
 

  
Abstract—Time synchronization plays an important role in 

wireless sensor networks, enabling correlation of diverse 
measurements from distributed sensor nodes, shared channel 
communication, and energy conservation.  When designing time 
synchronization algorithms for wireless sensor networks, a 
number of parameters needs to be carefully considered, including 
precision, processing time overheads, memory requirements, and 
energy costs. In this paper we describe an implementation of time 
synchronization on a wireless sensor network custom designed for 
traffic monitoring applications. Each node consists of a magnetic 
sensor, a microcontroller, and a low-power Nordic nRF24L01+ 
radio chip. We describe various aspects of our time 
synchronization implementation, including hardware interfacing, 
low-level event time-stamping, time synchronization mechanism, 
and software implementation. We discuss the results of our 
experimental study focusing on precision and performance 
overhead.  
 
Index Terms—Sensor Networks, Synchronization, Nordic. 
 

I. INTRODUCTION 

Wireless sensor networks represent an emerging computing 
platform that blends sensing, computation, and communication 
to provide a new tool in interfacing with physical 
environments. Wireless sensor networks consist of a large 
number of tiny and inexpensive computer platforms that are 
deeply embedded in their environments. These platforms are 
capable of sensing the environment, processing information on-
board, and communicating with each other and with a network 
server through multi-hop wireless links. They must reliably 
operate unattended for extended periods of time (months and 
years), under stringent resource constraints in energy, 
communication bandwidth, memory capacity, and processing 
power.  

Time is an important aspect in many applications of wireless 
sensor networks. Sensor platforms can measure time using their 
local clocks, driven by oscillators. However, because of 
random phase shifts and drift rates of oscillators, the local time 
readings start to differ quickly, causing nodes to lose 
synchronization. To cope with this issue, wireless sensor 
networks need to employ time synchronization. Time 
 

 

synchronization plays a critical role in wireless sensor networks 
enabling: (i) communication protocols based on time-division 
multiple access; (ii) coordinated wakeups from low-power 
modes, and (iii) distributed sampling and data aggregation.  

A number of time synchronization algorithms for wireless 
sensor networks have been introduced. Most notable protocols 
are RBS [1], TSPN [2], and FTSP [3]. The Flooding Time 
Synchronization Protocol (FTSP) was developed to provide a 
means for network-wide time synchronization in large wireless 
sensor networks. Time synchronization is achieved with 
periodic time synchronization messages that carry a very 
precise timestamp of when the message was sent (global time). 
A dynamically elected root broadcasts the time synchronization 
message. Receiving nodes take their respective local 
timestamps when the time sync message is received (local 
time) and rebroadcast the time synchronization messages, thus 
flooding the network. Comparing the global and local 
timestamps from the last several time synchronization 
messages, each node computes a simple linear regression to 
account for the offset and skew in its local clock from the 
global clock. Cox et al. [4] introduced a simple implementation 
of this protocol for Zigbee sensor networks with star topology 
and demonstrated its operation on a network with Telos 
platforms [5].  

In this paper we describe a new implementation of the time 
synchronization from [4] that is customized for our originally 
designed low-power wireless sensor network that targets traffic 
monitoring applications. We discuss time synchronization in 
general and our application requirements of interest for time 
synchronization in Section 2. The wireless sensor network for 
traffic monitoring consists of a custom-made sensor platform 
featuring magnetic sensors, a microcontroller, and a Nordic 
nRF24L01+ radio chip. The nodes are designed for small form 
factor and very low power consumption. The proposed time 
synchronization implementation is described in Section 3. It 
covers various aspects of the implementation: hardware 
interface, communication protocols, software structures, and 
time synchronization service functions. Section 4 presents the 
results of our experimental evaluation, which focuses on 
accuracy, performance and memory overheads. Finally, Section 
5 concludes the paper.  
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II. TIME SYNCHRONIZATION 

