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ABSTRACT 
 

The School of Graduate Studies 

The University of Alabama in Huntsville 

 

 

Degree Doctor of Philosophy    College/Dept. Engineering/Electrical &  

        Computer Engineering  

 

Name of Candidate Prawar Poudel       

Title  Exploiting Physical Properties of Non-Volatile Memories for Enhanc-

ing Security and Energy Efficiency of Embedded Systems 
 

Counterfeit electronics has become a significant concern in the globalized sem-

iconductor industry. Recycled, over-produced, out-of-spec, defective, cloned, or tam-

pered-with chips can enter the supply chains. These chips end up in a variety of prod-

ucts, from low-end consumer gadgets to mission-critical systems that are used in 

transportation, finance, military, or healthcare applications. Non-volatile flash 

memory has been one of the primary targets of counterfeiters due to its proliferation 

in storage solutions, e.g., SSD drives, USB drives, and SD cards, as well as in embed-

ded and Internet-of-Things platforms. Thus, finding new ways to ensure that only 

genuine non-volatile flash memory is used in electronic products is very important for 

chip manufacturers, industry, governments, and consumers alike. Unfortunately, the 

existing approaches for tracking origins of flash-memory chips or chips with embedded 

flash memory modules can easily be circumvented by motivated and resolute counter-

feiters. On the other side, more complex technical solutions suggested by other re-

searchers in academia often incur significant costs due to additional on-chip resources, 

required changes in physical masks, and required changes in common practices and 

product flows used in the industry. 
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This dissertation introduces two techniques to help secure chips containing 

flash memory by exploiting their physical properties. First, we introduce a technique 

for fingerprinting of microcontrollers with embedded NOR flash memory. This tech-

nique leverages partial erase operations of flash memory segments to expose semicon-

ductor process variations and defects that are unique to each memory segment. Sec-

ond, we introduce Flashmark, a technique for watermarking NOR flash memory 

through repeated stressing that irreversibly changes physical properties of flash 

memory cells. A corresponding watermark extraction technique is developed to re-

trieve imprinted watermark through digital interfaces. Finally, this dissertation in-

troduces a technique that reduces time and energy consumed by critical flash memory 

operations in ultra-low-power microcontrollers. The proposed technique utilizes par-

tial NOR flash memory erase and program operations that proved to have no negative 

impacts on accuracy and longevity of information stored in the flash memory. The 

experimental evaluation utilizing a family of commercial microcontrollers demon-

strates that the proposed techniques are cost-effective, robust, and resilient to changes 

in voltage and temperature as well as to aging effects. 

 

Abstract Approval: Committee Chair        

   Department Chair        

 

   Graduate Dean         
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CHAPTER 1  

INTRODUCTION 

 

 

 

Non-volatile memory (NVM) is a type of computer memory that retains its con-

tent after the removal of power supply. NVMs play an important role in providing 

persistent storage for code and data in a range of computing platforms, including low-

end embedded and Internet-of-Things (IoTs) platforms, smartphones, personal com-

puters, high-end workstations, and warehouse-scale computers. 

The earliest NMVs such as EPROMs (Erasable Programmable Read Only 

Memory) and EEPROMs (Electrical Erasable Programmable Read Only Memory) 

have been replaced by new technologies that overcome some of their shortcomings: 

EPROMs erase require exposure to ultra-violet (UV) light, whereas EEPROMs are 

relatively slow. Toshiba introduced flash memory technology in 1987 [1]. Flash 

memory gets its name from having fast erase times. In addition to being fast, flash 

memories have a high bit density [2], [3] and today they represent the dominant type 

of NVMs. More recently, newer types of NVMs are emerging, including Magneto-Re-

sistive Random Access Memories (MRAM), Ferro-electric Random Access Memories 

(FeRAM), Resistive Random Access Memories (RRAM) and 3D XPoint memory. This 

dissertation focuses on flash memories. 
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A basic building block of flash memories is a flash memory cell that typically 

holds one bit of information stored in the form of charge on the floating gate of a Float-

ing Gate Metal Oxide Semiconductor Field Effect Transistor (FG-MOSFET). Based on 

the organization of the flash memory cell arrays, flash memories are classified into 

two groups: (a) NOR flash memory and (b) NAND flash memory. NOR flash memories 

are typically used for storing firmware, boot codes, and keeping user data, whereas 

NAND flash memories are mostly used for mass storage purposes. Of all the NVMs, 

flash memories are the most widely used. The annual revenue from sales of NAND 

flash memories alone is currently US$ 60 billion and is forecast to reach US$ 80.3 

billion by 2025 [4]. High density NAND flash memories are used in portable storage 

media such as USB drives and SD cards, automobiles, as well as in gadgets like MP3 

players, cameras, smartphones, and computers. Colloquially referred to as Solid State 

Drives (SSDs), flash memory based mass storage media significantly outperform tra-

ditional Hard Disk Drives (HDDs) [5]. Thus, flash memories are also extensively used 

in high end computing platforms, data centers, and in the cloud [6], [7].  

It is projected that 50 billion IoT devices will be connected to the Internet by 

2030 [8]. Mobile and embedded devices including wireless sensor networks, industrial 

systems, transportation systems, as well as wearable and implanted electronics are 

ubiquitous. The increase in the number of connected devices that perform important 

and mission-critical tasks brings forth new design challenges related to their security 

and energy efficiency. Verifying authenticity of connected devices is one design issue 

that is critical for ensuring security and integrity. Recent reports about counterfeit 

electronic components being used in commercial products have caused significant con-
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cern for semiconductor industry and consumers alike [9]–[12].  Authentication of elec-

tronic components can be used to ensure integration of genuine components during 

system design.  

The problem of authenticating a device is solved by assigning an identifier to 

each device. Such identifiers are saved in non-volatile memories or battery backed 

RAM. However, storing identifiers in memory opens possibility of adversaries cloning 

the identifiers. Physical Unclonable Functions (PUFs) extract identifiers from physi-

cal properties of a device to reflect inherent manufacturing and process variations 

[13], [14] from functionally similar devices. These identifiers act as fingerprints and 

remove the need for identifiers to be stored in NVMs or battery backed RAM. Since 

the fingerprints are derived from the die-to-die manufacturing variations, it is difficult 

to recreate or clone them. There are many proposals of custom circuits for PUF based 

fingerprint generation [13], [15]–[17]. However, adding extra components increase the 

on-chip area as well as manufacturing cost. Thus, recent proposals focus on using ex-

isting resources for fingerprint extraction [18]–[20]. This dissertation introduces a 

new technique that extracts fingerprints from unique properties of partially erased 

NOR flash memories embedded in modern microcontrollers (Section 1.1).  

The use of PUFs for detection of counterfeits require lengthy PUF extraction 

as well as maintenance of large databases with entries for every manufactured chip. 

In addition, it requires a method for contacting the chip manufacturer to verify the 

authenticity of each chip, which may place an additional burden on system integra-

tors, as the time and costs of verification are increased. To address this concern, this 
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dissertation introduces a watermarking technique to permanently imprint the manu-

facturer information into the flash memory. This watermarking can be used to distin-

guish between counterfeit and genuine electronic devices (Section 1.2.) 

Although flash memory chips offer a more energy-efficient storage alternative 

to storage solution based on hard disks, flash memory operations require significant 

amount of energy. Flash program and erase operations are power hungry as they rely 

on internal charge pumps to generate high voltages needed to move charges to/from 

floating gates within flash memories. Thus, finding a way to minimize energy con-

sumed by these operations is very beneficial for systems that are frequently updated 

or use internal flash memory for storing application critical data. Energy efficient 

flash memory operations pave way for reduction in operating costs, especially in case 

of implanted electronics. To address this concern, this dissertation introduces a tech-

nique that utilizes partial or aborted flash memory erase and program operations that 

proved to have no negative impacts on accuracy of information stored in the flash 

memory, but provide significant savings in time and energy (Section 1.3) 

Newer flash memory technologies are based on 3D structure. Further scaling 

of planar (2D) flash memory is not possible beyond 14 nm because of significant con-

cerns in structural and mechanical integrity, as well as due to concerns in reliability. 

Characterization of the newer flash memory offers insight into the properties of the 

flash memory that can be used to enhance performance and reliability. This disserta-

tion characterizes a state-of-the-art family of 3D flash memory (Section 1.4). 
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1.1 Microcontroller Fingerprints 

Recent proposals for generation of fingerprints offer solutions to verify authen-

ticity of an electronic device by providing a unique identifier that is derived from man-

ufacturing variations [18], [19], [21]. However, these techniques often rely on compli-

cated algorithms for PUF generation. These algorithms require computationally cost-

prohibitive operations for low-end microcontrollers and/or privileged operations; for 

example, lowering supply voltages and power-up cycle [18], [19], [22]. 

Use of embedded flash memory for generating fingerprint in low-end microcon-

trollers for authentication purpose will create a widely adaptable solution. Embedded 

NOR flash memories in microcontrollers are typically used for storing code and data 

and they are treated as read-only memories. However, modern microcontrollers sup-

port in-system programmable flash memories that can be erased and programmed 

internally by running programs. This dissertation uses early termination of flash 

erase operation to expose manufacturing variation of the flash memory for fingerprint 

generation. The extracted fingerprint can serve as a device fingerprint, is highly reli-

able, requires lightweight compute and modest storage resources. These features 

make the proposed technique highly suitable for low-end microcontrollers. 

1.2 Watermarking 

Several research efforts that are proposed to detect counterfeit flash memory 

chips [23]–[25], exploit the fact that the physical properties of a used flash memory is 

significantly different than a new flash memory chip. Unfortunately, these techniques 

can only be applied to detect recycled flash memory chips.  
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A technique to permanently imprint a manufacturer information into the flash 

memory will allow a customer or a system integrator to ascertain that the flash 

memory chip or a system-on-a-chip (SoC) with embedded flash memory is genuine. 

For example: a manufacturer can imprint “accept” or “reject” information on every die 

they produce. This will prevent the counterfeiters from entering the out-of-spec or fall-

out chips into the supply chain. System integrators and end users will be able to detect 

counterfeit chips before integrating them in their products. 

This dissertation presents a watermarking technique that exploits a known 

property of flash memory that flash cell oxides degrade when exposed to stress (re-

peated program-erase operation). The degradation of oxide is permanent and cannot 

be reversed. Selective stressing of the flash memory cells can be exploited to imprint 

manufacturer id, speed grade, chip test status and other manufacturer related infor-

mation into the flash memory permanently. Thus, the watermarking technique is ro-

bust and can be used to verify that the flash memory chip or the SoC is genuine. The 

proposed watermarking technique is demonstrated using embedded NOR flash 

memory in a family of low-end microcontroller. 

1.3 Energy Efficient Flash Memory Operations 

Since writing and updating data into the embedded flash memory is possible 

through the software code running in the processor core, it is also used as a non-vola-

tile storage of application data in sensor applications and IoT to prevent loss of data 

in case of power loss. However, the energy consumed by flash memory operations (both 

program and erase) are significantly higher.  
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This dissertation characterizes flash memory operations in a family of low-end 

microcontrollers and makes an observation that early termination of erase operation 

successfully erases flash memory. Similarly, early termination of program operation 

can program the flash memory without loss of any information. Experimental evalu-

ation performed on NOR flash memory of low-end microcontroller reveals that signif-

icant energy is saved by such early termination of flash memory operations. Thus, this 

dissertation proposes replacing nominal flash memory operations with partial flash 

memory operations to save energy consumed. 

1.4 3D NAND Flash Memory Characterization 

Characterizing flash memory offers insight into its reliability and performance 

metrics, such as bit error rates, program times, erase times and performance degra-

dation with ageing. These metrics are useful for creation of better algorithm for Flash 

Translation Layer (FTL) design. FTL is a system software that interfaces flash 

memory chips to the host computer. It sits between the file system and the flash 

memory and hides the details of interfacing. 

This dissertation performs timing characterization of a family of state-of-the-

art 3D NAND flash memory using an FPGA based set up that is developed in-house. 

This characterization reveals that significant timing differences exists between pro-

gramming units i.e. between different pages while programming. 

1.5 Major Contributions 

The major contributions of this work are as follows: 

1. It characterizes the behavior of embedded NOR flash memories based 

on early termination of erase operations, i.e. partial erase operations 
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and early termination of program operations, i.e. partial program oper-

ations.  

2. It introduces a technique for extracting fingerprints from the partially 

erased flash memory and proposes a fingerprint-based authentication 

system. It explores the robustness of the proposed technique as a func-

tion of the environmental conditions and usage history of the chips. The 

results demonstrate that proposed technique is cost-effective, robust 

and resilient to changes in voltages and temperature as well as ageing 

effects. 

3. It introduces a watermarking technique for securing global supply 

chains of NOR flash chips or chips containing embedded NOR flash 

memory. The watermark imprinting is permanent and can be used to 

identify genuine chips from counterfeit ones. 

4. It introduces an energy efficient flash memory technique in ultra-low-

power microcontrollers based on partial flash memory operations. The 

experimental evaluation performed on a family of microcontrollers 

shows that the proposed technique can save up to 98% of the energy 

consumed for flash erase operations and up to 75% for flash program 

operations. 

5. It characterizes a family state-of-the-art 3D NAND flash memory that 

reveals significant timing variations in the program operations between 

different pages. 
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1.6 Outline 

The remaining of this dissertation is organized as follows. CHAPTER 2 gives 

a brief background discussing principles of NOR and NAND flash memory organiza-

tion and their operation. CHAPTER 3 describes experimental platforms used in this 

research. CHAPTER 4 presents the microcontroller fingerprint based authentication 

technique. It first characterizes the flash memory cells. Then, it outlines the algorithm 

for enrollment of a fingerprint and authentication of a fingerprint. It also presents the 

results of experimental evaluation and discusses the robustness of the proposed fin-

gerprint technique. CHAPTER 5 presents the watermarking technique. It first char-

acterizes the flash memory for stress induced properties and presents the technique 

to imprint the manufacturer information into the flash memory. Then, it presents the 

experimental evaluation. CHAPTER 6 first characterizes the partial flash memory 

operations and presents the energy saving techniques using the results of the charac-

terization. The experimental evaluation and the robustness of the proposed energy 

saving technique is also presented in the chapter. CHAPTER 7 presents the charac-

terization of a family of 3D NAND flash memory and suggests possible ways the re-

sults can be used to improve the design of the flash translation layer. CHAPTER 8 

concludes the dissertation. 
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CHAPTER 2  

BACKGROUND 

 

 

 

Flash memory is composed of an array of memory cells. These flash memory 

cells are similar in structure to MOSFETs (Metal-Oxide-Semiconductor Field-Electric 

Transistor) with an important distinction: flash memory cells have an extra gate in 

addition to the Control Gate (CG). This additional gate is called Floating Gate (FG). 

Thus, flash memory cells are also called FG-MOSFETs. The floating gate sits between 

the CG and substrate and is surrounded by insulating oxide layers on all sides. 

Charges can be trapped on the FG by application of appropriate electric fields. These 

charges cannot escape the floating gate even after the removal of external electric 

fields because of the insulating oxides. This makes FG-MOSFETs a building block for 

non-volatile memories. 

In this chapter, we dive a bit deeper into the basics of flash memory cells, dis-

cuss different types of flash memories, and describe how they work. In Section 2.1, we 

look into the structure of the FG-MOSFET. We discuss basic flash memory cell oper-

ations in Section 2.1.1 and Section 2.1.2. In Section 2.2, we introduce flash memory 

cells that store more than one bit of information per cell. In Section 2.3, we present 

the organization of flash memory arrays. In Section 2.4, we present a brief introduc-

tion of a 3D NAND flash memory that utilizes charge-trap (CT Flash) technology. 
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2.1  Structure of Flash Memory Cells 

The cross-section of an FG MOSFET is shown in Figure 2.1(a). The FG-

MOSFET consists of the Control Gate (CG) and the Floating Gate (FG) stacked on top 

of each other, instead of a single gate terminal as in an MOSFET. Because of this 

stacked structure where CG is placed on the top of FG, FG-MOSFETs are also called 

Stacked Gate Flash Memory Cells. Split Gate Flash Memory Cells are slightly different 

types of FG MOSFETs where the CG covers a portion above the substrate and also 

covers a portion over the FG, whereas the FG only covers a part above the substrate 

[26], [27]. Cross-section of a split-gate FG MOSFET is shown in Figure 2.1(b). 

 

Figure 2.1 (a) Stacked Gate FG MOSFET cross-section; (b) Split-Gate FG MOSFET cross-section. 

The source (S) and drain (D) terminals in the substrate correspond to the ter-

minals in a conventional MOSFET. Similar to the traditional MOSFETs, the control 

gate in the FG-MOSFET is used to control switching operations. If the applied voltage 

at the control gate is greater than a certain threshold voltage (VTH), the current flows 

from source to drain. 
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The FG traps charge carriers or electrons. The presence of electrons in the FG 

increases the threshold voltage, relative to the threshold voltage when the FG is de-

void of electrons. Based on the presence or absence of electrons, an FG-MOSFET can 

be in one of two states: Programmed and Erased. The presence of electrons in the FG 

corresponds to the programmed state that is characterized by the threshold voltage 

VTHP. Absence of electrons in the FG corresponds to the erased state characterized by 

the threshold voltage VTHE.  

The symbol for an FG MOSFET is shown in Figure 2.2(a). Figure 2.2(b) shows 

the current-voltage characteristic of FG-MOSFETs. To determine the state of a flash 

memory cell, a read reference voltage (VREF) is applied to the control gate. This voltage 

is placed in between the threshold voltages of the erased and programmed states, i.e. 

VTHE<VREF<VTHP. The state of the cell is determined based on whether there is a cur-

rent flow (IDS) between the source and drain or there is no current flow. A sensing 

circuitry is designed to detect the current; if there is a current flow, the flash memory 

cell is determined to be in the erased state (VREF > VTHE), whereas absence of the cur-

rent flow indicates the flash memory cell is in programmed state (the transistor is on, 

VREF < VTHP). 

Due to manufacturing differences and difficulty in controlling electric charge 

on the floating gate, the threshold voltages of the erased (VTHE) and the programed 

(VTHP) states are not constant values, but rather are modeled as a Gaussian distribu-

tion. Figure 2.2(c) shows the probability density function (PDF) of VTHE and VTHP. The 

read reference voltage VREF is placed in the middle relative to the peaks with enough 

margin to determine that a cell state is read correctly. The erased state is represented 



13 

 

as a logic ‘1’ and the programmed state is represented as a logic ‘0’ as shown in Figure 

2.2(b) and Figure 2.2(c). 

 

Figure 2.2 (a) FG MOSFET symbol; (b) I-V characteristic of FG MOSFET; (c) Threshold voltage (VTH) 

distribution of FG MOSFET. 

The major operations that can be performed on a flash memory cell are (i) 

Erase; (ii) Program and (iii) Read. Since the memory cells store information in the 

form of charge on the floating gate, these operations deal with removing, injecting, or 

sensing the charge (electrons) on the floating gate, respectively. In the following sec-

tion, we discuss these operations in flash memory cells and required biasing in their 

terminals based on types of the flash memory cells. Section 2.1.1 discusses stacked 

gate cells, whereas Section 2.1.2 discusses split-gate flash memory cells. 

2.1.1 Stacked Gate Flash Memory Cell Operations 

Erase. For the electrons to be removed from the FG of Stacked Gate cell, the 

control gate CG is grounded. A high positive voltage (~20 V) is applied to the substrate 

while source and drain terminals are kept floating. The electrons that are trapped in 

the FG are ejected from the FG to the substrate through Fouler Nordheim (FN) tun-

neling as shown by blue arrow in Figure 2.1(a).  
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Program. A program operation involves injecting electrons into the FG of the 

flash memory cell as shown by a red arrow in Figure 2.1(a). The mechanism that is 

utilized in this process is also FN tunneling of electrons from the channel formed into 

the FG. Electrically, for the flash memory cell to be programmed, a high program 

voltage is applied to the control gate (~15-20 V), the source terminal is grounded and 

the drain is provided with a high positive voltage (Vcc) [28]. Typically, a program op-

eration relies on an iterative approach called incremental step pulse programming 

(ISPP) – it consists of multiple short program pulses followed by a corresponding ver-

ify steps.  

Read. For a read operation, a zero voltage is applied to the CG [28]. Since the 

threshold voltage of an erased flash memory cell (VTHE) is less than 0 V [28], [29], an 

erased flash memory cell will conduct current with source terminal grounded and 

drain terminal biased at a positive voltage. Thus, it will be read as logic ‘1’. A pro-

grammed flash memory cell will be read as logic ‘0’ because it will not be able to con-

duct any current. 

2.1.2 Split-Gate Flash Memory Cell Operations 

Erase. An erase operation requires a high voltage on the CG (VCG ~ 12 V), 

whereas the source and drain terminals are grounded. The electrons in the FG are 

removed through the FN tunneling as shown by the blue arrow that is labeled “Erase” 

in Figure 2.1(b) above. The removal of electrons from the FG reduces the threshold 

voltage, i.e. VTH=VTHE.  

Program. During a program operation electrons are injected into the FG by the 

source-side hot-carrier injection (SSI) method as shown in by the red “Program” arrow 
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in Figure 2.1(b). A large voltage is applied to the source terminal (VS ~ 10 V), whereas 

a small positive voltage is applied to the CG (VCG ~ 2 V). The drain terminal is kept at 

a very small positive voltage (VD ~ 0.5 V).  

Read. A read operation for sensing the threshold voltage of the split gate flash 

memory involves applying a small positive read voltage to the CG. Here, VCG = VREAD 

~ 3V, whereas a sensing voltage is applied to the drain terminal (VD = VSENSE ~ 2 V). 

An erased split gate flash memory cell will conduct the current (logic ‘1’), whereas a 

programmed cell will not conduct the current (logic ‘0’). 

2.2 Multi-Level Cell Flash Memory 

The threshold voltage distributions shown in Figure 2.2(c) assume that one 

flash memory cell stores a single bit of information. These flash memory cells are 

called Single-Level Cells (SLCs), and the memory composed of SLC flash cells are 

called SLC flash memory. However, due to continued scaling and technological im-

provements, multiple bits of information can be stored in a single flash memory cell. 

Such flash memories are consequently called Multi-Level Cell flash memories. The 

multiple bits of information stored in the flash memory cell can be distinguished by 

multiple levels of the threshold voltage, VTH. For example, for a n-bit per cell n-MLC 

flash memory, the threshold voltage can assume any one of 2n possible levels. 

