58 

505.mcf_r 241.22 70.63 29.28 105.48 24.32 23.05 

520.omnetpp_r 171.83 53.07 30.88 79.74 34.19 43.01 

523.xalancbmk_r 246.69 88.73 35.97 130.85 5.19 3.96 

525.x264_r_a 23.99 4.42 18.43 7.65 2.36 30.77 

525.x264_r_b 27.58 6.56 23.77 10.20 1.00 9.80 

525.x264_r_c 23.78 5.47 22.99 9.39 0.92 9.76 

531.deepsjeng_r 15.50 2.80 18.09 4.36 2.33 53.49 

541.leela_r 10.72 1.64 15.31 2.60 0.04 1.60 

548.exchange2_r 0.23 0.02 7.83 0.01 0.00 0.78 

557.xz_r_a 77.71 25.95 33.36 38.48 11.10 28.73 

557.xz_r_b 37.72 8.07 21.40 12.11 0.76 6.30 

557.xz_r_c 37.84 11.15 29.48 16.80 3.27 19.58 

 

 



 

86 

5.2.4 Top-down Microarchitectural Analysis Method Results 

This section presents the Top-down Microarchitecture Analysis Method results 

for the SPEC CPU2017 Rate benchmarks. Figure 5.7 shows the results of TMAM for 

all the rate benchmarks executed with one copy. The figure also illustrates the IPC on 

the secondary axis. 

Looking at fp_rate, the average IPC is 1.77, ranging from 1.04 (554.roms_r) to 

2.68 (508.namd_r). The Retiring slots averages to 49%, the Front-End Bound, and Bad 

Speculation have minimal stalls averaging up to 5% and 6% respectively. However, 

the Back-End Bound accounts for 40% of the stalls. The correlation between the Re-

tiring slots and the IPC metric seen earlier for speed benchmarks hold true for rate 

benchmarks too. Thus, 508.namd_r has 61% of slots in Retiring which translates into 

IPC of 2.68. On the other side, 549.fotonik3d_r and 554.roms_r have only 28% of slots 

in Retiring which translates into IPC of 1.05 and 1.04 respectively. Expectedly, the 

majority of benchmarks in the fp_rate suite is Back-End Bond 70% (549.fortonik3d_r 

and 554.roms_r), whereas the impact of Front-End Bound and Bad Speculation stalls 

is relatively small.  

With respect to int_rate, the average IPC is 1.69, ranging from 0.76 (520.om-

netpp_r) to 2.59 (500.perlbench_s_a). With 39% of Retiring slots, int_rate has a higher 

percentage of Bad Speculation and Front-End Bound stalls at 14% and 17%, respec-

tively. The Back-End Bound stalls account for 30%. Looking at individual bench-

marks, 500.perlbench_s_a has the highest IPC of 2.59 with 61% Retiring slots, 12% 

Bad Speculation, 19% Front-End Bound and 8% Back-End Bound stalls. 520.om-

netpp_r has the smallest IPC of 0.76 as it has just 17% of Retiring slots, 10% of slots 



 

87 

wasted for Bad Speculation, 9% wasted on the Front-End Bound and a 64% delay 

caused by Back-End Bound.     

 

Figure 5.7 Top-Level View of Single-Copy Rate Benchmarks 

 

 A view of the Rate benchmarks executed with six copies is seen in Figure 5.8. 

The general view remains identical for fp_rate and int_rate for 1-copy execution. How-

ever, a huge increase in Back-End Bound stalls is observed, especially for the fp_rate 

benchmarks. The Memory-Bound and Core-Bound delays are caused by contention 

and multiple copies using the same shared resources on and off the core.  

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
0

3.
b

w
a

ve
s_

r_
a

5
0

3.
b

w
a

ve
s_

r_
b

5
0

3.
b

w
a

ve
s_

r_
c

5
0

3.
b

w
a

ve
s_

r_
d

5
0

7.
ca

ct
u

B
SS

N
_

r

5
0

8.
n

am
d

_
r

5
1

0.
p

ar
e

st
_

r

5
1

1.
p

o
vr

ay
_

r

5
1

9.
lb

m
_r

5
2

1.
w

rf
_

r

5
2

6.
b

le
n

d
er

_
r

5
2

7.
ca

m
4

_
r

5
3

8.
im

ag
ic

k_
r

5
4

4.
n

ab
_

r

5
4

9.
fo

to
n

ik
3

d
_

r

5
5

4.
ro

m
s_

r

5
0

0.
p

er
lb

en
ch

_r
_

a

5
0

0.
p

er
lb

en
ch

_r
_

b

5
0

0.
p

er
lb

en
ch

_r
_

c

5
0

2.
gc

c_
r_

a

5
0

2.
gc

c_
r_

b

5
0

2.
gc

c_
r_

c

5
0

2.
gc

c_
r_

d

5
0

2.
gc

c_
r_

e

5
0

5.
m

cf
_

r

5
2

0.
o

m
n

et
p

p
_

r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

5.
x2

6
4

_r
_

a

5
2

5.
x2

6
4

_r
_

b

5
2

5.
x2

6
4

_r
_

c

5
3

1.
d

ee
p

sj
e

n
g_

r

5
4

1.
le

e
la

_
r

5
4

8.
ex

ch
a

n
ge

2
_

r

5
5

7.
xz

_
r_

a

5
5

7.
xz

_
r_

b

5
5

7.
xz

_
r_

c

fp_rate int_rate

Top Level View of Single-Copy Rate Benchmarks 

Retiring Bad Speculation Front-End Bound Back-End Bound IPC



 

88 

 

Figure 5.8 Top-Level View of Six-Copy Rate Benchmarks 

 

With most of the Rate benchmarks having Back-End Bound as the bottleneck, 

a deeper look is required. Figure 5.9 shows the Back-End Bond breakdown for all the 

rate benchmarks for a single copy execution. The Back-End Bound stalls are further 

divided into Core Bound and Memory Bound stalls. Averaging across fp_rate, the 

Memory Bound stalls account for 22% and Core Bound for 18% of the total slots. For 

int_rate the Memory Bound stalls account for 19% and Core Bound stalls account for 

11%. 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50
3.

bw
av

es
_r

_a

50
3.

bw
av

es
_r

_b

50
3.

bw
av

es
_r

_c

50
3.

bw
av

es
_r

_d

50
7.

ca
ct

u
B

SS
N

_r

50
8.

na
m

d_
r

51
0.

pa
re

st
_

r

51
1.

po
vr

ay
_r

51
9.

lb
m

_
r

52
1.

w
rf

_
r

52
6.

bl
en

d
er

_r

52
7.

ca
m

4_
r

53
8.

im
ag

ic
k_

r

54
4.

na
b

_r

54
9.

fo
to

n
ik

3d
_r

55
4.

ro
m

s_
r

50
0.

pe
rl

b
en

ch
_r

_a

50
0.

pe
rl

b
en

ch
_r

_b

50
0.

pe
rl

b
en

ch
_r

_c

50
2.

gc
c_

r_
a

50
2.

gc
c_

r_
b

50
2.

gc
c_

r_
c

50
2.

gc
c_

r_
d

50
2.

gc
c_

r_
e

50
5.

m
cf

_r

52
0.

om
ne

tp
p

_r

52
3.

xa
la

nc
b

m
k_

r

52
5.

x2
6

4_
r_

a

52
5.

x2
6

4_
r_

b

52
5.

x2
6

4_
r_

c

53
1.

de
ep

sj
en

g_
r

54
1.

le
el

a_
r

54
8.

ex
ch

an
ge

2_
r

55
7.

xz
_

r_
a

55
7.

xz
_

r_
b

55
7.

xz
_

r_
c

fp_rate int_rate

Top Level View of Six-Copy Rate Benchmarks 

Retiring Bad Speculation Front-End Bound Back-End Bound IPC



 

89 

 

Figure 5.9 Back-End Level View of Single-Copy Rate Benchmarks 

 

Figure 5.10 shows the Back-End Bond breakdown for all the rate benchmarks 

for 6-copy execution. The Memory Bound delay is significantly higher for six-copy 

runs. The fp_rate benchmarks seem to be affected more by the Memory Bound delay 

than int_rate benchmarks which suggest that they are more memory intensive. The 

Core Bound. Averaging across fp_rate, the Memory Bound stalls account for 53% and 

Core Bound for 11% of the total slots. For int_rate the Memory Bound stalls account 

for 30% and Core-Bound stalls account for 10%. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

5
0

3.
b

w
a

ve
s_

r_
a

5
0

3.
b

w
a

ve
s_

r_
b

5
0

3.
b

w
a

ve
s_

r_
c

5
0

3.
b

w
a

ve
s_

r_
d

5
0

7.
ca

ct
u

B
SS

N
_

r

5
0

8.
n

am
d

_
r

5
1

0.
p

ar
e

st
_

r

5
1

1.
p

o
vr

ay
_

r

5
1

9.
lb

m
_r

5
2

1.
w

rf
_

r

5
2

6.
b

le
n

d
er

_
r

5
2

7.
ca

m
4

_
r

5
3

8.
im

ag
ic

k_
r

5
4

4.
n

ab
_

r

5
4

9.
fo

to
n

ik
3

d
_

r

5
5

4.
ro

m
s_

r

5
0

0.
p

er
lb

en
ch

_r
_

a

5
0

0.
p

er
lb

en
ch

_r
_

b

5
0

0.
p

er
lb

en
ch

_r
_

c

5
0

2.
gc

c_
r_

a

5
0

2.
gc

c_
r_

b

5
0

2.
gc

c_
r_

c

5
0

2.
gc

c_
r_

d

5
0

2.
gc

c_
r_

e

5
0

5.
m

cf
_

r

5
2

0.
o

m
n

et
p

p
_

r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

5.
x2

6
4

_r
_

a

5
2

5.
x2

6
4

_r
_

b

5
2

5.
x2

6
4

_r
_

c

5
3

1.
d

ee
p

sj
e

n
g_

r

5
4

1.
le

e
la

_
r

5
4

8.
ex

ch
a

n
ge

2
_

r

5
5

7.
xz

_
r_

a

5
5

7.
xz

_
r_

b

5
5

7.
xz

_
r_

c

fp_rate int_rate

Back-End Level View of Single-Copy Rate Benchmarks 

Memory Bound Core Bound



 

90 

 

Figure 5.10 Back-End Level View of Six-Copy Rate Benchmarks 

 

For most of the rate benchmarks, memory bound stalls were the biggest bot-

tleneck. Memory-Level from Intel VTune Amplifier quantifies the percentages of the 

total clock cycles wasted (stalled) in different levels of memory hierarchy, including 

L1 cache, L2 cache, L3 cache, Memory, or store buffers, as shown in Figure 5.11. Most 

of the benchmarks spend a high percentage of time in main memory (DRAM). Increas-

ing memory speed and bandwidth could help mitigate this issue. 

