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ABSTRACT 
 

The School of Graduate Studies 

The University of Alabama in Huntsville 

 

Degree:  Doctor of Philosophy in Engineering 

College/Dept.:  Engineering/Electrical & Computer Engineering 

Name of Candidate: Ranjan Hebbar 

Title:   PMU-Events-Driven DVFS Techniques for Improving Energy 

Efficiency in Modern Processors  

 

Energy-efficient computing is one of the most important challenges computer 

designers and operators are facing today, exacerbated by the ever-increasing demands 

for faster, smaller, lighter, and more affordable computing. The processor is the 

primary driver of the overall system power consumption of a computer system. Typical 

power management techniques rely on either running the processor at a fixed clock 

frequency or utilizing dynamic voltage and frequency scaling (DVFS) techniques that 

adjust the processor’s clock frequency in runtime based on its current level of activity.  

In this dissertation, we first describe the results of our measurement-based 

study that evaluates the impact of the state-of-the-art power management techniques 

on performance (P), energy efficiency (EE), and their product (PxEE) in an Intel Core 

i7 processor, running SPEC CPU2017, Parsec-3.0, and SPECpower_ssj2008 

benchmark suites. The results of this study indicate that the state-of-the-art DVFS 

power management techniques heavily favor performance, resulting in poor energy 

efficiency. For example, we find that the processor operates at the highest clock 

frequency even when 90% of all processor cycles are stalls, resulting in wasted energy. 

To remedy this problem, we introduce, implement, and evaluate the effectiveness of 

four new DVFS-based power management techniques driven by the following metrics 
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derived from the processor’s performance monitoring unit (PMU): (i) the percentage 

of all pipeline slot stalls (FS-PS), (ii) the percentage of all cycle stalls (FS-TS), (iii) the 

percentage of memory-related cycle stalls (FS-MS), and (iv) the number of last level 

cache misses per kilo instructions (FS-LLCM), respectively. The proposed techniques 

linearly map these metrics into available processor clock frequencies.  

The results of the experimental evaluation show that the proposed techniques 

significantly improve EE and PxEE metrics relative to the state-of-the-art 

approaches. Further, we find that the proposed techniques are especially effective for 

memory-intensive benchmarks, wherein EE improves from 121% to 183% and PxEE 

from 100% to 141%. We elucidate the advantages and disadvantages of each of the 

proposed techniques and offer guidelines on when to use them. 

Abstract Approval: Committee Chair        

   Department Chair        

   Graduate Dean        
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CHAPTER 1 

 

INTRODUCTION 

Modern computing is continually evolving shaped by constant advances and 

changes in technology, applications, and market trends. Over the past six decades, 

semiconductor technology nodes have gotten smaller and more refined, resulting in 

an exponential increase in the number of transistors on a single die. Fueled by this 

phenomenal growth, mobile and cloud computing have emerged as dominant 

computing models in the last decade. Internet-of-Things (IoT) promises to be a major 

driver for innovation in the years to come. Five distinct classes of computing have 

emerged: IoT/Embedded, Personal Mobile, Desktop, Server, and Cluster/Warehouse. 

Each is characterized by its unique application sets, performance requirements, 

prices, form factors, and operating conditions. Still, processors that power the 

contemporary laptop, desktop, and server computers remain one of the most 

important components in computing ecosystems.  

Historically, improvements in the energy efficiency of modern processors were 

predominantly a byproduct of Moore’s law. Shrinking technology nodes give smaller 

and faster transistors, resulting in more energy-efficient computing. However, recent 

trends indicate an end to Moore’s Law. This is concerning as the energy consumption 



 

2 

of data centers worldwide was estimated to be ~263 TWh in 2020 [4] and it is expected 

to grow to 1,137 TWh by 2030. This calls for renewed efforts in improving the energy 

efficiency of modern computers, especially those used in the largest cloud data centers. 

A majority of high-end workstations and servers use x86 processors from Intel 

and AMD. Modern x86 processors have evolved to become extremely complex 

hardware structures, integrating multiple processor cores, multi-level cache 

structures, memory controllers that support multiple channels, a slew of hardware 

accelerators, and an interconnect network that connects all of these components on a 

single chip. Each processor core is highly pipelined with a superscalar out-of-order 

execution engine with speculative instruction execution, simultaneous multi-

threading (SMT), hardware prefetching, advanced vectorization, and various other 

performance-enhancing structures. Consequently, computer architects have included 

hardware resources dedicated to monitoring and managing the operating states of the 

processor to ensure its safe, reliable, and efficient operation [19].  

Dynamic Voltage and Frequency Scaling (DVFS) is a technique used in modern 

processors to adjust the clock frequency and the power supply voltage of specific 

modules based on their level of activity, thus reducing the power consumption and the 

heat generated by the processor. Each new generation of processors, starting from 

Intel’s Haswell/Broadwell architecture [22] [31], has added more sophisticated 

hardware resources that support faster and more efficient DVFS techniques [52] [54]. 

Thus, modern processors support several performance states (a.k.a. P-states) that 

leverage DVFS and power states (a.k.a. C-states) that allow for unused modules to be 

turned off [68]. 

Algorithms for controlling the P- and C-states are carried out by either BIOS 

firmware or an OS driver, as defined in the Advanced Configuration and Power 
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Interface (ACPI) standard [69]. The control algorithms (in the further text referred to 

as governors) determine how the current processor state is monitored, what conditions 

warrant changes to the processor state, how the new state is determined, and how 

frequently these actions take place. Governors broadly fall into two categories: those 

that employ specific operating states (e.g., performance) or those that observe the 

current processor load and dynamically react to its changes (e.g., 

ondemand/powersave). The Linux recommended ondemand governor monitors the 

utilization of individual processor cores and uses it as the only factor in determining 

the cores’ operating states [58] [70]. The governors send out requests to a dedicated 

unit on the processor called the Power Control Unit (PCU or P-Unit) to change the 

operating states of individual processor cores and other components at regular time 

intervals. This implementation is common across hardware and software vendors. 

The state-of-the-art ondemand governor provides performance similar to the 

performance governor with lower power consumption during idle times. The current 

consensus reflected in the implementation of common governors is that running a 

processor at the highest possible clock frequency during program execution is the most 

energy-efficient strategy. However, several recent studies have shown that this 

approach is not optimal for all types of workloads, especially for those that are 

bounded by memory [15] [27].  

Finding an efficient method to select an optimal operating frequency during a 

program’s run-time remains a challenging problem. A number of prior research efforts 

have proposed analytical models [50] [57] and experimental methods [37] [71] to inform 

the design and implementation of energy-efficient governors. However, these proposals 

have not seen widespread adoption due to the added complexity, processing latency, 

and relatively modest gains.  
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1.1 Scope of This Study 

This dissertation primarily focuses on the DVFS power management 

techniques in modern x86 processors to improve energy efficiency. First, we evaluate 

the effectiveness of the state-of-the-art OS governor (ondemand) by measuring its 

impact on performance (P), energy efficiency (EE), and their product (PxEE). The 

experimental evaluation is primarily carried out on a workstation with an Intel Core 

i7-8700K processor. To represent modern real-life workloads, we use the SPEC 

CPU2017 benchmark suites. We find that the ondemand governor tends to put the 

processor cores at the highest possible clock frequency, regardless of the properties of 

benchmarks being executed. While this policy maximizes performance for all types of 

benchmarks, it results in a significant amount of wasted energy, especially in the case 

of benchmarks bounded by the memory subsystem. 

To address this problem, we propose, implement, and evaluate four new 

techniques that determine the P-state of the processor core using the following metrics 

derived from performance monitoring unit (PMU) events: (i) the total number of 

pipeline slot stalls (FS-PS), (ii) the total number of cycle stalls (FS-TS), (iii) the total 

number of memory-related cycle stalls (FS-MS), and (iv) the number of last level cache 

misses per kilo instructions (FS-LLCM). Each technique linearly maps the 

corresponding metric to the available P-states on a system. We also investigate the 

previous DVFS proposal that utilizes the cycles-per-instruction metric when 

determining the next P-state (FS-CPI). 

The measurement-based studies performed in the dissertation rely on 

architectural support provided by the on-chip performance monitoring unit (PMU) 

that are part of modern processors’ fabric. Initially, tools such as Linux utility perf 
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[72] and Intel’s VTune Amplifier [73] are leveraged to profile the SPEC CPU2017 

suites to better understand the impact of DVFS. Further, we utilize likwid [60] to 

measure the execution time and energy consumed by the processor for each of the 

benchmarks. We evaluate our proposed techniques by comparing them to the state-

of-the-art ondemand governor, with metrics such as performance speedup (P.S), 

energy efficiency improvement (EE.I), the improvement in the product of performance 

and energy efficiency (PxEE.I). 

To further validate the proposed techniques and in an effort to add additional 

diversity to our workloads, we use two more representative benchmark suits. First, a 

set of parallel benchmarks from Parsec-3.0 is used representing a somewhat lighter 

version of compute-intensive applications. Next, to represent server workloads, we use 

the SPECpower_ssj2008 benchmark suites and evaluate the techniques of interest by 

using the performance per watt metric on the test system. 

1.2 Contributions 

The main contributions of this dissertation are as follows. 

• It quantitatively evaluates the effectiveness of the state-of-the-art power 

management technique in modern processors (the ondemand governor) 

and determines its shortcomings, especially in terms of its energy 

efficiency. 

• It provides an in-depth analysis of the SPEC CPU2017 benchmarks using 

the Top-down Microarchitectural Analysis Method and classifies the 

benchmarks into three groups based on their characteristics.  

• It introduces and implements four PMU-event-driven DVFS techniques 

that promise to provide significant energy-efficiency improvements.  
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• It experimentally evaluates the effectiveness of the proposed techniques 

and the existing state-of-the-art by considering performance, energy, 

efficiency, and the product of performance and energy efficiency. The 

experimental evaluation involves three different types of workloads, 

namely SPEC CPU2017, Parsec 3.0, and SPECpower_ssj2008. 

• It provides insights into the inner workings of the proposed DVFS-based 

techniques and discusses their pros and cons relative to each other and the 

previously proposed FS-CPI technique.  

1.3 Findings 

The main finding of this dissertation is summarized as follows.  

• The state-of-the-art governors provide the best possible performance albeit 

at the cost of poor energy efficiency. This is especially true for memory-

bound benchmarks.  

• The results of our experimental evaluation show that all of the proposed 

techniques provide significant improvements to EE and PxEE metrics 

when compared to the state-of-the-art ondemand governor, especially for 

the class of memory-intensive benchmarks. Considering all the SPEC 

CPU2017 benchmarks, the proposed techniques improve EE from 44% (FS-

LLCM) to 92% (FS-PS), whereas PxEE improves from 31% (FS-LLCM) to 

48% (FS-PS). The proposed techniques are especially effective for a class of 

memory-intensive SPEC CPU2017 benchmarks - EE improves from 121% 

(FS-MS) to 183% (FS-PS) and PxEE from 100% (FS-MS) to 141% (FS-PS). 

• The proposed techniques also outperform the previously proposed FS-CPI. 

Relative to FS-CPI, the proposed techniques improve EE from 2% (FS-
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LLCM) to 36% (FS-PS) when all benchmarks are considered together, and 

from 20% (FS-MS) to 54% (FS-PS) when memory-intensive benchmarks 

are considered alone. 

• Considering Parsec-3.0 benchmark suits, the proposed techniques improve 

EE from 15% (FS-LLCM) to 58% (FS-PS) and PxEE from 5% (FS-PS) to 

18% (FS-MS). 

• In the case of SPECpower_ssj2008, Linux recommended ‘OS-ondemand’ to 

provide the lowest performance-per-watt for a fully loaded system. All of 

the proposed techniques improve performance-per-watt as follows: FS-PS 

by 61%, FS-TS by 72%, FS-MS by 61%, and FS-LLC-MPKI by 24%. 

1.4 Outline 

The rest of the dissertation is organized as follows. CHAPTER 2  provides an 

overview of the current power management infrastructure in modern x86 processors. 

CHAPTER 3 explains the shortcomings of the state-of-the-art implementation and 

provides motivation for this study. CHAPTER 4 describes the proposed PMU-event-

driven DVFS techniques aimed at increasing energy efficiency. CHAPTER 5 details 

the experimental setup, the tools employed, and the evaluation metrics used for the 

study. CHAPTER 6 provides an in-depth analysis of the primary workload used in the 

study. The SPEC CPU2017 benchmarks are classified into three distinct groups using 

the Top-down Microarchitectural Analysis Method. CHAPTER 7 provides the 

experimental results for all the proposed techniques. CHAPTER 8 discusses the 

related work in the field of power management through dynamic voltage and 

frequency scaling. CHAPTER 9 describes the various avenues for future work. Finally, 

CHAPTER 10 concludes the dissertation.  
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CHAPTER 2 

 

BACKGROUND 

Modern multicore processors have evolved to be extremely complex hardware 

structures that continue to advance by integrating an ever-increasing number of 

functional units aimed at achieving high performance. With billions of transistors on 

a single chip that can run at clock frequencies approaching 5 GHz, power consumption 

and thermal management have emerged as one of the most important design 

constraints. To address growing concerns related to thermal and power aspects in 

modern processors, manufacturers have incorporated hardware resources solely 

dedicated to power management.  

In the last 20 years, the complexity and sophistication of these resources have 

significantly increased, following an increase in the complexity of processors. Modern 

processors integrate multiple functional blocks on a single chip, including processor 

cores, interconnect, hardware accelerators (e.g., general-purpose graphics processing 

unit), a memory controller, and others. These functional blocks may be selectively 

turned on or off, or when active their operating points may be adjusted independently 

from the others.  
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This chapter provides detailed background about the state-of-the-art processor 

architectures and hardware and software aspects of power management. Specifically, 

Section 2.1 provides an overview of the Intel Skylake microarchitecture. Section 2.2 

describes the processor power, consumption model. Section 2.3 describes the evolution 

of power management features in Intel processors over the years. Section 2.4 

introduces the Advanced Configuration and Power Management (ACPI) standard 

used by hardware and operating systems (OS) vendors. Section 2.5 describes the 

power management hierarchy and its components. Finally, Section 2.6 explains the 

functioning of the most common DVFS based ondemand governor.  

2.1 Intel Skylake Microarchitecture: An Overview 

Intel processor releases are based on a “tick-tock” development process. At 

first, a “tock” comes with a new microarchitecture that uses the same technology node 

as the previous generation. The next generation is followed by a “tick” which comes 

with a new smaller technology node but the same microarchitecture. This type of 

development allows both sources of improvements to mature and cuts development 

costs. Figure 2.1 illustrates the “tick-tock” for 11 generations of Intel desktop (Core) 

and 8 generations of server processors (Xeon).  

Continual transistor size reduction has played a key role in speed and energy 

improvements. But for four full generations of the Intel Core processors, the same 

technology node of 14 nm has been used with slight process refinements. This shows 

a break from the traditional “tick-tock” approach. Though the technology feature size 

has lately remained the same, other forms of performance enhancements such as 

better parallelization, faster memory interconnect, and larger caches have maintained 
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a nearly 30% improvement in performance and 15-20% power reduction for each new 

generation of processors.  

 

Figure 2.1 Intel’s Tick-Tock Model for Desktop and Server Processor [74] 

Each generation of Intel microarchitecture contains two variants, the 

microarchitecture for the Core processors and the Xeon processors. Though the 

internal core architecture is similar, the design of the Xeon processors is oriented 

towards prolonged usage, higher scalability, and lower power consumption. A Xeon 

processor is usually clocked at a lower clock frequency than the corresponding Core 

processor, in order to have a lower operating temperature. 

The most recent iteration of Intel Core architecture comes under the name 

Skylake. Skylake is the successor to Broadwell in terms of the technology node and 

includes a number of improvements relative to the Haswell microarchitecture. Five 

generations of processors were built using the Skylake microarchitecture. This section 

provides a brief review of the Skylake microarchitecture. 
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2.1.1 Processor Core Microarchitecture 

A physical core (also referred to as ‘core’) is a well-partitioned piece of logic 

capable of independently performing all functions of a processor. A single physical 

core may encompass one or more logical cores. The Intel Skylake microarchitecture 

specifies an out-of-order superscalar design that can dispatch up to six 

microinstructions to execution units per a single CPU clock cycle. The internal 

functional units can be segregated into the front-end and the back-end. The front-end 

of the processor is responsible for fetching instructions from memory and translating 

them into micro-operations. These translated micro-operations are then fed to the 

back-end of the processor. The back-end handles scheduling, execution, and retiring 

of instructions.  

Figure 2.2 gives the block diagram of the Skylake microarchitecture. The flow 

of instruction through the pipeline can be illustrated as follows. Initially, the branch 

prediction unit (BPU) chooses the next 16-byte block of instructions to execute. The 

processor then searches for instructions in the Decode ICache, first-level instruction 

cache (L1I), L2 cache, last level cache (LLC), and memory in that order, as necessary. 

The instructions fetched from the L1I cache or above are then converted into micro-

operations and sent to the rename block. They enter the scheduler in program order 

but execute out-of-order. Branch mispredictions are found at branch executions and 

they redirect the front-end as necessary. Memory operations are parallelized for 

maximum performance. Exceptions are signaled at the retirement of the faulting 

instruction. 