Conventionally, MLC refers to 2-bit flash memory cell where the threshold 

voltage can assume any of 22 or 4 voltage levels. Higher density arrangements are also 

available today in commercial products, such as Triple-Level Cell (TLC, 3-bits per cell, 

8 VTH levels), Quad-Level Cell (QLC, 4-bits per cell, 16 VTH levels), and Penta-Level 

Cell (PLC, 5-bit per cell, 32 VTH levels). Figure 2.3 shows VTH distributions for different 
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types of multi-level flash memory cells. The bits that each VTH distribution corre-

sponds to are labeled in each of the plots. With an increase in the number of VTH levels, 

multiple read reference voltages are also needed to differentiate between the VTH lev-

els. For a n-bit multi-level cell, 2n-1 read reference voltages are needed. These multiple 

read reference voltages are appropriately shown in Figure 2.3. 
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Figure 2.3. Threshold voltage (VTH) states in multi-level cell flash memory. 
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The program and read operations in multi-level cell flash memory involve a 

sequence of steps. To keep the discussion simple, let us consider the case of a 2-bit 

MLC flash memory as an example. The two bits that are stored in each cell of MLC 

flash memory are encoded as (MSB, LSB). The MSB indicates the most significant bit 

value while LSB indicates least significant bit value. The encoding of the VTH to rep-

resent one of four states is shown in Figure 2.4(b) where Er is the erased state. Er 

corresponds to the logical value of (1,1) whereas other three programmed states are 

indicated by P1, P2 and P3. The encoding of the adjacent programmed states differs 

by a Hamming Distance of 1 bit where P1 = (0,1), P2 = (0,0) and P3 = (1,0). 

 Figure 2.4 shows the sequence of program stages in an MLC flash memory 

cell. Of the two bits to be programmed into the MLC, the first stage of program oper-

ation injects charge corresponding to the LSB bit. For example, if the LSB is ‘1’, there 

is no significant change in VTH due to this program operation. But in the case where 

LSB is ‘0’, VTH assumes an intermediary state as shown by the middle plot in Figure 

2.4. Then, the second stage of program operation injects charge into FG based on MSB. 

This causes the flash memory cell to attain its final VTH.  

A read operation involves detecting the VTH state by performing multiple com-

parisons. This involves using multiple read reference voltages (REF1, REF2 and 

REF3) as shown in Figure 2.4. For an MLC flash memory cell, the following sequence 

of steps occurs when reading its LSB or MSB state: 

1. To read the LSB bit of a flash memory cell, VTH is compared with REF2 voltage. 

o If the VTH detected is greater than REF2, the value of LSB is read as 0. 

o Otherwise, LSB is 1.  
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2. To read the MSB bit, two reference voltage (REF1 and REF3) comparisons should 

be made. 

o If VTH detected is greater than REF1 and less than REF3, then MSB is 0. 

o Otherwise, MSB is 1. 

 

Figure 2.4. An example of program operation in 2-bit MLC flash memory. 

2.3 Flash Memory Organization 

Flash memories are generally organized as a two-dimensional matrix of flash 

memory cells. Based on the organization of the matrix structure, flash memories can 

be broadly classified into NAND and NOR flash memories. In Section 2.3.1, we discuss 

the details of NAND flash memories and in Section 2.3.2, we discuss the details of 

NOR flash memories. 
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2.3.1 NAND Flash Memories 

A NAND flash memory consists of multiple NAND Strings, where a NAND 

String consists of a series of flash memory cells connected in a way similar to a series 

of NMOS transistors in a NAND logic gate. Figure 2.5(a) shows a NAND string − a 

serial connection of NAND flash memory cells where the source terminal of one flash 

memory cell is connected to the drain of another flash memory cell. We can have 32-

64 flash memory cells in a string.  

On either end of these strings are regular transistors called select gates. The 

select gates are used for proper biasing of the NAND string for different flash memory 

operations. The select gate on the drain end of a NAND string serves to connect or 

disconnect the string to the Bit Line. The select gate at the source end connects the 

string to the Source Line. 



21 

 

 

Figure 2.5 NAND flash memory array structure. (a) Arrangement of flash memory cells in an ar-

ray forming NAND string (b) A complete storage element forming NAND flash memory. 

Multiple NAND strings are connected in parallel to form a Block of NAND 

memory as highlighted by the red rectangle in Figure 2.5(b). Flash memory cells in 

the same row of NAND strings are connected via their CGs to a common line called 

Wordline (WL). The cells in the same row form a Page (highlighted by blue rectangle). 
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One page typically contains many cells, e.g., between 32 Kilobits to 128 Kilobits. Con-

sequently, multiple such pages (e.g., 32 to 64) form a flash memory block, and a NAND 

array includes multiple such blocks. 

Major operations performed in a flash memory array are erase, program, and 

read operations. The electrical details of each operation are discussed in Section 2.1.1. 

However, it is worthwhile to mention that the erase operations in a NAND memory 

are performed at a granularity of a single flash block, whereas a program or a read 

operation is performed at a granularity of a single page. 

NAND flash memory allows for a compact organization of the flash memory 

cells. Because of this compact organization, high density storage products can be de-

signed out of NAND flash memory. Thus, NAND flash memory is extensively used for 

bulk storage devices, like Solid State Drives (SSDs), Thumb Drives, Embedded Mul-

timedia Cards (eMMCs), and Secure Digital (SD) Cards.  

2.3.2 NOR Flash Memories 

In a NOR flash memory, memory blocks consist of a two-dimensional matrix of 

flash memory cells. Flash memory cells in a vertical column share a common bitline 

(BL). The source terminals of all the flash memory cells in a block are connected to-

gether as shown in Figure 2.6(a). Control gates of all flash memory cells in the same 

row are connected to a shared wordline (WL). Figure 2.6(a) shows an example block 

of NOR flash memory that is composed of 64 16-bit words.  
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Figure 2.6 NOR flash memory architecture. (a) A block of NOR based flash memory (b) Organiza-

tion of flash memory blocks, segments, and a bank. 

Multiple such blocks are combined to form a segment and multiple segments 

are combined to form a bank of NOR flash memory as shown in Figure 2.6(b). In the 

example NOR flash memory presented in Figure 2.6, 4 blocks form a segment of a 

flash memory and 128 such segments form a bank. Multiple such banks can be present 

in a NOR flash memory. 

An erase operation in a NOR flash memory spans a complete segment, whereas 

program and read operations are performed at a granularity of a single byte or a word. 

This is enabled by the parallel connection of the flash memory cells as discussed ear-

lier. Since NOR flash memory allows for program and read operations at the word/byte 

level, they are used for storing software, boot codes, BIOS codes, etc. However, NOR 

flash cells are larger than their NAND counterparts because their source terminals 
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are all connected together, Consequently, NOR flash memories have lower bit density 

and thus a higher cost than their NAND flash counterparts.  

2.4 3D NAND Flash Memories 

Discussion presented so far assumes two-dimensional (2D) flash memory. 2D 

NAND or planar flash memories reached scaling limits around 2015 with cells manu-

factured at 14 nm technology needs. Further scaling of flash memory cells is not pos-

sible due to significant reliability and endurance issues, caused by charge leakage or 

electrical charge migration from one cells into an adjacent cell, and cell-to-cell pro-

gram interference [29]–[37]. 3D NAND flash memories offer a solution to these limi-

tations. However, 3D flash memories are fundamentally different from planar flash 

memories in their cell structure and overall organization [38], [39]. In this section, we 

discuss a cell structure of a 3D NAND flash memory and its organization. 

2.4.1 3D NAND Flash Memory Cell 

Contrary to the FG-MOSFETs used in planar flash memory cells, 3D flash 

memory cells use floating gate as well as charge-trap memory cells. Moreover, instead 

of stacked structure of planar flash memory, 3D NAND flash memory cells are cylin-

drical in a gate-all-around structure. Figure 2.7 (a) shows a charge-trap (CT) flash 

memory cell. The CT layer sits radially inside the Control Gate (CG) and between the 

oxide layers. CG forms an outer cylinder for each flash memory cell. Charges are 

stored in the CT layer that is insulating in nature as opposed to conducting nature of 

floating gates in FG-MOSFETs. Source, Drain and Substrate are cylindrically inside 

the CT layer forming the center of the flash memory cell. 
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Figure 2.7. Charge Trap (CT) flash memory cell structure in 3d flash memory. 

2.4.2 Organization of 3D NAND Flash Memory 

Since 3D NAND flash memory requires vertical stacking, simple stacking of 

multiple layers of planar flash memory cells would require many critical masks to be 

replicated for each vertical layer during manufacturing process. This would increase 

the cost of fabrication [28]. 

Instead, 3D NAND flash memories stack multiple rectangular planes on top of 

each other. Each plane forms a Control Gate plane or CG plane as shown in Figure 

2.8. Multiple holes are drilled into these planes vertically and are filled with oxide, 

charge trap, and polysilicon materials [39].  

At each intersection of the pillar and the CG plane, a NAND memory cell is 

formed. A vertical 3D NAND string formed as a result is shown in Figure 2.8(a). The 
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select transistors are then connected on top and bottom of these vertical structures 

which are then connected to Bit Line and Source Line, respectively. 

 

Figure 2.8. 3D NAND flash memory organization. 
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CHAPTER 3  

EXPERIMENTAL ENVIRONMENT 

 

 

 

Research presented in this dissertation uses split-gate NOR flash memory that 

is embedded into the MSP430 microcontrollers. We describe the MSP430’s NOR flash 

memory in Section 3.1. Section 3.2 describes a framework and setup that is developed 

as a part of dissertation research and used for characterization of 3D NAND flash 

memories.  

3.1 MSP430’s Embedded NOR Flash Memory 

Modern microcontrollers are targeting different low-power and low-cost appli-

cations. They are designed as Systems-on-Chip (SoCs), integrating a central processor 

core, flash memory, Random Access Memory (RAM), clock subsystem, and a variety 

of input/output peripherals on a single die.  

NOR flash memories are used for storing programs and data in modern SoCs, 

including microcontrollers. Data from NOR flash memory can be read at the smallest 

granularity of a single byte. This allows for programs stored in NOR flash memory to 

be executed without copying them to RAM memory. This method of execution is called 

Execute-In-Place (XIP). The benefit of XIP along with higher error resilience of NOR 

flash memory has found a niche in low power microcontrollers and for storing BIOS 

codes and firmware in high-end computer platforms.  
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The internal cell structure of the MSP430’s embedded NOR flash memory cor-

responds to the split-gate flash memory cell discussed in Section 2.1.2. The internal 

organization of the MSP430’s NOR flash memory corresponds to the one presented in 

Section 2.3.2. In this section, we dive into programmer’s view of the MSP430’s NOR 

flash memory. 

3.1.1 Flash Memory Module 

The MSP430’s embedded NOR flash memory module includes a flash controller 

and a NOR flash array. The array is composed of multiple banks of flash memory and 

can be accessed through address bus and data bus. In normal operating mode 

MSP430’s flash memory behaves as a Read Only Memory (ROM) allowing programs 

to read instructions and data. However, the flash memory controller allows for in-

system programming (ISP) of the flash memory using a timing generator and a voltage 

generator as shown in Figure 3.1(a) [40]. Since programming and erasing the flash 

memory involves bringing up high voltages required for biasing different terminals of 

the flash memory cell, the voltage generator and timing generator play a crucial role 

in ensuring proper flash memory operations. The voltage generator is responsible for 

binging up the required voltage levels for program and erase operations while the 

timing generator is responsible for controlling the duration of the operations. 

Figure 3.1(b) and Figure 3.1(c) show the timing diagrams for program and 

erase operations, respectively. Both the program and erase operations have an initial 

phase in which the voltage generator brings up the voltages to the required levels that 

are maintained during the flash program and erase operations. Upon completion of 
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the flash operation, the voltage generators are turned off and the flash array is back 

in the read-only mode.  

 

Figure 3.1 (a) Block diagram of flash memory module. (b) Program cycle timing diagram. (c) 

Erase cycle timing diagram 

The controller supports flash program operations at the byte level, word level 

(2 bytes), double-word level (4 bytes), or a block level (64 bytes). Program operations 

in a segment must be preceded by a segment erase operation. Thus, the granularity 

of erase operations is a single segment of 512 bytes. Bank erase and mass erase oper-

ations are also supported. A bank erase operation erases an entire flash memory bank, 

whereas a mass erase operation erases the entire flash memory (all banks, if multiple 

banks are present). During flash erase and program operations the flash controller 

halts the processor as both programs and data reside in the flash memory. 
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3.1.2 Erase and Program Operations  

The erase and program operations involve configuring the flash controller. The 

flash controller is interfaced through a set of control registers (FCTLx). To configure 

the flash module for erase and write operations, certain bits in the control registers 

FCTLx are set. For an erase operation, after the control registers are configured, a 

dummy write to any address in a segment will initiate an erase operation on the se-

lected segment as shown in Figure 3.2(a). However, a program operation is performed 

for a single word as shown in Figure 3.2(b) [41].  
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Figure 3.2. (a) Flowchart for flash memory segment erase. (b) Flowchart for flash memory word 

program. 

Code 3.1 outlines a subroutine that is used to program a flash memory word. 

To program an entire segment, the word program operation must be performed re-

peatedly in a loop (Figure 3.2(b)). The completion of the flash memory operation can 
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1. void program_word(SegmentAddress, WordIdx, WordData){ 
2.   FCTL3 = FWPW;                          // flash password 
3.   FCTL1 = FWPW+WRT;                      // configure word write 
4.   *(SegmentAddress +WordIdx) = WordData; // write data to flash word 
5.   while(FCTL3&BUSY);                     // wait until busy 
6.   FCTL1 = FWPW;                          // clear erase operation 
7.   FCTL3 = FWPW+LOCK;                     // lock the flash memory 
8. } 

Code 3.1. Subroutine for program operation of a flash memory word. 

Flash memory controllers support long word write and block write operations 

to accelerate the program operation. Long word write is similar to word write opera-

tion (Code 3.1). Instead of writing a single word into flash memory (line 4 of Code 3.1), 

successive lines of codes can be used to write into two consecutive words of flash 

memory for a long word write. Code 3.2 outlines a subroutine that programs a block 

(128-bytes or 64-words) of flash memory where BlockIdx is the index of block to be 

programmed inside the flash memory segment SegmentAddress. BlockData is an ar-

ray of data to be written into the block. 

1. void program_block(SegmentAddress, BlockIdx, BlockData){ 
2.   while(FCTL3&BUSY);                           // wait until busy 
3.   FCTL3 = FWPW;                                // flash password 
4.   FCTL1 = FWPW+BLKWRT+WRT;                     // configure block write 
5.   FlashAddress = SegmentAddress+BlockIdx*64;   // get starting address 
6.   for(uint8_t i=0;i<32;i++){ 
7.     *(FlashAddress+2*i) = BlockData[2*i]       // write long word into 
8.     *(FlashAddress+2*i+1) = BlockData[2*i+1];  // ..flash memory 
9.     while(!(FCTL3&WAIT));                      // test WAIT bit 
10.   } 
11.   while(FCTL3&BUSY);                           // wait until busy 
12.   FCTL1 = FWPW;                                // clear erase operation 
13.   FCTL3 = FWPW+LOCK;                           // lock the flash memory 
14. } 

Code 3.2. Subroutine for program operation of a flash memory block. 

3.1.3 Partial Flash Memory Operations 

Instructions of a program fetched and executed by the CPU generally reside in 

the flash memory. We call such flash memories Execute-In-Place (XIP) memories. 
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Temporary variables held in the heap and program stacks are however created in the 

RAM memory.  

When the processor initiates a flash segment erase or a word program opera-

tion (by performing a write operation into the specified address), the flash controller 

takes over and stalls the CPU. The CPU remains stalled until the flash memory op-

eration is complete. However, flash erase and program routines can be copied into the 

RAM memory, and the program counter can be redirected to continue execution from 

the RAM memory. This way, the processor can continue to execute instructions while 

the flash controller is still busy performing a flash operation.  

The MSP430 flash memory controller provides an emergency exit (EMEX) con-

trol bit through one of its control registers. Setting this bit programmatically initiates 

termination of an ongoing flash memory operation. Consequently, the CPU can initi-

ate a flash erase or program operation from the RAM memory, wait for a certain pe-

riod of time, and then set the EMEX bit to terminate the ongoing operation. This 

mechanism is used to perform partial flash memory operations. Figure 3.3 illustrates 

the timing diagram in case of a partial flash operation. Every flash memory erase or 

program operation includes three distinct parts: generating high voltage needed for 

the operation, operation itself, and lowering the voltages and transitioning to a read-

only mode. By setting the emergency exit, the current operation is aborted abruptly, 

voltages lowered, and the flash memory transitions to normal read-only mode.  
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Figure 3.3. Emergency exit of flash memory operation. 

Code 3.3 outlines a subroutine for partial flash erase operation. This subrou-

tine is run from RAM, ensuring that the CPU remains active while the erase operation 

is being performed. The subroutine starts by checking a BUSY bit to see if the flash 

memory controller is busy (line 2). If it is not busy, the flash memory controller is 

configured for a segment erase operation using ERASE bit (line 4). A dummy write 

operation is performed at a flash memory address belonging to a segment which needs 

to be erased (line 5). This write initiates the segment erase operation. Since this sub-

routine is being run from RAM, the CPU is still active. The CPU can be made to vol-

untarily stall for PE_TIME clock cycles (line 6). EMEX can be issued after the wait 

time to prematurely terminate the flash memory operation (line 7). A similar sequence 

of steps is carried out for flash memory program operations to implement a partial 

flash program operation. 

1. void partial_erase_segment(FlashAddress, PE_TIME){ 
2.   while(FCTL3&BUSY);       // wait until busy 
3.   FCTL3 = FWPW;            // flash password 
4.   FCTL1 = FWPW+ERASE;      // configure segment erase 
5.   *FlashAddress = 0;       // dummy write to initiate erase operation 
6.   __delay_cycles(PE_TIME); // wait for PE_TIME cycles 
7.   FCTL3 = FWPW+EMEX;       // emergency exit to terminate erase operation 
8.   while(FCTL3&BUSY);       // wait until busy 
9.   FCTL1 = FWPW;            // clear erase operation 
10.   FCTL3 = FWPW+LOCK;       // lock the flash memory 
11. } 

Code 3.3. Subroutine for partial erase operation of a flash memory segment. 

Emergency Exit

Generate
Voltage

Remove 
Voltage

Flash Memory Operation Active Time
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Partial flash memory operations are a useful tool that allow us to gain insights 

into transitions of flash cells from programmed to erased or erased to programmed 

states as a function of time. By modulating the PE_TIME (or PP_TIME) and reading 

data after partial flash operations, we can extract physical properties of flash memory 

cells, e.g., voltage threshold distributions and others. We will exploit these partial 

flash memory operations to create fingerprints of the flash memories.  

3.1.4 Experimental Setup 

The NOR flash memory based experiments are performed on two families of 

MSP430 microcontrollers, namely, MSP430F5438 and MSP430F5529. Research-spe-

cific setups and experiment flows are described in later sections. 

The TI EXP430F5438 Experimenter’s board, shown in Figure 3.4(a), is used in 

experiments utilizing MSP430F5438 microcontroller [42]. This evaluation board fea-

tures a 100-pin drop-in socket that can hold one MSP430F5438 chip. The TI 

EXP430F5529LP Launchpad platform, shown in Figure 3.4(b), is used in experiments 

utilizing MSP430F5529 microcontrollers [43]. The Code Composer Studio (CCS) Inte-

grated Development Environment (IDE) on aWindows 10 machine is used to interface 

the microcontrollers in both the cases.  
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Figure 3.4. Experimental setup for MSP430 microcontrollers. (a). TI Experimenter’s Board MSP-

EXP430F5438. (b). TI Launchpad Platform MSP-EXP430F5529LP. 

3.2 NAND Flash Memory Setup 

3.2.1 ONFI Specification 

NAND flash memory chips use a standardized low-level interface that is de-

veloped by a working group of flash memory manufacturers. This standard for inter-

facing Common Off-the-Shelf (COTS) flash memory chips, named Open NAND Flash 

Interface (ONFI) specifies physical interfaces; chip identification mechanisms; com-

mand set for reading, erasing and programming NAND flash; timing requirements; 

and data integrity features. Typically, a host, a main processor of a computer system, 

a specialized controller, or a specialized storage processor, is responsible to implement 

this interface.  

The flash memory chips may include one or more dies packed into a single 

package. A die includes an on-die controller and a NAND array as shown in Figure 

3.5. The on-die controller consists of a set of control, address, and data registers that 

(b) EXP430F5529LP Launchpad(a) TI Experimenter s Board  EXP430F5438
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are used to latch commands, addresses, and data. The on-die controller is responsible 

to accept commands, addresses, and data, and generate a sequence of control signals 

to carry out ONFI commands. 

The physical interface of NAND flash memory chips defined by the ONFI spec-

ification includes TSOP-48, WSOP-48, LGA-52, BGA-63, BGA-100, BGA-152, BGA-

132, BGA-272, BGA-252 and BGA-316 [44]. Regardless of the physical interface of the 

chip, the specification defines a set of control signals and data signals a host device 

uses to interface NAND flash memory chips. For example, an 8-bit asynchronous data 

interface assumes 8 data lines that are denoted as DQ0 to DQ7. The control signals 

include Chip Enable (CE#), Command Latch Enable (CLE), Address Latch Enable 

(ALE), Read Enable (RE#), Write Enable (WE#), Ready/Busy (R/B#) and Write Protect 

(WP#). The suffix “#” indicates that a control signal is active low. 
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Figure 3.5. Block diagram of a NAND flash memory die. 

The data lines DQ0-DQ7 are used to transfer commands, memory addresses, 

and data to the NAND chip, as well as to read out the data from the NAND chip. When 

the ALE signal is set at logic ‘1’, the host indicates that the data lines are carrying a 

portion of the address inside the NAND array. Similarly, a logic ‘1’ on the control line 

CLE, indicates that the data lines are carrying an ONFI command that will be exe-

cuted by the NAND flash memory.  
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The ONFI specification defines different modes of interfacing the NAND flash 

memory chips. Asynchronous mode is the simplest mode. while faster modes of inter-

facing that offers double data rates (DDR) are also available. To keep our discussion 

simple, let us discuss asynchronous mode of interfacing. Figure 3.6 shows a command 

latch cycle (Figure 3.6(a)) and an address latch cycle (Figure 3.6(b)) for asynchronous 

mode. The value placed on data lines DQ0-DQ7 is written into the command register 

of the device on the rising edge of WE# when CLE is high, ALE is low and RE# is high 

(Figure 3.6(a)). Similarly, the value placed on DQ0-DQ7 is written into the address 

register of the device on the rising edge of WE# when ALE is high, CLE is low and 

CE# is low (Figure 3.6(b)). 

 

Figure 3.6. Asynchronous mode timing cycles. (a). Command latch cycle. (b). Address latch cycle. 

A data cycle is indicated by a low value on both ALE and CLE lines. Depending 

on the value of write enable (WE#) line and read enable (RE#) line, data is either input 

(DIN) to the internal data register of the NAND flash memory device from data lines 

DQ0-DQ7 or data is output (DOUT) from the internal data register to the data lines 

DQ0-DQ7. The value placed on DQ0-DQ7 is read into the data register of the NAND 

device at every rising edge of WE# when both ALE and CLE are low while RE# is 

high. Similarly, the value from the data register of the NAND device is placed into the 

CLE

CE#

WE#

ALE

DQ0-7

CLE

CE#

WE#

ALE

DQ0-7

(a) Command Latch Cycle (CMD) (b) Address Latch Cycle (ADDR)



40 

 

data lines DQ0-DQ7 at every falling edge of RE# when both ALE and CLE are low 

while WE# is high. 

