

PMU-EVENTS-DRIVEN DVFS TECHNIQUES

FOR IMPROVING ENERGY EFFICIENCY IN

MODERN PROCESSORS

by

RANJAN HEBBAR

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Engineering

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2021

ii

In presenting this dissertation in partial fulfillment of the requirements for a doctoral

degree from The University of Alabama in Huntsville, I agree that the Library of this

University shall make it freely available for inspection. I further agree that

permission for extensive copying for scholarly purposes may be granted by my advisor

or, in his/her absence, by the Chair of the Department or the Dean of the School of

Graduate Studies. It is also understood that due recognition shall be given to me and

to The University of Alabama in Huntsville in any scholarly use which may be made

of any material in this dissertation.

(student signature) (date)

iii

DISSERTATION APPROVAL FORM

Submitted by Ranjan Hebbar in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Engineering in Computer Engineering and accepted on

behalf of the Faculty of the School of Graduate Studies by the dissertation committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama

in Huntsville, certify that we have advised and/or supervised the candidate on the

work described in this thesis. We further certify that we have reviewed the

dissertation manuscript and approve it in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Engineering in Computer Engineering.

 Committee Chair

(Dr. Aleksandar Milenkovic) (date)

(Dr. B. Earl Wells) (date)

(Dr. David Coe) (date)

 (Dr. Jeffrey H. Kulick) (date)

(Dr. Mohammad Haider) (date)

 Department Chair

(Dr. Ravi Gorur) (date)

 College Dean

(Dr. Shankar Mahalingam) (date)

 Graduate Dean

(Dr. Sean Lane) (date)

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree: Doctor of Philosophy in Engineering

College/Dept.: Engineering/Electrical & Computer Engineering

Name of Candidate: Ranjan Hebbar

Title: PMU-Events-Driven DVFS Techniques for Improving Energy

Efficiency in Modern Processors

Energy-efficient computing is one of the most important challenges computer

designers and operators are facing today, exacerbated by the ever-increasing demands

for faster, smaller, lighter, and more affordable computing. The processor is the

primary driver of the overall system power consumption of a computer system. Typical

power management techniques rely on either running the processor at a fixed clock

frequency or utilizing dynamic voltage and frequency scaling (DVFS) techniques that

adjust the processor’s clock frequency in runtime based on its current level of activity.

In this dissertation, we first describe the results of our measurement-based

study that evaluates the impact of the state-of-the-art power management techniques

on performance (P), energy efficiency (EE), and their product (PxEE) in an Intel Core

i7 processor, running SPEC CPU2017, Parsec-3.0, and SPECpower_ssj2008

benchmark suites. The results of this study indicate that the state-of-the-art DVFS

power management techniques heavily favor performance, resulting in poor energy

efficiency. For example, we find that the processor operates at the highest clock

frequency even when 90% of all processor cycles are stalls, resulting in wasted energy.

To remedy this problem, we introduce, implement, and evaluate the effectiveness of

four new DVFS-based power management techniques driven by the following metrics

v

derived from the processor’s performance monitoring unit (PMU): (i) the percentage

of all pipeline slot stalls (FS-PS), (ii) the percentage of all cycle stalls (FS-TS), (iii) the

percentage of memory-related cycle stalls (FS-MS), and (iv) the number of last level

cache misses per kilo instructions (FS-LLCM), respectively. The proposed techniques

linearly map these metrics into available processor clock frequencies.

The results of the experimental evaluation show that the proposed techniques

significantly improve EE and PxEE metrics relative to the state-of-the-art

approaches. Further, we find that the proposed techniques are especially effective for

memory-intensive benchmarks, wherein EE improves from 121% to 183% and PxEE

from 100% to 141%. We elucidate the advantages and disadvantages of each of the

proposed techniques and offer guidelines on when to use them.

Abstract Approval: Committee Chair

 Department Chair

 Graduate Dean

vi

ACKNOWLEDGMENTS

The work presented in this dissertation would be incomplete without thanking

all the people who helped me directly and indirectly. First, I would like to express my

sincere gratitude to my advisor, Dr. Aleksandar Milenkovic, for his support at every

stage of this work and for creating an inspirational work environment in the LaCASA

laboratory. He inspired me personally and professionally with his patience and his

interest towards learning.

I will be always grateful to Dr. Ravi Gorur, Chair of the Electrical and

Computer Engineering Department, for encouraging me to pursue research, and for

providing me with financial support through the teaching assistantship during the

course of my study.

I would also like to thank Dr. Coe, Dr. Haider, Dr. Kulick, and Dr. Wells for

agreeing to serve on my committee and providing valuable feedback.

I would like to express my appreciation to Dr. Mounika Ponugoti, Dr. Prawar

Poudel, Dr. Armen Dzhagaryan, Mr. Igor Semenov, and Mr. Amir Ramezani for their

constant support in the LaCASA laboratory.

Finally, I would like to express my deepest gratitude to my parents, Raviraj

Hebbar and Jyothi Hebbar, for their unconditional love and support. I would like to

thank my grandparents, Subramanya T S and Jayashree T S, for providing continuous

support and encouragement for higher studies.

vii

Dedicated to the loving memory of my grandmother, T S Jayashree,

who will forever be in our hearts.

viii

TABLE OF CONTENTS

 Page
LIST OF FIGURES.…………………………………………………………………………..ix

LIST OF TABLES.…………………………………………………………………………....xii

CHAPTER

CHAPTER 1 INTRODUCTION .. 1

1.1 Scope of This Study ... 4

1.2 Contributions .. 5

1.3 Findings .. 6

1.4 Outline .. 7

CHAPTER 2 BACKGROUND .. 8

2.1 Intel Skylake Microarchitecture: An Overview.. 9

2.1.1 Processor Core Microarchitecture ..11

2.1.2 Cache Hierarchy ...14

2.2 Processor Power Consumption Model ...16

2.3 Evolution of Power Management in Intel Processors18

2.3.1 Nehalem Microarchitecture ..18

2.3.2 Sandy Bridge Microarchitecture ..21

2.3.3 Haswell Microarchitecture ...25

2.3.4 Skylake Microarchitecture ...28

2.4 ACPI Power & Performance States ...32

2.5 CPU Power Management ..34

2.6 Functioning of a DVFS-based Governor ..36

CHAPTER 3 MOTIVATION ..39

CHAPTER 4 PMU-EVENTS-DRIVEN DVFS TECHNIQUES44

4.1 Performance Monitoring Unit Event-Based Analysis44

4.1.1 Top-down Microarchitectural Analysis Method45

ix

4.2 Proposed DVFS Techniques ..49

4.3 DVFS based on CPI (FS-CPI) ..53

4.4 Implementation of the Proposed Techniques ..55

CHAPTER 5 EXPERIMENTAL ENVIRONMENT ...58

5.1 System under Test ...58

5.2 Metrics for Evaluation ...60

5.3 Tools ...62

5.3.1 Linux perf ..62

5.3.2 Likwid ...63

5.3.3 Intel VTune Amplifier ..64

5.4 Workloads ..66

5.4.1 SPEC CPU2017 ..66

5.4.2 Parsec 3.0 ..68

5.4.3 SPECpower_ssj2008 ...69

CHAPTER 6 SPEC CPU2017 CHARACTERIZATION ANALYSIS71

6.1 Compiler Evaluation ..71

6.1.1 Executable Size ...72

6.1.2 Build Times ...73

6.1.3 Performance ..74

6.2 TMAM Results of SPEC CPU2017 Benchmarks ..75

6.3 Impact of Static Frequency Selection on P and EE80

CHAPTER 7 RESULTS ...87

7.1 SPEC CPU2017..88

7.1.1 Performance ..88

7.1.2 Energy Efficiency ..90

7.1.3 PxEE ...92

x

7.1.4 Discussion: On Effectiveness of Different Techniques93

7.1.5 Discussion: Limitations of CPI ...96

7.1.6 Summary: Putting it all Together ..97

7.2 Parsec-3.0 ...99

7.3 SPECpower2008jbb ... 101

CHAPTER 8 RELATED WORK .. 105

CHAPTER 9 FUTURE WORK .. 110

CHAPTER 10 CONCLUSIONS ... 113

GLOSSARY .. 115

REFERENCES ... 117

xi

LIST OF FIGURES

Figure Page

Figure 2.1 Intel’s Tick-Tock Model for Desktop and Server Processor [74]10

Figure 2.2 Skylake Microarchitecture CPU Core Block Diagram [67]12

Figure 2.3 Measured Cache Hierarchy Access Latency ..15

Figure 2.4 Integrated PCU on the Nehalem Processor ...19

Figure 2.5 Illustration of Turbo Mode ...21

Figure 2.6 Sandy Bridge Power Management Block Diagram [52]22

Figure 2.7 RAPL Power Domains ..24

Figure 2.8 AVX Frequency Range in a Haswell Processor ...26

Figure 2.9 Turbo Operation in Haswell/Broadwell Processors27

Figure 2.10 Illustration of Power Domains on an Intel Processor29

Figure 2.11 Processor Power States (C-states) & Performance states (P-states)33

Figure 2.12 A Hierarchy of Power Management Components34

Figure 2.13 CPU Utilization Metric Breakdown ...37

Figure 2.14 Core-wise P-state Voting Mechanism ..38

Figure 3.1 Limitations of the CPU utilization metric. ..40

Figure 3.2 Impact of Frequency Scaling on Compute Intensive Benchmark42

Figure 3.3 Impact of Frequency Scaling on Balanced Benchmark42

Figure 3.4 Impact of Frequency Scaling on Memory Intensive Benchmark42

Figure 4.1 Illustration of pipelines slot utilization on a 4-wide CPU46

Figure 4.2 TMAM slot classification hierarchy ...47

Figure 4.3 CPU Pipeline Slots Breakdown ...50

Figure 4.4 Pipeline slot occupancy resulting in a high pipeline slot stall ratio.50

xii

Figure 4.5 Total Execution Cycle Breakdown ...51

Figure 4.6 Total Stall Cycle Breakdown ...52

Figure 4.7 Memory Stall Breakdown ..53

Figure 4.8 CPI of Non-Vectorized Code ...55

Figure 4.9 CPI of Vectorized Code ...55

Figure 4.10 Implementation of the Proposed DVFS Techniques57

Figure 5.1 Die Map of a Hexa-Core Coffee Lake Processor ..59

Figure 5.2 Illustration of event access in perf ...63

Figure 6.1 TMAM Analysis of SPEC CPU2017 Benchmarks76

Figure 6.2 Memory Hierarchy Related Cycle Stall Breakdown78

Figure 6.3 Main Memory/Off-Chip Stall Breakdown ..79

Figure 6.4 DRAM Bandwidth Utilization Parameters ...79

Figure 6.5 SPEC CPU2017 Classification Summary ..80

Figure 6.6 Normalized P for SPEC CPU2017 as a Function of Clock Frequency82

Figure 6.7 Normalized EE for SPEC CPU2017 as a Function of Clock Frequency ...83

Figure 6.8 Normalized PxEE for SPEC CPU2017as a Function of Clock Frequency 84

Figure 6.9 Optimal Frequency Selection of 649.fotonik3d_s85

Figure 6.10 Highest Achievable PxEE Gains for Manual Frequency Selection86

Figure 7.1 Performance Speedup for Individual SPEC CPU2017 Benchmarks90

Figure 7.2 Energy-Efficiency Improvement for SPEC CPU2017 Benchmarks92

Figure 7.3 PxEE Improvement for SPEC CPU2017 Benchmarks93

Figure 7.4 Runtime metrics measurements for 549.fotonik3d_r95

Figure 7.5 Runtime measurements of the total stall ratio and the average CPI for

654.rom_s. ..96

Figure 7.6 Summary of total performance, energy efficiency, and PxEE

improvements for SPEC CPU2017 on a Fully Loaded CPU98

xiii

Figure 7.7 Summary of total performance, energy efficiency, and PxEE

improvements for CPU2017 on a partially loaded machine.99

Figure 7.8 Summary of total performance, energy efficiency, and PxEE

improvements for Parsec 3.0 ... 100

Figure 7.9 SPECpower Raw Performance (ssj ops) ... 102

Figure 7.10 Runtime Power Measurements of SPEC power Benchmark 103

Figure 7.11 Performance Per Watt for all the Proposed Techniques 104

Figure 9.1 Full Load Processor Power Consumption at various Operating Frequency

 .. 111

xiv

LIST OF TABLES

Table Page

Table 2.1: Memory Hierarchy Parameters in a Typical Skylake Processor15

Table 2.2: P-state Transition Latency Reported by Intel ..30

Table 5.1 Test System Parameters ..60

Table 5.2: SPEC CPU Floating-point Benchmarks ...67

Table 5.3: SPEC CPU2017 Integer Benchmark ..67

Table 6.1: Executable Size (Lower is Better) ..72

Table 6.2: Build Times (Lower is Better) ..74

Table 6.3: SPECratios (Higher is Better) ..74

Table 7.1: P.S, EE.I, and PxEE for 549.fotonik3d_r ...94

1

CHAPTER 1

INTRODUCTION

Modern computing is continually evolving shaped by constant advances and

changes in technology, applications, and market trends. Over the past six decades,

semiconductor technology nodes have gotten smaller and more refined, resulting in

an exponential increase in the number of transistors on a single die. Fueled by this

phenomenal growth, mobile and cloud computing have emerged as dominant

computing models in the last decade. Internet-of-Things (IoT) promises to be a major

driver for innovation in the years to come. Five distinct classes of computing have

emerged: IoT/Embedded, Personal Mobile, Desktop, Server, and Cluster/Warehouse.

Each is characterized by its unique application sets, performance requirements,

prices, form factors, and operating conditions. Still, processors that power the

contemporary laptop, desktop, and server computers remain one of the most

important components in computing ecosystems.

Historically, improvements in the energy efficiency of modern processors were

predominantly a byproduct of Moore’s law. Shrinking technology nodes give smaller

and faster transistors, resulting in more energy-efficient computing. However, recent

trends indicate an end to Moore’s Law. This is concerning as the energy consumption

2

of data centers worldwide was estimated to be ~263 TWh in 2020 [4] and it is expected

to grow to 1,137 TWh by 2030. This calls for renewed efforts in improving the energy

efficiency of modern computers, especially those used in the largest cloud data centers.

A majority of high-end workstations and servers use x86 processors from Intel

and AMD. Modern x86 processors have evolved to become extremely complex

hardware structures, integrating multiple processor cores, multi-level cache

structures, memory controllers that support multiple channels, a slew of hardware

accelerators, and an interconnect network that connects all of these components on a

single chip. Each processor core is highly pipelined with a superscalar out-of-order

execution engine with speculative instruction execution, simultaneous multi-

threading (SMT), hardware prefetching, advanced vectorization, and various other

performance-enhancing structures. Consequently, computer architects have included

hardware resources dedicated to monitoring and managing the operating states of the

processor to ensure its safe, reliable, and efficient operation [19].

Dynamic Voltage and Frequency Scaling (DVFS) is a technique used in modern

processors to adjust the clock frequency and the power supply voltage of specific

modules based on their level of activity, thus reducing the power consumption and the

heat generated by the processor. Each new generation of processors, starting from

Intel’s Haswell/Broadwell architecture [22] [31], has added more sophisticated

hardware resources that support faster and more efficient DVFS techniques [52] [54].

Thus, modern processors support several performance states (a.k.a. P-states) that

leverage DVFS and power states (a.k.a. C-states) that allow for unused modules to be

turned off [68].

Algorithms for controlling the P- and C-states are carried out by either BIOS

firmware or an OS driver, as defined in the Advanced Configuration and Power

3

Interface (ACPI) standard [69]. The control algorithms (in the further text referred to

as governors) determine how the current processor state is monitored, what conditions

warrant changes to the processor state, how the new state is determined, and how

frequently these actions take place. Governors broadly fall into two categories: those

that employ specific operating states (e.g., performance) or those that observe the

current processor load and dynamically react to its changes (e.g.,

ondemand/powersave). The Linux recommended ondemand governor monitors the

utilization of individual processor cores and uses it as the only factor in determining

the cores’ operating states [58] [70]. The governors send out requests to a dedicated

unit on the processor called the Power Control Unit (PCU or P-Unit) to change the

operating states of individual processor cores and other components at regular time

intervals. This implementation is common across hardware and software vendors.

The state-of-the-art ondemand governor provides performance similar to the

performance governor with lower power consumption during idle times. The current

consensus reflected in the implementation of common governors is that running a

processor at the highest possible clock frequency during program execution is the most

energy-efficient strategy. However, several recent studies have shown that this

approach is not optimal for all types of workloads, especially for those that are

bounded by memory [15] [27].

Finding an efficient method to select an optimal operating frequency during a

program’s run-time remains a challenging problem. A number of prior research efforts

have proposed analytical models [50] [57] and experimental methods [37] [71] to inform

the design and implementation of energy-efficient governors. However, these proposals

have not seen widespread adoption due to the added complexity, processing latency,

and relatively modest gains.

4

1.1 Scope of This Study

This dissertation primarily focuses on the DVFS power management

techniques in modern x86 processors to improve energy efficiency. First, we evaluate

the effectiveness of the state-of-the-art OS governor (ondemand) by measuring its

impact on performance (P), energy efficiency (EE), and their product (PxEE). The

experimental evaluation is primarily carried out on a workstation with an Intel Core

i7-8700K processor. To represent modern real-life workloads, we use the SPEC

CPU2017 benchmark suites. We find that the ondemand governor tends to put the

processor cores at the highest possible clock frequency, regardless of the properties of

benchmarks being executed. While this policy maximizes performance for all types of

benchmarks, it results in a significant amount of wasted energy, especially in the case

of benchmarks bounded by the memory subsystem.

To address this problem, we propose, implement, and evaluate four new

techniques that determine the P-state of the processor core using the following metrics

derived from performance monitoring unit (PMU) events: (i) the total number of

pipeline slot stalls (FS-PS), (ii) the total number of cycle stalls (FS-TS), (iii) the total

number of memory-related cycle stalls (FS-MS), and (iv) the number of last level cache

misses per kilo instructions (FS-LLCM). Each technique linearly maps the

corresponding metric to the available P-states on a system. We also investigate the

previous DVFS proposal that utilizes the cycles-per-instruction metric when

determining the next P-state (FS-CPI).

The measurement-based studies performed in the dissertation rely on

architectural support provided by the on-chip performance monitoring unit (PMU)

that are part of modern processors’ fabric. Initially, tools such as Linux utility perf

5

[72] and Intel’s VTune Amplifier [73] are leveraged to profile the SPEC CPU2017

suites to better understand the impact of DVFS. Further, we utilize likwid [60] to

measure the execution time and energy consumed by the processor for each of the

benchmarks. We evaluate our proposed techniques by comparing them to the state-

of-the-art ondemand governor, with metrics such as performance speedup (P.S),

energy efficiency improvement (EE.I), the improvement in the product of performance

and energy efficiency (PxEE.I).

To further validate the proposed techniques and in an effort to add additional

diversity to our workloads, we use two more representative benchmark suits. First, a

set of parallel benchmarks from Parsec-3.0 is used representing a somewhat lighter

version of compute-intensive applications. Next, to represent server workloads, we use

the SPECpower_ssj2008 benchmark suites and evaluate the techniques of interest by

using the performance per watt metric on the test system.

1.2 Contributions

The main contributions of this dissertation are as follows.

• It quantitatively evaluates the effectiveness of the state-of-the-art power

management technique in modern processors (the ondemand governor)

and determines its shortcomings, especially in terms of its energy

efficiency.

• It provides an in-depth analysis of the SPEC CPU2017 benchmarks using

the Top-down Microarchitectural Analysis Method and classifies the

benchmarks into three groups based on their characteristics.

• It introduces and implements four PMU-event-driven DVFS techniques

that promise to provide significant energy-efficiency improvements.

6

• It experimentally evaluates the effectiveness of the proposed techniques

and the existing state-of-the-art by considering performance, energy,

efficiency, and the product of performance and energy efficiency. The

experimental evaluation involves three different types of workloads,

namely SPEC CPU2017, Parsec 3.0, and SPECpower_ssj2008.

• It provides insights into the inner workings of the proposed DVFS-based

techniques and discusses their pros and cons relative to each other and the

previously proposed FS-CPI technique.

1.3 Findings

The main finding of this dissertation is summarized as follows.

• The state-of-the-art governors provide the best possible performance albeit

at the cost of poor energy efficiency. This is especially true for memory-

bound benchmarks.

• The results of our experimental evaluation show that all of the proposed

techniques provide significant improvements to EE and PxEE metrics

when compared to the state-of-the-art ondemand governor, especially for

the class of memory-intensive benchmarks. Considering all the SPEC

CPU2017 benchmarks, the proposed techniques improve EE from 44% (FS-

LLCM) to 92% (FS-PS), whereas PxEE improves from 31% (FS-LLCM) to

48% (FS-PS). The proposed techniques are especially effective for a class of

memory-intensive SPEC CPU2017 benchmarks - EE improves from 121%

(FS-MS) to 183% (FS-PS) and PxEE from 100% (FS-MS) to 141% (FS-PS).

• The proposed techniques also outperform the previously proposed FS-CPI.

Relative to FS-CPI, the proposed techniques improve EE from 2% (FS-

7

LLCM) to 36% (FS-PS) when all benchmarks are considered together, and

from 20% (FS-MS) to 54% (FS-PS) when memory-intensive benchmarks

are considered alone.

• Considering Parsec-3.0 benchmark suits, the proposed techniques improve

EE from 15% (FS-LLCM) to 58% (FS-PS) and PxEE from 5% (FS-PS) to

18% (FS-MS).

• In the case of SPECpower_ssj2008, Linux recommended ‘OS-ondemand’ to

provide the lowest performance-per-watt for a fully loaded system. All of

the proposed techniques improve performance-per-watt as follows: FS-PS

by 61%, FS-TS by 72%, FS-MS by 61%, and FS-LLC-MPKI by 24%.

1.4 Outline

The rest of the dissertation is organized as follows. CHAPTER 2 provides an

overview of the current power management infrastructure in modern x86 processors.

CHAPTER 3 explains the shortcomings of the state-of-the-art implementation and

provides motivation for this study. CHAPTER 4 describes the proposed PMU-event-

driven DVFS techniques aimed at increasing energy efficiency. CHAPTER 5 details

the experimental setup, the tools employed, and the evaluation metrics used for the

study. CHAPTER 6 provides an in-depth analysis of the primary workload used in the

study. The SPEC CPU2017 benchmarks are classified into three distinct groups using

the Top-down Microarchitectural Analysis Method. CHAPTER 7 provides the

experimental results for all the proposed techniques. CHAPTER 8 discusses the

related work in the field of power management through dynamic voltage and

frequency scaling. CHAPTER 9 describes the various avenues for future work. Finally,

CHAPTER 10 concludes the dissertation.

8

CHAPTER 2

BACKGROUND

Modern multicore processors have evolved to be extremely complex hardware

structures that continue to advance by integrating an ever-increasing number of

functional units aimed at achieving high performance. With billions of transistors on

a single chip that can run at clock frequencies approaching 5 GHz, power consumption

and thermal management have emerged as one of the most important design

constraints. To address growing concerns related to thermal and power aspects in

modern processors, manufacturers have incorporated hardware resources solely

dedicated to power management.

In the last 20 years, the complexity and sophistication of these resources have

significantly increased, following an increase in the complexity of processors. Modern

processors integrate multiple functional blocks on a single chip, including processor

cores, interconnect, hardware accelerators (e.g., general-purpose graphics processing

unit), a memory controller, and others. These functional blocks may be selectively

turned on or off, or when active their operating points may be adjusted independently

from the others.