Branch prediction predicts the branch target and enables the processor to 

begin executing instructions long before its true execution path is known. All branches 
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utilize the branch prediction unit (BPU). The BPU predicts the target address not only 

based on the next instruction to be executed but also based on the execution path.  

The BPU can efficiently predict the following types of branches: 

• Conditional branches; 

• Direct calls and jumps; 

• Indirect calls and jumps; and 

• Returns. 

 

Figure 2.2 Skylake Microarchitecture CPU Core Block Diagram [67] 

The dynamic branch prediction unit consists of two major parts: a branch target 

buffer (BTB), for the prediction of branch targets, and an outcome predictor for the 
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branch address is used as the cache index, and the last target address of that branch 

is the cache data [41]. Unfortunately, the branch predictor organization and operation 

on the Skylake architecture are not disclosed by the manufacturer. Studies have used 

experimental reverse engineering and it is found that the branch predictor unit used 

in the older generations of the Intel processors is a 4096-entry bimodal predictor [40] 

[61] [62]. 

The back-end, also known as the out-of-order (OOO) engine, detects dependency 

chains and sends those chains of instructions for execution while maintaining data 

flow. If a dependency chain is waiting for resources, micro-instructions from a 

secondary dependency chain are sent for execution to increase the instruction per 

cycle (IPC). The major components of the back-end are the Renamer, Scheduler, and 

the Retirement unit. The Renamer component moves up to four micro-operations 

every cycle from the front-end to the execution core. It eliminates false dependencies 

among micro-operations, thereby enabling out-of-order execution of micro-operations. 

The Scheduler component queues micro-operations until all source operands are ready 

and schedules and dispatches ready micro-operations to the available execution units 

in as close to a first-in-first-out (FIFO) order as possible. Depending on the availability 

of dispatch ports and write-back buses, and the priority of ready micro-operations, the 

scheduler selects which micro-operations are dispatched every cycle. The Retirement 

component retires instructions and micro-operations in order and handles faults and 

exceptions. 

The out-of-order engine consists of three execution stacks, where each stack 

encapsulates a certain type of data: a general-purpose integer, a SIMD integer and 

floating-point, and an x87. The execution core also contains connections to and from 

the cache hierarchy. The loaded data is fetched from the caches and written back into 
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one of the stacks. The scheduler can dispatch up to eight micro-operations every cycle, 

one on each port. After execution, the data is written back on a write-back bus 

corresponding to the dispatch port and the data type of the result. When a source of a 

micro-operation executed in one stack comes from a micro-operation executed in 

another stack, a one or two-cycle delay can occur.  

2.1.2 Cache Hierarchy 

The cache hierarchy contains a first-level instruction cache, a first-level data 

cache (L1 DCache), and a second-level cache (L2), that are private to each processor 

core. The caches may be shared by two logical processors if the processor is hyper-

threaded. The L2 cache is unified, containing both instructions and data. All cores in 

a physical processor package connect to a shared last level cache (LLC) via a ring 

connection. L2 is not inclusive of the data in L1. Only the LLC is inclusive of all the 

levels below it.  

The actual delay a CPU core sees when reading a data item depends on how 

far the required data is from the core. Each cache line in the LLC holds an indication 

of the cores that may have this line in their L2 and L1 caches. If there is an indication 

in the LLC that other cores may hold the cache line of interest and its state needs to 

be modified, there is a cache coherence lookup into the L1 DCache and L2 of these 

cores too. 

Table 2.1 shows the size, associativity, and access times in the memory 

hierarchy of a typical Skylake based quad-core processor. The overall memory 

structure in Skylake is similar to its predecessor Broadwell/Haswell, except for the 

change in associativity of L2 to 4-way from the previous 8-way. The data access 
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latency is dependent on the operating clock frequency of the core and uncore. A higher 

operating frequency would reduce the wall-clock period for the access latency.  

Table 2.1: Memory Hierarchy Parameters in a Typical Skylake Processor 

 Size Associativity Latency 

L1 DCache 32 KB 8-way 4 cc 

L1 ICache 32 KB 8-way 5 cc 

L2 Cache 256 KB 4-way 12 cc 

L3 Cache 8 MB 16-way 42 cc 

DRAM - - 42 cc + 51 ns 

 

Figure 2.3 shows the best-case access latency in ns for all levels in the memory 

hierarchy of the test machine while varying operating frequencies. These data are 

collected using the Hopscotch benchmark suite [1]. We can see how the changes in the 

processor clock frequency impact the access latency for L1, L2, L3, and DRAM. By 

lowering the processor clock frequency, expectedly the latencies increase at each level.  

 

Figure 2.3 Measured Cache Hierarchy Access Latency 
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2.2 Processor Power Consumption Model 

CPU power can be conceptually broken into (a) the logic power and (b) the I/O 

power. The two major components of the logic power are: (i) the power consumed by 

the clocks that run throughout the processor; (ii) power consumed by logic performing 

computation [21]. The power consumed by the logic elements performing computation 

can be further divided into dynamic power, short-circuit power, and leakage power as 

shown in Eq. 2.1 and Eq. 2.2 [42]. 

𝑃𝐶𝑃𝑈 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑐 + 𝑃𝑙𝑒𝑎𝑘 Eq. 2.1 

𝑃𝐶𝑃𝑈 = 𝐴𝐶𝑉2𝑓 + 𝜏𝐴𝑉𝐼𝑠ℎ𝑜𝑟𝑡𝑓 + 𝑉𝐼𝑙𝑒𝑎𝑘 Eq. 2.2 

The first component of the equation, dynamic power consumption is caused by 

the charging and discharging of the capacitive load on the output of each gate. It is 

proportional to the frequency of the system’s operation, f; the activity of the gates in 

the system, A, a metric that captures how often gates are switching; the total 

capacitance seen by the gate’s outputs, C; and the square of the supply voltage, V. The 

second component of the equation short-circuit power captures the power expended as 

a result of short circuit current, Ishort, which momentarily, τ, flows between the supply 

voltage and ground when a CMOS logic gate’s output switches. The third component 

measures the power lost from the leakage current regardless of the gate’s state. 

For a long time, dynamic power consumption was the major factor influencing 

total power consumption. The most effective way to save power was by reducing the 

supply voltage, V. The quadratic dependence on V means that the savings can be 

significant: Halving the voltage reduces the power consumption to one-fourth of its 
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original value. Unfortunately, this savings comes at the expense of performance, or, 

more accurately, maximum-operating frequency, as shown in Eq. 2.3. 

𝑓𝑚𝑎𝑥 ∝
(𝑉 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)2

𝑉
 Eq. 2.3 

The maximum frequency of operation is thus proportional to V. Reducing it 

limits the maximum frequency the circuit can run at. Reducing the power supply to 

one-fourth of its original value only halves the maximum frequency. However, 

reducing the voltage, V, in Eq. 2.3 requires a reduction in Vthreshold. This reduction must 

occur so that low-voltage logic circuits can properly operate. However, reducing 

Vthreshold increases the leakage current, as shown in Eq. 2.4 

𝐼𝑙𝑒𝑎𝑘 ∝ 𝑒𝑥𝑝 (
𝑞 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑘𝑇
) Eq. 2.4 

Eq. 2.1 represents the average power consumed by the CPU. Although the 

dynamic power consumed is perceived as a function of voltage, frequency, and 

temperature, each of these components has a direct and proportional impact on the 

behavior of every other parameter. The power consumption is proportional linearly to 

frequency and quadratically to voltage as shown in Eq. 2.5. 

𝑃𝑑𝑦𝑛~ 𝑓 ∗ 𝑉2 Eq. 2.5 

In order to increase the operating frequency, the voltage has to be increased. 

The voltage required to run the CPU tends to increase with the square of the 

frequency in operating regions with a very high clock frequency. As the power 

consumed is directly dependent on voltage and frequency this relationship is critical 

for power management. At low frequencies, we can change the frequency with little 
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impact on voltage, however, when operating at high frequencies, a small increase in 

frequency requires a large variation in voltage. 

2.3 Evolution of Power Management in Intel Processors 

Over the past two decades, power has become a primary design constraint in 

the design of modern processors. In response, computer architects have significantly 

improved the energy efficiency infrastructure in modern processors. With each new 

processor generation, additional energy efficiency features were introduced, resulting 

in power savings by at least a factor of four in idle systems. While these features 

improved the energy efficiency significantly, they also have a major influence on the 

performance of the processor. In this section, we will go over the evolution of the power 

management features on different microarchitectures from Intel over the years.  

2.3.1 Nehalem Microarchitecture 

The Intel Nehalem microarchitecture, released in late 2009, was the basis for 

the 1st generation of the Intel core processors. The corresponding processors were 

initially manufactured on a 45nm technology node and later upgraded to a 32nm 

technology node the next year.  

2.3.1.1 Power Control Unit (PCU) 

To tackle the growing problem of leakage power, which was responsible for 

roughly 1/3rd of the core power consumption, new power management features had to 

be developed. As a solution, the first on-chip power control unit or the package control 

unit (PCU), which was built using over a million transistors, and was introduced in 

the architecture. The PCU consolidated all the power management features present 

on the processor, including the ACPI interface that controls the P-states and the C-



 

19 

states to one module. The PCU runs proprietary firmware and provides interfaces to 

the BIOS or OS with a set of control and model-specific registers (MSRs).  

Figure 2.4 shows the positioning of the PCU on the chip of a Nehalem processor. 

The controller is responsible for managing the power states of the processing cores 

using real-time sensors for temperature, current, and power. The on-chip power 

management improved voltage switching rates resulting in a P-state transition 

latency of ~100 ms. The P-state management in Intel Nehalem processors is called, 

SpeedStep Technology (software P-state management). 

 

Figure 2.4 Integrated PCU on the Nehalem Processor 

The SpeedStep implementation provides each physical core with its own 

integrated phase-locked-loop (PLL), enabling it to be clock gated independently, 

allowing for core-level C-states. The external clock source of 133 MHz is brought to 

the processor chip. A new power gate was designed for the Nehalem architecture. The 
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completely reduced to zero by placing it into the C6 (“deep power down”) power state 

independently. It should be noted that though each physical core has an independent 

PLL, the operating voltage and the frequency of the cores are the same and they 

operate in the same voltage domain. 

An added advantage of the modular design was the decoupling of the core and 

uncore domains. As a result, the uncore to be powered down when all cores enter the 

C6 sleep state. However, the uncore savings do not scale similarly to the core as even 

a single active core can wake the uncore from the sleep state. 

2.3.1.2 Intel Turbo Boost Technology 

The savings in the power budget paved the way for the introduction of the 

turbo-mode. The basic premise of the turbo-mode is to use the power budget surplus 

from turning off unused cores to temporarily increase the operating frequency of the 

active cores. Figure 2.5 provides an illustration of the turbo mode on a 4-core Nehalem 

processor. When all four cores are loaded, the processor operates at the specified 

thermal design power (TDP).  

TDP, in watts, refers to the power consumption under the maximum 

theoretical load. However, in the case of a lightly threaded workload occupying only 2 

cores, the remaining cores can be put to sleep, providing power and thermal headroom 

for turbo mode. All Nehalem processors were capable of at least boosting a single clock 

step (133 MHz) in turbo mode, even if all cores are active, for as long as the PCU does 

not detect any violation in the TDP. If the TDP levels are low enough, or if several 

cores are idle, the PCU can increase clock speeds by more than one clock step. 

However, the Turbo technology in Nehalem was limited to just two clock steps, 

providing a maximum turbo boost of 266 MHz above the nominal frequency [75]. 
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Figure 2.5 Illustration of Turbo Mode 

2.3.2 Sandy Bridge Microarchitecture 

The Intel Sandy Bridge microarchitecture, released in 2011 is an evolution of 

the Nehalem microarchitecture. It was the core microarchitecture for the 2nd and 3rd 

generation of the Intel core processors. The first wave of processors used the earlier 

32 nm technology node and later upgraded to 22 nm under the code-name Ivy Bridge. 

The PCU, introduced in the Nehalem architecture, received several feature updates. 

Figure 2.6 shows the block diagram of the major functional blocks and the power-

management control blocks and interconnect on the Sandy Bridge microarchitecture. 

The PCU resides in the system agent and is a combination of dedicated hardware state 

machines and an integrated microcontroller. A power-management link connects the 

PCU to different cores and functional blocks on the die via power management agents 

(PMAs). PMAs collect telemetry information such as power consumption and junction 
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constantly collects power and thermal information, communicates with the OS, and 

performs various power-management functions and optimization algorithms. 

 

Figure 2.6 Sandy Bridge Power Management Block Diagram [52] 
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the turbo-mode, called Intel Turbo Boost technology 2.0. The processors from the 

previous generation (Nehalem) limited the turbo mode to match the TDP budget, 

based on the assumption that the CPU reaches that TDP immediately upon enabling 

turbo mode. However, in reality, the CPU temperature changes more gradually – 

there is a period of time where the CPU is not dissipating its full TDP – this behavior 

is similar to a ramp function.  

Sandy Bridge takes advantage of this by allowing the PCU to enable turbo-

mode on active cores above the TDP budget for a short period of time (up to 25 

seconds). The PCU keeps track of the available thermal budget while idle and spends 

it when CPU demand goes up. The longer the CPU remains idle, the more potential it 

has to ramp up above TDP during a high load period. During workload execution, the 

CPU can turbo above its TDP and step down, as the processor heats up, eventually 

settling down at its TDP [76].  

In addition to the above-TDP-turbo, Sandy Bridge also supported more turbo 

bins than Nehalem and allowed for both CPU and GPU turbo to work in tandem. 

Workloads that are more GPU bound can result in the CPU cores clocking down and 

the GPU clocking up and vice-versa.  

2.3.2.2 Running Average Power Limit (RAPL) 

With the introduction of the above-TDP-turbo, a robust hardware mechanism 

was required to monitor and control power consumption on the chip to avoid thermal 

damage. The Running Average Power Limit (RAPL) interface was designed to limit 

on-chip power while ensuring maximum performance [66]. The interface supports 

fine-grain time measurement of power, energy, and temperature of sockets, individual 

cores, uncore structures as well as on-chip GPUs. The RAPL interface acts as an 
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architectural power meter. It collects a set of architectural events from each Intel 

architecture core, the processor graphics, and I/O, and combines them with energy 

weights to predict the package’s active power consumption.  

In RAPL, platforms are divided into domains for fine-grained reporting and 

management. Figure 2.7 shows the major RAPL domain available on the processor. 

This includes the package domain (PKG) which incorporates the entire socket, the 

core domain (PP0) which includes all the CPU cores, the graphic domain (PP1) which 

includes the onboard graphics, and the memory domain (DRAM). The specific RAPL 

domains available in a platform vary across product segments.  

 

Figure 2.7 RAPL Power Domains 

Each RAPL domain supports four different functionalities as shown below: 

• ENERGY_STATUS for power monitoring. 

• POWER_LIMIT and TIME_WINDOW for controlling power. 

• PERF_STATUS for monitoring the performance impact of the power limit. 

• RAPL_INFO contains information on measurement units, the minimum and 

maximum power supported by the domain. 
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Intel has validated the energy estimates provided by the RAPL interface to 

actual power consumption. Several studies have explored the effectiveness of on-chip 

power meters and explained hardware and software optimizations as a function of 

performance and energy efficiency [22]. Various tools make use of the RAPL interface 

to enable power and energy measurements of different power domains [64] [60]. 

2.3.3 Haswell Microarchitecture 

The Intel Haswell microarchitecture introduced in 2013 is the core 

microarchitecture for the 4th and 5th generation of the Intel Core processors. The 

fourth-generation used the 22 nm technology node and the fifth upgraded to 14 nm 

under the code-name Broadwell. The Haswell microarchitecture was optimized for 

idle power consumption and consequently, several new power management features 

were added. 

2.3.3.1 Per-Core Power Management and Independent Uncore Scaling 

Intel processors from the Haswell microarchitecture were the first x86 

processors that incorporated fully integrated voltage regulators (FIVR) on the die [9]. 

Additionally, server-class processors included separate voltage regulators for every 

processor core, enabling fine-grained P-state control. The on-chip voltage regulators 

also paved the way for uncore frequency scaling (UFS), enabling the processor to 

control the frequency of the uncore components (e.g., last-level caches) independently 

of the core frequencies. Prior Intel processor generations used either a fixed uncore 

frequency (Nehalem and Westmere) or a common frequency for cores and uncore 

(Sandy Bridge and Ivy Bridge). The uncore frequency has a significant impact on on-

die cache-line transfer speeds as well as on memory bandwidth [31]. At the 
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microarchitecture level, Intel added more power gating and low power modes. The 

additional power gating gives the PCU fine-grained control over shutting off parts of 

the core that are not used. 

