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Abstract

This paper presents a multiprocessor simulation environment, developed with the aim to fa-
cilitate the researches of multiprocessor systems using widely available hardware platforms.
It comprises simulation tools, including both an execution-driven and a trace-driven simu-
lator, applicable for memory architecture studies of shared-address space multiprocessors.
It also includes a detailed model of a bus-based cache coherent symmetrical multiprocessor
system. The execution-driven simulator can run parallel applications based on the ANL pro-
gramming paradigm, such as those found in the SPLASH-2 suite, and employs a scheduling
algorithm specially optimized for speed. The trace-driven simulator is based on a concept
of ideal traces, and supports an original technique for abstraction of events that can intro-
duce timing dependencies in a trace, which in turn enables accurate simulation. Both the
execution-driven and the trace-driven simulator can work using same simulators of mem-
ory architectures. The environment provides a simple general interface that allows for the
hardware lying underneath the simulated processors to be modeled using object oriented pro-
gramming. The package currently runs on PC platforms with Pentium or newer processor
under Linux operating system.

1 Introduction

Simulation plays a vital role in multiprocessor studies. In a variety of simulation tech-
niques, ranging from analytical modeling, that is often inadequate for being unable
to model complex multiprocessor interactions, to hardware prototyping that is costly
and inflexible, software simulation has become very popular. Software simulation has
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certain benefits that make it the dominant method for validating of proposed archi-
tectures. Software simulators are easier to develop, they are less expensive than their
hardware counterparts and they are able to perform simulations with high level of
accuracy. They are also more flexible, allowing frequent changes of simulation param-
eters and easy changes in the simulated architecture; this is significant because details
of the architecture under evaluation may frequently need readjusting, according to
the simulation results.

The world of software simulation comprehends several different simulation meth-
ods, with a number of tools that follow them [1]. Certain trade-off between accuracy,
speed, flexibility, expense, portability, and ease of use is present in every simula-
tion method. These issues should be carefully considered when evaluating simulation
techniques or comparing them with each other. A rapid development in the computer
field can also change conditions that make some method the best at one point of time,
leading toward the introduction of new methods or toward reemerging of some of the
old ideas, so that occasional reevaluation of the simulation techniques is necessary.

Currently, one of the most popular methods for simulation of multiprocessors [2]
is execution-driven simulation, due to its speed and accuracy. This method has been
used in a number of popular simulation tools. However, this method does not enable
OS references to be included in the simulation. Trace-driven simulation! is another
method that was widely used in the past, but was replaced by other techniques,
mostly due to its need for large disk space, problems with low disk transfer rates,
and inability to accurately simulate complex interprocess interactions. Yet, with
rapid development of technology, disks with capacities of 10GB or more and with
transfer rates over 10MB/s have become widely accessible, eliminating some of the
drawbacks of this method. Trace-driven simulation can be performed with traces
that can contain memory references from any source, including those from OS. Limes
benefits from using both of these two simulation methods.

Limes consists of two simulators (execution-driven and trace-driven simulator) and
a modifiable software representation of a realistic multiprocessor system. It currently
runs on PC platforms with Pentium or newer processor under Linux operating system.

The following sections will describe Limes. In section 2 we explain the goals
authors sought to satisfy with Limes and other requirements set before it. In section
3 we discuss the existing simulation tools and why is Limes different from them.
Section 4 presents Limes structure in details, including the execution-driven and the
trace-driven simulator and their internal algorithms, and gives insight in one realistic
memory architecture model on an example of the SMP system. Section 5 speaks of
Limes complexity and performance. We draw the conclusions in section 6.

IThe term trace-driven simulation sometimes pertains to all types of software simulations, mean-
ing that a stream of memory references constitutes a trace no matter where it comes from (from
direct execution or from a file). Here, by execution-driven simulation we mean that memory ref-
erences come from direct exection of the instrumented code, and by trace-driven simulation that
memory references come from a file residing on a disk.
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2 Goals and demands

The nature of researches that were to be performed, mainly involving shared-memory
multiprocessor studies, imposed a specific set of demands for a simulation environment
that would be considered appropriate.