Figure 5.12 represents the percentages of the total clock cycles wasted (stalled) 

in memory hierarchy for 6-copy execution. A much higher percentage of stalls is ob-

served when compared to 1-copy execution. Memory is seen to be the biggest bottle-

neck for throughput application. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
0

3
.b

w
av

e
s_

r_
a

5
0

3
.b

w
av

e
s_

r_
b

5
0

3
.b

w
av

e
s_

r_
c

5
0

3
.b

w
av

e
s_

r_
d

5
0

7
.c

ac
tu

B
SS

N
_

r

5
0

8
.n

am
d

_r

5
1

0
.p

ar
e

st
_

r

5
1

1
.p

o
vr

ay
_

r

5
1

9
.lb

m
_r

5
2

1
.w

rf
_r

5
2

6
.b

le
n

d
er

_
r

5
2

7
.c

am
4

_r

5
3

8
.im

ag
ic

k_
r

5
4

4
.n

ab
_

r

5
4

9
.f

o
to

n
ik

3
d

_
r

5
5

4
.r

o
m

s_
r

5
0

0
.p

er
lb

e
n

ch
_r

_a

5
0

0
.p

er
lb

e
n

ch
_r

_b

5
0

0
.p

er
lb

e
n

ch
_r

_c

5
0

2
.g

cc
_

r_
a

5
0

2
.g

cc
_

r_
b

5
0

2
.g

cc
_

r_
c

5
0

2
.g

cc
_

r_
d

5
0

2
.g

cc
_

r_
e

5
0

5
.m

cf
_

r

5
2

0
.o

m
n

et
p

p
_r

5
2

3
.x

al
an

cb
m

k_
r

5
2

5
.x

26
4

_
r_

a

5
2

5
.x

26
4

_
r_

b

5
2

5
.x

26
4

_
r_

c

5
3

1
.d

ee
p

sj
e

n
g_

r

5
4

1
.le

e
la

_r

5
4

8
.e

xc
h

an
ge

2
_

r

5
5

7
.x

z_
r_

a

5
5

7
.x

z_
r_

b

5
5

7
.x

z_
r_

c

fp_rate int_rate

Back-End Level View of Six-Copy Rate Benchmarks 

Memory Bound Core Bound



 

91 

 

Figure 5.11 Memory Level View of Single-Copy Rate Benchmarks 

 

 

Figure 5.12 Memory Level View of Six-Copy Rate Benchmarks 

0%

10%

20%

30%

40%

50%

60%

70%

5
0

3.
b

w
a

ve
s_

r_
a

5
0

3.
b

w
a

ve
s_

r_
b

5
0

3.
b

w
a

ve
s_

r_
c

5
0

3.
b

w
a

ve
s_

r_
d

5
0

7.
ca

ct
u

B
SS

N
_

r

5
0

8.
n

am
d

_
r

5
1

0.
p

ar
e

st
_

r

5
1

1.
p

o
vr

ay
_

r

5
1

9.
lb

m
_r

5
2

1.
w

rf
_

r

5
2

6.
b

le
n

d
er

_
r

5
2

7.
ca

m
4

_
r

5
3

8.
im

ag
ic

k_
r

5
4

4.
n

ab
_

r

5
4

9.
fo

to
n

ik
3

d
_

r

5
5

4.
ro

m
s_

r

5
0

0.
p

er
lb

en
ch

_r
_

a

5
0

0.
p

er
lb

en
ch

_r
_

b

5
0

0.
p

er
lb

en
ch

_r
_

c

5
0

2.
gc

c_
r_

a

5
0

2.
gc

c_
r_

b

5
0

2.
gc

c_
r_

c

5
0

2.
gc

c_
r_

d

5
0

2.
gc

c_
r_

e

5
0

5.
m

cf
_

r

5
2

0.
o

m
n

et
p

p
_

r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

5.
x2

6
4

_r
_

a

5
2

5.
x2

6
4

_r
_

b

5
2

5.
x2

6
4

_r
_

c

5
3

1.
d

ee
p

sj
e

n
g_

r

5
4

1.
le

e
la

_
r

5
4

8.
ex

ch
a

n
ge

2
_

r

5
5

7.
xz

_
r_

a

5
5

7.
xz

_
r_

b

5
5

7.
xz

_
r_

c

fp_rate int_rate

Memory Level View of Single-Copy Rate Benchmarks 

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

50
3.

bw
av

es
_r

_a

50
3.

bw
av

es
_r

_b

50
3.

bw
av

es
_r

_c

50
3.

bw
av

es
_r

_d

50
7.

ca
ct

u
B

SS
N

_r

50
8.

na
m

d_
r

51
0.

pa
re

st
_

r

51
1.

po
vr

ay
_r

51
9.

lb
m

_
r

52
1.

w
rf

_
r

52
6.

bl
en

d
er

_r

52
7.

ca
m

4_
r

53
8.

im
ag

ic
k_

r

54
4.

na
b

_r

54
9.

fo
to

n
ik

3d
_r

55
4.

ro
m

s_
r

50
0.

pe
rl

b
en

ch
_r

_a

50
0.

pe
rl

b
en

ch
_r

_b

50
0.

pe
rl

b
en

ch
_r

_c

50
2.

gc
c_

r_
a

50
2.

gc
c_

r_
b

50
2.

gc
c_

r_
c

50
2.

gc
c_

r_
d

50
2.

gc
c_

r_
e

50
5.

m
cf

_r

52
0.

om
ne

tp
p

_r

52
3.

xa
la

nc
b

m
k_

r

52
5.

x2
6

4_
r_

a

52
5.

x2
6

4_
r_

b

52
5.

x2
6

4_
r_

c

53
1.

de
ep

sj
en

g_
r

54
1.

le
el

a_
r

54
8.

ex
ch

an
ge

2_
r

55
7.

xz
_

r_
a

55
7.

xz
_

r_
b

55
7.

xz
_

r_
c

fp_rate int_rate

Memory Level View of Six-Copy Rate Benchmarks 

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound



 

92 

5.2.5 Clock Rates, Energy, and Power 

Table 5.15 and Table 5.16 show the runtime (column time), the energy con-

sumed, the average power for each benchmark executed with one and six copies and 

the PerfEE speedup (column Speedup). A metric to determine the overview of perfor-

mance and energy efficiency is defined here, PerfEE (Performance and Energy Effi-

ciency) represents the metric. The PerfEE metric for an individual SPEC rate bench-

mark, RBi, running with N copies, 𝑃𝑒𝑟𝑓𝐸𝐸. 𝑅𝑎𝑡𝑒(𝑅𝐵𝑖, 𝑁), is defined as follows:  

𝑃𝑒𝑟𝑓𝐸𝐸. 𝑅𝑎𝑡𝑒 (𝑅𝐵𝑖, 𝑁) =
1

𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑅𝐵𝑖, 𝑁) × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑅𝐵𝑖, 𝑁)
     𝐸𝑞. 5.1 

where ExeTime (RBi, N) is the execution time for the N-copy benchmark. 

 To evaluate the performance and energy efficiency across N-copy execution 

with respect to 1-copy execution a speedup ratio is used as shown in Eq.5.2.  

𝑃𝑒𝑟𝑓𝐸𝐸. 𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑅𝐵𝑖, 𝑁) =
𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑅𝐵𝑖, 1) ∗ 𝑁 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑆𝐵𝑖, 1) ∗ 𝑁

𝐸𝑥𝑒𝑇𝑖𝑚𝑒(𝑆𝐵𝑖, 𝑁) × 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑆𝐵𝑖, 𝑁)
  𝐸𝑞. 5.2 

For the comparison to be fair, the ExeTime and Energy consumed is equated to 

the number of copies run. The logic is to have a ratio that compares the execution 

parameters of single copy execution and an N copy execution. To do so, the single copy 

execution parameters are converted to match the N copy execution parameters. A Per-

fEE.Speedup number more than one would mean that running N copies provides bet-

ter performance and energy savings. 

 

 

 



 

93 

A few of the fp_rate benchmarks have PerfEE Speedup of less than 1 

(503.bwaves_r, 519.lbm_r, and 554.roms_r). Resource and memory contention caseses 

degradation in performance. It is better to run single copy execution in series for these 

benchmarks to have better performance and to save energy. For all other benchmarks, 

a significant speedup as high as12.06 (538.imagick_r) is observed.  

In the case of int_rate, as the benchmarks are not memory intensive, all the 

benchmarks show good PerfEE speedup ranging from 3.44 (502.gcc_r_e) to 12.08 

(541.leela_r). 

 

Table 5.15 Machine Parameters for fp_rate 
 

1 Copy 6 Copies 
 

fp_rate Time  

[s] 

Energy 

[J] 

Power 

[W] 

Time  

[s] 

Energy 

[J] 

Power 

[W] 

PerfEE 

Speedup 

503.bwaves_r_a 33.33 897.53 27.16 179.75 6965.39 40.35 0.86 

503.bwaves_r_b 53.07 1416.07 27.22 284.83 11236.90 40.61 0.85 

503.bwaves_r_c 41.55 1121.67 27.18 220.21 8705.32 40.95 0.88 

503.bwaves_r_d 50.30 1345.20 27.22 267.11 10648.70 40.53 0.86 

507.cactuBSSN_r 141.61 3483.87 22.94 223.09 12015.30 53.40 6.63 

508.namd_r 156.07 3827.73 24.11 175.27 11074.90 65.81 11.08 

510.parest_r 240.09 6394.82 25.63 765.72 36661.40 47.48 1.97 

511.povray_r 239.59 6587.88 26.55 263.03 19386.60 71.25 11.14 

519.lbm_r 75.88 2423.70 29.88 442.31 21221.60 48.88 0.71 

521.wrf_r 160.65 4213.29 25.64 421.41 21201.30 50.11 2.73 

526.blender_r 195.10 4836.83 23.57 237.39 14059.30 58.01 10.18 

527.cam4_r 153.39 4057.21 25.54 245.65 14650.60 59.65 6.23 

538.imagick_r 208.26 5075.38 24.02 227.52 14212.70 62.46 11.77 

544.nab_r 181.53 3965.02 21.64 199.21 10783.70 55.18 12.06 

549.fotonik3d_r 285.05 7287.68 24.59 1259.17 50875.20 40.61 1.17 

554.roms_r 149.85 4220.30 26.45 704.06 32754.90 46.80 0.99 

 

 



 

94 

Table 5.16 Machine Parameters for int_rate 
 

1 Copy 6 Copies 
 

int_rate Time  

[s] 

Energy 

[J] 

Power 

[W] 

Time  

[s] 

Energy 

[J] 

Power 

[W] 

PerfEE 

Speedup 

500.perlbench_r_a 108.01 2764.75 24.45 128.90 8094.22 61.94 10.30 

500.perlbench_r_b 66.16 1737.51 25.12 72.93 4943.74 66.49 11.48 

500.perlbench_r_c 67.77 1696.25 22.98 93.97 5211.05 55.73 8.45 

502.gcc_r_a 29.59 709.15 23.14 41.34 2274.05 54.30 8.04 

502.gcc_r_b 35.03 841.06 22.90 50.72 2722.34 53.68 7.68 

502.gcc_r_c 34.45 818.10 23.00 54.45 2773.36 51.16 6.72 

502.gcc_r_d 33.50 747.46 21.61 58.74 2700.81 46.23 5.68 

502.gcc_r_e 47.82 1092.04 22.21 107.77 5073.20 46.11 3.44 

505.mcf_r 174.61 4013.49 21.99 253.74 13198.90 50.36 7.53 

520.omnetpp_r 310.32 7479.93 21.64 589.94 27500.10 46.09 5.15 

523.xalancbmk_r 207.96 4630.70 21.16 314.09 14565.50 46.34 7.58 

525.x264_r_a 15.31 373.28 23.95 19.61 976.26 32.17 10.75 

525.x264_r_b 45.96 1164.81 24.63 50.44 3256.41 64.67 11.73 

525.x264_r_c 49.27 1236.82 24.55 55.30 3449.63 58.79 11.50 

531.deepsjeng_r 186.15 4606.82 23.43 218.11 13081.40 59.61 10.82 

541.leela_r 332.98 7772.05 22.73 363.97 21184.30 58.19 12.08 

548.exchange2_r 195.71 4784.83 23.90 213.46 13384.60 62.19 11.80 

557.xz_r_a 87.61 1990.88 19.46 144.38 6477.58 43.67 6.71 

557.xz_r_b 96.04 2340.74 21.63 120.79 6690.70 53.18 10.01 

557.xz_r_b 74.39 1785.66 21.32 106.47 5427.22 50.57 8.28 

 

 

 

 

  



 

95 

CHAPTER 6  

 

ARCHITECTURAL EVALUATION 

 

This chapter gives the compilation of the obtained results for the SPEC 

CPU2017 benchmark suites for multiple threads/copies across all the test systems 

discussed in section 3.3. Section 6.1 gives execution time across test machines and 

evaluates speedup when multiple threads are run for the speed benchmarks and mul-

tiples copies for rate benchmarks are run. Section 6.2 evaluates the advantages and 

disadvantages of hardware prefetching and for different benchmarks in the SPEC 

CPU2017 benchmark suites.  

