

Abstract—Time synchronization plays an important role in

wireless sensor networks, enabling correlation of diverse
measurements from distributed sensor nodes, shared channel
communication, and energy conservation. When designing time
synchronization algorithms for wireless sensor networks, a
number of parameters needs to be carefully considered, including
precision, processing time overheads, memory requirements, and
energy costs. In this paper we describe an implementation of time
synchronization on a wireless sensor network custom designed for
traffic monitoring applications. Each node consists of a magnetic
sensor, a microcontroller, and a low-power Nordic nRF24L01+
radio chip. We describe various aspects of our time
synchronization implementation, including hardware interfacing,
low-level event time-stamping, time synchronization mechanism,
and software implementation. We discuss the results of our
experimental study focusing on precision and performance
overhead.

Index Terms—Sensor Networks, Synchronization, Nordic.

I. INTRODUCTION

Wireless sensor networks represent an emerging computing
platform that blends sensing, computation, and communication
to provide a new tool in interfacing with physical
environments. Wireless sensor networks consist of a large
number of tiny and inexpensive computer platforms that are
deeply embedded in their environments. These platforms are
capable of sensing the environment, processing information on-
board, and communicating with each other and with a network
server through multi-hop wireless links. They must reliably
operate unattended for extended periods of time (months and
years), under stringent resource constraints in energy,
communication bandwidth, memory capacity, and processing
power.

Time is an important aspect in many applications of wireless
sensor networks. Sensor platforms can measure time using their
local clocks, driven by oscillators. However, because of
random phase shifts and drift rates of oscillators, the local time
readings start to differ quickly, causing nodes to lose
synchronization. To cope with this issue, wireless sensor
networks need to employ time synchronization. Time

synchronization plays a critical role in wireless sensor networks
enabling: (i) communication protocols based on time-division
multiple access; (ii) coordinated wakeups from low-power
modes, and (iii) distributed sampling and data aggregation.

A number of time synchronization algorithms for wireless
sensor networks have been introduced. Most notable protocols
are RBS [1], TSPN [2], and FTSP [3]. The Flooding Time
Synchronization Protocol (FTSP) was developed to provide a
means for network-wide time synchronization in large wireless
sensor networks. Time synchronization is achieved with
periodic time synchronization messages that carry a very
precise timestamp of when the message was sent (global time).
A dynamically elected root broadcasts the time synchronization
message. Receiving nodes take their respective local
timestamps when the time sync message is received (local
time) and rebroadcast the time synchronization messages, thus
flooding the network. Comparing the global and local
timestamps from the last several time synchronization
messages, each node computes a simple linear regression to
account for the offset and skew in its local clock from the
global clock. Cox et al. [4] introduced a simple implementation
of this protocol for Zigbee sensor networks with star topology
and demonstrated its operation on a network with Telos
platforms [5].

In this paper we describe a new implementation of the time
synchronization from [4] that is customized for our originally
designed low-power wireless sensor network that targets traffic
monitoring applications. We discuss time synchronization in
general and our application requirements of interest for time
synchronization in Section 2. The wireless sensor network for
traffic monitoring consists of a custom-made sensor platform
featuring magnetic sensors, a microcontroller, and a Nordic
nRF24L01+ radio chip. The nodes are designed for small form
factor and very low power consumption. The proposed time
synchronization implementation is described in Section 3. It
covers various aspects of the implementation: hardware
interface, communication protocols, software structures, and
time synchronization service functions. Section 4 presents the
results of our experimental evaluation, which focuses on
accuracy, performance and memory overheads. Finally, Section
5 concludes the paper.

An Implementation of Time Synchronization in
Low-Power Wireless Sensor Networks

Nason Tackett, Emil Jovanov, Aleksandar Milenković¥
Electrical and Computer Engineering Department

University of Alabama in Huntsville
Huntsville, AL 35899 USA

¥ milenka@uah.edu

978-1-4244-9593-1/11/$26.00 ©2011 IEEE 61

II. TIME SYNCHRONIZATION

Time synchronization is a common requirement in wireless
sensor networks enabling efficient communication, energy
conservation, and collaborative processing. Sensor nodes share
radio spectrum and to conserve energy it is advantageous to
avoid costly retransmissions of radio packets due to collisions.
A common solution is to allocate specific periods of time in
which each sensor node is allowed to transmit data. This
method is known as time-division multiplexing. Time
synchronization is crucial to coordinate timeslots when each
node can transmit. Next, time synchronization allows
individual sensor nodes to stay in power-down operating
modes, thus conserving energy. For example, radio chips can
be turned-on only during timeslots reserved for a particular
sensor node. Finally, some applications of sensor networks
require distributed and collaborative signal processing.
Multiple sensor nodes may detect events that need to be
precisely time-stamped for later analysis. In such cases it is
important that all sensor nodes and gateway share a common
and accurate notion of time, regardless of the device type and
clock source. Again, time synchronization is instrumental for
providing abstractions to support this type of collaborative
processing.