First, it had to be executable on PC platforms, because of the estimated number
of experiments, the availability of such platforms in the environment, and the general
inaccessibility and lower number of high-end machines. Still, we wanted to keep a
possibility of porting the environment to other platforms by need.

Second, simulations were meant to be driven by realistic workload - the kind of
workload that would execute on the proposed hardware platform once it comes to life.
Character of the workload greatly influences the performance indicators, and using
inadequate workload can often be misleading. For the execution-driven simulator
we had to choose an appropriate set of applications it can run, in order to give the
simulation results the necessary validity. The SPLASH-2 application suite [3] was
considered a preferred workload, since this set of benchmarks became a de facto
standard among the researchers involved in multiprocessor studies. The trace-driven
simulator was meant to be able to work with traces generated in our environment,
or elsewhere, by need. Having both of these two types of simulators would enable
simulations with a wide range of different workloads.

Third, the simulators were to deliver high level of accuracy, having in mind the
character of the studies, like simulations of bus-based cache coherence protocols [4].

Memory architectures that are studied often have certain similarities in their struc-
ture, and the subtle differences that exist in their internal organization dictate not
only that the simulation be precise, in order to accurately measure the impact of these
differences on performance, but also that the simulator can be easily changed and
adapted, so that little effort is spent when changing details in their structure. These
and other requirements suggested the use of object oriented programming (OOP)
techniques in the building of the memory simulators. Writing a simulator using an
0O language (such as C++) allows great freedom to the writer of the simulator. The
0O approach is also good when considering the desired level of efficiency. Having in
mind the number and the volume of the experiments that need to be performed and a
need for frequent changes of simulation parameters and memory architecture details,
the advantages of the OOP approach become fully visible.

Certain other conditions had to be fulfilled, such as the need to develop memory
architecture models independently from the simulation kernel, which would give the
opportunity for development and testing of systems using parallel traces that come
from different sources (i.e., from direct execution, or from a trace residing on a disk).
A part of the simulator that handles the instrumentation of the application assembly
code (for execution-driven simulation) was also meant to be written to be independent,
which would allow us a possibility to change it easily when switching to different
platforms and thus requiring no other changes in the rest of the environment in that
process.
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3 Existing solutions

Vast majority of the existing simulation tools is developed either for high-end mul-
tiprocessor computers or, if made for uniprocessor machines, then those are almost
exclusively platforms with RISC processors (mainly MIPSes and SPARCs). Sophis-
ticated tools like SimOS [6] (runs on a MIPS based SGI multiprocessor) and SimICS
[7] (runs on SPARC machines) can simulate target architectures with high level of ac-
curacy using instruction set emulation. They are able to simulate the execution of an
entire realistic operating system on a target machine, including complete simulation of
the I/O subsystem. Beside the operating system itself, all kinds of applications can be
used as a realistic workload for the simulations as well. One thing that doesn’t allow
these tools to be considered perfect, except that they work only on RISC platforms,
is the speed of simulation, that is still lower than in the case of the execution-driven
simulation.

Tools like Tango [8] and its successor TangoLite [9], or CacheMire [10], are widely
used execution-driven simulators; but again, they only work on RISC platforms. They
can not ensure a satisfying level of accuracy if ported to a different hardware plat-
form, such as a CISC uniprocessor. Augmint [11] is the only such tool that does in
fact run on a PC (with a minor drawback of omitting iAPx86 string instructions and
standard library routines from instrumentation). Augmint has an advantage that it
also runs under Windows NT, as well as under Solaris operating system on SPARC
machines. However, a trace-driven simulator is not included in the Augmint environ-
ment, making it virtually impossible for OS references to be used as a workload in the
simulations. TangoLite and CacheMire are also lacking a possibility of trace-driven
simulation. They can only produce traces.