Let us see an example of an erase operation defined by the ONFI specification. 

For an erase operation, the host should send a command corresponding to the erase 

operation and the address of the block to be erased. Figure 3.7(a) shows the sequence 

of command and address cycles required for a block erase operation. The host initiates 

a command cycle (CMD) with value 0x60 in the data lines followed by three address 

cycles (ADDR) that send the row address or the address of the block to be erased. This 

is followed by the command 0xD0, which initiates the erase operation. During the 

erase operation, the NAND device goes into a busy state. This is indicated by the R/B# 

pin being low. Alternately, this is also indicated in status register (SR) of the NAND 

flash device. The block erase time can be determined by polling the state of R/B# line 

or reading the status register. 

The sequence of commands and address cycles for a page program operation is 

shown in Figure 3.7(b). In addition to the command and address cycles, multiple data 

input cycles (DIN) are also needed in page program operation. Sending a command 

0x80 indicates a program operation. This should be followed by 5 address cycles. The 

address indicates the row and column addresses of the page to be programmed. The 

five address cycles are followed by the data to be written into the flash memory page. 

This data is placed in the data register of the flash memory device. A command 0x10 

will initiate the write operation of the data into the address specified. The flash device 

goes into the busy state until the program operation is active. 
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Figure 3.7. Flash memory operation cycle. (a) Block erase cycle. (b). Page program cycle. 

3.2.2 FPGA Based ONFI Interface 

To interface the COTS NAND flash memory chips, we developed an FPGA 

based ONFI interface. This interface implements asynchronous mode of interfacing 

NAND flash memory chips. An ARM based computer that is implemented in Altera 

DE1-SoC Development Kit (Figure 3.8(a)) acts as the host machine. The ONFI com-

mands to interface the NAND flash memories are implemented in C/C++ [45].  

Altera DE1-SoC integrates an ARM based Hard Processor System (HPS) that 

interfaces input/output device such as push buttons, slider switches, seven segment 

displays, LEDs, Audio CODEC, VGA control, multiple HPS Timers, and others. It also 

consists of two jumper extensions that allows interfacing any external peripherals.  

Our design makes use of the jumper extension (JP1) in DE1-SoC to connect to 

external NAND adapter. The NAND flash memory adapter can vary depending upon 

the physical interface of the chip. An example of adapter to interface a TSOP-48 

NAND flash chip is shown in Figure 3.8(b). This adapter provides DIP-48 connection 

for a TSOP-48 chip, which is then interfaced to the JP1 extension using jumper cables. 

The connection of different data lines (DQ0-DQ7) and control lines to the different 

pins of the JP1 extension is shown in Figure 3.8(c). 
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Figure 3.8. NAND flash memory interfacing setup. (a). Altera DE1-SoC development kit running 

an ARM computer. (b). TSOP48-to-DIP48 adapter to house ONFI TSOP48 nand flash memory 

chips. (c ). Connection of interface between the DE1-SoC platform and NAND memory. 
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CHAPTER 4  

MICROCONTROLLER FINGERPRINTS 

 

 

 

A device fingerprint is a unique bit vector extracted from the physical proper-

ties of the electronic device. Such a fingerprint can be used for identification purposes 

through differentiation between functionally identical devices. In our work, we extract 

fingerprints from an embedded NOR flash memory for identification or authentication 

purposes. We leverage partial erase operation in flash memory to expose the inherent 

manufacturer variations among the flash memory cells and export them though digi-

tal interface as a bit vector [46]. The exposed physical property, i.e., differences in 

threshold voltage distributions, is inherent to each specific device and specific memory 

cells and cannot be cloned [47]. 

4.1 Fingerprint-based Device Authentication  

Let us consider a concept of fingerprint-based device authentication. We dis-

tinguish two actors: a Manufacturer and a Customer. The manufacturer is a producer 

of electronic components or a vendor relying on device-fingerprint based authentica-

tion to distinguish between legitimate or illegitimate users. The customer can be any 

user or a component that is requesting a service from the manufacturer. A fundamen-

tal service is verification of device authenticity, triggered by customers in various sce-

narios – e.g., to ensure the use of genuine chips before they are integrated into a larger 

system or to access firmware updates, or to report sensor readings.  
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Figure 4.1 shows a system view of the fingerprint-based device authentication. 

It consists of two phases, namely Enrollment Phase and Authentication Phase. The 

enrollment phase is conducted entirely at the manufacturer’s premise before shipping 

the device. In this phase, the manufacturer characterizes every device and extracts 

and enrolls a single or multiple fingerprints. These fingerprints are unique bit-vectors 

derived from a chosen physical property. The fingerprints that are generated during 

the enrollment phase are called Enrollment Fingerprints (EFs). The manufacturer 

stores these fingerprints in a secure database in the manufacturer’s premise. 

The authentication phase is performed partly at the manufacturer’s site and 

partly customer’s site. It starts by a customer placing an authentication request to the 

manufacturer. The manufacturer sends a challenge to the customer, e.g., the address 

of a memory segment where a fingerprint is extracted from during enrollment. Cus-

tomer, then, undergoes the steps to extract a fingerprint. The fingerprint that is ex-

tracted during this authentication phase is called Authentication Fingerprint (AF). 

Once an AF is extracted, the customer sends it to the manufacturer as a response. The 

manufacturer compares the received AF with the EFs in the database. Based on the 

matching criteria, the manufacturer generates a response to the customer and decides 

whether to confirm or deny the authenticity of the device. The metrics that are gener-

ally used for comparing the fingerprints are Hamming Distance [15], [18], [48]–[52], 

Jaccard Index [53], or Correlation [47], [54], [55]. 



45 

 

 

Figure 4.1. System view of a fingerprint-based authentication system. 

4.2 Related Work and Motivation 

The problem of identifying and authenticating an electronic device requires 

each device to have an identifier. This identifier must be unique to each device. Thus, 

one of the straightforward approaches to this problem is to store a unique identifier 

in a dedicated memory location. This identifier is assigned by the manufacturer and 

stored in dedicated non-volatile memory, like EPROM, EEPROM, flash memory, pro-

grammable fuse or in battery backed RAM. 

The approach of assigning an identifier and storing the identifier in a secure 

memory location is reliable and is stable over a long period of time. However, such 

identifiers can easily be cloned by adversaries. In addition, when identifiers are stored 
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in dedicated non-volatile memories, extra mask layers are required during manufac-

turing. Storing identifiers in battery backed RAM creates a need for battery that pow-

ers the RAM at all times. All these approaches increase the manufacturing cost. 

Physical Unclonable Functions (PUFs) and Physical Fingerprinting are the so-

lutions that do not require storage of the identifiers. In these solutions, the identifiers 

are extracted from a known physical property of the device. The physical property is 

usually caused by inherent manufacturing and process variations. Identifiers derived 

in this way have a property that no two physical devices share the same identifier, 

while staying fairly stable for a single device. Since the identifiers are based on the 

inherent variations, they cannot be cloned by an adversary even with physical access 

to devices. 

PUFs use the inherent process variation as a key in mapping input challenges 

to responses (CR- pairs) [13]. The concept of PUF implementation in conventional in-

tegrated circuits (ICs) was first introduced by Gassend et al. in 2002 [16] for building 

secure smartcards. Their proposal tests several implementations based on self-oscil-

lating loop with a non-monotonic delay circuit on FPGAs. Since then, several pro-

posals have been made using different physical properties to derive PUFs from a cir-

cuit. Lee et al. [17] fabricated an arbiter based PUF that exploits inherent delay char-

acteristics of wires and transistors in ICs. Suh and Devadas [15] demonstrate ring 

oscillator based PUFs for device authentication and secret key generation. 

The proposals discussed above mitigate the problem of clonability that existed 

in the stored identifier-based approach. However, all these proposals make use of cus-

tom circuitry for PUF generation. Addition of a dedicated circuitry for generating 



47 

 

PUFs increases on-chip area and manufacturing cost. Thus, several alternative ap-

proaches to extract PUFs or fingerprints from a component that already exists in the 

IC are proposed. 

Holcomb et al. [18] demonstrate extraction of identifying fingerprints from 

power-up state of embedded SRAM cells in microcontrollers and discrete SRAM mod-

ules. Liu et al. [56] propose data remanence based PUF extraction from SRAM 

memory cells by momentarily shutting down the power. Bacha et al. [57] use on-chip 

error correction logic built into higher-end processor cache for generation of PUF. Sim-

ilarly, several PUFs or fingerprint extraction techniques based on DRAM memory are 

also proposed. These proposals are based on power-up states of DRAM [54], latency 

variations [53], write failures [48], refresh pausing [58] and decay [59]. 

Multiple recent proposals target flash memory to use manufacturer variation 

among flash memory cells for generation of fingerprints. Wang et al. [47], [55] explore 

commercial-off-the-shelf NAND flash memory for generating unique fingerprints. 

Their proposal makes use of repeated partial program operation to expose the latency 

variation among flash memory cells to attain programmed state. Jia et al. [60] propose 

partial erase and program disturbed based technique to generate keys from NAND 

flash memories in addition to partial program based technique. Sakib et al. [51] pre-

sent an aging resistant PUF extraction technique from NAND flash memory. In case 

of NOR flash memory, Clark et al. [61] utilizes partial erase operation at a reduced 

supply voltage to expose erase speed variability of 1.5-transistor flash memory cells. 

Nguyen et al. [62] use repeated erase suspend operation for true random number gen-

eration and fingerprint extraction from NOR flash memory that is similar to that of 
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Clark et al. Mandadi [49] relies on repeated partial program operation for generation 

of PUF based on NOR flash memory. 

All these proposals indicate a strong interest for and represent an advance-

ment in the field of device identification/authentication. However, most of the pro-

posals for extraction of fingerprints or PUFs from memory rely on privileged opera-

tions like powering cycles, reset operations, lowering voltages, or changing controller 

parameters. In addition, proposals for flash memory require cost prohibitive compu-

tational or storage resources that exceed the capacity of low-end microcontrollers that 

are widely used in IoT applications. 

Our proposal of microcontroller fingerprinting extracts fingerprints from an 

embedded NOR flash memory in low-power microcontrollers. The proposed technique 

utilizes a partial erase operation, where a segment erase operation is prematurely 

aborted to expose threshold voltage variations among flash memory cells. The NOR 

flash memories in modern microcontrollers are often in-system programmable that 

can be erased and programmed from software. This makes our approach applicable 

through software without any privileged operations. The proposed technique does not 

rely on any error detection or correction algorithms, thus minimizing compute require-

ments. 

4.3 Partial Erase Operation in MSP430 Flash Memory 

Since our fingerprint extraction algorithm is based on a partial erase opera-

tion, this section is dedicated to characterizing flash memory cells based on partial 

erase operation. A partial erase operation implementation is described in previous 

section, Code 3.3. A selected segment of the NOR flash memory is preconditioned by 
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programming all flash memory cells, i.e., all bits in a segment are cleared (logic ‘0’). 

Then, the flash memory controller is configured for an erase operation through FCTLx 

control registers. Next, the erase operation is initiated by performing a dummy write 

to a memory location in the flash segment that is to be erased. Finally, after a certain 

period of time, the EMEX signal is issued so that the flash memory operation is ter-

minated. 

Figure 4.2 shows the state of partially erased flash memory segment. The con-

tent of the segment is determined by the duration of the partial erase, TPERASE. A too 

short TPERASE results in no changes in the state of flash memory cells. A too long TPE-

RASE results in all flash cells being fully erased (read as a logic ‘1’). However, TPERASE 

can be chosen in such a way that some flash cells transition to the erased state (fast 

to be erased) and others remain in the programmed state (slow to be erased), as illus-

trated in Figure 4.2 (the partially erased segment state).  

 

Figure 4.2. NOR flash segment state as a function of erase time. 

To characterize flash memory cells in a segment through partial erase opera-

tions, a set of experiments as illustrated in Code 4.1 is performed. First, the segment 
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is fully erased (line 4), then the segment is programmed (line 5). Before performing 

each partial erase operation, the flash segment is programmed so that the following 

partial erase operation is performed on flash segment with all cells in the programmed 

state, i.e., every byte reads as 0x00. Then, a partial erase operation is performed (line 

6) with a partial erase time of TPERASE. After the partial erase operation, the flash cells 

in the segment are read for a certain number of times (NR times). Read operation of 

the flash segment is performed for a parameterized number NR times to determine if 

the flash cells are stable or unstable. 

After the read operation is performed (line 8 to 13), all the flash memory cells 

are characterized into three categories: Stabel1s, Stable0s and UnstableBits. The Sta-

ble1s are the flash memory cells that are read as a logic 1 (erased) NR times. Similarly, 

Stable0s are the flash memory cells that are read as a logic 0 (programmed) NR times. 

UnstableBits are those that change their state at least once for NR reads. 

After the characterization is performed, the partial erase time TPERASE is in-

creased by a certain period (t), and the process of erasing, programming, partial pro-

gramming, reading, and characterizing is repeated. This process is continued until 

the partial erase time is equal to the nominal erase time of the segment (TERASE). 
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1. void partial_erase_characterize(flash_address){ 
2.   TPERASE = 0; 
3.   do{ 
4.     fully_erase_segment(flash_address);            // Write 1s 
5.     fully_program_segment(flash_address);          // Write 0s 
6.     partial_erase_segment(flash_address,TPERASE);    // Partial erase 
7.     FSAND=11..1b; FSOR=00..0b; 
8.     for(i=0; i<NR; i++){                           // NR segment reads 
9.       FR = ReadEntireSegment(flash_address); 
10.       FSAND &= FR; 
11.       FSOR  |= FR; 
12.       SWDelay(); 
13.     } 
14.     Stable1s = FSAND & FSOR; 
15.     Stable0s = FSAND | FSOR; 
16.     UnstableBits = FSAND ^ FSOR; 
17.     Ratio = Count(Stable1s)/Count(Stable0s); 

18.     TPERASE += t;}                                  // Increase TPERASE 
19.   while (TPERASE <= TERASE); 
20. } 

Code 4.1. Characterization of a NOR flash segment using partial erase operations. 

The results obtained from the characterization are shown in Figure 4.3. The 

experiment is performed for 12 flash memory segments, collected from 3 

MSP430F5438 sample chips. The red lines show the percentage of programmed flash 

memory cells, blue lines show the percentage of erased flash memory cells, and green 

lines show the percentage of unstable flash memory cells. We can identify three dis-

tinct regions in Figure 4.3. The first region is where the TPERASE is very small and all 

the flash cells are in programmed state (illustrated by red lines being at 100% and 

blue lines at 0%). In the second region, a small change in the partial erase time results 

in a significant change in the states of flash memory cells; consequently, the slopes of 

red and blue lines are very steep. In this region, the number of unstable flash cells 

reaches its peak value. However, this peak never exceeds 2% as shown in Figure 

4.3(b). In the third region, the percentage of erased cells slowly approaches 100%. 
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Figure 4.3. Percentage of the erased, programmed, and unstable flash memory cells as a func-

tion of the partial erase time. 

4.4 Partial Flash Erase for Fingerprint Generation 

Partial flash memory operations are often used to explore properties of flash 

memory cells when transitioning from one logical state to another. For example, an 

erase operation involves changing the state of flash memory segment from logic state 

‘x’ to logic state ‘1’. Partial erase operations with different erase times help to reveal 

the speed of transitions from programmed to erased state. This speed correlates to the 

threshold voltage variations of the flash memory cells inside a segment. These varia-

tions in physical property of the flash cells are a result of manufacturing process var-

iations rather than a result of deliberate action. This exposed physical property ex-

pressed in terms of logical state of flash memory cells can be used as a fingerprint.  

A partial program operation is another operation that can be used to reveal 

flash cells’ physical properties. However, the method used on a partial program oper-

ation is not optimal as it requires a greater precision and time resolution in controlling 

the duration of the operation [63]. A flash program operation in NOR flash memory is 
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performed on bytes or words (16- bits).  To generate longer bit vectors for fingerprint, 

a partial program operation needs to be repeated on multiple words. An erase opera-

tion, on the other hand, is carried out on an entire segment. In addition, an erase 

operation takes more time than a program operation, making it easier to control its 

duration. 

Since a fingerprint is a binary vector, the number of bits of the vector in state 

‘1’ must be close to the bits in state ‘0’. This means that the fingerprint must have a 

hamming weight close to 50% to ensure that the fingerprint is not biased towards 

either ‘1’ or ‘0’. Thus, while performing an erase operation, we must be able to identify 

a vicinity of partial erase time where the number of flash cells in the erased state is 

equal or close to the number of flash cells in the programmed state. A similar partial 

erase time is shown in Figure 4.3(b) as the window of opportunity. This shows that by 

carefully tuning the partial erase time, the flash memory cells can be brought to the 

state where approximately half of the cells are in the stable ‘1’ state and the other half 

are in the stable ‘0’ state. 

Let us now describe the step-by-step generation of a flash memory fingerprint 

from a NOR flash segment using a partial erase operation and the classification pro-

cedure that we discussed in Section 4.3 above. For this purpose, we take a flash 

memory segment S1. This flash memory segment is erased and programmed so that 

all the cells are at logic ‘0’ state. Then a partial erase operation is performed such that 

the number of flash cells in erased state is approximately equal to the number of flash 

cells in programmed state.  
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The state of the flash memory segment S1, organized in 256 words (vertical 

columns) with 16 bits each (horizontal rows), after a partial erase operation is pre-

sented in Figure 4.4(a). The programmed cells are shown in red while the erased cells 

are shown in blue. Unstable cells are shown in green. 

The process of extracting a fingerprint from the segment S1 is repeated and 

the state of the segment (denoted as S1’ here) is illustrated in Figure 4.4(b). An XOR 

operation between two states S1 and S1’ is shown in Figure 4.4(c). A vast majority of 

the flash cells marked in blue in Figure 4.4(c) indicates that the proposed fingerprint 

extraction is a repeatable procedure. 

A partial erase operation to yield ~50% distribution of the erased state and the 

programmed state is performed in another flash memory segment S2. The state of the 

segment S1 is shown in Figure 4.4(d). An XOR operation between the state of the 

segment S1 and the state of the segment S2 is shown in Figure 4.4(e). A random pat-

tern indicates that the fingerprints extracted from two segments of the same NOR 

flash memory are not correlated.  
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Figure 4.4. State of flash memory cells after a  

partial erase operation in memory segments S1 and S2. 

The results from Figure 4.4 provide a preliminary evidence that the character-

ization of the flash memory cells after a partial erase operation can be used for finger-

print extraction, repeatedly producing fingerprints unique for each flash memory seg-

ment.  

However, to analyze how the state of flash memory cells changes as a function 

of the partial erase time, we design another set of experiments where the partial erase 

time is varied. In every iteration of the experiment, the flash memory segment is 

erased, then fully programmed, and then a partial erase operation is performed, fol-

lowed by the characterization step. Next, TPERASE is increased by a small period of time 

and the experiment is repeated.  

Figure 4.5 shows the results of the experiment for 32 flash memory cells, num-

bered from 0 to 31, while TPERASE is varied from 13.5 µs to 19.5 µs in small but non-
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uniform time steps. A red square indicates the programed state, a blue square indi-

cates the erased state, and a green square indicates the unstable state. Each flash cell 

has a particular time when it changes its state. For example, the flash cell at bit po-

sition 2 changes its state at TPERASE  17.75 µs. The transitions exhibit monotonicity, 

i.e. the memory cells typically remain in the erased state once they change the state. 

Exceptions are possible, but they are rare. For example, bit 13 at TPERASE = 15.938 µs 

transitions to programmed state. 

 

Figure 4.5. States of flash memory cells as a function of TPERASE. 

Let us select the flash memory state in Figure 4.5 at TPERASE = 17.375 µs as a 

part of our fingerprint during enrollment phase. The number of erased cells at this 

partial erase time is 17 (53.125%) and the number of programmed cells is 15, with no 

unstable cells out of 32 bits under consideration. Based on the observations presented 
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above, any future procedure that performs similar characterization of the flash 

memory segment with TPERASE = 17.375 µs should yield similar fingerprint. Similarly, 

the fingerprint generated from another flash segment or another flash memory chip 

should produce an entirely different fingerprint. 

To compare the fingerprint generated during the enrollment stage, i.e. enroll-

ment fingerprint (EF), and any future fingerprint generated for authentication pur-

pose, i.e. Authentication Fingerprint (AF), we develop a metric. Here, we assume that 

the TPERASE during authentication, i.e. TPERASE.AUTH is less than or equal to the TPERASE 

during enrollment phase, i.e. TPERASE.ENROL. This should ensure that any cell that is 

programmed in the enrollment fingerprint, should remain in the programed state in 

the authentication fingerprint. Similarly, any cell that is erased in the authentication 

fingerprint, should be erased in the enrollment fingerprint. We develop two metrics to 

capture these properties that are described below: 

(a) Matching0s: Matching programmed cells (logic ‘0’) in EF and AF should 

be a subset of the programmed cells in EF, i.e. the ratio of the number of 

matching 0s in EF and AF to the number of 0s in EF should be close to 1 in 

the ideal case. 

(b) Matching1s: Matching erased cells (logic ‘1’) in EF and AF should be a 

subset of erased bits in AF, i.e. the ratio of the number of matching 1s in 

EF and AF to the number of 1s in AF should be close to 1 in the ideal case. 

Thus, combining the two parameters described above, we define the Similarity 

Index (SI) shown in Equation 1. 

 
𝑆𝐼 =

(
#Matching 0s in EF and AF

#0s in EF
+

#Matching 1s in EF and AF
#1s in AF

)

2
 

Equation 1 
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For the example presented in Figure 4.5, if we take authentication fingerprint 

at TPERASE = 17.0 µs, the authentication fingerprint has 14 1s and 18 0s. The number 

of matching 1s is 14 and the number of matching 0s is 15. Thus, the similarity metric 

is (14/14 + 15/15)/2 = 1. Thus, these two fingerprints are considered matching. 

4.5 Device Identification using Flash Memory Fingerprints  

The protocol to verify the authenticity of devices using flash memory finger-

print involves two stages: (a) device enrollment and (b) device authentication. The 

device enrollment phase is carried out by the device manufacturer (chip maker) or the 

manufacturer of the product (e.g. IoT platform vendor). The result is the enrollment 

fingerprint that is stored in a database. The algorithm for enrollment phase involves 

partial erase operation and characterization similar to what we have seen in Code 4.1 

above.  