Furthermore, a major focus on vectorization resulted in the expansion of an 

advanced vector instruction set (AVX), supporting 256-bit wide data paths. However, 

AVX instructions draw more current and a higher voltage is needed to sustain 

operating conditions. To facilitate this, the core signals the PCU to provide additional 

voltage and slows the execution of AVX instructions. To maintain the limits of the 

TDP, the increasing voltage may cause a drop in clock frequency. Hence, the Haswell 

CPU family uses a lower clock frequency for workloads with a substantial portion of 

AVX instructions [22]. To cope with the huge difference between the power 

consumption of scalar and AVX instructions, a new base and Turbo Boost frequencies 

called AVX base/Turbo was introduced, as shown in Figure 2.8. 

 

Figure 2.8 AVX Frequency Range in a Haswell Processor 
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Turbo-boost in Haswell/Broadwell processors saw several updates. Figure 2.9 

illustrates the operation of turbo-mode on a 4-core processor. The processor will have 

a certain number of turbo bins, controlled by the PCU, available based on the rated 

TDP. Monitoring the CPU load, thermal headroom, and power budget, the PCU 

allocates these bins to one or more processor cores. This revision to the turbo mode 

includes the introduction of the Energy Efficiency Turbo (EET) [6].  

High turbo frequencies—typically only limited by power or thermal 

constraints—tend to hurt energy efficiency, especially if the performance increase is 

negligible. The EET feature attempts to reduce the usage of turbo frequencies that do 

not significantly increase the performance. EET monitors the number of stall cycles 

and uses this information as well as the energy performance bias (EPB) setting to 

select a turbo-frequency that is predicted to be optimal. 

 

Figure 2.9 Turbo Operation in Haswell/Broadwell Processors 
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Hardware Power Management (HWPM or SpeedShift) was introduced in the 

Broadwell generation of Intel processors. The hardware-controlled P-states 

mechanism transfers the decision of frequency scaling from the OS to the hardware 

and acts autonomously. Furthermore, it increases the responsiveness because the 

hardware control loop can be executed more frequently without perturbation. 

2.3.3.3 Intel Turbo Boost Technology 3.0 

Due to variations in their manufacturing process, individual cores in the same 

die may have varying efficiency characteristics. As a consequence, during turbo-mode, 

some cores may reach a higher operating frequency while other cores may not, which 

in turn influences the performance of a single thread depending on the hardware core 

that executes on. To overcome this problem, the Turbo Boost Max 3.0 (TBM3) feature 

was introduced with the Broadwell processors. Its basic premise is to improve single-

thread performance by executing the workload on the processor core that delivers the 

best power and performance. The PCU can automatically select the best performing 

core and ask the schedular to execute the workload on the given core.  

2.3.4 Skylake Microarchitecture 

The Intel Skylake microarchitecture was released at the end of 2015 and was 

the core architecture for the five generations of the Intel processor series (from 6th 

generation to 10th generation). Skylake was a “tock” in Intel’s cycle, hence it used the 

same 14-nm technology node as Broadwell with some process refinements. Figure 2.10 

shows a block diagram of an Intel Skylake processor with four different power 

domains, as follows: processor cores, uncore, graphics, and system agent. The PCU is 
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in charge of power management; it includes a microcontroller that runs proprietary 

firmware and provides interfaces to the BIOS or OS [77].  

 

Figure 2.10 Illustration of Power Domains on an Intel Processor 
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profile for runtime or power consumption or something in between. The Energy-

Efficient Turbo (EET) mechanism was inherited from the Haswell microarchitecture. 

The hardware P-state management (a.k.a. Intel Speedshift) saw a major update. 

While the Broadwell processors hardware acts mostly autonomously, Skylake 

processors provide interfaces for a collaboration with the OS through interrupts. With 

the HWP interface, the OS can define a performance and power profile, and set a 

minimal, efficient, and maximal frequency. The OS can also override the hardware in 

selecting a P-state. 

Table 2.2 shows the P-state transition on the latest processors from the 

Skylake microarchitecture. Compared to Speed Step- P-state transitions, the Speed 

Shift terminology improves transition times by having the operating system 

relinquish some or all control of the P-States and handing that control off to the 

processor. This has a couple of noticeable benefits. First, it is much faster for the 

processor to control the changes in clock frequency, compared to OS control. Second, 

the processor has much finer control over its states, allowing it to choose the most 

suitable performance level for a given task. Specific jumps in frequency are reduced 

to around 1 ms with Speed Shift's CPU control from 10-30 ms on OS control and going 

from the lowest P-state (Pn-energy-efficiency state) to the lowest P-state (P0-

maximum performance can) be done in around 35 ms, compared to around 100 ms 

with the legacy implementations. This improvement in transition time is especially 

beneficial for latency-sensitive application and interrupt handling.  

Table 2.2: P-state Transition Latency Reported by Intel 

 SpeedStep SpeedShift 

P-state Transition ~10-15 ms ~1 ms 

The transition from Pn to P0 ~100 ms ~35 ms 
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In summary, each new generation of the processor builds on the energy-

efficiency features of the prior generation. Utilizing the multitude of hardware 

features focused on power management, operating system vendors, over the years 

have tried to optimize application performance and save power. A number of various 

governors are built to target different use cases. Generally, the governors follow a 

strategy of “race to idle”, which relies on finishing execution quickly in order to save 

power. However, we learn through experimentation that this strategy is not ideal for 

all sorts of applications. 

BIOS/OS developers utilize the available hardware structures to build high-

level control algorithms for power management. Major computing companies 

developed an open industry specification called Advanced Configuration and Power 

Interface (ACPI) to maintain uniformity across processor vendors, OEMs, and OS 

providers [78]. ACPI establishes common interfaces for power management in a 

variety of computer systems. 
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2.4 ACPI Power & Performance States 

The primary objective of power management techniques is to reduce overall 

power consumption when possible, without affecting performance. Two primary ways 

to reduce power consumption in modern processors are to either turn unused 

components off or to throttle used components based on their load. To facilitate these 

actions, modern processors feature power states (C-states) that facilitate turning off 

individual processor components when idle and performance states (P-states) that 

facilitate clock frequency and voltage throttling. 

Figure 2.11 illustrates C-states and P-states as defined by the ACPI standard. 

The C0-state corresponds to the processor active mode, where all components are 

turned on and component clocks are active. Within this state, multiple P-states are 

available, enabling dynamic changes of the processor clock frequency and power 

supply voltage. The P0 state corresponds to the processor's highest operating clock 

frequency in the so-called turbo mode [10]. The P1-state typically corresponds to the 

nominal or base processor clock frequency. Turbo Boost is a technology initially 

introduced by Intel that opportunistically allows the processor to run faster than the 

nominal frequency if the processor operates below power, temperature, and current 

limits. The maximum Turbo Boost frequency depends on the number of active cores, 

workload, operating environment, and platform design. (Note that Turbo Boost is not 

the same as overclocking). Max Turbo Boost frequency is dependent on the number of 

active cores, workload, operating environment, and platform design. Higher P-states 

(P2-Pn) progressively lower processor clock frequency and power supply below their 

nominal levels. 
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Higher C-states (C1-Cn) progressively turn off unused components, entering 

deeper sleep modes, thus eliminating both the switching and leakage components of 

power consumption. C1 is the first idle state, a.k.a. Halt. In C1 the processor clock is 

gated, i.e., the clock is prevented from reaching the core(s), effectively shutting them 

down. However, the clock can be restored almost instantaneously (with a few clock 

cycles delay) to return to the active state. Higher C-states (C2-Cn) offer larger power 

savings, albeit at the cost of increased wake-up time. Each new generation of modern 

processors introduces a larger number of C- and P-states, faster and more efficient 

transitions between the C states, and a richer set of functions for power management 

[22] [54].  

 

Figure 2.11 Processor Power States (C-states) & Performance states (P-states) 
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2.5 CPU Power Management 

Figure 2.12 provides a hierarchical view of the various power management 

components, from hardware to userspace interface. Starting from the bottom up, the 

hardware level encompasses the power control unit (PCU/P-unit) with a set of control 

and model-specific registers (CSRs and MSRs). During an initial handshake at 

bootup, the processor provides information to the BIOS about available P- and C-

states. Further communication to inspect the current state or initiate a state change 

is carried out through the status and control registers (shown at the bottom of the 

figure). The BIOS can typically support multiple system profiles that can favor 

performance, energy efficiency, or allow for dynamic power-saving techniques. 

Considering the latter, the power management control is transferred to the operating 

system. This profile is often referred to as Performance Per Watt OS or OS Control 

Mode.  

 

Figure 2.12 A Hierarchy of Power Management Components 
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To abstract out differences between various hardware implementations across 

multiple generations of processors, vendors provide transition drivers such as the 

Intel P-state driver (the default for Intel processors) and the CPUFreq driver (the 

default for AMD processors). These drivers act as an interface between the PCU and 

a set of defined governors residing in the OS. Governors implement a particular policy 

that determines when and how the processor frequency and voltage are scaled. 

Generic governors supported by the Linux acpi-cpufreq driver are shown in 

Figure 2.12 and they can be broadly classified into two groups, static frequency 

selection governors and DVFS-based governors. The static frequency governors, such 

as the performance and powersave governors, set the processor frequency to the 

highest (P0) and lowest (Pn) available clock frequency, respectively. The performance 

governor is utilized for latency-sensitive workloads to minimize their response time 

and execution times. However, this policy can quickly lead to overheating and it tends 

to be wasteful when the system is idle or underutilized. On the other side, the 

powersave governor will guarantee the lowest-power operation, at the expense of 

increased execution time. It should be noted that running at the lowest clock 

frequency may significantly increase the execution time so that the overall energy 

exceeds the energy required at other operating points.  

To bridge the gap between the performance and powersave governors, the 

governors that employ DVFS are utilized. The ondemand governor automatically 

selects the highest frequency when the average processor load exceeds a certain 

threshold. The governor keeps track of the average processor load determined by the 

scheduler. If the load falls below a certain threshold the clock frequency is lowered 

accordingly. The conservative governor is similar to the ondemand one; the only 
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difference is that changes in the clock frequency occur more gradually. The schedutil 

governor is also similar to ondemand and allows for scheduler-driven processor 

frequency selection. Finally, the userspace governor allows the user to set a specific 

clock frequency statically. 

The ondemand generic governor is recommended when using the acpi-cpufreq 

driver. When using the recent intel_pstate driver, only two governors are supported 

referred to as the performance and powersave. However, although these two governors 

share the names of the generic governors, they behave differently. They both provide 

dynamic voltage and frequency scaling, similar to the generic schedutil or ondemand 

generic governors. In the rest of the paper, we will exclusively use the governors that 

rely on the intel_pstate driver. 

2.6 Functioning of a DVFS-based Governor 

The governors that employ DVFS such as ondemand use CPU utilization as 

the primary metric in determining appropriate P-states [46]. The CPU utilization is 

separately provided by the scheduler for each CPU core at a fixed time interval, 

typically 1 ms. The CPU utilization metric is calculated as the percentage of time 

spent in the non-idle thread for a given time interval, as shown in Eq. 2.6. 

% 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑡𝑖𝑚𝑒 𝑖𝑛 𝑛𝑜𝑛 𝑖𝑑𝑙𝑒 𝑡ℎ𝑟𝑒𝑎𝑑

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑙
 ∗ 100 Eq. 2.6 

Figure 2.13 illustrates the P-state selection mechanism on a single core over a 

period of time-based on CPU utilization. In this example, we assume that the 

processor supports 11 P-states, P0 to P10. The scheduler monitors and updates the 

CPU utilization every 1 ms and the ondemand governor linearly maps the CPU 

utilization to the available P-states and sends a request for the next P-state every 10 
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ms. However, a transition between the P-states takes a finite amount of time. This 

latency has been reduced over many generations of processors and is currently ~10 

ms. The same technique is applied to all the cores visible to the operating system. 

 

Figure 2.13 CPU Utilization Metric Breakdown 

Figure 2.14 illustrates the P-state selection mechanism on a 4-physical core 

processor utilizing the ondemand governor. We assume that core 0 has utilization of 

100% in the given interval; thus, it is mapped to the P0 state. Similarly, core 1 with 
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core 3 with the utilization of 60% to P4. If the processor supports core level P-state 

management, then cores 0-3 operate in states P0, P2, P10, and P4, respectively. 

However, if the processor only supports socket level P-state management, then the 

lowest-numbered P-state among all the cores is selected for the entire processor (P0 

in our example). This request is then sent to the P-unit through the corresponding 

driver. 
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Figure 2.14 Core-wise P-state Voting Mechanism 
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CHAPTER 3 

 

MOTIVATION 

The current consensus reflected in the implementation of the most frequently 

used governors is that running the processor at the highest possible clock frequency 

during program execution is the most energy-efficient strategy. However, several 

studies have shown that this approach is not optimal for all types of workloads, 

especially for those that are bound by memory [15] [27]. 

To illustrate the problems with the CPU utilization metric discussed in 2.6, let 

us consider an example illustrated in Figure 3.1. Assume a processor supports 11 P-

states, P0-P10. A CPU is utilized for 9 ms by a thread out of 10 ms in a DVFS interval, 

resulting in a 90% utilization rate. Consequently, the ondemand governor selects the 

P1-state. However, the utilization metric does not look into whether the thread 

performs any useful computation or not.  

For example, it could be that out of 9 ms, only 3 ms are spent in doing useful 

computation. The rest are wasted processor clock cycles due to mispredictions in the 

processor front-end, structural hazards in the back-end, stalls due to memory reads 

and writes, or other stalls. This results in wasted CPU clock cycles that continue to 

consume energy without providing any returns. This problem is present in processors 
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operating in all domains, from hand-held devices to datacenter servers. To the best of 

our knowledge, none of the current state-of-the-art governors deal with this issue even 

if the energy-saving settings are turned on.  

 

Figure 3.1 Limitations of the CPU utilization metric. 

To quantify the impact of the voltage and frequency operating points on the 

execution time of different types of benchmarks, we consider three floating-point 

speed benchmarks from the SPEC CPU2017 benchmark suite: 638.imagick, 628.pop2, 

and 649.fotonik3d. The benchmarks are picked from the SPEC CPU2017 floating-

point speed suite where the user has the ability to select the number of OpenMP 

threads to run.  

In this case, the benchmarks are run with 6 threads to fully load a test machine 

with 6 processor cores. These benchmarks exhibit different characteristics, being 

compute-intensive (638.imagick), balanced (628.pop2), and memory-intensive 

(649.fotonik3d) [26]. Compute-intensive refers to benchmarks that are bound by the 

available on-chip compute resources. Balanced benchmarks are bound by both the 

available compute resources and the memory subsystem, where performance depends 

on both compute resources, memory size, and bandwidth. Memory-intensive 

applications are bound by the memory subsystem, where performance is dependent 

on the available memory size and bandwidth alone.  
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Figure 3.2, Figure 3.3, and Figure 3.4 show the program execution time 

(primary Y-axis) and the total number of clock cycles needed (secondary Y-axis) as a 

function of statically selected operating points (frequency, voltage) across the entire 

socket for 638.imagick, 628.pop2, and 649.fotonik3d, respectively. The number of clock 

cycles is further divided into clock cycles that actively issue a micro-operation and 

clock cycles that are stalls.  

In the case of 638.imagick (Figure 3.2), the total number of clock cycles and the 

percentage of the stalled cycles remain constant, regardless of the clock frequency. 

Consequently, the program execution time proportionally decreases as the clock 

frequency increases. In the case of 628.pop2 (Figure 3.3), the total number of clock 

cycles needed to execute the benchmark increases with an increase in the clock 

frequency. This increase is mainly driven by a significant increase in the number of 

stalled cycles caused by memory. Consequently, the program execution times plateaus 

at ~2.7 GHz.  

Finally, in the case of 649.fotonik3d (Figure 3.4), the total number of clock 

cycles increases almost 4-fold as the clock frequency increases from 0.8 GHz to 4.3 

GHz. Here the program execution time plateaus at ~1.7 GHz. Thus, processors 

running at higher clock frequency will waste energy without any benefit to overall 

performance. Yet, the default ondemand governor would run all three benchmarks at 

the maximum clock frequency.  
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Figure 3.2 Impact of Frequency Scaling on Compute Intensive Benchmark 

 

Figure 3.3 Impact of Frequency Scaling on Balanced Benchmark 

 

Figure 3.4 Impact of Frequency Scaling on Memory Intensive Benchmark 
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To remedy this problem, we introduce a new class of DVFS-based governors 

that do not use processor utilization as the primary metric in selecting P-states. 

Rather, we propose considering a range of different events from performance 

monitoring units that can help us dynamically select P-states that will reduce energy 

consumption while providing minimal performance degradation.  
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CHAPTER 4 

 

PMU-EVENTS-DRIVEN DVFS TECHNIQUES 

This section describes the proposed PMU-event-driven DVFS techniques and 

their implementation. Section 4.1 introduces the performance monitoring unit (PMU) 

and the top-down microarchitectural analysis method (TMAM) derived from the PMU 

events. Section 4.2 describes our proposed techniques for runtime DVFS. We propose 

four techniques that use the metrics derived from the Performance Monitoring Unit 

(PMU) events to determine P-states. The first two techniques evaluate utilization at 

the microarchitectural level, by using pipeline stalls or total cycle stalls. The next two 

techniques focus on the memory subsystem by using the memory-related stalls or the 

last level misses per kilo instruction to determine P-states. Section 4.3 discusses the 

previously proposed CPI-based frequency scaling technique and its limitations. 