Having in mind insufficiencies of the existing tools regarding trace-driven simula-
tion, nonexistence of such tools for PC platforms and for CISCs in general (Augmint
was also just being developed at the time), and an awareness that every tool almost
invariably requires modifications in order to allow for particular effects to be simu-
lated and measuring techniques to be added, we felt that it would be worth of effort
to invest the time in developing a simulator that would be well suited for our research
goals, rather than to modify the existing tools. Once we decided to put effort to it,
we set as a goal to develop the whole environment as a general tool for simulations of
all shared-memory multiprocessor architectures.

4 Limes structure

Limes simulation environment comprises both an execution-driven and a trace-driven
simulator. They enable a multiprocessor system to be simulated on a uniprocessor
host machine, in our case a PC based on Pentium or newer processor. The simulator of
the target system? is devised to be independent from the source of memory references.

2The simulator of the target system actually simulates the behaviour of the target memory system.
Memory system, for example, can include caches, TLBs, interconnection networks or global memory.
Simulation of other parts of the system (like I/O) is not considered here. These are the reasons why
this simulator is also called a simulator of the memory system.
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Figure 1: Simulation in the Limes environment

This enables that both the execution-driven and the trace-driven simulator can use
same simulators of the memory system, where memory/synchronization references
come either from the execution streams of the parallel application’s threads or from
the traces residing on a disk, depending on the type of the simulation. This is shown
in Figure 1.

The environment also includes an extension of the ANL programming paradigm,
where parallel programs are written using only two classes - threads and monitors.
This programming paradigm is easier to use and programs written in this manner
are more understandable than those using raw LOCKs and UNLOCKs. The whole
system is rather small, built on top of Limes. Other programming paradigms can be
implemented in a similar way. This can be of further value for researchers who may
not be necessarily concerned with architecture studies, but are primarily focused on
investigating parallel algorithms.

4.1 Execution-driven simulator

Execution-driven simulation is comprised of two main processes: building of the sim-
ulation executable, which is performed only once, and simulated execution of the
parallel application, which can be performed repeatedly once the executable has been
built.

4.1.1 Building an executable

Applications that can be used to drive the simulator are like those from the SPLASH-2
suite, i.e, they must use the ANL (Argonne National Lab) macros for expressing par-
allelism. When compiling the application, ANL macros are first expanded into the
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series of C/C++ instructions, and then, after the compilation, the whole application
assembly code is instrumented with call-outs of the simulation kernel. The simulator
allows three levels of instrumentation, depending on what type of events are to be
simulated. Level 0 instruments only synchronization primitives and user defined ma-
chine instructions (which are also possible to define in Limes - for example prefetch,
forward etc.), level 1 instruments shared reads and writes as well, and level 2 instru-
ments all other memory references also, including local ones. The speed of simulation
is reciprocal to the instrumentation level. Level 0 may be appropriate for investiga-
tion of parallel algorithms, level 1 for shared-memory architecture evaluations, and
level 2 for simulations of caches.

Parallel applications, like most other C/C++ programs, call standard library func-
tions. Limes by default instruments all standard library functions whose argument
can be a pointer, as they might read or write global memory without the control of
the simulator. Other library functions are not instrumented (which has little impact
on the accuracy), but can be if needed; instrumentation tool is open for additions.

What makes the whole instrumentation process hard is that CISC (unlike RISC)?
instruction set is very complex, containing many instructions, that are frequently
non-uniform, so that many addressing combinations are possible.

The instrumented application code, the simulator kernel, and the simulator of
the memory system are finally compiled and linked together into a single executable.
If the application code is compiled with an appropriate option, the compiler can
produce some debugging information that the instrumentation tool can understand.
If the application crashes, the simulator will use these pieces of information and
print the source line that the offending thread was executing at that moment. The
instrumentation does not prevent the application to be debugged with a standard
debugger.

