
On-the-Fly Load Data Value Tracing in Multicores
Mounika Ponugoti, Amrish K. Tewar, Aleksandar Milenković

Department of Electrical and Computer Engineering
The University of Alabama Huntsville

301 Sparkman Drive
Huntsville, AL, 35899 U.S.A.

{mp0046, akt0001, milenka}@uah.edu

ABSTRACT
Software testing and debugging of modern multicore-based
embedded systems is a challenging proposition because of
growing hardware and software complexity, increased integration,
and tightening time-to-market. To find more bugs faster, software
developers of real-time embedded systems increasingly rely on
on-chip trace and debug resources, including hefty on-chip buffers
and wide trace ports. However, these resources often offer limited
visibility of the system, increase the system cost, and do not scale
well with a growing number of cores. This paper introduces
mlvCFiat, a hardware/software mechanism for capturing and
filtering load data value traces in multicores. It relies on first-
access tracking in data caches and equivalent modules in the
software debugger to significantly reduce the number of trace
events streamed out of the target platform. Our experimental
evaluation explores the effectiveness of the proposed technique as
a function of cache sizes, encoding mechanism, and the number of
cores. The results show that mlvCFiat significantly reduces the
total trace port bandwidth. The improvements relative to the
existing Nexus-like load data value tracing range from 15 to 33
times for a single core and from 14 to 20 times for an octa core.

CCS Concepts
• Computer systems organization~Embedded
hardware • Computer systems organization~Embedded
software • Computer systems organization~Real-time system
architecture • Computer systems organization~Multicore
architectures • Software and its engineering~Software testing
and debugging

Keywords
Real-time embedded systems; Multicores; Software testing and
debugging; Program Tracing

1. INTRODUCTION
Growing complexity and sophistication of modern embedded
systems and the shift toward multicores make software testing and
debugging one of the most critical aspects of system development.
Faster and cheaper processors with an increased level of
integration have enabled new applications that were impossible

just a decade ago. Users’ expectations and their reliance on
embedded systems have also gone up. As a result, the complexity
of the software stack in embedded systems keeps growing. A
recent report from the International Technology Roadmap for
Semiconductors found that the software engineering and tool costs
account for 80% or more of the total development cost of modern
high-end embedded systems [2].

It is important to give software developers tools to quickly locate
and correct all software bugs with minimum effort. When
debugging, software developers often need perfect visibility of the
system state. However, achieving this visibility is not feasible due
to high system complexity, limited available bandwidth for
debugging data, and high operating frequencies. Traditional
debugging techniques rely on single stepping, setting breakpoints,
and examining the content of registers and memory locations
while the processor is halted. This approach is effort- and time-
consuming for software developers. In addition, it perturbs the
sequence of events on target platforms and thus is not practical in
real-time cyber-physical systems. Finally, it does not scale well to
multicores.

To address these challenges, modern embedded processors
increasingly rely on on-chip trace and debug infrastructure [4],
[7], [5], [10]. Figure 1 shows a block diagram of a system-on-a-
chip (SoC) with N processor cores, a DSP, and a DMA core, all
connected through a system interconnect. Each component
includes its own tracing and debugging resources, called trace
modules (see Fig. 1 ignoring mlvCFiat boxes). They are
responsible for capturing and possibly filtering program execution
traces and sending them to on-chip trace buffers through a debug
interconnect. The program traces from buffers are streamed out of
the chip through a dedicated trace port, typically to an external
trace probe that interfaces a software debugger on a host
workstation. These traces are then used by the software debugger
to enable faithful program replay off-line. The IEEE Nexus 5001
standard [12] specifies four classes of debugging operations,
including simple run-control debugging (Class 1), control-flow
tracing (Class 2), data tracing (Class 3), and emulating memory
and I/O through a trace port (Class 4). Each level progressively
requires more on-chip resources and wider trace ports, thus
increasing the system cost. The existing trace modules can capture
full program execution traces for relatively small program
segments only, due to limited capacity of on-chip buffers.
Unfortunately, these traces are often insufficient to locate
software bugs. With the growing complexity of the software
running on embedded systems, the distance between the source of
a bug and its manifestation may be in billions of instructions.

This paper focuses on data traces (Class 3 in Nexus 5001). They
are critical in reconstructing program execution in multicores and
uncovering bugs caused by data race conditions. To faithfully
reconstruct a program execution in the software debugger, we
need to capture and stream out load data values of memory and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
CASES '16, October 01-07, 2016, Pittsburgh, PA, USA
© 2016 ACM. ISBN 978-1-4503-4482-1/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2968455.2968507

http://dx.doi.org/10.1145/2968455.2968507

I/O reads, as well as exceptions on the target platform. However,
these traces tend to be very large, in the order of 8-16 bits per
instruction executed per processor core [9]. Capturing data traces
in multicores is even more challenging because trace messages
need to be ordered or time stamped. In addition, they need to
include information about the origin of the trace message (core
identification). Whereas a number of recent papers focus on
capturing, compressing, and filtering control-flow traces [3], [5],
[6], [11], [15], [17], relatively few studies look at on-the-fly data
tracing [16]. Unfortunately, all these studies focus on single-core
embedded platforms exclusively. In addition, the prior studies
were based on functional simulation and did not address
challenges of producing ordered or time-stamped trace messages
coming from multiple cores. One interesting solution for
debugging multicore SoCs called hidICE was proposed by
Hochberger and Weiss [1]. It relies on a hardware emulator that
replicates all master cores and memories from the target platform.
The target platform reports only exceptions and data reads from
peripherals that cannot be inferred by the emulator. However,
hidICE is cost-prohibitive because it requires not only changes on
the target platform to include a synchronization core and a new
trace port, but also requires a sophisticated hardware emulator that
replicates all the master modules and the RAM memory of the
target. In addition, there has been no quantitative evaluation of
hidICE. To the best of our knowledge, there have been no
academic studies focusing on quantitative evaluation of data
tracing requirements and development of cost-effective trace
filtering mechanisms scalable to multicores.

Figure 1. Multicore debugging and tracing infrastructure.

In this paper, we first analyze requirements for on-the-fly data
tracing in multicores as a function of the number of cores by
running a set of parallel programs (Section 2). Next, we introduce
mlvCFiat, a hardware/software framework for capturing and
compressing load data values in multicores. mlvCFiat extends an
existing method for capturing data traces in single-core platforms
proposed by Uzelac and Milenkovic [16]. With mlvCFiat, data
caches are augmented to include first-access tracking bits that
help filter reads from memory, so that only first load accesses are
traced out to the software debugger (Section 3). The first-access
miss events are then encoded using effective and simple to
implement encoding schemes (Section 3). Our experimental
evaluation (Section 4) explores the effectiveness of mlvCFiat as a
function of the number of cores, encoding mechanism, and data

cache configurations. The results (Section 5) indicate that the
mlvCFiat offers significant reduction in the required trace port
bandwidth relative to the existing Nexus-like load data value
tracing. The mlvCFiat with variable encoding reduces the trace
port bandwidth in the range from 15 to 33 times for a single core
with 16 KB and 32 KB data caches, respectively, and in the range
from 14 to 20 times in a multicore with 8 processor cores, where
each core has 16KB and 32KB private data caches, respectively.

The main contributions of this work are as follows:
• We characterize trace port bandwidth requirements in

multicores for Nexus-like time stamped and untimed load
data value traces as a function of the number of cores. We
consider both bits per instruction and bits per clock cycle as
measures of the required trace port bandwidth.