The algorithm for enrollment phase is shown in Code 4.2. Here, instead of 

walking through all the partial erase times, the algorithm searches for suitable TPE-

RASE within a time window defined by TPERASE.MIN and TPERASE.MAX that is most likely to 

result in evenly spilt number of programmed and erased bits. The flash segment is 

fully erased and fully programed (lines 7 and 8) and partially erased (line 9). It is then 

repeatedly read NR times to characterize flash memory cells (lines 12 to 15). The char-

acterization operation in this case adds the values read from each bit position and 

performs majority voting. This means the bit whose sum is greater than NR/2 is char-

acterized as 1 while the bit whose sum is less than or equal to NR/2 is characterized 

as 0 (lines 17 to 20). This step ensures that each flash bit position in characterized as 
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either 0 or 1 (lines 16−20). For every flash bit that is characterized as 1, the variable 

count_erased is increased to keep track of the number of erased flash bits. 

A ratio of the number of flash bits that are classified as erased flash bits to the 

total number of bits in a segment is also calculated (line 23). If the ratio variable Ratio 

is in the range of 0.50 to 0.55, the current characterization of flash segment bits is 

recorded as the enrollment fingerprint. In the case where there is a chance of multiple 

memory segments to be used for fingerprint generation, the address of the memory 

segment can also be added to the fingerprint descriptor. 

If the number of erased bits is outside the desired range of [0.50, 0.55], the 

partial erase time TPERASE is either increased or decreased (lines 25 and 26) and the 

entire operation is repeated. The microcontroller used in this experiment could be 

tuned to control flash memory operation at a single processor clock cycle, thus provid-

ing opportunity for fine-grained control of TPERASE. However, coarse-grained control 

would also suffice. 
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1. void generate_enrollment_fingerprint(segment_address){ 
2.   done = false; 
3.   TPERASE = (TPERASE.min + TPERASE.max)/2; 
4.   do { 
5.     fingerprint = 0000..00b;                   // Initialize fingerprint 
6.     count_erased = 0;                          // Clear erased bits  

                                                   counter 

7.     fully_erase_segment(segment_address);      // Write 1s 
8.     fully_program_segment(segment_address);    // Write 0s 
9.     partial_erase_segment(segment_address,TPERASE);// Partial erase 
10.     for(i=0; i<NWords; i++){                       // For each word in a 

                                                      segment 

11.       FSSUM[16]= {};                              // Initialize bit sum  
                                                   vector  

12.       for(j=0; j<NR; j++){                       // For NR times 
13.         FR = ReadWord(i);                        // Read word i 
14.         FSSUM += FR;                              // Sum individual bit 

                                                    values  

15.       } 
16.       for(b_index=0; b_index<16; b_index++){    // For each bit  
17.         if(FSSUM>NR/2) {                          // Use majority voting 
18.           fingerprint |= (1<<(b_index*i));      // to determine its value 
19.           count_erased++; 
20.         } 
21.       } 
22.     } 
23.     Ratio = (count_erased)/(4096); 
24.     if (Ratio > 0.50 && Ratio <= 0.55) done = true; 

25.     else if (Ratio < 0.50) TPERASE = TPERASE + t; 

26.     else TPERASE = TPERASE – t; 
27.   } while (!done);  
28.   EnrollmentFingerprint = {fingerprint, SegmentAddress}; 
29. } 

Code 4.2. Algorithm for generation of enrollment fingerprint. 

The authentication procedure is similar to the fingerprint enrollment proce-

dure with one difference. The authentication is initiated by a customer. We assume 

that the typical partial erase time used for enrollment operation (TPERASE.ENROL) is pub-

licly disclosed for a family of devices, as well as the lower boundary of the Ratio value 

that is used in creating the enrollment fingerprint (i.e., 0.5 in Code 4.2). Alternately, 

the customer may place an authentication request for the given type of device and the 

manufacturer responds by providing these parameters. In the case multiple enroll-

ment fingerprints exist for a single device, the manufacturer may also send the start-

ing address of the flash memory segment to be used for generating fingerprint. 
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The customer side extracts the authentication fingerprint using the steps 

shown in Code 4.3. The flash memory segment is fully erased and programmed (lines 

6 and 7). Then, a partial erase operation is performed with TPERASE = TPERASE.ENROL-dT. 

The flash memory segment is repeatedly read and characterized to obtain the finger-

print (lines 9 - 21). The fingerprint thus generated is considered the authentication 

fingerprint if the ratio of number of erased cells to the total number of cells in the 

memory segment is in the range [0.45, 0.50] (lines 23 - 25). Otherwise, the partial 

erase time TPERASE is adjusted (lines 26 and 27) and the steps are repeated until the 

condition is satisfied. 

1. void generate_authentication_fingerprint(segment_address){ 
2.   TPERASE = TPERASE.ENROL-dT; 
3.   do{ 
4.     fingerprint = 0000..00b;                   // Initialize fingerprint 
5.     count_erased = 0;                          // Clear erased bits counter 
6.     fully_erase_segment(segment_address);      // Write 1s 
7.     fully_program_segment(segment_address);    // Write 0s 
8.     partial_erase_segment(segment_address,TPERASE);// Partial erase 
9.     for(i=0; i<NWords; i++){                     // For each word in a segment 
10.       FSSUM[16]= {};                             // Initialize bit sum vector  
11.       for(j=0; j<NR; j++){                      // For NR times 
12.         FR = ReadWord(i);                       // Read word i 
13.         FSSUM += FR;                             // Sum individual bit values  
14.       } 
15.       for(b_index=0; b_index<16; b_index++){   // For each bit  
16.         if(FSSUM>NR/2) {                         // Use majority voting 
17.           fingerprint |= (1<<(b_index*i));     // to determine its value 
18.           count_erased++; 
19.         } 
20.       } 
21.     } 
22.   RatioAUTHENTICATE = (count_erased)/4096; 
23.   if (0.45 <= RatioAUTHENTICATE <= 0.50) {         // termination condition 
24.     AuthenticateFingerprint = fingerprint; 
25.     break; 

26.   }else if (RatioAUTHENTICATE < 0.45) TPERASE = TPERASE + t; 

27.     else TPERASE = TPERASE – t; 
28. }while(1); 

Code 4.3. Algorithm for generation of authentication fingerprint. 

The authentication fingerprint is sent to the manufacturer who then compares 

the two fingerprints using the Similarity Index (SI) defined in Section 4.4. A lower 
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bound of the similarity index can be required to consider the authentication successful 

(e.g., SI>0.85). Otherwise, the device fails authentication. 

4.6 Experimental Evaluation and Results 

The experimental set up based on TI MSP430 family of microcontrollers is used 

to perform enrollment and initial authentication at room temperature. For the exper-

imental evaluation purpose, we take three physical chips of MSP430F5438. 50 flash 

memory segments from each of the three chips are used for a total of 150 logical de-

vices. Section 4.6.1 discusses the results from evaluation of the enrollment phase. Sec-

tion 4.6.2 discusses the evaluation of the authentication phase, specifically fingerprint 

uniqueness and reliability. To evaluate robustness of the proposed technique, we eval-

uate its effectiveness in presence of different environmental conditions. Section 4.6.3 

discusses the effects of changes in the power supply voltage and environmental tem-

perature. Section 4.6.4 explores feasibility of sub-segment fingerprints. Flash memo-

ries are prone to wear-out effects as they age. Section 4.6.5 evaluates the wear-out 

effects on the proposed fingerprint based authentication. Section 4.6.6 concludes this 

section with a comparative performance analysis of   the proposed technique relative 

to the existing techniques. 

4.6.1 Enrollment Phase 

Figure 4.6 shows the results of enrollment characterization. The distribution 

of the ratio of erased cells (logic ‘1’) in enrollment fingerprints to the total number of 

cells in a segment is shown in Figure 4.6(a). The target ratio is between 50% and 55% 
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as discussed in Code 4.2. The logical devices used for our evaluation have similar char-

acteristics to those shown in Figure 4.3, thus a successful enrollment can be found in 

a single try. 

A trade-off exists between minimum change of partial erase time (t in Code 

4.2) and the ability to achieve the target ratio. Our setup allows us to control partial 

erase times with a single clock cycle resolution (~ 16 MHz in our setup), and thus we 

can achieve a near perfect ratio of 50%. However, a relatively coarse grained t is used 

to minimize the number of steps in the enrollment phase. Since the characteristics of 

logical devices (segments) are similar, enrollment typically takes place on a first try. 

For each of the enrollment fingerprint, we ensure that the number of unstable 

bits is below a threshold (< 2%). Figure 4.6(b) shows the distribution of stable bits in 

a segment. We can observe that more than 98% of all the bits in fingerprints are char-

acterized to be stable bits. This experiment confirms that the number of unstable bits 

during the partial erase process does not exceed the given threshold. 

 

Figure 4.6. Fingerprint enrollment characterization. 

(a) Distribution of the ratio 
count_erased/4096

(b) Distribution of the ratio
#Stable Bits/4096

% %
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4.6.2 Uniqueness and Reliability 

For a fingerprint generated from a device, the two properties of interests are 

uniqueness and reliability. Uniqueness indicates that a fingerprint that is generated 

from a flash memory segment on address X on sample device D1 is completely differ-

ent from a fingerprint created on the same address X on sample device D2. Further-

more, each segment within one physical device yields a unique fingerprint. Reliability 

means that fingerprints repeatedly extracted from a single memory segment of a de-

vice are almost identical to each other.  

We make use of the Similarity Index (SI) presented in Section 4.4 to analyze 

both uniqueness and reliability. Figure 4.7(a) presents the distribution of SI values 

obtained by comparing the enrollment fingerprint of each of 150 logical devices with 

the enrollment fingerprints obtained from other logical devices. We call this metric 

Inter Similarity Index, which represents the uniqueness of the fingerprint generated. 

The distribution peaks at 0.5 with tails extending from 0.47 to 0.53. 

Figure 4.7(b) shows the distribution of SI determined by pairing the corre-

sponding authentication and enrollment fingerprints of all logical devices. We call this 

metric Self Similarity Index, which represents the reliability of the fingerprint gener-

ated. The SI distribution ranges from 0.89 to 0.97. Consequently, we can define a 

threshold for the authentication phase – if the SI value of an authentication finger-

print is at least 0.89 when compared with one of the enrollment fingerprints in the 

database, the device passes authentication. Otherwise, the authentication fails. 
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Figure 4.7. Evaluation of similarity index. 

4.6.3 Effects of Environmental Factors 

The proposed fingerprint based authentication must be resilient to changes in 

environmental conditions to be a feasible solution for device authentication. Thus, the 

effects of power supply and temperature effects are analyzed. For experimental pur-

poses, the authentication fingerprints are collected while the microcontroller is run-

ning at different supply voltages and at different temperatures. The enrollment fin-

gerprints are created under the default power supply at room temperature (Supply 

Voltage = 3.3 Volts, T = 25C). 

Figure 4.8(a) shows the similarity indices as a function of the power supply 

used during the authentication process. Similarity indices are shown as box-and-

whisker plots. The orange horizontal line represents the median value, while the two 

horizontal ends of each box represent Q1 and Q3 (0.25 and 0.75 quantiles). The mini-

mum and maximum of each set of observation is represented by the two extremities. 

The top plots represent the self-similarity indices while the bottom plots represent the 

% %

(a) Inter Similarity Index (Uniqueness) (b) Self Similarity Index (Reliability)
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inter similarity indices. The power supply voltage is varied from 3.0 V to 2.0 V (mini-

mum required for proper flash operation) with a decrement of 0.2 volts.  

The results in Figure 4.8(a) show that there is a very little impact of supply 

voltage on the inter-similarity index. The self-similarity index changes with the power 

supply voltage. However, this change is not significant to impact the feasibility of the 

proposed mechanism. There is no observable trend in self-similarity index as a func-

tion of the supply voltage. The likely explanation for this relative stability is that the 

internal charge pumps in the flash controller provide relatively stable voltage to the 

flash memory, irrespective of the external supply voltage. 

Similarly, the effect of ambient temperature on the similarity index are ex-

plored by varying environment conditions. Figure 4.8(b) shows the inter- (bottom) and 

self- similarity index (top) distributions using similar box-and-whisker plots. The en-

rollment fingerprints obtained at 25C are compared to the authentication finger-

prints generated at 25C, 0C and 50C. The impact of the temperature on the inter-

similarity index is minimal. It does reduce the median of the self-similarity index and 

the distribution. But, the difference between the self-similarity index and inter-simi-

larity index is still healthy. This exhibits the feasibility of the proposed mechanism 

over a range of temperature. Our experimental set-up was not conducive to a wide 

range of temperature-based testing; however, the feasibility of the proposed method 

is not expected to change over the prescribed range of operating temperature as set 

by the device manufacturer. 
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Figure 4.8. Impact of environmental factors on Similarity Indices (inter and self) (SI). 

4.6.4 Sub-segment Fingerprints 

Analyses presented so far considers entire 4096-bit segment as a fingerprint. 

However, we discuss feasibility of sub-segment fingerprints. The results presented in 

Figure 4.4 indicate that the distribution of programmed and erased bits is uniformly 

random throughout the segment, without any spatial anomalies. Consequently, we 

can consider using n consecutive bits within a flash segment as a fingerprint. 

A series of experiments is performed considering sub-segment fingerprints, 

where n = 4096, 2048, 1024, 512 and 256. For the experiment, a 4096-bit long enroll-

ment fingerprint is divided into 4096/n (indexed from 0 to 4096/n-1) separate enroll-

ment sub-fingerprints each of n-bit length. Similarly, the authentication fingerprint 

is also divided into 4096/n separate authentication sub-fingerprints each of n-bit 

length.  

Figure 4.9 shows the inter- and self- similarity indices as a function of the fin-

gerprint length. The results show that even a 256-bit fingerprint provide a healthy 

margin between the self- and inter- similarity indices without use of any encoding or 
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error correction techniques which often tend to be computationally cost prohibitive for 

low-power IoT systems. 

 

Figure 4.9. Evaluation of Similarity Index using sub-segment fingerprints. 

If a 256-bit fingerprint is used to uniquely identify logical devices, the number 

of logical devices that we can identify is 2400. This is because 150 logical devices (seg-

ments) are considered in our experiments, each with 16 (i.e. 4096/256) sub-segment 

fingerprints. Thus, the number of bits required for a unique fingerprint is 

log22400=11.22 bits. This means that 11.22/256 = 0.048 bits of the fingerprint per 

single flash bit. Using this metric, a 512-bit long fingerprint can uniquely identify ~5.6 

million devices, whereas a 1024-bit fingerprint can uniquely identify 31.37 trillion de-

vices. 

4.6.5 Wear-out Considerations 

Flash memories are susceptible to errors caused by wear-outs or stresses in 

the flash cell oxides (or ageing) that arise from a repeated erase and program opera-

tions. Thus, we study the effects of ageing by generating authentication fingerprints 
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under different wear-out levels. NOR flash memory typically can sustain 100,000 pro-

gram-erase cycles, before failing permanently. Thus, we can assume that the proposed 

method can be used to create at least 50,000 authentication fingerprints before per-

manently failing. This is based on the assumption that a single full PE cycle and a 

single partial erase operation should be sufficient to generate an authentication fin-

gerprint during the authentication phase. 

Figure 4.10(a) shows the self-similarity and inter-similarity indices for two 

sample chips as a function of the number of PE cycles. Here the enrollment fingerprint 

is generated while the flash memory segment is relatively new, whereas the authen-

tication fingerprint is obtained at different wear-out levels. Each of the wear-out level 

is achieved by manually performing repeated program-erase operations (PE cycles). 

The results show that there is negligible change in the inter-similarity index at all 

stress levels. The self-similarity index decreases sharply after the initial 500 PE cy-

cles; after this initial drop, the self-similarity index enters a region with mild degra-

dation as the number of PE cycles increases. It remains close to 0.8, even after 30,000 

PE cycles. 
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Figure 4.10. Impact of PE cycles on (a). SI and (b). Partial erase times needed to a generate quali-

fied fingerprint. 

For the two sample chips presented in Figure 4.10(a), we use a linear fit to 

model the self-similarity index as a function of the number PE cycles. The modeled 

changes of the self-similarity index are described in Equation 2.  

 
𝑆𝑒𝑙𝑓_𝑆𝐼𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑆𝑒𝑙𝑓_𝑆𝐼0 − (𝑘 ∗ 10−6 ∗ 𝑆𝑡𝑟𝑒𝑠𝑠) 

Equation 2 

 

The parameter Stress is the number of PE cycles and k is the parameter that 

captures the degradation of similarity index relative to the index of the fresh memory 

block, Self_SI0. The value of k varies between 4 and 5 for sample chips used in this 

study. 

The impact of stressing on the inter-similarity index is modest. The upper tail 

of the inter-similarity index distribution is below 0.57, thus leaving enough margin 

between the self-similarity indices and inter-similarity indices (Figure 4.10(a)). This 

confirms the robustness of the proposed technique in presence of ageing. 
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The partial erase time (TPERASE) required for generation of a qualified authen-

tication fingerprint also changes with PE cycles. Figure 4.10(b) shows how TPERASE 

changes as a function of the stress level. The partial erase time steadily increases with 

an increase in the stress level. Consequently, the partial erase time when generating 

authentication fingerprint may need to be adjusted with an increased number of PE 

cycles. The algorithm presented in Code 4.3 (lines 26 and 27) already accommodates 

for change in the partial erase time. 

4.6.6 Performance Considerations 

Ideally, generating fingerprints should take as little time as possible. The pro-

posed algorithm achieves a very good performance and can be implemented on a low-

end microcontroller requiring as little as 4 KB of RAM memory. The full erase opera-

tion of a memory segment accounts for about 25 ms. Full segment programming takes 

~3 ms which sets all the bits in the flash memory segment to 0. The partial erase 

operation takes less than 50 µs, whereas reading a flash memory segment takes about 

50-150 µs, depending upon the number of reads (parameter NR in Code 4.3). In the 

case when multiple retries are required for generation of a qualifying fingerprint, the 

time required is in multiples of 30 ms. In our experiments, we are able to generate a 

qualified fingerprint in a single try, but even with multiple retries the achieved per-

formance compares favorably to other proposed techniques that require several sec-

onds or even minutes [55] to derive a fingerprint.  Our proposed method does not re-

quire any helper data [49] or helper functions [61]. Since the proposed fingerprint 
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extraction generates a fingerprint of 4096 bits in 30*n ms, the throughput of our pro-

posal is 136/n Kbits/s. Here, n is the number of retries required to generate the qual-

ifying fingerprint. This shows the best-case throughput is 136 Kbits/s. 

Table 4.1 presents a summary of fingerprint techniques in flash memories. It 

reports the type of flash memory used, throughput achieved in generating finger-

prints/PUFs, size of fingerprint in bits and the memory overhead required by the ex-

traction algorithm. The reported overhead is the number of bits needs to extract one 

fingerprint bit. Our extraction algorithm requires one bit of memory per one bit of 

generated fingerprint, thus significantly outperforming other algorithms. The size of 

the fingerprint, memory overhead and the throughput achieved make the proposed 

method suitable for resource-constrained low-end microcontrollers. 

Method Flash 

Type 

Throughput  Evaluation: fingerprint size 

[bits], memory overhead per 

bit of fingerprint, latency, and 

implementation cost 

Applies multiple 

partial programs 

to extract 

threshold varia-

tions in flash 

memory cells 

[55] 

NAND 

Flash 

Memory  

Not reported Size: 16 Kbits 

Overhead: 1+sizeof(uint)  

Latency: High, requires repeated 

partial program operations 

Applies multiple 

partial erases, 

partial program, 

and program dis-

turbances pulses 

to induce dis-

turbances [60] 

NAND 

Flash 

Memory 

1364.1 bits/s  Size: 128 bits, 

Overhead: ~ 142 (Bit-map 

method), ~16 (Position-map 

method) 

Latency: High, requires repeated 

flash operations 

Lowers supply 

voltage to sus-

pend erase oper-

ation and expose 

threshold volt-

age variation 

[64] 

1.5T Su-

perflash 

Memory  

Not reported Size: 512 Kbits 

Overhead: 2  

Latency: Small 

Special: Requires lowering power 

supply 
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Repeatedly ap-

plies program 

operations with 

selected data to 

achieve program 

disturb [51] 

NAND 

Flash 

Memory 

9.09 Kbits/s Size: 20 Kbits 

Overhead: ~1 

Latency: High, requires repeated 

program operations 

Applies repeated 

partial program 

operations to in-

duce disturb-

ances [49] 

NOR 

Flash 

Memory 

Not reported Size: 3n bits 

Overhead: 8 

Latency: High, requires repeated 

program operations 

Special: Requires BCH encoding  

Applies repeated 

erase suspend 

operation for fin-

gerprint genera-

tion [62] 

Super-

flash 

Memory 

266 bits/s Size: 16 bits 

Overhead: 256 

Latency: High, requires repeated 

partial erase operations  

This work: ap-

plies simple par-

tial erase opera-

tion to expose 

threshold volt-

age variation 

Embed-

ded NOR 

Flash 

Memory 

136/n Kbits/s Size: 4 Kbits  

Overhead: 1 

Latency: Small 

Table 4.1. Summary of fingerprinting techniques in flash memories, their throughputs and 

memory overheads. 

4.7 Concluding Remarks 

A robust and reliable fingerprint can be generated from partially erased NOR 

flash memory. The generated fingerprint can uniquely identify NOR flash memories. 

In-system programmable NOR flash memory is a standard part in all modern micro-

controllers. Thus, this technique of fingerprint generation for identification purpose 

can be readily implemented in modern microcontrollers. The proposed technique is 

especially suited for low-power embedded systems and IoT as it offers following ad-

vantages over existing approaches: (a) it requires no additional hardware support, (b) 

it is solely implemented in software and can easily be implemented in modern micro-
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controllers, (c) it produces robust fingerprints that are resilient to changes in operat-

ing conditions, and (e) the algorithm self-adapts to the changes in flash memory age-

ing effects. 
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CHAPTER 5  

FLASHMARK 

 

 

 

Electronics counterfeiting is a longstanding problem that is growing in scope 

and magnitude [65] in modern globalized semiconductor supply chains. This chapter 

presents a technique for detection of counterfeiting in NOR flash memories. Section 

5.1 discusses the problem of counterfeiting in semiconductor industry. Then, Section 

5.2 discusses prior related efforts tackling the problem of counterfeiting. Our tech-

nique for counterfeit detection is based on flash memory watermarks. This water-

marking technique, Flashmark [66], imprints manufacturer information into a dedi-

cated section of NOR flash memory. Section 5.3 describes the proposed watermarking 

technique. Section 5.4 demonstrates the experimental evaluation and performance 

metrics on embedded NOR flash memories in a family of low-cost microcontrollers. 

Finally, Section 5.5 concludes the chapter. 

5.1 Counterfeiting in Semiconductor Industry 

Counterfeiting in semiconductor industry represents a significant concern be-

cause recycled, remarked, overproduced, out of specification, cloned, fall-out and tam-

pered with chips can enter globalized supply chains. Recycled or remarked chips in-

clude old chips that are forged with new information and sold as new. 80% of all the 

counterfeited electronics are recycled or remarked chips [65]. Overproduction is an-

other major issue where an Intellectual Property (IP) designer requests a foundry to 
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manufacture a certain number of chips. However, the foundry manufactures more 

chips than requested, and sells the surplus for profit. Similarly, rejected dies and fall-

out chips can also enter the supply-chain through bad actors. Some of the manufac-

tured chips fail a few corner cases during testing phase and are normally rejected. 