4.1.2 Simulation

Basically, during the execution the simulator kernel acts like a layer between the
parallel application and the simulated memory system. Parallel application executes
its native machine code, one thread at a time, until it encounters an event of inter-
est, such as a memory/synchronization reference (read/write, lock acquire/release, or
some user defined instruction). Then it gets rescheduled, and the actual operation

30ne important issue deserves attention here: knowing that the simulator will execute applications
that are compiled for a CISC processor, the question is whether the simulation results are bound to
the behaviour of such a processor. Can it be used for simulating some future RISC multiprocessor
too? It is hard to give an exact answer, but our results show that it is possible. One real SPLASH-2
application (FFT) was executed on a MIPS R2000 DEC station and one on a Pentium based PC,
with same parameters (65536 complex doubles - a realistic problem size). The first simulation was
performed using TangoLite, and the second one using Limes. MIPS generated 18.393 millions of
shared reads and 12.908 millions of shared writes, while Pentium generated 18.552 millions of shared
reads and 12.782 of shared writes during the execution of the application. The results indicate that
for a real application, a RISC such as MIPS R2000 generates approximately the same number of
shared reads and writes as Pentium does (in both cases the discrepance is less then lreferences are
generally of little importance to multiprocessor studies; shared references is what determines the
behaviour and performance of multiprocesor systems.
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is deferred until its time stamp reaches the global simulation time. The simulator is
responsible for multiplexing threads and for scheduling of their memory requests at
proper times, in correct order.

Context switching occurs each time the thread is rescheduled. The programming
model supported is lightweight threads model (all processes share the address space
with the master process, except for the stack area, which is private for each process).
Consequently, the whole simulation (including application threads, simulator kernel,
and memory simulator) executes in the context of a single UNIX process.

Instruction execution times are calculated at the end of each basic block (a basic
block here ends with a branch, a label, or a memory reference). At compile time each
instruction is associated with a number that represents the number of cycles it takes
to execute before the execution of the next instruction begins. For most instructions
this number is one. By changing these values it is possible to model a faster or a
slower processor. For example, by decreasing their value we can roughly simulate a
superpipeline processor. Simulation time is expressed in processor cycles of the target
multiprocessor system.

The simulator can also produce a trace that contains references according to the
level of instrumentation, along with additional data that can be used to support
accurate trace-driven simulation; file format is open for the user to change it.

4.1.3 Optimized scheduling algorithm

Scheduling is necessary during the execution of the simulation to maintain correct
interleaving of memory activities of the application threads. The scheduling algo-
rithm of the simulator can substantially influence the performance of the simulation.
Though relative importance of the scheduling overhead on the simulation performance
is limited by the existence of overhead introduced by other factors (primarily by the
code instrumentation and by the simulation of the memory system), the frequency of
scheduling activities make it worth-wile to reduce the scheduling overhead as much
as possible. The following optimizations are implemented:

1. Accurate simulation can be accomplished if the memory simulator was called after
every cycle in the simulation, regardless of whether any requests exist in that cycle
or not. However, it would slow down the simulation significantly. Another, equally
correct approach is chosen: the scheduler calls the memory simulator in subsequent
simulated cycles only if there is at least one new request or at least one stalled thread;
idle cycles can be skipped.

2. The scheduling algorithm will force the continuous execution of non-global instruc-
tions as much as possible, saving thus the time needed for frequent invocations of the
scheduler and context switchings.

3. The scheduler will call the memory simulator only if there are no threads that can
continue execution, i.e. if they all wait for a memory operation to complete, saving
thus additional time for invocations of the memory simulator and context switchings.
4. Threads are allowed to continue execution without first waiting for shared writes
to be completely simulated, deferring that job as long as possible and saving thus the
time for frequent calls to the memory simulator.
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4.2 Trace-driven simulator

Making a trace of some program’s execution enables that a simulation with the same
workload can be performed without a program’s reexecution. Trace-driven simulation
is concerned only with the global memory references and synchronization operations,
while local operations are not of importance for multiprocessor studies (their influence
is reduced to the time of their completion and it is built in a trace via time stamps).