Wireless sensor network applications often pose different
requirements to time synchronization algorithms. When
designing new or evaluating the existing time synchronization
methods, several synchronization metrics should be considered.
Among these metrics are precision, energy costs,
computational resources, memory requirements, and fault
tolerance. Thus, we will first discuss characteristics of our
wireless sensor network application which targets traffic
monitoring with a special focus on requirements relevant to
time synchronization.

Our traffic monitoring system consists of multiple wireless
sensor nodes deployed on the top of roadways, a gateway, and
a centralized server (Fig. 1). Each sensor node consists of a
magnetic sensor, an embedded microcontroller, a radio, and an
energy source. The magnetic sensor, which measures the
earth’s magnetic field, tracks disturbances to this field as
vehicles pass nearby. To detect a passing vehicle, the
microcontroller performs sampling and processing of magnetic
sensor signals. The signal processing involves detecting and
time-stamping relevant events (e.g., beginning of a
disturbance), or even analyzing the shape of disturbances to
gain additional insights (e.g., about the size of the vehicle).

The sensor nodes wirelessly send the processed information
about relevant events to the gateway. The gateway employs
collaborative processing of events streamed from the sensor
nodes to get not only statistics related to the number of vehicles
on the roadways as a function of time, but also vehicles’ speeds
and sizes. Key requirements for such a system are a robust
design and small form factor for sensor nodes, so that they can
be easily deployed on the top of roadways. The small form
factor imposes limits on the size of the battery, which in turn

translates into limited battery capacity (typically, the battery
capacity is directly proportional to its size and weight). In
addition, the traffic monitoring system should also provide
reliable and autonomous operation for extended periods of
time, without frequent battery changes. Consequently,
providing a low-power operation is crucial for designing cost-
effective and practical traffic monitoring system.

Fig. 1. Traffic monitoring system.

To meet the application requirements for size and low-power
operation we opted to design our custom sensor platforms.
Typically, a radio interface is the main contributor to the
energy consumed on a sensor platform. For example, the
current drawn by radio interfaces is 5-10 times larger than the
current drawn by a microcontroller [6]. Consequently, we
decided to use one of the most energy-efficient radio
controllers, a Nordic’s nRF24L01+. Thus, our sensor platforms
include a Texas Instruments’s MSP430 mixed signal system-
on-a-chip MSP430F2410 (includes 16-bit processor core with
RAM, flash memory, and a rich set of analog and digital
peripherals) [7], a Nordic’s nRF24L01+ single-chip radio [8], a
magnetic sensor [9], and a power source.

Implementing cost-effective and precise time
synchronization is instrumental for traffic monitoring
applications. It is crucial to support our communication
protocol, to coordinate power-down modes of wireless radios,
and to enable collaborative processing at the gateway (e.g., in
determining vehicle speed from two sensors as illustrated in
Fig. 1). Unfortunately, the available solutions for time
synchronization were not readily available or applicable to our
sensor platform. This motivated us to develop our own
implementation of the time synchronization method based on a
modified FTSP algorithm proposed by Cox et al. [4].

The gateway is the master node and it periodically sends
time synchronization messages that carry a timestamp with
global time. The sensor platforms, slave nodes in this case,
receive time synchronization messages and timestamp them
using their local time. Each slave node maintains its own table
with global, local, and difference time stamps for several recent

62

time synchronization messages. The slaves use a simple linear
regression to compute the offset and the skew between their
local times and the global time. This enables each slave to
maintain a very precise estimate of the global time regardless
of whether its clock is running faster or slower than the global
clock.

III. IMPLEMENTATION OF TIME SYNCHRONIZATION

Time synchronization implementation in general spans
different layers of abstractions, from hardware interfaces,
communication protocols, to software structures and functions
required to maintain precise time synchronization. In this
section we first discuss the hardware interface specific for our
sensor platforms and then we discuss network operation and
software implementation.