• We develop a trace filtering technique called mlvCFiat for
multicore load value tracing using first-access tracking to
reduce the trace port bandwidth requirements.

• We perform a detailed experimental evaluation of the trace
port bandwidth, while varying the number of cores, cache
sizes, and encoding approaches.

• We analyze not only the average trace port bandwidth for
each benchmark, but also consider variations of the trace port
bandwidth during benchmark execution.

2. DATA TRACING IN MULTICORES
Exception traces and load data value traces captured on the target
platform and streamed out to a software debugger are necessary to
deterministically replay programs offline. Load data value traces
are created by recording values read from memory and I/O
devices. In addition to these traces, to faithfully replay the
program offline the software debugger needs the following: (a) an
instruction set simulator of the target platform, (b) access to the
program’s binary, and (c) the initial state of the general-purpose
and special-purpose registers of individual cores. In multicores,
the traces need to be either streamed in the order of occurrence
(referred to as untimed traces) or they could be streamed out of
order, but with global time stamps attached to each trace message
(referred to as time-stamped traces). In our analysis we consider
both alternatives.

To illustrate the tracing challenges in multicores, we consider a
set of benchmarks and analyze the size of the load data value
traces while varying the number of processor cores. As a metric
we use the average trace port bandwidth (TPB) expressed in the
number of bits per instruction executed (bpi) and the number of
bits per processor clock cycle (bpc). The average TPB in bpi is
calculated by dividing the total load data value trace size in bits
with the number of instructions executed in a given benchmark.
The average TPB in bpc is calculated by dividing the total trace
size in bits with the benchmark execution time measured in
processor clock cycles. The average TPB depends on the number
of instructions executed, the frequency of instructions that read
data from memory, and data types. The TPB in bpc also depends
on the multicore model (pipeline, out-of-order execution, caches,
and others), which can be characterized by the number of
instructions committed per clock cycle (IPC).

Table 1 shows characteristics of interest for data tracing for the
SPLASH-2 benchmarks [18] [8]. The benchmarks are compiled
for the IA32 ISA and run on a cycle-accurate Multi2Sim [14]
simulator that models multicores with N=1, 2, 4, and 8 cores.
Table 1 shows (a) the number of instructions executed in billions
(IC), (b) the IPC, and (c) the frequency of instructions that read

System Interconnect

Trace
PortMulticore

SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

Inter-
connect

Trace
Module DSP

Core

Trace
Module

DMA
Core

Trace
Module

Debug & Trace
Control

Software Debugger System View

Binaries

Multicore Instruction Set Simulator

GUI

.

Core 0
mlvCFiat
Model

.Nexus
Trace

Software
Debugger(s) in

Host
Workstation

Trace
Probe

Host
Interface
Buffers
(~GB)
Target

Interface
Trace Decoder and Control Software Module

CPU
Core i

Trace
Module

mlvCFiat

CPU
Core 0

Trace
Module

mlvCFiat

CPU
Core N-1

Trace
Module

mlvCFiat

Core i
mlvCFiat
Model

Core N-1
mlvCFiat
Model

data from memory. The IC remains constant or slightly increases
with an increase in the number of cores, with an exception of
cholesky where the IC increases significantly. The average IPC
depends on the type of benchmarks, multicore models, and the
number of cores. Thus, when N=1, the IPC ranges from 0.19 for
cholesky to 0.66 for water-sp. The total IPC for the entire
benchmark suite is calculated as the sum of all instructions
executed by all benchmarks divided by the sum of all execution
times in clock cycles. It ranges from 0.4 for N=1 to 1.95 for N=8.
The IPC as a function of the number of cores indicates how well
performance scales. The frequency of instructions reading data
from memory varies from 13% for fmm to 35% for radix and its
total is ~23% for the entire benchmark suite. It increases slightly
with an increase in the number of cores.

The Multi2Sim simulator is modified to capture load data values
for committed instructions only. For untimed tracing we assume
that trace messages coming from individual cores contain internal
time stamps. These time stamps are used by the trace buffer
control logic to order trace messages coming from different cores.
The ordered trace messages are streamed out untimed, i.e., with
no time field. Each trace message includes a (Ti, LV) pair, where
Ti represents the core index (equivalent to the thread index) and
LV represents the data value read from memory. We assume the
software debugger can infer all other parameters (memory
address, size of data) from the binary and the context maintained
by the instruction set simulator(s). For time stamped trace
messages, each trace message includes a (dCC, Ti, LV) triplet,
where dCC represents the time in clock cycles measured from the
beginning of the program execution or from the most recently
streamed trace message at the given processor core (Figure 6a).
This trace format complies with the Nexus format for single-
cores, but it is extended to include information about the core id
and the time stamp.

Figure 2a shows the average TPB in bpi broken down into
individual fields of trace messages. The TPB is highly correlated
with the frequency of memory reads and the size of typical
operands read from memory. For untimed traces the TPB ranges
from 7.6 for fmm to 12.8 bpi for cholesky, when N=1. It increases
slightly with an increase in the number of cores due to (a) an
increased overhead in reporting Ti and (b) an increase in the
frequency of memory reads. When N=8, the TPB ranges from 8.1
for fmm to 13.4 bpi for raytrace. The total trace port bandwidth
for the entire benchmark suite is calculated as the sum of all trace
messages for all benchmarks divided by the sum of all instructions
executed for all benchmarks. It ranges from 10.3 for N=1 to 11.0
bpi for N=8. For timed traces, the average TPB ranges from 8.8
for fmm to 15.4 bpi for cholesky when N=1, and from 9.3 for fmm

to 16 bpi for raytrace when N=8. The total trace port bandwidth
for the time-stamped traces ranges from 12.3 for N=1 to 13.2 bpi
when N=8.

To further illustrate tracing challenges in multicores, we consider
the TPB in bpc (Figure 2b). The required TPB for untimed traces
ranges from 2.3 for fft to 6.5 bpc for water-sp when N=1, and
from 7.3 for radix to 37.7 bpc for water-ns when N=8.
Benchmarks with a high frequency of memory reads that scale
well with the number of cores (e.g., water-sp) place a lot of
pressure on the trace port. The total average TPB ranges from 4.1
for N=1 to 21.5 bpc for N=8. In case of timed traces, the total
average TPB increases even further to 4.9 when N=1 and to 25.6
bpc when N=8. Some benchmarks, e.g. raytrace and water-ns,
require the average TPB of over 42 bpc. Whereas the results in
Figure 2 indicate the average TPB for each benchmark, even
higher peak bandwidths at the trace port are likely to occur during
a benchmark execution. All these observations thus underscore a
need for techniques that will reduce the volume of trace data that
needs to be streamed out of the chip.

Figure 2. Trace port bandwidth for Nexus-like load data value

traces.