9

This chapter provides detailed background about the state-of-the-art processor

architectures and hardware and software aspects of power management. Specifically,

Section 2.1 provides an overview of the Intel Skylake microarchitecture. Section 2.2

describes the processor power, consumption model. Section 2.3 describes the evolution

of power management features in Intel processors over the years. Section 2.4

introduces the Advanced Configuration and Power Management (ACPI) standard

used by hardware and operating systems (OS) vendors. Section 2.5 describes the

power management hierarchy and its components. Finally, Section 2.6 explains the

functioning of the most common DVFS based ondemand governor.

2.1 Intel Skylake Microarchitecture: An Overview

Intel processor releases are based on a “tick-tock” development process. At

first, a “tock” comes with a new microarchitecture that uses the same technology node

as the previous generation. The next generation is followed by a “tick” which comes

with a new smaller technology node but the same microarchitecture. This type of

development allows both sources of improvements to mature and cuts development

costs. Figure 2.1 illustrates the “tick-tock” for 11 generations of Intel desktop (Core)

and 8 generations of server processors (Xeon).

Continual transistor size reduction has played a key role in speed and energy

improvements. But for four full generations of the Intel Core processors, the same

technology node of 14 nm has been used with slight process refinements. This shows

a break from the traditional “tick-tock” approach. Though the technology feature size

has lately remained the same, other forms of performance enhancements such as

better parallelization, faster memory interconnect, and larger caches have maintained

10

a nearly 30% improvement in performance and 15-20% power reduction for each new

generation of processors.

Figure 2.1 Intel’s Tick-Tock Model for Desktop and Server Processor [74]

Each generation of Intel microarchitecture contains two variants, the

microarchitecture for the Core processors and the Xeon processors. Though the

internal core architecture is similar, the design of the Xeon processors is oriented

towards prolonged usage, higher scalability, and lower power consumption. A Xeon

processor is usually clocked at a lower clock frequency than the corresponding Core

processor, in order to have a lower operating temperature.

The most recent iteration of Intel Core architecture comes under the name

Skylake. Skylake is the successor to Broadwell in terms of the technology node and

includes a number of improvements relative to the Haswell microarchitecture. Five

generations of processors were built using the Skylake microarchitecture. This section

provides a brief review of the Skylake microarchitecture.

Intel
Microarchitecture

Codename Nehalem

Lynnfield Clarkdale

Tock Tick

Intel
Microarchitecture
Codename Skylake

Skylake
Kaby
Lake

Coffee
Lake

Refresh

2009 2010

Tock - -

2015 2016 2017

New Microarchitecture New Process Technology

-

2018

Comet
Lake

-

2020

Beckton Westmere Skylake Cascade Lake

45nm 32nm 14nm 14+nm 14++nm

Coffee
Lake

Intel
Microarchitecture

Codename Haswell

Haswell Broadwell

Tock Tick

2013 2014

Haswell Broadwell

22nm 14nm

Intel
Microarchitecture
Codename Sandy

Bridge

Sandy
Bridge

Ivy Bridge

Tock Tick

2011 2012

Sandy
Bridge

Ivy Bridge

32nm 22nm

Desktop/Workstation Processor Codename

Server/Datacenter Processor Codename

11

2.1.1 Processor Core Microarchitecture

A physical core (also referred to as ‘core’) is a well-partitioned piece of logic

capable of independently performing all functions of a processor. A single physical

core may encompass one or more logical cores. The Intel Skylake microarchitecture

specifies an out-of-order superscalar design that can dispatch up to six

microinstructions to execution units per a single CPU clock cycle. The internal

functional units can be segregated into the front-end and the back-end. The front-end

of the processor is responsible for fetching instructions from memory and translating

them into micro-operations. These translated micro-operations are then fed to the

back-end of the processor. The back-end handles scheduling, execution, and retiring

of instructions.

Figure 2.2 gives the block diagram of the Skylake microarchitecture. The flow

of instruction through the pipeline can be illustrated as follows. Initially, the branch

prediction unit (BPU) chooses the next 16-byte block of instructions to execute. The

processor then searches for instructions in the Decode ICache, first-level instruction

cache (L1I), L2 cache, last level cache (LLC), and memory in that order, as necessary.

The instructions fetched from the L1I cache or above are then converted into micro-

operations and sent to the rename block. They enter the scheduler in program order

but execute out-of-order. Branch mispredictions are found at branch executions and

they redirect the front-end as necessary. Memory operations are parallelized for

maximum performance. Exceptions are signaled at the retirement of the faulting

instruction.

Branch prediction predicts the branch target and enables the processor to

begin executing instructions long before its true execution path is known. All branches

12

utilize the branch prediction unit (BPU). The BPU predicts the target address not only

based on the next instruction to be executed but also based on the execution path.

The BPU can efficiently predict the following types of branches:

• Conditional branches;

• Direct calls and jumps;

• Indirect calls and jumps; and

• Returns.

Figure 2.2 Skylake Microarchitecture CPU Core Block Diagram [67]

The dynamic branch prediction unit consists of two major parts: a branch target

buffer (BTB), for the prediction of branch targets, and an outcome predictor for the

prediction of branch outcomes. The BTB is a cache structure, where a part of the

MSROM

BPU
32 K L1

Instriuction Cache

Decode Icache
(DSB)

Legacy Decode
Pipeline

Instruction Decode Queue(IDQ, or micro-op queus)

Allocate / Rename / Retire / Move Elimination / Zero Idion

Scheduler

Int ALU,
Int Shft,
Branch 1

Int ALU,
Vec FMA,
Vec MUL,
Vec Add,
Vec Shft,
Divide,

Branch2

Int ALU,
Fast LEA,

Vec FMA,
Vec MUL,

Ved Add,
Vec ALU,

Vec Shft,
Int MUL,

Slow LEA

Int ALU,
Fast LEA,

Vec
SHUF,

Vec ALU,
CVT

Port 2
LD/STA

Port 3
LD/STA

Port 4
STD

Port 7
STA

32 K L1 Data
Cache

256K L2
Cache

(Unified)

4 uops/cyle 6 uops/cycle 5 uops/cycle

Port 0 Port 1 Port 5 Port 6

In-order

Out-of-
order

Front-End

Back-End

13

branch address is used as the cache index, and the last target address of that branch

is the cache data [41]. Unfortunately, the branch predictor organization and operation

on the Skylake architecture are not disclosed by the manufacturer. Studies have used

experimental reverse engineering and it is found that the branch predictor unit used

in the older generations of the Intel processors is a 4096-entry bimodal predictor [40]

[61] [62].

The back-end, also known as the out-of-order (OOO) engine, detects dependency

chains and sends those chains of instructions for execution while maintaining data

flow. If a dependency chain is waiting for resources, micro-instructions from a

secondary dependency chain are sent for execution to increase the instruction per

cycle (IPC). The major components of the back-end are the Renamer, Scheduler, and

the Retirement unit. The Renamer component moves up to four micro-operations

every cycle from the front-end to the execution core. It eliminates false dependencies

among micro-operations, thereby enabling out-of-order execution of micro-operations.

The Scheduler component queues micro-operations until all source operands are ready

and schedules and dispatches ready micro-operations to the available execution units

in as close to a first-in-first-out (FIFO) order as possible. Depending on the availability

of dispatch ports and write-back buses, and the priority of ready micro-operations, the

scheduler selects which micro-operations are dispatched every cycle. The Retirement

component retires instructions and micro-operations in order and handles faults and

exceptions.

The out-of-order engine consists of three execution stacks, where each stack

encapsulates a certain type of data: a general-purpose integer, a SIMD integer and

floating-point, and an x87. The execution core also contains connections to and from

the cache hierarchy. The loaded data is fetched from the caches and written back into

14

one of the stacks. The scheduler can dispatch up to eight micro-operations every cycle,

one on each port. After execution, the data is written back on a write-back bus

corresponding to the dispatch port and the data type of the result. When a source of a

micro-operation executed in one stack comes from a micro-operation executed in

another stack, a one or two-cycle delay can occur.

2.1.2 Cache Hierarchy

The cache hierarchy contains a first-level instruction cache, a first-level data

cache (L1 DCache), and a second-level cache (L2), that are private to each processor

core. The caches may be shared by two logical processors if the processor is hyper-

threaded. The L2 cache is unified, containing both instructions and data. All cores in

a physical processor package connect to a shared last level cache (LLC) via a ring

connection. L2 is not inclusive of the data in L1. Only the LLC is inclusive of all the

levels below it.

The actual delay a CPU core sees when reading a data item depends on how

far the required data is from the core. Each cache line in the LLC holds an indication

of the cores that may have this line in their L2 and L1 caches. If there is an indication

in the LLC that other cores may hold the cache line of interest and its state needs to

be modified, there is a cache coherence lookup into the L1 DCache and L2 of these

cores too.

Table 2.1 shows the size, associativity, and access times in the memory

hierarchy of a typical Skylake based quad-core processor. The overall memory

structure in Skylake is similar to its predecessor Broadwell/Haswell, except for the

change in associativity of L2 to 4-way from the previous 8-way. The data access

15

latency is dependent on the operating clock frequency of the core and uncore. A higher

operating frequency would reduce the wall-clock period for the access latency.

Table 2.1: Memory Hierarchy Parameters in a Typical Skylake Processor

 Size Associativity Latency

L1 DCache 32 KB 8-way 4 cc

L1 ICache 32 KB 8-way 5 cc

L2 Cache 256 KB 4-way 12 cc

L3 Cache 8 MB 16-way 42 cc

DRAM - - 42 cc + 51 ns

Figure 2.3 shows the best-case access latency in ns for all levels in the memory

hierarchy of the test machine while varying operating frequencies. These data are

collected using the Hopscotch benchmark suite [1]. We can see how the changes in the

processor clock frequency impact the access latency for L1, L2, L3, and DRAM. By

lowering the processor clock frequency, expectedly the latencies increase at each level.

Figure 2.3 Measured Cache Hierarchy Access Latency

 -

 20

 40

 60

 80

 100

 120

 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

La
te

n
cy

 (
n

s)

Operating Frequency (GHz)

Impact of CPU Operating Frequency on Latency

L1 Latency (4 cc) L2 Latency (12 cc) L3 Latency (42 cc) DRAM Latency (42 cc + 51 ns)

16

2.2 Processor Power Consumption Model

CPU power can be conceptually broken into (a) the logic power and (b) the I/O

power. The two major components of the logic power are: (i) the power consumed by

the clocks that run throughout the processor; (ii) power consumed by logic performing

computation [21]. The power consumed by the logic elements performing computation

can be further divided into dynamic power, short-circuit power, and leakage power as

shown in Eq. 2.1 and Eq. 2.2 [42].

𝑃𝐶𝑃𝑈 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑐 + 𝑃𝑙𝑒𝑎𝑘 Eq. 2.1

𝑃𝐶𝑃𝑈 = 𝐴𝐶𝑉2𝑓 + 𝜏𝐴𝑉𝐼𝑠ℎ𝑜𝑟𝑡𝑓 + 𝑉𝐼𝑙𝑒𝑎𝑘 Eq. 2.2

The first component of the equation, dynamic power consumption is caused by

the charging and discharging of the capacitive load on the output of each gate. It is

proportional to the frequency of the system’s operation, f; the activity of the gates in

the system, A, a metric that captures how often gates are switching; the total

capacitance seen by the gate’s outputs, C; and the square of the supply voltage, V. The

second component of the equation short-circuit power captures the power expended as

a result of short circuit current, Ishort, which momentarily, τ, flows between the supply

voltage and ground when a CMOS logic gate’s output switches. The third component

measures the power lost from the leakage current regardless of the gate’s state.

For a long time, dynamic power consumption was the major factor influencing

total power consumption. The most effective way to save power was by reducing the

supply voltage, V. The quadratic dependence on V means that the savings can be

significant: Halving the voltage reduces the power consumption to one-fourth of its

17

original value. Unfortunately, this savings comes at the expense of performance, or,

more accurately, maximum-operating frequency, as shown in Eq. 2.3.

𝑓𝑚𝑎𝑥 ∝
(𝑉 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)2

𝑉
 Eq. 2.3

The maximum frequency of operation is thus proportional to V. Reducing it

limits the maximum frequency the circuit can run at. Reducing the power supply to

one-fourth of its original value only halves the maximum frequency. However,

reducing the voltage, V, in Eq. 2.3 requires a reduction in Vthreshold. This reduction must

occur so that low-voltage logic circuits can properly operate. However, reducing

Vthreshold increases the leakage current, as shown in Eq. 2.4

𝐼𝑙𝑒𝑎𝑘 ∝ 𝑒𝑥𝑝 (
𝑞 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑘𝑇
) Eq. 2.4

Eq. 2.1 represents the average power consumed by the CPU. Although the

dynamic power consumed is perceived as a function of voltage, frequency, and

temperature, each of these components has a direct and proportional impact on the

behavior of every other parameter. The power consumption is proportional linearly to

frequency and quadratically to voltage as shown in Eq. 2.5.

𝑃𝑑𝑦𝑛~ 𝑓 ∗ 𝑉2 Eq. 2.5

In order to increase the operating frequency, the voltage has to be increased.

The voltage required to run the CPU tends to increase with the square of the

frequency in operating regions with a very high clock frequency. As the power

consumed is directly dependent on voltage and frequency this relationship is critical

for power management. At low frequencies, we can change the frequency with little

18

impact on voltage, however, when operating at high frequencies, a small increase in

frequency requires a large variation in voltage.

2.3 Evolution of Power Management in Intel Processors

Over the past two decades, power has become a primary design constraint in

the design of modern processors. In response, computer architects have significantly

improved the energy efficiency infrastructure in modern processors. With each new

processor generation, additional energy efficiency features were introduced, resulting

in power savings by at least a factor of four in idle systems. While these features

improved the energy efficiency significantly, they also have a major influence on the

performance of the processor. In this section, we will go over the evolution of the power

management features on different microarchitectures from Intel over the years.

2.3.1 Nehalem Microarchitecture

The Intel Nehalem microarchitecture, released in late 2009, was the basis for

the 1st generation of the Intel core processors. The corresponding processors were

initially manufactured on a 45nm technology node and later upgraded to a 32nm

technology node the next year.

2.3.1.1 Power Control Unit (PCU)

To tackle the growing problem of leakage power, which was responsible for

roughly 1/3rd of the core power consumption, new power management features had to

be developed. As a solution, the first on-chip power control unit or the package control

unit (PCU), which was built using over a million transistors, and was introduced in

the architecture. The PCU consolidated all the power management features present

on the processor, including the ACPI interface that controls the P-states and the C-

19

states to one module. The PCU runs proprietary firmware and provides interfaces to

the BIOS or OS with a set of control and model-specific registers (MSRs).

Figure 2.4 shows the positioning of the PCU on the chip of a Nehalem processor.

The controller is responsible for managing the power states of the processing cores

using real-time sensors for temperature, current, and power. The on-chip power

management improved voltage switching rates resulting in a P-state transition

latency of ~100 ms. The P-state management in Intel Nehalem processors is called,

SpeedStep Technology (software P-state management).

Figure 2.4 Integrated PCU on the Nehalem Processor

The SpeedStep implementation provides each physical core with its own

integrated phase-locked-loop (PLL), enabling it to be clock gated independently,

allowing for core-level C-states. The external clock source of 133 MHz is brought to

the processor chip. A new power gate was designed for the Nehalem architecture. The

outcome was for the first time; an un-used processor core power consumption can be

Core
Vcc
Freq
Sensors

PLL

Core
Vcc
Freq
Sensors

PLL

Core
Vcc
Freq
Sensors

PLL

Core
Vcc
Freq
Sensors

PLL

PLL

BCLK

PCU

Vcc

20

completely reduced to zero by placing it into the C6 (“deep power down”) power state

independently. It should be noted that though each physical core has an independent

PLL, the operating voltage and the frequency of the cores are the same and they

operate in the same voltage domain.

An added advantage of the modular design was the decoupling of the core and

uncore domains. As a result, the uncore to be powered down when all cores enter the

C6 sleep state. However, the uncore savings do not scale similarly to the core as even

a single active core can wake the uncore from the sleep state.

2.3.1.2 Intel Turbo Boost Technology

The savings in the power budget paved the way for the introduction of the

turbo-mode. The basic premise of the turbo-mode is to use the power budget surplus

from turning off unused cores to temporarily increase the operating frequency of the

active cores. Figure 2.5 provides an illustration of the turbo mode on a 4-core Nehalem

processor. When all four cores are loaded, the processor operates at the specified

thermal design power (TDP).

TDP, in watts, refers to the power consumption under the maximum

theoretical load. However, in the case of a lightly threaded workload occupying only 2

cores, the remaining cores can be put to sleep, providing power and thermal headroom

for turbo mode. All Nehalem processors were capable of at least boosting a single clock

step (133 MHz) in turbo mode, even if all cores are active, for as long as the PCU does

not detect any violation in the TDP. If the TDP levels are low enough, or if several

cores are idle, the PCU can increase clock speeds by more than one clock step.

However, the Turbo technology in Nehalem was limited to just two clock steps,

providing a maximum turbo boost of 266 MHz above the nominal frequency [75].

21

Figure 2.5 Illustration of Turbo Mode

2.3.2 Sandy Bridge Microarchitecture

The Intel Sandy Bridge microarchitecture, released in 2011 is an evolution of

the Nehalem microarchitecture. It was the core microarchitecture for the 2nd and 3rd

generation of the Intel core processors. The first wave of processors used the earlier

32 nm technology node and later upgraded to 22 nm under the code-name Ivy Bridge.

The PCU, introduced in the Nehalem architecture, received several feature updates.

Figure 2.6 shows the block diagram of the major functional blocks and the power-

management control blocks and interconnect on the Sandy Bridge microarchitecture.

The PCU resides in the system agent and is a combination of dedicated hardware state

machines and an integrated microcontroller. A power-management link connects the

PCU to different cores and functional blocks on the die via power management agents

(PMAs). PMAs collect telemetry information such as power consumption and junction

temperature and perform control functions such as P-state and C-state transitions.

The PCU communicates to the external voltage regulator and embedded controller

that performs system power-management functions. The PCU runs firmware that

No Turbo

Frequency (F)

Turbo Mode

Lightly Threaded
Workload <TDP

C0 C1 C2 C3 C0 C1 C2 C3

22

constantly collects power and thermal information, communicates with the OS, and

performs various power-management functions and optimization algorithms.

Figure 2.6 Sandy Bridge Power Management Block Diagram [52]

Sandy Bridge’s package implements two independent variable power planes.

The first one is a shared power plane, that feeds all CPU cores, the ring interconnect,

and the last level cache (LLC). Embedded power gates turn each core on and off

individually. The LLC’s power gates can turn on or off portions of the cache in shallow

package sleep states or all of the cache in deeper sleep states. All the cores and the

ring share the same clock and perform dynamic voltage and frequency scaling

together. The second power plane is the graphics processor. It has an independent

power plane, whose voltage and frequency can be varied independently. It can also be

turned off completely when the graphics are inactive. Additional fixed power planes

control the system agent and I/O [52].

2.3.2.1 Intel Turbo Boost Technology 2.0

P-state management in Sandy Bridge processors is termed Enhanced Intel

SpeedStep Technology. A major update came in the form of a revised functioning of

Graphics

Core Uncore

System Agent

PCIEDMI

Core Uncore

Core Uncore

Core Uncore

PCU

SVID
IMC

PECI

Display

Voltage
Regulator

Embedded
Controller

PMA

23

the turbo-mode, called Intel Turbo Boost technology 2.0. The processors from the

previous generation (Nehalem) limited the turbo mode to match the TDP budget,

based on the assumption that the CPU reaches that TDP immediately upon enabling

turbo mode. However, in reality, the CPU temperature changes more gradually –

there is a period of time where the CPU is not dissipating its full TDP – this behavior

is similar to a ramp function.

Sandy Bridge takes advantage of this by allowing the PCU to enable turbo-

mode on active cores above the TDP budget for a short period of time (up to 25

seconds). The PCU keeps track of the available thermal budget while idle and spends

it when CPU demand goes up. The longer the CPU remains idle, the more potential it

has to ramp up above TDP during a high load period. During workload execution, the

CPU can turbo above its TDP and step down, as the processor heats up, eventually

settling down at its TDP [76].

In addition to the above-TDP-turbo, Sandy Bridge also supported more turbo

bins than Nehalem and allowed for both CPU and GPU turbo to work in tandem.

Workloads that are more GPU bound can result in the CPU cores clocking down and

the GPU clocking up and vice-versa.

2.3.2.2 Running Average Power Limit (RAPL)

With the introduction of the above-TDP-turbo, a robust hardware mechanism

was required to monitor and control power consumption on the chip to avoid thermal

damage. The Running Average Power Limit (RAPL) interface was designed to limit

on-chip power while ensuring maximum performance [66]. The interface supports

fine-grain time measurement of power, energy, and temperature of sockets, individual

cores, uncore structures as well as on-chip GPUs. The RAPL interface acts as an

24

architectural power meter. It collects a set of architectural events from each Intel

architecture core, the processor graphics, and I/O, and combines them with energy

weights to predict the package’s active power consumption.

In RAPL, platforms are divided into domains for fine-grained reporting and

management. Figure 2.7 shows the major RAPL domain available on the processor.

This includes the package domain (PKG) which incorporates the entire socket, the

core domain (PP0) which includes all the CPU cores, the graphic domain (PP1) which

includes the onboard graphics, and the memory domain (DRAM). The specific RAPL

domains available in a platform vary across product segments.

Figure 2.7 RAPL Power Domains

Each RAPL domain supports four different functionalities as shown below:

• ENERGY_STATUS for power monitoring.

• POWER_LIMIT and TIME_WINDOW for controlling power.

• PERF_STATUS for monitoring the performance impact of the power limit.

• RAPL_INFO contains information on measurement units, the minimum and

maximum power supported by the domain.

25

Intel has validated the energy estimates provided by the RAPL interface to

actual power consumption. Several studies have explored the effectiveness of on-chip

power meters and explained hardware and software optimizations as a function of

performance and energy efficiency [22]. Various tools make use of the RAPL interface

to enable power and energy measurements of different power domains [64] [60].

2.3.3 Haswell Microarchitecture

The Intel Haswell microarchitecture introduced in 2013 is the core

microarchitecture for the 4th and 5th generation of the Intel Core processors. The

fourth-generation used the 22 nm technology node and the fifth upgraded to 14 nm

under the code-name Broadwell. The Haswell microarchitecture was optimized for

idle power consumption and consequently, several new power management features

were added.

2.3.3.1 Per-Core Power Management and Independent Uncore Scaling

Intel processors from the Haswell microarchitecture were the first x86

processors that incorporated fully integrated voltage regulators (FIVR) on the die [9].

Additionally, server-class processors included separate voltage regulators for every

processor core, enabling fine-grained P-state control. The on-chip voltage regulators

also paved the way for uncore frequency scaling (UFS), enabling the processor to

control the frequency of the uncore components (e.g., last-level caches) independently

of the core frequencies. Prior Intel processor generations used either a fixed uncore

frequency (Nehalem and Westmere) or a common frequency for cores and uncore

(Sandy Bridge and Ivy Bridge). The uncore frequency has a significant impact on on-

die cache-line transfer speeds as well as on memory bandwidth [31]. At the

26

microarchitecture level, Intel added more power gating and low power modes. The

additional power gating gives the PCU fine-grained control over shutting off parts of

the core that are not used.