Such factory rejected or out-of-specification chips are also injected into supply chain 

through counterfeiters with access to the chip packaging sites or rogue employees. 

Reverse engineering of an IP for production of fake, cloned chips is yet another source 

of counterfeiting. 

Counterfeiting in semiconductors poses a grave threat to consumers as well as 

to the semiconductor industry. The sales of counterfeit parts have been a cause for 

substantial losses to semiconductor industry [12]. It is estimated that U.S. based chip 

companies alone lose as high as $7.5 billion annually [67]. On the consumer side, coun-

terfeit products provide sub-standard products  and create problems in many applica-

tion domains ranging from consumer electronics to mission critical applications such 

as transportation, health care, and military [11]. It is estimated that nearly 15% of 

electronic parts purchased by the U.S. military were made of counterfeit parts in 2011 

[9], [67], [68]. 

Despite many proposals to cope with integrated circuit (IC) counterfeiting, por-

tion of counterfeit chips continues to increase. Reports of counterfeit ICs in the supply 

chain has quadrupled from 2009 to 2011 [10]. A report published in 2010 indicates 

that 50% of Original Component Manufacturer (OCM) and 50% of distributors have 

encountered counterfeit parts [69]. It was also reported that a Senate Armed Services 

Committee uncovered more that 1 million “bogus parts” in the supply chain of the 

Department of Defense [67]. 
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Analog ICs, microprocessor ICs, memory ICs, programmable logic ICs and 

transistors make up around 68% of counterfeited semiconductors [65]. Memory ICs 

alone accounted for 13.1% of all reported counterfeited semiconductors [70]. Flash 

memory ICs is a major target of counterfeiters because of its ubiquitous presence in 

electronic systems [23], [25], [71]–[74]. There can be multiple pathways for counterfeit 

flash memory chips to enter the supply chain. First, flash memories are used as stor-

age media in many electronic products, e.g., smartphones, MP3 players, solid state 

drives, and USB drives. These electronic components have a limited lifetime; however, 

the flash memories remain functional even after the end of the product lifecycle. This 

provides an opportunity for adversaries to retrieve the flash memories from the 

printed circuit boards and recycle them as new. Second, the rejected dies or fall-out 

chips that fail post-fabrication tests can also enter the supply chain through counter-

feiters with access to packaging sites, which are located in various countries. Third, 

counterfeiters may buy inferior flash chips from less reputed manufacturers and sell 

them for a higher price by rebranding the chip. 

The use of inferior or defective counterfeit flash memories results not only in 

economic losses for the original chip manufacturer, but may also result in failures in 

end user applications, ranging from a loss of data and premature end-of-life to more 

serious catastrophic events. 

5.2 Related Works and Motivation 

A number of recent research efforts tackles the problem of counterfeit IC de-

tection. Most of the proposals are based on physical and electrical inspection methods 

to detect the defects or damages that might be present in the component or IC under 
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test. The physical inspection methods rely on inspecting the ICs thoroughly. In some 

of the proposals, low-power microscope (with less than 10x magnification) and X-ray 

imagery is used for careful analysis of the component under test which is then com-

pared with a golden model. The golden model is an established genuine IC. Other 

complicated inspection methods involve use of Scanning Electron Microscopy, Te-

rahertz Imaging and Scanning Acoustic Microscopy. X-Ray Fluorescence, Fourier 

Transform Infrared Spectroscopy, Ion Chromatography, and Energy-Dispersive X-

Ray Spectroscopy are also used to analyze the chemical composition of ICs [65], [75]–

[77].  

Another class of techniques involves performing electrical analysis. This class 

of techniques perform different tests to identify electrical defects in ICs. These tests 

reveal AC and DC parameter shifts of the ICs under test from those equivalents of 

genuine or new ICs [65]. 

All the proposals above demand costly equipment and procedures and require 

rigorous analysis by experts. Moreover, most of the proposals are invasive in nature 

and suffer from limited effectiveness. Tracking ICs throughout the supply chain is 

another method that can be used to avoid counterfeiting. Tracking an IC throughout 

the supply chain can be performed by providing each ICs with a unique id. Electronic 

Chip Identifiers (ECIDs) is one of such solutions that programs a unique ID into the 

antifuse one-time programmable memory [78]. However, ECIDs are not common in 

flash memory chips. ECIDs require changes in physical masks and dedicated on-chip 

resources. Physical Unclonable Functions (PUFs) are another class of techniques that 

are used for chip identification, authentication, and on-chip key generation. They can 

also be used for tracking ICs or flash chips throughout the supply chain. However, use 
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of PUFs require lengthy extraction process as well as maintenance of a large database 

for Challenge-Response (CR) pairs. In addition, it requires a method for contacting 

the chip manufacturer to verify the authenticity of each chip, which may place an 

additional burden on system integrators, as the time and costs of verification are in-

creased. 

Some of the recent proposals involve detecting changes in the physical proper-

ties of flash memories [23]–[25] to address the concerns of counterfeit flash memories. 

Used or recycled flash memory chips have significantly different timing characteris-

tics. For example, program, erase and read times of a used flash memory chip differs 

significantly from new flash memory chips [24]. Sakib et al. [25] suggest that a change 

in the erase time is the best metric to distinguish between a fresh and a used or recy-

cled flash memory chip. Sweeping partial program based technique is used by Guo et 

al. [23] to estimate age of flash memory to identify fake or recycled flash memory chip. 

The proposals discussed above illustrate the growing interest in counterfeit 

detection and prevention. Whereas the existing proposals offer solutions to detect re-

cycled flash memory chips, they cannot be readily applied to address other kinds of 

counterfeiting. 

Our proposed technique, Flashmark, can be used to secure global supply chain 

of NOR flash memory chips or chips with embedded NOR flash memories by using 

digital imprints or watermarks. The proposed method relies on (a) imprinting water-

marks into the physical properties of flash memory cells; and (b) extracting physical 

properties of flash memory chips through standard digital interface. Watermarks are 

imprinted by degrading the oxides of flash memory cells using repeated program erase 

operations. This degradation of oxides changes the physical properties of the flash 
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memory cells and cannot be reversed, i.e. the imprinting is permanent [79], [80] and 

cannot be reversed. For example, if flash memory manufacturers imprint “accept” or 

“reject” information on every die they produce, they will prevent the counterfeiters 

from entering the out-of-spec or fall-out chips into the supply chain undetected. Even 

if the counterfeiter gets physical access to the fall-out chips, they will fail to convert 

the “reject” watermark into “accept.” 

5.3 Proposed Watermarking Technique: Flashmark 

A flash memory chip manufacturer can imprint a known watermark into a sec-

tion of flash memory during the die-sort testing phase. The imprinted information can 

include manufacturer identifier, die identifier, chip speed grade, chip testing status 

(e.g. “accept” or “reject”) and other manufacturer related information as shown in Fig-

ure 5.1. 

 

Figure 5.1. System view for the proposed watermarking technique. 

Flashmark relies on a more elaborate process of imprinting watermark that is 

resilient to counterfeiters’ tampering efforts. The imprinting of Flashmark that is per-

formed at the manufacturer site involves repeated program-erase (PE) cycles. The 

program operation is performed by writing the data to imprint (flashmark), while the 
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erase operation is a normal erase operation. These repeated PE cycles stress the flash 

memory cells, namely induce charge traps in the cell’s oxide layers. This stress reduces 

the capability of flash cells to hold the charge and change their threshold voltages. 

Flash memory continues to behave as expected as long as the level of stress, 

i.e. number of PE cycles, is below the cell’s endurance limit (100,000 PE cycles for 

NOR flash memory) before the flash memory cells permanently fail. This is because 

the distance between the threshold voltages (VTHE and VTHP) is sufficiently large to 

ensure correct behavior. Therefore, we devise a partial erase based method to extract 

this change in VTH (an ‘analog’ physical property) of the flash memory cells through a 

standard digital interface. Thus, the watermarking technique is based on changing 

the properties of flash memory cells by inducing changes in their threshold voltages, 

and using partial erase based method to extract the information that reflects the 

change in VTH. 

In the following subsections, we characterize behavior of the embedded NOR 

flash memory in presence of stress and formulate procedures for imprinting and ex-

traction of the watermark. Section 5.3.1 presents the results of the NOR flash memory 

cells’ characterizations that enable Flashmark. Section 5.3.2 describes the elaborate 

processes of imprinting and extraction of the watermark. 

5.3.1 Stress-Induced Properties of Flash Memory Cells 

Flash memory cells subjected to repeated program/erase operations (P/E) will 

change their physical properties, namely their threshold voltages (VTH) may deviate 

from the ‘normal’ levels. To analyze this change in VTH, we perform a characterization 

experiment on multiple flash memory segments. These flash memory segments are 



82 

 

preconditioned by repeated erase and program operations starting from fresh flash 

memory segments (0 K PE operation) to worn-out flash memory segments (100 K PE 

operations). Each PE operation (or a cycle of PE stress) means that each word in a 

segment and each bit in a word is programmed and then the segment is erased.  

At every 20,000 PE cycles, we perform the characterization of the flash memory 

cells in the segment. The algorithm used for characterization is presented in Code 5.1. 

For characterization, the segment is fully erased (line 5) and programmed (line 6). 

Then a partial erase operation is applied with TPERASE  0 (line 7). After the partial 

erase operation, we perform a majority voting-based characterization by reading the 

content of each word NR times (lines 8 - 21). Each flash memory cell is characterized 

as erased (logic ‘1’) if it is read as 1 for more than NR/2 times. Otherwise, the cell is 

characterized as programmed (logic ‘0’). For each of the partial erase operations, the 

number of flash memory cells that are characterized as programmed (variable cells_0) 

and erased (variable cells_1) is reported for plotting. The partial erase time, TPERASE, 

is increased and the characterization is repeated until TPERASE is equal to the nominal 

segment erase time TERASE. 
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1. Void characterize_segment(segment_address){ 
2.   TPERASE = 0; 
3.   do { 
4.     cells_1 = 0, cells_0 = 0; 
5.     fully_erase_segment(segment_address);        // Write 1s 
6.     fully_program_segment(segment_address);      // Write 0s 
7.     partial_erase_segment(segment_address,TPERASE);// Partial erase 
8.     for(i=0; i<NWords; i++){       // For each word in  

                                                      segment 

9.       FSSUM[16]= {};          // Initialize bit sum                                                                                                                    

                                                      vector  

10.       for(j=0; j<NR; j++){                       // For NR times 
11.         FR = ReadWord(i);                        // Read word i 
12.         FSSUM += FR;          // Sum individual bit 

                                                       values  

13.       } 
14.       for(b_index=0; b_index<16; b_index++){     // For each bit  
15.         if(FSSUM>NR/2) {                           // Use majority voting 
16.           cells_1 += 1; 
17.         }else { 
18.           cells_0 += 1; 
19.         } 
20.       } 
21.     } 
22.     Report {cells_1, cells_0}; 

23.   TPERASE += t;}                                  // Increase TPERASE 
24.   while (TPERASE <= TERASE); 
25. } 

Code 5.1. Algorithm for majority voting based characterization of flash memory segment. 

Figure 5.2 shows the results of the characterization on MSP430F5438 micro-

controllers. The vertical axis represents the number of flash cells while the horizontal 

axis represents the partial erase times (TPERASE). The red lines show the number of 

flash cells that are characterized as erased cells (labeled Cells_1), while the blue lines 

show the number of programmed cells (labeled Cells_0). Since a single segment of the 

flash memory used for the experiment contains 4096 bits, the maximum value that 

the vertical axis can assume is 4096. The labels in each of the lines indicate the num-

ber of PE cycles applied before the characterization is performed. This means that 0 

K indicates a fresh flash memory segment, 20K indicates 20,000 PE cycles applied 

before the characterization experiment is performed, 40K indicates 40,000 PE cycles 
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applied, and so on. The plot only presents the data from 0 to 120 µs as the plot plateaus 

with TPERASE>120 µs. 

Figure 5.2 shows that all cells are in the programmed state for 0≤TPERASE ≤ 18 

µs for an unstressed flash memory segment (labeled 0 K). However, this number ab-

ruptly decreases with a slight increase in TPERASE and the number of cells in the erased 

state increases. All 4096 flash memory cells are in the erased state for TPERASE ≥ 35 µs. 

It should be noted that the nominal segment erase time TERASE = 24 ms. Hence, the 

changes in the state of flash memory cells occur very early in the erase operation and 

they are sudden. 

The shape of the curves obtained from segment subjected to PE cycles differ 

significantly from that obtained at 0 K. As the number of PE cycles increases, the 

transitions from the programed state to the erased state start later in the erase oper-

ation, they are more gradual, and it takes more time to erase all the cells in the seg-

ment. As per our observation, the partial erase times required to erase all cells in a 

segment subjected to 20 K stresses is 115 µs. The minimum TPERASE when all the cells 

in a segment read as erased increases with stress levels; these time are 203 µs, 226 

µs, 687 µs and 811 µs for 40 K, 60 K, 80 K and 100 K PE cycles, respectively. 
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Figure 5.2. State of flash memory cells in a segment as a function of the partial erase times. 

Figure 5.2 shows that analyzing the states of flash memory cells after a partial 

erase operation could be used to determine the stress levels or analog properties of 

flash memory cells. Figure 5.3 shows the number of programmed cells obtained from 

the characterization experiment for a stressed (50 K) and an unstressed flash memory 

segment (0 K) as a function of the partial erase times. By choosing an appropriate 

partial erase time, characterization can be performed to determine the states of indi-

vidual flash memory cells. We call this partial erase time tPEW to indicate that it is the 

partial erase time used for watermarking. If the majority of flash cells are pro-

grammed, this means the flash cells are worn out and resist the erase operation. If 

the majority of cells transition to the erased state, they are considered fresh. The idea 
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is illustrated in Figure 5.3 by the dotted vertical line in the plot at tPEW = 23 µs. At 

partial erase time of 23 µs, almost all the flash memory cells (3,833 out of 4,096) that 

are stressed 50 K are still at programmed state. This is indicated by the value of 50 K 

line being close to maximum value. On the contrary, almost all the flash memory cells 

on plot 0 K are in the erased state. This is indicated by the value of 0 K line being 

close to 0 at tPEW = 23 µs. 

This property of stressing and identifying stressed flash memory cells from the 

unstressed flash memory cells is the basis of our watermarking scheme, Flashmark. 

 

Figure 5.3. Detecting changes in physical properties caused by stressing. 
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5.3.2 Watermarking Procedure 

Flashmark proposes an elaborate method where a manufacturer can imprint 

the information in a way that is more resilient to counterfeiter’s tampering efforts. As 

an example of imprinting the watermark, let us assume that a word of flash memory 

segment is reserved for watermarking. Let us also assume that a manufacturer wants 

to imprint ASCII value of a string “TC” that stands for a virtual Trusted Chipmaker.  

A word reserved for storing the watermark contains initially only “fresh” or 

“good” flash memory cells. At this stage, the physical properties of these flash memory 

cells are close to perfect ones. For imprinting the watermark, repeated erase and pro-

gram operations are performed. Figure 5.4 illustrates the imprinting process. Here E 

indicates a single round of erase operation, while P indicates a single round of program 

operation. The numbers on the left indicate erase and program round number. The 

data that is used for program operation corresponds to the content of the watermark. 

In our case, this information is ASCII value for “TC” which is “01010100.01000011” 

in binary. 

The erase operation brings all the flash memory cells to logical state of ‘1’ (i.e. 

removes charges from the floating gates), whereas the program operation brings the 

logical state of selected flash memory cells to ‘0’ (i.e., charges the floating gates). How-

ever, a program operation affects only the flash memory cells that need to be pro-

grammed to a logical ‘0’. Thus, repeated erase and program operations degrade the 

flash memory cells selectively. After a number of repeated program and erase cycles, 

sufficient differences exist in physical properties between the flash memory cells that 

do not change their state between successive erase and program operations and the 
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flash memory cells that change their state repeatedly between erase and program op-

erations. We call the flash memory cells that do not change their state as “good” or ‘G’ 

as labeled in Figure 5.4  and we call the flash memory cells that undergo charge/dis-

charge cycle repeatedly as “bad” or ‘B’ as labeled in Figure 5.4. The bad flash memory 

cells accumulate defects in the oxides as they are program-erased a number of times. 

These defects or the degradations in the oxide layers of “bad” flash memory cells are 

permanent. 

 

Figure 5.4. An Illustration of watermark imprinting into a flash memory word. 

Code 5.2 outlines the steps taken for imprinting and reading the watermark 

into and from the NOR flash memory. Reading of watermark is performed by the sys-

tem designer to verify that the chips received are genuine before incorporating them 

into a product. This reading of watermark is not equivalent to common flash memory 
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read operation. To read the watermark, the physical property of the memory cells 

needs to be extracted. And, we need to differentiate between “good” and “bad” flash 

memory cells. 

It is a challenging task to distinguish between the “good” and “bad” flash 

memory cells using digital interface only. Additional challenges arise from semicon-

ductor manufacturing processes that induces significant cell-to-cell variations. These 

variations need to be distinguished from those induced by the watermark imprinting 

procedure.  

We use a partial erase operation to distinguish between the “good” and “bad” 

memory cells using digital interface only as discussed in 5.3.1. Code 5.2, bottom out-

lines the steps taken in extracting the watermark. Here, the flash segment is first 

erased and programmed so that all the cells are at logical ‘0’ state. Then, a partial 

erase operation is performed. A read is performed after the partial erase operation. 

1. void imprint_flashmark(segment_address,NPE,Watermark){ 
2.   for(stress = 1; stress<=NPE; stress++) { 
3.     fully_erase_segment(segment_address);        // Write 1s 
4.     for(i= 1; i<=num_words; i++) { 
5.       Program Word[i] in SegAddr with Watermark[i]; 
6.     } 
7.   } 
8. } 

1. void extract_flashmark(segment_address, TPERASE){ 
2.   fully_erase_segment(segment_address);        // Write 1s 
3.   fully_program_segment(segment_address);      // Write 0s 
4.   partial_erase_segment(segment_address,TPERASE);  // Partial erase 
5.   for(i=1; i<num_words; i++) { 
6.     Read Word[i] in SegAddr; 
7.   } 
8. } 

Code 5.2. Algorithm for imprinting and extracting watermark. 

For the partial erase operation during the extraction phase, the partial erase 

time, or a window of partial erase times is determined for a family of flash memories 

based on its characterization results. It is assumed that this partial erase time which 



90 

 

brings the flash segment to the state that maximizes the likelihood of extracting the 

watermark is determined by the manufacturer and publicly communicated to the sys-

tem integrators. 

5.4 Experimental Evaluation and Results 

Experimental evaluation of Flashmark is performed on NOR flash memory of 

a family of low power microcontrollers from Texas Instruments (TI). The devices used 

are MSP430F5438 and MSP430F5529 microcontrollers. In the following subsections, 

we will focus on analysis of key parameters and design metrics such as: (a) bit error 

rate − the percentage of watermark bits that can be correctly retrieved using ex-

tract_flashmark() procedure; (b) imprint time – the time needed to imprint the water-

mark into a flash memory segment using imprint_flashmark() procedure; (c) extract 

time – the time needed to extract watermark using extract_flashmark() procedure, 

and (d) flash memory overhead. Section 5.4.1 presents the analysis of the bit error 

rate during extraction. Section 5.4.2 presents a replication based watermarking that 

improves the bit error rate. Finally, Section 5.4.3 discusses design metrics such as the 

imprint time, extract time, and overhead. 

5.4.1 Bit Error Rate Analysis 

For the bit error analysis of the watermark extraction procedure, a watermark 

that consists of upper-case ASCII characters is created – upper-case letters are repli-

cated to create a 512-byte long watermark to fill a flash memory segment completely. 

Thus, the watermark data consists of 1689 set bits (‘1’) out of total 4096 bits.  

This watermark is imprinted into a segment using the imprint_flashmark() 

procedure Code 5.2, while varying the number of PE cycles, NPE, from 0 to 100 K (the 
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endurance limit of the flash memory). At every 20 K PE cycles, the watermark is ex-

tracted using the extract_flashmark() procedure Code 5.2 (with a single read), but with 

varying TPERASE. The values extracted from the flash memory segment are then com-

pared with the original watermark to compute the bit error rate. 

Figure 5.5 shows the bit error rate of the extracted watermark as a function of 

partial erase times, TPERASE, for different stress levels. It should be noted that the 

extraction procedure involves full erase and full program of a flash memory segment. 

Thus, below certain partial erase times (~18 µs), the entire flash memory segment is 

expected to be read in the programmed state, i.e., ‘0’, resulting in the error rate of 

41.2%. This corresponds to the percentage of set bits (‘1’) in the watermark.  

For unstressed segment (labeled 0 K in Figure 5.5), the bit error rate reaches 

the percentage of bits set to logic ‘0’ for larger TPERASE (~ 22 µs). However, for stressed 

flash memory segment, the values of bit error rates drop. For example, for a segment 

subjected to NPE = 20 K, the error rate drops to as low as 19.9% for a particular partial 

erase time. This shows that by increasing the parameter NPE, the physical difference 

between unstressed and stressed cells increase. This increases our ability to recover 

original watermark. The minimum error rates observed are 11.8 % for NPE = 40 K, 7.6 

% for NPE = 60 K, 2.3 % for NPE = 80 K and for 2.0 % for NPE = 100 K.  

Thus, we can conclude that higher the number of stresses is, the lower is the 

bit error rate when extracting the watermark. We can also observe that there is a 

particular window of the partial erase time that minimizes the bit error rate in the 

extraction procedure. This window slightly shifts to right as the number of stresses 

increases. 
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Figure 5.5. Bit Error Rate (BER) for a single-read 512-byte watermark extraction as a function of 

partial erase times. 
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turing variations that result in different physical characteristics of flash memory cells, 

random noise, charge retention effects and other physical processes, it is not feasible 

to achieve zero-bit error rate. Thus, as an extension to the baseline technique, we 

analyze replication-based imprinting. 
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 Since watermarks require modest memory footprint, watermark data can be 

replicated into multiple memory locations without significant memory overhead. Fig-

ure 5.6 shows a 7-way replication of a 30-bit vector, a part of the watermark. The flash 

memory segment has been stressed 50 K times and the watermark is extracted from 

each replica using partial erase time tPEW = 28 µs. The top row shows the actual wa-

termark where the black squares represent bits at logic ‘1’ and white squares repre-

sent bits at logic ‘0’. The extracted watermarks are shown in rows labeled 1 to 7. The 

recovered watermark constructed using majority voting is shown in the last row. This 

recovered watermark fully matches the imprinted watermark. 

Figure 5.6 shows a closer look on bit errors from each extracted replica of wa-

termark. For example, bits 1 and 29 in replica number 1 are errors whereas bits 1, 5, 

21 and 27 are errors in replica number 3. Figure 5.6 also shows that bit errors occur 

more frequently on stressed bits – i.e., ‘bad’ bits have a higher probability of mischar-

acterizing than “good” bits. For example, bit number 5 is mischaracterized on replica 

numbers 3, 4 and 5. This observation can be utilized for further tuning of watermark 

extraction procedures. 