Fig. 2 illustrates the interface between the Nordic
nRF24L01+ radio chip and the MS430 microcontroller (top)
and a radio packet format (bottom). The microcontroller
configures the radio and controls its operation by sending and
receiving commands and data via a synchronous peripheral
interface (SPI). The radio chip can be configured to operate in
different operating modes (e.g., Transmit, Receive, Standby, or
Power-down).

The radio chip automatically assembles or disassembles a
radio packet that contains a preamble, address, control, variable
payload, and CRC field (Fig. 2, bottom). An important part of
the interface for time synchronization is the IRQ signal. The
radio chip drives this signal and it can be configured to
generate an interrupt request on certain events (e.g., when a
new packet has been received or when a packet has been sent.)

Our traffic monitoring system employs a star topology with
the gateway serving as the network master. The time
maintained by the gateway is called global time and each
sensor node has its own local time. The gateway periodically
broadcasts a time synchronization message that carries
information about the global time captured at the master. All
sensor nodes, acting as slaves, receive the time synchronization
message. In addition, each node captures its respective local
time, and updates its time synchronization table that maintains
recent (globalTime, localTime, difference) entries. Upon
receiving a new time synchronization message, each slave
calculates skew and offset parameters using linear regression
[3][4] in order to determine local clock drift relative to the
clock at the master.

In order to synchronize the master and slaves there must be a
fixed point in time that can be referenced by all participating
parties without any software-induced delay. While many radios
provide a dedicated signal that acts as a start-of-frame delimiter
[4], the Nordic radio only has an interrupt request line that can
be configured to become active when a radio packet has been
sent or received. Luckily, this signal can be utilized for precise
time-stamping. We connect this signal to a microcontroller’s
timer peripheral. The timer peripheral supports hardware
capture of the timer counter triggered by an external signal (in
our case falling edge of the IRQ signal). This way, a precise

time-stamping of the active edge of the interrupt signal can be
achieved at the master and all the slaves. Note that the
propagation delay of a radio packet is negligible in our case.
For example, assuming a distance between the master and a
slave of 150 meters, it is 0.5 μs (150/3*108), which is
negligible relative to the timer clock of 30.5 μs. In addition to
causing a capture at the timer, the active edge of the IRQ is
configured to raise an interrupt request. The corresponding
interrupt service routine reads the captured value from the
microcontroller’s timer peripheral and converts it to the local
time. The timer in the MSP430 microcontroller is a 16-bit
peripheral. However, our local time variable maintained in
software is typically 24-bit or 32-bit long; in general, the length
of the time variable is a design parameter.

Fig. 3 illustrates the proposed time synchronization
algorithm. The master node periodically broadcasts a time
synchronization message. The frequency of time
synchronization messages is a design parameter and depends
on various factors, including, clock stability, environmental
conditions, operating conditions, power and performance
overheads required by time synchronization. Let us say that we
consider the master sending i-th time synchronization message.
The payload of the time synchronization message includes its
sequence number, i, and the timestamp that was captured at the
master upon transmission of the previous synchronization
message (GT(i-1)). The sequence number is required to enable
detection of possible lost synchronization messages at each
individual slave. The master captures a new time stamp, GT(i)
upon transmission of the current synchronization message. This
timestamp will be included as the payload in the next (i+1)-th
synchronization message.

All slave nodes maintain a software structure dedicated to
synchronization, called time synchronization table. The table
includes n entries (n is a design parameter) that are updated in a
round-robin fashion. Each entry in the table includes a local
timestamp, a global timestamp, the difference, and a valid flag
(Fig. 3). A slave captures its local timestamp when a new time
synchronization message has been received (LT(i)). The next
entry in the table is updated with the local timestamp LT(i) as
illustrated in Fig. 3. This timestamp corresponds to the global
timestamp captured at the master, but it will be received in the

SCK

Capture

MSP430
Interrupt

SPI

GIOx

MOSI

RF Packet
Format

MISO

CE
CSN

IRQTimer

Nordic
nRF24L01+

SPISCL
SIMO
SOMI

Preamble
(1 byte)

Payload
(0-32 bytes)

CRC
(1-2 bytes)

Address
(3-5 bytes)

Control
Field (9 bits)

IRQ

fixed delay

Fig. 2. Interfacing Nordic’s nRF24L01+ transceiver (top). An enhanced
ShockBurst packet format and IRQ signal (bottom).

63

next time synchronization message. The global timestamp,
GT(i-1), captured at the master upon transmission of the
previous time synchronization message, is extracted from the
current message and the table is updated as shown in Fig. 3. In
case of a lost time synchronization message, the slave will
invalidate the corresponding entry in the table and update the
next entry pointer.