Furthermore, a major focus on vectorization resulted in the expansion of an

advanced vector instruction set (AVX), supporting 256-bit wide data paths. However,

AVX instructions draw more current and a higher voltage is needed to sustain

operating conditions. To facilitate this, the core signals the PCU to provide additional

voltage and slows the execution of AVX instructions. To maintain the limits of the

TDP, the increasing voltage may cause a drop in clock frequency. Hence, the Haswell

CPU family uses a lower clock frequency for workloads with a substantial portion of

AVX instructions [22]. To cope with the huge difference between the power

consumption of scalar and AVX instructions, a new base and Turbo Boost frequencies

called AVX base/Turbo was introduced, as shown in Figure 2.8.

Figure 2.8 AVX Frequency Range in a Haswell Processor

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

Nominal/ Base Frequency

(Non AVX)

AVX Base Frequency

All Core Max Turbo

Frequency (Non-AVX)
2.8

2.7

AVX Max All Core Turbo
Frequency

AVX Range for most AVX
Workloads

27

Turbo-boost in Haswell/Broadwell processors saw several updates. Figure 2.9

illustrates the operation of turbo-mode on a 4-core processor. The processor will have

a certain number of turbo bins, controlled by the PCU, available based on the rated

TDP. Monitoring the CPU load, thermal headroom, and power budget, the PCU

allocates these bins to one or more processor cores. This revision to the turbo mode

includes the introduction of the Energy Efficiency Turbo (EET) [6].

High turbo frequencies—typically only limited by power or thermal

constraints—tend to hurt energy efficiency, especially if the performance increase is

negligible. The EET feature attempts to reduce the usage of turbo frequencies that do

not significantly increase the performance. EET monitors the number of stall cycles

and uses this information as well as the energy performance bias (EPB) setting to

select a turbo-frequency that is predicted to be optimal.

Figure 2.9 Turbo Operation in Haswell/Broadwell Processors

2.3.3.2 Hardware P-state Management

All prior generation processors relied on the OS to be in control of the on-chip

power management features such as selecting the P-states and the C-states based on

CPU utilization. This causes congestion in the OS control loop, which interrupts the

workload regularly. To tackle this problem Hardware-Controlled P-states (alias

Dynamic Range
Turbo Frequency

Limits

Turbo Bins

Base
Frequencies

Idle
mode

Single-Core TurboDual-Core TurboFour-Core Turbo

28

Hardware Power Management (HWPM or SpeedShift) was introduced in the

Broadwell generation of Intel processors. The hardware-controlled P-states

mechanism transfers the decision of frequency scaling from the OS to the hardware

and acts autonomously. Furthermore, it increases the responsiveness because the

hardware control loop can be executed more frequently without perturbation.

2.3.3.3 Intel Turbo Boost Technology 3.0

Due to variations in their manufacturing process, individual cores in the same

die may have varying efficiency characteristics. As a consequence, during turbo-mode,

some cores may reach a higher operating frequency while other cores may not, which

in turn influences the performance of a single thread depending on the hardware core

that executes on. To overcome this problem, the Turbo Boost Max 3.0 (TBM3) feature

was introduced with the Broadwell processors. Its basic premise is to improve single-

thread performance by executing the workload on the processor core that delivers the

best power and performance. The PCU can automatically select the best performing

core and ask the schedular to execute the workload on the given core.

2.3.4 Skylake Microarchitecture

The Intel Skylake microarchitecture was released at the end of 2015 and was

the core architecture for the five generations of the Intel processor series (from 6th

generation to 10th generation). Skylake was a “tock” in Intel’s cycle, hence it used the

same 14-nm technology node as Broadwell with some process refinements. Figure 2.10

shows a block diagram of an Intel Skylake processor with four different power

domains, as follows: processor cores, uncore, graphics, and system agent. The PCU is

29

in charge of power management; it includes a microcontroller that runs proprietary

firmware and provides interfaces to the BIOS or OS [77].

Figure 2.10 Illustration of Power Domains on an Intel Processor

The PCU monitors the state of individual power domains and carries out power

management requests, including power gating of individual domains and adjusting

their frequencies and power supply voltages. The voltage regulators and an external

clock source of 100 MHz are brought to the processor chip. On-chip PLLs generate

internal clock frequencies for the individual power domains. Whereas Figure 2.10

shows a single voltage domain for all four processor cores, server processors may

support separate voltage domains for individual physical processor cores.

2.3.4.1 Energy Efficiency Mechanism

The FVR introduced in the Haswell processor was removed and the voltage

regulators were moved back to the motherboard in the Skylake processors. Like its

predecessors, Skylake processors support per-core P-states and Uncore Frequency

Scaling. This enables fine-grained control over performance and energy efficiency

decisions. The Energy Performance Bias (EPB) indicates whether to balance the

Graphics

Core Uncore

System Agent

PCIEDMI

Core Uncore

Core Uncore

Core Uncore

PCU

PLL

PLL

PLL

PLL

BCLK

BCLK

BCLKBCLK

30

profile for runtime or power consumption or something in between. The Energy-

Efficient Turbo (EET) mechanism was inherited from the Haswell microarchitecture.

The hardware P-state management (a.k.a. Intel Speedshift) saw a major update.

While the Broadwell processors hardware acts mostly autonomously, Skylake

processors provide interfaces for a collaboration with the OS through interrupts. With

the HWP interface, the OS can define a performance and power profile, and set a

minimal, efficient, and maximal frequency. The OS can also override the hardware in

selecting a P-state.

Table 2.2 shows the P-state transition on the latest processors from the

Skylake microarchitecture. Compared to Speed Step- P-state transitions, the Speed

Shift terminology improves transition times by having the operating system

relinquish some or all control of the P-States and handing that control off to the

processor. This has a couple of noticeable benefits. First, it is much faster for the

processor to control the changes in clock frequency, compared to OS control. Second,

the processor has much finer control over its states, allowing it to choose the most

suitable performance level for a given task. Specific jumps in frequency are reduced

to around 1 ms with Speed Shift's CPU control from 10-30 ms on OS control and going

from the lowest P-state (Pn-energy-efficiency state) to the lowest P-state (P0-

maximum performance can) be done in around 35 ms, compared to around 100 ms

with the legacy implementations. This improvement in transition time is especially

beneficial for latency-sensitive application and interrupt handling.

Table 2.2: P-state Transition Latency Reported by Intel

 SpeedStep SpeedShift

P-state Transition ~10-15 ms ~1 ms

The transition from Pn to P0 ~100 ms ~35 ms

31

In summary, each new generation of the processor builds on the energy-

efficiency features of the prior generation. Utilizing the multitude of hardware

features focused on power management, operating system vendors, over the years

have tried to optimize application performance and save power. A number of various

governors are built to target different use cases. Generally, the governors follow a

strategy of “race to idle”, which relies on finishing execution quickly in order to save

power. However, we learn through experimentation that this strategy is not ideal for

all sorts of applications.

BIOS/OS developers utilize the available hardware structures to build high-

level control algorithms for power management. Major computing companies

developed an open industry specification called Advanced Configuration and Power

Interface (ACPI) to maintain uniformity across processor vendors, OEMs, and OS

providers [78]. ACPI establishes common interfaces for power management in a

variety of computer systems.

32

2.4 ACPI Power & Performance States

The primary objective of power management techniques is to reduce overall

power consumption when possible, without affecting performance. Two primary ways

to reduce power consumption in modern processors are to either turn unused

components off or to throttle used components based on their load. To facilitate these

actions, modern processors feature power states (C-states) that facilitate turning off

individual processor components when idle and performance states (P-states) that

facilitate clock frequency and voltage throttling.

Figure 2.11 illustrates C-states and P-states as defined by the ACPI standard.

The C0-state corresponds to the processor active mode, where all components are

turned on and component clocks are active. Within this state, multiple P-states are

available, enabling dynamic changes of the processor clock frequency and power

supply voltage. The P0 state corresponds to the processor's highest operating clock

frequency in the so-called turbo mode [10]. The P1-state typically corresponds to the

nominal or base processor clock frequency. Turbo Boost is a technology initially

introduced by Intel that opportunistically allows the processor to run faster than the

nominal frequency if the processor operates below power, temperature, and current

limits. The maximum Turbo Boost frequency depends on the number of active cores,

workload, operating environment, and platform design. (Note that Turbo Boost is not

the same as overclocking). Max Turbo Boost frequency is dependent on the number of

active cores, workload, operating environment, and platform design. Higher P-states

(P2-Pn) progressively lower processor clock frequency and power supply below their

nominal levels.

33

Higher C-states (C1-Cn) progressively turn off unused components, entering

deeper sleep modes, thus eliminating both the switching and leakage components of

power consumption. C1 is the first idle state, a.k.a. Halt. In C1 the processor clock is

gated, i.e., the clock is prevented from reaching the core(s), effectively shutting them

down. However, the clock can be restored almost instantaneously (with a few clock

cycles delay) to return to the active state. Higher C-states (C2-Cn) offer larger power

savings, albeit at the cost of increased wake-up time. Each new generation of modern

processors introduces a larger number of C- and P-states, faster and more efficient

transitions between the C states, and a richer set of functions for power management

[22] [54].

Figure 2.11 Processor Power States (C-states) & Performance states (P-states)

C0

P0 P1 P2 P3

C1

C2

Cn

Pn

. . .

. . .

Performance States (P-States)

Power
States

(C-States)

34

2.5 CPU Power Management

Figure 2.12 provides a hierarchical view of the various power management

components, from hardware to userspace interface. Starting from the bottom up, the

hardware level encompasses the power control unit (PCU/P-unit) with a set of control

and model-specific registers (CSRs and MSRs). During an initial handshake at

bootup, the processor provides information to the BIOS about available P- and C-

states. Further communication to inspect the current state or initiate a state change

is carried out through the status and control registers (shown at the bottom of the

figure). The BIOS can typically support multiple system profiles that can favor

performance, energy efficiency, or allow for dynamic power-saving techniques.

Considering the latter, the power management control is transferred to the operating

system. This profile is often referred to as Performance Per Watt OS or OS Control

Mode.

Figure 2.12 A Hierarchy of Power Management Components

PCU/P-Unit

BIOS
Firmware

BIOS Power Management

Userspace Interface

Control & Status
Register (CSR)

Model Specific
Registers (MSR)

Governors

performance conservative

Hardware

 OS Control

Mode

System
Profilesintel-

pstate

acpi-

cpufreq

Device Drivers

ondemand schedutil userspace

CPUFreq Kernel
Submodule

powersave1 11

1

1 1 1

2

performance 2 powersave 2

35

To abstract out differences between various hardware implementations across

multiple generations of processors, vendors provide transition drivers such as the

Intel P-state driver (the default for Intel processors) and the CPUFreq driver (the

default for AMD processors). These drivers act as an interface between the PCU and

a set of defined governors residing in the OS. Governors implement a particular policy

that determines when and how the processor frequency and voltage are scaled.

Generic governors supported by the Linux acpi-cpufreq driver are shown in

Figure 2.12 and they can be broadly classified into two groups, static frequency

selection governors and DVFS-based governors. The static frequency governors, such

as the performance and powersave governors, set the processor frequency to the

highest (P0) and lowest (Pn) available clock frequency, respectively. The performance

governor is utilized for latency-sensitive workloads to minimize their response time

and execution times. However, this policy can quickly lead to overheating and it tends

to be wasteful when the system is idle or underutilized. On the other side, the

powersave governor will guarantee the lowest-power operation, at the expense of

increased execution time. It should be noted that running at the lowest clock

frequency may significantly increase the execution time so that the overall energy

exceeds the energy required at other operating points.

To bridge the gap between the performance and powersave governors, the

governors that employ DVFS are utilized. The ondemand governor automatically

selects the highest frequency when the average processor load exceeds a certain

threshold. The governor keeps track of the average processor load determined by the

scheduler. If the load falls below a certain threshold the clock frequency is lowered

accordingly. The conservative governor is similar to the ondemand one; the only

36

difference is that changes in the clock frequency occur more gradually. The schedutil

governor is also similar to ondemand and allows for scheduler-driven processor

frequency selection. Finally, the userspace governor allows the user to set a specific

clock frequency statically.

The ondemand generic governor is recommended when using the acpi-cpufreq

driver. When using the recent intel_pstate driver, only two governors are supported

referred to as the performance and powersave. However, although these two governors

share the names of the generic governors, they behave differently. They both provide

dynamic voltage and frequency scaling, similar to the generic schedutil or ondemand

generic governors. In the rest of the paper, we will exclusively use the governors that

rely on the intel_pstate driver.

2.6 Functioning of a DVFS-based Governor

The governors that employ DVFS such as ondemand use CPU utilization as

the primary metric in determining appropriate P-states [46]. The CPU utilization is

separately provided by the scheduler for each CPU core at a fixed time interval,

typically 1 ms. The CPU utilization metric is calculated as the percentage of time

spent in the non-idle thread for a given time interval, as shown in Eq. 2.6.

% 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑡𝑖𝑚𝑒 𝑖𝑛 𝑛𝑜𝑛 𝑖𝑑𝑙𝑒 𝑡ℎ𝑟𝑒𝑎𝑑

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑙
 ∗ 100 Eq. 2.6

Figure 2.13 illustrates the P-state selection mechanism on a single core over a

period of time-based on CPU utilization. In this example, we assume that the

processor supports 11 P-states, P0 to P10. The scheduler monitors and updates the

CPU utilization every 1 ms and the ondemand governor linearly maps the CPU

utilization to the available P-states and sends a request for the next P-state every 10

37

ms. However, a transition between the P-states takes a finite amount of time. This

latency has been reduced over many generations of processors and is currently ~10

ms. The same technique is applied to all the cores visible to the operating system.

Figure 2.13 CPU Utilization Metric Breakdown

Figure 2.14 illustrates the P-state selection mechanism on a 4-physical core

processor utilizing the ondemand governor. We assume that core 0 has utilization of

100% in the given interval; thus, it is mapped to the P0 state. Similarly, core 1 with

the utilization of 80% is mapped to P2, core 2 with the utilization of 0% to P11, and

core 3 with the utilization of 60% to P4. If the processor supports core level P-state

management, then cores 0-3 operate in states P0, P2, P10, and P4, respectively.

However, if the processor only supports socket level P-state management, then the

lowest-numbered P-state among all the cores is selected for the entire processor (P0

in our example). This request is then sent to the P-unit through the corresponding

driver.

Utilization=90%
Next P-State=P1

Utilization=90%
Next P-State=P1

Utilization=50%
Next P-State=P5

Utilization=0%
Next P-State=P10

Utilization=0%
Next P-State=P10

DVFS Interval=10ms DVFS Interval=10ms DVFS Interval=10ms DVFS Interval=10ms DVFS Interval=10ms

Scheduler Tick Interval = 1ms

DVFS Interval=10ms

P0 P5P1P1P0 P10

Time (ms)

38

Figure 2.14 Core-wise P-state Voting Mechanism

0 1 2 3

100% 80% 0% 60%

P2P0

P0

Physical Core

%
Utilization

Core
P-State

Socket
P-State

P10 P4

39

CHAPTER 3

MOTIVATION

The current consensus reflected in the implementation of the most frequently

used governors is that running the processor at the highest possible clock frequency

during program execution is the most energy-efficient strategy. However, several

studies have shown that this approach is not optimal for all types of workloads,

especially for those that are bound by memory [15] [27].

To illustrate the problems with the CPU utilization metric discussed in 2.6, let

us consider an example illustrated in Figure 3.1. Assume a processor supports 11 P-

states, P0-P10. A CPU is utilized for 9 ms by a thread out of 10 ms in a DVFS interval,

resulting in a 90% utilization rate. Consequently, the ondemand governor selects the

P1-state. However, the utilization metric does not look into whether the thread

performs any useful computation or not.

For example, it could be that out of 9 ms, only 3 ms are spent in doing useful

computation. The rest are wasted processor clock cycles due to mispredictions in the

processor front-end, structural hazards in the back-end, stalls due to memory reads

and writes, or other stalls. This results in wasted CPU clock cycles that continue to

consume energy without providing any returns. This problem is present in processors

40

operating in all domains, from hand-held devices to datacenter servers. To the best of

our knowledge, none of the current state-of-the-art governors deal with this issue even

if the energy-saving settings are turned on.

Figure 3.1 Limitations of the CPU utilization metric.

To quantify the impact of the voltage and frequency operating points on the

execution time of different types of benchmarks, we consider three floating-point

speed benchmarks from the SPEC CPU2017 benchmark suite: 638.imagick, 628.pop2,

and 649.fotonik3d. The benchmarks are picked from the SPEC CPU2017 floating-

point speed suite where the user has the ability to select the number of OpenMP

threads to run.

In this case, the benchmarks are run with 6 threads to fully load a test machine

with 6 processor cores. These benchmarks exhibit different characteristics, being

compute-intensive (638.imagick), balanced (628.pop2), and memory-intensive

(649.fotonik3d) [26]. Compute-intensive refers to benchmarks that are bound by the

available on-chip compute resources. Balanced benchmarks are bound by both the

available compute resources and the memory subsystem, where performance depends

on both compute resources, memory size, and bandwidth. Memory-intensive

applications are bound by the memory subsystem, where performance is dependent

on the available memory size and bandwidth alone.

Waiting (60 %)
Stalled

Wasted Clock Cycles
at Selected P-State

Utilized Clock Cycles
at Selected P-State

Busy (90%)

Active Execution
(30%)

Idle (10%)

Idle (10%)

41

Figure 3.2, Figure 3.3, and Figure 3.4 show the program execution time

(primary Y-axis) and the total number of clock cycles needed (secondary Y-axis) as a

function of statically selected operating points (frequency, voltage) across the entire

socket for 638.imagick, 628.pop2, and 649.fotonik3d, respectively. The number of clock

cycles is further divided into clock cycles that actively issue a micro-operation and

clock cycles that are stalls.

In the case of 638.imagick (Figure 3.2), the total number of clock cycles and the

percentage of the stalled cycles remain constant, regardless of the clock frequency.

Consequently, the program execution time proportionally decreases as the clock

frequency increases. In the case of 628.pop2 (Figure 3.3), the total number of clock

cycles needed to execute the benchmark increases with an increase in the clock

frequency. This increase is mainly driven by a significant increase in the number of

stalled cycles caused by memory. Consequently, the program execution times plateaus

at ~2.7 GHz.

Finally, in the case of 649.fotonik3d (Figure 3.4), the total number of clock

cycles increases almost 4-fold as the clock frequency increases from 0.8 GHz to 4.3

GHz. Here the program execution time plateaus at ~1.7 GHz. Thus, processors

running at higher clock frequency will waste energy without any benefit to overall

performance. Yet, the default ondemand governor would run all three benchmarks at

the maximum clock frequency.

42

Figure 3.2 Impact of Frequency Scaling on Compute Intensive Benchmark

Figure 3.3 Impact of Frequency Scaling on Balanced Benchmark

Figure 3.4 Impact of Frequency Scaling on Memory Intensive Benchmark

 -

 5

 10

 15

 20

 25

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 0.8 GHZ 1.70 GHz 2.70 GHz 3.70 GHz 4.3 GHz

C
yc

le
s

x
1

0
12

Ti
m

e
(s

)

ET , Total Cycles for 638.imagick_s (6T)

 Active Cycles Total Stalls Time

 -

 2

 4

 6

 8

 10

 -

 200

 400

 600

 800

 1,000

 1,200

 0.8 GHZ 1.70 GHz 2.70 GHz 3.70 GHz 4.3 GHz

C
yc

le
s

x
1

0
12

Ti
m

e
(s

)

ET, Cycles for 628.pop2_s (6T)

 Active Cycles Total Stalls Time

 -

 2

 4

 6

 8

 10

 12

 14

 16

 -

 200

 400

 600

 800

 1,000

 0.8 GHZ 1.70 GHz 2.70 GHz 3.70 GHz 4.3 GHz

C
yc

le
s

x
1

0
12

Ti
m

e
(s

)

ET, Cycles for 649.fotonik3d_s (6T)

 Active Cycles Total Stalls Time

43

To remedy this problem, we introduce a new class of DVFS-based governors

that do not use processor utilization as the primary metric in selecting P-states.

Rather, we propose considering a range of different events from performance

monitoring units that can help us dynamically select P-states that will reduce energy

consumption while providing minimal performance degradation.

44

CHAPTER 4

PMU-EVENTS-DRIVEN DVFS TECHNIQUES

This section describes the proposed PMU-event-driven DVFS techniques and

their implementation. Section 4.1 introduces the performance monitoring unit (PMU)

and the top-down microarchitectural analysis method (TMAM) derived from the PMU

events. Section 4.2 describes our proposed techniques for runtime DVFS. We propose

four techniques that use the metrics derived from the Performance Monitoring Unit

(PMU) events to determine P-states. The first two techniques evaluate utilization at

the microarchitectural level, by using pipeline stalls or total cycle stalls. The next two

techniques focus on the memory subsystem by using the memory-related stalls or the

last level misses per kilo instruction to determine P-states. Section 4.3 discusses the

previously proposed CPI-based frequency scaling technique and its limitations.

Section 4.4 details the implementation of the proposed techniques.

4.1 Performance Monitoring Unit Event-Based Analysis

Modern processors integrate multiple components on a single chip, including,

out-of-order superscalar processor cores with private L1 and L2 caches, interconnect,

shared L3 caches, hardware accelerators (e.g., GPGPU), and a memory controller.

45

Multiple micro-operations can be executed and retired concurrently in a single clock

cycle (~5 in most modern x86 processors). Writing effective software that takes full

advantage of complex hardware structures is a challenging proposition. To cope with

this challenge, software developers often rely on dedicated on-chip hardware

resources called performance monitoring units (PMUs). Performance monitoring was

introduced in the Pentium processor with a set of model-specific counters.

PMUs can help software developers find bottlenecks in their programs,

understand how their programs utilize available hardware resources and guide their

optimization efforts. A PMU typically consists of several counters dedicated to

counting various hardware and software-triggered events. Each processor core

includes several fixed-purpose counters (e.g., counting clock cycles and instructions)

and several programmable general-purpose counters. The programmable counters

can be used to count one of the hundreds of available events. The events can be broadly

classified into hardware events (e.g., cache misses, branch mispredictions) and

software events, from the OS and kernel (e.g., page faults, context switches) [79].

Modern processors support uncore PMUs, those that reside outside processor cores

and can count events related to the memory controller, interconnect, or shared L3

caches.

4.1.1 Top-down Microarchitectural Analysis Method

Modern superscalar processors can be conceptually divided into the front-end

and the back-end. The front-end is responsible for fetching and decoding instructions

into micro-operations for execution. The back-end is responsible for scheduling,

execution, and retiring of instructions. The Top-down Microarchitectural Analysis

Method (TMAM) introduced by A. Yasin provides a practical way to quickly identify

46

true bottlenecks in Intel processors [65]. In this method, we assume that each CPU

core on each clock cycle has a fixed number of pipeline slots available as shown in

Figure 4.1. The TMAM analysis looks at the issue stage of the pipeline, which is right

in between the front-end and the back-end. Therefore, in any instance, it is possible

to determine the maximum number of pipeline slots that can be issued. In this

example, a 4-wide CPU is shown executing instructions for 10 clock cycles, resulting

in 40 pipeline slots.

Figure 4.1 Illustration of pipelines slot utilization on a 4-wide CPU

If a pipeline slot retires a micro-operation, it is useful (shown in green) and if

it does not retire a micro-operation it is attributed to a stall (shown in grey). Thus, in

this example, 18 out of 40 slots are stalled, indicating that the code efficiency from the

microarchitecture perspective is only 55% (22/40). An alternative form of evaluating

code effectiveness is by observing the total cycle stalls. A particular CPU clock cycle

is considered a stall when no micro-operation is issued across all available slots. From

the illustration in Figure 4.1, 2 out of the 10 cycles are stalled. This indicates a clock

cycle utilization of 80% (8/10).