There are some benefits of using trace-driven simulation. If multiple simulations
are performed with the same trace then trace-driven simulation can potentially bring
speedup over multiple execution-driven simulation runs; unfortunately, due to the
disk transfer rate limitations, this is not always possible. Multiple runs can also
yield different results when using execution-driven simulation if non-deterministic
scheduling is performed. It is possible even with static scheduling of workload. This
is not the case if trace-driven simulation is used. Trace-driven simulation also enables
the use of traces that contain OS references, while execution-driven simulations can
not include OS references at all.

There is one more benefit from using traces as a workload. When comparison of
two architectures is needed, and their simulators are not working on identical plat-
forms, or even with the same simulators, trace-driven simulation enables completely
accurate comparison (only instruction interpretation method enables that too). Using
execution-driven simulation, for example, could give completely different results for
the same workload. Same traces, on the other hand, contain same information on
the local operations (i.e., they have same time-stamps), so the comparison is reduced
only to differences in the memory systems, whose simulation is independent of the
platform.

Limes’ trace-driven simulator can use as input a trace generated in the Limes en-
vironment or from some other source. Limes is very flexible concerning the trace file
format. It currently supports two formats: a textual trace file format that enables
a trace to be viewed with a simple text editor, and a binary trace file format that
is significantly shorter and used for storing large traces. Other formats can be easily
implemented by altering the appropriate modules of the simulator. Every format,
however, should be able to support abstraction by allowing some additional informa-
tion to be stored in a trace; Limes enables accurate trace-driven simulation, where
possible, by using the method of abstraction to eliminate timing dependencies.

4.2.1 Accuracy issues

The execution path of a multiprocessor workload depends on the ordering of events
in a system, which in turn depends on the timings of the machine’s memory system.
When timing dependencies are present, a small change to the memory system archi-
tecture can induce numerous changes to the execution path of a program and cause
inaccurate simulation. This happens because the only information that a trace con-
tains about the execution path of a program is the one implicitly built in a trace via
time stamps, which is valid only until the memory system is not changed. If the mem-
ory system is changed, timings may get changed too, and, consequently, program’s
execution path can be changed.
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In [12] authors find that traditional address traces are not adequate for accurate
trace-driven simulation and they propose intrinsic traces as an alternative (intrinsic
trace consists of the control-flow graph of the workload plus timing and address data
for each basic block). They argue that accurate trace-driven simulation without par-
tial reexecution of the program is possible only for so called graph-traceable programs
(those are programs where all addresses can be determined during simulation, based
only on the information gathered from the trace). In reality the range of programs for
which accurate trace-driven simulation can be obtained at a reasonable cost reduces
to a class of programs whose threads have execution and data paths that can not be
influenced by other threads. Most applications comply to this condition.

As discussed in [13], accurate trace-driven simulation can be obtained (where pos-
sible) only by eliminating timing dependencies from the trace by abstraction of the
operations that cause them. To eliminate timing dependencies by means of abstrac-
tion, we must first ensure that all the necessary information are recorded in a trace,
and then to support the abstraction on the side of the simulator (at the expense of
additional simulator complexity).

In [14] it is discussed whether traces generated from multiple runs of the same
program will yield the same results, and if tracing induced dilation affects simulation
accuracy. As already mentioned, we don’t need multiple simulation runs, because once
we get a trace it can be used for simulation of different memory architectures. As for
the second issue, Limes produces traces without the time dilation effect, but we can
not guarantee that trace collection techniques used elsewhere [15] will not introduce
that effect. For example, like Limes, TangoLite, Augmint, and other execution-driven
simulators that are used for trace collection, do not introduce time dilation. Traces
generated by SimOS or SimICS also do not suffer from the time dilation effect. This
is because they all perform tracing on the simulated architectures. Microcode mod-
ification used in ATUM [16] and a technique of inline tracing used in MPtrace [17]
and TRAPEDS [18] does introduce time dilation, as they are used to trace programs
on a host machine. The dilation effect, however, is often negligible.