6.1 SPEC CPU2017 Execution Evaluation on Test System 

This section shows the results of performance evaluation of the speed and rate 

benchmarks on all the test machines while varying the number of threads/copies. The 

tables in this section give two parameters, the execution time (or runtime) and the 

speedup. The execution time is obtained directly from the SPEC CPU2017 runcpu 

utility when benchmarks are run with the reference data inputs. The primary goal of 

this analysis is to quantify scalability of individual benchmarks as a function of the 

number of threads for the speed benchmarks, and the number of copies for the rate 

benchmarks. The speedup metric for an individual SPEC speed benchmark, SBi, run-

ning with N threads, 𝑆𝑝𝑒𝑒𝑑𝑢𝑝. 𝑆𝑝𝑒𝑒𝑑 (𝑆𝐵𝑖, 𝑁), is calculated as shown in Eq.6.1, where 

ExeTime (SBi,1) is the execution time for the single-threaded benchmark and ExeTime 

(SBi, N) is the execution time for the N-threaded benchmark. The speedup metric for 



 

96 

an individual SPEC rate benchmark, RBi, when run with N copies, 

𝑆𝑝𝑒𝑒𝑑𝑈𝑝. 𝑅𝑎𝑡𝑒 (𝑅𝐵𝑖, 𝑁), is shown in Eq.6.2, where ExeTime (RBi,1) is the execution 

time for one copy of the benchmark, and ExeTime (RBi,N) is the execution time for N  

copies. 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝. 𝑆𝑝𝑒𝑒𝑑 (𝑆𝐵𝑖 , 𝑁) =    
𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑆𝐵𝑖, 1)

𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑆𝐵𝑖, 𝑁)
           𝐸𝑞. 6.1 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝. 𝑅𝑎𝑡𝑒 (𝑅𝐵𝑖 , 𝑁) =    
𝑁 ∗ 𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑅𝐵𝑖, 1)

𝐸𝑥𝑒𝑇𝑖𝑚𝑒 (𝑅𝐵𝑖, 𝑁)
      𝐸𝑞. 6.2 

The secondary aspect of this analysis is to compare the performance of proces-

sors from the same class, as well the performance of all processors considered (Core 

i7 vs. Xeon). It should be noted that all the test systems have processors that operate 

at different clock frequencies. Moreover, the processor clock frequency at any point in 

time depends on the number of active cores. Table 6.1 shows the measured runtime 

CPU clock frequencies for all the test systems. In evaluating different test platforms, 

rather than analyzing the performance of individual benchmarks, the SPEC compo-

site metric SPEC2017_ratio_base is used for individual benchmark suites. In compar-

ing the performance of two different machines, say A and B, the speedup is determined 

as shown in Eq.6.3.  

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐴𝑡𝑜𝐵 (𝑁) =    
𝑆𝑃𝐸𝐶2017_𝑟𝑎𝑡𝑖𝑜_𝑏𝑎𝑠𝑒 (𝐴, 𝑁)

𝑆𝑃𝐸𝐶2017_𝑟𝑎𝑡𝑖𝑜_𝑏𝑎𝑠𝑒 (𝐵, 𝑁)
      𝐸𝑞. 6.3 

Secondly, to eliminate the impact of clock frequencies on performance, a scaled 

speedup metric is derived as shown in Eq. 4, where FreqA and FreqB are active clock 



 

97 

frequencies of test machines A and B, respectively. As all the test machines use the 

same operating systems and run benchmarks compiled using the same compiler, the 

scaled speedup captures differences in performance due to processor microarchitec-

ture and memory latency.  

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑆𝑐𝑎𝑙𝑒𝑑𝐴𝑡𝑜𝐵 (𝑁) =
𝑆𝑃𝐸𝐶2017_𝑟𝑎𝑡𝑖𝑜_𝑏𝑎𝑠𝑒(𝐴, 𝑁) ∙ 𝐹𝑟𝑒𝑞𝐵

𝑆𝑃𝐸𝐶2017_𝑟𝑎𝑡𝑖𝑜_𝑏𝑎𝑠𝑒(𝐵, 𝑁) ∙ 𝐹𝑟𝑒𝑞𝐴
                 𝐸𝑞. 6.4 

 

Table 6.1 Runtime CPU Clock Frequency for all Test Systems. 

Test systems  Frequency [GHz] 

Threads/Copies 1 4 6 8 12 16 24 

 

mtsano 

Core i7-4770 

fp_speed 3.69 3.30 3.27 3.20    

int_speed 3.88 3.84 3.85 3.84    

fp_rate 3.64 3.35 3.24 3.17    

int_rate 3.88 3.44 3.39 3.27    

 

clingmansdome 

Core i7-8700k 

fp_speed 4.68 4.39 4.30 4.31 4.29   

int_speed 4.67 4.64 4.63 4.63 4.63   

fp_rate 4.68 4.39 4.30 4.31 4.30   

int_rate 4.67 4.39 4.30 4.31 4.30   

 

vidrak 

Xeon E3-1240 

V2 

fp_speed 3.78 3.78 3.59 3.59    

int_speed 3.78 3.78 3.76 3.76    

fp_rate 3.70 3.70 3.59 3.58    

int_rate 3.70 3.70 3.59 3.59    

 

mtleconte 

Xeon E5-2643 

V3 

fp_speed 3.64 3.56 3.50 3.50 3.52 3.53 3.54 

int_speed 3.66 3.65 3.65 3.64 3.64 3.65 3.65 

fp_rate 3.61 3.59 3.51 3.51 3.51 3.51 3.51 

int_rate 3.66 3.64 3.57 3.57 3.57 3.57 3.58 

 

 

6.1.1 SPEC CPU2017 fp_speed 

Table 6.2 and Figure 6.1 show the execution times and speedups for fp_speed 

on mtsano (Core i7-4770) when the number of threads is 1, 4, 6, and 8. The perfor-

mance of 4-thread benchmarks is found to be the best, with the individual speedups 



 

98 

ranging from 1.11 (619.lbm_s) to 3.13 (607.cactuBSSN_s). Table 6.3 and Figure 6.2 

show the execution times and speedups for fp_speed on clingmansdome (Core i7-

8700k) when the number of threads is 1, 4, 6, 8, and 12. The performance of six-thread 

benchmarks is found to be the best, with the individual speedups ranging from 0.83 

(619.lbm_s) to 5.32 (638.imagick_s, 644.nab_s).  

Table 6.4 and Figure 6.3 show execution times and speedups for fp_speed on 

vidrak (Xeon E3-1240 V2) when the number of threads is 1, 4, 6 and 8. The perfor-

mance of 4-thread benchmarks is found to be the best, with the individual speedups 

ranging from 1.16 (619.lbm_s) to 3.69 (638.imagick_s and 644.nab_s). Table 6.5 and 

Figure 6.4 shows the execution times and speedups of fp_speed on mtleconte (Xeon E5-

2643 V3) when the number of threads is 1, 4, 6, 8, 12, 16, and 24.  The performance of 

the twelve-thread benchmarks is found to be the best, with the individual speedups 

ranging from 1.53 (619.lbm_s) to 10.73 (644.nab_s). 

 A broad view of the fp_speed benchmarks is seen here in terms of scalability. 

The benchmark 619.lbm_s show little to none parallelism in mtsano (Core i7-4770) 

and the Xeons, however, in clingmansdome (Core i7-8700k) any increase in the num-

ber of threads from 1, in effect degrades performance irrespective of the number of 

threads.  

Most of the benchmarks perform the best with good speedup when the number 

of threads is equal to the number of physical cores. However, for some of those bench-

marks, any further increase in the number of threads essentially degrades perfor-

mance because logical cores do not provide the same speedup as physical cores 

(603.bwaves_s, 621.wrf_s, 628.pop2_s, 649.fotonik3d_s, and 654.roms_s). A few bench-



 

99 

marks have excellent scalability showing performance improvements when the num-

ber of threads matches the number of logical cores (607.cactuBSSN_s, 627.cam4_s, 

and 644.nab_s).  

 An interesting observation to note is that benchmarks like 607.cactuBSSN_s 

have speedup for cases when the number of software threads created equal the num-

ber of physical core and logical cores, however, it shows show significant degradation 

in performance when the number of software threads is between the number of phys-

ical cores and the number of logical cores. As these applications are OS scheduled, an 

unusually high number of context switches and CPU migrations are observed for this 

condition causing the performance to degrade. 

 An important parameter that impacts scalability is the percentage of paral-

lelizable code in the benchmark. Even in the case of a perfectly parallelizable applica-

tion that is memory intensive, increase in the number of threads might end up hurting 

performance. This could explain the performance degradation seen for benchmarks 

when the number of created software threads exceed the number of physical cores. 

The fact that architecture is not a big factor for scalability can clearly be observed by 

these runs as the behavior for an individual benchmark remains consistent across 

architectures and computing platforms. 

 Finally, the fp_speed benchmark suite shows excellent variability with a wide 

range of execution times and speedups. This sort of behavior is extremely useful for 

stressing various aspects of a machine using a single suite.   

 

 

 



 

100 

Table 6.2 Runtime and Speedup of fp_speed in Core i7-4770 

Mtsano Runtime (sec) & Speedup 

Core i7-4770 fp_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 

603.bwaves_s 1,521.77 1,119.37 1,169.62 1,173.50 

1.00 1.36 1.30 1.30 

607.cactuBSSN_s 2,068.59 661.66 710.92 622.76 

1.00 3.13 2.91 3.32 

619.lbm_s 1,286.82 1,163.55 1,192.10 1,209.18 

1.00 1.11 1.08 1.06 

621.wrf_s 1,421.59 644.88 668.29 667.32 

1.00 2.20 2.13 2.13 

627.cam4_s 2,296.64 798.14 724.98 665.13 

1.00 2.88 3.17 3.45 

628.pop2_s 1,795.71 638.52 762.42 718.40 

1.00 2.81 2.36 2.50 

638.imagick_s 5,743.99 1,728.26 1,749.33 1,688.03 

1.00 3.32 3.28 3.40 

644.nab_s 2,538.04 712.33 671.01 649.47 

1.00 3.56 3.78 3.91 

649.fotonik3d_s 995.73 816.07 833.83 846.45 

1.00 1.22 1.19 1.18 

654.roms_s 2,435.36 1,566.64 1,591.33 1,768.64 

1.00 1.55 1.53 1.38 

 

 

Figure 6.1 Speedup of fp_speed Benchmarks in Core i7-4770 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Benchmarks

Speedup of fp_speed benchmarks in Core i7-4770

1 4 6 8 Threads



 

101 

Table 6.3 Runtime and Speedup of fp_speed in Core i7-8700K 

clingmansdome Runtime (sec) & Speedup 

Core i7-8700K fp_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 12 Threads 

603.bwaves_s 1,184.63 855.14 883.91 900.51 947.98 

1.00 1.39 1.34 1.32 1.25 

607.cactuBSSN_s 1,328.01 441.28 345.33 391.84 316.48 

1.00 3.01 3.85 3.39 4.20 

619.lbm_s 800.08 927.47 962.06 977.49 1,028.64 

1.00 0.86 0.83 0.82 0.78 

621.wrf_s 913.50 416.46 373.41 390.26 350.58 

1.00 2.19 2.45 2.34 2.61 

627.cam4_s 1,405.44 512.62 420.80 427.42 421.70 

1.00 2.74 3.34 3.29 3.33 

628.pop2_s 1,014.45 410.15 390.80 439.23 458.29 

1.00 2.47 2.60 2.31 2.21 

638.imagick_s 4,263.84 1,155.69 800.85 830.20 774.63 

1.00 3.69 5.32 5.14 5.50 

644.nab_s 1,724.49 467.38 324.33 312.90 258.56 

1.00 3.69 5.32 5.51 6.67 

649.fotonik3d_s 644.87 621.22 647.39 648.68 678.18 

1.00 1.04 1.00 0.99 0.95 

654.roms_s 1,518.88 1,090.72 1,118.48 1,125.80 1,312.23 

1.00 1.39 1.36 1.35 1.16 

 

 

Figure 6.2 Speedup of fp_speed Benchmarks in Core i7-8700K 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Benchmarks

Speedup of fp_speed benchmarks in Core i7-8700K

1 4 6 8 12 Threads



 

102 

Table 6.4 Runtime and Speedup of fp_speed in Xeon E3-1240 V2 

vidrak Runtime (sec) & Speedup 

Xeon E3-1240 V2 fp_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 

603.bwaves_s 1,632.91 1,130.93 1,181.82 1,174.38 

1.00 1.44 1.38 1.39 

607.cactuBSSN_s 2,883.80 878.94 1,110.46 898.42 

1.00 3.28 2.60 3.21 

619.lbm_s 1,391.80 1,196.80 1,224.25 1,239.48 

1.00 1.16 1.14 1.12 

621.wrf_s 1,685.65 695.28 738.19 686.13 

1.00 2.42 2.28 2.46 

627.cam4_s 2,320.91 787.88 737.74 645.07 

1.00 2.95 3.15 3.60 

628.pop2_s 2,024.61 678.29 772.91 714.37 

1.00 2.98 2.62 2.83 

638.imagick_s 7,330.61 1,986.60 2,093.62 2,040.22 

1.00 3.69 3.50 3.59 

644.nab_s 3,122.68 846.98 770.63 694.42 

1.00 3.69 4.05 4.50 

649.fotonik3d_s 1,059.71 837.83 852.61 864.52 

1.00 1.26 1.24 1.23 

654.roms_s 2,985.47 1,716.92 1,759.35 1,848.40 

1.00 1.74 1.70 1.62 

 