94 

 

 

Figure 5.6. Extraction of watermark from replicated copies using majority voting. 

Replication based technique helps to address the issue of inherent manufac-

turing variations that results in different physical characteristics among flash 

memory cells. These are the variations that induce cell to cell differences in seemingly 

similar flash memory cells.  

Replicated watermarks also widens the range of TPERASE for extraction as com-

pared to the cases when no replication is used. Figure 5.7 shows the result of extract-

ing watermarks using 3- ,5- and 7- replicas. The number of PE cycles analyzed are 40 

K, 50 K, 60 K and 70 K. For the plot with 40 K PE cycles, the minimum bit error rates 

of 5.2%, 2.4%and 0.96% are obtained with 3, 5, and 7 replicas respectively. This is a 

significant improvement when compared to the bit error rate of 11.8% observed with 

no replication. For the case with NPE = 70 K PE cycles, the watermark is fully recov-

ered using 3-way replication (i.e. 0 bit error rate). 
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Figure 5.7. Analysis of replication based watermark extraction. 

5.4.3 Overhead Analysis 

The imprinting time for the watermark is directly proportional to number PE 

cycles, NPE. A complete segment erase time is 25 ms, while time taken by program 

operation depends on the approach of programming. Our baseline implementation 

employing a full segment erase and full segment program takes ~1380 s for imprinting 

watermark when NPE = 40 K. This time increases to 2415 s when NPE = 70 K. A faster 

erase and program for imprinting using partial flash memory operations will signifi-

cantly reduce the time. This accelerated procedure will reduce the imprint time to 387 
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s for NPE = 40 K while the same for NPE = 70 K is 678 s. However, it should be noted 

that the erase and program time is a function of the NOR flash memory type being 

used. A number of newer stand-alone NOR flash memories have significantly faster 

erase and program times. In addition, NOR flash memories are more resilient to 

stresses than NAND flash memories, thus requiring more NPE. 

Extraction of watermark is a faster operation. The baseline implementation 

using seven replicas take about 170 ms for extraction of watermark. 

Since a complete segment of memory has to be allocated for watermark, a com-

plete segment ought to be sufficient for even the cases with multiple replicas. 

5.5 Concluding Remarks 

Watermarking helps to differentiate between genuine products and counterfeit 

products. The proposed watermarking technique, Flashmark, imprints manufacturer 

information permanently into a section of flash memory by changing the physical 

properties of flash memory cells. By retrieving and verifying integrity of flash water-

marks, system integrators and end users will be able to detect counterfeit chips before 

integrating them into their products. Flashmark offers following advantages over the 

existing counterfeit detection methods. First, imprinting and extracting watermark is 

done using standard system commands, thus it can be automated and implemented 

as a part of chip testing procedure. Next, it does not require inclusion of any extra 

hardware (e.g., antifuse memory or aging sensing circuitry) nor modification of chip 

design/fabrication process. It is universally applicable to all flash memory chips irre-

spective of manufacturer of type of memory. Finally, unlike PUF based systems, 
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Flashmark does not require maintenance of chip specific large databases nor the sys-

tem integrators need to contact the original chip manufacturer to verify authenticity 

of the chip. 
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CHAPTER 6  

ENERGY SAVINGS 

 

 

 

Modern embedded systems are resource constrained where energy-efficiency is 

a key design requirement. Flash memories play a central role in many such systems. 

Though flash memories offer a more energy-efficient alternative to hard disks, they 

still require a substantial amount of energy. This chapter presents a technique that 

reduces time and energy consumed by critical flash memory operations in ultra-low 

power microcontrollers by employing partial flash operations. Section 6.1 discusses 

the need for energy efficient flash operations in embedded systems. Section 6.2 dis-

cusses prior related efforts. The proposed partial erase and partial program based 

flash memory operations are discussed in Section 6.3. Section 6.4 presents the results 

of the experimental evaluation. It shows that the proposed technique saves 98% en-

ergy for erase operations and up to 75% energy for program operations [81]. Finally, 

Section 6.5 concludes the chapter. 

6.1 Motivation 

Energy efficiency is a key design requirement for many resource-constrained 

embedded systems that are commonly used in wireless sensor networks, wearable or 

implanted electronics and IoT. Many of such systems are battery powered. Energy 

efficient designs enable a smaller form factor, longer operating times and reduce the 
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operating costs by eliminating need for frequent battery changes. This might espe-

cially be important in cases of implanted devices that may require surgical procedure 

for battery replacement. Modern ultra-low-power microcontrollers are typically used 

in these systems to perform sensing, processing, communication, and actuation tasks 

Ultra-low-power microcontrollers typically integrate flash memory into their 

system on a single chip. Flash memory serves as a non-volatile storage that contains 

system firmware and constants and behaves as read only memory during normal op-

eration. However, to support frequent firmware updates or to prevent loss of critical 

application data in case of power loss, flash memory in modern microcontrollers sup-

port in-system programming (ISP), rather than through external JTAG interfaces. As 

discussed in Section 3.1, flash memory controller in modern microcontrollers enable 

the erase and program operations of flash memory from within the system. 

Flash memory program operation involve moving electrons into the floating 

gate and erase operation involve removing electrons from the floating gate. These op-

erations are power hungry and rely on internal charge pumps to generate high volt-

ages needed for the movement of electrons. Thus, finding ways to minimize energy 

consumed by flash memory operations is very beneficial for the systems that fre-

quently update and use flash memory for storing critical data. 

6.2 Related Works 

In ultra-low-power microcontrollers, the minimum voltage required for proper 

operation of a processor core is lower than the minimum voltage required for proper 

flash memory operations. An approach to lower the supply voltage to save energy con-

sumption was proposed by Salajegheh et al. [82], [83]. The supply voltage is lowered 
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such that the minimum voltage requirement of the processor is met, but the supply 

voltage is lower than that is required for reliable operations of flash memory. To rem-

edy the possible loss of information, they employ one of the following techniques: (a) 

repeated in-place write operation, (b) multiple places write operation and (c) a RS-

Berger code of data. They report energy savings of up to 34% for in-place write opera-

tions.  

Tseng et al. [84] propose the use of power supply voltage scaling in flash 

memory chips to save energy. They explore trade-offs between energy savings 

achieved by reducing power supply and the increased bit error rate and find an opti-

mal design point. Underpowering of flash memory can save up to 45% of the energy 

consumed at the cost of increased bit error rate using a dynamic voltage scaling mech-

anism. In MLC NOR flash memory, the latency and energy consumed by flash write 

operations are dependent on the bit pattern of the data written. Thus, design of code-

words to reduce the frequency of certain power hungry bit patterns (‘01’ and ‘10’) and 

increase the frequency of other bit pattern is proposed by Papirla et al. [85]. They 

report reduction of energy consumption by 33% and latency of flash memory opera-

tions by 24%. 

A lazy amnesic compression based data storage technique was proposed by 

Nath for storage of data in flash memory [86]. The energy required for a flash memory 

write is reduced by using lossy compression, where the compression rate is adjusted 

based on the age of data i.e. fidelity of “old” data is lower than the fidelity of new data. 

Mathur et al. introduce Capsule [87], a log structured object storage system for flash 

memories that supports fine-grained allocation of space for storage objects, such as, 

streams, files, arrays, and queues. 
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All the proposals discussed above demonstrate significant potential in reduc-

ing the total energy consumed by flash memory operations. However, they introduce 

significant overhead in time, compute resources, and storage space. Our proposal for 

saving energy and time employs partial flash memory operations, i.e. the flash 

memory erase and program operations are replaced by partial flash erase and pro-

gram operations, respectively. It does not incur any additional latency or memory 

overhead. 

6.3 Proposed Energy Efficient Flash Memory Operation 

The energy efficient flash memory operations proposed in this chapter are 

based on the partial flash memory operations. Thus, an extensive analysis is per-

formed to characterize partial flash erase and partial program operations. Section 

6.3.1 presents the characterization results. These results are used to develop partial 

erase and partial program operations that are described in Section 6.3.2.  

6.3.1 Characterization of Partial Flash Operations 

The steps carried out to characterize partial flash erase operations are pre-

sented in Code 4.1. First, a flash memory segment is fully erased (all cells are set at 

logic ‘1’). This is followed by a full segment program operation (all cells at set at logic 

‘0’). Then an erase operation is initiated. This erase operation is prematurely aborted 

after time TPERASE by setting the emergency exit bit (EMEX, Code 3.3) to achieve par-

tial erase operation. After the partial erase operation, each words in the flash memory 

segment are read NR times and each bits are characterized as either programmed, 

erased or unstable (Code 4.1). The same process is repeated by varying the partial 

erase time, TPERASE, from 0 to TERASE (the nominal erase time of a segment). 
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A similar experiment is performed to characterize the partial program opera-

tion (program a word). In this case, first a selected segment is fully erased. Then, for 

each word in the segment, the program operation is initiated and subsequently 

aborted after a partial program time, TPPROG. After the partial program operation, each 

word in the flash memory segment is read NR times and each bit is characterized as 

either programmed, erased or unstable (Code 4.1). The experiment is repeated by var-

ying TPPROG from 0 to TPROG (the nominal program time for a word).  

Figure 6.1(a) and Figure 6.1(b) show the results of the partial erase character-

ization and the partial program characterization, respectively. The x-axes show the 

partial erase times and the partial program times. Figure 6.1(a) is similar to the par-

tial erase characterization results shown in Figure 4.3. For a small TPERASE (TPERASE ~ 

0 µs), the erase operation is aborted promptly. Expectedly, all 4,096 cells in a segment 

are characterized as stable programmed cells (indicated by label Stable 0s). As TPERASE 

is increased, the number of stable programmed cells starts decreasing and the number 

of stable erased cells starts increasing. The plot shows that the majority of cells change 

their state in a narrow time window. We can observe that by TPERASE ~ 50 µs, all 4,096 

cells in a segment are in the erased state (indicated by label Stable 1s), although the 

nominal erase time per specification ranges between 23-32 ms. Thus, the partial erase 

time of TPERASE = 50 µs appears to be sufficient to completely erase the flash segment. 

 One may argue that although flash cells appear to be erased, their threshold 

voltage may not quite correspond to the nominal VTHE, that is, they may be in a weak 

erased state. Fortunately, the flash controller supports so-called marginal read oper-

ations that allow us to identify whether erased cells are in the weak or strong erased 
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or programmed states. Despite TPERASE being significantly shorter than the nominal 

erase time, the marginal reads do not report weakly erased bits. 

Similarly, Figure 6.1(b) shows that all the flash memory cells in a segment 

remain in erased state (Stable 1s) for small partial program times, TPPROG ~ 0 µs. How-

ever, with an increase in TPPROG, the number of flash cells in erased state starts de-

creasing and the number of flash cells in programmed state (Stable 0s) increases. All 

the flash memory cells are in the programmed state at TPPROG ≥ 27 µs although the 

nominal word program time is between 64-85 µs [88]. To verify that transition of flash 

cells is complete, marginal reads are used to identify that no cells are weakly pro-

grammed cells. 

 

Figure 6.1. State of flash segment cells as a function of (a). Partial erase times; and (b). Partial 

program times. 

Based on these observations, we propose to use the partial erase and the par-

tial program flash operations instead of nominal erase and program operations. This 

approach reduces the execution time of programs that require frequent in-system 

flash operations as well as reduce the energy consumed by these tasks. 
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6.3.2 Implementation Programs 

Code 6.1 shows a subroutine that implements the proposed partial erase oper-

ation of a segment and Code 6.2 shows a subroutine that implements the proposed 

partial program operation of a word. Both are tailored for the MSP430 flash-based 

microcontrollers. These subroutines are later used for time and energy profiling in 

Section 6.4.2.2. 

The segment partial erase subroutine configures the flash memory controller 

registers (line 2, 3 and 4 in Code 6.1). After the dummy write to initiate erase opera-

tion (line 5), the code waits for a duration defined by optimal segment erase time TPE. 

Then, emergency exit (EMEX) bit is set to abort the erase operation. The parameter 

TPE is obtained from the characterization described in Section 6.3.1. 

1. void partial_erase_segment(FlashAddress, TPE){ 
2.   while(FCTL3&BUSY);       // wait until busy 
3.   FCTL3 = FWPW;            // flash password 
4.   FCTL1 = FWPW+ERASE;      // configure segment erase 
5.   *FlashAddress = 0;       // dummy write to initiate erase operation 
6.   __delay_cycles(TPE);      // wait for TPE 
7.   FCTL3 = FWPW+EMEX;       // emergency exit to terminate erase operation 
8.   while(FCTL3&BUSY);       // wait until busy 
9.   FCTL1 = FWPW;            // clear erase operation 
10.   FCTL3 = FWPW+LOCK;       // lock the flash memory 
11. } 

Code 6.1. Subroutine for partial erase of a segment. 

For a partial program of a word, first the flash controller registers are config-

ured for write operation (line 2 and 3 of Code 6.2). Then, the data WordData is written 

to the address of the word (line 4 of Code 6.2). This initiates a word program operation. 

However, unlike the nominal program operation, the code presented in Code 6.2 waits 

for a time defined by optimal word program time TPP and sets EMEX bit to abort the 



105 

 

program operation (line 6 of Code 6.2). The parameter TPP is obtained from the char-

acterization result discussed in Section 6.3.1. A complete segment can be programmed 

using the subroutine presented in Code 6.2 for each word in the segment. 

1. void partial_program_word(SegmentAddress, WordIdx, TPP, WordData){ 
2.   FCTL3 = FWPW;                       // flash password 
3.   FCTL1 = FWPW+WRT;                   // configure word write 
4.   *(FlashAddress+WordIdx) = WordData; // dummy write to initiate word  

                                        program operation 

5.   __delay_cycles(TPP);                 // wait for TPP 
6.   FCTL3 = FWPW+EMEX;                  // emergency exit to terminate erase 

                                        operation 

7.   while(FCTL3&BUSY);                  // wait until busy 
8.   FCTL1 = FWPW;                       // clear erase operation 
9.   FCTL3 = FWPW+LOCK;                  // lock the flash memory 
10. } 

Code 6.2. Subroutine for partial program of a word. 

6.4 Experimental Evaluation and Results 

The experimental environment is based on MSP430 family of microcontrollers 

from Texas Instruments, namely MSP430F5438 and MSP430F5529 at room temper-

ature and under nominal power supply of VS = 3.3 V.  Section 6.4.1 presents the eval-

uation of optimal flash erase time (TPE) and optimal flash program time (TPP) using 

the characterization discussed in Section 6.3.1 on multiple segments from different 

chips. Section 6.4.2 discusses the energy profiling set-up used (Section 6.4.2.1) and 

quantifies the energy savings achieved by the proposed technique (Section 6.4.2.2). 

6.4.1 Evaluation of Optimal Flash Operation Parameters (TPP and TPE) 

We extend the process described in Section 6.3.1 to characterize flash memory 

behavior in presence of partial erase and program operations. Table 6.1 shows the 

results of the characterization performed on five segments (Seg 0 – Seg 4) from four 

different samples of MSP430F5438 chips (Chip 0 – Chip 3). Each segment in each chip 

is profiled to determine the minimum partial program time (tPPROG) when all the bits 
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within a word that needs to be programmed are indeed programmed. Similarly, each 

segment is profiled to find the minimum partial erase time (tPERASE) when all the bits 

in the segment are indeed erased. 

The minimum partial program times (tPPROG) are fairly uniform across different 

segments and chips. They range between 26 µs and 27 µs, compared to 64-85 µs nom-

inal program time per reference manual [88] or to ~65 µs measured in our experi-

ments. Thus, these results indicate that slightly over 1/3rd of the nominal program 

time is sufficient to complete a program operation. We take a conservative approach 

and set an optimal partial program time TPP = 28 µs in further experiments. 

The partial erase times (tPERASE) are significantly lower than the nominal erase 

times. However, partial erase time vary across different segments within a chip and 

across different chips. For example, for Chip 2 the observed partial erase times varied 

from 57 µs to 113 µs while that for Chip 3 varied from 34 µs to 46 µs. We take a con-

servative approach and choose an optimal erase time TPE = 115 µs for further experi-

ments.  
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MSP430F5438 tPPROG 
(µs) 

Optimal 
(TPP) 

Nominal 
Time  

MSP430F5438 tPERASE 
(µs) 

Optimal 
(TPE) 

Nominal 
Time Chip Seg Chip Seg 

0 0 27 

28 µs 
64-85 

µs 

2 0 113 

115 µs 
23-32 

ms 

0 1 27 2 1 57 

0 2 26 2 2 57 

0 3 27 2 3 80 

0 4 27 2 4 57 

1 0 26 3 0 46 

1 1 26 3 1 34 

1 2 26 3 2 34 

1 3 26 3 3 35 

1 4 26 3 4 35 

Table 6.1. Result of partial flash operation characterization for MSP430F5438 microcontrollers. 

The result of similar characterization performed for MSP430F5529 microcon-

trollers is shown in Table 6.2. Here, we find that the optimal programming time for a 

word, TPP, to be 16 µs (the nominal programming time TPROG is 65-85 µs) while the 

optimal erase time of a segment, TPE, is determined to be 73 µs (the nominal erase 

time is 23 - 32 ms. 

MSP430F5529 tPPROG 
(µs) 

Optimal 
(TPP) 

Nominal 
Time 

MSP430F5529 tPERASE 
(µs) 

Optimal 
(TPE) 

Nominal 
Time Chip Seg Chip Seg 

0 0 15 

16 µs 
64-85 

µs 

2 0 50 

73 µs 
23-32 

ms 

0 1 15 2 1 72 

0 2 15 2 2 18 

0 3 15 2 3 15 

0 4 15 2 4 18 

1 0 15 3 0 15 

1 1 15 3 1 15 

1 2 15 3 2 19 

1 3 15 3 3 18 

1 4 15 3 4 15 

Table 6.2. Result of partial flash operation characterization for MSP430F5529 microcontrollers. 



108 

 

6.4.2 Energy Profiling 

The test programs developed in Section 6.3.2 is used to analyze the energy 

consumption by nominal flash memory operations as well as partial flash memory 

operations using optimal parameters from Section 6.4.1. Section 6.4.2.1 describes the 

energy profiling setup used. Section 6.4.2.2 presents the compares the energy con-

sumed by nominal partial flash operations and quantifies the energy savings. 

6.4.2.1 Energy Profiling Setup 

The development board with the MSP430 microcontroller (Section 3.1.4) is con-

nected to a setup for runtime energy profiling that consists of a National Instruments 

(NI) PXIe-4154 battery simulator, an NI PXIe-6361 data acquisition card and a work-

station. This is a set up for automated measurement of energy consumed by embedded 

computing platform [89].  

The battery simulator supplies power to the development board and samples 

the current drawn at a rate of FS = 100,000 samples per seconds. The energy consumed 

is computed using Equation 3. Here, M is the number of samples collected during an 

operation, V is the power supply, and ∆𝑡 is the sampling period, i.e., ∆𝑡 =
1

𝐹𝑆
. 

 
𝐸 = ∑ 𝑉 ∙ 𝐼𝑆 ∙

𝑀

𝑖=0
 ∆𝑡 

Equation 3 

6.4.2.2 Energy Profiling Results 

Figure 6.2 shows the current drawn by a nominal flash memory operation (in-

dicated by the blue lines) and the current drawn by partial flash memory operations 

(indicated by the orange lines). The baseline current drawn by the microcontroller 

when idle is ~1 mA. When a flash memory operation is initiated, a steep increase in 

current is observed. This current remains high for the duration of the operation. For 
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example, for Figure 6.2(a), the nominal time for erase operation TERASE ~27 ms. The 

current drawn is ~4 mA for the duration of nominal erase operation. For a partial 

erase operation, the orange line shows a sudden spike of TPE ~115 µs. Although the 

duration of the two erase operations are vastly different, the amplitude reaches ~4 

mA in both cases.  

The total energy consumed by the nominal flash segment erase operation, on 

average, is ~258.6 µJ. The partial erase operation that achieves the same result, how-

ever, consumes only 3.3 µJ of energy. Thus, the proposed partial erase operation saves 

over 98% of energy consumed by the nominal erase operation. 

 

Figure 6.2. Current drawn by a family of MSP430 microcontroller for flash memory operations. 

The current drawn by the program operation is shown in Figure 6.2(b). Here 

the current drawn during programming of a 16-bit word is shown. We used a sequence 

of three data patterns, namely, a data pattern with all 0s (0x0000), a data pattern 

with all 1s (0xffff), and a data pattern with alternate 1s and 0s (0x5555). Since a flash 

memory segment is erased before the program operations are carried out, the data 
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pattern with all 0s have to program all the bits within each word, whereas in case of 

the data pattern with all 1s, no bit is actually programmed. These three sequences of 

data patterns are labeled as 0x0000, 0x5555 and 0xffff in Figure 6.2(b). The current 

profiles indicate that the energy consumed for both nominal and partial flash memory 

operations are data dependent.  

The comparative analysis of the energy consumed by the program operations 

with different data patterns is shown in Table 6.3. Since the program operation of a 

segment in NOR flash memory is achieved by programing each word in the segment, 

we make a comparison of the energy consumed by word program operation as well as 

the segment program operation. The nominal program operation measurement pre-

sented, however, uses a block-wide program approach, which is a more optimized pro-

gramming operation (Section 3.1.2). Block-wide program operation cannot be used in 

conjunction with EMEX signal, so our proposed technique uses the word-by-word pro-

gramming approach. The energy savings made are still quite significant. This value 

ranges from 24% when a complete segment is programed using 0xffff pattern to 64.2% 

when writing all zeros data pattern. 

Word 
Programming 

Energy  
Consumed (µJ) Savings 

(%) 
Segment 

Programming 

Energy  
Consumed (µJ) Savings 

(%) 
Nominal  Partial  Nominal  Partial  

0x0000 9 3 66.7 0x0000 127 45.5 64.2 

0x5555 8 2 75 0x5555 92.3 43.6 52.8 

0xffff 5 2 60 0xffff 53.9 40.8 24.3 

Table 6.3. Energy consumed for word and segment program operations. 

6.4.3 Stress Analysis 

NOR flash memory can sustain 100,000 program-erase (PE) cycles before it 

permanently fails. To test the robustness of the parameters (TPP and TPE) found 
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through the characterization in Section 6.4.1, we stress the flash memory segments 

by performing repeated program-erase (PE) operations. At every 10,000 PE cycles we 

characterize the stressed flash memory segments to determine the optimal erase and 

program times. This process is repeated until the maximum endurance (100,000 PE 

cycles) of the flash memory segment is reached. 