Section 4.4 details the implementation of the proposed techniques.  

4.1 Performance Monitoring Unit Event-Based Analysis 

Modern processors integrate multiple components on a single chip, including, 

out-of-order superscalar processor cores with private L1 and L2 caches, interconnect, 

shared L3 caches, hardware accelerators (e.g., GPGPU), and a memory controller. 
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Multiple micro-operations can be executed and retired concurrently in a single clock 

cycle (~5 in most modern x86 processors). Writing effective software that takes full 

advantage of complex hardware structures is a challenging proposition. To cope with 

this challenge, software developers often rely on dedicated on-chip hardware 

resources called performance monitoring units (PMUs). Performance monitoring was 

introduced in the Pentium processor with a set of model-specific counters. 

PMUs can help software developers find bottlenecks in their programs, 

understand how their programs utilize available hardware resources and guide their 

optimization efforts. A PMU typically consists of several counters dedicated to 

counting various hardware and software-triggered events. Each processor core 

includes several fixed-purpose counters (e.g., counting clock cycles and instructions) 

and several programmable general-purpose counters. The programmable counters 

can be used to count one of the hundreds of available events. The events can be broadly 

classified into hardware events (e.g., cache misses, branch mispredictions) and 

software events, from the OS and kernel (e.g., page faults, context switches) [79]. 

Modern processors support uncore PMUs, those that reside outside processor cores 

and can count events related to the memory controller, interconnect, or shared L3 

caches.  

4.1.1 Top-down Microarchitectural Analysis Method 

Modern superscalar processors can be conceptually divided into the front-end 

and the back-end. The front-end is responsible for fetching and decoding instructions 

into micro-operations for execution. The back-end is responsible for scheduling, 

execution, and retiring of instructions. The Top-down Microarchitectural Analysis 

Method (TMAM) introduced by A. Yasin provides a practical way to quickly identify 
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true bottlenecks in Intel processors [65]. In this method, we assume that each CPU 

core on each clock cycle has a fixed number of pipeline slots available as shown in 

Figure 4.1. The TMAM analysis looks at the issue stage of the pipeline, which is right 

in between the front-end and the back-end. Therefore, in any instance, it is possible 

to determine the maximum number of pipeline slots that can be issued. In this 

example, a 4-wide CPU is shown executing instructions for 10 clock cycles, resulting 

in 40 pipeline slots. 

 

Figure 4.1 Illustration of pipelines slot utilization on a 4-wide CPU 

If a pipeline slot retires a micro-operation, it is useful (shown in green) and if 

it does not retire a micro-operation it is attributed to a stall (shown in grey). Thus, in 

this example, 18 out of 40 slots are stalled, indicating that the code efficiency from the 

microarchitecture perspective is only 55% (22/40). An alternative form of evaluating 

code effectiveness is by observing the total cycle stalls. A particular CPU clock cycle 

is considered a stall when no micro-operation is issued across all available slots. From 

the illustration in Figure 4.1, 2 out of the 10 cycles are stalled. This indicates a clock 

cycle utilization of 80% (8/10). 
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The TMAM analysis breaks up all pipeline slots into four categories as shown 

in Figure 4.2: (i) Pipeline slots containing useful work that is issued and retired 

(Retiring); (ii) Pipeline slots containing useful work that is issued but flushed (Bad 

Speculation); (iii) Pipeline slots that could not be filled with useful work due to 

problems in the front-end such as limited buffer sizes and low decode bandwidth 

(Front-End Bound); and (iv) Pipeline slots that could not be filled with useful work 

due to unavailability of functional units and data hazards in the backend (Back-End 

Bound) [73]. 

 

Figure 4.2 TMAM slot classification hierarchy 

The Retiring metric represents a fraction of pipeline slots utilized by useful 

work, i.e., Ops (micro-operations) that eventually get retired. Ops perform basic 

operations on data stored in one or more registers, including transferring data and 

performing arithmetic or logical operations on registers. Ideally, all pipeline slots 

would be attributed to the Retiring category. Retiring of 100% would indicate that the 

maximum possible number of retired Ops per clock cycle has been achieved. 

Maximizing Retiring typically increases the Instruction-Per-Cycle (IPC) metric. A 

lower IPC indicates bottlenecks that should be addressed for better performance. 
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Bad Speculation captures a fraction of pipeline slots wasted due to incorrect 

speculations. This includes slots used to issue Ops that eventually do not get retired 

and slots for which the issue-pipeline was blocked due to recovery from earlier 

incorrect speculation. 

The Front-End Bound metric captures a fraction of pipeline slots where the 

processor's front-end undersupplies its back-end. Within the front-end, a branch 

predictor predicts the next address to fetch, cache-lines are fetched from the memory 

subsystem, cache-lines are split into instructions, and lastly, instructions are decoded 

into micro-operations (Ops). The Front-End Bound metric denotes pipeline slots that 

are not utilized because the front-end failed to deliver Ops, even though the back-

end could have accepted them. 

The Back-End Bound metric captures a fraction of pipeline slots where no 

Ops are being delivered due to a lack of required resources in the back-end for 

accepting new Ops. The back-end is a portion of the processor core where an out-of-

order scheduler dispatches ready Ops into their respective execution units, and, once 

completed, these Ops get retired according to program order. For example, stalls due 

to data-cache misses or stalls due to the divider unit being overloaded are both 

categorized as Back-End Bound. The Back-End Bound stalls are further broken down 

into two subcategories: (i) Core Bound stalls and (ii) Memory Bound stalls.  

Core Bound stalls. Core Bound stalls are caused by a less-than-optimal use of 

the available execution units in the CPU. This metric captures the impact of stalls 

caused by a shortage of uncore resources or data dependencies. Hence it may indicate 

the CPU may have exhausted all the Out of Order (OOO) resources, certain execution 
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units are overloaded or dependencies in the program's data- or front-end is limiting 

the performance (e.g., FP-chained long-latency arithmetic operations).  

Memory Bound stalls: This metric shows how memory subsystem issues affect 

performance. Memory Bound captures a fraction of pipeline slots where pipelines are 

being stalled due to load or store instructions. This accounts mainly for incomplete in-

flight memory demand loads in addition to less common cases where stores could 

imply back pressure on the pipeline. 

4.2 Proposed DVFS Techniques 

We propose four techniques that use the architectural events derived from the 

PMUs to determine P-states. PMUs in each core are programmed to count specific 

events for a given period of time. The first two techniques evaluate core utilization 

using microarchitectural metrics defined in 4.1, namely the pipeline slot stalls (DVFS 

based on Pipeline Slot Stalls or FS-PS) and the total cycle stalls (DVFS based on Total-

Stalls or FS-TS). The next two techniques evaluate the utilization of the memory 

subsystem by using the memory-related cycle stalls (DVFS based on Memory-Stalls 

or FS-MS) and the last level cache misses per kilo instructions (DVFS based on LLC 

Misses PKI or FS-LLCM). 

FS-PS: The first technique selects the P-state based on the pipeline slot stalls. 

The pipeline slot stalls are a metric that accurately captures the CPU’s pipeline 

utilization. The number of available pipeline slots in a given time interval can be 

divided into (i) pipeline slots that issue micro-operations and (ii) stalled/unused 

pipeline slots, as shown in Figure 4.3. The pipeline slot stall ratio is computed as the 

number of unused slots divided by the total number of available slots in the time 
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interval (Eq. 4.1). In the illustration from Figure 4.1, 18 out of 40 available slots do 

not issue any useful micro-operation, resulting in a pipeline stall ratio of 0.45.  

 

Figure 4.3 CPU Pipeline Slots Breakdown 

𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =  1 −
𝐼𝑠𝑠𝑢𝑒𝑑 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑙𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑆𝑙𝑜𝑡𝑠
  Eq. 4.1 

By profiling a range of representative workloads, we find that the pipeline slot 

stall ratio is always larger than 0.10. Hence, the ratio range between 0.1 and 1.0 is 

linearly mapped onto available P-states. While this metric accurately assesses the 

pipeline occupancy, it has one weakness. If the code does not have enough work to fill 

in all of the slots in a single cycle (e.g., due to data dependencies), the pipeline slot 

stall ratio will be relatively high, which will in turn lower the clock frequency. 

However, this may not be advantageous for either performance or energy efficiency. 

Figure 4.4 illustrates one such scenario where the pipeline slot stall ratio is 0.8.  

 

Figure 4.4 Pipeline slot occupancy resulting in a high pipeline slot stall ratio. 
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In this case, FS-PS will throttle towards a P state with a low clock frequency; 

this will, in turn, lower performance with no tangible benefits for energy efficiency. 

For example, this happens when stalls are caused by data loads satisfied by upper 

levels in the cache hierarchy. 

FS-TS: The second technique selects the next P-state based on the total cycle 

stalls, promising to overcome the shortcomings of FS-PS. The processor clock cycles 

while executing instructions can be divided into (i) those that contain at least one 

pipeline slot that actively issues and retires a micro-operation and (ii) those that 

contain stalls across all available slots as shown in Figure 4.5. The total cycle stall 

ratio is computed as the number of unused cycles divided by the total number of CPU 

cycles in a given time interval as shown in Eq. 4.2. Thus, the total cycle stall ratio for 

a scenario shown in Figure 4.4 is 0.2 (2 out of 10 cycles are completely unused). 

Consequently, unlike FS-PS, FS-TS will ensure that the CPU runs at a relatively high 

clock frequency as long as there are not too many adjacent clock cycles without any 

useful micro-operations that can be issued. 

 

Figure 4.5 Total Execution Cycle Breakdown 

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑦𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
  Eq. 4.2 

FS-MS: The next proposed technique focuses only on the memory subsystem. 

It selects the next P-state based on the ratio of memory-related cycle stalls. The total 

cycle stalls in the back-end can be divided into (i) core-related cycle stalls and (ii) 
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memory-related cycle stalls, as shown in Figure 4.6. The memory cycle stall ratio is 

computed as the number of cycles stalled due to the memory hierarchy divided by the 

total number of CPU cycles in a given time interval, as shown in Eq. 4.3. We observe 

through workload profiling that the memory-related cycle stall ratio is always lower 

than 0.90. Hence the ratio ranging from 0.0 to 0.9 is mapped linearly onto the 

available P-states. 

 

Figure 4.6 Total Stall Cycle Breakdown 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =  
𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑆𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑦𝑐𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
  Eq. 4.3 

FS-LLCM: This technique utilizes the stalls in the memory hierarchy, 

specifically the ones caused due to off-chip requests. Figure 4.7 shows the breakdown 

for the memory-related stall cycles. The memory requests can be resolved in the upper 

levels of the cache hierarchy (e.g., LLC) or may require access to DRAM (off-chip). The 

number of stalls imposed by the requests resolved in DRAM can be orders of 

magnitude larger than the number of stalls imposed by the requests resolved in 

caches. 
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Figure 4.7 Memory Stall Breakdown 

𝐿𝐿𝐶 𝑀𝑃𝐾𝐼 =  
𝐿𝐿𝐶 𝑀𝑖𝑠𝑠𝑒𝑠

𝑅𝑒𝑡𝑖𝑟𝑒𝑑 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
∗ 1000 Eq. 4.4 

FS-LLCM is based on using the misses in the last level cache memory per kilo 

instructions (Eq. 4.4) to determine the next P-state. A miss in the last level cache 

correlates with an increased number of stall cycles. We observe through workload 

profiling that the LLC MPKI typically ranges from 0 to 100. The actual LLC-MPKI is 

then linearly mapped onto the available P-states.  

4.3 DVFS based on CPI (FS-CPI) 

Johnson et al. proposed a frequency scaling technique that uses cycles-per-

instruction (CPI) to determine the next P-state [34]. The proposal uses PMU events 

cycles and instructions to determine the CPI of each active thread and groups them 

into low-CPI and high-CPI threads. Each of these groups is then scheduled onto 

different cores/sockets with different operating frequencies. For comparison with our 

proposed techniques, we implement a version of this proposal (DVFS based on CPI or 

FS-CPI). As specific implementation guidelines for CPI ranges and mappings are not 

specified, we define conditions similar to our techniques for a fair comparison. The 

CPI range depends on processor microarchitecture, the number, and characteristics 

of P-states, and the workload characteristics. In our case, the test system has 40 P-
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states. Through profiling various workloads, we observe that the CPI can be as high 

as 6.28. Hence, we select the CPI range from 0 to 6, before mapping it onto the 

available P-states. Experiments with other ranges are performed as well, but the 

results turned out to be inferior when compared to the selected range. 

The CPI is a useful metric for assessing system performance. However, it could 

sometimes be misleading in modern superscalar processors. Modern processors 

support a number of vector instruction set extensions, with the most recent AVX2 that 

can process 512 bits of data in a single operation. Such instructions do significantly 

more work in a single clock cycle than corresponding scalar instructions. The use of 

vector instructions generally shortens the time needed to complete a task. However, 

since a single vector instruction does a lot of work, the CPI for a vectorized program 

typically exceeds the CPI of an equivalent scalar program. This phenomenon, where 

the non-vectorized code has lower CPI but poorer performance, has been observed in 

prior research [28]. It is better to use fewer vector instructions that do more work than 

to use many scalar instructions that retire faster [2][80]. This can be illustrated using 

a simple example. Figure 4.8 illustrates the scalar addition of two vectors with 64 

elements, where each element is 1 byte in size. Assuming each scalar addition takes 

1 cycle, 64 clock cycles are required to complete 64 operations, resulting in a CPI of 1. 

However, if we vectorize the same code as shown in Figure 4.9, the whole operation 

can be completed in one instruction which could take nearly two clock cycles, resulting 

in a CPI of 2. Though the CPI is higher for the vectorized code, it takes significantly 

less time. Thus, the CPI as a metric fails to account for such intricacies. 
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Figure 4.8 CPI of Non-Vectorized Code 

 

Figure 4.9 CPI of Vectorized Code 

4.4 Implementation of the Proposed Techniques 

Figure 4.10 illustrates our implementation of the proposed techniques. All the 

proposed techniques use the same framework. They differ only in the events used to 

calculate the metrics of interest. The PMUs are initialized and programmed to count 

specific events in each physical core. The use of ‘rdpmc’ machine instruction reduces 

the latency to a few clock cycles when reading the PMU events. Events such as cycles, 

instructions, the total stall cycles, the total memory stall cycles, the total number of 

used pipeline slots, and the total number of L3 misses are counted using general-

purpose counters. PMU events are collected concurrently across all physical CPU 

cores in the system.  

Metrics such as the total pipeline slot stall ratio, the total cycle stall ratio, total 

memory-related cycle stall ratio, the LLC misses PKI, and the average CPI are 
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computed periodically. The performance monitoring interval is set to 10 ms. This 

interval matches the period used by the current governors.  

All the techniques employ a linear mapping of events onto the P-states, 

including P0 (turbo frequencies). The use of P0 ensures that compute-intensive 

benchmarks will not experience any performance degradation. The next P-state is 

determined for each processor core and then applied to individual cores if the core-

level P-state management is supported. Alternatively, the lowest-numbered P-state is 

selected and applied to all the cores, if only the socket-level P-state management is 

supported, as shown in Figure 2.14. The implementation of the proposed algorithm 

has a worst-case execution time of ~13 ms (when running in the highest numbered P-

state), 10 ms monitoring interval plus 3 ms to compute the metrics of interest, 

determine the next P-state and issue a request for the new P-state.  

The implementation of this algorithm increases the CPU power consumption 

by 1 W during nominal operating conditions when processor cores are idle. We also 

note that the frequency of algorithm implementation is an important aspect. For the 

given workloads, which take significant time and do not change phase often, an 

invocation period of 100 ms provides good results. For workloads with frequent phase 

changes, a smaller invocation period, e.g., ~10ms, is beneficial. However, 

implementing the technique at the hardware level would provide the best possible 

results.  

Next, it should be noted that though all the techniques are implemented on an 

Intel processor, similar PMU infrastructures exist in AMD and ARM processors. 

However, specific event names and access methods/tools may vary. Thus, the proposed 

techniques can be used in non-Intel architectures.  
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Figure 4.10 Implementation of the Proposed DVFS Techniques 
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CHAPTER 5 

 

EXPERIMENTAL ENVIRONMENT 

This chapter gives an overview of the experimental environment, tools used for 

measurements, and metrics used for evaluation. Section 5.1 describes the test system 

used for experiments and experimental conditions. Section 5.2 describes various 

metrics used in the study. Section 5.3 covers all the tools used in the study. Finally, 

Section 5.4 introduces the workloads used in the study. All the measurements are 

carried out on the test system in the LaCASA Laboratory at UAH [81]. 

5.1 System under Test 

The study primarily utilizes a workstation with an Intel x86 processor. The test 

system is built around an Intel 8th generation Core i7-8700K (code name Coffee-Lake) 

manufactured using Intel’s 14nm++ technology node [82]. The processor core 

architecture is based on the Skylake architecture with minor updates and 

refinements. Figure 5.1 shows the die map of the processor used in this study. The 

processor includes six processor cores (hexa-core), a shared L3/LLC cache partitioned 

to ~2 MiB per core, a graphical processing unit, a memory controller, a system agent, 

and I/O interfaces, all connected through an on-chip ring interconnect.  
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The processor supports hyperthreading, thus providing twelve logical cores 

when hyperthreading is enabled. However, throughout the study, we disable 

hyperthreading for measurement purposes as hyperthreading does not contribute to 

the performance of SPEC CPU2017 benchmarks and several measurements require 

it to be disabled [23]. The integrated memory controller is in a dual-channel 

configuration with a maximum bandwidth of 41 GiB/s to external DRAM memory. 