Clockticks: 1 2 3 4 5 6 7 8 9 10

Alloc Slot 0:

Alloc Slot 1:

Alloc Slot 2:

Alloc Slot 3:

47

The TMAM analysis breaks up all pipeline slots into four categories as shown

in Figure 4.2: (i) Pipeline slots containing useful work that is issued and retired

(Retiring); (ii) Pipeline slots containing useful work that is issued but flushed (Bad

Speculation); (iii) Pipeline slots that could not be filled with useful work due to

problems in the front-end such as limited buffer sizes and low decode bandwidth

(Front-End Bound); and (iv) Pipeline slots that could not be filled with useful work

due to unavailability of functional units and data hazards in the backend (Back-End

Bound) [73].

Figure 4.2 TMAM slot classification hierarchy

The Retiring metric represents a fraction of pipeline slots utilized by useful

work, i.e., Ops (micro-operations) that eventually get retired. Ops perform basic

operations on data stored in one or more registers, including transferring data and

performing arithmetic or logical operations on registers. Ideally, all pipeline slots

would be attributed to the Retiring category. Retiring of 100% would indicate that the

maximum possible number of retired Ops per clock cycle has been achieved.

Maximizing Retiring typically increases the Instruction-Per-Cycle (IPC) metric. A

lower IPC indicates bottlenecks that should be addressed for better performance.

Uop
Allocate?

Uop Ever
Retires?

Back End
Stalls?

Retiring
Bad

Speculation
Back End

Bound
Front End

Bound

Yes No

Yes No Yes No

48

Bad Speculation captures a fraction of pipeline slots wasted due to incorrect

speculations. This includes slots used to issue Ops that eventually do not get retired

and slots for which the issue-pipeline was blocked due to recovery from earlier

incorrect speculation.

The Front-End Bound metric captures a fraction of pipeline slots where the

processor's front-end undersupplies its back-end. Within the front-end, a branch

predictor predicts the next address to fetch, cache-lines are fetched from the memory

subsystem, cache-lines are split into instructions, and lastly, instructions are decoded

into micro-operations (Ops). The Front-End Bound metric denotes pipeline slots that

are not utilized because the front-end failed to deliver Ops, even though the back-

end could have accepted them.

The Back-End Bound metric captures a fraction of pipeline slots where no

Ops are being delivered due to a lack of required resources in the back-end for

accepting new Ops. The back-end is a portion of the processor core where an out-of-

order scheduler dispatches ready Ops into their respective execution units, and, once

completed, these Ops get retired according to program order. For example, stalls due

to data-cache misses or stalls due to the divider unit being overloaded are both

categorized as Back-End Bound. The Back-End Bound stalls are further broken down

into two subcategories: (i) Core Bound stalls and (ii) Memory Bound stalls.

Core Bound stalls. Core Bound stalls are caused by a less-than-optimal use of

the available execution units in the CPU. This metric captures the impact of stalls

caused by a shortage of uncore resources or data dependencies. Hence it may indicate

the CPU may have exhausted all the Out of Order (OOO) resources, certain execution

49

units are overloaded or dependencies in the program's data- or front-end is limiting

the performance (e.g., FP-chained long-latency arithmetic operations).

Memory Bound stalls: This metric shows how memory subsystem issues affect

performance. Memory Bound captures a fraction of pipeline slots where pipelines are

being stalled due to load or store instructions. This accounts mainly for incomplete in-

flight memory demand loads in addition to less common cases where stores could

imply back pressure on the pipeline.

4.2 Proposed DVFS Techniques

We propose four techniques that use the architectural events derived from the

PMUs to determine P-states. PMUs in each core are programmed to count specific

events for a given period of time. The first two techniques evaluate core utilization

using microarchitectural metrics defined in 4.1, namely the pipeline slot stalls (DVFS

based on Pipeline Slot Stalls or FS-PS) and the total cycle stalls (DVFS based on Total-

Stalls or FS-TS). The next two techniques evaluate the utilization of the memory

subsystem by using the memory-related cycle stalls (DVFS based on Memory-Stalls

or FS-MS) and the last level cache misses per kilo instructions (DVFS based on LLC

Misses PKI or FS-LLCM).

FS-PS: The first technique selects the P-state based on the pipeline slot stalls.

The pipeline slot stalls are a metric that accurately captures the CPU’s pipeline

utilization. The number of available pipeline slots in a given time interval can be

divided into (i) pipeline slots that issue micro-operations and (ii) stalled/unused

pipeline slots, as shown in Figure 4.3. The pipeline slot stall ratio is computed as the

number of unused slots divided by the total number of available slots in the time

50

interval (Eq. 4.1). In the illustration from Figure 4.1, 18 out of 40 available slots do

not issue any useful micro-operation, resulting in a pipeline stall ratio of 0.45.

Figure 4.3 CPU Pipeline Slots Breakdown

𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 = 1 −
𝐼𝑠𝑠𝑢𝑒𝑑 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑙𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑆𝑙𝑜𝑡𝑠
 Eq. 4.1

By profiling a range of representative workloads, we find that the pipeline slot

stall ratio is always larger than 0.10. Hence, the ratio range between 0.1 and 1.0 is

linearly mapped onto available P-states. While this metric accurately assesses the

pipeline occupancy, it has one weakness. If the code does not have enough work to fill

in all of the slots in a single cycle (e.g., due to data dependencies), the pipeline slot

stall ratio will be relatively high, which will in turn lower the clock frequency.

However, this may not be advantageous for either performance or energy efficiency.

Figure 4.4 illustrates one such scenario where the pipeline slot stall ratio is 0.8.

Figure 4.4 Pipeline slot occupancy resulting in a high pipeline slot stall ratio.

Total Available
Slots

Issued Pipeline
Slots

Unused Pipeline
Slots

Clockticks: 1 2 3 4 5 6 7 8 9 10

Alloc Slot 0:

Alloc Slot 1:

Alloc Slot 2:

Alloc Slot 3:

51

In this case, FS-PS will throttle towards a P state with a low clock frequency;

this will, in turn, lower performance with no tangible benefits for energy efficiency.

For example, this happens when stalls are caused by data loads satisfied by upper

levels in the cache hierarchy.

FS-TS: The second technique selects the next P-state based on the total cycle

stalls, promising to overcome the shortcomings of FS-PS. The processor clock cycles

while executing instructions can be divided into (i) those that contain at least one

pipeline slot that actively issues and retires a micro-operation and (ii) those that

contain stalls across all available slots as shown in Figure 4.5. The total cycle stall

ratio is computed as the number of unused cycles divided by the total number of CPU

cycles in a given time interval as shown in Eq. 4.2. Thus, the total cycle stall ratio for

a scenario shown in Figure 4.4 is 0.2 (2 out of 10 cycles are completely unused).

Consequently, unlike FS-PS, FS-TS will ensure that the CPU runs at a relatively high

clock frequency as long as there are not too many adjacent clock cycles without any

useful micro-operations that can be issued.

Figure 4.5 Total Execution Cycle Breakdown

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑦𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
 Eq. 4.2

FS-MS: The next proposed technique focuses only on the memory subsystem.

It selects the next P-state based on the ratio of memory-related cycle stalls. The total

cycle stalls in the back-end can be divided into (i) core-related cycle stalls and (ii)

Total Execution
Cycles

Total Execution
Cycles Active

Total Execution
Cycles Stalled

52

memory-related cycle stalls, as shown in Figure 4.6. The memory cycle stall ratio is

computed as the number of cycles stalled due to the memory hierarchy divided by the

total number of CPU cycles in a given time interval, as shown in Eq. 4.3. We observe

through workload profiling that the memory-related cycle stall ratio is always lower

than 0.90. Hence the ratio ranging from 0.0 to 0.9 is mapped linearly onto the

available P-states.

Figure 4.6 Total Stall Cycle Breakdown

𝑀𝑒𝑚𝑜𝑟𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑆𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑦𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
 Eq. 4.3

FS-LLCM: This technique utilizes the stalls in the memory hierarchy,

specifically the ones caused due to off-chip requests. Figure 4.7 shows the breakdown

for the memory-related stall cycles. The memory requests can be resolved in the upper

levels of the cache hierarchy (e.g., LLC) or may require access to DRAM (off-chip). The

number of stalls imposed by the requests resolved in DRAM can be orders of

magnitude larger than the number of stalls imposed by the requests resolved in

caches.

Total Execution
Cycles

Total Execution
Cycles Active

Total Execution
Cycles Stalled

Core Related
Cycle Stalls

Memory Related
Cycle Stalls

53

Figure 4.7 Memory Stall Breakdown

𝐿𝐿𝐶 𝑀𝑃𝐾𝐼 =
𝐿𝐿𝐶 𝑀𝑖𝑠𝑠𝑒𝑠

𝑅𝑒𝑡𝑖𝑟𝑒𝑑 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
∗ 1000 Eq. 4.4

FS-LLCM is based on using the misses in the last level cache memory per kilo

instructions (Eq. 4.4) to determine the next P-state. A miss in the last level cache

correlates with an increased number of stall cycles. We observe through workload

profiling that the LLC MPKI typically ranges from 0 to 100. The actual LLC-MPKI is

then linearly mapped onto the available P-states.

4.3 DVFS based on CPI (FS-CPI)

Johnson et al. proposed a frequency scaling technique that uses cycles-per-

instruction (CPI) to determine the next P-state [34]. The proposal uses PMU events

cycles and instructions to determine the CPI of each active thread and groups them

into low-CPI and high-CPI threads. Each of these groups is then scheduled onto

different cores/sockets with different operating frequencies. For comparison with our

proposed techniques, we implement a version of this proposal (DVFS based on CPI or

FS-CPI). As specific implementation guidelines for CPI ranges and mappings are not

specified, we define conditions similar to our techniques for a fair comparison. The

CPI range depends on processor microarchitecture, the number, and characteristics

of P-states, and the workload characteristics. In our case, the test system has 40 P-

Total Execution
Cycles

Total Execution
Cycles Active

Total Execution
Cycles Stalled

Core Related
Cycle Stalls

Memory Related
Cycle Stalls

Memory Related
Stalls On-Chip

Memory Related
Stalls Off-Chip

54

states. Through profiling various workloads, we observe that the CPI can be as high

as 6.28. Hence, we select the CPI range from 0 to 6, before mapping it onto the

available P-states. Experiments with other ranges are performed as well, but the

results turned out to be inferior when compared to the selected range.

The CPI is a useful metric for assessing system performance. However, it could

sometimes be misleading in modern superscalar processors. Modern processors

support a number of vector instruction set extensions, with the most recent AVX2 that

can process 512 bits of data in a single operation. Such instructions do significantly

more work in a single clock cycle than corresponding scalar instructions. The use of

vector instructions generally shortens the time needed to complete a task. However,

since a single vector instruction does a lot of work, the CPI for a vectorized program

typically exceeds the CPI of an equivalent scalar program. This phenomenon, where

the non-vectorized code has lower CPI but poorer performance, has been observed in

prior research [28]. It is better to use fewer vector instructions that do more work than

to use many scalar instructions that retire faster [2][80]. This can be illustrated using

a simple example. Figure 4.8 illustrates the scalar addition of two vectors with 64

elements, where each element is 1 byte in size. Assuming each scalar addition takes

1 cycle, 64 clock cycles are required to complete 64 operations, resulting in a CPI of 1.

However, if we vectorize the same code as shown in Figure 4.9, the whole operation

can be completed in one instruction which could take nearly two clock cycles, resulting

in a CPI of 2. Though the CPI is higher for the vectorized code, it takes significantly

less time. Thus, the CPI as a metric fails to account for such intricacies.

55

Figure 4.8 CPI of Non-Vectorized Code

Figure 4.9 CPI of Vectorized Code

4.4 Implementation of the Proposed Techniques

Figure 4.10 illustrates our implementation of the proposed techniques. All the

proposed techniques use the same framework. They differ only in the events used to

calculate the metrics of interest. The PMUs are initialized and programmed to count

specific events in each physical core. The use of ‘rdpmc’ machine instruction reduces

the latency to a few clock cycles when reading the PMU events. Events such as cycles,

instructions, the total stall cycles, the total memory stall cycles, the total number of

used pipeline slots, and the total number of L3 misses are counted using general-

purpose counters. PMU events are collected concurrently across all physical CPU

cores in the system.

Metrics such as the total pipeline slot stall ratio, the total cycle stall ratio, total

memory-related cycle stall ratio, the LLC misses PKI, and the average CPI are

A[0] A[1] ... A[63]

B[0] B[1] ... B[63]

C[0] C[1] ... C[63]

Non Vectorized
CPI=1

A[0] A[1] ... A[63]

B[0] B[1] ... B[63]

C[0] C[1] ... C[63]

Vectorized
(CPI~2)

56

computed periodically. The performance monitoring interval is set to 10 ms. This

interval matches the period used by the current governors.

All the techniques employ a linear mapping of events onto the P-states,

including P0 (turbo frequencies). The use of P0 ensures that compute-intensive

benchmarks will not experience any performance degradation. The next P-state is

determined for each processor core and then applied to individual cores if the core-

level P-state management is supported. Alternatively, the lowest-numbered P-state is

selected and applied to all the cores, if only the socket-level P-state management is

supported, as shown in Figure 2.14. The implementation of the proposed algorithm

has a worst-case execution time of ~13 ms (when running in the highest numbered P-

state), 10 ms monitoring interval plus 3 ms to compute the metrics of interest,

determine the next P-state and issue a request for the new P-state.

The implementation of this algorithm increases the CPU power consumption

by 1 W during nominal operating conditions when processor cores are idle. We also

note that the frequency of algorithm implementation is an important aspect. For the

given workloads, which take significant time and do not change phase often, an

invocation period of 100 ms provides good results. For workloads with frequent phase

changes, a smaller invocation period, e.g., ~10ms, is beneficial. However,

implementing the technique at the hardware level would provide the best possible

results.

Next, it should be noted that though all the techniques are implemented on an

Intel processor, similar PMU infrastructures exist in AMD and ARM processors.

However, specific event names and access methods/tools may vary. Thus, the proposed

techniques can be used in non-Intel architectures.

57

Figure 4.10 Implementation of the Proposed DVFS Techniques

Performance
Monitoring

Initialized

Start

Read PMU Data

after 10ms

Determine P-state

Send P-state Request

to Processor

Done

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

0x186

MSR
Counter

0xc1 0x00

rdmsr
address

rdpmc
address

0x187 0xc2 0x01

0x188 0xc3 0x02

0x189 0xc4 0x03

0x18a 0xc5 0x04

cycles

instructions

cycle_activity.stalls_total

cycle_activity.stalls_mem_any

top-down.slots-issued

0x18b 0xc6 0x05 L3 cache-misses

Total

0x0043003C

Event

0x004300C0

0x044304A3

0x144314a3

0x0043010E

0x00434F2E

0 to 0.025

P0 P1 P38 P39
...

0.025 to 0.05 ... 0.95 to 0.975 0.975 to 1.00

Total Stall Ratio

Available P-States

58

CHAPTER 5

EXPERIMENTAL ENVIRONMENT

This chapter gives an overview of the experimental environment, tools used for

measurements, and metrics used for evaluation. Section 5.1 describes the test system

used for experiments and experimental conditions. Section 5.2 describes various

metrics used in the study. Section 5.3 covers all the tools used in the study. Finally,

Section 5.4 introduces the workloads used in the study. All the measurements are

carried out on the test system in the LaCASA Laboratory at UAH [81].

5.1 System under Test

The study primarily utilizes a workstation with an Intel x86 processor. The test

system is built around an Intel 8th generation Core i7-8700K (code name Coffee-Lake)

manufactured using Intel’s 14nm++ technology node [82]. The processor core

architecture is based on the Skylake architecture with minor updates and

refinements. Figure 5.1 shows the die map of the processor used in this study. The

processor includes six processor cores (hexa-core), a shared L3/LLC cache partitioned

to ~2 MiB per core, a graphical processing unit, a memory controller, a system agent,

and I/O interfaces, all connected through an on-chip ring interconnect.

59

The processor supports hyperthreading, thus providing twelve logical cores

when hyperthreading is enabled. However, throughout the study, we disable

hyperthreading for measurement purposes as hyperthreading does not contribute to

the performance of SPEC CPU2017 benchmarks and several measurements require

it to be disabled [23]. The integrated memory controller is in a dual-channel

configuration with a maximum bandwidth of 41 GiB/s to external DRAM memory.

The processor clock frequency ranges from 0.8 GHz to 4.3 GHz (Turbo Mode when all

cores are active) or 4.7 GHz (when only one core is active). The nominal frequency is

set to 4.3 GHz.

Figure 5.1 Die Map of a Hexa-Core Coffee Lake Processor

Table 5.1 provides the workstation parameters. The workstation has a total

system DRAM of 32 GiB configured as dual-channel. The system runs Ubuntu 18.04

LTS with Linux kernel 4.15.0. It has sufficient power and cooling requirements. The

highest observed CPU operating temperature of 55˚ C and no thermal throttling is

observed throughput the experimental evaluations. The processor's base operating

Processor
Graphics

Core Core

Core

Core

Shared L3 Cache & Ring Interconnect

Memory Controller I/O

System
agent and
Memory

Controller

Including DMI,
Display & Misc.

I/O

Core Core

60

frequency is 3.70 GHz and an all-core turbo frequency of 4.30 GHz. Note that the

proposed techniques were tested in multiple x86 machines and provide similar

results. The test machine shown here has state-of-the-art power management with 40

P-states and hence was chosen.

Table 5.1 Test System Parameters

Processor Core i7-8700K

Lithography 14 nm

Intel Codename Coffee-Lake

Physical Core Count 6

Logical Core Count 12

CPU Max Freq. 4.70 GHz

CPU Nom. Freq. 3.70 GHz

CPU Min Freq. 0.80 GHz

Number of P-States 40 (P0-P39)

DRAM 32 GB

DRAM Freq. 2,400 MHz

DRAM Bandwidth 41.6 GB/s (2-Channels)

TDP (watts) 95 W

5.2 Metrics for Evaluation

In this study, we evaluate the impact of the proposed techniques on

performance (P) and energy efficiency (EE). The performance of a benchmark is

defined as the reciprocal of its execution time. Energy-efficiency of a benchmark is

defined as the reciprocal of the energy consumed to execute the benchmark. As we are

evaluating the effectiveness of the proposed techniques relative to the state-of-the-art

ondemand governor, a reference measurement set is established for each benchmark,

Bi, by measuring its execution time, T(Bi, ODGOV), and energy consumed, E(Bi, ODGOV)

when the ondemand governor is used.

To compare performance under different governors, we define performance

speedup, P.S, calculated as shown in Eq. 5.1, where T(Bi, PGGOV) is the execution time

61

of a benchmark Bi when run using the proposed governor, PGGOV. This metric captures

the impact of a proposed governor on performance relative to the default ondemand

governor. For example, a P.S of 0.5 indicates that the benchmark takes two times

longer to execute under PGGOV than under ODGOV.

Similarly, we calculate the energy efficiency improvement EE.I for each

benchmark, as shown in Eq. 5.2, where E(Bi, PGGOV) is the energy consumed by the

benchmark Bi when run suing the proposed governor PGGOV. Please note that both

P.S and EE.I are a higher-is-better type of metrics.

𝑃. 𝑆 (𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉) =
𝑇(𝐵𝑖, 𝑂𝐷𝐺𝑂𝑉)

𝑇(𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉)
 Eq. 5.1

𝐸𝐸. 𝐼 (𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉) =
𝐸(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉)

𝐸(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉)
 Eq. 5.2

Whereas P.S and EE.I capture the effectiveness of the proposed techniques in

regard to performance and energy efficiency, respectively, we use their product,

PxEE.I, to capture their overall effectiveness in a single number. PxEE.I is defined as

shown in Eq. 5.3 and it assumes that both performance and energy efficiency are

equally important. This is also a higher-is-better metric, and it captures the overall

effectiveness of the proposed techniques relative to the ondemand governor. Thus, if

one cares only about performance, P.S should be used. If one cares only about energy

efficiency, EE.I should be used. Finally, if one cares about both, PxEE.I metric should

be used.

𝑃𝑥𝐸𝐸. 𝐼(𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉) =
 𝑇(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉) ∗ 𝐸(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉)

𝑇(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉) ∗ 𝐸(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉)
 Eq. 5.3

62

5.3 Tools

The study uses various tools in different sections of the study that primarily

leverage the PMUs to collect various events during benchmark execution. Tools such

as Linux perf [72] and Intel VTune Amplifier [73] are utilized to characterize and

classify the workloads and likwid [60] is used to measure the program execution time

and the processor power consumption during experimental evaluation.

5.3.1 Linux perf

Modern processors have dedicated hardware counters for performance

monitoring as part of the PMU. They form a basis for profiling applications that trace

dynamic control flow and identify hotspots. Linux perf is a profiler tool present in all

Linux-based systems after kernel version 2.6. It abstracts the hardware differences in

different processor generations and vendors by virtualizing the counter mechanism

and providing a simple command-line interface with a list of measurable events.

However, this process adds an overhead of about 100 ms for any measurement [63].

The tool and underlying kernel interface can measure events coming from

PMUs, i.e., their hardware counters, or from the kernel. Some examples of micro-

architectural events are, the number of clock cycles, instructions retired, L1 cache

misses, and so on as shown in Figure 5.2. They vary with each processor type and

model. Other events are counted using Linux kernel counters, and they are thus called

software events. Perf has been consistently used in several performance evaluation

studies for architectural evaluation and code optimization [16]. The study uses perf

for characterizing the workload and for verifying the implementation of the proposed

techniques.

63

Figure 5.2 Illustration of event access in perf

5.3.2 Likwid

Energy measurements are conducted using a set of lightweight command-line

tools called likwid (Like I Knew What I’m Doing) [60]. It is targeted towards

performance-oriented programming in a Linux environment, does not require any

kernel patching, and is suitable for Intel and AMD processor architectures. The tools

can be roughly grouped into three categories, such as system information and control,

performance and energy profiling, and micro-benchmarking. Individual tools allow

developers to explore memory hierarchy, access performance monitoring counters,

control clock frequencies, and control architectural features, e.g., hardware

prefetching. Specifically, we use likwid-powermeter, a tool that accesses RAPL

counters for measuring power and energy [64], and likwid-setfrequencies, a tool that

allows for setting the core and uncore clock frequencies. We use likwid for time and

energy measurements.

Use PMU registers

Use evet names

64

5.3.3 Intel VTune Amplifier

The Intel VTune Amplifier is a performance analysis tool that relies on the

underlying hardware counters to get run-time parameters of the application under

test. It can be used to locate or determine the following aspects of the code and system:

• The most time-consuming functions or hot spots in the application;

• Sections of code that do not effectively utilize the available processor time;

• The best sections of code to optimize for sequential performance and for

threaded performance;

• Synchronization objects that affect the application performance;

• Hardware-related issues in code such as data sharing, cache misses, branch

misprediction, and others;

• The performance impact of different synchronization methods, different

numbers of threads, or different algorithms;

• Thread activity and transitions such as migrations and context switches.

For this study, four key features of Intel VTune Amplifier are used: (i)

Advanced Hotspots, (ii) HPC Performance Characterization, (iii) Memory Access

Analysis, and (iv) General Exploration. When the number of events exceeds the

number of available PMU counters, the tool multiplexes events and uses sampling.

Depending on the number of multiplexed events, the reliability of measurements can

vary. If the reliability is less than 70%, then the results are not to be considered

acceptable [73]. Our experimental results had a measurement reliability of over 95%.