 

Figure 6.3 Speedup of fp_speed Benchmarks in Xeon E3-1240 V2 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Benchmarks

Speedup of fp_speed benchmarks in Xeon E3-1240 V2

1 4 6 8 Threads



 

103 

Table 6.5 Runtime and Speedup of fp_speed in Xeon E5-2643 V3 

mtleconte Runtime (sec) & Speedup 

Xeon E5-2643 V3 fp_speed 

Benchmarks 1 

Thread 

4 

Threads 

6 

Threads 

8 

Threads 

12 

Threads 

16 

Threads 

24 

Threads 

603.bwaves_s 1,828.46 886.79 839.81 845.87 866.43 920.33 849.07 

1.00 2.06 2.18 2.16 2.11 1.99 2.15 

607.cactuBSSN_s 2,436.50 785.27 565.66 483.16 380.54 409.52 344.57 

1.00 3.10 4.31 5.04 6.40 5.95 7.07 

619.lbm_s 1,628.31 874.78 865.50 899.95 1,061.79 1,115.64 898.32 

1.00 1.86 1.88 1.81 1.53 1.46 1.81 

621.wrf_s 1,392.00 525.30 438.72 397.58 328.70 350.52 404.54 

1.00 2.65 3.17 3.50 4.23 3.97 3.44 

627.cam4_s 2,167.90 754.33 577.92 493.35 434.77 478.08 430.53 

1.00 2.87 3.75 4.39 4.99 4.53 5.04 

628.pop2_s 1,842.77 602.11 478.38 426.14 409.60 450.80 483.81 

1.00 3.06 3.85 4.32 4.50 4.09 3.81 

638.imagick_s 6,070.80 1,609.45 1,094.47 832.54 571.84 603.60 538.80 

1.00 3.77 5.55 7.29 10.62 10.06 11.27 

644.nab_s 2,677.77 702.61 477.30 360.92 249.53 241.30 222.69 

1.00 3.81 5.61 7.42 10.73 11.10 12.02 

649.fotonik3d_s 1,255.07 654.24 640.33 642.09 675.53 709.80 701.89 

1.00 1.92 1.96 1.95 1.86 1.77 1.79 

654.roms_s 2,529.91 960.34 812.16 754.57 759.95 756.55 1,053.77 

1.00 2.63 3.12 3.35 3.33 3.34 2.40 

 

 

Figure 6.4 Speedup of fp_speed Benchmarks in Xeon E5-2643 V3 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Benchmarks

Speedup of fp_speed benchmarks in Xeon E5-2643 V3

1 4 6 8 12 16 24 Threads



 

104 

Table 6.6 shows the SPECspeed2017_fp_base number across all the test systems 

when the number of threads is varied. Conforming to the previous individual bench-

mark speedups, all the test systems show the best performance when the number of 

threads is equal to the number of physical cores. The Core processors outperform the 

Xeon processors on the single threaded benchmarks, partly because the Core proces-

sors operate at a higher frequency. Figure 6.5 gives a visual representation of the 

SPECspeed2017_fp_base numbers for different thread counts on all the test systems. 

 

Table 6.6 SPECspeed2017_fp_base on all Test Systems 

fp_speed 

 mtsano clingmansdome vidrak mtleconte 

Thread Count Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3 

1 7.06 10.81 6.079 6.44 

4 15.01 21.69 13.75 17.37 

6 14.64 24.45 13.18 21.29 

8 14.95 23.62 13.93 23.78 

12  24.22  26.53 

16    25.22 

24    25.82 

 

 

Figure 6.5 SPECspeed2017_fp_base Results on all Test Systems 

0

5

10

15

20

25

30

1 4 6 8 12 16 24

Thread_Count

SPECspeed2017_fp_base

Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3



 

105 

A performance comparison across the test machines is made in Table 6.7. The 

speedups here are defined in Eq.6.3 and Eq.6.4. While comparing the two core i7’s 

(mtsano and clingmansdome), the speedup of clingmansdome over mtsano is substan-

tial, signifying that combination of architectural improvements and faster memory. 

All of which contribute to ~50% gains in performance, however, the scaled speedup 

shows that a major portion of this gains come for a higher clock frequency. While com-

paring the Xeons, it should be noted that the difference in the operating clock fre-

quency is relatively small and vidrak has a faster clock than mtleconte. However, 

mtleconte outperforms vidrak and shows a speedup of ~10% for single-threaded appli-

cations and ~75% for eight threaded applications. Cross-comparison of machines in 

the case of vidrak and mtleconte, the newer architecture in mtsano contributed to 

~20% gains. In the case of the two hexa-core machines, clingmansdome and mtleconte, 

the newer i7 fails to keep up when thread-count increases because the speed bench-

marks are largely memory oriented and mtleconte has a bigger last level cache. Figure 

6.6 and Figure 6.7 show excerpts from auto-generated reports from SPEC CPU2017 

runs of the fp_speed benchmarks on clingmansdome for one and six threads, respec-

tively. 

Table 6.7 Relative Speedups for fp_speed on Different Test Machines.   

fp_speed 

 

Clingmansdome to 

mtsano 

mtsano to vidrak 

 

mtleconte to vidrak 

 

clingmansdome to 

mtleconte 

Thread 

Count 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

1 1.53 1.21 1.16 1.19 1.06 1.10 1.68 1.30 

4 1.45 1.09 1.09 1.19 1.26 1.27 1.25 1.02 

6 1.67 1.27 1.11 1.22 1.62 1.66 1.15 0.93 

8 1.58 1.17 1.07 1.20 1.71 1.75 0.99 0.81 

12       0.91 0.75 



 

106 

 
Figure 6.6 SPEC CPU2017 Report Excerpt for Single-Threaded fp_speed 

 

 
Figure 6.7 SPEC CPU2017 Report Excerpt for Six-Threaded fp_speed 



 

107 

6.1.2 SPEC CPU2017 int_speed 

Table 6.8 and Figure 6.8 show the execution time and speedups for int_speed 

on mtsano (Core i7-4770) when the number of threads is 1, 4, 6, and 8. The perfor-

mance of 8-thread benchmarks is found to be the best, with speedup ranging from 1 

(all except 657.xz_s) to 3.53 (657.xz_s). Table 6.9 and Figure 6.9 show the execution 

time and speedups for int_speed on clingmansdome (Core i7-8700k) when the number 

of threads is 1, 4, 6, 8, and 12. The performance of 12-thread benchmarks is found to 

be the best, with speedup ranging from 1 (All except 657.xz_s) to 3.56 (657.xz_s).  

Table 6.10 and Figure 6.10 show the execution time and speedups for int_speed 

on vidrak (Xeon E3-1240) when the number of threads is 1, 4, 6, and 8. The perfor-

mance of 8-thread benchmarks is found to be the best, with speedup ranging from 1 

(all benchmarks except 657.xz_s) to 3.39 (657.xz_s). Table 6.11 and Figure 6.11 give 

the execution time and speedups of int_speed on mtleconte (Xeon E5-2643 V3) when 

the number of threads is 1, 2, 4, 6, 12, 16, and 24. The performance of 24-thread bench-

marks is found to be the best, ranging from 1 (all benchmarks except 657.xz_s) to 5.08 

(657.xzs). 

It is observed that all but one benchmark (657.xz_s) is not parallelizable in the 

entire int_speed benchmark suite. All other benchmark behavior is comparable across 

all the test machines with only one software thread created irrespective of the number 

of threads allocated. The benchmark that parallelizes scales well for increasing thread 

count to show speedup. The best speedup is obtained when the software threads oc-

cupy all the logical cores.  

 



 

108 

Table 6.8 Runtime and Speedup of int_speed in Core i7-4770 

mtsano Runtime (sec) & Speedup 

Core i7-4770 int_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 

600.perlbench_s 

 
334.27 336.24 334.94 334.90 

1.00 0.99 1.00 1.00 

602.gcc_s 

 
473.69 473.64 473.79 474.24 

1.00 1.00 1.00 1.00 

605.mcf_s 

 
395.85 396.04 397.40 396.38 

1.00 1.00 1.00 1.00 

620.omnetpp_s 

 
400.26 399.41 400.09 400.16 

1.00 1.00 1.00 1.00 

623.xalancbmk_s 

 
281.93 280.93 282.35 283.29 

1.00 1.00 1.00 1.00 

625.x264_s 

 
169.35 168.89 169.23 169.18 

1.00 1.00 1.00 1.00 

631.deepsjeng_s 

 
276.59 275.10 276.21 276.24 

1.00 1.01 1.00 1.00 

641.leela_s 

 
396.00 395.28 396.08 395.79 

1.00 1.00 1.00 1.00 

648.exchange2_s 

 
245.80 247.24 246.71 246.68 

1.00 0.99 1.00 1.00 

657.xz_s 

 
2,115.93 795.29 705.45 598.69 

1.00 2.66 3.00 3.53 

 

 

Figure 6.8 Speedup of int_speed Benchmarks in Core i7-4770 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Benchmarks

Speedup of int_speed benchmarks in Core i7-4770

1 4 6 8 Threads



 

109 

Table 6.9 Runtime and Speedup of int_speed in Core i7-8700K 

clingmansdome Runtime (sec) & Speedup 

Core i7-8700K int_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 12 Threads 

600.perlbench_s 

 

241.60 240.31 244.20 240.97 242.38 

1.00 1.01 0.99 1.00 1.00 

602.gcc_s 

 

350.72 351.70 350.74 351.43 351.62 

1.00 1.00 1.00 1.00 1.00 

605.mcf_s 

 

315.59 312.98 314.21 314.34 313.62 

1.00 1.01 1.00 1.00 1.01 

620.omnetpp_s 

 

306.55 306.56 307.89 309.26 308.81 

1.00 1.00 1.00 0.99 0.99 

623.xalancbmk_s 

 

210.50 208.89 212.15 210.64 211.38 

1.00 1.01 0.99 1.00 1.00 

625.x264_s 

 

119.05 119.24 119.07 119.29 119.27 

1.00 1.00 1.00 1.00 1.00 

631.deepsjeng_s 

 

218.27 218.29 218.31 218.45 218.34 

1.00 1.00 1.00 1.00 1.00 

641.leela_s 

 

332.77 332.89 332.76 332.79 333.06 

1.00 1.00 1.00 1.00 1.00 

648.exchange2_s 

 

195.10 195.30 196.61 196.45 195.64 

1.00 1.00 0.99 0.99 1.00 

657.xz_s 

 

1,757.88 682.49 567.39 511.06 493.56 

1.00 2.58 3.10 3.44 3.56 

 

 

Figure 6.9 Speedup of int_speed Benchmarks in Core i7-8770K 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Benchmarks

Speedup of int_speed benchmarks in Core i7-8700K

1 4 6 8 12 Threads



 

110 

Table 6.10 Runtime and Speedup of int_speed in Xeon E3-1240 V2 

vidrak Runtime (sec) & Speedup 

Xeon E3-1240 V2 int_speed 

Benchmarks 1 Thread 4 Threads 6 Threads 8 Threads 

600.perlbench_s 

 

441.33 438.57 440.29 441.54 

1.00 1.01 1.00 1.00 

602.gcc_s 

 

522.28 521.72 521.45 521.67 

1.00 1.00 1.00 1.00 

605.mcf_s 

 

472.81 473.17 472.25 473.61 

1.00 1.00 1.00 1.00 

620.omnetpp_s 

 

437.90 436.11 434.84 436.91 

1.00 1.00 1.01 1.00 

623.xalancbmk_s 

 

325.90 326.03 325.71 326.89 

1.00 1.00 1.00 1.00 

625.x264_s 

 

249.28 250.11 247.74 249.53 

1.00 1.00 1.01 1.00 

631.deepsjeng_s 

 

308.77 308.36 308.86 308.54 

1.00 1.00 1.00 1.00 

641.leela_s 

 