The processor clock frequency ranges from 0.8 GHz to 4.3 GHz (Turbo Mode when all 

cores are active) or 4.7 GHz (when only one core is active). The nominal frequency is 

set to 4.3 GHz.  

 

Figure 5.1 Die Map of a Hexa-Core Coffee Lake Processor 

Table 5.1 provides the workstation parameters. The workstation has a total 

system DRAM of 32 GiB configured as dual-channel. The system runs Ubuntu 18.04 

LTS with Linux kernel 4.15.0. It has sufficient power and cooling requirements. The 

highest observed CPU operating temperature of 55˚ C and no thermal throttling is 

observed throughput the experimental evaluations. The processor's base operating 
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frequency is 3.70 GHz and an all-core turbo frequency of 4.30 GHz. Note that the 

proposed techniques were tested in multiple x86 machines and provide similar 

results. The test machine shown here has state-of-the-art power management with 40 

P-states and hence was chosen. 

Table 5.1 Test System Parameters 

Processor Core i7-8700K 

Lithography 14 nm 

Intel Codename Coffee-Lake 

Physical Core Count 6 

Logical Core Count 12 

CPU Max Freq. 4.70 GHz 

CPU Nom. Freq. 3.70 GHz 

CPU Min Freq. 0.80 GHz 

Number of P-States 40 (P0-P39) 

DRAM 32 GB 

DRAM Freq. 2,400 MHz 

DRAM Bandwidth 41.6 GB/s (2-Channels) 

TDP (watts) 95 W 

5.2 Metrics for Evaluation 

In this study, we evaluate the impact of the proposed techniques on 

performance (P) and energy efficiency (EE). The performance of a benchmark is 

defined as the reciprocal of its execution time. Energy-efficiency of a benchmark is 

defined as the reciprocal of the energy consumed to execute the benchmark. As we are 

evaluating the effectiveness of the proposed techniques relative to the state-of-the-art 

ondemand governor, a reference measurement set is established for each benchmark, 

Bi, by measuring its execution time, T(Bi, ODGOV), and energy consumed, E(Bi, ODGOV) 

when the ondemand governor is used.  

To compare performance under different governors, we define performance 

speedup, P.S, calculated as shown in Eq. 5.1, where T(Bi, PGGOV) is the execution time 
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of a benchmark Bi when run using the proposed governor, PGGOV. This metric captures 

the impact of a proposed governor on performance relative to the default ondemand 

governor. For example, a P.S of 0.5 indicates that the benchmark takes two times 

longer to execute under PGGOV than under ODGOV.  

Similarly, we calculate the energy efficiency improvement EE.I for each 

benchmark, as shown in Eq. 5.2, where E(Bi, PGGOV) is the energy consumed by the 

benchmark Bi when run suing the proposed governor PGGOV. Please note that both 

P.S and EE.I are a higher-is-better type of metrics.  

𝑃. 𝑆 (𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉)  =
𝑇(𝐵𝑖, 𝑂𝐷𝐺𝑂𝑉)

𝑇(𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉)
  Eq. 5.1 

𝐸𝐸. 𝐼 (𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉) =
𝐸(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉 )

𝐸(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉)
  Eq. 5.2 

Whereas P.S and EE.I capture the effectiveness of the proposed techniques in 

regard to performance and energy efficiency, respectively, we use their product, 

PxEE.I, to capture their overall effectiveness in a single number. PxEE.I is defined as 

shown in Eq. 5.3 and it assumes that both performance and energy efficiency are 

equally important. This is also a higher-is-better metric, and it captures the overall 

effectiveness of the proposed techniques relative to the ondemand governor. Thus, if 

one cares only about performance, P.S should be used. If one cares only about energy 

efficiency, EE.I should be used. Finally, if one cares about both, PxEE.I metric should 

be used.   

𝑃𝑥𝐸𝐸. 𝐼(𝐵𝑖, 𝑃𝐺𝐺𝑂𝑉) =
 𝑇(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉) ∗ 𝐸(𝐵𝑖 , 𝑂𝐷𝐺𝑂𝑉 )

𝑇(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉 ) ∗ 𝐸(𝐵𝑖 , 𝑃𝐺𝐺𝑂𝑉)
 Eq. 5.3 
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5.3 Tools  

The study uses various tools in different sections of the study that primarily 

leverage the PMUs to collect various events during benchmark execution. Tools such 

as Linux perf [72] and Intel VTune Amplifier [73] are utilized to characterize and 

classify the workloads and likwid [60] is used to measure the program execution time 

and the processor power consumption during experimental evaluation. 

5.3.1 Linux perf 

Modern processors have dedicated hardware counters for performance 

monitoring as part of the PMU. They form a basis for profiling applications that trace 

dynamic control flow and identify hotspots. Linux perf is a profiler tool present in all 

Linux-based systems after kernel version 2.6. It abstracts the hardware differences in 

different processor generations and vendors by virtualizing the counter mechanism 

and providing a simple command-line interface with a list of measurable events. 

However, this process adds an overhead of about 100 ms for any measurement [63].  

The tool and underlying kernel interface can measure events coming from 

PMUs, i.e., their hardware counters, or from the kernel. Some examples of micro-

architectural events are, the number of clock cycles, instructions retired, L1 cache 

misses, and so on as shown in Figure 5.2. They vary with each processor type and 

model. Other events are counted using Linux kernel counters, and they are thus called 

software events. Perf has been consistently used in several performance evaluation 

studies for architectural evaluation and code optimization [16]. The study uses perf 

for characterizing the workload and for verifying the implementation of the proposed 

techniques. 
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Figure 5.2 Illustration of event access in perf 

5.3.2 Likwid 

Energy measurements are conducted using a set of lightweight command-line 

tools called likwid (Like I Knew What I’m Doing) [60]. It is targeted towards 

performance-oriented programming in a Linux environment, does not require any 

kernel patching, and is suitable for Intel and AMD processor architectures. The tools 

can be roughly grouped into three categories, such as system information and control, 

performance and energy profiling, and micro-benchmarking. Individual tools allow 

developers to explore memory hierarchy, access performance monitoring counters, 

control clock frequencies, and control architectural features, e.g., hardware 

prefetching. Specifically, we use likwid-powermeter, a tool that accesses RAPL 

counters for measuring power and energy [64], and likwid-setfrequencies, a tool that 

allows for setting the core and uncore clock frequencies. We use likwid for time and 

energy measurements.  
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5.3.3 Intel VTune Amplifier 

The Intel VTune Amplifier is a performance analysis tool that relies on the 

underlying hardware counters to get run-time parameters of the application under 

test. It can be used to locate or determine the following aspects of the code and system: 

• The most time-consuming functions or hot spots in the application;  

• Sections of code that do not effectively utilize the available processor time;  

• The best sections of code to optimize for sequential performance and for 

threaded performance; 

• Synchronization objects that affect the application performance; 

• Hardware-related issues in code such as data sharing, cache misses, branch 

misprediction, and others;  

• The performance impact of different synchronization methods, different 

numbers of threads, or different algorithms;  

• Thread activity and transitions such as migrations and context switches.  

For this study, four key features of Intel VTune Amplifier are used: (i) 

Advanced Hotspots, (ii) HPC Performance Characterization, (iii) Memory Access 

Analysis, and (iv) General Exploration. When the number of events exceeds the 

number of available PMU counters, the tool multiplexes events and uses sampling. 

Depending on the number of multiplexed events, the reliability of measurements can 

vary. If the reliability is less than 70%, then the results are not to be considered 

acceptable [73]. Our experimental results had a measurement reliability of over 95%. 

Advanced Hotspot analysis is used to identify performance-critical code 

sections in a given application. The periodic instruction pointer sampling performed 

by Intel VTune Amplifier identifies code locations where an application spends the 
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most time. It creates a list of functions in the application ordered by the amount of 

time spent in each function. By default, Advanced Hotspots analysis does not capture 

the function call stacks as the hotspots are collected, but it can be used to sample all 

processes on the system. This type of analysis uses event-based sampling collection 

and analyzes all the processes running on the system at the time, providing CPU time 

data on whole system performance. 

HPC Performance Characterization analysis is used to identify how effectively 

a compute-intensive application uses CPU, memory, and floating-point operation 

hardware resources. The HPC Performance Characterization analysis type can be 

used as a starting point for understanding the performance aspects of an application. 

During HPC Performance Characterization analysis, the data collector profiles the 

application using event-based sampling collection.  

Memory Access analysis is used to identify memory-related issues, like non-

uniform memory access (NUMA) problems and bandwidth-limited accesses, and 

attribute performance events to memory objects (data structures). This attribution is 

possible due to the instrumentation of memory allocations/de-allocations and getting 

static/global variables from the symbol information. Memory Access analysis uses 

hardware event-based sampling to collect data. 

General Exploration analysis is used to understand how efficiently the code 

passes through the core pipeline. During General Exploration analysis, the Intel 

VTune Amplifier collects a complete list of events for analyzing a typical client 

application. It calculates a set of predefined ratios used for the metrics and facilitates 

identifying hardware-level performance problems. The General Exploration analysis 

strategy varies by microarchitecture. For modern microarchitectures starting with Ivy 
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Bridge, the General Exploration analysis is based on the Top-down Microarchitecture 

Analysis Method (TMAM). 

5.4 Workloads 

This section introduces the various workloads used in the dissertation. The 

study primarily uses the SPEC CPU2017 benchmark suite [83] to evaluate the 

proposed techniques. In addition, the study uses the Parsec-3.0 benchmark suite [84] 

representing now a bit aged workload, and the SPECpower_ssj2008 benchmark [85] 

to represent transactional workloads in servers. 

5.4.1 SPEC CPU2017 

The SPEC CPU suites have been widely used in academia and industry for the 

past few decades to evaluate the performance of processors, memory, and compilers 

[29]. The SPEC CPU2017 benchmark suites are the SPEC’s latest, sixth generation 

of CPU benchmarks. The CPU2017 suites incorporate major updates relative to the 

previous generation, CPU2006. They include significantly larger workloads signifying 

the evolution of computing capacity [25], parallel programs using OpenMP to 

accommodate multiple core and thread models, and optional metrics for measuring 

power consumption [30].   

The SPEC CPU2017 contains 43 benchmarks, organized into four suites [83] 

[8]. The fp_speed/fp_rate and int_speed/int_rate suites (shown in Table 5.2 and Table 

5.3) include benchmarks with predominantly floating-point and integer data types, 

respectively, designed to stress the speed (speed suites) and throughput (rate suites) 

of modern computer systems. The speed benchmarks and rate benchmarks within the 

same pair (5nn benchmark for rate and 6nn, the benchmark for speed) are like each 
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other. Differences can be found in compilation flags, run rules, and the size of the 

input workloads. Generally, speed benchmarks require more memory than their rate 

counterparts. The SPECspeed benchmarks need large stacks [23].  

Table 5.2: SPEC CPU Floating-point Benchmarks  

SPECrate SPECspeed Lang. Application Area 

503.bwaves 603.bwaves_s Fortran Computational Fluid Dynamics 

507.cactuBSSN_r 607.cactuBSSN_s C++, C, Fortran Physics: General Relativity, Numerical Relativity 

508.namd_r   C++ Scientific, Structural Biology, Molecular Dynamics 

510.parest_r   C++ A finite element solver 

511.povray_r   C++, C Computer Visualization: Ray tracing- 

519.lbm_r 619.lbm_s C Computational Fluid Dynamics 

521.wrf_r 621.wrf_s Fortran, C Weather Research and Forecasting 

526.blender_r   C++, C 3D rendering and animation 

527.cam4_r 627.cam4_s Fortran, C Atmosphere General Circulation Model (AGCM) 

  628.pop2_s Fortran, C Climate modeling: Wide-scale ocean modeling 

538.imagick_r 638.imagick_s C Image manipulation 

544.nab_r 644.nab_s C Molecular dynamics 

549.fotonik3d_r 649.fotonik3d_s Fortran Computational Electromagnetics (CEM) 

554.roms_r 654.roms_s Fortran Regional Ocean Modeling System (ROMS) 

 

Table 5.3: SPEC CPU2017 Integer Benchmark 

SPECrate SPECspeed Lang. Application Area 

500.perlbench_r 600.perlbench_s C Programming language: Perl interpreter 

502.gcc_r 602.gcc_s C C Language optimizing compiler: GNU C compiler 

505.mcf_r 605.mcf_s C Combinatorial optimization 

520.omnetpp_r 620.omnetpp_s C++ Discrete Event simulation 

523.xalancbmk_r 623.xalancbmk_s C++ XSLT processor for transforming 

525.x264_r 625.x264_s C Video compression 

531.deepsjeng_r 631.deepsjeng_s C++ Artificial Intelligence: Alpha-beta tree search (Chess)  

541.leela_r 641.leela_s C++ Artificial Intelligence (Monte Carlo simulation)  

548.exchange2_r 648.exchange2_s Fortran Artificial Intelligence: Recursive solution generator 

557.xz_r 657.xz_s C General data compression 

 

The benchmarks are derived from a wide variety of application domains and 

are written in C, C++, and Fortran programming languages. The SPEC CPU2017 

provides a comparative measure of integer and/or floating-point compute-intensive 
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performance on a machine. Upon completion of execution, the user is provided with a 

number generated by the ‘runcpu’ utility that compares the performance to the SPEC 

reference machine [8]. This is convenient for quick analysis and a good starting point. 

A single copy of a speed benchmark (name ending with a suffix “_s”), SBi, is 

run on a test machine using the reference input set; the SPECspeed (SBi) metric 

reported by the running script is calculated as the ratio of the benchmark execution 

times on the reference machine and the test machine as shown in Eq. 5.4. 

𝑆𝑃𝐸𝐶𝑠𝑝𝑒𝑒𝑑(𝑆𝐵𝑖 , 𝑁𝑇) =
 𝑇(𝑅𝑒𝑓, 1)

𝑇(𝑇𝑒𝑠𝑡, 𝑁𝑇)
 Eq. 5.4 

A composite single number is also reported for an entire suite; it is calculated 

as the geometric mean of the individual SPECspeed ratios of all benchmarks in that 

suite. When running speed benchmarks, a performance analyst has an option to 

specify the number of OpenMP threads, NT, as many benchmarks support multi-

threaded execution. Multiple copies (NC) of a rate benchmark (name ending with a 

suffix “_r”), RBi, are typically run on a test machine, and the SPECrate (RBi, NC) 

metric is defined as the ratio of the execution times of a single copy on the reference 

machine and NC-copy on the test machine, multiplied by the number of copies as 

shown in Eq. 5.5. 

𝑆𝑃𝐸𝐶𝑟𝑎𝑡𝑒(𝑅𝐵𝑖 , 𝑁𝐶) =
𝑁 ∗  𝑇(𝑅𝑒𝑓, 1)

𝑇(𝑇𝑒𝑠𝑡, 𝑁𝐶)
 Eq. 5.5 

5.4.2 Parsec 3.0 

The Princeton Application Repository for Shared-Memory Computers 

(PARSEC) is a benchmark suite composed of multithreaded programs. The suite was 

designed to be representative of shared-memory programs for chip-multiprocessors. 
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It consists of 9 applications and 3 kernels which were chosen from a wide range of 

application domains. The workloads were selected to include different combinations 

of parallel models, machine requirements, and runtime behaviors. The benchmarks 

cover a wide range of computer tasks such as financial analysis, computer vision, 

engineering, enterprise storage, animation, similarity search, data mining, machine 

learning, and media processing. Benchmarks vary in type of parallelization model 

(data-parallel or pipelined), working set, and communication intensity.  

All benchmarks are written in C/C++. Characterization studies have evaluated 

the use of Parsec-3.0 benchmarks and have analyzed the parallelization, the working 

sets and locality, the communication-to-computation ratio, and the off-chip bandwidth 

requirements of its workloads [7] [11]. Several prior studies have used the Parsec suite 

simulations and experimental evaluations. 

5.4.3 SPECpower_ssj2008 

SPECpower_ssj2008 is an industry-standard benchmark designed for 

experimental power and performance evaluation of server computers. The workload 

is scalable, multi-threaded, and portable across a wide range of operating 

environments. It exercises CPUs, caches, memory hierarchy, and the scalability of 

symmetric multiprocessor systems (SMPs), as well as implementations of the Java 

Virtual Machine (JVM), Just-In-Time (JIT) compiler, garbage collection, threads, and 

some aspects of the operating system. Although the workload is derived from the 

SPECjbb2005 benchmark suite, the two workloads are not comparable because of 

basic differences in the transaction mix, transaction scheduling, and timing. 