Figure 6.3(a) and Figure 6.3(b) show the optimal partial erase times as a func-

tion of PE cycles applied to flash memory segments. These plots present multiple seg-

ments from two sample chips of the MSP430F5438 family. The results indicate that 

the optimal partial erase time increases with an increase in the stress level. The opti-

mal partial erase time for a fresh flash memory segment is below 100 µs, whereas the 

optimal partial erase time is ~ 925 µs for a flash memory segment that is exposed to 

100K PE cycles. Figure 6.3c and Figure 6.3d show the optimal partial program times 

collected across multiple segments from two sample chips. The optimal partial pro-

gram times for MSP430F5438 family of microcontrollers is not significantly affected 

by the number of PE cycles. Thus, a conservative approach of using an optimal partial 

program time of 28 µs would work irrespective of the stress level. 

Similar analysis is repeated for MSP430F5529 family of microcontrollers. The 

results of the analysis are presented in Figure 6.4. Figure 6.4a and Figure 6.4b show 

the change in the partial erase times as a function of PE cycles applied to the flash 

memory segments. The change follows a similar trend as the change of optimal partial 

erase times in MSP430F5438. However, some irregularities in the trend can be seen. 

Thus, a conservative estimate based on characterization results can be used for a fully 

stressed flash memory segment. The optimal partial program times, however, are not 
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affected.

 

Figure 6.3. Partial erase (a,b) and partial program (c,d) as a function of PE cycles for 

MSP430F5438. 
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Figure 6.4. Partial erase (a,b) and partial program (c,d) times as a function of PE cycles for 

MSP430F5529. 

6.5 Concluding Remarks 

Partial flash erase and partial flash program operations can be used to replace 

nominal erase and program operation without any loss of information. This technique 

is implemented and evaluated on a family of commercial microcontrollers to demon-

strate savings in energy of over 98% for segment erase operation and from 24-64% of 

savings for segment program operations. The proposed technique does not require any 

hardware changes and can be solely implemented in firmware. 
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CHAPTER 7  

3D MLC NAND FLASH MEMORY CHARACTERIZATION 

 

 

 

Continued scaling of technology node coupled with integration of multiple bits 

per flash memory cell has caused a significant concern in reliability and endurance of 

2D NAND flash memories. Further scaling of 2D memories below 30 nm causes struc-

tural and mechanical integrity issues in addition to issues related to charge leakage, 

charge migration, and cell to cell interference [90]. 3D NAND flash memories allow 

scaling in the vertical direction. This leads to improvements in storage density, while 

employing larger flash memory cells [91], [92]. Consequently, 3D NAND flash memo-

ries storing multiple bits per cell are more robust than equivalent 2D NAND flash 

memories; for example, the endurance limit, i.e., the maximum number PE cycles be-

fore permanently failing, for 2D TLC NAND flash memory is 1,000 PE cycles, whereas 

the endurance limit of 3D TLC NAND flash memory is 10,000 PE cycles. 

Recent research efforts have investigated the properties of 3D NAND flash 

memories to further enhance their performance and reliability. The reliability of 3D 

NAND flash memory pages, measured in bit error rates, varies across different layers 

[38], [91], [93], [94]. Likewise, the pages in the same physical layer have similar prop-

erties [95]. Similarly, the performance, measured in page program time, varies among 

the pages in a single block [91], [94]. These characterizations suggest ways to improve 

the reliability and performance by exploiting physical properties of the chip. Other 

unique properties of 3D NAND flash memories are also explored in a quest to improve 
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their reliability. For example, oxide charge traps in 3D NAND flash memories are 

mended on its own during the idle time between program and erase operations. This 

recovery can be accelerated by exposing chips to high temperatures [96].  

The properties discussed above are important for designing Flash Translation 

Layer (FTL). FTL is a system software that sits between the file-system and the 

NAND flash chips [97]. NAND flash memory chips, that are used for mass storage 

purposes in solid-state drives (SSDs) and other electronic devices, are interfaced to 

the host computer through the FTL. FTL hides the details of interfacing, and is also 

responsible for address translation, error management, garbage collection, bad block 

management, wear leveling, and concurrency management. 

In this chapter, we characterize a family of 3D NAND flash memory chips. The 

characterization reveals the internal details of the flash memory chip. The character-

ization is performed using the FPGA based setup discussed in Section 3.2. Section 7.1 

presents the details of 3D MLC NAND flash chips used. Section 7.2 presents the re-

sults of timing characterizations performed. Finally, Section 7.3 discusses the impli-

cation of the characterization results and concludes the chapter. 

7.1 3D MLC NAND Flash Memory 

The manufacturer part number of the NAND flash memory used for character-

ization is MT29F256G08CBCBBWP. This family of 3D NAND flash memory chips are 

produced by Micron Technology Inc. This flash memory chip has 38 physical layers 

(tiers) and is composed of floating gate cells [92], [94]. Of the 38 layers, 32 layers are 

active layers while 6 layers are dummy layers. The 6 dummy layers are organized into 

two groups of 3 layers each. The dummy layers are placed at the top and bottom of the 
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32 active layers. All 32 active layers and 2 closest dummy layers (1 from top and 1 

from bottom of 32 active layers) are used for storing data. The 2 dummy layers as well 

as one active layer from top and one active layer from bottom are reserved for storing 

data in the SLC mode only. The remaining 30 active layers are made of MLC cells. 

A flash block consists of 1,024 pages that are organized into 16 sub-blocks, 

marked as B0, B1, up to B15 as shown in Figure 7.1. The 34 layers that are used for 

storing data are labeled as W01-W33. Layers W00, W01, W32, and W33 can hold data 

only in the SLC mode (W00 and W33 are so called dummy layers), creating unshared 

or LSB-only pages. The layers W02 to W31 can hold data in the MLC mode, holding 

data that is logically organized into two shared pages: an LSB (Least Significant Bit) 

and an MSB (Most Significant Bit) page. In Figure 7.1, LSB page indices are given in 

the left column in black and MSB page indices are written in the right column in red 

for each layer and sub-block.  



117 

 

 

Figure 7.1. Page indices within a flash memory block in MLC mode.  

An erase operation of the 3D NAND flash memory affects an entire flash block 

of 1,024 pages. For program operation, the pages must be programmed in an order 

starting from lowest page index to the highest page index. LSB pages must be pro-

grammed before the corresponding MSB pages are programmed. A premature termi-

nation of a program operation in any of the LSB or MSB pages may corrupt data in 

the corresponding shared page. 

The flash chip can also be configured to work in the SLC mode only by using 

an ONFI command SET FEATURE. In the default MLC mode, 10-bits are available 

Layer LSB MSB
W33 993 -

W32 961 -

W31 929 992

W30 897 960

W29 865 928

W28 833 896

W27 801 864

W26 769 832

W25 737 800

W24 705 768

W23 673 736

W22 641 704

W21 609 672

W20 577 640

W19 545 608

W18 513 576

W17 481 544

W16 449 512

W15 417 490

W14 385 448

W13 353 416

W12 321 384

W11 289 352

W10 257 320

W09 225 288

W08 193 256

W07 153 216

W06 129 192

W05 97 160

W04 65 128

W03 48 96

W02 32 64

W01 16 -

W00 0 -

B0 B1

Layer LSB MSB
W33 995 -

W32 963 -

W31 931 994

W30 899 962

W29 867 930

W28 835 898

W27 803 866

W26 771 834

W25 739 802

W24 707 770

W23 675 738

W22 643 706

W21 611 674

W20 579 642

W19 547 610

W18 515 578

W17 483 546

W16 451 514

W15 419 492

W14 387 450

W13 355 418

W12 323 386

W11 291 354

W10 259 322

W09 227 290

W08 195 258

W07 155 218

W06 131 194

W05 99 162

W04 67 130

W03 49 98

W02 33 66

W01 17 -

W00 1 -

B2

Layer LSB MSB
W33 997 -

W32 965 -

W31 933 994

W30 901 962

W29 869 930

W28 837 898

W27 805 866

W26 773 834

W25 741 802

W24 709 770

W23 677 738

W22 645 706

W21 613 674

W20 581 642

W19 549 610

W18 517 578

W17 485 546

W16 453 514

W15 421 492

W14 389 450

W13 357 418

W12 325 386

W11 293 354

W10 261 322

W09 229 290

W08 197 258

W07 157 218

W06 133 194

W05 101 162

W04 69 130

W03 50 98

W02 34 66

W01 18 -

W00 2 -

Layer LSB MSB
W33 1023 -

W32 991 -

W31 959 1022

W30 927 990

W29 895 959

W28 863 926

W27 831 894

W26 799 862

W25 767 830

W24 735 798

W23 703 766

W22 671 734

W21 639 702

W20 607 670

W19 575 638

W18 543 606

W17 511 574

W16 479 542

W15 447 510

W14 415 478

W13 383 446

W12 351 414

W11 319 382

W10 287 350

W09 255 318

W08 223 286

W07 191 254

W06 159 222

W05 127 190

W04 95 158

W03 63 126

W02 47 94

W01 31 -

W00 15 -

B15. . .
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to address each of the 1024 pages inside a block. In the SLC mode, only 9-bits are 

made available to address 512 pages inside a block. 

7.2 Timing Characterization of 3D NAND Flash Memory 

Timing analysis offers insights into the latency of flash memory operations. 

Flash memory program and read operations are performed on granularity of a page. 

Thus, we characterize page program and read operations. These characterization re-

sults can be used by the FTL to employ data placement algorithms that will increase 

effective throughput. Section 7.2.1 and Section 7.2.2 present the results of timing 

characterization of page program operations in the MLC and SLC modes, respectively. 

Section 7.2.3 characterizes page read operation times.  

7.2.1 Page Program Times in MLC Mode 

The program operation of each page, regardless of the type, follows a sequence 

of operations according to the ONFI standard. To program a complete page, the host 

first issues a command for a page write, then sends the page address, and writes the 

data into a data register inside the flash memory chip. Once the entire page data is 

loaded into the data register, a program confirm command (0x10) is issued to initiate 

the page program operation. During this operation the content of the data register is 

programmed into the NAND flash array. The flash memory chip indicates the com-

pletion of the program operation by asserting the Ready/Busy (R/B#) signal. The host 

can check the status of the program operation (success or failure) by using an ONFI 

command to read the status register of the flash memory chip. 

We perform a set of experiments to measure the time taken by the program 

operations. For this purpose, first a fresh block is erased (all data bytes read as 0xff) 
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and then each page in the block is programmed (all data bytes read as 0x00). We 

record the time taken to program the data from the data register into the NAND ar-

ray. This time corresponds to the period between issuing the command 0x10 and the 

completion of program operation indicated by setting the R/B# pin. We refer to this 

time as the page program time.  

Figure 7.2 shows page program times for all 1024 pages in a representative 

block. The horizontal axis represents the page indices (indexed 0 to 1023) in a block. 

The vertical axis represents the program time in microseconds. Each dot plotted rep-

resents the program time for the page whose index is represented in horizontal axis. 

Three groups of pages can be distinguished based on the program times of the 

pages in a block: (a) Unshared and LSB Pages whose page program times fall in the 

range from 490 to 600 µs; (b) MSB Pages whose page program times fall in the range 

from 1280 to 1602 µs; and (c) Unshared and LSB Pages whose page program times 

fall in the range from 1140 to 1350 µs.  
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Figure 7.2. Page program times as a function of page indices for all 1024 pages in a block. 

Unshared Pages. Figure 7.3 shows the program times for the unshared pages 

only. From these results we can draw the following observations. The first page to be 

programmed in a group of 16 pages that share the same wordline (belong to a single 

layer), generally takes more time than other pages after an erase operation. This is 

due to the need to charge parasitic capacitances presented by the control gates of all 

cells on the shared wordline (and the same physical layer). The subsequent pages in 

the given layer do not see this additional latency because parasitic capacitances re-

main charged. Thus, pages 0 and 993 in layers W00 and W33 take ~1350 s, whereas 

pages 16 and 963 in layers W01 and W32 take ~1240 s. The subsequent pages within 

a sub-block take ~490 s.  

The pages in the topmost layers, W33, require more time to be programmed, 

~587 s. One possible explanation could be as follows. The flash cells in this layer are 
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typically exposed to higher voltages during the erase cycles – they are closest to the 

bit line transistors, so they see the highest voltage on their terminals. There is a volt-

age drop across the NAND array, so the cells at the edges of the NAND array see 

higher voltages and their oxide layers are exposed to higher levels of stress. Conse-

quently, the distribution of the VTH in the erased state of the cells in this layer is 

shifted far to the left, thus requiring longer program times to transition the cells to 

the programmed state.  

 

Figure 7.3. Page program times of 64 unshared pages in a block. 

Shared LSB Pages. Figure 7.4 shows the program times for shared LSB pages. 

Similarly to the unshared pages, the first page in a given layer takes ~1138 s, 

whereas the remaining pages on the given layer take ~494 s. The times appear to be 
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uniform across the inner layers. There is a notable exception in one area where the 

programming of the remaining pages (not first page) is close to ~588 s. Based on our 

analysis these LSB pages are located in layers W25, W26, W27, W28, and W29 (5 

layers in total). The remaining two layers with shared pages W30 and W31 require 

~494 s. This anomaly could be caused by specific properties of the manufacturing 

process.  

 

Figure 7.4. Page program times of 480 LSB pages in a block. 

Shared MSB Pages. Figure 7.5 shows the page program times for shared MSB 

pages. The program times range between ~1280 s and ~1602 s. It appears that there 

are several distinct discrete programming times in this range. 
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Figure 7.5. Page program times of 480 msb pages in a block. 

7.2.2 Page Program Times in SLC Mode 

We perform a set of experiments to analyze the program times of NAND flash 

memory in the SLC mode. First a fresh block is converted into the SLC mode, the 

block is first erased. Then, all 512 pages in the block are programmed with all zeros.  

Figure 7.6 shows the program times of all 512 pages in a block. The program 

times for the majority of SLC pages is ~367 s. 32 pages (every 16th), i.e. first pages to 

be programmed in a given layer, take ~582 s (32x16=512). The exceptions to this rule 

are the first pages in the first layer W00 and the last layer W33 that require ~692 s. 

This is consistent with what we observed previously in the MLC mode, except that the 

program times are significantly lower than the ones observed in the MLC mode. In 
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addition, several groups of pages (not including the first page in a layer) require sig-

nificantly lower program times – the pages with indices 65-79 (layer W04), 113-127 

(layer W07), 241-255 (W15), 257-281 (W16), 385-399 (W24) require only ~271 s. We 

do not have a plausible explanation for this phenomenon.  

 

Figure 7.6. Page program times as a function of page indices in SLC Mode (512 Pages) 

7.2.3 Page Read Times in MLC Mode 

The read operation in NAND flash involves two distinct stages: first, the data 

from the NAND array is brought to the internal data register after issuing a read 

command; second, the content of data register is read using data-out (DOUT) cycles. 

For read time analysis, we measure the time taken to transfer data from the NAND 

array to the data register. 

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

Page Program Time (SLC Mode)

T
im

e
 i

n
 M

ic
ro

se
co

n
d

s 
(µ

s)

Pages Indices (512 SLC Pages)

W04 W07 W15,W16 W24



125 

 

Figure 7.7 shows the page read times from 100 pages when the memory is op-

erating in the MLC mode. The read times of unshared pages are ~91 s, which is 

identical to when reading erased unshared pages. Similarly, the read times of MSB 

pages are ~120 s, which identical to when reading erased MSB pages. Expectedly, 

the read times of LSB pages are less than read times of MSB pages and are ~93.5 s. 

 

Figure 7.7. Page read times for 100 selected pages. 

7.3 Concluding Remarks 

The page program and page read timing characterizations reveal the following 

insights: 

 Pages in the first subblock (B0) are slower to program, 

 Unshared and shared LSB pages in subblocks B1 to B15 are faster to pro-

gram than the shared MSB pages, 
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 Programming unshared pages in topmost dummy layer, W33, is slower to 

program than unshared pages in other layers, and 

 Reading Unshared and Shared LSB pages is faster than reading shared 

MSB pages. 

These characterization results can be used to develop better algorithms during 

an FTL design. For example, the faster program times offered by unshared pages and 

shared LSB pages can be exploited to enhance the write performance of the FTL. 

Based on the write hotness of the data, the placement algorithm can place the hot 

data into either unshared or shared LSB page. Similarly, the faster read times of the 

unshared pages and shared LSB pages can be exploited to design the placement algo-

rithm such that read hot data is written into unshared pages or shared LSB pages. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

 

 

 

This dissertation describes two techniques, namely (a) Microcontroller Finger-

printing and (b) Flashmark, that can be used to secure chips that contain flash mem-

ories by exploiting their physical properties. This dissertation also presents a tech-

nique to reduce time and energy consumed by critical flash memory operations.  

Microcontroller fingerprinting uses partial erase operations of flash memory 

segments that bring them into the state that exposes physical properties of the flash 

memory cells through a digital interface. These properties reflect semiconductor pro-

cess variations and defects that are unique to each microcontroller or a flash memory 

segment within a microcontroller. This dissertation explores threshold voltage varia-

tion in NOR flash memory cells for generating fingerprints and describes an algorithm 

for extracting fingerprints. This dissertation also presents the algorithms for gener-

ating the enrollment and authentication fingerprints. The experimental evaluation 

utilizing a family of commercial microcontrollers demonstrates that the fingerprints 

are unique and repeatable, and the proposed technique is cost-effective, robust, and 

resilient to changes in voltage and temperature as well as to aging effects. Perfor-

mance evaluation of the proposed technique shows that it significantly outperforms 

other related proposed techniques. 
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Flashmark uses repeated stressing to irreversibly change the physical proper-

ties of flash memory cells to permanently imprint manufacturer information into ded-

icated blocks of flash memory chips. The imprinted watermark is read out by sensing 

the changes in physical properties of flash cells through standard digital interface 

using partial erase operations. The proposed technique is successfully demonstrated 

on embedded NOR flash memories in low-power microcontrollers, but the proposed 

method is applicable broadly to NOR and NAND flash memories. The dissertation 

also explores the metrics of interest such as the bit error rates, the watermark imprint 

time, and the watermark extraction time. 

The technique to reduce the time and energy utilizes partial flash memory op-

erations, i.e. partial flash erase and partial flash program operations. The partial 

erase and program operations abort nominal erase and program operations at an op-

timal time that guarantees no loss of information. The proposed flash operations are 

implemented and evaluated on NOR flash memory of commercial microcontrollers. 

This dissertation demonstrates that they can provide significant saving in energy of 

over 98% for segment erase operations and from 24-64% for segment program opera-

tions. This dissertation also shows how flash stress level impacts the parameters of 

interest, i.e. optimal partial erase times and partial program times, for the proposed 

technique.  

Finally, this dissertation presents a timing characterization of operations in a 

family of 3D NAND flash memory chips. The timing characterization results show 

that significant timing variations exist among program operations of different pages.  

Although this dissertation presents the microcontroller fingerprints generated 

from an embedded NOR flash memory for authentication purpose, future works can 
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extend this technique for secure key generation. Secure key paves way for encryption 

as well as authentication. Similarly, Flashmark can be expanded to newer flash mem-

ories that have significantly faster program and erase times. Since NAND flash mem-

ories perform program and erase operations in multiple successive pulses, future 

works can expand the technique of early aborting flash memory operations to save 

time and energy to NAND flash memories. 

Future works can use the results from 3D NAND characterization to develop 

better data placement and management algorithms in the FTL. For example, the 

faster program times offered by unshared pages and shared LSB pages can be ex-

ploited to enhance the write performance of the FTL. Based on the write hotness of 

the data, the placement algorithm can place the hot data into either unshared or 

shared LSB page. Similarly, the faster read times of the unshared pages and shared 

LSB pages can be exploited to design the placement algorithm such that read hot data 

is written into unshared pages or shared LSB pages. 

 

 



130 

 

REFERENCES 

[1] “1987: Toshiba Launches NAND Flash,” eWEEK, Apr. 11, 2012. 

https://www.eweek.com/storage/1987-toshiba-launches-nand-flash/ (accessed 

Mar. 05, 2021). 

[2] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New ultra high density 

EPROM and flash EEPROM with NAND structure cell,” in 1987 International 

Electron Devices Meeting, Dec. 1987, pp. 552–555, doi: 

10.1109/IEDM.1987.191485. 

[3] R. D. Pashley and S. K. Lai, “Flash memories: the best of two worlds,” IEEE 

Spectrum, vol. 26, no. 12, pp. 30–33, Dec. 1989, doi: 10.1109/6.45032. 

[4] “Non-Volatile Memory Market | Growth, Trends, Forecasts (2020 - 2025).” 

https://www.mordorintelligence.com/industry-reports/non-volatile-memory-mar-

ket (accessed Mar. 02, 2021). 

[5] S. S. Rizvi and T. Chung, “Flash SSD vs HDD: High performance oriented mod-

ern embedded and multimedia storage systems,” in 2010 2nd International Con-

ference on Computer Engineering and Technology, Apr. 2010, vol. 7, pp. V7-297-

V7-299, doi: 10.1109/ICCET.2010.5485421. 

[6] “What is Flash Storage? - Benefits of SSD vs HDD | NetApp.” 

https://www.netapp.com/data-storage/what-is-flash-storage/ (accessed Mar. 02, 

2021). 

[7] “When Does Cloud Computing Need Flash?” https://www.mi-

cron.com/about/blog/2018/july/when-does-cloud-computing-need-flash (accessed 

Mar. 02, 2021). 

[8] “Number of connected devices worldwide 2030,” Statista. https://www.sta-

tista.com/statistics/802690/worldwide-connected-devices-by-access-technology/ 

(accessed Mar. 02, 2021). 

[9] EETimes, “Chip counterfeiting case exposes defense supply chain flaw,” 

EETimes, Oct. 24, 2011. https://tinyurl.com/u7wvlkh (accessed Oct. 27, 2019). 

[10] “Reports of Counterfeit Parts Quadruple Since 2009, Challenging US Defense 

Industry and National Security - Omdia.” https://tinyurl.com/spusztx (accessed 

Aug. 21, 2019). 

[11] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris, 

“Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor 

Supply Chain,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1207–1228, Aug. 

2014, doi: 10.1109/JPROC.2014.2332291. 



131 

 

[12] “Counterfeits Costing Semiconductor Industry Billions - EE Times Asia.” 

https://tinyurl.com/wcuzooz (accessed Oct. 23, 2019). 

[13] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable Func-

tions and Applications: A Tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 

1126–1141, Aug. 2014, doi: 10.1109/JPROC.2014.2320516. 

[14] R. Pappu, “Physical One-Way Functions,” Science, vol. 297, no. 5589, pp. 2026–

2030, Sep. 2002, doi: 10.1126/science.1074376. 

[15] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentica-

tion and secret key generation,” in Proceedings of the 44th annual conference on 

Design automation - DAC ’07, San Diego, California, 2007, p. 9, doi: 

10.1145/1278480.1278484. 

[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random 

functions,” in Proceedings of the 9th ACM conference on Computer and commu-

nications security, Washington, DC, USA, Nov. 2002, pp. 148–160, doi: 

10.1145/586110.586132. 