3. mlvCFiat
mlvCFiat (multicore load value cache first access tracking) is a
hardware-based mechanism that reduces load data value traces by
capturing a minimal set of trace messages through the use of a

0

4

8

12

16

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(a) Trace Port Bandwidth [bpi, bits per instruction]LV Ti dCC

0

10

20

30

40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

barnes cholesky fft fmm lu radiosity radix raytrace water-ns water-sp Total

(b) Trace Port Bandwidth [bpc, bits per clock cycle]LV Ti dCC

Table 1. Splash2 benchmark suite characterization

Benchmarks Instruction Count [IC] x109 Instructions Per Cycle [IPC] % Loads
No. of Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8
barnes 2.13 2.13 2.13 2.14 0.37 0.54 0.96 1.69 28.78 28.78 28.78 28.79
cholesky 1.27 1.43 1.95 3.07 0.19 0.41 0.92 2.12 27.78 29.54 30.32 31.30
fft 0.92 0.92 0.92 0.92 0.26 0.44 0.72 1.04 19.20 19.20 19.20 19.21
fmm 2.79 2.80 2.82 2.86 0.41 0.80 1.52 2.70 13.02 13.06 13.27 13.49
lu 0.45 0.45 0.45 0.45 0.39 0.74 1.27 1.95 20.20 20.22 20.25 20.31
radiosity 2.23 2.33 2.29 2.32 0.48 0.87 1.65 2.99 27.51 27.45 27.38 26.79
radix 1.59 1.59 1.59 1.60 0.23 0.36 0.54 0.65 35.09 35.09 35.09 35.09
raytrace 2.47 2.46 2.47 2.47 0.50 0.93 1.68 2.67 28.49 28.48 28.48 28.47
water-ns 0.74 0.74 0.74 0.75 0.61 1.17 2.22 3.90 16.31 16.33 16.36 16.42
water-sp 5.03 5.03 5.03 5.03 0.66 1.07 1.73 2.73 17.38 17.38 17.38 17.38
Total 19.61 19.87 20.39 21.60 0.40 0.69 1.21 1.95 22.77 22.96 23.21 23.67

cache first access mechanism. Figure 1 shows the block diagram
of system debugging with light blue boxes representing additional
mlvCFiat hardware and software modules. With mlvCFiat, each
L1 data cache block in each processor core on the target platform
is augmented with first access tracking bits (Figure 3). These bits
keep track of sub-blocks that need to be reported to the software
debugger. Let us assume an L1 data cache with 32-byte cache
blocks. If a first-access tracking bit protects a 4-byte sub-block,
each cache block needs to be augmented with an 8-bit first-access
vector. The previously reported sub-blocks do not have to be
reported again as they can be inferred by the software debugger.
This way we exploit the temporal and spatial locality of data
accesses to significantly reduce the number of trace events that
needs to be reported. In addition to the first-access tracking bits,
each trace module includes a local first-access counter (Ti.fahCnt)
that counts the number of consecutive first-access hits.

Figure 3. mlvCFiat structures for core i.

Figure 4 describes operation of the mlvCFiat mechanism on core i
carried out for memory reads (lines 2-12), memory writes (lines
15-16), and external invalidate requests (line 19). Each memory
read causes an L1 data cache lookup; if the requested data item is
found in the data cache (a cache hit event) and the corresponding
first-access bit(s) is set (an FA hit event), the data value does not
need to be reported to the software debugger and Ti.fahCnt is
incremented (line 3, Figure 4). In case of an FA miss event, a
trace message is streamed out of the chip. The message includes
the time stamp (Ti.dCC), the core id (Ti), the current value of
Ti.fahCnt, and the load data value (Ti.LV) that is being reported
for the first time (line 5). In addition, the corresponding FA bit(s)
is set and the counter Ti.fahCnt is cleared (lines 6 and 7). In case
of a data cache miss event, the newly fetched block’s FA tracking
bits are cleared and then the steps 5-7 are carried out. Similarly,
external cache block invalidation or update requests invalidate the
cache block and clear the corresponding FA bits (line 19). Finally,
each memory write operation includes acquiring the exclusive
ownership of the block and setting the corresponding FA tracking
bit(s) (lines 15-16). Please note that we assume that the first-
access tracking bits are tied to L1 data caches. By capturing trace
events at the L1 level, cache coherence protocols are transparent
to mlvCFiat. Thus, a write request to a shared block is treated as a
miss in mlvCFiat. By capturing trace messages at each core,
mlvCFiat complies with modular and scalable design
methodologies.

Figure 5 describes steps carried out by the software debugger in
response to memory reads (lines 2-10), memory writes (lines 13-
15), and external invalidate requests (line 18). The debugger
maintains software copies of the data caches and the Ti.fahCnt

counters; these are updated during program replay using the same
policies employed on the target platform. The program replay
starts by reading and decoding the trace messages received from
the target for each core separately. The format of the trace
messages and the lengths of the individual fields are known to the
software debugger. The debugger replays the instructions for each
core using the corresponding instruction set simulator. For each
memory read operation, the software copy of the counter
Ti.fahCnt is decremented (line 2). If Ti.fahCnt>0, the debugger
retrieves the load data value from the software copy of the data
cache and moves to the next instruction (lines 4 and 5). If
Ti.fahCnt=0, we have a first read miss event: the load data value is
retrieved from the current trace message, the software copy of the
data cache is updated, a new trace message for a given core is read
from the trace probe, and the software copy of the Ti.fahCnt
counter is loaded with a new value from the trace message (lines
7-9). For memory writes, if the block is shared in the cache, the
current core acquires and exclusive ownership by invalidating
copies of the block in other caches (line 13). The software copy of
the cache block is updated and the corresponding FA bits are set
(lines 14-15). In case of an invalidate request, the specified cache
block is invalidated and all FA bits attached to that cache block
are cleared.

1. // For each read operation core i
2. if (CacheHit) {
3. if (corresponding FA bits are set) Ti.fahCnt++;
4. else {
5. Generate message (Ti.dCC, Ti, Ti.fahCnt, Ti.LV);
6. Set corresponding FA bits;
7. Ti.fahCnt = 0;
8. }
9. } else { // cache miss event
10. Clear all FA bits for newly fetched cache block;
11. Perform steps 5-7;
12. }
13.
14. // For each retired write operation
15. If (Shared) Acquire exclusive ownership;
16. Set the corresponding FA bits;
17.
18. // For external invalidation/update request
19. Invalidate the block and clear all FA bits;

Figure 4. mlvCFiat operation on the target core i.

1. // For each read operation on core i
2. Ti.fahCnt --;
3. if (Ti.fahCnt > 0) {
4. Perform lookup in the SW data cache;
5. Retrieve data value from SW cache;
6. } else { // FA miss event
7. Read n bytes from trace record;
8. Update SW cache;
9. Get new message (Ti.dCC, Ti, Ti.fahCnt, Ti.LV);
10. }
11.
12. // For each store that writes n bytes
13. If (Shared) Acquire exclusive ownership;
14. Update SW cache;
15. Set the corresponding n SW cache FA bits;
16.
17. // For external block invalidate/update request
18. Invalidate the block and clear FA bits;

Figure 5. mlvCFiat operation in the software debugger for
core i.

 ...

Set/Reset
FA flags

Trace M
essage Buffer

Data Cache

DC Hit

Data
Address

FA Hit

Tag FA Flags

0

1

 q-1

index

Ti.fahCnt

way 0
way k-1

Load
Value

Ti.PCC

Current Clock

-

Ti.dCC

Ti.LV

 ...