4.2.2 Abstraction

Abstraction of operations that can influence program’s execution path means that
certain information about them are stored in a trace so that they can be correctly
redone during the simulation. That way the simulator will no longer be bound to the
time stamps when the execution path is concerned; instead, it will be able to main-
tain the correct ordering by redoing the critical timing dependent operations. Timing
dependent operations include: shared memory references (reads and writes), synchro-
nization operations (such as locks and barriers), operations for dynamic scheduling
of workloads (like allocation of tasks, loop iterations, or memory), and other timing
dependent operations (like creation of a child thread). Timing dependent operations
other than those that can influence the program execution path (like those involving
real-time clock®) can also be abstracted.

4Operations involving real-time clock are timing dependent because the timings of other opera-
tions influence the time that the clock shows at certain point.
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We divide timing dependent operations in two groups: elementary and complex.
Elementary operations are those that are realized in the simulated hardware as prim-
itives, or represent simple events whose influence on the simulation can be completely
defined by their timing information. Complex operations are realized through the use
of elementary operations. In our case elementary operations are shared reads/writes,
lock acquires/releases, user defined instructions, and events of creating a child thread,
while barriers are realized as complex operations; however, it can be changed which
operations will be elementary and which will be complex. The simulator is also ready
to support the abstraction of other timing dependent operations and of different im-
plementations of currently supported operations.

Elementary and complex operations are abstracted in a different way. Timing
dependencies can be eliminated from elementary timing dependent operations by
recording their timing information (start, end, or duration). That way the simula-
tor can calculate the amount of ’pollution’ introduced by the architecture on which
the trace was generated and eliminate it. Complex operations are much harder to
abstract, depending on how ”complex” they are. In general, it is up to the trace-
collecting tool to save all the necessary information into the trace. The abstraction
technique we use is responsible to perform accurate simulation based on them.

4.2.3 Concept of an ideal trace

The abstraction of elementary timing dependent operations can be reduced to simply
decreasing the time stamps for the amount of their time of duration. In another
words, time stamps, that implicitly contain the information about the execution path,
are reduced to contain only that information and no information on the memory
system. This needs to be done only once after the trace is created, and after that
the simulations can be performed any number of times. Complex timing dependent
operations, on the other hand, must be handled completely by the simulator at run
time.

We based our simulator on ideal traces. Ideal trace is a trace where all elemen-
tary timing dependent operations have already been freed of timing dependencies by
adjusting their time stamp values, and where complex timing dependent operations
have been properly abstracted. The easiest way to produce it is to run a simulation
using an ideal memory simulator, where each memory request is completed in a single
cycle. However, lock acquire operations will not be abstracted that way (for they
must preserve correct global ordering). We fight this inconvenience by forcing the
first and the last attempt for gaining a lock to appear in a trace. After the simulation
is over, during the postprocessing phase, the superfluous lock appearances are elim-
inated, while the time stamps of all the references that follow are corrected for the
amount of time the lock had to wait to gain it. This procedure assures a fast way to
get an ideal trace, as ideal memory simulator adds very little time to the simulation
overhead.
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4.2.4 Simulation using Tracer

Tracer is Limes’ trace-driven simulation tool. By default, Tracer supposes that a trace
it will use as an input is a single file that contains all processors’ references. This
format is chosen because it is more efficient regarding storage space than having a
separate trace file for each processor. It allows that one time stamp can be used for
a group of operations that are done in the same cycle on different processors. It is
more efficient to have same number of 1-byte processor labels than 4-byte time stamp
integers. Such a trace is also convenient for visual inspection if it is in textual format.
However, this format is not convenient for the simulation. That is why Tracer first
invokes a parser that makes ideal traces for each processor, which are then used as an
input to the simulator (see Figure 1). At the same time parser eliminates superfluous
lock requests and corrects time stamps (as a part of the postprocessing phase of the
lock abstraction process), and extracts in a special data structure information needed
by the simulator to support abstraction of barriers. This process needs to be done
only once, and the obtained ideal traces can be then used for multiple simulations.
This is much more efficient than if the whole procedure was done by the simulator at
run time. That also means that no additional information on the elementary timing
dependent operations are needed in a trace after postprocessing, which reduces its
size.