Advanced Hotspot analysis is used to identify performance-critical code

sections in a given application. The periodic instruction pointer sampling performed

by Intel VTune Amplifier identifies code locations where an application spends the

65

most time. It creates a list of functions in the application ordered by the amount of

time spent in each function. By default, Advanced Hotspots analysis does not capture

the function call stacks as the hotspots are collected, but it can be used to sample all

processes on the system. This type of analysis uses event-based sampling collection

and analyzes all the processes running on the system at the time, providing CPU time

data on whole system performance.

HPC Performance Characterization analysis is used to identify how effectively

a compute-intensive application uses CPU, memory, and floating-point operation

hardware resources. The HPC Performance Characterization analysis type can be

used as a starting point for understanding the performance aspects of an application.

During HPC Performance Characterization analysis, the data collector profiles the

application using event-based sampling collection.

Memory Access analysis is used to identify memory-related issues, like non-

uniform memory access (NUMA) problems and bandwidth-limited accesses, and

attribute performance events to memory objects (data structures). This attribution is

possible due to the instrumentation of memory allocations/de-allocations and getting

static/global variables from the symbol information. Memory Access analysis uses

hardware event-based sampling to collect data.

General Exploration analysis is used to understand how efficiently the code

passes through the core pipeline. During General Exploration analysis, the Intel

VTune Amplifier collects a complete list of events for analyzing a typical client

application. It calculates a set of predefined ratios used for the metrics and facilitates

identifying hardware-level performance problems. The General Exploration analysis

strategy varies by microarchitecture. For modern microarchitectures starting with Ivy

66

Bridge, the General Exploration analysis is based on the Top-down Microarchitecture

Analysis Method (TMAM).

5.4 Workloads

This section introduces the various workloads used in the dissertation. The

study primarily uses the SPEC CPU2017 benchmark suite [83] to evaluate the

proposed techniques. In addition, the study uses the Parsec-3.0 benchmark suite [84]

representing now a bit aged workload, and the SPECpower_ssj2008 benchmark [85]

to represent transactional workloads in servers.

5.4.1 SPEC CPU2017

The SPEC CPU suites have been widely used in academia and industry for the

past few decades to evaluate the performance of processors, memory, and compilers

[29]. The SPEC CPU2017 benchmark suites are the SPEC’s latest, sixth generation

of CPU benchmarks. The CPU2017 suites incorporate major updates relative to the

previous generation, CPU2006. They include significantly larger workloads signifying

the evolution of computing capacity [25], parallel programs using OpenMP to

accommodate multiple core and thread models, and optional metrics for measuring

power consumption [30].

The SPEC CPU2017 contains 43 benchmarks, organized into four suites [83]

[8]. The fp_speed/fp_rate and int_speed/int_rate suites (shown in Table 5.2 and Table

5.3) include benchmarks with predominantly floating-point and integer data types,

respectively, designed to stress the speed (speed suites) and throughput (rate suites)

of modern computer systems. The speed benchmarks and rate benchmarks within the

same pair (5nn benchmark for rate and 6nn, the benchmark for speed) are like each

67

other. Differences can be found in compilation flags, run rules, and the size of the

input workloads. Generally, speed benchmarks require more memory than their rate

counterparts. The SPECspeed benchmarks need large stacks [23].

Table 5.2: SPEC CPU Floating-point Benchmarks

SPECrate SPECspeed Lang. Application Area

503.bwaves 603.bwaves_s Fortran Computational Fluid Dynamics

507.cactuBSSN_r 607.cactuBSSN_s C++, C, Fortran Physics: General Relativity, Numerical Relativity

508.namd_r C++ Scientific, Structural Biology, Molecular Dynamics

510.parest_r C++ A finite element solver

511.povray_r C++, C Computer Visualization: Ray tracing-

519.lbm_r 619.lbm_s C Computational Fluid Dynamics

521.wrf_r 621.wrf_s Fortran, C Weather Research and Forecasting

526.blender_r C++, C 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, C Atmosphere General Circulation Model (AGCM)

 628.pop2_s Fortran, C Climate modeling: Wide-scale ocean modeling

538.imagick_r 638.imagick_s C Image manipulation

544.nab_r 644.nab_s C Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran Computational Electromagnetics (CEM)

554.roms_r 654.roms_s Fortran Regional Ocean Modeling System (ROMS)

Table 5.3: SPEC CPU2017 Integer Benchmark

SPECrate SPECspeed Lang. Application Area

500.perlbench_r 600.perlbench_s C Programming language: Perl interpreter

502.gcc_r 602.gcc_s C C Language optimizing compiler: GNU C compiler

505.mcf_r 605.mcf_s C Combinatorial optimization

520.omnetpp_r 620.omnetpp_s C++ Discrete Event simulation

523.xalancbmk_r 623.xalancbmk_s C++ XSLT processor for transforming

525.x264_r 625.x264_s C Video compression

531.deepsjeng_r 631.deepsjeng_s C++ Artificial Intelligence: Alpha-beta tree search (Chess)

541.leela_r 641.leela_s C++ Artificial Intelligence (Monte Carlo simulation)

548.exchange2_r 648.exchange2_s Fortran Artificial Intelligence: Recursive solution generator

557.xz_r 657.xz_s C General data compression

The benchmarks are derived from a wide variety of application domains and

are written in C, C++, and Fortran programming languages. The SPEC CPU2017

provides a comparative measure of integer and/or floating-point compute-intensive

68

performance on a machine. Upon completion of execution, the user is provided with a

number generated by the ‘runcpu’ utility that compares the performance to the SPEC

reference machine [8]. This is convenient for quick analysis and a good starting point.

A single copy of a speed benchmark (name ending with a suffix “_s”), SBi, is

run on a test machine using the reference input set; the SPECspeed (SBi) metric

reported by the running script is calculated as the ratio of the benchmark execution

times on the reference machine and the test machine as shown in Eq. 5.4.

𝑆𝑃𝐸𝐶𝑠𝑝𝑒𝑒𝑑(𝑆𝐵𝑖 , 𝑁𝑇) =
 𝑇(𝑅𝑒𝑓, 1)

𝑇(𝑇𝑒𝑠𝑡, 𝑁𝑇)
 Eq. 5.4

A composite single number is also reported for an entire suite; it is calculated

as the geometric mean of the individual SPECspeed ratios of all benchmarks in that

suite. When running speed benchmarks, a performance analyst has an option to

specify the number of OpenMP threads, NT, as many benchmarks support multi-

threaded execution. Multiple copies (NC) of a rate benchmark (name ending with a

suffix “_r”), RBi, are typically run on a test machine, and the SPECrate (RBi, NC)

metric is defined as the ratio of the execution times of a single copy on the reference

machine and NC-copy on the test machine, multiplied by the number of copies as

shown in Eq. 5.5.

𝑆𝑃𝐸𝐶𝑟𝑎𝑡𝑒(𝑅𝐵𝑖 , 𝑁𝐶) =
𝑁 ∗ 𝑇(𝑅𝑒𝑓, 1)

𝑇(𝑇𝑒𝑠𝑡, 𝑁𝐶)
 Eq. 5.5

5.4.2 Parsec 3.0

The Princeton Application Repository for Shared-Memory Computers

(PARSEC) is a benchmark suite composed of multithreaded programs. The suite was

designed to be representative of shared-memory programs for chip-multiprocessors.

69

It consists of 9 applications and 3 kernels which were chosen from a wide range of

application domains. The workloads were selected to include different combinations

of parallel models, machine requirements, and runtime behaviors. The benchmarks

cover a wide range of computer tasks such as financial analysis, computer vision,

engineering, enterprise storage, animation, similarity search, data mining, machine

learning, and media processing. Benchmarks vary in type of parallelization model

(data-parallel or pipelined), working set, and communication intensity.

All benchmarks are written in C/C++. Characterization studies have evaluated

the use of Parsec-3.0 benchmarks and have analyzed the parallelization, the working

sets and locality, the communication-to-computation ratio, and the off-chip bandwidth

requirements of its workloads [7] [11]. Several prior studies have used the Parsec suite

simulations and experimental evaluations.

5.4.3 SPECpower_ssj2008

SPECpower_ssj2008 is an industry-standard benchmark designed for

experimental power and performance evaluation of server computers. The workload

is scalable, multi-threaded, and portable across a wide range of operating

environments. It exercises CPUs, caches, memory hierarchy, and the scalability of

symmetric multiprocessor systems (SMPs), as well as implementations of the Java

Virtual Machine (JVM), Just-In-Time (JIT) compiler, garbage collection, threads, and

some aspects of the operating system. Although the workload is derived from the

SPECjbb2005 benchmark suite, the two workloads are not comparable because of

basic differences in the transaction mix, transaction scheduling, and timing.

The execution of the benchmark consists of two phases, (a) calibration and (b)

running of a series of target loads. Initially, a series of calibration measurements are

70

performed to find the maximum throughput of the server. The calibration run, by

default, uses three intervals of 240 seconds each. The benchmark uses a system call

to determine the number of logical cores available on the system and creates a

matching number of emulated warehouses. Transactions are scheduled in batches of

1000 transactions per warehouse. Once a batch of transactions is processed, the next

batch is issued after a period of time, thus modulating the machine load. However,

during the calibration, the bathes are issued continuously to determine the maximum

throughput the machine can sustain – it is equivalent to the 100% load level.

After calibration, the benchmark run consists of a sequence of eleven load

levels from 100% to 0% (idle) in 10% increments. The whole benchmark run takes

about 70 minutes to complete on the test machine. The results include the total

number of ssj operations for each load level and the corresponding power consumption

and operating temperature. To compute a power-performance metric across all load

levels, the measured transaction throughputs for each load level are added together

and then divided by the sum of the average power consumed for each level. The result

is a figure of merit called "overall ssj_ops/watt." This ratio indicates the effectiveness

of the system under test and its energy efficiency.

71

CHAPTER 6

SPEC CPU2017 CHARACTERIZATION ANALYSIS

The SPEC CPU2017 benchmark suites are used as the primary workload in

this study. To gain deeper insights on the impact of dynamic voltage and frequency

scaling (DVFS) a comprehensive evaluation is conducted on the test system. During

the SPEC CPU2017 evaluation, the processor is set to the fixed nominal operating

frequency of 3.7 GHz. Section 6.1 discusses briefly the results of a compiler evaluation

performed to select the primary compiler for the study [28]. Section 6.2 shows the

results of the top-down microarchitectural analysis used to classify the benchmarks

into specific groups [25] [26]. Finally, Section 6.3 shows the impact of static frequency

scaling on different classes of benchmarks [27].

6.1 Compiler Evaluation

Modern compilers are extremely complex software that translates programs

written in high-level languages into binaries that execute on the underlying

hardware. Compilers play a key role in bridging the gap between abstract high-level

source code used by software developers and the advanced hardware structures. The

72

selection of a compiler depends on parameters such as accessibility, support for

hardware, the efficiency of the compiler, and backward compatibility.

To select the compiler to build the CPU2017 suites, we consider the three most

prevalent compilers used in industry and academia, as follows: (a) the Intel Parallel

Studio XE-18 (IPS), (b) the LLVM Compiler Infrastructure project, and (c) the GNU

Compiler Collection [28]. We evaluate their effectiveness by comparing three

important metrics, as follows: (a) the total time needed to compile benchmarks (build

times), (b) the size of the executables (code sizes), and (c) the execution times for speed

benchmarks and throughput for rate benchmarks (performance). Note that we were

unable to successfully compile and run all benchmarks across all compilers. The

discussion for the entire benchmark suite contains only the benchmarks that have

results across all the compilers. Any benchmark that does not have results across all

compilers is omitted from the discussion and summary view of the suite.

6.1.1 Executable Size

Table 6.1 shows the size of the SPEC CPU2017 suites in terms of kilo lines of

code (KLOC) and the total executable size generated by the three compilers. The size

of the benchmark executables varies widely for different compilers.

Table 6.1: Executable Size (Lower is Better)

Suites KLOC
Executable size [KB]

ips llvm gnu

fp_speed 916 22,868 16,952 46,346

fp_rate 3048 56,595 50,595 282,627

int_speed 2484 35,265 24,684 181,820

int_rate 2484 35,409 24,701 181,702

Total 8968 150,137 116,192 692,495

73

The LLVM compilers consistently create the smallest executables for all the

suites. GNU compilers produce the largest executables in all cases. LLVM generates

executables that are ~1.28x and ~5.92x smaller than the corresponding ones created

by IPS and GNU, respectively.

6.1.2 Build Times

SPEC CPU2017 configuration files that govern the process of compiling

benchmarks (compiler and libraries used, optimization switches, and others) allow us

to specify the number of processor cores that can be utilized during compilation. Thus,

we consider build times for all the benchmarks when using one processor and when

using six processor cores.

The build times are shown in Table 6.2. LLVM has a smaller executable size,

but it has significantly longer build-times in comparison to GNU and IPS. This is

especially true for floating-point benchmarks. Though the GNU compilers produce

executables that are significantly larger in size, the build times are shorter than the

build times of LLVM. IPS on the other hand produces executables as small as LLVM

and it does that in build times that are comparable to the GNU build times. The

number of CPUs used in building the benchmarks plays a significant role in build

times for GNU and LLVM, however, the IPS does not appear to benefit much when

using multiple cores in the building process.

While considering build times, the GNU compiler collection is the best choice.

Overall, when a single processor is used to build executables, GNU build times are

~11.16x shorter than build times of LLVM and ~1.03x shorter than IPS. When six

processor cores are used to build benchmarks, GNU build times are ~10.34x (LLVM)

and 4.41x (IPS) shorter.

74

Table 6.2: Build Times (Lower is Better)

Suits Build Time (1-CPU) [s] Build Time (6-CPU) [s]

ips llvm gnu ips llvm gnu

fp_speed 490 2,911 251 426 775 79

fp_rate 880 11,203 940 534 2,521 224

int_speed 635 7,151 677 855 1,477 151

int_rate 608 7,157 678 852 1,480 151

Total 2,613 28,422 2,546 2,667 6,253 605

6.1.3 Performance

Finally, we look at the overall performance of executables created by each of

the compilers. Table 6.3 shows the overall SPECratio calculated for the entire suite.

Regarding benchmark performance, IPS is the clear winner with its ability to exploit

hardware features of the x86 ISA. Considering the geometric mean of the SPEC ratios

of all the benchmarks, we find that IPS executables run ~37% faster than LLVM and

~46% faster than GNU executables for single-threaded executions. When we consider

six-threaded executions, IPS executables run ~22% faster than the corresponding ones

for LLVM and ~30% faster than the GNU executables.

Table 6.3: SPECratios (Higher is Better)

Suits Performance (1-T/C) Performance (6-T/C)

ips llvm gnu ips llvm gnu

fp_speed 10.05 7.54 6.01 20.04 18.98 15.40

fp_rate 11.79 7.91 7.15 34.00 28.00 27.00

int_speed 8.08 6.06 6.28 9.00 7.00 7.00

int_rate 6.95 5.28 5.46 31.00 25.00 25.00

In summary, executables created by IPS outperform those created by LLVM

and GNU for all benchmarks. The performance of LLVM and GNU are comparable

with LLVM doing better for floating-point benchmarks and GNU showing slightly

75

better performance for the integer benchmarks. We observe that a vast majority of the

submitted results in SPEC also use IPS results. Hence the rest of the study uses IPS

compiled executables exclusively.

6.2 TMAM Results of SPEC CPU2017 Benchmarks

Now we use the to-down microarchitectural analysis method (TMAM) to

classify the IPS compiled executables on the workstation. Figure 6.1 shows the results

of TMAM for all the CPU2017 benchmarks executed with six thread/copies (NT/NC=6)

as well as the average instruction per cycle (IPC) on the secondary y-axis. With

TMAM, the product of the number of pipeline slots and the number of clock cycles

needed to execute a benchmark constitutes 100% of possible pipeline slots. Each

pipeline slot is then marked as either Retiring (orange), Bad Speculation (gray), Front-

End Bound (yellow), or Back-End Bound stalls. The Back-End Bound stalls are

further broken down into (i) Core Bound stalls (royal blue) that are caused by

pressures on execution units or lack of instruction-level parallelism, and (ii) Memory

Bound stalls (light blue) that are caused by stalls related to caches and memory

subsystems. Memory latency and limited memory bandwidth are major factors

contributing to a large number of Memory Bound slots.

The benchmarks are organized based on the overall IPC and the percentage of

slots bound by the back-end, especially the memory sub-component. Observing the

runtime behavior and resource requirements for each of the benchmarks, they can be

classified as compute-intensive, balanced, and memory-intensive [26] [25]. The first

group which is compute-intensive has a higher percentage of retiring slots. The

bottlenecks are generally associated with the front-end and are generally core bound

in the back-end. They have a low dependence on the memory sub-component. This

76

results in a high IPC. Such benchmarks linearly scale with operating core-frequency

and do not see noticeable benefits in lower operating frequency [27]. The second group

called balanced is bound by both the front-end and the back-end. Such application has

a lower percentage of retiring instructions resulting in a lower IPC. The benefits of

frequency scaling for such benchmarks are contingent on where the bottleneck

originates. If a significant number of stalls are resolved on-chip (e.g., data is found in

the upper-level cache), lowering CPU clock frequency due to a high stall ratio would

have a negative impact. On the other side, if a significant number of stalls is resolved

off-chip, i.e., in DRAM, the lower CPU clock frequency may be beneficial. Finally, the

last group is called memory-intensive. This group has a large dependency on the

memory hierarchy resulting in an extremely low IPC. A significant portion of the

pipeline slots are stalls.

Figure 6.1 TMAM Analysis of SPEC CPU2017 Benchmarks

As the proposed DVFS techniques are geared towards memory-intensive

applications with a significant number of stalls, it is vital to understand the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
3

8.
im

a
g

ic
k_

s

5
0

8.
n

a
m

d
_r

5
3

8.
im

a
g

ic
k_

r

5
2

5.
x2

6
4_

r

5
1

1.
p

o
vr

a
y_

r

5
4

8.
ex

ch
a

n
g

e2
_

r

5
0

0.
p

er
lb

en
ch

_r

5
2

6.
b

le
n

d
er

_r

5
3

1.
d

ee
p

sj
en

g
_r

5
4

4.
n

a
b

_r

6
4

4.
n

a
b

_s

5
4

1.
le

el
a

_r

5
2

7.
ca

m
4

_r

5
5

7.
xz

_
r

6
2

7.
ca

m
4

_s

5
0

7.
ca

ct
u

B
SS

N
_r

6
0

7.
ca

ct
u

B
SS

N
_s

5
0

2.
g

cc
_r

6
2

1.
w

rf
_s

6
2

8.
p

o
p

2
_s

6
5

7.
xz

_
s

5
0

5.
m

cf
_r

5
1

0.
p

a
re

st
_r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

1.
w

rf
_r

5
2

0.
o

m
n

et
p

p
_r

6
0

3.
b

w
a

ve
s_

s

5
0

3.
b

w
a

ve
s_

r

5
1

9.
lb

m
_r

5
4

9.
fo

to
n

ik
3

d
_r

5
5

4.
ro

m
s_

r

6
4

9.
fo

to
n

ik
3

d
_s

6
5

4.
ro

m
s_

s

6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

IPC

Top Level TMAM Results of SPEC CPU2017 Benchmarks on Core i7-8700K

Retiring Bad Speculation Front-End Bound Core Bound Memory Bound IPC

77

breakdown of the memory bottlenecks. To address this, we consider the breakdown of

benchmark execution using a clock cycles view. A clock cycle is considered stalled

when no micro-operation is issued during that cycle across all slots. The origins of

these stalls can be further divided into L1 bound, L2 bound, LLC/L3 bound, DRAM

bound, and store bound. The L1-bound metric shows how often the execution was

stalled without missing the L1 data cache. The L2 and L3 bound metric shows how

often the core was stalled in L2 and L3 respectively. The DRAM bound metric shows

how often the CPU was stalled in the main memory. The Store Bound metric shows

how often the CPU was stalled on store operation.

Figure 6.3 shows the clock cycle view for all the CPU2017 benchmarks. As

discussed earlier, the memory dependency of the compute-intensive group is minimal.

Only a small fraction of the total execution cycles are memory hierarchy stalls. Next,

in the case of the balanced benchmarks, the stalls in the memory hierarchy

significantly increase, especially in DRAM. ~50% of all execution cycles are stalls in

the memory hierarchy for the balanced benchmarks. It is also important to note that

523.xalancbmk_r has a significant portion of stalls that are serviced in the last level

cache. Finally, the memory-intensive benchmarks have a significant portion of the

execution clock cycles being memory hierarchy stalls. Over ~80% of execution cycles

are spent waiting for data to arrive. We observe that a major portion of the stall comes

from either L1 or DRAM.

78

Figure 6.2 Memory Hierarchy Related Cycle Stall Breakdown

The DRAM-bound metric further enables us to identify bandwidth and latency-

related issues in main memory. DRAM bandwidth is the rate at which data can be

read from or stored into the main memory by the processor. DRAM bandwidth bound

metric specifies the number of cycle stalls due to the inability of main memory

bandwidth. Figure 6.3 explores the off-chip stalls by providing stalls that occur due to

memory bandwidth and latency in DRAM. Overall, memory bandwidth is the biggest

factor affecting the performance of these benchmarks.

In the case of the compute-intensive benchmarks, as expected we see minimal

stalls from the main memory. The available bandwidth is not a constraint on the

performance of such benchmarks. Next, in the case of the balanced benchmarks, the

bandwidth-related stalls account for ~20% of the execution cycles. Considering the

memory-intensive group of benchmarks, ~50% of all execution cycles are stalls in

DRAM due to bandwidth limitations. This is concerning when we notice that over the

past decade, that single-core memory bandwidth allocation has not improved

significantly. This is a major bottleneck in modern systems.

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
3

8.
im

a
g

ic
k_

s

5
0

8.
n

a
m

d
_r

5
3

8.
im

a
g

ic
k_

r

5
2

5.
x2

6
4_

r

5
1

1.
p

o
vr

a
y_

r

5
4

8.
ex

ch
a

n
g

e2
_

r

5
0

0.
p

er
lb

en
ch

_r

5
2

6.
b

le
n

d
er

_r

5
3

1.
d

ee
p

sj
en

g
_r

5
4

4.
n

a
b

_r

6
4

4.
n

a
b

_s

5
4

1.
le

el
a

_r

5
2

7.
ca

m
4

_r

5
5

7.
xz

_
r

6
2

7.
ca

m
4

_s

5
0

7.
ca

ct
u

B
SS

N
_r

6
0

7.
ca

ct
u

B
SS

N
_s

5
0

2.
g

cc
_r

6
2

1.
w

rf
_s

6
2

8.
p

o
p

2
_s

6
5

7.
xz

_
s

5
0

5.
m

cf
_r

5
1

0.
p

a
re

st
_r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

1.
w

rf
_r

5
2

0.
o

m
n

et
p

p
_r

6
0

3.
b

w
a

ve
s_

s

5
0

3.
b

w
a

ve
s_

r

5
1

9.
lb

m
_r

5
4

9.
fo

to
n

ik
3

d
_r

5
5

4.
ro

m
s_

r

6
4

9.
fo

to
n

ik
3

d
_s

6
5

4.
ro

m
s_

s

6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

CPI

Memory Hierarchy Stalls For SPEC PU2017 Benchmarks

L1 Bound L2 Bound L3 Bound DRAM Bound Store Bound CPI

79

Figure 6.3 Main Memory/Off-Chip Stall Breakdown

Further, to demonstrate the bandwidth utilization of the benchmarks we show

the main-memory bandwidth consumption for each of the benchmarks. Figure 6.4

shows the average and the maximum DRAM bandwidth consumed at any point during

the execution of each of the SPEC CPU2017 benchmarks.