Time synchronization is a common requirement in wireless 
sensor networks enabling efficient communication, energy 
conservation, and collaborative processing. Sensor nodes share 
radio spectrum and to conserve energy it is advantageous to 
avoid costly retransmissions of radio packets due to collisions. 
A common solution is to allocate specific periods of time in 
which each sensor node is allowed to transmit data. This 
method is known as time-division multiplexing. Time 
synchronization is crucial to coordinate timeslots when each 
node can transmit. Next, time synchronization allows 
individual sensor nodes to stay in power-down operating 
modes, thus conserving energy. For example, radio chips can 
be turned-on only during timeslots reserved for a particular 
sensor node. Finally, some applications of sensor networks 
require distributed and collaborative signal processing. 
Multiple sensor nodes may detect events that need to be 
precisely time-stamped for later analysis. In such cases it is 
important that all sensor nodes and gateway share a common 
and accurate notion of time, regardless of the device type and 
clock source. Again, time synchronization is instrumental for 
providing abstractions to support this type of collaborative 
processing. 

Wireless sensor network applications often pose different 
requirements to time synchronization algorithms. When 
designing new or evaluating the existing time synchronization 
methods, several synchronization metrics should be considered. 
Among these metrics are precision, energy costs, 
computational resources, memory requirements, and fault 
tolerance. Thus, we will first discuss characteristics of our 
wireless sensor network application which targets traffic 
monitoring with a special focus on requirements relevant to 
time synchronization.  

Our traffic monitoring system consists of multiple wireless 
sensor nodes deployed on the top of roadways, a gateway, and 
a centralized server (Fig. 1). Each sensor node consists of a 
magnetic sensor, an embedded microcontroller, a radio, and an 
energy source. The magnetic sensor, which measures the 
earth’s magnetic field, tracks disturbances to this field as 
vehicles pass nearby. To detect a passing vehicle, the 
microcontroller performs sampling and processing of magnetic 
sensor signals. The signal processing involves detecting and 
time-stamping relevant events (e.g., beginning of a 
disturbance), or even analyzing the shape of disturbances to 
gain additional insights (e.g., about the size of the vehicle).  

The sensor nodes wirelessly send the processed information 
about relevant events to the gateway. The gateway employs 
collaborative processing of events streamed from the sensor 
nodes to get not only statistics related to the number of vehicles 
on the roadways as a function of time, but also vehicles’ speeds 
and sizes. Key requirements for such a system are a robust 
design and small form factor for sensor nodes, so that they can 
be easily deployed on the top of roadways. The small form 
factor imposes limits on the size of the battery, which in turn 

translates into limited battery capacity (typically, the battery 
capacity is directly proportional to its size and weight). In 
addition, the traffic monitoring system should also provide 
reliable and autonomous operation for extended periods of 
time, without frequent battery changes. Consequently, 
providing a low-power operation is crucial for designing cost-
effective and practical traffic monitoring system.  

 

 
Fig. 1. Traffic monitoring system. 
 

To meet the application requirements for size and low-power 
operation we opted to design our custom sensor platforms. 
Typically, a radio interface is the main contributor to the 
energy consumed on a sensor platform. For example, the 
current drawn by radio interfaces is 5-10 times larger than the 
current drawn by a microcontroller [6]. Consequently, we 
decided to use one of the most energy-efficient radio 
controllers, a Nordic’s nRF24L01+. Thus, our sensor platforms 
include a Texas Instruments’s MSP430 mixed signal system-
on-a-chip MSP430F2410 (includes 16-bit processor core with 
RAM, flash memory, and a rich set of analog and digital 
peripherals) [7], a Nordic’s nRF24L01+ single-chip radio [8], a 
magnetic sensor [9], and a power source. 

Implementing cost-effective and precise time 
synchronization is instrumental for traffic monitoring 
applications. It is crucial to support our communication 
protocol, to coordinate power-down modes of wireless radios, 
and to enable collaborative processing at the gateway (e.g., in 
determining vehicle speed from two sensors as illustrated in 
Fig. 1). Unfortunately, the available solutions for time 
synchronization were not readily available or applicable to our 
sensor platform. This motivated us to develop our own 
implementation of the time synchronization method based on a 
modified FTSP algorithm proposed by Cox et al. [4].  