The execution of the benchmark consists of two phases, (a) calibration and (b) 

running of a series of target loads. Initially, a series of calibration measurements are 
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performed to find the maximum throughput of the server. The calibration run, by 

default, uses three intervals of 240 seconds each. The benchmark uses a system call 

to determine the number of logical cores available on the system and creates a 

matching number of emulated warehouses. Transactions are scheduled in batches of 

1000 transactions per warehouse. Once a batch of transactions is processed, the next 

batch is issued after a period of time, thus modulating the machine load. However, 

during the calibration, the bathes are issued continuously to determine the maximum 

throughput the machine can sustain – it is equivalent to the 100% load level. 

After calibration, the benchmark run consists of a sequence of eleven load 

levels from 100% to 0% (idle) in 10% increments. The whole benchmark run takes 

about 70 minutes to complete on the test machine. The results include the total 

number of ssj operations for each load level and the corresponding power consumption 

and operating temperature. To compute a power-performance metric across all load 

levels, the measured transaction throughputs for each load level are added together 

and then divided by the sum of the average power consumed for each level. The result 

is a figure of merit called "overall ssj_ops/watt." This ratio indicates the effectiveness 

of the system under test and its energy efficiency. 
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CHAPTER 6 

 

SPEC CPU2017 CHARACTERIZATION ANALYSIS 

The SPEC CPU2017 benchmark suites are used as the primary workload in 

this study. To gain deeper insights on the impact of dynamic voltage and frequency 

scaling (DVFS) a comprehensive evaluation is conducted on the test system. During 

the SPEC CPU2017 evaluation, the processor is set to the fixed nominal operating 

frequency of 3.7 GHz. Section 6.1 discusses briefly the results of a compiler evaluation 

performed to select the primary compiler for the study [28]. Section 6.2 shows the 

results of the top-down microarchitectural analysis used to classify the benchmarks 

into specific groups [25] [26]. Finally, Section 6.3 shows the impact of static frequency 

scaling on different classes of benchmarks [27].  

6.1 Compiler Evaluation 

Modern compilers are extremely complex software that translates programs 

written in high-level languages into binaries that execute on the underlying 

hardware. Compilers play a key role in bridging the gap between abstract high-level 

source code used by software developers and the advanced hardware structures. The 
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selection of a compiler depends on parameters such as accessibility, support for 

hardware, the efficiency of the compiler, and backward compatibility.  

To select the compiler to build the CPU2017 suites, we consider the three most 

prevalent compilers used in industry and academia, as follows: (a) the Intel Parallel 

Studio XE-18 (IPS), (b) the LLVM Compiler Infrastructure project, and (c) the GNU 

Compiler Collection [28]. We evaluate their effectiveness by comparing three 

important metrics, as follows: (a) the total time needed to compile benchmarks (build 

times), (b) the size of the executables (code sizes), and (c) the execution times for speed 

benchmarks and throughput for rate benchmarks (performance). Note that we were 

unable to successfully compile and run all benchmarks across all compilers. The 

discussion for the entire benchmark suite contains only the benchmarks that have 

results across all the compilers. Any benchmark that does not have results across all 

compilers is omitted from the discussion and summary view of the suite. 

6.1.1 Executable Size 

Table 6.1 shows the size of the SPEC CPU2017 suites in terms of kilo lines of 

code (KLOC) and the total executable size generated by the three compilers. The size 

of the benchmark executables varies widely for different compilers.  

Table 6.1: Executable Size (Lower is Better) 

Suites KLOC 
Executable size [KB] 

ips llvm gnu 

fp_speed 916 22,868 16,952 46,346 

fp_rate 3048 56,595 50,595 282,627 

int_speed 2484 35,265 24,684 181,820 

int_rate 2484 35,409 24,701 181,702 

Total 8968 150,137 116,192 692,495 
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The LLVM compilers consistently create the smallest executables for all the 

suites. GNU compilers produce the largest executables in all cases. LLVM generates 

executables that are ~1.28x and ~5.92x smaller than the corresponding ones created 

by IPS and GNU, respectively. 

6.1.2 Build Times 

SPEC CPU2017 configuration files that govern the process of compiling 

benchmarks (compiler and libraries used, optimization switches, and others) allow us 

to specify the number of processor cores that can be utilized during compilation. Thus, 

we consider build times for all the benchmarks when using one processor and when 

using six processor cores.  

The build times are shown in Table 6.2. LLVM has a smaller executable size, 

but it has significantly longer build-times in comparison to GNU and IPS. This is 

especially true for floating-point benchmarks. Though the GNU compilers produce 

executables that are significantly larger in size, the build times are shorter than the 

build times of LLVM. IPS on the other hand produces executables as small as LLVM 

and it does that in build times that are comparable to the GNU build times. The 

number of CPUs used in building the benchmarks plays a significant role in build 

times for GNU and LLVM, however, the IPS does not appear to benefit much when 

using multiple cores in the building process.  

While considering build times, the GNU compiler collection is the best choice. 

Overall, when a single processor is used to build executables, GNU build times are 

~11.16x shorter than build times of LLVM and ~1.03x shorter than IPS. When six 

processor cores are used to build benchmarks, GNU build times are ~10.34x (LLVM) 

and 4.41x (IPS) shorter. 
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Table 6.2: Build Times (Lower is Better) 

Suits Build Time (1-CPU) [s] Build Time (6-CPU) [s] 

ips llvm gnu ips llvm gnu 

fp_speed 490 2,911 251 426 775 79 

fp_rate 880 11,203 940 534 2,521 224 

int_speed 635 7,151 677 855 1,477 151 

int_rate 608 7,157 678 852 1,480 151 

Total 2,613 28,422 2,546 2,667 6,253 605 

 

6.1.3 Performance 

Finally, we look at the overall performance of executables created by each of 

the compilers. Table 6.3 shows the overall SPECratio calculated for the entire suite. 

Regarding benchmark performance, IPS is the clear winner with its ability to exploit 

hardware features of the x86 ISA. Considering the geometric mean of the SPEC ratios 

of all the benchmarks, we find that IPS executables run ~37% faster than LLVM and 

~46% faster than GNU executables for single-threaded executions. When we consider 

six-threaded executions, IPS executables run ~22% faster than the corresponding ones 

for LLVM and ~30% faster than the GNU executables. 

Table 6.3: SPECratios (Higher is Better) 

Suits Performance (1-T/C) Performance (6-T/C) 

ips llvm gnu ips llvm gnu 

fp_speed 10.05 7.54 6.01 20.04 18.98 15.40 

fp_rate 11.79 7.91 7.15 34.00 28.00 27.00 

int_speed 8.08 6.06 6.28 9.00 7.00 7.00 

int_rate 6.95 5.28 5.46 31.00 25.00 25.00 

 

In summary, executables created by IPS outperform those created by LLVM 

and GNU for all benchmarks. The performance of LLVM and GNU are comparable 

with LLVM doing better for floating-point benchmarks and GNU showing slightly 
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better performance for the integer benchmarks. We observe that a vast majority of the 

submitted results in SPEC also use IPS results. Hence the rest of the study uses IPS 

compiled executables exclusively. 

6.2 TMAM Results of SPEC CPU2017 Benchmarks 

Now we use the to-down microarchitectural analysis method (TMAM) to 

classify the IPS compiled executables on the workstation. Figure 6.1 shows the results 

of TMAM for all the CPU2017 benchmarks executed with six thread/copies (NT/NC=6) 

as well as the average instruction per cycle (IPC) on the secondary y-axis. With 

TMAM, the product of the number of pipeline slots and the number of clock cycles 

needed to execute a benchmark constitutes 100% of possible pipeline slots. Each 

pipeline slot is then marked as either Retiring (orange), Bad Speculation (gray), Front-

End Bound (yellow), or Back-End Bound stalls. The Back-End Bound stalls are 

further broken down into (i) Core Bound stalls (royal blue) that are caused by 

pressures on execution units or lack of instruction-level parallelism, and (ii) Memory 

Bound stalls (light blue) that are caused by stalls related to caches and memory 

subsystems. Memory latency and limited memory bandwidth are major factors 

contributing to a large number of Memory Bound slots. 

The benchmarks are organized based on the overall IPC and the percentage of 

slots bound by the back-end, especially the memory sub-component. Observing the 

runtime behavior and resource requirements for each of the benchmarks, they can be 

classified as compute-intensive, balanced, and memory-intensive [26] [25]. The first 

group which is compute-intensive has a higher percentage of retiring slots. The 

bottlenecks are generally associated with the front-end and are generally core bound 

in the back-end. They have a low dependence on the memory sub-component. This 
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results in a high IPC. Such benchmarks linearly scale with operating core-frequency 

and do not see noticeable benefits in lower operating frequency [27]. The second group 

called balanced is bound by both the front-end and the back-end. Such application has 

a lower percentage of retiring instructions resulting in a lower IPC. The benefits of 

frequency scaling for such benchmarks are contingent on where the bottleneck 

originates. If a significant number of stalls are resolved on-chip (e.g., data is found in 

the upper-level cache), lowering CPU clock frequency due to a high stall ratio would 

have a negative impact.  On the other side, if a significant number of stalls is resolved 

off-chip, i.e., in DRAM, the lower CPU clock frequency may be beneficial. Finally, the 

last group is called memory-intensive. This group has a large dependency on the 

memory hierarchy resulting in an extremely low IPC. A significant portion of the 

pipeline slots are stalls. 

 

Figure 6.1 TMAM Analysis of SPEC CPU2017 Benchmarks 

As the proposed DVFS techniques are geared towards memory-intensive 

applications with a significant number of stalls, it is vital to understand the 
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breakdown of the memory bottlenecks. To address this, we consider the breakdown of 

benchmark execution using a clock cycles view. A clock cycle is considered stalled 

when no micro-operation is issued during that cycle across all slots. The origins of 

these stalls can be further divided into L1 bound, L2 bound, LLC/L3 bound, DRAM 

bound, and store bound. The L1-bound metric shows how often the execution was 

stalled without missing the L1 data cache. The L2 and L3 bound metric shows how 

often the core was stalled in L2 and L3 respectively. The DRAM bound metric shows 

how often the CPU was stalled in the main memory. The Store Bound metric shows 

how often the CPU was stalled on store operation. 

Figure 6.3 shows the clock cycle view for all the CPU2017 benchmarks. As 

discussed earlier, the memory dependency of the compute-intensive group is minimal. 

Only a small fraction of the total execution cycles are memory hierarchy stalls. Next, 

in the case of the balanced benchmarks, the stalls in the memory hierarchy 

significantly increase, especially in DRAM. ~50% of all execution cycles are stalls in 

the memory hierarchy for the balanced benchmarks. It is also important to note that 

523.xalancbmk_r has a significant portion of stalls that are serviced in the last level 

cache. Finally, the memory-intensive benchmarks have a significant portion of the 

execution clock cycles being memory hierarchy stalls. Over ~80% of execution cycles 

are spent waiting for data to arrive. We observe that a major portion of the stall comes 

from either L1 or DRAM. 
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Figure 6.2 Memory Hierarchy Related Cycle Stall Breakdown 

The DRAM-bound metric further enables us to identify bandwidth and latency-

related issues in main memory. DRAM bandwidth is the rate at which data can be 

read from or stored into the main memory by the processor. DRAM bandwidth bound 

metric specifies the number of cycle stalls due to the inability of main memory 

bandwidth. Figure 6.3 explores the off-chip stalls by providing stalls that occur due to 

memory bandwidth and latency in DRAM. Overall, memory bandwidth is the biggest 

factor affecting the performance of these benchmarks.  

In the case of the compute-intensive benchmarks, as expected we see minimal 

stalls from the main memory. The available bandwidth is not a constraint on the 

performance of such benchmarks. Next, in the case of the balanced benchmarks, the 

bandwidth-related stalls account for ~20% of the execution cycles. Considering the 

memory-intensive group of benchmarks, ~50% of all execution cycles are stalls in 

DRAM due to bandwidth limitations. This is concerning when we notice that over the 

past decade, that single-core memory bandwidth allocation has not improved 

significantly. This is a major bottleneck in modern systems. 
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Figure 6.3 Main Memory/Off-Chip Stall Breakdown  

Further, to demonstrate the bandwidth utilization of the benchmarks we show 

the main-memory bandwidth consumption for each of the benchmarks. Figure 6.4 

shows the average and the maximum DRAM bandwidth consumed at any point during 

the execution of each of the SPEC CPU2017 benchmarks.  

 

Figure 6.4 DRAM Bandwidth Utilization Parameters 
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Overall, we see that the compute-intensive benchmarks have a low average 

DRAM bandwidth utilization. The balanced benchmarks have a moderate bandwidth 

demand, well under the machine capacity. Finally, the memory-intensive benchmarks 

consistently reach the full test machine capacity and as a result, have significant stalls 

in the DRAM as shown in the previous section.  

In summary, based on the run-time analysis of the SPEC CPU2017 

benchmarks are classified into three distinct groups as shown in Figure 6.5; (a) 

compute-intensive when the benchmark performance is generally compute-bound; (b) 

balanced when benchmarks are bound both by the compute and memory resources; 

and (c) memory-intensive when the benchmarks are heavily bound by the memory 

subcomponent of the system.  

 

Figure 6.5 SPEC CPU2017 Classification Summary 

6.3 Impact of Static Frequency Selection on P and EE  

In this section, we explore the impact of clock frequency on performance and 

energy efficiency by setting the operating points at fixed values, as follows: 0.8 GHz, 

1.7 GHz, 2.7 GHz, 3.70 GHz, 4.00 GHz, and 4.30 GHz (Turbo mode). The test machine 
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is fully loaded running six-thread or six-copy SPEC CPU2017 benchmarks. The 

benchmark execution times and energy consumed is measured for each operating 

point. For each benchmark, Bi, the ratio of the benchmark’s execution time while 

running the core’s nominal frequency of 3.7 GHz and the benchmark’s execution time 

while running at a particular frequency F is evaluated as follows: T(Bi, 3.7 GHz)/T(Bi, 

F). This metric is equivalent to the normalized performance for a benchmark Bi when 

running at a frequency, F, P(Bi, F)/P(Bi, 3.7 GHz). Similarly, normalized energy-

efficiency is defined as E(Bi,3.7 GHz)/E(Bi, F).  

Figure 6.6 illustrates how benchmarks’ execution times vary with processor 

clock frequency. Straight horizontal lines with lighter shade represent the ratios of 

processor clock frequency F/3.7 GHz, thus serving as indicators of expected 

performance. The results indicate that increasing processor clock frequency above the 

nominal frequency is beneficial for a small group of compute-intensive benchmarks. 

For instance, the performance gain of compute-intensive benchmarks is ~16% (out of 

16% theoretical) when running at 4.30 GHz and ~8% (out of 8% theoretical) when 

running at 4.00 GHz. The gains are lower for the balanced group with 6%, when 

running at 4.30 GHz. On the other side, by lowering the processor clock frequency 

below the nominal frequency, the performance is expectedly reduced. However, the 

performance losses of the benchmarks that are bound by memory are lower than 

expected. For example, the performance loss for the memory-intensive benchmarks is 

~3% (27% is theoretically possible) when running at 2.7 GHz and ~11% when running 

at 1.70 GHz (out of 54%).  
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Figure 6.6 Normalized P for SPEC CPU2017 as a Function of Clock Frequency  

Figure 6.7 illustrates how the total package energy varies as a function of the 

processor clock frequency. The results show that by increasing the processor clock 

frequency above the nominal (lines representing 4.0 GHz and 4.3 GHz), the total 

energy increases proportionally and thus does not improve energy efficiency even for 

benchmarks that see significant performance gains. Running at 1.7 GHz and 2.7 GHz 

improves energy efficiency for all benchmarks, regardless of their characteristics. 

However, the energy efficiency improvements are the largest for the memory-intensive 

benchmarks. Thus, the memory-intensive group sees a relative energy efficiency 

improvement of 88% at 1.70 GHz. The effects of running at the lowest clock frequency 

of 0.8 GHz are mixed. Whereas all compute-intensive benchmarks and many memory-

intensive benchmarks see an overall loss in energy efficiency because of prolonged 

execution time, the benchmarks in the memory-intensive group see improvement in 

energy efficiency even at this operating point.  
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Figure 6.7 Normalized EE for SPEC CPU2017 as a Function of Clock Frequency  

Figure 6.8 shows the effect of frequency scaling on the combined metric PxEE 

when normalized to the nominal frequency of 3.70 GHz across all benchmarks. For 

each benchmark, the ratio of the PxEE when running at the nominal frequency and 

the PxEE when running at frequency F is calculated. As expected, compute-intensive 

and balanced groups do not see noticeable benefits in scaling frequency. However, the 

memory-intensive benchmarks see significant benefits in running at lower operating 

frequencies (at ~1.70 GHz) with a relative improvement of ~69%. It is interesting to 

see that 519.llbm_r has the best PxEE metric (~102% improvement) at 0.8 GHz. 

519.lbm_r is heavily vectorized and benefits from running at the lowest clock 

frequency.  
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Figure 6.8 Normalized PxEE for SPEC CPU2017as a Function of Clock Frequency 

The above results provide strong proof that energy efficiency can indeed be 

improved if the clock frequency is fixed to an operating point that is the best fit for a 

given benchmark. To illustrate this point further, Figure 6.9 shows the execution time 

on the x-axis and energy consumed on the y-axis measured on the test machine while 

running 649.fotonik3d_s at 6 threads, while varying the clock frequency from 0.8 GHz 

to 4.3 GHz from above. Lowering clock frequency from 4.30 GHz to 2.70 GHz does not 

have a significant negative impact on execution time but saves energy almost 3 times. 