Figure 6.4 DRAM Bandwidth Utilization Parameters

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
3

8.
im

a
g

ic
k_

s

5
0

8.
n

a
m

d
_r

5
3

8.
im

a
g

ic
k_

r

5
2

5.
x2

6
4_

r

5
1

1.
p

o
vr

a
y_

r

5
4

8.
ex

ch
a

n
g

e2
_

r

5
0

0.
p

er
lb

en
ch

_r

5
2

6.
b

le
n

d
er

_r

5
3

1.
d

ee
p

sj
en

g
_r

5
4

4.
n

a
b

_r

6
4

4.
n

a
b

_s

5
4

1.
le

el
a

_r

5
2

7.
ca

m
4

_r

5
5

7.
xz

_
r

6
2

7.
ca

m
4

_s

5
0

7.
ca

ct
u

B
SS

N
_r

6
0

7.
ca

ct
u

B
SS

N
_s

5
0

2.
g

cc
_r

6
2

1.
w

rf
_s

6
2

8.
p

o
p

2
_s

6
5

7.
xz

_
s

5
0

5.
m

cf
_r

5
1

0.
p

a
re

st
_r

5
2

3.
xa

la
n

cb
m

k_
r

5
2

1.
w

rf
_r

5
2

0.
o

m
n

et
p

p
_r

6
0

3.
b

w
a

ve
s_

s

5
0

3.
b

w
a

ve
s_

r

5
1

9.
lb

m
_r

5
4

9.
fo

to
n

ik
3

d
_r

5
5

4.
ro

m
s_

r

6
4

9.
fo

to
n

ik
3

d
_s

6
5

4.
ro

m
s_

s

6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

CPI

DRAM Stall Cycles For Six Threaded/Copy Benchmarks

DRAM BW Memory Latency Other CPI

0

5

10

15

20

25

30

35

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 6
5

7.
xz

_s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

D
R

A
M

 B
W

 G
B

/s

DRAM BW Utilization Parameters of SPEC CPU2017 Benchmarks

Avg DRAM BW Max DRAM BW

80

Overall, we see that the compute-intensive benchmarks have a low average

DRAM bandwidth utilization. The balanced benchmarks have a moderate bandwidth

demand, well under the machine capacity. Finally, the memory-intensive benchmarks

consistently reach the full test machine capacity and as a result, have significant stalls

in the DRAM as shown in the previous section.

In summary, based on the run-time analysis of the SPEC CPU2017

benchmarks are classified into three distinct groups as shown in Figure 6.5; (a)

compute-intensive when the benchmark performance is generally compute-bound; (b)

balanced when benchmarks are bound both by the compute and memory resources;

and (c) memory-intensive when the benchmarks are heavily bound by the memory

subcomponent of the system.

Figure 6.5 SPEC CPU2017 Classification Summary

6.3 Impact of Static Frequency Selection on P and EE

In this section, we explore the impact of clock frequency on performance and

energy efficiency by setting the operating points at fixed values, as follows: 0.8 GHz,

1.7 GHz, 2.7 GHz, 3.70 GHz, 4.00 GHz, and 4.30 GHz (Turbo mode). The test machine

SPEC
CPU2017

fp_speed

BCI MI

int_speed fp_rate int_rate

BCI MI BCI MI BCI MI

638
644

607
621
627
628

603
619
649
654

600
625
631
641
648

602
605
623
657

620

508
511
526
538
544

507
510
521
527

503
519
549
554

500
525
531
541
548

502
505
523
557

520

81

is fully loaded running six-thread or six-copy SPEC CPU2017 benchmarks. The

benchmark execution times and energy consumed is measured for each operating

point. For each benchmark, Bi, the ratio of the benchmark’s execution time while

running the core’s nominal frequency of 3.7 GHz and the benchmark’s execution time

while running at a particular frequency F is evaluated as follows: T(Bi, 3.7 GHz)/T(Bi,

F). This metric is equivalent to the normalized performance for a benchmark Bi when

running at a frequency, F, P(Bi, F)/P(Bi, 3.7 GHz). Similarly, normalized energy-

efficiency is defined as E(Bi,3.7 GHz)/E(Bi, F).

Figure 6.6 illustrates how benchmarks’ execution times vary with processor

clock frequency. Straight horizontal lines with lighter shade represent the ratios of

processor clock frequency F/3.7 GHz, thus serving as indicators of expected

performance. The results indicate that increasing processor clock frequency above the

nominal frequency is beneficial for a small group of compute-intensive benchmarks.

For instance, the performance gain of compute-intensive benchmarks is ~16% (out of

16% theoretical) when running at 4.30 GHz and ~8% (out of 8% theoretical) when

running at 4.00 GHz. The gains are lower for the balanced group with 6%, when

running at 4.30 GHz. On the other side, by lowering the processor clock frequency

below the nominal frequency, the performance is expectedly reduced. However, the

performance losses of the benchmarks that are bound by memory are lower than

expected. For example, the performance loss for the memory-intensive benchmarks is

~3% (27% is theoretically possible) when running at 2.7 GHz and ~11% when running

at 1.70 GHz (out of 54%).

82

Figure 6.6 Normalized P for SPEC CPU2017 as a Function of Clock Frequency

Figure 6.7 illustrates how the total package energy varies as a function of the

processor clock frequency. The results show that by increasing the processor clock

frequency above the nominal (lines representing 4.0 GHz and 4.3 GHz), the total

energy increases proportionally and thus does not improve energy efficiency even for

benchmarks that see significant performance gains. Running at 1.7 GHz and 2.7 GHz

improves energy efficiency for all benchmarks, regardless of their characteristics.

However, the energy efficiency improvements are the largest for the memory-intensive

benchmarks. Thus, the memory-intensive group sees a relative energy efficiency

improvement of 88% at 1.70 GHz. The effects of running at the lowest clock frequency

of 0.8 GHz are mixed. Whereas all compute-intensive benchmarks and many memory-

intensive benchmarks see an overall loss in energy efficiency because of prolonged

execution time, the benchmarks in the memory-intensive group see improvement in

energy efficiency even at this operating point.

 -

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

N
o

rm
al

iz
e

d
 P

er
f.

 R
at

io

Normalized Performance for Six Threaded/Copy SPEC CPU2107 Benchmarks

 0.8 GHz 1.70 GHz 2.70 GHz 3.70 GHz 4.00 GHz 4.30 GHz

83

Figure 6.7 Normalized EE for SPEC CPU2017 as a Function of Clock Frequency

Figure 6.8 shows the effect of frequency scaling on the combined metric PxEE

when normalized to the nominal frequency of 3.70 GHz across all benchmarks. For

each benchmark, the ratio of the PxEE when running at the nominal frequency and

the PxEE when running at frequency F is calculated. As expected, compute-intensive

and balanced groups do not see noticeable benefits in scaling frequency. However, the

memory-intensive benchmarks see significant benefits in running at lower operating

frequencies (at ~1.70 GHz) with a relative improvement of ~69%. It is interesting to

see that 519.llbm_r has the best PxEE metric (~102% improvement) at 0.8 GHz.

519.lbm_r is heavily vectorized and benefits from running at the lowest clock

frequency.

 0.3

 0.8

 1.3

 1.8

 2.3

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

N
o

rm
al

iz
ed

 E
E

R
at

io

Normalized Energy Efficiency for Six Threaded/Copy CPU2017 Benchmarks

 0.8 GHz 1.70 GHz 2.70 GHz 3.70 GHz 4.00 GHz 4.30 GHz

84

Figure 6.8 Normalized PxEE for SPEC CPU2017as a Function of Clock Frequency

The above results provide strong proof that energy efficiency can indeed be

improved if the clock frequency is fixed to an operating point that is the best fit for a

given benchmark. To illustrate this point further, Figure 6.9 shows the execution time

on the x-axis and energy consumed on the y-axis measured on the test machine while

running 649.fotonik3d_s at 6 threads, while varying the clock frequency from 0.8 GHz

to 4.3 GHz from above. Lowering clock frequency from 4.30 GHz to 2.70 GHz does not

have a significant negative impact on execution time but saves energy almost 3 times.

Further lowering clock frequency beyond 1.7 GHz starts increasing execution time

and energy-consumed as well. Thus, from the shape of this energy-time curve, we can

say that the most effective operating point for this benchmark should be in a range

from 1.7 GHz to 2.3 GHz.

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

N
o

rm
al

iz
ed

 P
xE

E
R

at
io

Normalized PxEE for Six Threaded/Copy SPEC CPU2017 Benchmarks

 0.8 GHz 1.70 GHz 2.70 GHz 3.70 GHz 4.00 GHz 4.30 GHz

85

 Figure 6.9 Optimal Frequency Selection of 649.fotonik3d_s

Figure 6.10 quantifies the highest achievable PxEE gains from static frequency

selection for each benchmark relative to PxEE measured when running under the OS-

ondemand governor. Here, we find the operating point that produces the maximum

PxEE for a given benchmark. Please note that different benchmarks will have

different optimal operating points. This metric is then normalized to the PxEE

measured when the corresponding benchmark is run under the OS-ondemand

governor. The results show that PxEE improvements can be achieved for all

benchmarks, though they are the largest for the memory-intensive benchmarks.

0.8 GHz
1.30 GHz1.70 GHz

2.30 GHz

2.70 GHz
2.90 GHz

3.00 GHz
3.20 GHz

3.70 GHz

4.00 GHz

4.30 GHz

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200

En
er

gy
 (

J)

Time (s)

Optimal Frequency Selection (649.fotonik3d_s-6T)

86

Figure 6.10 Highest Achievable PxEE Gains for Manual Frequency Selection

Whereas improvements demonstrated in Figure 6.10 are significant, finding a

perfect operating point for a given benchmark on a given machine is not practical as

it would require prior profiling which takes time and energy. In addition, programs

go through different phases during their execution, and statically selected frequency

throughout benchmark execution cannot provide the best possible results. Hence,

better power management techniques have the potential to take advantage of DVFS

and provide even better energy efficiency.

 0.50

 1.00

 1.50

 2.00

 2.50

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

N
o

rm
al

iz
ed

 P
xE

E
R

at
io

PxEE Improvment for Manual Frequency Selection

 OS-ondemand Static Selection

87

CHAPTER 7

RESULTS

In this section, we discuss the results of the experimental evaluation. The

baseline performance and energy efficiency are measured on the test machine running

the powersave governor with the intel-pstate driver. As discussed in (2.5), this

governor corresponds to the default Linux ondemand governor. This governor selects

the highest operating frequency (P0 state) during benchmark execution because the

test machine is fully loaded. We will refer to this governor as OS-ondemand. We

measure the performance and energy-efficiency of the proposed techniques FS-PS,

FS-TS, FS-MS, and FS-LLCM, as well as the previously proposed FS-CPI, and then

compute derived metrics P.S, EE.I, and PxEE.I. The experiments are conducted for

all three workloads of interest: SPEC CPU20017 (Section 7.1), Parsec 3.0 (Section 7.2),

and SPECpower_ssj2008 (Section 7.3). Section 7.1 provides an in-depth analysis of

the results for our primary workload, discussing separately performance speedup

(7.1.1), energy-efficiency improvement (7.1.2), and the product of the two (7.1.3).

88

Section 7.1.4 provides a comparison of the metrics. Section 7.1.5 discusses some

limitations of FS-CPI and Section 7.1.6 puts all the SPEC CPU2017 results together.

7.1 SPEC CPU2017

7.1.1 Performance

Figure 7.1 shows the performance speedup (P.S defined in Eq. 5.1) for all

considered techniques and benchmarks. The results show that all of the proposed

techniques, including FS-CPI, expectedly degrade the performance relative to the OS-

ondemand governor (red line). The degree of performance degradation varies across

the individual techniques and benchmarks.

First, we discuss the results for benchmarks in the compute-intensive group.

The performance losses of individual techniques are summarized by taking into

account the execution times of all benchmarks within this group. FS-PS has the

highest performance loss of ~23%. This result is somewhat expected as this governor

uses the pipeline slot stall ratio in selecting the next P-state. Very few benchmarks

can fully utilize all processor pipeline slots. FS-TS has a lower performance loss of

~14%. For FS-PS and FS-TS, the degree of performance degradation directly

correlates to the pipeline slot stall ratio and the total stall cycle ratio, respectively.

For example, the FS-PS performance loss for 638.imagick_s is as lows as 4% because

this benchmark has a very high pipeline slot utilization ratio in the entire suite. On

the other side, the FS-PS performance loss reaches 35% for 644.nab_s. FS-MS has an

even smaller total loss of only ~9%. FS-LLCM has performance similar to the

reference governor with a total performance loss of just ~1%. The maximum FS-LLCM

performance loss observed in 526.blender_r is below 3% and many benchmarks in this

89

group do not see any performance degradation. Finally, FS-CPI has a performance

loss of ~7%. The performance losses for this technique are similar to the ones observed

in FS-MS.

For the balanced benchmarks, the proposed techniques result in even higher

performance degradation compared to the compute-intensive benchmarks. FS-PS has

the highest total performance loss of ~32%, ranging from 9% (521.wrf_r) to 51%

(523.xalanbcmk_r). FS-TS has a total performance loss of 23%, exhibiting very similar

trends as FS-PS, albeit with smaller losses. FS-MS has a total performance loss of

~19%. We see this behavior as a consequence of a higher percentage of stalls being

caused by either the front-end or back-end. These stalls will lead to transitioning to

lower clock frequencies. However, lowering clock frequencies often negatively affects

performance in this type of benchmark. This is especially evident for 523.xalancbmk_r

which has a high degree of stalls caused by memory references that are resolved in

the L3 cache. On the other side, FS-LLCM and FS-CPI have somewhat smaller

performance degradation, the total losses are ~9% and ~10%, respectively. These two

techniques exhibit similar behavior for this group of benchmarks as well.

In the case of the memory-intensive benchmarks, the total performance

degradation is significantly smaller for all considered techniques. The OS-ondemand

will place the processor in the highest operating frequency (P0), even though the

majority of clock cycles are stalls caused by the memory subsystem. FS-PS, FS-TS,

FS-MS, and FS-LLCM have performance degradation of ~15%, ~9%, ~8%, and 12%,

respectively. FS-CPI has the smallest performance degradation of just ~3%. The

trends in performance losses observed in FS-CPI and FS-LLCM deviate from each

other in this group of benchmarks.

90

Considering all the benchmarks together, taking the total execution times of

all the benchmarks, FS-PS has the total performance loss of ~23%, FS-TS ~16%, FS-

MS ~12%, and FS-LLCM ~9%. Finally, FS-CPI has the smallest performance loss of

just ~6%. FS-CPI followed by FS-LLCM provide the smallest performance

degradation. In conclusion, if we are interested in performance only, the OS-

ondemand governor gives the best results across all the benchmarks in SPEC

CPU2017.

Figure 7.1 Performance Speedup for Individual SPEC CPU2017 Benchmarks

7.1.2 Energy Efficiency

Figure 7.2 shows the energy efficiency improvement as defined in Eq. 5.2. The

reference OS-ondemand consumes the most energy and FS-PS the least across all

benchmarks. In the case of the compute-intensive benchmarks, FS-PS and FS-TS

provide energy efficiency improvements of ~34% (ranging from 5% to 63%) and ~24%

(ranging from 9% to 51%), respectively. These energy savings significantly outweigh

the corresponding performance losses. FS-MS has a modest total energy-efficiency

 0.25

 0.50

 0.75

 1.00

 1.25

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

Sp
ee

d
u

p

Performance Speedup for SPEC CPU2017 Benchmarks

 OS-ondemand FS-PS FS-TS FS-MS FS-LLCM FS-CPI

91

improvement of ~15% and FS-LLCM ~1%. FS-CPI has a total energy-efficiency

improvement of ~14%.

In the case of the balanced benchmarks, the energy efficiency improvements

are significantly higher than those observed in the compute-intensive benchmarks. FS-

PS and FS-TS improve energy efficiency by ~95% (from 72% to 132%) and ~77% (from

19% to 86%), respectively. FS-MS and FS-LLCM improve the total energy efficiency

by ~58% and ~32%, respectively. The total EE.I for FS-CPI is ~34%, ranging from 20%

to 45%.

The highest energy-efficiency improvements are observed for the memory-

intensive benchmarks. FS-PS provides the highest total energy-efficiency

improvements of 183% (from 126% to 225%), followed by FS-TS with 154% (from 113%

to 194%). FS-MS and FS-LLCM improve energy efficiency by ~122% and 138%,

respectively. Finally, FS-CPI also improves energy efficiency, but by only ~84%.

Considering all of the benchmarks together, summarizing the total energy

consumed for all the benchmarks regardless of their group, FS-PS has the total

energy-efficiency improvement of ~92%, FS-TS ~75%, FS-MS ~58%, and FS-LLCM

~44%. Finally, FS-CPI has the smallest gains of just ~41%. The gains in energy

efficiency outweigh the performance losses in all considered techniques.

FS-PS and FS-TS both rely on microarchitecture events that fully capture the

utilization of the pipeline, whereas FS-MS and FS-LLC rely on events that capture

the effectiveness of the memory subsystem alone. The results indicate that the former

have a higher potential to improve energy efficiency in SPEC CPU2017 benchmarks.

92

Figure 7.2 Energy-Efficiency Improvement for SPEC CPU2017 Benchmarks

7.1.3 PxEE

Finally, we evaluate the impact of the proposed techniques on the combined

metric PxEE. Figure 7.3 shows PxEE.I, as defined in Eq. 5.3. All techniques provide

improvements in PxEE relative to the reference governor. These improvements are as

high as 6% (FS-TS) for the compute-intensive benchmarks. For the balanced

benchmarks, FS-PS, FS-TS, and FS-MS PxEE improvements are ~32%, ~34%, and

~28%, respectively. The FS-LLCM and FS-CPI improvements are ~20% and ~21%,

respectively. When considering the memory-intensive benchmarks, the proposed

techniques improve PxEE significantly: FS_PS provides the highest gains at 141%.

Next FS-TS has a gain of 132%. FS-MS and FS-LLCM also have respectable gains of

~100% and 110% respectively. Finally, FS-CPI has the smallest PxEE improvements

of only ~78%. The relatively higher loss in performance observed for FS-PS and FS-

TS is compensated by the gains in energy efficiency to provides positive PxEE gains.

However, we should note that the proposed techniques underperform for

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

EE
.I

Energy Efficiency Improvement for SPEC CPU2017 Benchmarks

 OS-ondemand FS-PS FS-TS FS-MS FS-LLCM FS-CPI

93

523.xalancbmk_r providing a PxEE loss of ~3%. This is because the benchmark has a

significant number of stalls that are L3 bound. As the stalls are resolved on-chip,

reducing operating frequency severely hurts performance.

Considering all of the benchmarks together i.e., the execution times and

energies consumed are summarized across all benchmarks before they are used in

equations (3)-(5), FS-PS and FS-TS perform the best in PxEE, both providing a total

improvement of ~48% relative to the reference governor. FS-MS and FS-LLCM have

PxEE improvements of ~39% and 31%, respectively. Finally, FS-CPI has an overall

gain of ~32%.

Figure 7.3 PxEE Improvement for SPEC CPU2017 Benchmarks

7.1.4 Discussion: On Effectiveness of Different Techniques

From the results in the previous section, we notice that the effectiveness of the

proposed techniques generally follows a trend. For example, FS-PS and FS-TS show

consistently higher gains than others across all benchmarks, and the relative

difference between the two shows a trend. However, the other two techniques, FS-MC

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 6
3

8.
im

a
g

ic
k_

s

 5
0

8.
n

a
m

d
_r

 5
3

8.
im

a
g

ic
k_

r

 5
2

5.
x2

6
4

_r

 5
1

1.
p

o
vr

a
y_

r

 5
4

8.
ex

ch
a

n
g

e2
_r

 5
0

0.
p

er
lb

en
ch

_r

 5
2

6.
b

le
n

d
er

_r

 5
3

1.
d

ee
p

sj
en

g
_r

 5
4

4.
n

a
b

_r

 6
4

4.
n

a
b

_s

 5
4

1.
le

el
a

_r

 5
2

7.
ca

m
4

_r

 5
5

7.
xz

_r

 6
2

7.
ca

m
4

_s

 5
0

7.
ca

ct
u

B
SS

N
_r

 6
0

7.
ca

ct
u

B
SS

N
_s

 5
0

2.
g

cc
_r

 6
2

1.
w

rf
_s

 6
2

8.
p

o
p

2
_s

 *
6

5
7

.x
z_

s

 5
0

5.
m

cf
_r

 5
1

0.
p

a
re

st
_r

 5
2

3.
xa

la
n

cb
m

k_
r

 5
2

1.
w

rf
_r

 5
2

0.
o

m
n

et
p

p
_

r

 6
0

3.
b

w
a

ve
s_

s

 5
0

3.
b

w
a

ve
s_

r

 5
1

9.
lb

m
_r

 5
4

9.
fo

to
n

ik
3

d
_

r

 5
5

4.
ro

m
s_

r

 6
4

9.
fo

to
n

ik
3

d
_

s

 6
5

4.
ro

m
s_

s

 6
1

9.
lb

m
_s

 compute-intensive balanced memory-intensive

P
xE

E.
I

PxEE Improvements for SPEC CPU2017 Benchmarks

 OS-ondemand FS-PS FS-TS FS-MS FS-LLCM FS-CPI

94

and FS-LLCM, show significant deviation for specific benchmarks. In this section, we

investigate the irregularity in the results by taking a specific example of

549.fotonik3d_r. Table 7.1 shows the P.S, EE.I and PxEE for all the proposed

techniques for this benchmark. Considering PxEE, we see that FS-PS has the highest

gains, Next, FS-TS and FS-MS have similar gains of over ~155%. However, LLCM

has a lower PxEE gain at ~126%.

Table 7.1: P.S, EE.I, and PxEE for 549.fotonik3d_r

 FS-PS FS-TS FS-MS FS-LLCM

P.S 0.90 0.95 0.94 0.96

EE.I 3.00 2.71 2.70 2.34

PxEE 2.70 2.58 2.55 2.26

Figure 7.4 shows the run-time measurements of the input parameters that

proposed techniques rely on in making frequency changes. The primary y-axis shows

the pipeline stall ratio, the total stall ratio, and the memory stall ratio (used in FS-

PS, FS-TS, and FS-MS, respectively) and the secondary y-axis shows the last level

misses per kilo instructions during the execution of 549.fotononki3d_r. Both y-axes

represent the full range of the parameters that are mapped onto operating

frequencies. As these parameters have different ranges, they are all normalized to the

0-1 scale. They are sampled periodically every 100 ms. The measurements are taken

when the FS-TS governor is in charge of the clock.

95

Figure 7.4 Runtime metrics measurements for 549.fotonik3d_r

We observe that the values of the parameters remain fairly consistent

throughout the execution of the benchmark. FS-PS has an average stall rate of ~90%.

As a result, a lower operating frequency is selected. Next, FS-TS and FS-MS have

similar average stall rates of ~70% and 65%, respectively. Thus, they will select a

higher operating frequency than the FS-PS. Finally, the FS-LLCM parameter values

overlap with the FS-MS parameter values, but with higher fluctuations. These

fluctuations cause larger frequency changes, resulting in higher power consumption

and lower PxEE gains.

Please note that the ratios vary significantly for different benchmarks and as

a result, there are instances where some techniques perform better on some

benchmarks and not on others. Though FS-LLCM provides the lowest gains, in this

case, there are examples where FS-LLMC has similar PxEE as FS-PS and FS-TS (e.g,

603.bwaves_s).