The gateway is the master node and it periodically sends 
time synchronization messages that carry a timestamp with 
global time. The sensor platforms, slave nodes in this case, 
receive time synchronization messages and timestamp them 
using their local time. Each slave node maintains its own table 
with global, local, and difference time stamps for several recent 
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time synchronization messages. The slaves use a simple linear 
regression to compute the offset and the skew between their 
local times and the global time. This enables each slave to 
maintain a very precise estimate of the global time regardless 
of whether its clock is running faster or slower than the global 
clock. 

III. IMPLEMENTATION OF TIME SYNCHRONIZATION  

Time synchronization implementation in general spans 
different layers of abstractions, from hardware interfaces, 
communication protocols, to software structures and functions 
required to maintain precise time synchronization. In this 
section we first discuss the hardware interface specific for our 
sensor platforms and then we discuss network operation and 
software implementation.  

Fig. 2 illustrates the interface between the Nordic 
nRF24L01+ radio chip and the MS430 microcontroller (top) 
and a radio packet format (bottom). The microcontroller 
configures the radio and controls its operation by sending and 
receiving commands and data via a synchronous peripheral 
interface (SPI). The radio chip can be configured to operate in 
different operating modes (e.g., Transmit, Receive, Standby, or 
Power-down).  

The radio chip automatically assembles or disassembles a 
radio packet that contains a preamble, address, control, variable 
payload, and CRC field (Fig. 2, bottom). An important part of 
the interface for time synchronization is the IRQ signal. The 
radio chip drives this signal and it can be configured to 
generate an interrupt request on certain events (e.g., when a 
new packet has been received or when a packet has been sent.) 

Our traffic monitoring system employs a star topology with 
the gateway serving as the network master. The time 
maintained by the gateway is called global time and each 
sensor node has its own local time. The gateway periodically 
broadcasts a time synchronization message that carries 
information about the global time captured at the master. All 
sensor nodes, acting as slaves, receive the time synchronization 
message. In addition, each node captures its respective local 
time, and updates its time synchronization table that maintains 
recent (globalTime, localTime, difference) entries. Upon 
receiving a new time synchronization message, each slave 
calculates skew and offset parameters using linear regression 
[3][4] in order to determine local clock drift relative to the 
clock at the master.  

In order to synchronize the master and slaves there must be a 
fixed point in time that can be referenced by all participating 
parties without any software-induced delay. While many radios 
provide a dedicated signal that acts as a start-of-frame delimiter 
[4], the Nordic radio only has an interrupt request line that can 
be configured to become active when a radio packet has been 
sent or received. Luckily, this signal can be utilized for precise 
time-stamping. We connect this signal to a microcontroller’s 
timer peripheral. The timer peripheral supports hardware 
capture of the timer counter triggered by an external signal (in 
our case falling edge of the IRQ signal). This way, a precise 

time-stamping of the active edge of the interrupt signal can be 
achieved at the master and all the slaves. Note that the 
propagation delay of a radio packet is negligible in our case. 
For example, assuming a distance between the master and a 
slave of 150 meters, it is 0.5 μs (150/3*108), which is 
negligible relative to the timer clock of 30.5 μs. In addition to 
causing a capture at the timer, the active edge of the IRQ is 
configured to raise an interrupt request. The corresponding 
interrupt service routine reads the captured value from the 
microcontroller’s timer peripheral and converts it to the local 
time. The timer in the MSP430 microcontroller is a 16-bit 
peripheral. However, our local time variable maintained in 
software is typically 24-bit or 32-bit long; in general, the length 
of the time variable is a design parameter.  

Fig. 3 illustrates the proposed time synchronization 
algorithm. The master node periodically broadcasts a time 
synchronization message. The frequency of time 
synchronization messages is a design parameter and depends 
on various factors, including, clock stability, environmental 
conditions, operating conditions, power and performance 
overheads required by time synchronization. Let us say that we 
consider the master sending i-th time synchronization message. 
The payload of the time synchronization message includes its 
sequence number, i, and the timestamp that was captured at the 
master upon transmission of the previous synchronization 
message (GT(i-1)). The sequence number is required to enable 
detection of possible lost synchronization messages at each 
individual slave. The master captures a new time stamp, GT(i) 
upon transmission of the current synchronization message. This 
timestamp will be included as the payload in the next (i+1)-th 
synchronization message. 