3.1 Hardware Implementation
mlvCFiat requires hardware extensions to support first-access
tracking in L1 data caches for all processor cores. The majority of
hardware overhead is due to the first-access tracking bits. The
overhead depends on first-access tracking bits granularity and
location, data cache size, and block size. The first-access tracking
can be attached to the data cache blocks and control logic is added
to maintain them (Figure 3). For example, if we assume cores
with 32 KB data cache, 32-byte cache blocks, and first-access bit
granularity of 4 bytes, the overhead is 1/32nd of the data cache
capacity, or 1 KB of additional storage. Using complexity
estimation based on Cacti tools [13], the total overhead is less
than 3% of the regular L1 data cache area [16]. With finer
granularity when each byte is protected with a first-access bit, we
can possibly reduce the size of trace messages when byte sized
memory reads dominate. However, the area overhead increases.
With a coarse-grain granularity, every first-access miss event
results in reporting the entire sub-block, regardless of the size of
the memory read. Interestingly, coarse-grain granularity may have
negative effects on the total size of trace messages in cases with
poor spatial locality. However, it can also contribute to reducing
the number of trace messages in cases when short operands are
accessed sequentially (strong spatial locality).

Alternatively, the first-access flags can be implemented outside of
processor cores in trace modules and connected to processor cores
through a well-defined interface. In this case, mlvCFiat would
need to include cache tags and address decoding, which
introduces the additional hardware overhead. However, this
approach may offer higher modularity and flexibility because the
geometries of data caches in trace modules do not have to mirror
actual processor data caches. However, duplicating cache tags
results in an increased overhead that is slightly over 13% of the
total L1 data cache area. In our analysis, we assume that the first-
access bits are tied to the L1 data cache.

3.2 Encoding of Trace Messages
Trace messages streamed out through the trace port should be
encoded in such a way to minimize the total number of bits.
Figure 6 shows formats of trace messages for the Nexus-like load
value trace (NX_b), mlvCFiat base encoding (CF_b), and
mlvCFiat variable encoding (CF_e). With NX_b, each load data
value, LV, is streamed out through the trace port together with a
core index on which the read operation is carried out, Ti, and a
differentially encoded time stamp, dCC. The length of the Ti field
is fixed and is a function of the number of cores (0 bits for N=1, 1
bit for N=2, 2 bits for N=4). In NX_b, the length of the LV field
depends on the size of the operand read from memory (for IA32
ISA it ranges from 1 to 120 bytes) and is thus 8⋅sizeof(type)
bits. In mlvCFiat, the length of the LV field also depends on the
granularity size, GS, and can be calculated as follows:
8⋅GS⋅sizeof(type)/GS bits. For example, if the operand size
is one byte and the granularity size is 4 bytes, the length of the LV
field is 4 bytes or 32 bits. The time field, dCC, carries information
about the clock cycle in which the current trace-generating
instruction has retired. Rather than recording the absolute clock
cycle from the beginning of the program, it contains the number
of clock cycles expired from the previous trace event on the core
i, Ti.dCC = Ti.CC – Ti.P.CC, Ti.P.CC = Ti.CC. Note: the first
trace message contains the time from the beginning of the
program. For simplicity, we assume all cores share a global clock.
The number of bits needed to encode dCC varies among programs
and during program execution. With NX_b and CF_b we use at
least 8 bits to encode dCC. The connect bit (C) determines

whether more 8-bit chunks are needed to fully encode dCC value
(C=1) or not (C=0).

With mlvCFiat, trace messages consist of the following fields:
dCC, Ti, fahCnt, and LV. The fahCnt field contains the value of
the counter Ti.fahCnt (the number of consecutive first-access hit
events on core i). The number of bits needed to encode fahCnt
varies as a function of FA miss rate. With CF_b we use at least 8
bits to encode the fahCnt. The connect bit (C) determines whether
another 8-bit chunk is needed to fully encode the fahCnt value
(C=1) or not (C=0). With CF_e, we allow chunks for encoding
fahCnt (i0, i1, i2, …) and chunks for encoding dCC (h0, h1, h2,
…) to be variable in size as shown in Figure 6c. We evaluate
different encoding arrangements to select good values that
minimize the number of bits needed to encode these fields.

Figure 6. Formats of trace messages.

4. EXPERIMENTAL ENVIRONMENT
The goal of the experimental evaluation is to determine the
effectiveness of the proposed mlvCFiat as a function of the
number of cores. In addition, the goal is to quantitatively assess
the impact of mlvCFiat configuration parameters (cache sizes,
granularity sizes), and encoding parameters (baseline and
variable) on its performance. As a measure of effectiveness, we
use the average trace port bandwidth requirements expressed in
bits per instruction and bits per clock cycle. Whereas the average
trace port bandwidth allows us to quantify the effectiveness of the
proposed technique, it does not fully capture the peak rates that
occur in individual benchmarks during their execution.
Consequently, we also analyze the trace port bandwidth as a
function of time during benchmark execution.

Figure 7 shows the experimental flow used to create hardware
traces and evaluate the trace port bandwidth. The timed traces are
collected using the Multi2Sim simulator executing IA32 ISA. The
Multi2Sim simulator is extended with a custom TmTrace module
that captures full time-stamped memory read and write traces
(tmlsTrace). The time stamp contains the global clock cycle in
which the trace-generating instruction is committed. The
tmlsTraces traces are read by the mlvCFiat simulator that
simulates the behavior of data caches and mlvCFiat modules and
generates compressed load data value traces (mlvCFiat trace). The
output traces are then processed by trace filtering and encoding
tools that determine trace port bandwidth and generate minimal
hardware traces, namely the Nexus like trace, NX_b, and the
compressed traces, CF_b and CF_e.

As the workload we use Splash2 [18] [8] benchmarks run with
N=1, 2, 4, and 8 cores. Whereas the Splash2 benchmark suite may
not be an ideal representative of cyber-physical systems targeted
by this research, it includes well-understood standard parallel

(a) Nexus-like encoding (NX_b)
Legend:
dCC Clock Cycle (differential enc.)
Ti Thread/Core ID - log2N bits
LV Load Value
fahCnt First Access Hit Counter
h0, h1 Chunk Sizes for CC
i0, i1 Chunk Sizes for fahCnt

(b) mlvCFiat baseline encoding (CF_b) (c) mlvCFiat variable encoding (CF_e)

LVTidCC

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b ...

fahCnt[0:7]
8 b

fahCnt[8:15]
 8 b ...C

1 b
C

1 b

dCC fahCnt LVTi

dCC[0:7]
8 b

dCC[8:15]
8 b

C
1 b

C
1 b ...

fahCnt LVTidCC

fahCnt[0:i0-1]
 i0 b

fahCnt[i0:i0+i1-1]
i1 b

C
1 b ...C

1 b

dCC[0:h0-1]
 h0 b

C
1 b

dCC[h0:h0+h1-1]
h1 b

C
1 b ...

applications and application kernels that can work with a cycle-
accurate simulator such as Multi2Sim.

The Multi2Sim simulator supports building a cycle-accurate
model for a multicore processor including processor and memory
hierarchy. We use a multicore with up to 8 single-threaded x86
processor cores as shown in Figure 8. Each core has its private
level 1 instruction (L1I) and data (L1D) caches with hit latency of
4 clock cycles. To evaluate effectiveness of mlvCFiat as a
function of the cache size, we consider two configurations of
caches: CS16 with 16 KB L1D, and CS32 with 32 KB L1D. The
mlvCFiat tracking bits are added to L1 data cache tags. The L1
data caches are 4-way set-associative with the least-recently used
replacement policy, cache block sizes are set to 32 bytes. The
unified L2 cache memory is shared by all cores and has a hit
latency of 12 clock cycles. The L2 cache size varies with the
number of cores, N, and it is set to N⋅64KB for the CS16
configuration and N⋅128KB for the CS32 configuration. The main
memory latency is set to 100 clock cycles.

Figure 7. Experimental environment.

Figure 8. Multicore model.