The simulation process is quite straightforward, except for the barriers. In a
complex implementation where each barrier in a trace is just a set of reads, writes,
locks and unlocks, there would be no way to tell if these primitives functionally
execute this synchronization operation if they weren’t previously annotated during
the trace generation phase. Each barrier is annotated with markers at certain points,
which are recognized by the scheduler, and by using these pieces of information it
can perform the abstraction. The abstraction principle is quite general and can be
used for handling different implementations of barriers, as well as other complex
timing dependent operations. Another event that must be recorded and abstracted
is the creation of a child thread. It is necessary to abstract these events, to prevent
scheduling of child threads before they were actually created by the parent.

This set of abstracted operations is sufficient to support all statically scheduled
workloads. Abstraction of dynamically scheduled workloads can be supported by
extending the abstraction paradigm used for statically scheduled programs.

4.3 Memory system simulator

The simulator of the memory system can be used by both the execution-driven and
the trace-driven simulator. The simulator of the memory system is completely inde-
pendent from the simulation kernel and from the applications (traces) used to drive
the simulations. The simulation kernel provides the simulator of the memory system
with a stream of requests. They use a simple interface to communicate, and that
interface should be used when building up a simulator of any target system. How is
the memory simulator realized is of no importance as long as it uses that interface.
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4.3.1 SMP memory simulator

A model of a bus-based cache coherent symmetrical multiprocessor system (SMP)
comes with Limes. It is a system comprised of N identical processors, with on-chip
(L1) caches implementing one from the set of supported coherency protocols. The
processors and the main memory are interconnected via bus, and all the communica-
tion through bus signals is adequately mimicked.

The system currently includes detailed examples of five snoopy cache coherence
protocols, namely WTI (Write-Through Invalidate), WIN (Word Invalidate), Berke-
ley, Dragon, and MESI. The protocols differ in the operation of their cache controller
modules, while the rest of the modules are functionally equal. The operation of the
module is distinctly represented as a mixture of a flow chart and a state diagram.
Modules are easily modifiable and extendible since they are written employing the
OOP style.

Like cache controllers, all other hardware units are also programmatically repre-
sented as independent modules (C++ classes). That is, the modules do not com-
municate directly; rather, they are organized as isolated units, which communicate
with the outer world through input/output ports: a module reads its input ports,
performs the operation that depends on both the information on the input ports and
the internal state of the module, and leaves the result on its output ports. This de-
sign philosophy resembles greatly the one employed by VHDL. This only shows that
various approaches are possible using OOP; the freedom in writing a memory system
simulator, however, should be complete. A guide to designing simulators is a part of
the Limes documentation.

5 Limes complexity and performance

The whole Limes package, including both simulators and all memory models, consists
of around 8500 lines of C++ code. The most complex classes - the detailed cache con-
trollers, contain on the average some 400 lines that capture the complete behavior of
the controller. The whole code is profusely commented. Complete Limes environment
(including 9 SPLASH-2 applications) takes about 820KB, compressed.

The compilation process is rather quick, and takes from 1s. for simple memory
models, up to 15s. for the most complex ones, measured on a Pentium/133 platform.

Limes performance is presented in Table 1. The results show execution times and
slowdowns of four SPLASH-2 programs, for execution-driven simulations. Simula-
tions have been done for 3 different memory models and 2 instrumentation levels for
each model. Abstract model does not invoke the scheduler or the memory simula-
tor. It responds to the requests right away, but still preserves the global ordering.
Ideal and MESI models both invoke the scheduler and the memory simulator. Ideal
memory simulator returns a satisfy signal in a single cycle for every memory request
(read/write), except for synchronization requests (lock/unlock). MESI is the most
complex memory simulator in the current version of Limes, performing the simula-
tion of a bus-based SMP with MESI cache coherence protocol.
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simulator/ OCEAN FFT LU RADIX Avg.
level time[s] | slw. | time[s] | slw. | time[s] | slw. | time[s] | slw. | slw.
uninstrumented 8 1 2 1 16 1 7 1 1

abstract /levell 312 39 65 32 863 54 7 11 34
abstract/level2 684 85 94 47 1120 70 270 38 60

ideal/levell 729 91 122 61 2438 152 132 19 81
ideal/level2 1334 166 200 100 3045 190 698 100 | 139
MESI/levell 5273 660 850 425 | 10056 | 628 737 105 | 454
MESI/level2 5694 712 893 447 | 10297 | 644 1798 256 | 515