All slave nodes maintain a software structure dedicated to 
synchronization, called time synchronization table. The table 
includes n entries (n is a design parameter) that are updated in a 
round-robin fashion. Each entry in the table includes a local 
timestamp, a global timestamp, the difference, and a valid flag 
(Fig. 3). A slave captures its local timestamp when a new time 
synchronization message has been received (LT(i)). The next 
entry in the table is updated with the local timestamp LT(i) as 
illustrated in Fig. 3. This timestamp corresponds to the global 
timestamp captured at the master, but it will be received in the 
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Fig. 2. Interfacing Nordic’s nRF24L01+ transceiver (top). An enhanced 
ShockBurst packet format and IRQ signal (bottom). 

63



 

next time synchronization message. The global timestamp, 
GT(i-1), captured at the master upon transmission of the 
previous time synchronization message, is extracted from the 
current message and the table is updated as shown in Fig. 3. In 
case of a lost time synchronization message, the slave will 
invalidate the corresponding entry in the table and update the 
next entry pointer. 

The microcontroller executes several tasks related to time 
synchronization, including the calculations of the skew and 
offset parameters. Upon receiving each synchronization 
message the skew and offset are updated as follows. First, we 
calculate the offset as the average difference between the 
global and local timestamps (Eq. 1). We also determine the 
average local timestamp (Eq. 1). The skew is calculated as 
shown in Eq. 2 using a classical linear regression. Based on 
these two parameters a slave can determine a global timestamp 
GTx for any local event using the local timestamp LTx (Eq. 3). 
So, when a node reports the time when an event has occurred, 
the global timestamp is calculated and sent to the gateway.  
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The time synchronization table needs to be fully or partially 

filled with valid (LocalTime, GlobalTime, difference) entries 
before the offset and skew parameters can be accurately 
calculated. The total number of entries in the time 
synchronization table and the minimum number of entries 
needed to calculate the offset and skew are design parameters. 
With an increase in the number of entries the accuracy of 
calculations increases too. However, it also increases 
processing, memory, and energy overheads, which is 
undesirable in resource-constrained sensor nodes. Our 
experiments indicate that a minimum of four time 
synchronization messages is sufficient to calculate the offset 
and skew, allowing for fast synchronization with accuracy of 
±2 timer clocks.  

We have extended our time synchronization mechanism to 
include an accuracy check procedure. The slave nodes verify 
the accuracy of time synchronization by comparing each of the 
global times in the synchronization table (received from the 
master) with the corresponding calculated global times using 
Eq. 3. If each of the calculated global times are equal to the 
respective global times, then the device exhibits good time 
synchronization. When a slave node reaches successful time 
synchronization, it continues to recalculate the offset and skew 
each time a new time synchronization message is received. 
However, if the average difference between global time and the 
calculated global time are more than one clock cycle off (this is 
a design parameter), the most recent values for the offset and 
skew parameters are not used. Instead, the slave requests fast 
synchronization and continues to operate using the last good 
offset and skew parameters, until new stable values are found.  

In addition to time synchronization tasks taken in a steady 
state, our implementation involves handling exceptional 
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Fig. 3. Proposed implementation of time synchronization in wireless sensor networks with star topology.    
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situations. In the remaining of this section we discuss time 
synchronization activities taken when a new slave node joins 
the network, when the master node reboots, and when the time 
variables rollover.  

Initializing the time synchronization table when a slave joins 
the network may take a relatively long time, especially in cases 
of infrequent broadcasts of time synchronization messages. To 
expedite this process, we allowed for fast synchronization. 
When a slave node comes online, it sends a message to the 
master requesting fast synchronization. When the master 
receives such a request, it notifies all the slaves that time 
synchronization messages will be sent at a faster rate. Note: in 
case that the slaves are in a power-down mode, this notification 
is carried out during regular time synchronization time slot. 
When the slave who initiated fast synchronization achieves it, it 
sends a fast synchronization termination request. The master 
then notifies all the slaves about switching to regular time 
synchronization period.  