An important part of experimental evaluation is determining a
good granularity size. Figure 9 shows the normalized TPB for two
representative benchmarks as a function of the number of cores,
the cache configuration, and the granularity size. We consider
granularity sizes of 1-byte, GS(1), 8-bytes, GS(8), 16-bytes,
GS(16), and 32-bytes, GS(32). The TPB is normalized to the

granularity size of 4 bytes, GS(4). The results show GS(1) offers
limited (less than 4% for barnes) or no benefit at all (for water-
ns). In general, we observed just a few benchmarks that read
memory operands shorter than 4 bytes. By increasing the first-
access granularity from 4 to 8 bytes, some benchmarks see an
increase in the TPB (e.g., barnes), but some benchmarks do not
(water-ns). Coarse-grained granularity of 16 bytes increases the
TPB in the range from 40% to 70% relative to GS(4), depending
on the benchmark, cache size, and the number of processor cores.
When we use a single first-access bit per each cache block,
GS(32), the TPB increases in the range from 60% to 145%.
Consequently, our choice to use granularity of 4 bytes strikes a
good balance between the method effectiveness and the hardware
overhead.

Figure 9. Normalized TPB as a function of FA granularity.

A part of the experimental evaluation is finding good chunk sizes
for the variable encoded dCC and fahCnt fields used in CF_e. The
number of bits needed to encode dCC and fahCnt depends on the
frequency and distribution of first-access misses, which in turn
depends on the number of cores and cache configurations.
Whereas chunk sizes can be tailored for each combination of
benchmarks and the mlvCFiat configurations, we seek chunk sizes
that perform well across all benchmarks and configurations. We
limit the search space by setting i1=i2=…=ik, and h1=h2=…=hk.
Figure 10 shows the average bit length of the fahCnt field (left)
and dCC field (right) when all benchmarks are considered
together for different chunk sizes. The results show that chunk
sizes (i0, i1)=(2, 2) and (h0, h1)=(4, 2) perform well for the
fahCnt and dCC fields, respectively. Somewhat surprisingly we
find that these chunk sizes exhibit good performance regardless of
the number of cores. The findings hold for the CS32
configuration.

Figure 10. Average bit length of the fahCnt and dCC fields as

a function of chunk sizes.

5. RESULTS
The effectiveness of mlvCFiat directly depends on (a) benchmark
characteristics – namely, the type, frequency, and distribution of
memory read operations, (b) data cache miss rates and first-access
flag miss rates, and (c) encoding parameters. The first-access miss
rate is a good indicator of the mlvCFiat effectiveness – the lower
it is, the fewer trace messages need to be streamed out through the
trace port. Figure 11 shows the total read L1 data cache miss rate

TmTrace: Software Timed Trace Generator

32 bit
Target

Application

Application
Input

Number Of
Threads

Application
Output

Multi2Sim
Configuration

Files

TmTrace
Flags

Performance
Statistics

tmls
Trace

mlvCFiat
Configuration

tmlvCFiat
Trace

Hardware
traces
NX_b

CF_b

CF_e

Multi2Sim TmTrace

mlvCFiat
Simulator

Trace
Filtering

Fixed
Encoding

Fixed
Encoding

Variable
Encoding

L1I L1D

 ...

L2 Cache

Main Memory

Network L1-L2

Network L2-MM

CS16:
L1D/L1I cache size: 16 KB
L2 cache size: N*64 KB

CS32:
L1D/L1I cache size: 32 KB
L2 cache size: N*128 KB

L1D/L1I hit time: 4 cc
L1D/L1I associativity: 4-way
L2 hit time: 12 cc
L2 associativity: 16-way
Cache block size: 32 B
First-access granularity: 4 B
Memory latency: 100 cc

Core 0

L1I L1D

Core 1

L1I L1D

Core N-1

0.0

0.5

1.0

1.5

2.0

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

CS16 CS32

barnes: Normalized TPB (GS(4)=1)
GS(1) GS(8) GS(16) GS(32)

0.0

0.5

1.0

1.5

2.0

2.5

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

CS16 CS32

water-ns: Normalized TPB (GS(4)=1)
GS(1) GS(8) GS(16) GS(32)

0

2

4

6

8

10

12

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

fahCnt(CS16) dCC(CS16)

Average bit length of fahCnt and dCC fields as a function of chunk sizes

(2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (3,5) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

and the total first-access miss rate for the entire benchmark suite
as a function of the number of cores and the data cache
configurations (CS16 and CS32). It also shows the minimum and
the maximum read data cache and first-access miss rates. The
total L1 data cache read miss rate is calculated as the total number
of read misses divided by the total number of read requests when
all benchmarks are considered together. The total FA miss rate is
calculated as the total number of first-access misses divided by the
total number of data reads when all benchmarks are considered
together. For the CS16 configuration, the total read L1 data cache
miss rate is ~2% regardless of the number of cores, with the
maximum of 4.66%. For the CS32 configuration, the total read L1
data cache miss rate is below 1.5% with the maximum of 3.18%.
The total FA miss rate ranges between 5.67% (N=1) and 6.32%
(N=2) for the CS16 configuration, and from 2.61% (N=1) and
4.24% (N=8) for the CS32 configuration. However, the maximum
FA miss rate reaches as high as 17.99% with CS16 and 10.17%
for CS32 (fft benchmark). Overall, the results confirm our
expectations that mlvCFiat can indeed significantly reduce the
number of trace messages that needs to be streamed out through
the trace port. We find that the total FA miss rate does not
increase significantly as we increase the number of cores. With an
increase in the number of cores we may decrease the number of
conflict-induced misses, but we may also increase the number of
misses caused by invalidations.

Figure 11. Data cache read miss rate & first access miss rate.

5.1 Trace Port Bandwidth in bpi
Figure 12 shows the total trace port bandwidth with the min-max
ranges in bpi for the timed Nexus-like load data value traces
(NX_b), the mlvCFiat with base encoding (CF_b), and the
mlvCFiat with variable encoding (CF_e) as a function of the
number of cores (N=1, 2, 4, 8). Table 2 shows the average trace
port bandwidth in bpi for individual Splash2 benchmarks as well
as the total average trace port bandwidth (row Total) for NX_b
and CF_e with CS16 and CS32 configurations as a function of the
number of cores. The results show that NX_b requires from 12.34

bpi when N=1 (ranging from 8.82 bpi for fmm to 15.35 bpi for
cholesky) to 13.17 bpi when N=8 (from 9.33 bpi for fmm to 16.01
bpi for raytrace). An increase in the required TPB with an
increase in the number of cores can be explained by an increased
size of the Ti field in trace messages and an increase in the
number of memory reads due to synchronization operations.

The mlvCFiat mechanism dramatically reduces the total trace port
bandwidth requirements relative to NX_b. The total average TPB
for CF_b with CS16 is 0.88 bpi when N=1 (from 0.07 for water-sp
to 2.84 for fft) and 1.0 bpi when N=8 (from 0.09 for water-sp to
2.93 for fft). Compared to NX_b, CF_b(CS16) thus reduces the
bandwidth 14.0 times for N=1 and 13.1 times for N=8.
Expectedly, increasing the size of data caches leads to even lower
trace port bandwidths. Thus, CF_b with CS32 requires only 0.40
bpi when N=1 (from 0.06 for water-sp to 1.63 for fft), and 0.71
bpi when N=8 (from 0.08 for water-sp to 1.89 for barnes).
Compared to NX_b, CF_b(CS32) reduces the TPB 30.6 times
when N=1 and 18.6 times when N=8.