The microcontroller executes several tasks related to time
synchronization, including the calculations of the skew and
offset parameters. Upon receiving each synchronization
message the skew and offset are updated as follows. First, we
calculate the offset as the average difference between the
global and local timestamps (Eq. 1). We also determine the
average local timestamp (Eq. 1). The skew is calculated as
shown in Eq. 2 using a classical linear regression. Based on
these two parameters a slave can determine a global timestamp
GTx for any local event using the local timestamp LTx (Eq. 3).
So, when a node reports the time when an event has occurred,
the global timestamp is calculated and sent to the gateway.

∑∑ ∑ ⋅=−⋅=⋅=
i

i
i i

iii LT
n

LTLTGT
n

Diff
n

offset 1,)(11 Eq. 1

∑
∑

−

−⋅−
=

i
i

i
ii

LTLT

offsetDiffLTLT
skew 2)(

)()(
 Eq. 2

)(LTLTskewoffsetLTGT xxx −⋅++= Eq. 3

The time synchronization table needs to be fully or partially

filled with valid (LocalTime, GlobalTime, difference) entries
before the offset and skew parameters can be accurately
calculated. The total number of entries in the time
synchronization table and the minimum number of entries
needed to calculate the offset and skew are design parameters.
With an increase in the number of entries the accuracy of
calculations increases too. However, it also increases
processing, memory, and energy overheads, which is
undesirable in resource-constrained sensor nodes. Our
experiments indicate that a minimum of four time
synchronization messages is sufficient to calculate the offset
and skew, allowing for fast synchronization with accuracy of
±2 timer clocks.

We have extended our time synchronization mechanism to
include an accuracy check procedure. The slave nodes verify
the accuracy of time synchronization by comparing each of the
global times in the synchronization table (received from the
master) with the corresponding calculated global times using
Eq. 3. If each of the calculated global times are equal to the
respective global times, then the device exhibits good time
synchronization. When a slave node reaches successful time
synchronization, it continues to recalculate the offset and skew
each time a new time synchronization message is received.
However, if the average difference between global time and the
calculated global time are more than one clock cycle off (this is
a design parameter), the most recent values for the offset and
skew parameters are not used. Instead, the slave requests fast
synchronization and continues to operate using the last good
offset and skew parameters, until new stable values are found.

In addition to time synchronization tasks taken in a steady
state, our implementation involves handling exceptional

Master

Slave

Propagation

GT(i-1)iHeader Payload CRCGT(i-1)iHeader Payload CRC

Timer
Capture

GT(i)

Timer
Capture

GT(i-1)iHeader Payload CRCGT(i-1)iHeader Payload CRC

Local
Time

Global
Time

Diff

Slave – TimeSync Table

Valid

LT(i-1) GT(i-1)

LT(i) GT(i)

Propagation

GT(i)i+1Header Payload CRCGT(i)i+1Header Payload CRC

Timer
Capture

Timer
Capture

GT(i)i+1Header Payload CRCGT(i)i+1Header Payload CRC

i-1

i

LT(i+1)i+1

Time

GT(i+1)

LT(i) LT(i+1)

Super Cycle

Fig. 3. Proposed implementation of time synchronization in wireless sensor networks with star topology.

64

situations. In the remaining of this section we discuss time
synchronization activities taken when a new slave node joins
the network, when the master node reboots, and when the time
variables rollover.

Initializing the time synchronization table when a slave joins
the network may take a relatively long time, especially in cases
of infrequent broadcasts of time synchronization messages. To
expedite this process, we allowed for fast synchronization.
When a slave node comes online, it sends a message to the
master requesting fast synchronization. When the master
receives such a request, it notifies all the slaves that time
synchronization messages will be sent at a faster rate. Note: in
case that the slaves are in a power-down mode, this notification
is carried out during regular time synchronization time slot.
When the slave who initiated fast synchronization achieves it, it
sends a fast synchronization termination request. The master
then notifies all the slaves about switching to regular time
synchronization period.

Another boundary condition is when the master (network
gateway) undergoes a reboot. The master sends out a “boot
announce” message to inform all the slaves that the existing
time synchronization tables should be invalidated. The slaves
continue to use the last “good” offset and skew parameters until
enough time synchronization messages have been received.
The slaves use the payload of the first time synchronization
message after the “boot announce” message to set their local
time close to the new global time. This way, the offset
parameters at each slave are kept as close to zero as possible.