414.05 413.73 415.11 413.88 

1.00 1.00 1.00 1.00 

648.exchange2_s 

 

365.59 365.60 365.59 365.70 

1.00 1.00 1.00 1.00 

657.xz_s 

 

2,054.42 792.70 728.94 606.30 

1.00 2.59 2.82 3.39 

 

 

Figure 6.10 Speedup of int_speed Benchmarks in Xeon E3-1240 V2 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Benchmarks

Speedup of int_speed benchmarks in Xeon E3-1240 V2

1 4 6 8 Threads



 

111 

Table 6.11 Runtime and Speedup of int_speed in Xeon E5-2643 V3 

mtleconte Runtime (sec) & Speedup 

Xeon E5-2643 V3 int_speed 

Benchmarks 1 

Thread 

4 

Threads 

6 

Threads 

8 

Threads 

12 

Threads 

16 

Threads 

24 

Threads 

600.perlbench_s 

 

330.79 332.26 331.42 329.12 338.65 336.83 330.46 

1.00 1.00 1.00 1.01 0.98 0.98 1.00 

602.gcc_s 

 

481.86 482.77 486.51 483.50 489.00 485.84 483.20 

1.00 1.00 0.99 1.00 0.99 0.99 1.00 

605.mcf_s 

 

473.31 473.18 474.00 473.83 474.08 474.28 474.13 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

620.omnetpp_s 

 

432.17 408.25 430.89 431.00 385.48 396.27 382.88 

1.00 1.06 1.00 1.00 1.12 1.09 1.13 

623.xalancbmk_s 

 

316.87 316.26 315.35 315.65 315.40 313.53 318.42 

1.00 1.00 1.00 1.00 1.00 1.01 1.00 

625.x264_s 

 

174.57 173.62 174.83 173.58 173.48 174.03 174.16 

1.00 1.01 1.00 1.01 1.01 1.00 1.00 

631.deepsjeng_s 

 

295.55 298.93 294.38 294.69 294.37 308.03 310.78 

1.00 0.99 1.00 1.00 1.00 0.96 0.95 

641.leela_s 

 

416.04 416.08 415.86 416.82 416.15 416.12 417.11 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

648.exchange2_s 

 

259.88 259.98 258.94 258.81 259.36 259.04 259.34 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

657.xz_s 

 

1,972.62 732.93 614.01 496.76 469.65 403.15 388.38 

1.00 2.69 3.21 3.97 4.20 4.89 5.08 

 

 

Figure 6.11 Speedup of int_speed Benchmarks in Xeon E5-2643 V3 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Benchmarks

Speedup of int_speed benchmarks in Xeon E5-2643 V3

1 4 6 8 12 16 24 Threads



 

112 

Table 6.12 shows the SPECspeed2017_int_base number across all the test systems 

when the number of threads is varied. The best performance was obtained for the 

execution when the number of software threads equaled the number of logical cores. 

Because only one benchmark shows improvements by increasing the number of 

threads, multi-thread gains were minimal across machines. Figure 6.5 gives a visual 

representation of the SPECspeed2017_int_base numbers for different thread counts 

on all the test systems. 

 

Table 6.12 SPECspeed2017_int_base on all Test Systems 

int_speed  
mtsano clingmansdome vidrak mtleconte 

Thread_Count Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3 

1 6.23 8.07 5.26 5.92 

4 6.87 8.89 5.79 6.57 

6 6.95 9.01 5.84 6.65 

8 7.06 9.12 5.94 6.81 

12 
 

9.15 
 

6.90 

16 
   

6.96 

24 
   

7.01 

 

 

Figure 6.12 SPECspeed2017_int_base Results on all Test Systems 

0

2

4

6

8

10

1 4 6 8 12 16 24

Thread_Count

SPECspeed2017_int_base

Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3



 

113 

A performance comparison across the test machines is made in Table 6.13. The 

speedups here are defined in Eq.6.3 and Eq.6.4. While comparing the two i7’s, 

clingmansdome has a speedup of ~30% over mtsano. However, the scaled speedup 

signifies architectural and memory improvements contributing to ~8% of the total 

speedup. The clock frequency is the biggest factor influencing performance. In com-

paring the Xeons, though vidrak has a faster clock, it lags in performance by ~18% 

because it has an older architecture. Cross-comparison between the Xeons and the 

Core processors show that the Core processors outperform the Xeons with and without 

the higher clock frequencies. It should be noted that the Xeons in either comparison 

are from an older generation than the Core processors. Between mtsano and vidrak 

with the newer architecture, mtsano has a speedup of ~16%. A closer equivalence is 

drawn between clingmansdome and mtleconte showing minimal changes to the inte-

ger functional unit. This also reinforces the fact that the design concentration for a 

Xeon is energy and reliability whereas for a core processor it is performance. Figure 

6.13 and Figure 6.14 show excerpts from auto-generated reports from SPEC CPU2017 

runs of the int_speed benchmarks on clingmansdome for one and six threads, respec-

tively. 

Table 6.13 Relative Speedups for int_speed on Different Test Machines 

int_speed 

 

clingmansdome to 

mtsano 

mtsano to vidrak 

 

mtleconte to vidrak 

 

clingmansdome to 

mtleconte 

Thread 

Count 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

1 1.30 1.07 1.18 1.15 1.13 1.17 1.36 1.06 

4 1.29 1.07 1.19 1.16 1.13 1.18 1.35 1.05 

6 1.30 1.08 1.19 1.16 1.14 1.18 1.35 1.05 

8 1.29 1.07 1.19 1.16 1.15 1.19 1.34 1.04 

12       1.33 1.03 



 

114 

 

Figure 6.13 SPEC CPU2017 Report Excerpt for Single-Threaded int_speed 

 

 

Figure 6.14 SPEC CPU2017 Report Excerpt for Six-Threaded int_speed 



 

115 

6.1.3 SPEC CPU2017 fp_rate 

Table 6.14 and Figure 6.15 show the execution time and speedups for fp_rate 

on mtsano (Core i7-4770) when the number of copies is 1, 4, 6, 8. The performance of 

8-copy benchmarks is found to be the best, with speedups ranging from 1.19 

(503.bwaves_r) to 4.04 (544.roms_r and 511.povray_r). Table 6.15 and Figure 6.16 

gives the execution time and speedups for fp_rate on clingmansdome (Core i7-8700k). 

The performance of 12-copy benchmarks is found to be the best, with speedups rang-

ing from 0.95 (554.roms_r) to 7.00 (544.nab_r). 

Table 6.16 and Figure 6.17 show execution time and speedups for fp_rate on 

vidrak (Xeon E3-1240) when the number of copies is 1, 4, 6, and 8. The performance 

of 8-copy benchmarks is found to be the best, with speedups ranging from 1.19 

(503.bwaves_r) to 4.04 (544.roms_r and 511.povray_r). Table 6.17 and Figure 6.18 

shows the execution time and speedups of fp_rate on mtleconte (Xeon E5-2643 V3). 

The performance of 24-copy benchmarks is found to be the best, with speedups rang-

ing from 2.19 (503.bwaves_r) to 13.84 (544.nab_r). 

The overview of the fp_rate benchmarks is given here in terms of scalability. 

The behavior of the rate benchmarks is similar across all test machines. Some bench-

marks (507.cactuBSSN_r, 508.namd_r, 511.povray_r, 526.blender_r, 538.imagick_r 

and 544.nab_r) scale up until the number of copies match the number of logical cores. 

These benchmarks are not memory intensive and contention seems to not affect per-

formance. The other set of benchmarks (503.bwaves_r, 510.parest_r, 519.lbm_r, 

521.wrf_r, 527.cam4_r, 549.fotonik3d_r, and 554.roms_r), have initial speedup to mul-

tiple copies match the number of physical cores, however, a reduce in speedup is seen 

for an increase in copies thereafter.  



 

116 

Table 6.14 Runtime and Speedup of fp_rate in Core i7-4770 

mtsano Runtime (sec) & Speedup 

Core i7-4770 fp_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 

503.bwaves_r 

 

250.01 806.82 1,235.16 1,685.09 

1.00 1.24 1.21 1.19 

507.cactuBSSN_r 

 

230.20 305.73 439.47 545.46 

1.00 3.01 3.14 3.38 

508.namd_r 

 

215.37 260.99 379.63 523.05 

1.00 3.30 3.40 3.29 

510.parest_r 

 

334.22 754.46 1,158.33 1,812.94 

1.00 1.77 1.73 1.47 

511.povray_r 

 

426.71 451.59 659.93 845.55 

1.00 3.78 3.88 4.04 

519.lbm_r 185.24 399.95 607.34 835.03 

1.00 1.85 1.83 1.77 

521.wrf_r 

 

249.97 395.15 633.82 883.37 

1.00 2.53 2.37 2.26 

526.blender_r 

 

279.82 327.08 447.47 585.05 

1.00 3.42 3.75 3.83 

527.cam4_r 

 

257.22 333.11 494.29 680.14 

1.00 3.09 3.12 3.03 

538.imagick_r 

 

286.30 323.81 477.99 631.08 

1.00 3.54 3.59 3.63 

544.nab_r 

 

258.25 290.05 410.12 511.21 

1.00 3.56 3.78 4.04 

549.fotonik3d_r 

 

444.20 1,057.06 1,595.20 2,143.63 

1.00 1.68 1.67 1.66 

554.roms_r 

 

248.80 580.50 933.86 1,447.78 

1.00 1.71 1.60 1.37 

 

 

Figure 6.15 Speedup of fp_rate Benchmarks in Core i7-4770 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Benchmarks

Speedup of fp_rate benchmarks in Core i7-4770

1 4 6 8 Copies



 

117 

Table 6.15 Runtime and Speedup of fp_rate in Core i7-8700K 

clingmansdome Runtime (sec) & Speedup 

Core i7-8700k fp_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 12 Copies 

503.bwaves_r 

 

178.28 615.51 948.56 1,294.44 2,033.67 

1.00 1.16 1.13 1.10 1.05 

507.cactuBSSN_r 

 

142.16 189.49 225.03 286.99 400.54 

1.00 3.00 3.79 3.96 4.26 

508.namd_r 

 

157.18 167.70 177.18 232.32 302.44 

1.00 3.75 5.32 5.41 6.24 

510.parest_r 

 

241.72 449.48 770.61 1,055.61 1,920.28 

1.00 2.15 1.88 1.83 1.51 

511.povray_r 

 

243.10 261.25 271.11 354.75 473.08 

1.00 3.72 5.38 5.48 6.17 

519.lbm_r 76.08 284.51 444.09 603.56 932.68 

1.00 1.07 1.03 1.01 0.98 

521.wrf_r 

 

160.08 270.96 420.18 597.30 995.36 

1.00 2.36 2.29 2.14 1.93 

526.blender_r 

 

195.35 222.58 239.44 300.83 393.27 

1.00 3.51 4.90 5.19 5.96 

527.cam4_r 

 

153.28 192.75 247.51 352.10 621.46 

1.00 3.18 3.72 3.48 2.96 

538.imagick_r 

 

207.55 222.31 227.12 301.80 408.22 

1.00 3.73 5.48 5.50 6.10 

544.nab_r 

 

181.48 192.90 198.20 249.67 311.08 

1.00 3.76 5.49 5.82 7.00 

549.fotonik3d_r 

 

284.89 834.30 1,262.28 1,755.39 2,852.76 

1.00 1.37 1.35 1.30 1.20 

554.roms_r 

 

148.47 414.92 702.58 1,034.42 1,874.99 

1.00 1.43 1.27 1.15 0.95 

 

 

Figure 6.16 Speedup of fp_rate Benchmarks in Core i7-8700K 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Benchmarks

Speedup of fp_rate benchmarks in Core i7-8700K

1 4 6 8 12 Copies



 

118 

Table 6.16 Runtime and Speedup of fp_rate in Xeon E3-1240 V2 

vidrak Runtime (sec) & Speedup 

Xeon E3-1240 V2 fp_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 

503.bwaves_r 285.59 818.03 1,254.09 1,701.32 

1.00 1.40 1.37 1.34 

507.cactuBSSN_r 272.36 345.51 534.03 657.41 

1.00 3.15 3.06 3.31 

508.namd_r 290.80 313.98 444.93 540.10 

1.00 3.70 3.92 4.31 

510.parest_r 

 

362.63 773.01 1,257.86 1,855.45 

1.00 1.88 1.73 1.56 

511.povray_r 

 