Figure 12. Total trace port bandwidth in bpi.

The variable encoding further reduces the total trace port
bandwidth from 8% to 9% compared to CF_b for all
configurations. CF_e with CS16 thus requires 0.80 bpi for N=1
(from 0.07 for water-sp to 2.57 bpi for fft) and 0.92 bpi for N=8
(from 0.08 for water-sp to 2.67 for fft). Compared to NX_b, CF_e
with CS16 reduces the average trace port bandwidth 15.3 times
when N=1 and 14.3 times when N=8. CF_e with CS32 requires
merely 0.37 bpi when N=1 (from 0.05 bpi for water-sp to 1.48 bpi
for fft) and 0.66 bpi when N=8 (from 0.08 bpi for water-sp to 1.77
bpi for barnes). Relative to the NX_b, CF_e with CS32 reduces
the trace port bandwidth by 33.4 times when N=1 and 20.1 times
when N=8. Table 3 shows the speedup (or compression ratio)
achieved by CF_e with CS32 relative to NX_b for all individual
benchmarks. The speedups range from as low as 4.2 times for fft
to 210.3 times for water-sp when N=1 and to 156.2 times when
N=8.

0

1

2

3

4

5

N=1 N=2 N=4 N=8

Total Cache Read Miss Rate [%]
CS16 CS32

0

5

10

15

20

N=1 N=2 N=4 N=8

Total First-access Miss Rate [%]
CS16 CS32

0

1

2

3

CF_b(CS16) CF_b(CS32) CF_e(CS16) CF_e(CS32)

Trace port bandwidth (bpi)
N=1 N=2 N=4 N=8

0

4

8

12

16

NX_b

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

Table 2. Trace port bandwidth in bpi

Cores N=1 N=2 N=4 N=8
Mechanism NX_b CF_e CF_e NX_b CF_e CF_e NX_b CF_e CF_e NX_b CF_e CF_e
Config. - CS16 CS32 - CS16 CS32 - CS16 CS32 - CS16 CS32
barnes 15.03 2.21 0.79 15.31 2.30 1.16 15.59 2.39 1.47 15.86 2.44 1.77
cholesky 15.35 1.86 0.75 16.21 1.30 0.79 15.87 0.95 0.62 15.59 0.61 0.44
fft 10.65 2.57 1.48 10.84 2.62 1.50 11.02 2.65 1.52 11.19 2.67 1.54
fmm 8.82 0.36 0.23 8.96 0.37 0.24 9.14 0.38 0.25 9.33 0.38 0.26
lu 11.88 0.58 0.57 12.07 0.61 0.57 12.27 0.62 0.58 12.47 0.65 0.45
radiosity 12.11 0.25 0.09 12.36 0.55 0.45 12.59 0.56 0.44 12.58 0.63 0.54
radix 13.41 0.75 0.54 13.75 1.64 1.44 14.09 1.73 1.52 14.54 1.79 1.57
raytrace 15.17 1.06 0.34 15.45 1.28 0.61 15.73 1.38 0.71 16.01 1.54 0.90
water-ns 10.64 0.49 0.22 10.81 0.52 0.25 10.98 0.56 0.39 11.15 0.56 0.42
water-sp 11.38 0.07 0.05 11.55 0.07 0.06 11.73 0.08 0.07 11.90 0.09 0.08
Total 12.34 0.80 0.37 12.63 0.92 0.57 12.89 0.93 0.61 13.17 0.92 0.66

Table 3. Speedup TPB(NX_b)/TPB(CF_e)

Cores N=1 N=2 N=4 N=8
Config. CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32
barnes 6.8 19.1 6.7 13.1 6.5 10.6 6.5 9.0
cholesky 8.2 20.4 12.5 20.4 16.7 25.5 25.7 35.1
fft 4.2 7.2 4.1 7.2 4.2 7.3 4.2 7.3
fmm 24.2 37.8 24.1 37.2 24.2 36.7 24.4 36.6
lu 20.5 20.7 19.8 21.3 19.8 21.2 19.2 27.6
radiosity 47.7 128.8 22.3 27.6 22.6 28.4 19.8 23.4
radix 17.9 24.8 8.4 9.6 8.1 9.3 8.1 9.3
raytrace 14.3 44.2 12.1 25.4 11.4 22.1 10.4 17.9
water-ns 21.7 47.4 20.8 42.8 19.7 28.0 20.0 26.6
water-sp 168.1 210.3 158.5 189.4 147.3 170.9 136.9 156.2
Total 15.3 33.4 13.7 22.3 13.9 21.0 14.3 20.1

Figure 13. Total trace port bandwidth of individual trace

fields in bpi.

Figure 13 shows the total trace port bandwidth in bpi broken
down into individual fields of trace messages: LV, Ti, fahCnt,
dCC. Expectedly, the majority of trace port bandwidth is
consumed by streaming out the load values (LV). For NX_b, the
LV portion ranges from 83% for N=1 to 78% for N=8. The time
field is responsible for ~17% of the bandwidth regardless of the
number of cores. Thus, if we order trace messages coming from
different cores in the trace buffer and stream them out without the
time field, the trace port bandwidth requirements will be lower for
~17%. However, this would require hardware support for
buffering and sorting trace messages coming from individual
processor cores before they are streamed out through the trace
port. For CF_b, the LV field accounts for 67%-72% of the trace
port bandwidth depending on the number of cores, the fahCnt
field for ~13%, and the dCC field for ~16%. In CF_e, the LV field
accounts for 73%-79% of the total bandwidth, the fahCnt for
~9%, and the dCC field accounts for ~15%. Thus, if further trace
reduction is desired, reducing the size of the LV field (e.g., using

dictionaries or predictors) would be the most beneficial approach.

5.2 Trace Port Bandwidth in bpc
Figure 14 shows the total trace port bandwidth with the min-max
ranges in bpc for the timed NX_b, CF_b, and CF_e traces as a
function of the number of cores and L1 data cache sizes. Table 4
shows the average trace port bandwidth for individual Splash2
benchmarks and the total bandwidth for NX_b and CF_e with the
CS16 and CS32 configurations, as a function of the number of
cores. Please note that we have trace port bandwidth in bpc
reported for NX_b for both configurations CS16 and CS32
because the benchmark execution time depends on the data cache
size. The results show that the total trace port bandwidth for
NX_b scales linearly with the number of cores. With CS16, the
TPB is from 4.92 bpc for N=1 (ranging from 2.79 for fft to 7.53
for raytrace) to 25.64 bpc for N=8 (ranging from 9.41 for radix to
43.51 for water-ns). With CS32, the total trace port bandwidth
increases because larger data caches reduce the program execution
time. The TPB is from 5.31 bpc for N=1 (ranging from 3.07 for fft
to 8.62 bpc for raytrace) to 25.99 bpc for N=8 (ranging from 9.47
for radix to 45.82 bpc for raytrace). These results underscore the
challenges in on-the-fly data tracing. The average trace port
bandwidth of over 40 bpc would require a very wide trace port of
over 100 pins dedicated to tracing because trace ports typically
cannot run at processor clock speeds. In addition, it should be
noted that more aggressive processor models with a higher IPC or
multicores with a larger number of cores would both require even
higher trace port bandwidth.

Figure 14. Trace port bandwidth in bpc.