Another boundary condition is when the master (network 
gateway) undergoes a reboot. The master sends out a “boot 
announce” message to inform all the slaves that the existing 
time synchronization tables should be invalidated. The slaves 
continue to use the last “good” offset and skew parameters until 
enough time synchronization messages have been received. 
The slaves use the payload of the first time synchronization 
message after the “boot announce” message to set their local 
time close to the new global time. This way, the offset 
parameters at each slave are kept as close to zero as possible.  

We have chosen 32-bit unsigned integers for local and global 
time variables. The microcontroller uses a 16-bit timer 
peripheral though, and the interrupt service routine caused by 
the timer’s counter rollover or an external event is used to 
update the local time variable. We use a stable external 32 KHz 
clock source as the timer’s clock source. This clock proves to 
be sufficient for our application. A small example is used to 
support this claim. Let us consider two sensor nodes placed on 
the top of the road at the distance of 2 meters from each other. 
A car moving 120 km/h (33.33 m/s) will travel the distance 
between the sensors in 60 ms; the same car moving 121 km/h 
(33.61 m/s) will travel this distance in 59.504 ms. The 
difference between these two travel times equates roughly to 16 
timer ticks, which is deemed sufficient for our application. 
Please note that the microcontroller features an internal 
digitally-controlled oscillator capable of running at up to 16 
MHz clock frequency and this clock could be used in 
applications requiring higher clock resolution.  

A clock roll-over exception occurs when either the master 
global clock or the slave’s local clock reaches the top of its 
32-bit range and resets back to zero. With our clock source it is 
expected to happen every 18 hours. This introduces a problem 
for the time synchronization offset and skew calculations. To 
properly handle this exception, a time rollover detection 
process is introduced. When it is detected that either the global 
clock or the local clock rolled back over to zero, the time table 
is flushed, and the last good values for the offset and skew are 
used until the table is refilled and successful synchronization is 
achieved with the new values.  

IV. EXPERIMENTAL EVALUATION 

The goal of our experimental evaluation is to test the 
accuracy of the proposed implementation of time 
synchronization. We also discuss the processing overhead 
associated with time synchronization service functions as well 
as some implementation implications. Finally, the time 
synchronization is tested in the context of the target traffic 
monitoring application.  

Our testing setup consists of a master node and a slave node. 
To test time synchronization we connect a 4 Hz square-wave 
signal from a function generator to both the master and the 
slave. The slave captures the rising edge of the signal, 
timestamps it using its local time, coverts the local time to 
global time using the skew and offset parameters, and 
wirelessly sends the global timestamp to the master. The master 
captures the rising edge of the test signal too, timestamps it 
using its local time variable (global in the network), receives 
the timestamp from the slave, and forwards both timestamps to 
a workstation through a serial link. The workstation runs an 
application that logs the slave’s and master’s timestamps. The 
experiment is repeated by varying several parameters, 
including, time synchronization period, the time 
synchronization table size, and local time length. 

First, let us discuss the issue of the type and length of time 
variables and the skew and offset parameters. Local and global 
time variables maintained by each node were originally 
unsigned 32-bit numbers. The offset and skew parameters are 
initially defined as single-precision floating-point numbers. 
The arithmetic operations described in Eq. 1 – Eq. 3 are 
performed on single-precision numbers. However, in the case 
when the time variables become larger than 224, some 
significant bits are lost in conversions of 32-bit unsigned 
integers into floating point numbers (mantissa is 23-bit, plus an 
implicit additional bit in single-precision representation), 
causing incorrect results and failure of synchronization. To 
remedy this problem we may limit the range of time variables 
to be between 0 and 224. The software is modified to detect 
these new rollover conditions. It should be noted that the 
chosen microcontroller does not include native support for 
floating-point instructions. Rather, these operations are 
emulated in software, and thus tend to take a lot of processor 
clock cycles.  