 -

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

4
9

7

5
1

3

5
2

9

5
4

5

5
6

1

5
7

7

LL
C

 M
P

K
I

St
al

l R
at

io

Time (s)

PS, TS, MS Ratio and LLC MPKI (549.fotonik3d_r)

 PS TS MS LLCM

96

7.1.5 Discussion: Limitations of CPI

To further investigate the pros and cons of the proposed techniques, we

compare FS-TS and FS-CPI. We take 654.roms_s as an example. Regarding

performance, both FS-TS and FS-CPI have similar outcomes with performance losses

of ~10% and 6%, respectively. However, FS-TS improves energy efficiency over the

reference governor by ~159%, while FS-CPI only by ~96%. When considering PxEE,

we have ~130% improvement by FS-TS and only ~69% from FS-CPI. FS-TS is the

better choice as it provides similar performance, with significant gains in energy

efficiency. Figure 7.3 shows the run-time measurements of the input parameters these

two techniques rely on. The primary y-axis shows the total stall ratio (used in FS-TS)

and the secondary y-axis shows the average CPI during the execution of 654.roms_s.

Both y-axes represent the full range of the metrics that are mapped onto operating

frequencies. They are sampled periodically every 100 ms. The measurements are

taken when the FS-CPI governor is in charge of the clock control.

Figure 7.5 Runtime measurements of the total stall ratio and the average CPI for

654.rom_s.

 -

 1

 2

 3

 4

 5

 6

 -

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1
2

1
0

2
2

9
2

4
8

2
6

7
2

8
6

3
0

5
3

2
4

3
4

3

3
6

2
3

8
1

4
0

0

4
1

9

4
3

8

4
5

7

4
7

6
4

9
5

CPI

TS
 R

at
io

Time (s)

Total Stall Ratio & CPI for 654.roms_s (FS-CPI)

 TS Ratio CPI

97

The total stall ratio and CPI are both sensitive to the operating frequency.

However, we can observe that the amplitudes of the changes in CPI are significantly

larger than the amplitudes of the changes in the total stall ratio. These fluctuations

cause FS-CPI to change the operating frequency very often (sometimes at the end of

each sample period), causing wide swings in the operating frequency, e.g., from 1.5 to

4.0 GHz on the test machine. Those unnecessary wide-swing transitions add to the

overall energy consumption and are detrimental to performance. On the other side,

the total stall ratio is more stable causing smaller frequency changes, providing

overall better energy efficiency.

7.1.6 Summary: Putting it all Together

Figure 7.6 shows the summarized view of all three metrics for the evaluated

techniques for a fully loaded machine running SPEC CPU2017. The performance

speedup and energy-efficiency improvement metrics are calculated by considering all

of the benchmarks together, i.e., the execution times and energies consumed are

summarized across all benchmarks before they are used in equations (Eq. 5.1)-(Eq.

5.3). The results show that the proposed techniques indeed significantly improve

energy efficiency (green line) relative to the OS-ondemand governor (black line). FS-

PS improves energy efficiency by ~92% albeit at the cost of performance degradation

of ~23%. This technique works best for energy-constrained systems, where energy

efficiency is the primary focus.

98

Figure 7.6 Summary of total performance, energy efficiency, and PxEE

improvements for SPEC CPU2017 on a Fully Loaded CPU

FS-TS improves energy efficiency by 75% at the cost of performance

degradation of 16%. Considering PxEE improvement both FS-PS and FS-TS have

identical improvements of 48%. FS-MS further reduces performance loss (~8%) at the

cost of reduced energy efficiency (~58%). Finally, FS-LLCM provides a performance-

oriented approach where gains in energy efficiency come only from the memory-

intensive class of benchmarks.

So far, we only looked at the results for a fully loaded system. Figure 7.7 shows

all three metrics for a partially loaded system. The CPU2017 speed benchmarks are

run with 4 threads and the rate benchmarks are run with 4 copies. We observe similar

trends in P.S, EE.I, and PxEE.I, albeit the gains are somewhat smaller.

0.77

0.84 0.88 0.91 0.94

1.92

1.75

1.58
1.44 1.41

1.00

1.48 1.48

1.39 1.31 1.32

 0.50

 0.70

 0.90

 1.10

 1.30

 1.50

 1.70

 1.90

 2.10

 OS
ondemand

 FS-PS FS-TS FS-MS FS-LLCM FS-CPI

P.S, EE.I and PxEE.I

 Ref Performance Energy Efficiency PxEE

99

Figure 7.7 Summary of total performance, energy efficiency, and PxEE

improvements for CPU2017 on a partially loaded machine.

For example, the PxEE.I of the best performing FS.PS and FS.TS techniques

are 36% and 37%, respectively (relative to 48% and 48% for the fully-loaded machine).

This is due to the active and passive power consumption from the idle cores that also

operate in the same frequency without doing any work. Thus, we can expect that the

benefits provided by the proposed techniques will decrease as the machine load

decreases. However, these decreases may not be present in processors that can

support individual cores to enter C-states while other cores are fully active.

7.2 Parsec-3.0

In this section, we validate the proposed techniques with an alternate multi-

threaded workload, Parsec 3.0. The workload is older and lighter when compared to

the CPU2017 suites. Figure 7.8 shows the summarized view of all three metrics for

the evaluated techniques for a fully loaded machine. The performance speedup and

0.76

0.85 0.87
0.91 0.94

1.78

1.61

1.52
1.39

1.35

1.00

1.36 1.37

1.33
1.26 1.27

 0.50

 0.70

 0.90

 1.10

 1.30

 1.50

 1.70

 1.90

 2.10

 OS
ondemand

 FS-PS FS-TS FS-MS FS-LLCM FS-CPI

P.S, EE.I and PxEE.I

 Ref Performance Energy Efficiency PxEE

100

energy-efficiency improvement metrics are calculated by considering all of the Parsec-

3.0 benchmarks together, i.e., the execution times and energies consumed are

summarized across all benchmarks before they are used in equations Eq. 5.1-Eq. 5.3.

In terms of performance (red line), as expected we see degradation from every

proposed technique. FS-PS has the worst performance loss, whereas FS-LLCM and

FS-CPI have the least. In terms of energy efficiency (green line), results indicate

noticeable gains across all techniques. FS-PS has the highest gains in energy

efficiency and FS-LLCM has the least. Finally, when we consider PxEE, the gains are

modest ranging from ~5% (FS-PS) to ~18% (FS-MS).

The main factor contributing to the low gains observed here is that the

benchmarks are compute-intensive with a small memory footprint. As the

benchmarks have significantly aged, modern systems do not generate significant

execution stalls for the Parsec suite.

Figure 7.8 Summary of total performance, energy efficiency, and PxEE

improvements for Parsec 3.0

0.63

0.75
0.82 0.89 0.89

1.58

1.47

1.34

1.15

1.25

1.00
1.05

1.17 1.18
1.12

1.15

0.50

0.75

1.00

1.25

1.50

1.75

 OS-ondemand FS-PS FS-TS FS-MS FS-LLCM FS-CPI

P.S, EE.I, and PxEE.I

 Ref Performance Energy Efficiency PxEE

101

7.3 SPECpower2008jbb

We now evaluate the proposed DVFS techniques on the SPECpower2008_jbb

benchmark suite. Performance for this benchmark is reported in the number of ssj

operations under different load levels. Power consumption and overall effectiveness

expressed in the number of ssj operations per Watt are also reported. Figure 7.9 shows

the raw performance achieved for each of the DVFS techniques while varying the

transactional load from 0% to 100%. As expected, the OS-ondemand provides the best

performance. Next, we observe a similar trend in terms of performance for all the

techniques across all the load levels. As the benchmark runs a single workload with a

different amount of delay is introduced in each load level, we take the example of three

specific load levels of 100%, 60%, and 10% load level.

In all three cases, FS-PS has the highest performance loss of ~47%. This is due

to the low utilization of the pipeline. The benchmark is unable to effectively issue

enough micro-operation to populate all the available slots. Next, FS-TS and FS-MS

provide similar losses of ~32% and ~30%. This indicates that a higher percentage of

the stalls are memory-related. Finally, FS-LLCM and FS-CPI have a similar loss of

~8% and 6%. We observe three distinct pairings as discussed above across all load

levels.

102

Figure 7.9 SPECpower Raw Performance (ssj ops)

Figure 7.10 shows the active processor power consumed during the execution

of the benchmark while varying the machine load levels. The results show that the

proposed techniques significantly reduce active power consumption. The OS-

ondemand power consumption is significantly higher than the proposed techniques.

Similar trends observed for performance are observed for power consumption

as well. We see reduced power consumption metrics for all the proposed techniques.

We take the example of 100%, 60%, and 10% load. At 100% and 60%, we observe three

distinct groupings. FS-PS has an improvement in power consumption of ~67% at both

the load levels. Next, FS-TS and FS-MS have similar improvement at ~58%. Finally,

FS-LLCM and FS-CPI have improvements of ~24%. However, while considering ~10%

load we see deviation for the results. FS-PS improvements in power consumption are

reduced to ~34%, FS-TS and FS-MS have ~29% and ~20% improvements respectively.

Whereas FS-LLCM and FS-CPI have an increase in power consumption by ~14% and

~7% respectively. This is partly due to an increase in power consumption (~1 W) due

to the technical implementation.

0

50

100

150

200

250

300

350

400

450

500

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active
IdleP

er
fo

rm
an

ce
Th

o
u

sa
n

d
s

CPU Load (%)

SPECpower Performance

FS-PS FS-TS FS-MS FS-LLCM FS-CPI OS-ondemand

103

Figure 7.10 Runtime Power Measurements of SPEC power Benchmark

Finally, we calculate the performance/watt to evaluate the overall effectiveness

of different power management techniques. Figure 7.11 shows the performance/watt

of all the proposed DVFS techniques at each load level. We see that when our proposed

techniques significantly outperform the state-of-the-art OS-demand by providing

higher performance per unit watt consumed. Considering 100% and 60% load levels,

FS-PS and FS-MS have a similar gain of 60%, whereas FS-TS has the best

performance per watt metric of ~73%. Finally, FS-LLCM and FS-CPI have a gain of

~25%. Considering the load of ~10% the proposed techniques underperform due to low

utilization and the added power consumption.

0

10

20

30

40

50

60

70

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active
Idle

C
P

U
 P

o
w

er
 (

W
)

CPU Load (%)

SPECpower Power Measurements

 FS-PS FS-TS FS-MS FS-LLCM FS-CPI OS-ondemand

104

Figure 7.11 Performance Per Watt for all the Proposed Techniques

 -

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active
Idle

P
er

f/
W

at
t

CPU Load (%)

SPECpower Performance Per Watt

FS-PS FS-TS FS-MS FS-LLCM FS-CPI OS-ondemand

105

CHAPTER 8

RELATED WORK

Power management techniques have been an integral part of all modern

computing systems from handheld services to large servers [17]. One of the most

effective approaches to regulating processor power consumption is dynamic voltage

and frequency scaling. The impact of DVFS on energy consumption is significant and

a large body of prior work has explored various avenues to improve energy efficiency

using DVFS. Researchers have explored analytical models, simulations, and

experimental evaluations to propose and test ideas to improve performance and

reduce power consumption through DVFS.

Multiple research studies focus on the development of analytical models for

static and dynamic power consumption of various processor components in an effort

to estimate the run-time power consumption of the entire processor. B. Goel et al.

present a methodology for deriving analytical models for static and dynamic power

consumption and use those models for uncore and cores [20]. The study also shows

how to isolate and quantify the power consumption of different processor components.

A study from Esmaeilzadeh et al. develops power models for multi-core processors.

The models are used to predict the effects of semiconductor node and frequency scaling

106

on the performance and power of future generations of multicore processors [18]. The

transition and energy overhead associated with DVFS is modeled by S. Park et al.

[47]; the researchers provide a detailed analysis of various components associated

with the overhead. A study from T. Rauber et al. develops analytical models for power

consumption of Intel Haswell and Skylake processors and uses them to determine a

clock frequency that minimizes power consumption [49] [50]. They verified the

accuracy of their model through experimental evaluations using the NAS benchmarks

[57] and found that the optimal frequency found through their models provides a 7%

gain in energy efficiency relative to the default configuration. Predictive models for

multi-dimensional power-performance optimizations on many-core processors are

investigated in a study by M. Curtis-Maury et al. [13]. They explore interactions

between DVFS and dynamic concurrency throttling (DCT) and develop a library that

supports fine-tuning of operating points of cores running different threads in an

OpenMP application.

Y. Cho et al. present analytical solutions to the problem of determining energy-

optimal voltage scale factors for each task, while allowing each task to be preempted

and to have its energy cost function [12]. Their experimental study reports a 10%

additional savings in the total system energy compared to the previous leakage-aware

DVS schemes. A. Iyer et al. presents an online DVFS technique by utilizing interface

queues to guide the DVFS control in multiple clock and voltage domain architectures

[33].

Estimating processor power consumption for a given application is challenging

due to the internal execution characteristics of applications that exploit hardware

very differently. Various methods to estimate the power consumption of a processor

have been studied. They can be classified into four categories: (a) cycle level estimation

107

[45]; (b) instruction-level power analysis (ILPA) [59]; (c) functional level power

analysis [48]; and (d) system-level power estimation [56]. In cycle-level estimation, the

power consumption of each processor unit (arithmetic units, registers, memory, etc.)

is estimated at each clock cycle. This method is not feasible anymore as the complexity

of modern processors makes this method too expensive in terms of computation.

Instruction level power analysis involves estimating the power consumption of each

instruction executing in the processor. The power consumption of a program can then

be computed as the sum of the power consumed by each instruction of which is

composed. The modeling complexity grows with the number of instructions that the

processor can execute concurrently. The functional level power model by G. Qu et al.

initially utilizes empirical data collection to identify the power consumption linked to

different functional blocks of the processor [48]. The model utilizes the empirical data

set to predict the power consumption of embedded software. The system-level power

estimation model abstracts the low-level power estimation techniques by considering

the entire system. The model encompasses the functional level power estimate to set

up generic power models for various modules of the system. A simulation framework

at the transactional level evaluates the activities of the functional units to determine

system power [51].

Regarding the experimental evaluation of DVFS, several studies have shown

that energy profiling to find the best operating point for each benchmark can be very

beneficial for both performance and energy efficiency [5] [15] [24] [27] [36]. Here, a

benchmark is run at the fixed operating point that is found to provide the highest

energy efficiency. Results from such studies show that the energy efficiency of

memory-bound applications can improve by over 150% with minimal loss in

performance [15] [27]. However, this approach relies on previous profiling to find the

108

best operating point and does not accommodate for runtime changes throughout a

benchmark’s execution. Recently, De Vogeleer et al. use measurements in a controlled

environment on a mobile CPU to confirm a realistic power/energy equation for CPU

power [14]. They show the existence of an energy/frequency convexity rule; that is, the

existence of a unique optimum frequency for energy efficiency for a fixed workload.

Accurate power measurement techniques are vital for experimental

evaluations. A study from C. Isci et al. proves the accuracy of the onboard power

monitoring infrastructure during the run-time in several sub-modules of x86 Intel

processors [32]. Studies have also evaluated the onboard energy-oriented features

available on modern processors [22] [54]. The results of these studies give us

confidence in the measurement infrastructure available in modern processors.

Meanwhile, finding an efficient method to select an optimal operating

frequency during a program’s run-time remains a challenging problem [43]. Several

studies have proposed techniques for selecting the operating frequency that

outperforms the current power governors. A study from M. Nanja et al. suggested

using the performance counter to measure instructions per cycle (IPC) and memory

references per cycle to make scaling [44]. Another such method proposes the use of

the cycles-per-instruction (CPI) when selecting P-states [3] [34]. An experimental

study from D. Molka et al. proposed the use of hardware counters to select a particular

frequency of operation [55]. The study uses instructions per memory access to make

frequency decisions. Hwisung Jung et al. presented a power management framework

for dynamic continuous frequency adjustment which provides power-saving

opportunities by dynamically and continuously adjusting a variable operating

frequency on a functional level granularity [35]. Utilizing the basic premise of

eliminating the power and delay costs incurred by the power state transitions which

109

involve clock generators (e.g., PLL), the authors report a ~14% savings in energy

consumption.

The use of turbo-mode has gained significant traction and is now a standard

feature in processors [53] [76]. Each new generation has more aggressive use of the

turbo mode to provide better performance. However, applications that were written

several years ago (also referred to as aging applications) may see a significant negative

impact on functionality and performance. A study from S. Matheus et al. explored the

impact of turbo modes on the execution time of parallel programs and provided

guidelines to developers to maximize performance and maintain functionality [38].

The performance impact of DVFS for realistic memory systems is explored in [39]. The

experimental evaluation is done with the SPEC CPU 2006 benchmarks, which are

based on a sequential workload.

In this study, we propose alternate dynamic voltage and frequency scaling

techniques and extend our earlier research [24] that was based on workload-driven

DVFS. Our study utilizes architectural evaluation to make an informed decision on

dynamically selecting P-states that results in significant energy savings. Our study

explores several avenues of dynamic voltage and frequency scaling and we also

compare a previously proposed technique and show that our proposals provide

significantly higher gains.

110

CHAPTER 9

FUTURE WORK

There are several possible avenues for future work concerning the proposed

DVFS techniques. First, we start with the implementation of the techniques. The OS-

ondemand and our proposed techniques use a linear mapping to map a given metric

of interest to the available P-states on a system. This assumes that the relationship

between the power and frequency is linear. However, in reality, we can observe

through measurements that this is not the case.

Figure 9.1 shows the full load processor power consumption while varying the

operating frequency. We observe that the relationship between power and frequency

is near-linear till 3.14 GHz and we see a steep curve thereafter, especially in the turbo

mode. An increase in frequency above the nominal frequency only provides modest

results with significant energy consumption. We also note that a similar performance

curve can be obtained with any modern processor supporting turbo mode.

111

Figure 9.1 Full Load Processor Power Consumption at various Operating

Frequency

Next, each of the proposed techniques uses just two events to determine the

operating frequency. As seen in CHAPTER 7, a single technique does not provide the

best results for all classes of benchmarks. One way to rectify this would be to use

multiple events to determine the next operating point. Adding additional events would

improve the robustness of the techniques and also help handle anomalies such as

523.xalancbmk_r, which underperforms for stall-based techniques.

The current implementation shown in the study has a worst-case idle time of

13 ms for a sampling period of 10 ms. However, when the CPU is fully loaded the

execution time of the implementation varies. As a result, the technique was invoked

every 100 ms. A drawback here is that the sampled characteristics may not be of

interest by the time the requested P-state transition is complete. The primary

workload used in the study does not get affected by the invocation period due to the

steady-state characteristic. However, for an application that has multiple execution

phases, a higher invocation frequency is more desirable.

 -

 10

 20

 30

 40

 50

 60

 70

 80

0
.8

9

0
.9

9

1
.0

9

1
.1

9

1
.2

8

1
.3

8

1
.4

8

1
.5

8

1
.6

7

1
.7

7

1
.8

7

1
.9

7

2
.0

6

2
.1

6

2
.2

6

2
.3

6

2
.4

5

2
.5

5

2
.6

5

2
.7

5

2
.8

4

2
.9

4

3
.0

4

3
.1

4

3
.2

3

3
.3

3

3
.4

3

3
.5

3

3
.6

2

3
.7

2

3
.8

2

3
.9

2

4
.0

1

4
.2

1

4
.3

1

P
o

w
er

Frequency

Core i7-8700K CPU Package Power (100% Load)

 Uncore Core

112

All our experiments were performed on a single socket system where the

processor only supports socket level P-state management. It would be interesting to

evaluate the impact of DVFS on a multi-socket machine that supports core-level P-

state management. We also note that the experiments were performed on an Intel

machine. However, similar infrastructure to access the PMU and change P-states

exist in ARM and AMD processors, albeit with a smaller granularity or access.

Nowadays, Internet-of-Things (IoT) devices generate data at high speed and

large volume. Often the data require real-time processing to support high system

responsiveness which can be supported by localized Cloud and/or Fog computing

paradigms. An interesting direction for future work is to evaluate the impact of the

proposed DVFS techniques on IoT devices. As these devices are power sensitive,

techniques to improve efficiency would greatly improve the longevity and affordability

of these devices.

113

CHAPTER 10

CONCLUSIONS

Dynamic voltage and frequency scaling are one of the most important tools in

regulating the power consumption of modern processors. The state-of-the-art demand-

based implementations of DVFS governors in modern OSes favor performance over

energy efficiency. As the operating costs of computing continue to increase, more

power-oriented DVFS governors need to be implemented.

This dissertation presents the results of the measurement-based analysis of

various dynamic voltage and frequency scaling techniques. We observe that the

current implementations of DVFS in the OSes are not ideal for memory-intensive

benchmarks. Based on our architectural evaluation, we propose, implement, and

experimentally evaluate four new techniques that determine the P-state of the

processor cores using metrics derived from the PMU events: (i) the ratio of pipeline

slot stalls (FS-PS), (ii) the ratio of cycle stalls (FS-TS), (iii) the ratio of memory-related

cycle stalls (FS-MS), and (iv) the number of last level cache misses per kilo

instructions (FS-LLCM). We also investigate the effectiveness of the previously

proposed CPI-based frequency selection and describe its shortcomings.

114

The study first quantitatively evaluates the effectiveness of the state-of-the-

art power management technique in modern processors (the ondemand governor) and

determines its shortcomings, especially in terms of its energy efficiency. It provides

an in-depth analysis of the SPEC CPU2017 benchmarks using the Top-down

microarchitectural analysis method and classifies the benchmarks into three groups

based on their characteristics. Through experimental evaluation using three different

types of work-loads, namely SPEC CPU2017, Parsec 3.0, and SPECpower_ssj2008 the

effectiveness of the proposed techniques and the existing state-of-the-art are shown.

The results of the experimental evaluation show that the proposed techniques

significantly improve EE and PxEE metrics relative to the existing approaches. PxEE

improves from 31% to 48% when all benchmarks are considered together.

Furthermore, we find that the proposed techniques are especially effective for a class

of memory-intensive benchmarks with a PxEE improvement from 100% to 141%. The

proposed techniques also outperform an earlier DVFS proposal that utilizes the cycles-

per-instruction metric when changing processor states.

115

GLOSSARY

Notation Description

ACPI Advanced Configuration & Power Interface

AVX Advanced Vector Instruction Set

BPU Branch Prediction Unit

BTB Branch Target Buffer

CPB Energy Performance Bias

CPU Central Processing Unit

CSR Control & Status Register

DVFS Dynamic Voltage & Frequency Scaling

EET Energy Efficiency Turbo

FIFO First in First Out

FIVR Fully Integrated Voltage Regulators

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HWPM Hardware Power Management

IoT Internet-of-Things

ILPA Instruction Level Power Analysis

116

IPC Instructions Per Cycle

IPS Intel parallel Studio

LLC Last Level Cache

MST Model Specific Registers

OOO Out-of-Order

OS Operating System

PCU Power Control Unit/ Package Control Unit

PLL Phase Locked Loop

PMA Power Management Agents

PMU Performance Monitoring Unit

RAPL Running Average Power Limit

SMT Simultaneous Multi-Threading

SPEC Standard Performance Evaluation Corporation

TBM3 Turbo Boost Max 3.0

TDP Thermal Design Power

TMAM Top-down Microarchitectural Analysis Method

UFS Uncore Frequency Scaling

117

REFERENCES

[1] Alif Ahmed and Kevin Skadron. 2019. Hopscotch: a micro-benchmark suite for memory

performance evaluation. In Proceedings of the International Symposium on Memory

Systems (MEMSYS ’19), Association for Computing Machinery, New York, NY, USA,

167–172. DOI:https://doi.org/10.1145/3357526.3357574

[2] A. R. Alameldeen and D. A. Wood. 2006. IPC Considered Harmful for Multiprocessor

Workloads. IEEE Micro 26, 4 (July 2006), 8–17. DOI:https://doi.org/10.1109/MM.2006.73

[3] Peter Altevogt, Hans Boettiger, Wesley M. Felter, Charles R. Lefurgy, Lutz Stiege, and

Malcolm S. Ware. 2008. Method for Autonomous Dynamic Voltage and Frequency

Scaling of Microprocessors. Retrieved April 22, 2021 from

https://patents.google.com/patent/US20080098254/en

[4] Anders S. G. Andrae and Tomas Edler. 2015. On Global Electricity Usage of

Communication Technology: Trends to 2030. Challenges 6, 1 (June 2015), 117–157.