Both CF_b and CF_e provide significant reductions in the trace
port bandwidth. CF_e with CS16 requires from 0.32 bpc for N=1
(ranging from 0.04 for water-sp to 0.81 for barnes) to 1.79 bpc for
N=8 (ranging from 0.24 for water-sp to 4.13 for barnes). CF_e
with CS32 requires from 0.16 bpc for N=1 (from 0.04 for water-
sp to 0.43 for fft) to 1.29 bpc for N=8 (from 0.21 for water-sp to
3.05 for barnes). Thus, we can say that CF_e with CS32 reduces

0

4

8

12

N=1 N=2 N=4 N=8

NX_b

Trace port bandwith [bpi]
LV Ti dCC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

CF_b(CS16) CF_b(CS32) CF_e(CS16) CF_e(CS32)

Trace port bandwidth [bpi] LV fahCnt Ti dCC

0

1

2

3

4

5

CF_b(CS16) CF_b(CS32) CF_e(CS16) CF_e(CS32)

Trace port bandwidth (bpc)
N=1 N=2 N=4 N=8

0

5

10

15

20

25

30

35

40

45

NX_b

Trace port bandwidth (bpc)
N=1 N=2 N=4 N=8

Table 4. Trace port bandwidth in bpc

Cores N=1 N=2 N=4 N=8
Mechanism NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e
Config CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32
barnes 5.50 6.20 0.81 0.33 8.24 8.92 1.24 0.68 14.96 15.82 2.29 1.49 26.79 27.43 4.13 3.05
cholesky 2.93 3.30 0.36 0.16 6.58 7.44 0.53 0.36 14.67 16.75 0.88 0.66 32.99 32.91 1.28 0.94
fft 2.79 3.07 0.67 0.43 4.78 5.32 1.16 0.74 7.93 8.77 1.91 1.21 11.59 11.83 2.77 1.62
fmm 3.59 3.70 0.15 0.10 7.17 7.37 0.30 0.20 13.92 14.12 0.58 0.38 25.16 25.36 1.03 0.69
lu 4.67 5.16 0.23 0.25 8.97 9.68 0.45 0.46 15.56 16.68 0.78 0.79 24.38 24.64 1.27 0.89
radiosity 5.87 6.11 0.12 0.05 10.79 11.26 0.48 0.41 20.81 21.85 0.92 0.77 37.60 38.37 1.89 1.64
radix 3.14 3.39 0.18 0.14 5.01 5.20 0.60 0.55 7.67 7.87 0.94 0.85 9.41 9.47 1.16 1.02
raytrace 7.53 8.62 0.53 0.20 14.35 16.01 1.19 0.63 26.40 29.03 2.31 1.32 42.70 45.82 4.10 2.57
water-ns 6.49 7.00 0.30 0.15 12.68 13.50 0.61 0.32 24.34 24.71 1.24 0.88 43.51 43.29 2.17 1.63
water-sp 7.50 7.63 0.04 0.04 12.40 12.57 0.08 0.07 20.29 20.42 0.14 0.12 32.48 32.64 0.24 0.21
Total 4.92 5.31 0.32 0.16 8.76 9.32 0.64 0.42 15.61 16.44 1.13 0.78 25.64 25.99 1.79 1.29

the pressure on the trace port relative to NX_b between 33 times
when N=1 to 20 times when N=8. In addition, we should note that
the worst average TPB is reduced from 43.51 for NX_b to 2.17
for CF_e in the CS16 configuration. Similarly, the TPB is reduced
from 45.82 for NX_b to 2.57 for CF_e in the configuration with
CS32 (see Table 4).

5.3 mlvCFiat vs. Software Trace Compression
To underscore the effectiveness of the proposed mechanism we
will compare it to a software trace compression. We consider the
NX_b trace as an input trace and use gzip compression utility with
compression level -1 to determine the compression ratio and thus
the trace port bandwidth that can be achieved if such a mechanism
is employed. The level -1 is used because of its relatively modest
memory requirements, offering compression ratios that closer
match those that could be achieved in hardware compressors. The
trace messages from all cores are streamed into the compressor as
they appear in the original NX_b trace. Please note that
implementing a full general-purpose compressor dedicated to
compressing load data value traces would require significant
hardware resources.
Unfortunately, the software compression yields relatively modest
compression ratios because the original NX_b trace is bit-packed
to minimize the number of bits required on the trace port. Thus,
possible redundancy in data traces cannot be exploited because
gzip is a byte oriented compressor. Columns marked with Unif in
Table 5 show the compression ratios for individual Splash2
benchmarks achieved by gzip with -1 as a function of the number
of processors. The total compression ratios vary from 1.38 for
N=4 to 1.54 times for N=1. These results show that the software
compression will not significantly reduce the trace port bandwidth
under given conditions.

Table 5. Speedup TPB(NX_b)/TPB(compressed NX_b)

Cores N=1 N=2 N=4 N=8
Config. Split Unif. Split Unif. Split Unif. Split Unif.
barnes 2.10 1.38 1.78 1.30 1.66 1.24 1.58 1.27
cholesky 6.73 1.74 3.85 1.67 3.53 1.85 4.13 2.50
fft 1.93 1.39 1.79 1.36 1.68 1.30 1.66 1.37
fmm 4.95 1.95 3.73 1.85 3.06 1.58 2.75 1.59
lu 5.93 1.56 3.58 1.54 3.14 1.42 3.06 1.77
radiosity 3.86 1.63 2.50 1.54 2.10 1.37 1.95 1.48
radix 4.23 2.02 3.05 1.81 2.08 1.46 1.96 1.42
raytrace 3.88 1.51 2.61 1.47 2.26 1.32 2.08 1.38
water-ns 2.69 1.41 2.08 1.38 1.94 1.27 1.87 1.35
water-sp 3.03 1.37 2.40 1.36 2.11 1.26 2.02 1.39
Total 3.33 1.54 2.52 1.49 2.21 1.38 2.18 1.52

To achieve a higher compression ratio, we split the input NX_b
trace into two streams, one with the (dCC, Ti) fields and the other
with the load data values (LV). These two streams are fed into
separate software compressors that use gzip utility. By splitting
the input trace, we can better exploit redundancy present in
individual trace fields. However, even with this modification, the
total compression ratio remains fairly limited. Columns marked
with Split in Table 5 show the compression ratios for individual
Splash2 benchmarks achieved by gzip -1 as a function of the
number of processors. The total compression ratios vary from
3.33 times when N=1 to 2.18 when N=8. By comparing these
compression ratios to the ones presented in Table 3, we can
conclude that CF_e significantly outperforms even software trace
compression.

5.4 Dynamic Trace Port Bandwidth Analysis
Whereas the average trace port bandwidth allows us to quantify
the effectiveness of mlvCFiat, it does not fully capture the peak
rates that occur in individual benchmarks during their execution.
Depending on frequency and distribution of memory reads and
first-access misses, the trace port bandwidth at a given moment in
a program execution may exceed the average trace port bandwidth
discussed above.

Figure 15 and Figure 16 show the trace port bandwidth during
execution of two benchmarks, raytrace and water-ns,
respectively. The number of cores is set to N=8. We analyze the
bandwidth required for the time-stamped NX_b and CF_e traces
with both configurations, CS16 and CS32. The benchmarks
raytrace and water-ns are selected because they require the
highest average total trace port bandwidth for the time-stamped
load data value traces. The trace port bandwidth in bpc is logged
every 1 million clock cycles.