397.98 427.60 618.67 748.35 

1.00 3.72 3.86 4.25 

519.lbm_r 187.89 397.85 610.47 815.73 

1.00 1.89 1.85 1.84 

521.wrf_r 

 

295.22 403.93 637.17 879.49 

1.00 2.92 2.78 2.69 

526.blender_r 

 

284.77 327.44 455.42 522.98 

1.00 3.48 3.75 4.36 

527.cam4_r 

 
291.76 361.61 516.37 667.56 

1.00 3.23 3.39 3.50 

538.imagick_r 

 

445.54 475.41 740.15 938.71 

1.00 3.75 3.61 3.80 

544.nab_r 

 

323.29 343.46 487.43 553.26 

1.00 3.77 3.98 4.67 

549.fotonik3d_r 

 

476.99 1,081.50 1,632.74 2,175.05 

1.00 1.76 1.75 1.75 

554.roms_r 

 

281.40 597.33 1,005.40 1,512.13 

1.00 1.88 1.68 1.49 

 

 

Figure 6.17 Speedup of fp_rate Benchmarks in Xeon E3-1240 V2 

0.00

1.00

2.00

3.00

4.00

5.00

Benchmarks

Speedup of fp_rate benchmarks in Xeon E3-1240 V2

1 4 6 8 Copies



 

119 

Table 6.17 Runtime and speedup of fp_rate in Xeon E5-2643 V3 

mtleconte Runtime (sec) & Speedup 

Xeon E5-2643 V3 fp_rate 

Benchmarks 1 

Copy 

4 

Copies 

6 

Copies 

8 

Copies 

12 

Copies 

16 

Copies 

24 

Copies 

503.bwaves_r 

 

310.25 566.36 834.27 1,141.48 1,708.72 2,282.14 3,403.14 

1.00 2.19 2.23 2.17 2.18 2.18 2.19 

507.cactuBSSN_r 

 

275.16 301.63 333.71 370.02 431.03 580.16 746.15 

1.00 3.65 4.95 5.95 7.66 7.59 8.85 

508.namd_r 

 

228.86 236.12 240.05 245.78 244.55 322.62 424.55 

1.00 3.88 5.72 7.45 11.23 11.35 12.94 

510.parest_r 

 

332.61 341.51 370.35 449.50 954.85 1,547.69 3,249.53 

1.00 3.90 5.39 5.92 4.18 3.44 2.46 

511.povray_r 

 

340.04 345.71 351.25 352.61 361.10 487.94 666.46 

1.00 3.93 5.81 7.71 11.30 11.15 12.25 

519.lbm_r 199.49 301.23 399.93 515.55 788.64 1,051.96 1,573.26 

1.00 2.65 2.99 3.10 3.04 3.03 3.04 

521.wrf_r 

 

246.30 292.84 347.66 421.51 690.33 982.91 1,638.33 

1.00 3.36 4.25 4.67 4.28 4.01 3.61 

526.blender_r 

 

274.16 284.25 295.51 301.75 320.82 403.68 523.74 

1.00 3.86 5.57 7.27 10.25 10.87 12.56 

527.cam4_r 

 

262.99 273.23 282.64 298.59 342.80 504.66 858.89 

1.00 3.85 5.58 7.05 9.21 8.34 7.35 

538.imagick_r 

 

291.05 293.97 303.06 304.32 306.16 417.37 548.26 

1.00 3.96 5.76 7.65 11.41 11.16 12.74 

544.nab_r 

 

273.03 276.96 283.32 291.07 290.76 384.50 473.32 

1.00 3.94 5.78 7.50 11.27 11.36 13.84 

549.fotonik3d_r 

 

527.19 777.76 1,075.80 1,399.02 2,072.87 2,752.13 4,146.49 

1.00 2.71 2.94 3.01 3.05 3.06 3.05 

554.roms_r 

 

252.19 320.71 454.31 616.20 985.20 1,374.74 2,387.06 

1.00 3.15 3.33 3.27 3.07 2.94 2.54 

 

 

Figure 6.18 Speedup of fp_rate Benchmarks in Xeon E5-2643 V3 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Benchmarks

Speedup of fp_rate benchmarks in Xeon E5-2643 V3

1 4 6 8 12 16 24 Copies



 

120 

Table 6.18 shows the SPECrate2017_fp_base number across all the test systems 

for a different number of copies. The Core processors outperform the Xeon processors 

on single copy benchmarks partly due to the fact that the Core processors operate at 

a higher frequency. The best overall performance is observed when the number of 

copies matches the number of the physical core for each machine. Figure 6.5 is the 

visual representation of the SPECspeed2017_fp_base numbers for different thread 

counts on all the test systems. 

 

Table 6.18 SPECrate2017_fp_base on all Test Systems 

fp_rate 

 mtsano clingmansdome vidrak mtleconte 

Thread_Count Core i7-4770  Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3 

1 7.52 11.82 6.55 7.22 

4 18.81 28.20 17.42 24.61 

6 18.92 32.49 17.30 32.00 

8 18.53 32.14 17.82 37.27 

12  32.02  43.33 

16    42.11 

24    42.58 

 

 

Figure 6.19 SPECrate2017_fp_base Results on all Test Systems 

0

10

20

30

40

50

1 4 6 8 12 16 24

Thread_Count

SPECrate2017_fp_base

Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3



 

121 

A performance comparison across the test machines is made in Table 6.19. The 

speedups here are defined in Eq.6.3 and Eq.6.4. While comparing the two core i7’s 

(mtsano and clingmansdome), the speedup of clingmansdome over mtsano is substan-

tial, ~50-70% gains in performance are observed. However, the scaled speedup shows 

that a major portion of this gains come for a higher clock frequency where architec-

tural and memory advancements contributed to a speedup of ~20%. For the compari-

son of Xeons, mtleconte outperforms vidrak and shows a speedup of ~14% for single-

copy application and a ~214% for eight-copy application because mtleconte has two 

physical hexa-cores whereas vidrak has a quad-core. Cross-comparison of machines 

in the case of vidrak and mtleconte, the newer architecture in mtsano contributed to 

~20% gains. In the case of the two hexa-core machines, clingmansdome and mtleconte, 

the newer i7 fails to keep up when the number of copies increases because the mtle-

conte has two physical cores each of which has larger caches. Figure 6.20 and Figure 

6.21 show excerpts from auto-generated reports from SPEC CPU2017 runs of the 

fp_rate benchmarks on clingmansdome for one and six threads, respectively. 

 

Table 6.19 Relative Speedups for fp_rate on Different Test Machines. 

fp_rate 

 

clingmansdome to 

mtsano 

mtsano to vidrak 

 

mtleconte to vidrak 

 

clingmansdome to 

mtleconte 

Copies Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

1 1.57 1.24 1.15 1.18 1.10 1.14 1.64 1.27 

4 1.50 1.13 1.08 1.17 1.41 1.42 1.15 0.93 

6 1.72 1.31 1.09 1.20 1.85 1.90 1.02 0.83 

8 1.73 1.29 1.04 1.16 2.09 2.14 0.86 0.70 

12       0.74 0.61 

 



 

122 

 

Figure 6.20 SPEC CPU2017 Report Excerpt for Single-Copy fp_rate 

 

 
Figure 6.21 SPEC CPU2017 Report Excerpt Six-Copy fp_rate 



 

123 

6.1.4 SPEC CPU2017 int_rate 

Table 6.20 and Figure 6.22 show execution time and speedup for int_rate on 

mtsano (Core i7-4770) for 1, 4, 6, and 8 copies. The performance of 8-copy benchmarks 

is found to be the best, with speedups ranging from 3.23 (502.gcc_r) to 4.35 

(541.leela_r). Table 6.21 and Figure 6.23 show the execution time and speedup of 

int_rate on clingmansdome (Core i7-8700k). The performance of 12-copy benchmarks 

is found to be the best, with speedups ranging from 3.59 (520.omnetpp_r) to 7.35 

(541.leela_r). Table 6.22 and Figure 6.24 shows execution time and speedup for 

int_rate on vidrak (Xeon E3-1240). The average speedup is found to be 3.26 for 4 cop-

ies, 4.31 for 6 copies and 6.59 for 8 copies. The performance of 8-copy benchmarks is 

found to be the best, with speedup ranging from 4.28 (505.mcf_r) to 7.44 (541.leela_r). 

 Table 6.23 and Figure 6.25 show the execution time and speedup of int_rate on 

mtleconte (Xeon E5-2643 V3). The performance of 8-copy benchmarks is found to be 

the best, with speedups ranging from 7.55 (505.mcf_r) to 14.92 (541.leela_r). 

The overview of the int_rate benchmarks is given here in terms of scalability. 

The behavior of the rate benchmarks is similar across all test machines. All bench-

marks show speedup till the number of copies matches the number of logical cores 

suggesting that the int_rate benchmarks are light and are not memory intensive. 

Though some benchmarks (505.gcc_r, 505.mcf_r, and 523.xalancbmk_r) have deterio-

ration in performance when the system is fully loaded, i.e., the number of copies is the 

same as the number of logical cores. 

 

 



 

124 

Table 6.20 Runtime and Speedup of int_rate in Core i7-4770 

mtsano Runtime (sec) & Speedup 

Core i7-4770 int_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 

500.perlbench_r 

 

334.28 428.50 631.28 789.01 

1.00 3.12 3.18 3.39 

502.gcc_r 

 

265.48 353.85 497.48 658.35 

1.00 3.00 3.20 3.23 

505.mcf_r 

 

210.16 284.07 398.15 502.69 

1.00 2.96 3.17 3.34 

520.omnetpp_r 

 

414.22 573.63 784.98 937.51 

1.00 2.89 3.17 3.53 

523.xalancbmk_r 

 

281.88 365.13 516.96 682.44 

1.00 3.09 3.27 3.30 

525.x264_r 

 

146.38 174.21 250.72 319.49 

1.00 3.36 3.50 3.67 

531.deepsjeng_r 

 

230.51 291.94 405.93 475.65 

1.00 3.16 3.41 3.88 

541.leela_r 

 

395.15 469.81 620.50 726.20 

1.00 3.36 3.82 4.35 

548.exchange2_r 

 

246.46 295.67 428.94 542.57 

1.00 3.33 3.45 3.63 

557.xz_r 

 

326.21 433.49 575.24 657.86 

1.00 3.01 3.40 3.97 

 

 

Figure 6.22 Speedup of int_rate Benchmarks in Core i7-4770 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Benchmarks

Speedup of int_rate benchmarks in Core i7-4770

1 4 6 8 Copies



 

125 

Table 6.21 Runtime and Speedup of int_rate in Core i7-8700K 

clingmansdome Runtime (sec) & Speedup 

Core i7-8700K int_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 12 Copies 

500.perlbench_r 

 

240.12 282.53 298.88 386.44 519.20 

1.00 3.40 4.82 4.97 5.55 

502.gcc_r 

 

179.75 233.40 290.42 362.55 572.71 

1.00 3.08 3.71 3.97 3.77 

505.mcf_r 

 

174.02 216.28 257.92 333.43 507.23 

1.00 3.22 4.05 4.18 4.12 

520.omnetpp_r 

 

333.66 474.15 596.07 770.67 1,114.49 

1.00 2.81 3.36 3.46 3.59 

523.xalancbmk_r 

 

207.29 271.09 316.22 394.43 570.77 

1.00 3.06 3.93 4.20 4.36 

525.x264_r 

 

110.25 118.64 122.79 158.48 205.54 

1.00 3.72 5.39 5.57 6.44 

531.deepsjeng_r 

 

186.20 203.20 212.90 276.44 336.71 

1.00 3.67 5.25 5.39 6.64 

541.leela_r 

 

333.02 355.64 366.80 446.36 543.96 

1.00 3.75 5.45 5.97 7.35 

548.exchange2_r 

 

195.88 209.96 216.26 285.32 387.30 

1.00 3.73 5.43 5.49 6.07 

557.xz_r 

 

257.74 320.13 361.68 454.92 562.34 

1.00 3.22 4.28 4.53 5.50 

 

 

Figure 6.23 Speedup of int_rate Benchmarks in Core i7-8700K 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Benchmarks

Speedup of int_rate benchmarks in Core i7-8700K

1 4 6 8 12 Copies



 