DOI:https://doi.org/10.3390/challe6010117

[5] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krishnamoorthy, Louis-Noël

Pouchet, Fabrice Rastello, and P. Sadayappan. 2016. Static and Dynamic Frequency

Scaling on Multicore CPUs. ACM Trans. Archit. Code Optim. 13, 4 (December 2016),

51:1-51:26. DOI:https://doi.org/10.1145/3011017

[6] Malini K. Bhandaru and Eric J. Dehaemer. 2013. Providing energy efficient turbo

operation of a processor. Retrieved May 9, 2021 from

https://patents.google.com/patent/WO2013137859A1/en

118

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC

benchmark suite: characterization and architectural implications. In Proceedings of the

17th international conference on Parallel architectures and compilation techniques

(PACT ’08), Association for Computing Machinery, New York, NY, USA, 72–81.

DOI:https://doi.org/10.1145/1454115.1454128

[8] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:

Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC

International Conference on Performance Engineering - ICPE ’18, ACM Press, Berlin,

Germany, 41–42. DOI:https://doi.org/10.1145/3185768.3185771

[9] Edward A. Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William J.

Lambert, Kaladhar Radhakrishnan, and Michael J. Hill. 2014. FIVR — Fully integrated

voltage regulators on 4th generation Intel® CoreTM SoCs. In 2014 IEEE Applied Power

Electronics Conference and Exposition - APEC 2014, 432–439.

DOI:https://doi.org/10.1109/APEC.2014.6803344

[10] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra Fedorova.

2009. Evaluation of the Intel® CoreTM i7 Turbo Boost feature. In 2009 IEEE International

Symposium on Workload Characterization (IISWC), 188–197.

DOI:https://doi.org/10.1109/IISWC.2009.5306782

[11] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús

Labarta, and Mateo Valero. 2015. PARSECSs: Evaluating the Impact of Task Parallelism

in the PARSEC Benchmark Suite. ACM Trans. Archit. Code Optim. 12, 4 (December

2015), 41:1-41:22. DOI:https://doi.org/10.1145/2829952

[12] Youngjin Cho, Naehyuck Chang, Chaitali Chakrabarti, and Sarma Vrudhula. 2006.

High-level power management of embedded systems with application-specific energy cost

functions. In Proceedings of the 43rd annual Design Automation Conference (DAC ’06),

Association for Computing Machinery, New York, NY, USA, 568–573.

DOI:https://doi.org/10.1145/1146909.1147057

119

[13] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. de Supinski, and M.

Schulz. 2008. Prediction models for multi-dimensional power-performance optimization

on many cores. In 2008 International Conference on Parallel Architectures and

Compilation Techniques (PACT), 250–259.

[14] Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien Coelho. 2014. The

Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile

Devices. In Parallel Processing and Applied Mathematics (Lecture Notes in Computer

Science), Springer, Berlin, Heidelberg, 793–803. DOI:https://doi.org/10.1007/978-3-642-

55224-3_74

[15] Armen Dzhagaryan and Aleksandar Milenković. 2014. Impact of thread and frequency

scaling on performance and energy in modern multicores: a measurement-based study.

In Proceedings of the 2014 ACM Southeast Regional Conference (ACM SE ’14),

Association for Computing Machinery, New York, NY, USA, 1–6.

DOI:https://doi.org/10.1145/2638404.2638473

[16] Stéphane Eranian. 2008. What can performance counters do for memory subsystem

analysis? In Proceedings of the 2008 ACM SIGPLAN workshop on Memory systems

performance and correctness: held in conjunction with the Thirteenth International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’08) (MSPC ’08), Association for Computing Machinery, New York, NY, USA,

26–30. DOI:https://doi.org/10.1145/1353522.1353531

[17] H. Esmaeilzadeh, T. Cao, X. Yang, S. Blackburn, and K. McKinley. 2012. What is

Happening to Power, Performance, and Software? IEEE Micro 32, 3 (May 2012), 110–

121. DOI:https://doi.org/10.1109/MM.2012.20

[18] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and

Doug Burger. 2013. Power challenges may end the multicore era. Commun. ACM 56, 2

(February 2013), 93–102. DOI:https://doi.org/10.1145/2408776.2408797

120

[19] Lev Finkelstein, Efraim Rotem, Aviad Cohen, Ronny Ronen, and Doron Rajwan. 2013.

Power management for multiple processor cores. Retrieved November 18, 2020 from

https://patents.google.com/patent/US8402290B2/en

[20] Bhavishya Goel and Sally A McKee. 2016. A Methodology for Modeling Dynamic and

Static Power Consumption for Multicore Processors. In 2016 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 273–282.

DOI:https://doi.org/10.1109/IPDPS.2016.118

[21] Corey Gough, Ian Steiner, and Winston Saunders. 2015. Energy Efficient Servers:

Blueprints for Data Center Optimization. Apress.

[22] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart, and

Robin Geyer. 2015. An Energy Efficiency Feature Survey of the Intel Haswell Processor.

In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop,

896–904. DOI:https://doi.org/10.1109/IPDPSW.2015.70

[23] Ranjan Hebbar and Aleksandar Milenković. 2021. A Preliminary Scalability Analysis of

SPEC CPU2017 Benchmarks. In SoutheastCon 2021, IEEE, Atlanta, GA, USA, 1–8.

DOI:https://doi.org/10.1109/SoutheastCon45413.2021.9401917

[24] Ranjan Hebbar and Aleksandar Milenković. 2021. An Experimental Evaluation of

Workload Driven DVFS. In Companion of the ACM/SPEC International Conference on

Performance Engineering, ACM, Virtual Event France, 95–102.

DOI:https://doi.org/10.1145/3447545.3451192

[25] Ranjan Hebbar S R. 2018. SPEC CPU2017: Performance, Energy and Event

Characterization on Modern Processors. M.S.E. The University of Alabama in Huntsville,

United States -- Alabama.

[26] Ranjan Hebbar S R and Aleksandar Milenković. 2019. SPEC CPU2017: Performance,

Event, and Energy Characterization on the Core i7-8700K. In Proceedings of the 2019

ACM/SPEC International Conference on Performance Engineering (ICPE ’19), ACM,

New York, NY, USA, 111–118. DOI:https://doi.org/10.1145/3297663.3310314

121

[27] Ranjan Hebbar S R and Aleksandar Milenković. 2019. Impact of Thread and Frequency

Scaling on Performance and Energy Efficiency: An Evaluation of Core i7-8700K Using

SPEC CPU2017. In 2019 SoutheastCon, IEEE, Huntsville, AL, USA, 1–7.

DOI:https://doi.org/10.1109/SoutheastCon42311.2019.9020637

[28] Ranjan Hebbar S R, Mounika Ponugoti, and Aleksandar Milenković. 2019. Battle of

Compilers: An Experimental Evaluation Using SPEC CPU2017. In 2019 SoutheastCon,

IEEE, Huntsville, AL, USA, 1–8.

DOI:https://doi.org/10.1109/SoutheastCon42311.2019.9020474

[29] J. L. Henning. 2000. SPEC CPU2000: measuring CPU performance in the New

Millennium. Computer 33, 7 (July 2000), 28–35. DOI:https://doi.org/10.1109/2.869367

[30] J. L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.

Archit. News 34, 4 (September 2006), 1–17. DOI:https://doi.org/10.1145/1186736.1186737

[31] Song Huang, Michael Lang, Scott Pakin, and Song Fu. 2015. Measurement and

characterization of Haswell power and energy consumption. In Proceedings of the 3rd

International Workshop on Energy Efficient Supercomputing (E2SC ’15), Association for

Computing Machinery, New York, NY, USA, 1–10.

DOI:https://doi.org/10.1145/2834800.2834807

[32] C. Isci and M. Martonosi. 2003. Runtime power monitoring in high-end processors:

methodology and empirical data. In Proceedings. 36th Annual IEEE/ACM International

Symposium on Microarchitecture, 2003. MICRO-36., 93–104.

DOI:https://doi.org/10.1109/MICRO.2003.1253186

[33] A. Iyer and D. Marculescu. 2002. Power efficiency of voltage scaling in multiple clock

multiple voltage cores. In IEEE/ACM International Conference on Computer Aided

Design, 2002. ICCAD 2002., 379–386. DOI:https://doi.org/10.1109/ICCAD.2002.1167562

[34] Darrin Paul Johnson, Eric Christopher Saxe, and Bart Smaalders. 2012. Frequency

scaling of processing unit based on aggregate thread CPI metric. Retrieved April 22, 2021

from https://patents.google.com/patent/US8219993B2/en

122

[35] Hwisung Jung and Massoud Pedram. 2008. Continuous Frequency Adjustment

Technique Based on Dynamic Workload Prediction. In 21st International Conference on

VLSI Design (VLSID 2008), 249–254. DOI:https://doi.org/10.1109/VLSI.2008.98

[36] Michael A. Laurenzano, Mitesh Meswani, Laura Carrington, Allan Snavely, Mustafa M.

Tikir, and Stephen Poole. 2011. Reducing Energy Usage with Memory and Computation-

Aware Dynamic Frequency Scaling. In Euro-Par 2011 Parallel Processing (Lecture Notes

in Computer Science), Springer Berlin Heidelberg, 79–90.

[37] Arindam Mallik, Bin Lin, Gokhan Memik, Peter Dinda, and Robert P Dick. 2006. User-

Driven Frequency Scaling. IEEE Computer Architecture Letters 5, 2 (February 2006), 16–

16. DOI:https://doi.org/10.1109/L-CA.2006.16

[38] Sandro Matheus V. N. Marques, Thiarles S. Medeiros, Fábio D. Rossi, Marcelo C.

Luizelli, Alessandro G. Girardi, Antonio Carlos S. Beck, and Arthur F. Lorenzon. 2019.

The Impact of Turbo Frequency on the Energy, Performance, and Aging of Parallel

Applications. In 2019 IFIP/IEEE 27th International Conference on Very Large Scale

Integration (VLSI-SoC), 149–154. DOI:https://doi.org/10.1109/VLSI-SoC.2019.8920389

[39] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. 2012. Predicting Performance Impact of

DVFS for Realistic Memory Systems. In 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 155–165. DOI:https://doi.org/10.1109/MICRO.2012.23

[40] Aleksandar Milenkovic, Vladimir Uzelac, Milena Milenkovic, and Martin Burtscher.

2011. Caches and Predictors for Real-Time, Unobtrusive, and Cost-Effective Program

Tracing in Embedded Systems. IEEE Trans. Comput. 60, 7 (July 2011), 992–1005.

DOI:https://doi.org/10.1109/TC.2010.146

[41] Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey Kulick. 2004. Microbenchmarks

for determining branch predictor organization. Software: Practice and Experience 34, 5

(April 2004), 465–487. DOI:https://doi.org/10.1002/spe.572

[42] Trevor Mudge. 2001. Power: A First-Class Architectural Design Constraint. Computer

34, 4 (April 2001), 52–58. DOI:https://doi.org/10.1109/2.917539

123

[43] M. Najibi, M. Salehi, A. Afzali Kusha, M. Pedram, S. M. Fakhraie, and H. Pedram. 2006.

Dynamic Voltage and Frequency Management Based on Variable Update Intervals for

Frequency Setting. In 2006 IEEE/ACM International Conference on Computer Aided

Design, 755–760. DOI:https://doi.org/10.1109/ICCAD.2006.320116

[44] Murthi Nanja. 2010. Performance monitoring based dynamic voltage and frequency

scaling. Retrieved August 20, 2019 from

https://patents.google.com/patent/US7770034B2/en

[45] M. Nemani and F.N. Najm. 1999. High-level area and power estimation for VLSI circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18, 6

(June 1999), 697–713. DOI:https://doi.org/10.1109/43.766722

[46] Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The ondemand governor. In

Proceedings of the Linux Symposium, 223–238.

[47] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate

Modeling of the Delay and Energy Overhead of Dynamic Voltage and Frequency Scaling

in Modern Microprocessors. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 32, 5 (May 2013), 695–708.

DOI:https://doi.org/10.1109/TCAD.2012.2235126

[48] Gang Qu, Naoyuki Kawabe, Kimiyoshi Usami, and Miodrag Potkonjak. 2000. Function-

level power estimation methodology for microprocessors. In Proceedings of the 37th

Annual Design Automation Conference (DAC ’00), Association for Computing Machinery,

New York, NY, USA, 810–813. DOI:https://doi.org/10.1145/337292.337786

[49] Thomas Rauber, Gudula Rünger, and Matthias Stachowski. 2018. Performance and

energy metrics for multi-threaded applications on DVFS processors. Sustainable

Computing: Informatics and Systems 17, (March 2018), 55–68.

DOI:https://doi.org/10.1016/j.suscom.2017.10.015

[50] Thomas Rauber, Gudula Rünger, and Matthias Stachowski. 2019. Model-based

optimization of the energy efficiency of multi-threaded applications. Sustainable

124

Computing: Informatics and Systems 22, (June 2019), 44–61.

DOI:https://doi.org/10.1016/j.suscom.2019.01.022

[51] Santhosh Kumar Rethinagiri, Rabie Ben Atitallah, and Jean-Luc Dekeyser. 2011. A

system level power consumption estimation for MPSoC. In 2011 International

Symposium on System on Chip (SoC), 56–61.

DOI:https://doi.org/10.1109/ISSOC.2011.6089692

[52] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron

Rajwan. 2012. Power-Management Architecture of the Intel Microarchitecture Code-

Named Sandy Bridge. IEEE Micro 32, 2 (March 2012), 20–27.

DOI:https://doi.org/10.1109/MM.2012.12

[53] Sumit Kumar Saurav, Ganga Prasad G.L, and Manisha Chauhan. 2016. Adaptive Power

Management for HPC applications. In 2016 2nd International Conference on Green High

Performance Computing (ICGHPC), 1–7.

DOI:https://doi.org/10.1109/ICGHPC.2016.7508065

[54] Rober Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel Hackenberg.

2019. Energy Efficiency Features of the Intel Skylake-SP Processor and Their Impact on

Performance. In 2019 International Conference on High Performance Computing

Simulation (HPCS), 399–406. DOI:https://doi.org/10.1109/HPCS48598.2019.9188239

[55] Robert Schöne and Daniel Hackenberg. 2011. On-line analysis of hardware performance

events for workload characterization and processor frequency scaling decisions. In

Proceeding of the second joint WOSP/SIPEW international conference on Performance

engineering - ICPE ’11, ACM Press, Karlsruhe, Germany, 481.

DOI:https://doi.org/10.1145/1958746.1958819

[56] A. Sinha and A.P. Chandrakasan. 2001. JouleTrack-a Web based tool for software energy

profiling. In Proceedings of the 38th Design Automation Conference (IEEE Cat.

No.01CH37232), 220–225. DOI:https://doi.org/10.1109/DAC.2001.156139

125

[57] Vaibhav Sundriyal and Masha Sosonkina. 2018. Modeling of the CPU frequency to

minimize energy consumption in parallel applications. Sustainable Computing:

Informatics and Systems 17, (March 2018), 1–8.

DOI:https://doi.org/10.1016/j.suscom.2017.12.002

[58] Guy Therien and Michael Walz. 2006. Power management system that changes processor

level if processor utilization crosses threshold over a period that is different for switching

up or down. Retrieved November 18, 2020 from

https://patents.google.com/patent/US7017060B2/en

[59] V. Tiwari, S. Malik, A. Wolfe, and M.T.-C. Lee. 1996. Instruction level power analysis

and optimization of software. In Proceedings of 9th International Conference on VLSI

Design, 326–328. DOI:https://doi.org/10.1109/ICVD.1996.489624

[60] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight

Performance-Oriented Tool Suite for x86 Multicore Environments. In 2010 39th

International Conference on Parallel Processing Workshops, 207–216.

DOI:https://doi.org/10.1109/ICPPW.2010.38

[61] V. Uzelac and A. Milenkovic. 2009. Experiment flows and microbenchmarks for reverse

engineering of branch predictor structures. In 2009 IEEE International Symposium on

Performance Analysis of Systems and Software, 207–217.

DOI:https://doi.org/10.1109/ISPASS.2009.4919652

[62] Vladimir Uzelac, Aleksandar Milenković, Milena Milenković, and Martin Burtscher.

2014. Using Branch Predictors and Variable Encoding for On-the-Fly Program Tracing.

IEEE Transactions on Computers 63, 4 (April 2014), 1008–1020.

DOI:https://doi.org/10.1109/TC.2012.267

[63] Vincent M Weaver. 2013. Linux perf event Features and Overhead. (2013), 7.

[64] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr Luszczek,

Dan Terpstra, and Shirley Moore. 2012. Measuring Energy and Power with PAPI. In

126

2012 41st International Conference on Parallel Processing Workshops, 262–268.

DOI:https://doi.org/10.1109/ICPPW.2012.39

[65] Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters

architecture. In IEEE International Symposium on Performance Analysis of Systems and

Software, 35–44. DOI:https://doi.org/10.1109/ISPASS.2014.6844459

[66] Huazhe Zhang and Henry Hoffmann. 2015. A Quantitative Evaluation of the RAPL

Power Control System. Feedback Computing 2015 (2015), 6.

[67] 2016. Intel® 64 and IA-32 Architecture’s Optimization Reference Manual. (June 2016),

672.

[68] Power Management States: P-States, C-States, and Package C-States. Retrieved August

21, 2020 from https://software.intel.com/content/www/us/en/develop/articles/power-

management-states-p-states-c-states-and-package-c-states.html

[69] Advanced Configuration and Power Interface - an overview | ScienceDirect Topics.

Retrieved January 20, 2021 from https://www.sciencedirect.com/topics/computer-

science/advanced-configuration-and-power-interface

[70] Power Management with Lenovo Efficiency Mode. 13.

[71] US7840825B2 - Method for autonomous dynamic voltage and frequency scaling of

microprocessors - Google Patents. Retrieved October 20, 2019 from

https://patents.google.com/patent/US7840825B2/en

[72] Perf : Linux profiling with performance counters. Perf Wiki. Retrieved March 19, 2018

from https://perf.wiki.kernel.org/index.php/Main_Page

[73] Intel® VTuneTM Amplifier 2018 User’s Guide. Intel Developer Zone. Retrieved March 28,

2018 from https://software.intel.com/en-us/vtune-amplifier-help-introduction

[74] Intel Tick-Tock Model. Intel. Retrieved April 11, 2018 from

https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-

general.html

127

[75] What Is Intel® Turbo Boost Technology? Intel. Retrieved April 28, 2021 from

https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html

[76] Intel® Turbo Boost Technology 2.0. Intel. Retrieved May 9, 2021 from

https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-

boost/turbo-boost-technology.html

[77] An Overview of the 6th Generation Intel® CoreTM Processor (Code-named... Intel.

Retrieved April 27, 2021 from

https://www.intel.com/content/www/us/en/develop/articles/an-overview-of-the-6th-

generation-intel-core-processor-code-named-skylake.html

[78] Advanced Configuration and Power Interface - an overview | ScienceDirect Topics.

Retrieved April 21, 2021 from https://www.sciencedirect.com/topics/computer-

science/advanced-configuration-and-power-interface

[79] Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1,

2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Intel. Retrieved June 3, 2020 from

https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-

architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

[80] Recognize and Measure Vectorization Performance. Intel. Retrieved January 30, 2021

from https://www.intel.com/content/www/us/en/develop/articles/recognizing-and-

measuring-vectorization-performance.html

[81] Welcome to LaCASA. Retrieved May 12, 2021 from

http://lacasa.uah.edu/portal/index.php

[82] Intel® CoreTM i7-8700K Processor Product Specifications. Intel® ARK (Product Specs).

Retrieved March 23, 2018 from https://tinyurl.com/ybcw5vc8

[83] SPEC CPU® 2017. Retrieved March 19, 2018 from https://www.spec.org/cpu2017/

[84] The PARSEC Benchmark Suite. Retrieved May 12, 2021 from

https://parsec.cs.princeton.edu/

128

[85] SPECpower_ssj® 2008. Retrieved May 12, 2021 from

https://www.spec.org/power_ssj2008/

	CHAPTER 1 INTRODUCTION
	1.1 Scope of This Study
	1.2 Contributions
	1.3 Findings
	1.4 Outline

	CHAPTER 2 BACKGROUND
	2.1 Intel Skylake Microarchitecture: An Overview
	2.1.1 Processor Core Microarchitecture
	2.1.2 Cache Hierarchy

	2.2 Processor Power Consumption Model
	2.3 Evolution of Power Management in Intel Processors
	2.3.1 Nehalem Microarchitecture
	2.3.1.1 Power Control Unit (PCU)
	2.3.1.2 Intel Turbo Boost Technology

	2.3.2 Sandy Bridge Microarchitecture
	2.3.2.1 Intel Turbo Boost Technology 2.0
	2.3.2.2 Running Average Power Limit (RAPL)

	2.3.3 Haswell Microarchitecture
	2.3.3.1 Per-Core Power Management and Independent Uncore Scaling
	2.3.3.2 Hardware P-state Management
	2.3.3.3 Intel Turbo Boost Technology 3.0

	2.3.4 Skylake Microarchitecture
	2.3.4.1 Energy Efficiency Mechanism

	2.4 ACPI Power & Performance States
	2.5 CPU Power Management
	2.6 Functioning of a DVFS-based Governor

	CHAPTER 3 MOTIVATION
	CHAPTER 4 PMU-EVENTS-DRIVEN DVFS TECHNIQUES
	4.1 Performance Monitoring Unit Event-Based Analysis
	4.1.1 Top-down Microarchitectural Analysis Method

	4.2 Proposed DVFS Techniques
	4.3 DVFS based on CPI (FS-CPI)
	4.4 Implementation of the Proposed Techniques

	CHAPTER 5 EXPERIMENTAL ENVIRONMENT
	5.1 System under Test
	5.2 Metrics for Evaluation
	5.3 Tools
	5.3.1 Linux perf
	5.3.2 Likwid
	5.3.3 Intel VTune Amplifier

	5.4 Workloads
	5.4.1 SPEC CPU2017
	5.4.2 Parsec 3.0
	5.4.3 SPECpower_ssj2008

	CHAPTER 6 SPEC CPU2017 CHARACTERIZATION ANALYSIS
	6.1 Compiler Evaluation
	6.1.1 Executable Size
	6.1.2 Build Times
	6.1.3 Performance

	6.2 TMAM Results of SPEC CPU2017 Benchmarks
	6.3 Impact of Static Frequency Selection on P and EE

	CHAPTER 7 RESULTS
	7.1 SPEC CPU2017
	7.1.1 Performance
	7.1.2 Energy Efficiency
	7.1.3 PxEE
	7.1.4 Discussion: On Effectiveness of Different Techniques
	7.1.5 Discussion: Limitations of CPI
	7.1.6 Summary: Putting it all Together

	7.2 Parsec-3.0
	7.3 SPECpower2008jbb

	CHAPTER 8 RELATED WORK
	CHAPTER 9 FUTURE WORK
	CHAPTER 10 CONCLUSIONS
	GLOSSARY
	REFERENCES