Further lowering clock frequency beyond 1.7 GHz starts increasing execution time 

and energy-consumed as well. Thus, from the shape of this energy-time curve, we can 

say that the most effective operating point for this benchmark should be in a range 

from 1.7 GHz to 2.3 GHz.  
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 Figure 6.9 Optimal Frequency Selection of 649.fotonik3d_s 

Figure 6.10 quantifies the highest achievable PxEE gains from static frequency 

selection for each benchmark relative to PxEE measured when running under the OS-

ondemand governor. Here, we find the operating point that produces the maximum 

PxEE for a given benchmark. Please note that different benchmarks will have 

different optimal operating points. This metric is then normalized to the PxEE 

measured when the corresponding benchmark is run under the OS-ondemand 

governor. The results show that PxEE improvements can be achieved for all 

benchmarks, though they are the largest for the memory-intensive benchmarks.  

0.8 GHz
1.30 GHz1.70 GHz

2.30 GHz

2.70 GHz
2.90 GHz

3.00 GHz
3.20 GHz

3.70 GHz

4.00 GHz

4.30 GHz

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200

En
er

gy
 (

J)

Time (s)

Optimal Frequency Selection (649.fotonik3d_s-6T)



 

86 

 

Figure 6.10 Highest Achievable PxEE Gains for Manual Frequency Selection 

Whereas improvements demonstrated in Figure 6.10 are significant, finding a 

perfect operating point for a given benchmark on a given machine is not practical as 

it would require prior profiling which takes time and energy. In addition, programs 

go through different phases during their execution, and statically selected frequency 

throughout benchmark execution cannot provide the best possible results. Hence, 

better power management techniques have the potential to take advantage of DVFS 

and provide even better energy efficiency.  
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CHAPTER 7 

 

RESULTS 

In this section, we discuss the results of the experimental evaluation. The 

baseline performance and energy efficiency are measured on the test machine running 

the powersave governor with the intel-pstate driver. As discussed in (2.5), this 

governor corresponds to the default Linux ondemand governor. This governor selects 

the highest operating frequency (P0 state) during benchmark execution because the 

test machine is fully loaded. We will refer to this governor as OS-ondemand. We 

measure the performance and energy-efficiency of the proposed techniques FS-PS, 

FS-TS, FS-MS, and FS-LLCM, as well as the previously proposed FS-CPI, and then 

compute derived metrics P.S, EE.I, and PxEE.I. The experiments are conducted for 

all three workloads of interest: SPEC CPU20017 (Section 7.1), Parsec 3.0 (Section 7.2), 

and SPECpower_ssj2008 (Section 7.3). Section 7.1 provides an in-depth analysis of 

the results for our primary workload, discussing separately performance speedup 

(7.1.1), energy-efficiency improvement (7.1.2), and the product of the two (7.1.3). 
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Section 7.1.4 provides a comparison of the metrics. Section 7.1.5 discusses some 

limitations of FS-CPI and Section 7.1.6 puts all the SPEC CPU2017 results together.  

7.1 SPEC CPU2017 

7.1.1 Performance 

Figure 7.1 shows the performance speedup (P.S defined in Eq. 5.1) for all 

considered techniques and benchmarks. The results show that all of the proposed 

techniques, including FS-CPI, expectedly degrade the performance relative to the OS-

ondemand governor (red line). The degree of performance degradation varies across 

the individual techniques and benchmarks.  

First, we discuss the results for benchmarks in the compute-intensive group. 

The performance losses of individual techniques are summarized by taking into 

account the execution times of all benchmarks within this group. FS-PS has the 

highest performance loss of ~23%. This result is somewhat expected as this governor 

uses the pipeline slot stall ratio in selecting the next P-state. Very few benchmarks 

can fully utilize all processor pipeline slots. FS-TS has a lower performance loss of 

~14%.  For FS-PS and FS-TS, the degree of performance degradation directly 

correlates to the pipeline slot stall ratio and the total stall cycle ratio, respectively. 

For example, the FS-PS performance loss for 638.imagick_s is as lows as 4% because 

this benchmark has a very high pipeline slot utilization ratio in the entire suite. On 

the other side, the FS-PS performance loss reaches 35% for 644.nab_s. FS-MS has an 

even smaller total loss of only ~9%. FS-LLCM has performance similar to the 

reference governor with a total performance loss of just ~1%. The maximum FS-LLCM 

performance loss observed in 526.blender_r is below 3% and many benchmarks in this 
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group do not see any performance degradation. Finally, FS-CPI has a performance 

loss of ~7%. The performance losses for this technique are similar to the ones observed 

in FS-MS.  

For the balanced benchmarks, the proposed techniques result in even higher 

performance degradation compared to the compute-intensive benchmarks. FS-PS has 

the highest total performance loss of ~32%, ranging from 9% (521.wrf_r) to 51% 

(523.xalanbcmk_r). FS-TS has a total performance loss of 23%, exhibiting very similar 

trends as FS-PS, albeit with smaller losses. FS-MS has a total performance loss of 

~19%. We see this behavior as a consequence of a higher percentage of stalls being 

caused by either the front-end or back-end. These stalls will lead to transitioning to 

lower clock frequencies. However, lowering clock frequencies often negatively affects 

performance in this type of benchmark. This is especially evident for 523.xalancbmk_r 

which has a high degree of stalls caused by memory references that are resolved in 

the L3 cache. On the other side, FS-LLCM and FS-CPI have somewhat smaller 

performance degradation, the total losses are ~9% and ~10%, respectively. These two 

techniques exhibit similar behavior for this group of benchmarks as well.  

In the case of the memory-intensive benchmarks, the total performance 

degradation is significantly smaller for all considered techniques. The OS-ondemand 

will place the processor in the highest operating frequency (P0), even though the 

majority of clock cycles are stalls caused by the memory subsystem. FS-PS, FS-TS, 

FS-MS, and FS-LLCM have performance degradation of ~15%, ~9%, ~8%, and 12%, 

respectively. FS-CPI has the smallest performance degradation of just ~3%. The 

trends in performance losses observed in FS-CPI and FS-LLCM deviate from each 

other in this group of benchmarks. 
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Considering all the benchmarks together, taking the total execution times of 

all the benchmarks, FS-PS has the total performance loss of ~23%, FS-TS ~16%, FS-

MS ~12%, and FS-LLCM ~9%. Finally, FS-CPI has the smallest performance loss of 

just ~6%. FS-CPI followed by FS-LLCM provide the smallest performance 

degradation. In conclusion, if we are interested in performance only, the OS-

ondemand governor gives the best results across all the benchmarks in SPEC 

CPU2017.  

 

Figure 7.1 Performance Speedup for Individual SPEC CPU2017 Benchmarks 

7.1.2 Energy Efficiency 

Figure 7.2 shows the energy efficiency improvement as defined in Eq. 5.2. The 

reference OS-ondemand consumes the most energy and FS-PS the least across all 

benchmarks. In the case of the compute-intensive benchmarks, FS-PS and FS-TS 

provide energy efficiency improvements of ~34% (ranging from 5% to 63%) and ~24% 

(ranging from 9% to 51%), respectively. These energy savings significantly outweigh 

the corresponding performance losses. FS-MS has a modest total energy-efficiency 
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improvement of ~15% and FS-LLCM ~1%. FS-CPI has a total energy-efficiency 

improvement of ~14%.  

In the case of the balanced benchmarks, the energy efficiency improvements 

are significantly higher than those observed in the compute-intensive benchmarks. FS-

PS and FS-TS improve energy efficiency by ~95% (from 72% to 132%) and ~77% (from 

19% to 86%), respectively. FS-MS and FS-LLCM improve the total energy efficiency 

by ~58% and ~32%, respectively. The total EE.I for FS-CPI is ~34%, ranging from 20% 

to 45%. 

The highest energy-efficiency improvements are observed for the memory-

intensive benchmarks. FS-PS provides the highest total energy-efficiency 

improvements of 183% (from 126% to 225%), followed by FS-TS with 154% (from 113% 

to 194%). FS-MS and FS-LLCM improve energy efficiency by ~122% and 138%, 

respectively. Finally, FS-CPI also improves energy efficiency, but by only ~84%. 

Considering all of the benchmarks together, summarizing the total energy 

consumed for all the benchmarks regardless of their group, FS-PS has the total 

energy-efficiency improvement of ~92%, FS-TS ~75%, FS-MS ~58%, and FS-LLCM 

~44%. Finally, FS-CPI has the smallest gains of just ~41%. The gains in energy 

efficiency outweigh the performance losses in all considered techniques.  

FS-PS and FS-TS both rely on microarchitecture events that fully capture the 

utilization of the pipeline, whereas FS-MS and FS-LLC rely on events that capture 

the effectiveness of the memory subsystem alone. The results indicate that the former 

have a higher potential to improve energy efficiency in SPEC CPU2017 benchmarks. 
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Figure 7.2 Energy-Efficiency Improvement for SPEC CPU2017 Benchmarks 

7.1.3 PxEE 

Finally, we evaluate the impact of the proposed techniques on the combined 

metric PxEE. Figure 7.3 shows PxEE.I, as defined in Eq. 5.3. All techniques provide 

improvements in PxEE relative to the reference governor. These improvements are as 

high as 6% (FS-TS) for the compute-intensive benchmarks. For the balanced 

benchmarks, FS-PS, FS-TS, and FS-MS PxEE improvements are ~32%, ~34%, and 

~28%, respectively. The FS-LLCM and FS-CPI improvements are ~20% and ~21%, 

respectively. When considering the memory-intensive benchmarks, the proposed 

techniques improve PxEE significantly: FS_PS provides the highest gains at 141%. 

Next FS-TS has a gain of 132%. FS-MS and FS-LLCM also have respectable gains of 

~100% and 110% respectively. Finally, FS-CPI has the smallest PxEE improvements 

of only ~78%. The relatively higher loss in performance observed for FS-PS and FS-

TS is compensated by the gains in energy efficiency to provides positive PxEE gains. 

However, we should note that the proposed techniques underperform for 
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523.xalancbmk_r providing a PxEE loss of ~3%. This is because the benchmark has a 

significant number of stalls that are L3 bound. As the stalls are resolved on-chip, 

reducing operating frequency severely hurts performance.  

Considering all of the benchmarks together i.e., the execution times and 

energies consumed are summarized across all benchmarks before they are used in 

equations (3)-(5), FS-PS and FS-TS perform the best in PxEE, both providing a total 

improvement of ~48% relative to the reference governor. FS-MS and FS-LLCM have 

PxEE improvements of ~39% and 31%, respectively. Finally, FS-CPI has an overall 

gain of ~32%. 

 

Figure 7.3 PxEE Improvement for SPEC CPU2017 Benchmarks 

7.1.4 Discussion:  On Effectiveness of Different Techniques 

From the results in the previous section, we notice that the effectiveness of the 

proposed techniques generally follows a trend. For example, FS-PS and FS-TS show 

consistently higher gains than others across all benchmarks, and the relative 

difference between the two shows a trend. However, the other two techniques, FS-MC 
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and FS-LLCM, show significant deviation for specific benchmarks. In this section, we 

investigate the irregularity in the results by taking a specific example of 

549.fotonik3d_r. Table 7.1 shows the P.S, EE.I and PxEE for all the proposed 

techniques for this benchmark.  Considering PxEE, we see that FS-PS has the highest 

gains, Next, FS-TS and FS-MS have similar gains of over ~155%. However, LLCM 

has a lower PxEE gain at ~126%.  

Table 7.1: P.S, EE.I, and PxEE for 549.fotonik3d_r 

 FS-PS FS-TS FS-MS FS-LLCM 

P.S 0.90 0.95 0.94 0.96 

EE.I 3.00 2.71 2.70 2.34 

PxEE 2.70 2.58 2.55 2.26 

 

Figure 7.4 shows the run-time measurements of the input parameters that 

proposed techniques rely on in making frequency changes. The primary y-axis shows 

the pipeline stall ratio, the total stall ratio, and the memory stall ratio (used in FS-

PS, FS-TS, and FS-MS, respectively) and the secondary y-axis shows the last level 

misses per kilo instructions during the execution of 549.fotononki3d_r. Both y-axes 

represent the full range of the parameters that are mapped onto operating 

frequencies. As these parameters have different ranges, they are all normalized to the 

0-1 scale. They are sampled periodically every 100 ms. The measurements are taken 

when the FS-TS governor is in charge of the clock. 
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Figure 7.4 Runtime metrics measurements for 549.fotonik3d_r 

We observe that the values of the parameters remain fairly consistent 

throughout the execution of the benchmark. FS-PS has an average stall rate of ~90%. 

As a result, a lower operating frequency is selected. Next, FS-TS and FS-MS have 

similar average stall rates of ~70% and 65%, respectively. Thus, they will select a 

higher operating frequency than the FS-PS. Finally, the FS-LLCM parameter values 

overlap with the FS-MS parameter values, but with higher fluctuations. These 

fluctuations cause larger frequency changes, resulting in higher power consumption 

and lower PxEE gains.  

Please note that the ratios vary significantly for different benchmarks and as 

a result, there are instances where some techniques perform better on some 

benchmarks and not on others. Though FS-LLCM provides the lowest gains, in this 

case, there are examples where FS-LLMC has similar PxEE as FS-PS and FS-TS (e.g, 

603.bwaves_s). 
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7.1.5 Discussion: Limitations of CPI 

To further investigate the pros and cons of the proposed techniques, we 

compare FS-TS and FS-CPI. We take 654.roms_s as an example. Regarding 

performance, both FS-TS and FS-CPI have similar outcomes with performance losses 

of ~10% and 6%, respectively. However, FS-TS improves energy efficiency over the 

reference governor by ~159%, while FS-CPI only by ~96%. When considering PxEE, 

we have ~130% improvement by FS-TS and only ~69% from FS-CPI. FS-TS is the 

better choice as it provides similar performance, with significant gains in energy 

efficiency. Figure 7.3 shows the run-time measurements of the input parameters these 

two techniques rely on. The primary y-axis shows the total stall ratio (used in FS-TS) 

and the secondary y-axis shows the average CPI during the execution of 654.roms_s. 

Both y-axes represent the full range of the metrics that are mapped onto operating 

frequencies. They are sampled periodically every 100 ms. The measurements are 

taken when the FS-CPI governor is in charge of the clock control.  

 

Figure 7.5 Runtime measurements of the total stall ratio and the average CPI for 

654.rom_s. 
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The total stall ratio and CPI are both sensitive to the operating frequency. 

However, we can observe that the amplitudes of the changes in CPI are significantly 

larger than the amplitudes of the changes in the total stall ratio. These fluctuations 

cause FS-CPI to change the operating frequency very often (sometimes at the end of 

each sample period), causing wide swings in the operating frequency, e.g., from 1.5 to 

4.0 GHz on the test machine. Those unnecessary wide-swing transitions add to the 

overall energy consumption and are detrimental to performance. On the other side, 

the total stall ratio is more stable causing smaller frequency changes, providing 

overall better energy efficiency.  

7.1.6 Summary: Putting it all Together  

Figure 7.6 shows the summarized view of all three metrics for the evaluated 

techniques for a fully loaded machine running SPEC CPU2017. The performance 

speedup and energy-efficiency improvement metrics are calculated by considering all 

of the benchmarks together, i.e., the execution times and energies consumed are 

summarized across all benchmarks before they are used in equations (Eq. 5.1)-(Eq. 

5.3). The results show that the proposed techniques indeed significantly improve 

energy efficiency (green line) relative to the OS-ondemand governor (black line). FS-

PS improves energy efficiency by ~92% albeit at the cost of performance degradation 

of ~23%. This technique works best for energy-constrained systems, where energy 

efficiency is the primary focus. 
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Figure 7.6  Summary of total performance, energy efficiency, and PxEE 

improvements for SPEC CPU2017 on a Fully Loaded CPU 

FS-TS improves energy efficiency by 75% at the cost of performance 

degradation of 16%. Considering PxEE improvement both FS-PS and FS-TS have 

identical improvements of 48%. FS-MS further reduces performance loss (~8%) at the 

cost of reduced energy efficiency (~58%). Finally, FS-LLCM provides a performance-

oriented approach where gains in energy efficiency come only from the memory-

intensive class of benchmarks. 

So far, we only looked at the results for a fully loaded system. Figure 7.7 shows 

all three metrics for a partially loaded system. The CPU2017 speed benchmarks are 

run with 4 threads and the rate benchmarks are run with 4 copies. We observe similar 

trends in P.S, EE.I, and PxEE.I, albeit the gains are somewhat smaller.  
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Figure 7.7  Summary of total performance, energy efficiency, and PxEE 

improvements for CPU2017 on a partially loaded machine. 

For example, the PxEE.I of the best performing FS.PS and FS.TS techniques 

are 36% and 37%, respectively (relative to 48% and 48% for the fully-loaded machine). 