[17] J. W. Lee, Daihyun Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A 

technique to build a secret key in integrated circuits for identification and au-

thentication applications,” in 2004 Symposium on VLSI Circuits. Digest of Tech-

nical Papers (IEEE Cat. No.04CH37525), Jun. 2004, pp. 176–179, doi: 

10.1109/VLSIC.2004.1346548. 

[18] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as an Identi-

fying Fingerprint and Source of True Random Numbers,” IEEE Transactions on 

Computers, vol. 58, no. 9, pp. 1198–1210, Sep. 2009, doi: 10.1109/TC.2008.212. 

[19] C. Böhm, M. Hofer, and W. Pribyl, “A microcontroller SRAM-PUF,” in 2011 5th 

International Conference on Network and System Security, Sep. 2011, pp. 269–

273, doi: 10.1109/ICNSS.2011.6060013. 

[20] A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum, “A Proof of Concept 

SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism 

for IoT Devices,” in 2019 16th Annual IEEE International Conference on Sensing, 

Communication, and Networking (SECON), Jun. 2019, pp. 1–8, doi: 10.1109/SA-

HCN.2019.8824887. 

[21] A. Aysu, S. Gaddam, H. Mandadi, C. Pinto, L. Wegryn, and P. Schaumont, “A 

Design Method for Remote Integrity Checking of Complex PCBs,” in Proceedings 

of the 2016 Design, Automation & Test in Europe Conference & Exhibition 

(DATE), 2016, pp. 1517–1522, doi: 10.3850/9783981537079_1007. 

[22] M. Laban and M. Drutarovsky, “Leakage free helper data storage in microcon-

troller based PUF implementation,” Microprocessors and Microsystems, p. 

103369, Nov. 2020, doi: 10.1016/j.micpro.2020.103369. 



132 

 

[23] Z. Guo, X. Xu, M. M. Tehranipoor, and D. Forte, “FFD: A Framework for Fake 

Flash Detection,” in Proceedings of the 54th Annual Design Automation Confer-

ence 2017 on - DAC ’17, Austin, TX, USA, 2017, pp. 1–6, doi: 

10.1145/3061639.3062249. 

[24] P. Kumari, B. M. S. B. Talukder, S. Sakib, B. Ray, and M. T. Rahman, “Inde-

pendent detection of recycled flash memory: Challenges and solutions,” in 2018 

IEEE International Symposium on Hardware Oriented Security and Trust 

(HOST), Apr. 2018, pp. 89–95, doi: 10.1109/HST.2018.8383895. 

[25] S. Sakib, P. Kumari, B. M. S. B. Talukder, M. T. Rahman, and B. Ray, “Non-

Invasive Detection Method for Recycled Flash Memory Using Timing Character-

istics,” Cryptography, vol. 2, no. 3, p. 17, Sep. 2018, doi: 10.3390/cryptog-

raphy2030017. 

[26] A. R. Duncan, M. J. Gadlage, A. H. Roach, and M. J. Kay, “Characterizing Radi-

ation and Stress-Induced Degradation in an Embedded Split-Gate NOR Flash 

Memory,” IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 1276–1283, 

Apr. 2016, doi: 10.1109/TNS.2016.2540803. 

[27] T. Instruments, “MSP430 Flash Memory Characteristics.” Texas Instruments In-

corporated, 2008, [Online]. Available: 

http://www.ti.com/lit/an/slaa334b/slaa334b.pdf. 

[28] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories. Springer 

Netherlands, 2010. 

[29] R. Micheloni, A. Marelli, and S. Commodaro, “NAND overview: from memory to 

systems,” in Inside NAND Flash Memories, R. Micheloni, L. Crippa, and A. Ma-

relli, Eds. Dordrecht: Springer Netherlands, 2010, pp. 19–53. 

[30] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities 

in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, 

and Mitigation Techniques,” in 2017 IEEE International Symposium on High 

Performance Computer Architecture (HPCA), Feb. 2017, pp. 49–60, doi: 

10.1109/HPCA.2017.61. 

[31] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in 

MLC NAND flash memory: Characterization, analysis, and modeling,” in 2013 

Design, Automation Test in Europe Conference Exhibition (DATE), Mar. 2013, 

pp. 1285–1290, doi: 10.7873/DATE.2013.266. 

[32] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data retention in MLC 

NAND flash memory: Characterization, optimization, and recovery,” in 2015 

IEEE 21st International Symposium on High Performance Computer Architec-

ture (HPCA), Feb. 2015, pp. 551–563, doi: 10.1109/HPCA.2015.7056062. 



133 

 

[33] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program interference in MLC 

NAND flash memory: Characterization, modeling, and mitigation,” in 2013 IEEE 

31st International Conference on Computer Design (ICCD), Oct. 2013, pp. 123–

130, doi: 10.1109/ICCD.2013.6657034. 

[34] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC NAND 

Flash Memory: Characterization, Mitigation, and Recovery,” in 2015 45th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks, 

Rio de Janeiro, Brazil, Jun. 2015, pp. 438–449, doi: 10.1109/DSN.2015.49. 

[35] Y. Cai, G. Yalcin, O. Mutlu, and E. F. Haratsch, “Error Analysis and Retention-

Aware Error Management for NAND Flash Memory,” vol. 17, no. 1, p. 25, 2013, 

[Online]. Available: https://users.ece.cmu.edu/~omutlu/pub/flash-error-analysis-

and-management_itj13.pdf. 

[36] C. M. Compagnoni, A. S. Spinelli, S. Beltrami, M. Bonanomi, and A. Visconti, 

“Cycling Effect on the Random Telegraph Noise Instabilities of nor and nand 

Flash Arrays,” IEEE Electron Device Letters, vol. 29, no. 8, pp. 941–943, Aug. 

2008, doi: 10.1109/LED.2008.2000964. 

[37] N. Mielke et al., “Bit error rate in NAND Flash memories,” in 2008 IEEE Inter-

national Reliability Physics Symposium, Apr. 2008, pp. 9–19, doi: 

10.1109/RELPHY.2008.4558857. 

[38] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3D NAND 

Flash Memory Lifetime by Tolerating Early Retention Loss and Process Varia-

tion,” in Abstracts of the 2018 ACM International Conference on Measurement 

and Modeling of Computer Systems, New York, NY, USA, Jun. 2018, p. 106, doi: 

10.1145/3219617.3219659. 

[39] R. Micheloni, L. Crippa, C. Zambelli, and P. Olivo, “Architectural and Integration 

Options for 3D NAND Flash Memories,” Computers, vol. 6, no. 3, Art. no. 3, Sep. 

2017, doi: 10.3390/computers6030027. 

[40] “MSP430x5xx and MSP430x6xx Family User’s Guide.” Texas Instruments Incor-

porated, Mar. 2018, [Online]. Available: 

https://www.ti.com/lit/ug/slau208q/slau208q.pdf. 

[41] P. Poudel, “Using NOR Flash Memory in Microcontrollers for Generating True 

Random Numbers,” 2018, [Online]. Available: 

http://www.ece.uah.edu/~milenka/docs/prawar.poudel.thesis.pdf. 

[42] “MSP-EXP430F5438 Evaluation board | TI.com.” https://www.ti.com/tool/MSP-

EXP430F5438 (accessed Jan. 27, 2021). 

[43] “MSP-EXP430F5529LP Development kit | TI.com.” 

https://www.ti.com/tool/MSP-EXP430F5529LP (accessed Jan. 27, 2021). 



134 

 

[44] “Open NAND Flash Interface Specification.” ONFI Workgroup, Feb. 12, 2020, 

[Online]. Available: https://bit.ly/2Nl2qw2. 

[45] sickRanchez-c137, “sickRanchez-c137/onfi_plus,” Nov. 28, 2020. 

https://github.com/sickRanchez-c137/onfi_plus (accessed Mar. 05, 2021). 

[46] P. Poudel, B. Ray, and A. Milenkovic, “Microcontroller Fingerprinting Using Par-

tially Erased NOR Flash Memory Cells,” ACM Trans. Embed. Comput. Syst., vol. 

20, no. 3, p. 23, Mar. 2021, doi: doi.org/10.1145/3448271. 

[47] Y. Wang, “Flash Memory For Ubiquitous Hardware Security Functions,” Jan. 

2014, Accessed: Mar. 07, 2021. [Online]. Available: https://ecommons.cor-

nell.edu/handle/1813/36037. 

[48] M. S. Hashemian, B. Singh, F. Wolff, D. Weyer, S. Clay, and C. Papachristou, “A 

robust authentication methodology using physically unclonable functions in 

DRAM arrays,” in 2015 Design, Automation Test in Europe Conference Exhibition 

(DATE), Mar. 2015, pp. 647–652, doi: 10.7873/DATE.2015.0308. 

[49] H. Mandadi, “Remote Integrity Checking using Multiple PUF based Component 

Identifiers,” 2017, [Online]. Available: https://vtechworks.lib.vt.edu/han-

dle/10919/78200. 

[50] S. Rosenblatt, S. Chellappa, A. Cestero, N. Robson, T. Kirihata, and S. S. Iyer, 

“A Self-Authenticating Chip Architecture Using an Intrinsic Fingerprint of Em-

bedded DRAM,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2934–

2943, Nov. 2013, doi: 10.1109/JSSC.2013.2282114. 

[51] S. Sakib, A. Milenković, M. T. Rahman, and B. Ray, “An Aging-Resistant NAND 

Flash Memory Physical Unclonable Function,” IEEE Transactions on Electron 

Devices, vol. 67, no. 3, pp. 937–943, Mar. 2020, doi: 10.1109/TED.2020.2968272. 

[52] B. M. S. B. Talukder, B. Ray, M. Tehranipoor, D. Forte, and M. T. Rahman, 

“LDPUF: Exploiting DRAM Latency Variations to Generate Robust Device Sig-

natures,” arXiv:1808.02584 [cs], Aug. 2018, Accessed: Mar. 28, 2019. [Online]. 

Available: http://arxiv.org/abs/1808.02584. 

[53] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly 

Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability 

Tradeoff in Modern Commodity DRAM Devices,” in 2018 IEEE International 

Symposium on High Performance Computer Architecture (HPCA), Feb. 2018, pp. 

194–207, doi: 10.1109/HPCA.2018.00026. 

[54] F. Tehranipoor, N. Karimina, K. Xiao, and J. Chandy, “DRAM based Intrinsic 

Physical Unclonable Functions for System Level Security,” in Proceedings of the 

25th edition on Great Lakes Symposium on VLSI - GLSVLSI ’15, Pittsburgh, 

Pennsylvania, USA, 2015, pp. 15–20, doi: 10.1145/2742060.2742069. 



135 

 

[55] Y. Wang, W. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan, “Flash Memory for 

Ubiquitous Hardware Security Functions: True Random Number Generation 

and Device Fingerprints,” San Francisco, CA, May 2012, pp. 33–47, doi: 

10.1109/SP.2012.12. 

[56] M. Liu, C. Zhou, Q. Tang, K. K. Parhi, and C. H. Kim, “A data remanence based 

approach to generate 100% stable keys from an SRAM physical unclonable func-

tion,” in 2017 IEEE/ACM International Symposium on Low Power Electronics 

and Design (ISLPED), Jul. 2017, pp. 1–6, doi: 10.1109/ISLPED.2017.8009192. 

[57] A. Bacha and R. Teodorescu, “Authenticache: harnessing cache ECC for system 

authentication,” in Proceedings of the 48th International Symposium on Micro-

architecture, Waikiki, Hawaii, Dec. 2015, pp. 128–140, doi: 

10.1145/2830772.2830814. 

[58] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: an intrinsically reconfigurable 

DRAM PUF for device authentication in embedded systems,” in Proceedings of 

the International Conference on Compilers, Architectures and Synthesis for Em-

bedded Systems, Pittsburgh, Pennsylvania, Oct. 2016, pp. 1–10, doi: 

10.1145/2968455.2968519. 

[59] A. Schaller et al., “Decay-Based DRAM PUFs in Commodity Devices,” IEEE 

Transactions on Dependable and Secure Computing, vol. 16, no. 3, pp. 462–475, 

May 2019, doi: 10.1109/TDSC.2018.2822298. 

[60] S. Jia, L. Xia, Z. Wang, J. Lin, G. Zhang, and Y. Ji, “Extracting Robust Keys from 

NAND Flash Physical Unclonable Functions,” in Information Security, Cham, 

2015, pp. 437–454, doi: 10.1007/978-3-319-23318-5_24. 

[61] L. T. Clark, J. Adams, and K. E. Holbert, “Reliable techniques for integrated cir-

cuit identification and true random number generation using 1.5-transistor flash 

memory,” Integration, the VLSI Journal, Nov. 2017, doi: 

10.1016/j.vlsi.2017.10.001. 

[62] T.-N. Nguyen, S. Park, and D. Shin, “Extraction of Device Fingerprints Using 

Built-in Erase-Suspend Operation of Flash Memory Devices,” IEEE Access, vol. 

8, pp. 98637–98646, 2020, doi: 10.1109/ACCESS.2020.2995891. 

[63] P. Poudel, B. Ray, and A. Milenkovic, “Microcontroller TRNGs Using Perturbed 

States of NOR Flash Memory Cells,” IEEE Transactions on Computers, vol. 68, 

no. 2, pp. 307–313, Feb. 2019, doi: 10.1109/TC.2018.2866459. 

[64] L. T. Clark, J. Adams, and K. E. Holbert, “Reliable techniques for integrated cir-

cuit identification and true random number generation using 1.5-transistor flash 

memory,” Integration, vol. 65, pp. 263–272, Mar. 2019, doi: 

10.1016/j.vlsi.2017.10.001. 



136 

 

[65] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit Integrated Circuits: De-

tection, Avoidance, and the Challenges Ahead,” J Electron Test, vol. 30, no. 1, pp. 

9–23, Feb. 2014, doi: 10.1007/s10836-013-5430-8. 

[66] P. Poudel, B. Ray, and A. Milenkovic, “Flashmark: Watermarking of NOR Flash 

Memories for Counterfeit Detection,” in 2020 57th ACM/IEEE Design Automa-

tion Conference (DAC), Jul. 2020, pp. 1–6, doi: 10.1109/DAC18072.2020.9218521. 

[67] D. McGrath, “Semiconductor Counterfeiting is a Global Problem,” EETimes, Jul. 

26, 2017. https://www.eetimes.com/semiconductor-counterfeiting-is-a-global-

problem/ (accessed Feb. 10, 2021). 

[68] “National Defense Authorization Act for Fiscal Year 2012.” [Online]. Available: 

https://tinyurl.com/rc4bpzt. 

[69] M. Crawford, T. Telesco, C. Nelson, J. Bolton, K. Bagin, and B. Botwin, “DE-

FENSE INDUSTRIAL BASE ASSESSMENT: COUNTERFEIT ELECTRON-

ICS.” Jan. 2010, [Online]. Available: https://bit.ly/3ryGCeK. 

[70] D. McGrath, “EETimes - IHS: Counterfeit parts represent $169B annual risk -,” 

EETimes, Apr. 04, 2012. https://www.eetimes.com/ihs-counterfeit-parts-repre-

sent-169b-annual-risk/ (accessed Mar. 01, 2021). 

[71] S. Byrne, “Fake and counterfeit USB flash drives spreading on Amazon,” 

Myce.com, Jul. 04, 2014. https://www.myce.com/news/fake-and-counterfeit-usb-

flash-drives-spreading-on-amazon-72165/ (accessed Feb. 10, 2021). 

[72] eTeknix.com, “Kingfast unknowingly sent counterfeit SSDs with mislabelled 

Flash NAND for review,” eTeknix, Feb. 17, 2013. https://www.eteknix.com/king-

fast-unknowingly-sent-counterfeit-ssds-with-mislabelled-flash-nand-for-review/ 

(accessed Oct. 27, 2019). 

[73] “Global Report – eBay Fake Memory 2008 – 2009,” Fake Flash Memory Infor-

mation - FlashChipDirector, Jan. 10, 2010. https://flashfakecentral.word-

press.com/2010/01/10/global-report-ebay-fake-memory-2008-2009/ (accessed 

Feb. 10, 2021). 

[74] “Fake Flash News - Internet  & eBay Fraud,” Fake Flash News - Internet  & eBay 

Fraud, Feb. 04, 2012. https://fakeflashnews.wordpress.com/2012/02/04/ebay-

china-resumes-flash-memory-fraud-with-a-vengeance-if-you-want-a-cheap-bar-

gain-for-usb-flash-drives-mp-players-or-memory-cards-on-ebay-expect-to-be-

scammed-sandisk-memorette-samsung-transce/ (accessed Feb. 10, 2021). 

[75] K. Ahi, N. Asadizanjani, S. Shahbazmohamadi, M. Tehranipoor, and M. Anwar, 

“Terahertz characterization of electronic components and comparison of te-

rahertz imaging with x-ray imaging techniques,” 2015, doi: 10.1117/12.2183128. 



137 

 

[76] U. Guin, D. DiMase, and M. Tehranipoor, “A Comprehensive Framework for 

Counterfeit Defect Coverage Analysis and Detection Assessment,” Journal of 

Electronic Testing, vol. 30, no. 1, pp. 25–40, Feb. 2014, doi: 10.1007/s10836-013-

5428-2. 

[77] S. Shahbazmohamadi, D. Forte, and M. Tehranipoor, “Advanced Physical Inspec-

tion Methods for Counterfeit IC Detection,” Nov. 2014, pp. 55–64, doi: 

10.31399/asm.cp.istfa2014p0055. 

[78] N. Robson et al., “Electrically Programmable Fuse (eFUSE): From Memory Re-

dundancy to Autonomic Chips,” in IEEE Custom Integrated Circuits Conference, 

Sep. 2007, pp. 799–804, doi: 10.1109/CICC.2007.4405850. 

[79] L. M. Grupp et al., “Characterizing flash memory: anomalies, observations, and 

applications,” in Proceedings of the 42nd Annual IEEE/ACM International Sym-

posium on Microarchitecture - Micro-42, New York, New York, 2009, p. 24, doi: 

10.1145/1669112.1669118. 

[80] Y. Wang, W. Yu, S. Q. Xu, E. Kan, and G. E. Suh, “Hiding Information in Flash 

Memory,” in IEEE Symposium on Security and Privacy, May 2013, pp. 271–285, 

doi: 10.1109/SP.2013.26. 

[81] P. Poudel and A. Milenković, “Saving Time and Energy Using Partial Flash 

Memory Operations in Low-Power Microcontrollers,” in 2020 21st International 

Symposium on Quality Electronic Design (ISQED), Mar. 2020, pp. 183–189, doi: 

10.1109/ISQED48828.2020.9137034. 

[82] M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and E. Learned-Miller, “Exploiting 

Half-wits: Smarter Storage for Low-power Devices,” in Proceedings of the 9th 

USENIX Conference on File and Stroage Technologies, Berkeley, CA, USA, 2011, 

pp. 55–68, Accessed: Sep. 28, 2019. [Online]. Available: http://dl.acm.org/cita-

tion.cfm?id=1960475.1960479. 

[83] M. Salajegheh, Y. Wang, A. (Andrew) Jiang, E. Learned-Miller, and K. Fu, “Half-

Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcon-

trollers with NOR Flash Memory,” ACM Transactions on Embedded Computing 

Systems, vol. 12, no. 2s, pp. 1–25, May 2013, doi: 10.1145/2465787.2465793. 

[84] H.-W. Tseng, L. M. Grupp, and S. Swanson, “Underpowering NAND flash: Profits 

and perils,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference 

(DAC), May 2013, pp. 1–6, [Online]. Available: https://ieeexplore.ieee.org/docu-

ment/6560755. 

[85] V. Papirla and C. Chakrabarti, “Energy-aware error control coding for Flash 

memories,” in 2009 46th ACM/IEEE Design Automation Conference, Jul. 2009, 

pp. 658–663, doi: 10.1145/1629911.1630085. 



138 

 

[86] S. Nath, “Energy efficient sensor data logging with amnesic flash storage,” in 

2009 International Conference on Information Processing in Sensor Networks, 

Apr. 2009, pp. 157–168, [Online]. Available: https://ieeexplore.ieee.org/docu-

ment/5211934. 

[87] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Capsule: an energy-opti-

mized object storage system for memory-constrained sensor devices,” in Proceed-

ings of the 4th international conference on Embedded networked sensor systems  - 

SenSys ’06, Boulder, Colorado, USA, 2006, p. 195, doi: 10.1145/1182807.1182827. 

[88] T. Instruments, “MSP430F543x, MSP430F541x Mixed-Signal Microcontrollers 

datasheet (Rev. F).” Texas Instruments Incorporated, 2009, [Online]. Available: 

http://www.ti.com/lit/ds/symlink/msp430f5438.pdf. 

[89] A. Dzhagaryan, A. Milenković, M. Milosevic, and E. Jovanov, “An environment 

for automated measurement of energy consumed by mobile and embedded com-

puting devices,” Measurement, vol. 94, pp. 103–118, Dec. 2016, doi: 

10.1016/j.measurement.2016.07.073. 

[90] K. Prall, “Scaling Non-Volatile Memory Below 30nm,” in 2007 22nd IEEE Non-

Volatile Semiconductor Memory Workshop, Aug. 2007, pp. 5–10, doi: 

10.1109/NVSMW.2007.4290561. 

[91] F. Wu et al., “Characterizing 3D Charge Trap NAND Flash: Observations, Anal-

yses and Applications,” in 2018 IEEE 36th International Conference on Computer 

Design (ICCD), Oct. 2018, pp. 381–388, doi: 10.1109/ICCD.2018.00064. 

[92] K. Parat and C. Dennison, “A floating gate based 3D NAND technology with 

CMOS under array,” in 2015 IEEE International Electron Devices Meeting 

(IEDM), Dec. 2015, p. 3.3.1-3.3.4, doi: 10.1109/IEDM.2015.7409618. 

[93] S. Nie, Y. Zhang, W. Wu, and J. Yang, “Layer RBER Variation Aware Read Per-

formance Optimization for 3D Flash Memories,” in 2020 57th ACM/IEEE Design 

Automation Conference (DAC), Jul. 2020, pp. 1–6, doi: 

10.1109/DAC18072.2020.9218631. 

[94] Q. Xiong et al., “Characterizing 3D Floating Gate NAND Flash: Observations, 

Analyses, and Implications,” ACM Trans. Storage, vol. 14, no. 2, pp. 1–31, May 

2018, doi: 10.1145/3162616. 

[95] Y. Shim, M. Kim, M. Chun, J. Park, Y. Kim, and J. Kim, “Exploiting Process 

Similarity of 3D Flash Memory for High Performance SSDs,” in Proceedings of 

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 

New York, NY, USA, Oct. 2019, pp. 211–223, doi: 10.1145/3352460.3358311. 

[96] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch: Improving 

3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and 



139 

 

Temperature Awareness,” in 2018 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA), Vienna, Feb. 2018, pp. 504–517, doi: 

10.1109/HPCA.2018.00050. 

[97] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song, “A survey 

of Flash Translation Layer,” Journal of Systems Architecture, vol. 55, no. 5, pp. 

332–343, May 2009, doi: 10.1016/j.sysarc.2009.03.005. 

 