126 

Table 6.22 Runtime and Speedup of int_rate in Xeon E3-1240 V2 

vidrak Runtime (sec) & Speedup 

Xeon E3-1240 V2 int_rate 

Benchmarks 1 Copy 4 Copies 6 Copies 8 Copies 

500.perlbench_r 

 

444.23 507.01 734.96 863.22 

1.00 3.50 3.63 6.18 

502.gcc_r 

 

293.18 391.82 553.97 770.50 

1.00 2.99 3.18 4.57 

505.mcf_r 

 

252.08 369.22 535.49 706.08 

1.00 2.73 2.82 4.28 

520.omnetpp_r 

 

437.39 638.53 836.25 1,007.09 

1.00 2.74 3.14 5.21 

523.xalancbmk_r 

 

322.49 406.12 569.41 732.25 

1.00 3.18 3.40 5.29 

525.x264_r 

 

227.79 245.56 366.01 447.14 

1.00 3.71 3.73 6.11 

531.deepsjeng_r 

 

262.04 295.66 414.88 453.02 

1.00 3.55 3.79 6.94 

541.leela_r 

 

414.76 441.85 607.84 669.22 

1.00 3.75 4.09 7.44 

548.exchange2_r 

 

365.64 387.05 582.57 713.43 

1.00 3.78 3.77 6.15 

557.xz_r 

 

334.42 429.16 517.87 581.64 

1.00 3.12 3.87 6.90 

 

 

Figure 6.24 Speedup of int_rate Benchmarks in Xeon E3-1240 V2 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Benchmarks

Speedup of int_rate benchmarks in Xeon E3-1240 V2

1 4 6 8 Copies



 

127 

Table 6.23 Runtime and Speedup of int_rate in Xeon E5-2643 V3 

mtleconte Runtime (sec) & Speedup 

Xeon E5-2643 V3 int_rate 

Benchmarks 1 

Copy 

4 

Copies 

6 

Copies 

8 

Copies 

12 

Copies 

16 

Copies 

24 

Copies 

500.perlbench_r 

 

328.97 367.84 386.80 395.13 410.64 543.10 743.01 

1.00 3.58 5.10 6.66 9.61 9.69 10.63 

502.gcc_r 

 

267.30 295.04 315.76 339.64 400.25 519.94 811.07 

1.00 3.62 5.08 6.30 8.01 8.23 7.91 

505.mcf_r 

 

239.90 256.43 283.28 316.53 401.21 530.54 762.63 

1.00 3.74 5.08 6.06 7.18 7.24 7.55 

520.omnetpp_r 

 

435.74 511.02 542.09 578.41 676.04 907.40 1,245.20 

1.00 3.41 4.82 6.03 7.73 7.68 8.40 

523.xalancbmk_r 

 

315.59 336.51 365.24 389.87 450.76 592.92 910.37 

1.00 3.75 5.18 6.48 8.40 8.52 8.32 

525.x264_r 

 

160.18 166.14 168.46 172.35 173.33 225.22 295.33 

1.00 3.86 5.70 7.43 11.09 11.38 13.02 

531.deepsjeng_r 

 

240.86 245.02 262.50 266.03 274.44 380.10 445.32 

1.00 3.93 5.51 7.24 10.53 10.14 12.98 

541.leela_r 

 

416.59 422.10 433.34 431.74 441.48 544.79 670.33 

1.00 3.95 5.77 7.72 11.32 12.23 14.92 

548.exchange2_r 

 

259.32 266.25 270.77 273.46 280.39 413.07 501.53 

1.00 3.90 5.75 7.59 11.10 10.04 12.41 

557.xz_r 

 

319.02 346.69 403.33 410.68 437.40 557.22 670.22 

1.00 3.68 4.75 6.21 8.75 9.16 11.42 

 

 

Figure 6.25 Speedup of int_rate Benchmarks in Xeon E5-2643 V3 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Benchmarks

Speedup of int_rate benchmarks in Xeon E5-2643 V3

1 4 6 8 12 16 24 Copies



 

128 

Table 6.24 shows the SPECrate2017_int_base number across all the test systems. 

The Core processors outperform the Xeon processors on single copy benchmarks here 

also partly because of the higher operating clock frequencies. As the benchmarks scale 

well, the best performance is observed when the number of copies matches the number 

of physical cores. Figure 6.26 gives a visual representation of the SPE-

Crate2017_int_base numbers for a different number of copies on all the test systems.  

 

Table 6.24 SPECrate2017_int_base on all Test Systems 

int_rate 

 mtsano clingmansdome vidrak mtleconte 

Thread_Count Core i7-4770  Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3 

1 5.38 6.95 4.49 5.11 

4 16.80 23.29 14.76 19.12 

6 18.02 31.31 15.83 26.92 

8 19.44 32.73 17.44 34.50 

12  36.07  47.36 

16    47.64 

24    53.57 

 

 

Figure 6.26 SPECrate2017_int_base Results on all Test Systems 

0

10

20

30

40

50

60

1 4 6 8 12 16 24

Thread_Count

SPECrate2017_int_base

Core i7-4770 Core i7-8700K Xeon E3-1240 V2 Xeon E5-2643 V3



 

129 

A performance comparison across machines is made in Table 6.25. The 

speedups here are defined in Eq.6.3 and Eq.6.4. While comparing the two core i7’s 

(mtsano and clingmansdome), the scaled speedup of clingmansdome over mtsano is 

minimal at ~3%. However, the speedup increases to ~25%, with an increase in the 

number of copies because of the higher core count in clingmansdome. Single core per-

formance improvement of 18% is seen for mtleconte over vidrak and the speedup in-

creases substantially as mtleconte has a second processor. Cross-comparison of ma-

chines in the case of vidrak and mtleconte, the newer architecture in mtsano contrib-

uted to ~25% gains. In the case of the two hexa-core machines, clingmansdome and 

mtleconte, the newer i7 fails to keep up when copy count increases. For throughput a 

multi-processor system would fare better especially when the scaled speedup for sin-

gle copy application was relatively the same.  Figure 6.27 and Figure 6.28 show ex-

cerpts from auto-generated reports from SPEC CPU2017 runs of the int_rate 

benchmarks on clingmansdome for one and six copies, respectively. 

 

Table 6.25 Relative Speedups for int_rate on Different Test Machines 

int_rate 

 

clingmansdome to 

mtsano 

mtsano to vidrak 

 

mtleconte to vidrak 

 

clingmansdome to 

mtleconte 

Copies Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

Speedup Scaled 

Speedup 

1 1.29 1.02 1.20 1.23 1.14 1.18 1.36 1.06 

4 1.39 1.04 1.14 1.24 1.30 1.31 1.22 0.99 

6 1.74 1.32 1.14 1.25 1.70 1.74 1.16 0.95 

8 1.68 1.25 1.11 1.25 1.98 2.03 0.95 0.77 

12       0.76 0.63 

 



 

130 

 

Figure 6.27 SPEC CPU2017 Report Excerpt for Single-Copy int_rate 

 

 

Figure 6.28 SPEC CPU2017 Report Excerpt for Six-Copy int_rate 



 

131 

6.2 Impact of Hardware Prefetching 

This section discusses the performance impact of hardware prefetching on 

modern processors using the SPEC CPU2017 benchmarks. The SPEC benchmarks 

are executed on the Core i7-8700K used in clingmansdome, first with hardware 

prefetching disabled and then with hardware prefetching enabled. The experiments 

are repeated while varying the number of threads. The speedup, calculated as the 

ratio of the execution times when a given benchmark is run without and with hard-

ware prefetching, is used to quantify the performance impact.  

Figure 6.29 shows the speedup for single-threaded speed benchmarks. The 

speedups for individual benchmarks range from 1.08 (638.imagick_s) to 2.26 

(603.bwaves_s) for fp_speed and from 0.96 (623.xalancbmk_s) to 3.34 (602.gcc_s) for 

int_speed. These results suggest that hardware prefetching has a significant impact 

on performance for both the fp_speed and int_speed benchmarks, though fp_speed 

benchmarks benefit a bit more on average. In some applications, hardware prefetch-

ing improves performance by over 3 times (602.gcc_s). Interestingly, hardware 

prefetching degrades the performance of 623.xalancbmk_s – a benchmark that con-

verts text documents using tree-based data structures.   

Figure 6.30 shows the speedup when the number of threads N=6. The ad-

vantages of enabling prefetching are less prevalent when the thread count increases. 

The speedups range from 0.93 (654.roms_s) to 1.30 (644.nab_s) for fp_speed and from 

0.96 (632.xalanbmk_s) to 3.36 (602.gcc_s) for int_speed.   



 

132 

 

Figure 6.29 Impact of Hardware Prefetching on 1-Thread Speed Benchmarks 

 

 

Figure 6.30 Impact of Hardware Prefetching on 6-Thread Speed Benchmarks 

 

 -

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 6
0

3
.b

w
av

es
_s

 6
0

7
.c

ac
tu

B
SS

N
_s

 6
1

9.
lb

m
_s

 6
2

1.
w

rf
_s

 6
2

7.
ca

m
4_

s

 6
2

8
.p

o
p

2
_s

 6
3

8.
im

ag
ic

k_
s

 6
4

4
.n

ab
_s

 6
4

9
.f

o
to

n
ik

3
d

_s

 6
5

4.
ro

m
s_

s

 6
0

0.
p

er
lb

en
ch

_s

 6
0

2.
gc

c_
s

 6
0

5.
m

cf
_s

 6
2

0.
o

m
n

et
p

p
_s

 6
2

3
.x

al
an

cb
m

k_
s

 6
2

5.
x2

64
_s

 6
3

1.
d

ee
p

sj
en

g_
s

 6
4

1.
le

el
a_

s

 6
4

8.
ex

ch
an

ge
2

_s

 6
5

7.
xz

_s

 fp_speed  int_speed

Benchmarks

Performance Impact of Hardware Prefetching for Speed Benchmarks; 1 Thread

 -

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 6
03

.b
w

av
es

_s

 6
0

7
.c

ac
tu

B
SS

N
_s

 6
19

.lb
m

_s

 6
2

1
.w

rf
_s

 6
2

7
.c

am
4

_s

 6
28

.p
op

2_
s

 6
38

.im
ag

ic
k_

s

 6
4

4
.n

ab
_s

 6
4

9
.f

o
to

n
ik

3
d

_s

 6
54

.r
o

m
s_

s

 6
0

0
.p

er
lb

en
ch

_s

 6
02

.g
cc

_s

 6
05

.m
cf

_s

 6
20

.o
m

ne
tp

p
_s

 6
2

3
.x

al
an

cb
m

k_
s

 6
2

5
.x

2
6

4
_s

 6
3

1
.d

ee
p

sj
en

g_
s

 6
4

1
.le

e
la

_s

 6
4

8
.e

xc
h

an
ge

2
_s

 6
57

.x
z_

s

 fp_speed  int_speed

Benchmarks

Performance Impact of Hardware Prefetching for Speed Benchmarks; 6-Threads



 

133 

Figure 6.31 shows the speedup for the single-copy SPEC rate benchmarks. The 

speedups of individual benchmarks range from 0.98 (511.povray_r) to 2.37 

(503.bwaves_r) for fp_rate and from 0.97 (523.xalancbmk_r) to 1.60 (502.gcc_r) for 

int_rate. The individual speedups are smaller than the equivalent ones observed in 

speed benchmarks because the rate benchmarks use smaller size data inputs.  

Figure 6.32 shows the speedups for the SPEC rate benchmarks executed with 

six copies. The advantages of enabling prefetching do not seem to affect multiple copy 

runs. Some benchmarks suffered performance degradations from enabling prefetching 

(554.roms_r). The speedups range from 0.78 (554.roms_r) to 1.29 (544.nab_r) for 

fp_rate and from 0.91 (520.omnetpp_r) to 1.41 (502.gcc_r) for int_rate.   