This is due to the active and passive power consumption from the idle cores that also 

operate in the same frequency without doing any work. Thus, we can expect that the 

benefits provided by the proposed techniques will decrease as the machine load 

decreases. However, these decreases may not be present in processors that can 

support individual cores to enter C-states while other cores are fully active.  
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energy-efficiency improvement metrics are calculated by considering all of the Parsec-

3.0 benchmarks together, i.e., the execution times and energies consumed are 

summarized across all benchmarks before they are used in equations Eq. 5.1-Eq. 5.3.  

In terms of performance (red line), as expected we see degradation from every 

proposed technique. FS-PS has the worst performance loss, whereas FS-LLCM and 

FS-CPI have the least. In terms of energy efficiency (green line), results indicate 

noticeable gains across all techniques. FS-PS has the highest gains in energy 

efficiency and FS-LLCM has the least. Finally, when we consider PxEE, the gains are 

modest ranging from ~5% (FS-PS) to ~18% (FS-MS).  

The main factor contributing to the low gains observed here is that the 

benchmarks are compute-intensive with a small memory footprint. As the 

benchmarks have significantly aged, modern systems do not generate significant 

execution stalls for the Parsec suite.  

 

Figure 7.8  Summary of total performance, energy efficiency, and PxEE 

improvements for Parsec 3.0 
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7.3 SPECpower2008jbb 

We now evaluate the proposed DVFS techniques on the SPECpower2008_jbb 

benchmark suite. Performance for this benchmark is reported in the number of ssj 

operations under different load levels. Power consumption and overall effectiveness 

expressed in the number of ssj operations per Watt are also reported. Figure 7.9 shows 

the raw performance achieved for each of the DVFS techniques while varying the 

transactional load from 0% to 100%. As expected, the OS-ondemand provides the best 

performance. Next, we observe a similar trend in terms of performance for all the 

techniques across all the load levels. As the benchmark runs a single workload with a 

different amount of delay is introduced in each load level, we take the example of three 

specific load levels of 100%, 60%, and 10% load level.  

In all three cases, FS-PS has the highest performance loss of ~47%. This is due 

to the low utilization of the pipeline. The benchmark is unable to effectively issue 

enough micro-operation to populate all the available slots. Next, FS-TS and FS-MS 

provide similar losses of ~32% and ~30%. This indicates that a higher percentage of 

the stalls are memory-related. Finally, FS-LLCM and FS-CPI have a similar loss of 

~8% and 6%. We observe three distinct pairings as discussed above across all load 

levels.  
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Figure 7.9 SPECpower Raw Performance (ssj ops)  

Figure 7.10 shows the active processor power consumed during the execution 

of the benchmark while varying the machine load levels. The results show that the 

proposed techniques significantly reduce active power consumption. The OS-

ondemand power consumption is significantly higher than the proposed techniques.  

Similar trends observed for performance are observed for power consumption 

as well. We see reduced power consumption metrics for all the proposed techniques. 

We take the example of 100%, 60%, and 10% load. At 100% and 60%, we observe three 

distinct groupings. FS-PS has an improvement in power consumption of ~67% at both 

the load levels. Next, FS-TS and FS-MS have similar improvement at ~58%. Finally, 

FS-LLCM and FS-CPI have improvements of ~24%. However, while considering ~10% 

load we see deviation for the results. FS-PS improvements in power consumption are 

reduced to ~34%, FS-TS and FS-MS have ~29% and ~20% improvements respectively. 

Whereas FS-LLCM and FS-CPI have an increase in power consumption by ~14% and 

~7% respectively. This is partly due to an increase in power consumption (~1 W) due 

to the technical implementation.  
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Figure 7.10 Runtime Power Measurements of SPEC power Benchmark 

Finally, we calculate the performance/watt to evaluate the overall effectiveness 

of different power management techniques. Figure 7.11 shows the performance/watt 

of all the proposed DVFS techniques at each load level. We see that when our proposed 

techniques significantly outperform the state-of-the-art OS-demand by providing 

higher performance per unit watt consumed. Considering 100% and 60% load levels, 

FS-PS and FS-MS have a similar gain of 60%, whereas FS-TS has the best 

performance per watt metric of ~73%. Finally, FS-LLCM and FS-CPI have a gain of 

~25%. Considering the load of ~10% the proposed techniques underperform due to low 

utilization and the added power consumption.  
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Figure 7.11 Performance Per Watt for all the Proposed Techniques 

  

 -

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active
Idle

P
er

f/
W

at
t

CPU Load (%)

SPECpower Performance Per Watt

FS-PS FS-TS FS-MS FS-LLCM FS-CPI OS-ondemand



 

105 

CHAPTER 8 

 

RELATED WORK 

Power management techniques have been an integral part of all modern 

computing systems from handheld services to large servers [17]. One of the most 

effective approaches to regulating processor power consumption is dynamic voltage 

and frequency scaling. The impact of DVFS on energy consumption is significant and 

a large body of prior work has explored various avenues to improve energy efficiency 

using DVFS. Researchers have explored analytical models, simulations, and 

experimental evaluations to propose and test ideas to improve performance and 

reduce power consumption through DVFS.  

Multiple research studies focus on the development of analytical models for 

static and dynamic power consumption of various processor components in an effort 

to estimate the run-time power consumption of the entire processor. B. Goel et al. 

present a methodology for deriving analytical models for static and dynamic power 

consumption and use those models for uncore and cores [20]. The study also shows 

how to isolate and quantify the power consumption of different processor components. 

A study from Esmaeilzadeh et al. develops power models for multi-core processors. 

The models are used to predict the effects of semiconductor node and frequency scaling 
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on the performance and power of future generations of multicore processors [18]. The 

transition and energy overhead associated with DVFS is modeled by S. Park et al. 

[47]; the researchers provide a detailed analysis of various components associated 

with the overhead. A study from T. Rauber et al. develops analytical models for power 

consumption of Intel Haswell and Skylake processors and uses them to determine a 

clock frequency that minimizes power consumption [49] [50]. They verified the 

accuracy of their model through experimental evaluations using the NAS benchmarks 

[57] and found that the optimal frequency found through their models provides a 7% 

gain in energy efficiency relative to the default configuration. Predictive models for 

multi-dimensional power-performance optimizations on many-core processors are 

investigated in a study by M. Curtis-Maury et al. [13]. They explore interactions 

between DVFS and dynamic concurrency throttling (DCT) and develop a library that 

supports fine-tuning of operating points of cores running different threads in an 

OpenMP application.  

Y. Cho et al. present analytical solutions to the problem of determining energy-

optimal voltage scale factors for each task, while allowing each task to be preempted 

and to have its energy cost function [12]. Their experimental study reports a 10% 

additional savings in the total system energy compared to the previous leakage-aware 

DVS schemes. A. Iyer et al. presents an online DVFS technique by utilizing interface 

queues to guide the DVFS control in multiple clock and voltage domain architectures 

[33].  

Estimating processor power consumption for a given application is challenging 

due to the internal execution characteristics of applications that exploit hardware 

very differently. Various methods to estimate the power consumption of a processor 

have been studied. They can be classified into four categories: (a) cycle level estimation 
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[45]; (b) instruction-level power analysis (ILPA) [59]; (c) functional level power 

analysis [48]; and (d) system-level power estimation [56]. In cycle-level estimation, the 

power consumption of each processor unit (arithmetic units, registers, memory, etc.) 

is estimated at each clock cycle. This method is not feasible anymore as the complexity 

of modern processors makes this method too expensive in terms of computation. 

Instruction level power analysis involves estimating the power consumption of each 

instruction executing in the processor. The power consumption of a program can then 

be computed as the sum of the power consumed by each instruction of which is 

composed. The modeling complexity grows with the number of instructions that the 

processor can execute concurrently. The functional level power model by G. Qu et al. 

initially utilizes empirical data collection to identify the power consumption linked to 

different functional blocks of the processor [48]. The model utilizes the empirical data 

set to predict the power consumption of embedded software. The system-level power 

estimation model abstracts the low-level power estimation techniques by considering 

the entire system. The model encompasses the functional level power estimate to set 

up generic power models for various modules of the system. A simulation framework 

at the transactional level evaluates the activities of the functional units to determine 

system power [51].  

Regarding the experimental evaluation of DVFS, several studies have shown 

that energy profiling to find the best operating point for each benchmark can be very 

beneficial for both performance and energy efficiency [5] [15] [24] [27] [36]. Here, a 

benchmark is run at the fixed operating point that is found to provide the highest 

energy efficiency. Results from such studies show that the energy efficiency of 

memory-bound applications can improve by over 150% with minimal loss in 

performance [15] [27]. However, this approach relies on previous profiling to find the 
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best operating point and does not accommodate for runtime changes throughout a 

benchmark’s execution. Recently, De Vogeleer et al. use measurements in a controlled 

environment on a mobile CPU to confirm a realistic power/energy equation for CPU 

power [14]. They show the existence of an energy/frequency convexity rule; that is, the 

existence of a unique optimum frequency for energy efficiency for a fixed workload.  

Accurate power measurement techniques are vital for experimental 

evaluations. A study from C. Isci et al. proves the accuracy of the onboard power 

monitoring infrastructure during the run-time in several sub-modules of x86 Intel 

processors [32]. Studies have also evaluated the onboard energy-oriented features 

available on modern processors [22] [54]. The results of these studies give us 

confidence in the measurement infrastructure available in modern processors. 

Meanwhile, finding an efficient method to select an optimal operating 

frequency during a program’s run-time remains a challenging problem [43]. Several 

studies have proposed techniques for selecting the operating frequency that 

outperforms the current power governors. A study from M. Nanja et al. suggested 

using the performance counter to measure instructions per cycle (IPC) and memory 

references per cycle to make scaling [44]. Another such method proposes the use of 

the cycles-per-instruction (CPI) when selecting P-states [3] [34]. An experimental 

study from D. Molka et al. proposed the use of hardware counters to select a particular 

frequency of operation [55]. The study uses instructions per memory access to make 

frequency decisions. Hwisung Jung et al. presented a power management framework 

for dynamic continuous frequency adjustment which provides power-saving 

opportunities by dynamically and continuously adjusting a variable operating 

frequency on a functional level granularity [35]. Utilizing the basic premise of 

eliminating the power and delay costs incurred by the power state transitions which 
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involve clock generators (e.g., PLL), the authors report a ~14% savings in energy 

consumption. 

The use of turbo-mode has gained significant traction and is now a standard 

feature in processors [53] [76]. Each new generation has more aggressive use of the 

turbo mode to provide better performance. However, applications that were written 

several years ago (also referred to as aging applications) may see a significant negative 

impact on functionality and performance. A study from S. Matheus et al. explored the 

impact of turbo modes on the execution time of parallel programs and provided 

guidelines to developers to maximize performance and maintain functionality [38]. 

The performance impact of DVFS for realistic memory systems is explored in [39]. The 

experimental evaluation is done with the SPEC CPU 2006 benchmarks, which are 

based on a sequential workload. 

In this study, we propose alternate dynamic voltage and frequency scaling 

techniques and extend our earlier research [24] that was based on workload-driven 

DVFS. Our study utilizes architectural evaluation to make an informed decision on 

dynamically selecting P-states that results in significant energy savings. Our study 

explores several avenues of dynamic voltage and frequency scaling and we also 

compare a previously proposed technique and show that our proposals provide 

significantly higher gains.  
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CHAPTER 9 

 

FUTURE WORK 

There are several possible avenues for future work concerning the proposed 

DVFS techniques. First, we start with the implementation of the techniques. The OS-

ondemand and our proposed techniques use a linear mapping to map a given metric 

of interest to the available P-states on a system. This assumes that the relationship 

between the power and frequency is linear. However, in reality, we can observe 

through measurements that this is not the case.  

Figure 9.1 shows the full load processor power consumption while varying the 

operating frequency. We observe that the relationship between power and frequency 

is near-linear till 3.14 GHz and we see a steep curve thereafter, especially in the turbo 

mode. An increase in frequency above the nominal frequency only provides modest 

results with significant energy consumption. We also note that a similar performance 

curve can be obtained with any modern processor supporting turbo mode.  
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Figure 9.1 Full Load Processor Power Consumption at various Operating 

Frequency 

Next, each of the proposed techniques uses just two events to determine the 

operating frequency. As seen in CHAPTER 7, a single technique does not provide the 

best results for all classes of benchmarks. One way to rectify this would be to use 

multiple events to determine the next operating point. Adding additional events would 

improve the robustness of the techniques and also help handle anomalies such as 

523.xalancbmk_r, which underperforms for stall-based techniques.  

The current implementation shown in the study has a worst-case idle time of 

13 ms for a sampling period of 10 ms. However, when the CPU is fully loaded the 

execution time of the implementation varies. As a result, the technique was invoked 

every 100 ms. A drawback here is that the sampled characteristics may not be of 

interest by the time the requested P-state transition is complete. The primary 

workload used in the study does not get affected by the invocation period due to the 

steady-state characteristic. However, for an application that has multiple execution 

phases, a higher invocation frequency is more desirable.  
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All our experiments were performed on a single socket system where the 

processor only supports socket level P-state management. It would be interesting to 

evaluate the impact of DVFS on a multi-socket machine that supports core-level P-

state management. We also note that the experiments were performed on an Intel 

machine. However, similar infrastructure to access the PMU and change P-states 

exist in ARM and AMD processors, albeit with a smaller granularity or access. 

Nowadays, Internet-of-Things (IoT) devices generate data at high speed and 

large volume. Often the data require real-time processing to support high system 

responsiveness which can be supported by localized Cloud and/or Fog computing 

paradigms. An interesting direction for future work is to evaluate the impact of the 

proposed DVFS techniques on IoT devices. As these devices are power sensitive, 

techniques to improve efficiency would greatly improve the longevity and affordability 

of these devices.  
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CHAPTER 10 

 

CONCLUSIONS 

Dynamic voltage and frequency scaling are one of the most important tools in 

regulating the power consumption of modern processors. The state-of-the-art demand-

based implementations of DVFS governors in modern OSes favor performance over 

energy efficiency. As the operating costs of computing continue to increase, more 

power-oriented DVFS governors need to be implemented.  

This dissertation presents the results of the measurement-based analysis of 

various dynamic voltage and frequency scaling techniques. We observe that the 

current implementations of DVFS in the OSes are not ideal for memory-intensive 

benchmarks. Based on our architectural evaluation, we propose, implement, and 

experimentally evaluate four new techniques that determine the P-state of the 

processor cores using metrics derived from the PMU events: (i) the ratio of pipeline 

slot stalls (FS-PS), (ii) the ratio of cycle stalls (FS-TS), (iii) the ratio of memory-related 

cycle stalls (FS-MS), and (iv) the number of last level cache misses per kilo 

instructions (FS-LLCM). We also investigate the effectiveness of the previously 

proposed CPI-based frequency selection and describe its shortcomings. 
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The study first quantitatively evaluates the effectiveness of the state-of-the-

art power management technique in modern processors (the ondemand governor) and 

determines its shortcomings, especially in terms of its energy efficiency. It provides 

an in-depth analysis of the SPEC CPU2017 benchmarks using the Top-down 

microarchitectural analysis method and classifies the benchmarks into three groups 

based on their characteristics. Through experimental evaluation using three different 

types of work-loads, namely SPEC CPU2017, Parsec 3.0, and SPECpower_ssj2008 the 

effectiveness of the proposed techniques and the existing state-of-the-art are shown.  

The results of the experimental evaluation show that the proposed techniques 

significantly improve EE and PxEE metrics relative to the existing approaches. PxEE 

improves from 31% to 48% when all benchmarks are considered together. 

Furthermore, we find that the proposed techniques are especially effective for a class 

of memory-intensive benchmarks with a PxEE improvement from 100% to 141%. The 

proposed techniques also outperform an earlier DVFS proposal that utilizes the cycles-

per-instruction metric when changing processor states. 
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GLOSSARY 

Notation Description 

ACPI Advanced Configuration & Power Interface 

AVX Advanced Vector Instruction Set  

BPU Branch Prediction Unit 

BTB Branch Target Buffer 

CPB Energy Performance Bias  

CPU Central Processing Unit 

CSR Control & Status Register 

DVFS Dynamic Voltage & Frequency Scaling  

EET Energy Efficiency Turbo 

FIFO First in First Out 

FIVR Fully Integrated Voltage Regulators  

GPGPU General Purpose Graphics Processing Unit 

GPU Graphics Processing Unit 

HWPM Hardware Power Management  

IoT Internet-of-Things  

ILPA Instruction Level Power Analysis 
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IPC Instructions Per Cycle 

IPS Intel parallel Studio 

LLC Last Level Cache 

MST Model Specific Registers 

OOO Out-of-Order 

OS Operating System 

PCU Power Control Unit/ Package Control Unit 

PLL Phase Locked Loop  

PMA Power Management Agents 

PMU Performance Monitoring Unit 

RAPL Running Average Power Limit  

SMT Simultaneous Multi-Threading 

SPEC Standard Performance Evaluation Corporation 

TBM3 Turbo Boost Max 3.0  

TDP Thermal Design Power 

TMAM Top-down Microarchitectural Analysis Method  

UFS Uncore Frequency Scaling 
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