An alternative approach is to use a full 32-bit range for time 
variables, but to perform operations using 64-bit double-
precision numbers (the skew is a 64-bit number). While this 
approach allows a full 32-bit range of time variables (0 to 232-
1), it significantly lengthens the time required for these 
operations.  

Table I shows the number of clock cycles needed to calculate 
the offset and skew parameters as a function of the time 
synchronization table size (4, 8, and 16 entries) and the size of 
the skew and offset parameters. The column local2global 
shows the number of clock cycles needed to covert a local time 
stamp into a global time stamp (operation described in Eq. 3). 
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The results indicate that the use of double-precision arithmetic 
almost doubles the overhead needed to calculate the offset and 
skew parameters. Thus, it is beneficial to use the single-
precision calculations and limit the range of time variables to 
24 bits.  
 

TABLE I. TIME SYNCHRONIZATION OVERHEAD. 
 local2global Time Synchronization Table Size  
Parameters 
type/size  4 8 16 
64-bit float 56 4431 7603 14039 
32-bit float 50 2525 4013 7021 

 
Table II shows the result of experimental evaluation of time 

synchronization for an implementation using 24-bit time 
variables and single-precision arithmetic, as a function of the 
time synchronization period. The table size is fixed to 8 entries. 
We consider time synchronization periods of 8, 16, and 32 
seconds. We measure the average difference or error in timer 
clock cycles (jiffy clocks) between the reported master and 
slave global times (AvgDiff), the standard deviation (StdDev) 
of the difference, and the variance of the difference (Variance). 
We also report the range of maximum differences (negative 
differences indicate situations when the slaves reported global 
clock is behind the master’s global clock, and positive when 
the slave reported time is higher than the master’s global 
clock). The last column shows the percentage of time the slave 
spent in a fast synchronization mode. We can see that the 
proposed mechanism remains stable even when we reduce the 
frequency of time synchronization messages from 8 seconds to 
32 seconds. The smallest average difference is observed when 
time synchronization period is set to 16 seconds and it is only 
-0.188 jiffy clock. The standard deviation is also relatively 
small, somewhat better for more frequent messages. The upper 
bounds indicate that the maximum deviations in reported times 
do not exceed 2 jiffy clocks for synchronization periods of 8 
and 16 seconds and 3 jiffy clocks when synchronization period 
is 32 seconds.  The percentage of time spent in fast time 
synchronization when time synchronization messages are sent 
every 32 seconds is relatively small at 3.6%.  
 

TABLE II. TIME SYNCHRONIZATION EVALUATION  
AS A FUNCTION OF TIME SYNCHRONIZATION PERIOD. 

Message 
Period AvgDiff StdDev Variance - + 

% 
Fast 
Sync 

8 0.286 0.527 0.278 -2 2 6.77 
16 -0.188 0.606 0.367 -2 1 4.87 
32 -0.541 0.703 0.494 -3 1 3.58 

 
Table III shows the result of experimental evaluation of time 

synchronization for an implementation using 32-bit time 
variables and double-precision arithmetic, as a function of the 
time synchronization table size. We can see that somewhat 
surprisingly smaller table sizes tend to give better results 
(smaller average difference and standard deviation). This is 
desirable because smaller table reduces both memory required 
for the time synchronization table and performance overhead 

for calculation of the offset and skew parameters.  
 

TABLE III. TIME SYNCHRONIZATION EVALUATION  
AS A FUNCTION OF TABLE SIZE. 

Table 
Size AvgDiff StdDev Variance - + 

% 
Fast 
Sync 

4 0.111 0.555 0.308 -2 2 6.40 
8 -0.188 0.606 0.367 -2 1 4.87 

16 0.124 0.612 0.375 -2 2 3.92 
 

V. CONCLUSION 

This paper describes an implementation of time 
synchronization protocol on custom-designed wireless sensor 
network platforms for traffic monitoring applications. To the 
best of our knowledge we offer the first practical time 
synchronization on sensor platforms based on Nordic’s low-
power radios. The paper describes all the layers of interest for 
time synchronization, from the hardware interface to data 
structures and software procedures. In addition, we offer results 
of our experimental evaluation that confirms that the proposed 
mechanism fully meets our application requirements.  
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