We have chosen 32-bit unsigned integers for local and global
time variables. The microcontroller uses a 16-bit timer
peripheral though, and the interrupt service routine caused by
the timer’s counter rollover or an external event is used to
update the local time variable. We use a stable external 32 KHz
clock source as the timer’s clock source. This clock proves to
be sufficient for our application. A small example is used to
support this claim. Let us consider two sensor nodes placed on
the top of the road at the distance of 2 meters from each other.
A car moving 120 km/h (33.33 m/s) will travel the distance
between the sensors in 60 ms; the same car moving 121 km/h
(33.61 m/s) will travel this distance in 59.504 ms. The
difference between these two travel times equates roughly to 16
timer ticks, which is deemed sufficient for our application.
Please note that the microcontroller features an internal
digitally-controlled oscillator capable of running at up to 16
MHz clock frequency and this clock could be used in
applications requiring higher clock resolution.

A clock roll-over exception occurs when either the master
global clock or the slave’s local clock reaches the top of its
32-bit range and resets back to zero. With our clock source it is
expected to happen every 18 hours. This introduces a problem
for the time synchronization offset and skew calculations. To
properly handle this exception, a time rollover detection
process is introduced. When it is detected that either the global
clock or the local clock rolled back over to zero, the time table
is flushed, and the last good values for the offset and skew are
used until the table is refilled and successful synchronization is
achieved with the new values.

IV. EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is to test the
accuracy of the proposed implementation of time
synchronization. We also discuss the processing overhead
associated with time synchronization service functions as well
as some implementation implications. Finally, the time
synchronization is tested in the context of the target traffic
monitoring application.

Our testing setup consists of a master node and a slave node.
To test time synchronization we connect a 4 Hz square-wave
signal from a function generator to both the master and the
slave. The slave captures the rising edge of the signal,
timestamps it using its local time, coverts the local time to
global time using the skew and offset parameters, and
wirelessly sends the global timestamp to the master. The master
captures the rising edge of the test signal too, timestamps it
using its local time variable (global in the network), receives
the timestamp from the slave, and forwards both timestamps to
a workstation through a serial link. The workstation runs an
application that logs the slave’s and master’s timestamps. The
experiment is repeated by varying several parameters,
including, time synchronization period, the time
synchronization table size, and local time length.

First, let us discuss the issue of the type and length of time
variables and the skew and offset parameters. Local and global
time variables maintained by each node were originally
unsigned 32-bit numbers. The offset and skew parameters are
initially defined as single-precision floating-point numbers.
The arithmetic operations described in Eq. 1 – Eq. 3 are
performed on single-precision numbers. However, in the case
when the time variables become larger than 224, some
significant bits are lost in conversions of 32-bit unsigned
integers into floating point numbers (mantissa is 23-bit, plus an
implicit additional bit in single-precision representation),
causing incorrect results and failure of synchronization. To
remedy this problem we may limit the range of time variables
to be between 0 and 224. The software is modified to detect
these new rollover conditions. It should be noted that the
chosen microcontroller does not include native support for
floating-point instructions. Rather, these operations are
emulated in software, and thus tend to take a lot of processor
clock cycles.

An alternative approach is to use a full 32-bit range for time
variables, but to perform operations using 64-bit double-
precision numbers (the skew is a 64-bit number). While this
approach allows a full 32-bit range of time variables (0 to 232-
1), it significantly lengthens the time required for these
operations.

Table I shows the number of clock cycles needed to calculate
the offset and skew parameters as a function of the time
synchronization table size (4, 8, and 16 entries) and the size of
the skew and offset parameters. The column local2global
shows the number of clock cycles needed to covert a local time
stamp into a global time stamp (operation described in Eq. 3).

65

The results indicate that the use of double-precision arithmetic
almost doubles the overhead needed to calculate the offset and
skew parameters. Thus, it is beneficial to use the single-
precision calculations and limit the range of time variables to
24 bits.