Table 1: Execution-driven simulation times and slowdowns for 4 SPLASH-2 applica-
tions, for various memory simulation models. Simulations are for 16 processors. They
were ran on a Pentium/133MHz PC platform.

simulator/ OCEAN FFT LU RADIX Avg.
type time[s] | ratio | time[s] | ratio | time[s] | ratio | time[s] | ratio | ratio
MESI/trace 145 2.38 57 2.37 36 1.80 66 1.94 | 2.12
MESI/exec 61 24 20 34

Table 2: Speed of the trace-driven simulation for 4 SPLASH-2 applications compared
to the execution-driven simulation. Simulations are for 8 processors. They were ran
on a Pentium/133MHz PC platform.

Slowdowns for abstract model indicate the instrumentation overhead introduced
by the simulator, where correct global ordering is still kept. Results show that this
is the biggest source of slowdown compared to other factors. Slowdowns using ideal
memory simulator indicate the scheduling and the memory simulator invocation over-
head. They are relatively low due to the optimized scheduling policy. Finally, simula-
tion of a realistic bus-based SMP system with a MESI protocol indicates the memory
simulator overhead.

The results are comparable to the TangoLite performance. Limes has an average
slowdown of 454 compared to the TangoLite average slowdown of 765 for the similar
simulation complexity.

Results for the trace-driven simulation are presented in Table 2. They show
the trace-driven simulator performance against the execution-driven simulator. Disk
transfer rate is about 1.0 MB/s.

It is obvious that disk transfer introduces a constant overhead in the simulation.
It can be substantially reduced by using a faster disk. The rest of the time is spent by
the simulator. The version of the trace-driven simulator used to obtain these results
is not optimized for fast disk access. Trace-driven simulation can be potentially twice
faster than the execution-driven simulation with optimal disk access policy.

Instrumentation inevitably increases the size of the application. With Limes,
instrumentation typically increases application static size by a factor of 2.1-2.3, which
is better compared to the factor of four for TangoLite.
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6 Conclusions

Limes comprises two usable simulators and a complete model of an SMP system,
offering fast and accurate simulation on today so popular PC platforms. It employs
some new abstraction techniques for accurate trace-driven simulation, with a concept
that can be extended even to non-deterministic workloads, if properly supported by
the trace generation tool. On the other side, the execution-driven simulator offers
respectable speed using fully optimized scheduling algorithm. For those that are
more interested in investigating parallel algorithms, Limes offers very fast type of
simulation that still preserves correct global ordering; also, a new paradigm for easy
and comprehensible parallel programming is available, and new ones can be developed.

There is, however, enough room for some improvements and future work. Trace-
driven simulator should optimize its access to the trace references and achieve higher
simulation speed. It can also be extended to support abstraction of some other types of
timing dependent operations, including dynamically scheduled workloads. Simulators
could be improved to support multithreading, or thread migration. Future versions
of the package may also include simulators of systems other than a bus-based SMP.
Development of other types of systems is in progress. In the end, Limes could be
ported to work on other platforms and operating systems.

The intentions behind the development of this tool were to facilitate the multi-
processor studies at the University of Belgrade, and to provide the researchers with
the environment that can be easily adapted to fulfill their particular demands in or-
der to make their study more effective. The tool can be of benefit to all who need
realistic simulations of shared-address space multiprocessors and to the researchers
in the field of parallel algorithms. Application of Limes can also be in education,
as a free, easily available, understandable, and modifiable tool. The whole Limes
package is in the public domain, and can be found at the following Internet address:
http://galeb.etf.bg.ac.yu/ vm/smp
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