 

 

Figure 6.31 Impact of Hardware Prefetching on 1-Copy Rate Benchmarks 

 

 0.30

 0.80

 1.30

 1.80

 2.30

 2.80

 5
03

.b
w

av
es

_r

 5
07

.c
ac

tu
B

SS
N

_r

 5
08

.n
am

d
_r

 5
10

.p
ar

es
t_

r

 5
1

1
.p

o
vr

ay
_r

 5
1

9
.lb

m
_r

 5
2

1
.w

rf
_r

 5
2

6
.b

le
n

d
er

_r

 5
27

.c
am

4_
r

 5
3

8
.im

ag
ic

k_
r

 5
44

.n
ab

_r

 5
49

.f
o

to
ni

k3
d_

r

 5
54

.r
o

m
s_

r

 5
00

.p
er

lb
en

ch
_r

 5
02

.g
cc

_r

 5
0

5
.m

cf
_r

 5
2

0
.o

m
n

et
p

p
_r

 5
23

.x
al

an
cb

m
k_

r

 5
25

.x
2

64
_r

 5
31

.d
ee

p
sj

en
g_

r

 5
41

.le
e

la
_r

 5
48

.e
xc

h
an

ge
2

_r

 5
57

.x
z_

r

 fp_rate  int_rate

Benchmarks

Performance Impact of Hardware Prefetching for Rate Benchmarks; 1-Copy



 

134 

 

Figure 6.32 Impact of Hardware Prefetching on 6-Copy Rate Benchmarks 

 

Table 6.26 shows the SPEC_ratio_base metric obtained for SPEC runs when 

prefetching is enabled and disabled, respectively. Figure 6.33 gives a graphical 

presentation of the results. Overall, hardware prefetching improves performance for 

most of the benchmarks. Single-threaded benchmarks seem to have the most benefit 

as thread communication and cache evictions is not a factor. When the system is at 

full load, prefetching could actually hurt performance by removing useful data from 

caches. For multiple copies, prefetching could evict data from the shared cache that 

could be used by other applications hurting the overall performance even if for the 

same application prefetching improved performance for single copy execution.  

 

 0.30

 0.50

 0.70

 0.90

 1.10

 1.30

 1.50

 5
03

.b
w

av
es

_r

 5
07

.c
ac

tu
B

SS
N

_r

 5
08

.n
am

d
_r

 5
10

.p
ar

es
t_

r

 5
11

.p
ov

ra
y_

r

 5
19

.lb
m

_r

 5
2

1
.w

rf
_r

 5
2

6
.b

le
n

d
er

_r

 5
27

.c
am

4_
r

 5
3

8
.im

ag
ic

k_
r

 5
4

4
.n

ab
_r

 5
49

.f
o

to
ni

k3
d_

r

 5
54

.r
o

m
s_

r

 5
00

.p
er

lb
en

ch
_r

 5
02

.g
cc

_r

 5
0

5
.m

cf
_r

 5
2

0
.o

m
n

et
p

p
_r

 5
23

.x
al

an
cb

m
k_

r

 5
25

.x
2

64
_r

 5
31

.d
ee

p
sj

en
g_

r

 5
41

.le
e

la
_r

 5
48

.e
xc

h
an

ge
2

_r

 5
57

.x
z_

r

 fp_rate  int_rate

Benchmarks

Performance Impact of Hardware Prefetching for Rate Benchamrks; 6-Copies



 

135 

Table 6.26 SPEC2017_ratio_base for Prefetching Evaluation 
 

1 Thread/Copy 6 Threads/Copies 

Suite Without Prefetching With Prefetching Without Prefetching With Prefetching 

fp_speed 7.31 10.81 22.69 24.4 

int_speed 6.58 8.07 7.40 9.01 

fp_rate 8.82 11.82 31.10 32.49 

int_rate 6.22 6.95 29.49 31.31 

 

 

Figure 6.33 SPEC2017_ratio_base Numbers for Prefetching Evaluation 

 

 

 

 

 

 

  

0

5

10

15

20

25

30

35

fp_speed int_speed fp_rate int_rate

SPEC2017_ratio_base

1 With_Prefetching 1 Without_Prefetching 6 With_Prefetching 6 Without_Prefetching



 

136 

CHAPTER 7  

 

CONCLUSIONS 

 

Standardized benchmark suites, designed to provide a fair and structured per-

formance evaluation of modern computer systems, have been widely used in both ac-

ademia and industry. SPEC CPU2017 is the most recent incarnation of benchmarks 

that focus on the evaluation of processor performance. It includes a number of bench-

marks designed to evaluate processor speed and throughput for both integer and float-

ing-point benchmarks. These benchmarks are significantly more complex than those 

used in previous instances of SPEC CPU benchmarks. In addition, for the first time, 

SPEC CPU suites include a number of benchmarks that are parallelizable and thus 

can harness the performance of modern multi-core processors.    

This thesis focuses on performance studies on modern processors using SPEC 

CPU2017. It describes a number of measurement-based studies that analyze charac-

teristics of these benchmarks when executed on a series of modern Intel Core i7 and 

Xeon processors. These measurements are performed using SPEC CPU2017 run util-

ities and Linux utilities to interface processors’ performance monitoring units, such 

as perf and likwid. The Intel’s Top-down Microarchitecture Analysis Method is per-

formed using Intel VTune Amplifier. The results obtained from these studies can be 

broadly grouped into following categories:  

(a) Characterizing benchmarks by providing a top-view that includes SPEC 

metrics, execution time, the power consumed, and the average clock fre-

quency.  



 

137 

(b) Analyzing scalability of parallelizable speed benchmarks as a function of 

the number of threads. 

(c) Analyzing scalability of rate benchmarks as a function of the number of 

cores. 

(d) Comparing the performance of machines featuring different processors. 

(e) Performing Intel’s Top-down Microarchitecture Analysis Method.  

(f) Analyzing performance impact of hardware prefetching. 

With numerous parameters affecting performance, the Intel Top-down Micro-

architectural Analysis Method shows that the fp_speed benchmarks are bound by 

memory hierarchy, whereas the int_speed benchmarks are bound by bad speculation 

and front-end stalls. In the case of the fp_rate benchmarks, stresses on the memory 

hierarchy with an increase in the number of copies are even more emphasized.  

A new metric called PerfEE Speedup is introduced that helps in finding the 

best combination of benchmarks to run to achieve optimal performance and energy 

consumption. Using this metric as a criterion, it is found that the fp_speed bench-

marks with thread count equaling the number of physical cores achieve an optimum 

performance and energy.  

Comparative analysis of performance shows that architectural improvements 

in newer Intel processors Core i7 processors (8th generation vs. 4th generation) can be 

attributed to ~20% of performance gains when the clock frequency is normalized. Xeon 

processors achieve significantly better throughput for the rate benchmarks. 

Future research can branch into several directions. Whereas this research has 

been conducted on different machines, they all used the same operating system and 

Intel’s compiler. One interesting question is to evaluate the effectiveness of different 



 

138 

compilers and within the same compiler different optimization levels and their impact 

on performance. Another direction is to expand the use of Intel’s Top-view Microar-

chitecture Analysis Method on different processor models. Next, SPEC CPU2017 

throughput analysis combines multiple copies of the same benchmark. It would be 

interesting to explore the impact on performance when combining different bench-

marks, perhaps integer and floating-point benchmarks together.  

  



 

139 

REFERENCES 

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 5 edition. San Francisco, CA: Morgan Kaufmann, 2011. 

[2] “SPEC - Standard Performance Evaluation Corporation.” [Online]. Available: 

https://www.spec.org/. [Accessed: 19-Mar-2018]. 

[3] “SPEC CPU® 2006.” [Online]. Available: https://www.spec.org/cpu2006/. [Ac-

cessed: 19-Mar-2018]. 

[4] “SPEC CPU® 2017.” [Online]. Available: https://www.spec.org/cpu2017/. [Ac-

cessed: 19-Mar-2018]. 

[5] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade: Did SPEC CPU 

2017 Broaden the Performance Horizon?,” in 2018 IEEE International Sympo-

sium on High Performance Computer Architecture (HPCA), 2018, pp. 271–282. 

[6] “Intel® 64 and IA-32 Architecture’s Optimization Reference Manual,” p. 672, 

Jun. 2016. 

[7] “Intel Tick-Tock Model,” Intel. [Online]. Available: https://www.intel.com/con-

tent/www/us/en/silicon-innovations/intel-tick-tock-model-general.html. [Ac-

cessed: 12-Apr-2018]. 

[8] S. Damaraju et al., “A 22nm IA multi-CPU and GPU System-on-Chip,” in 2012 

IEEE International Solid-State Circuits Conference, 2012, pp. 56–57. 

[9] B. Heaney, “DAC 2012 Keynote: Designing a 22nm Intel® Architecture Multi-

CPU and GPU,” p. 26, 2012. 

[10] M. Milenkovic, A. Milenkovic, and J. Kulick, “Microbenchmarks for determin-

ing branch predictor organization,” Software: Practice and Experience, vol. 34, 

no. 5, pp. 465–487, Apr. 2004. 

[11] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks for re-

verse engineering of branch predictor structures,” Software Practice & Experi-

ence, vol. 34, no. 4, pp. 465–487, Apr. 2004. 

[12] “White Paper- Introduction to Intel Architecture (Haswell).” Intel. 

[13] “Intel® Turbo Boost Technology 2.0,” Intel. [Online]. Available: https://www.in-

tel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-

boost-technology.html. [Accessed: 02-Jun-2018]. 

[14] S. T. Gurumani and A. Milenkovic, “Execution Characteristics of SPEC 

CPU2000 Benchmarks: Intel C++ vs. Microsoft VC++,” in 42nd ACM Southeast 

Conference, 2004, p. 6. 



 

140 

[15] “Intel® CoreTM i7-4770 Processor (8M Cache, up to 3.90 GHz) Product Specifica-

tions,” Intel® ARK (Product Specs). [Online]. Available: https://ark.in-

tel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-

GHz. [Accessed: 19-Mar-2018]. 

[16] “Intel® CoreTM i7-8700K Processor (12M Cache, up to 4.70 GHz) Product Speci-

fications,” Intel® ARK (Product Specs). [Online]. Available: https://ark.in-

tel.com/products/126684/Intel-Core-i7-8700K-Processor-12M-Cache-up-to-4_70-

GHz. [Accessed: 24-Mar-2018]. 

[17] “Intel® Xeon® Processor E3-1240 v2 (8M Cache, 3.40 GHz) Product Specifica-

tions,” Intel® ARK (Product Specs). [Online]. Available: https://ark.in-

tel.com/products/65730/Intel-Xeon-Processor-E3-1240-v2-8M-Cache-3_40-GHz. 

[Accessed: 19-Mar-2018]. 

[18] “Intel® Xeon® Processor E5-2643 v3 (20M Cache, 3.40 GHz) Product Specifica-

tions,” Intel® ARK (Product Specs). [Online]. Available: https://ark.in-

tel.com/products/81900/Intel-Xeon-Processor-E5-2643-v3-20M-Cache-3_40-GHz. 

[Accessed: 19-Mar-2018]. 

[19] “Perf : Linux profiling with performance counters,” Perf Wiki. [Online]. Availa-

ble: https://perf.wiki.kernel.org/index.php/Main_Page. [Accessed: 19-Mar-2018]. 

[20] “Intel® 64 and IA-32 Architectures Developer’s Manual: Vol. 3B,” Intel. 

[Online]. Available: https://www.intel.com/content/www/us/en/architecture-and-

technology/64-ia-32-architectures-software-developer-vol-3b-part-2-man-

ual.html. [Accessed: 19-Mar-2018]. 

[21] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight performance-ori-

ented tool suite for x86 multicore environments,” Competence in High 

Performance Computing 2010, Apr. 2010. 

[22] “Intel® VTuneTM Amplifier 2018 User’s Guide,” Intel Developer Zone. [Online]. 

Available: https://software.intel.com/en-us/vtune-amplifier-help-introduction. 

[Accessed: 28-Mar-2018]. 

[23] A. Yasin, “A Top-Down method for performance analysis and counters architec-

ture,” in 2014 IEEE International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS), 2014, pp. 35–44. 

[24] “Thread Affinity Interface.” [Online]. Available: https://software.intel.com/en-

us/node/684320. [Accessed: 19-Mar-2018]. 

[25] A. Dzhagaryan and A. Milenković, “Impact of thread and frequency scaling on 

performance and energy in modern multicores: a measurement-based study,” in 

52nd Annual ACM Southeast Conference (ACMSE’14), Kennesaw, GA, 2014, 

pp. 1–6. 



 

141 

[26] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley, “Look-

ing Back on the Language and Hardware Revolutions: Measured Power, Perfor-

mance, and Scaling ∗,” ASPLOS XVI Proceedings of the sixteenth international 

conference on Architectural support for programming languages and operating 

systems, pp. 319–332, Mar. 2011. 

 