TABLE I. TIME SYNCHRONIZATION OVERHEAD.
 local2global Time Synchronization Table Size
Parameters
type/size 4 8 16
64-bit float 56 4431 7603 14039
32-bit float 50 2525 4013 7021

Table II shows the result of experimental evaluation of time

synchronization for an implementation using 24-bit time
variables and single-precision arithmetic, as a function of the
time synchronization period. The table size is fixed to 8 entries.
We consider time synchronization periods of 8, 16, and 32
seconds. We measure the average difference or error in timer
clock cycles (jiffy clocks) between the reported master and
slave global times (AvgDiff), the standard deviation (StdDev)
of the difference, and the variance of the difference (Variance).
We also report the range of maximum differences (negative
differences indicate situations when the slaves reported global
clock is behind the master’s global clock, and positive when
the slave reported time is higher than the master’s global
clock). The last column shows the percentage of time the slave
spent in a fast synchronization mode. We can see that the
proposed mechanism remains stable even when we reduce the
frequency of time synchronization messages from 8 seconds to
32 seconds. The smallest average difference is observed when
time synchronization period is set to 16 seconds and it is only
-0.188 jiffy clock. The standard deviation is also relatively
small, somewhat better for more frequent messages. The upper
bounds indicate that the maximum deviations in reported times
do not exceed 2 jiffy clocks for synchronization periods of 8
and 16 seconds and 3 jiffy clocks when synchronization period
is 32 seconds. The percentage of time spent in fast time
synchronization when time synchronization messages are sent
every 32 seconds is relatively small at 3.6%.

TABLE II. TIME SYNCHRONIZATION EVALUATION
AS A FUNCTION OF TIME SYNCHRONIZATION PERIOD.

Message
Period AvgDiff StdDev Variance - +

%
Fast
Sync

8 0.286 0.527 0.278 -2 2 6.77
16 -0.188 0.606 0.367 -2 1 4.87
32 -0.541 0.703 0.494 -3 1 3.58

Table III shows the result of experimental evaluation of time

synchronization for an implementation using 32-bit time
variables and double-precision arithmetic, as a function of the
time synchronization table size. We can see that somewhat
surprisingly smaller table sizes tend to give better results
(smaller average difference and standard deviation). This is
desirable because smaller table reduces both memory required
for the time synchronization table and performance overhead

for calculation of the offset and skew parameters.

TABLE III. TIME SYNCHRONIZATION EVALUATION
AS A FUNCTION OF TABLE SIZE.

Table
Size AvgDiff StdDev Variance - +

%
Fast
Sync

4 0.111 0.555 0.308 -2 2 6.40
8 -0.188 0.606 0.367 -2 1 4.87

16 0.124 0.612 0.375 -2 2 3.92

V. CONCLUSION

This paper describes an implementation of time
synchronization protocol on custom-designed wireless sensor
network platforms for traffic monitoring applications. To the
best of our knowledge we offer the first practical time
synchronization on sensor platforms based on Nordic’s low-
power radios. The paper describes all the layers of interest for
time synchronization, from the hardware interface to data
structures and software procedures. In addition, we offer results
of our experimental evaluation that confirms that the proposed
mechanism fully meets our application requirements.

REFERENCES

[1] J. Elson, L. Girod and D. Estrin, “Fine-Grained Network Time
Synchronization using Reference Broadcasts,” in Proc. of the fifth
symposium OSDI’02, pp. 147-163.

[2] S. Ganeriwal, R. Kumar, M. B. Srivastava, “Timing-Sync Protocol for
Sensor Networks,” in Proceedings of the 1st International Conference on
Embedded Network Sensor Systems (SenSys’03), pp. 138-149.

[3] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, "The Flooding Time
Synchronization Protocol," in Proc. of the 2nd International Conference
on Embedded Network Sensor Systems (SenSys’04), pp. 39-49.

[4] D. Cox, E. Jovanov, A. Milenkovic, "Time Synchronization for ZigBee
Networks," in Proc. of the 37th IEEE Southeastern Symposium on System
Theory (SSST'05), Tuskegee, AL, March 2005, pp. 135-138.

[5] J. Polastre, R. Szewczyk, and D. Culler. "Telos: Enabling ultra-low power
wireless research," in Proc. of the 4th International Conference on
Information Processing in Sensor Networks: Special track on Platform
Tools and Design Methods for Network Embedded Sensors (IPSN’05),
April 25-27, 2005, pp. 364-369.

[6] A. Milenkovic, M. Milenkovic, E. Jovanov, D. Hite, "An Environment
for Runtime Power Monitoring of Wireless Sensor Network Platforms,"
in Proc. of the 37th IEEE Southeastern Symposium on System Theory
(SSST'05), Tuskegee, AL, March 2005, pp. 406-410.

[7] Texas Instrument MSP430 mixed signal system-on-a-chip:
http://www.ti.com/home_p_micro

[8] Nordic Semiconductor nRF24L01+ radio:
http://www.nordicsemi.com

[9] Honeywell HMC1052L magnetic sensor:
http://www.honeywell.com

66