Let us first analyze the bandwidth as a function of time for
raytrace. The average TPB for NX_b with CS16 is 42.7 bpc.
However, the peak bandwidth reaches ~61.5 bpc, further
underscoring the challenges in load data value tracing. CF_e with
CS16 requires the average TPB of 4.10 bpc with the peak values
of 7.3 bpc, which is almost an order of magnitude smaller trace
port bandwidth than for NX_b. CF_e with CS32 requires the
average TPB of 2.57 bpc with the peak value of 4.9 bpc. These
results indicate that CF_e not only reduces the average TPB, but
also reduces the requirements for on-chip trace buffers. Similar
observations stand for water-ns. The average TPB for NX_b with
CS16 is 43.5 bpc and the peak TPB reaches 56.4 bpc. CF_e
requires the average TPB of 2.17 bpc with the peak of 6.3 bpc
with CS16 and 1.63 bpc with the peak of 6.0 bpc with CS32.

Figure 15. Dynamic trace port bandwidth in bpc during

execution of raytrace for N=8.

Figure 16. Dynamic trace port bandwidth in bpc during

execution of water-ns for N=8.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800
Clock cycle [x106]

raytrace: Trace port bandwidth in bpc as a function of time

NX_b(CS16) NX_b(CS16).gz1 CF_e(CS16) CF_e(CS32)

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180 200
Clock cycle [x106]

water-ns: Trace port bandwidth in bpc as a function of time

NX_b(CS16) NX_b(CS16).gz1 CF_e(CS16) CF_e(CS32)

6. CONCLUSIONS
Growing complexity of hardware and software stacks, a recent
shift toward multicores, and ever-tightening time-to-market make
software testing and debugging one of the most critical aspects of
embedded system development. Improved on-chip debugging and
tracing infrastructure, coupled with sophisticated software
debuggers, promises to reduce time and effort in finding difficult
and intermittent bugs, thus resulting in higher quality software and
increased productivity.

This paper introduces mlvCFiat, a technique for on-the-fly
capturing and filtering load data value traces in multicore systems.
mlvCFiat requires extensions of data caches to include first-access
tracking bits, as well as software copies of data caches maintained
by the software debugger. The first-access tracking bits, updated
by memory read and write operations, determine which memory
read operations need to be streamed out to the software debugger.
This way we reduce the number of trace messages needed to
replay the programs in the software debugger.

Our simulation-based experimental evaluation explores the
effectiveness of mlvCFiat as a function of data cache sizes (16
and 32 KB), the encoding mechanism, and the number of
processor cores (N=1-8). As a measure of the effectiveness, we
use the trace port bandwidth expressed in the number of bits
streamed on the trace port per instruction executed and the
number of bits per processor clock cycle. mlvCFiat compression
ratio relative to the Nexus-like load data value traces ranges from
15 to 33 times when N=1 and from 14 to 20 times when N=8. The
effectiveness of mlvCFiat increases with an increase of private
data cache size. The variable encoding scheme for time stamps
and first-access counter fields of trace messages improves the
effectiveness of mlvCFiat.

The future research efforts may focus on exploiting the first-
access tracking bits with cache coherent protocol states, so that
load data values are not reported on first-access misses if they are
available in data caches of other processor cores. Another
promising avenue is to explore whether a simple hardware scheme
can be used to exploit redundancy in load data value traces.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their valuable suggestions. This work was supported in part by US
National Science Foundation (NSF) grant CNS-1217470. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] Hochberger, C. and Weiss, A. 2008. Acquiring an

exhaustive, continuous and real-time trace from SoCs.
IEEE International Conference on Computer Design,
2008. ICCD 2008 (Lake Tahoe, CA, Oct. 2008), 356–362.
DOI= http://doi.org/10.1109/ICCD.2008.4751885.

[2] International Technology Roadmap for Semiconductors
2007 Edition: https://goo.gl/TdZY52. Accessed: 2016-04-
08.

[3] Kao, C.-F., Huang, S.-M. and Huang, I.-J. 2007. A
Hardware Approach to Real-Time Program Trace
Compression for Embedded Processors. IEEE Trans.

Circuits Syst. 54, 3 (Mar. 2007), 530–543. DOI=
http://doi.org/10.1109/TCSI.2006.887613.

[4] MCDS - Multi-Core Debug Solution - Infineon
Technologies: 2011. https://www.ip-
extreme.com/IP/mcds.shtml. Accessed: 2016-04-01.

[5] Mihajlović, B., Žilić, Ž. and Gross, W.J. 2015.
Architecture-Aware Real-Time Compression of Execution
Traces. ACM Trans Embed Comput Syst. 14, 4 (Sep. 2015),
75:1–75:24. DOI= http://doi.org/10.1145/2766449.

[6] Milenković, A., Uzelac, V., Milenković, M. and Burtscher,
B. 2011. Caches and Predictors for Real-Time,
Unobtrusive, and Cost-Effective Program Tracing in
Embedded Systems. IEEE Trans. Comput. 60, 7 (Jul.
2011), 992–1005. DOI=
http://doi.org/10.1109/TC.2010.146.

[7] MIPS PDtrace Specification: 2009. http://goo.gl/UwIYGv.
Accessed: 2016-04-01.

[8] Multi2Sim/m2s-bench-splash2: https://goo.gl/5kbE8r.
Accessed: 2016-04-01.

[9] Orme, W. 2008. Debug and Trace for Multicore SoCs.
http://goo.gl/Wrc7Hk. Accessed: 2016-03-28.

[10] Stollon, N. and Collins, R. 2006. Nexus Based Multi-Core
Debug. Proceedings of the Design Conference
International Engineering Consortium (Santa Clara, CA,
USA, 2006), 805–822. http://goo.gl/VHn6vv.

[11] Tewar, A., Myers, A. and Milenković, A. 2015.
mcfTRaptor: Toward unobtrusive on-the-fly control-flow
tracing in multicores. J. Syst. Archit. 61, 10 (Nov. 2015),
601–614. DOI=
http://doi.org/10.1016/j.sysarc.2015.07.005.

[12] The Nexus 5001 Forum Standard for a Global Embedded
Processor Debug Interface: 2003. http://goo.gl/RZPYXU.
Accessed: 2016-03-28.

[13] Thoziyoor, S., Muralimanohar, N., Ahn, J.H. and Jouppi,
N.P. 2008. CACTI 5.1. Technical Report #HPL-2008-20.
HP Laboratories.

[14] Ubal, R., Jang, B., Mistry, P., Schaa, D. and Kaeli, D.
2012. Multi2Sim: A Simulation Framework for CPU-GPU
Computing. Proceedings of the 21st International
Conference on Parallel Architectures and Compilation
Techniques (New York, NY, USA, 2012), 335–344. DOI=
http://doi.org/10.1145/2370816.2370865.

[15] Uzelac, V. and Milenkovic, A. 2009. A Real-Time
Program Trace Compressor Utilizing Double Move-to-
Front Method. (San Francisco, CA, Jul. 2009), 738–743.
DOI= http://doi.org/10.1145/1629911.1630102.

[16] Uzelac, V. and Milenković, A. 2013. Hardware-Based
Load Value Trace Filtering for On-the-Fly Debugging.
ACM Trans. Embed. Comput. Syst. 12, 2s (May 2013), 1–
18. DOI= http://doi.org/10.1145/2465787.2465799.

[17] Uzelac, V., Milenković, A., Milenković, M. and Burtscher,
M. 2014. Using Branch Predictors and Variable Encoding
for On-the-Fly Program Tracing. IEEE Trans. Comput. 63,
4 (Apr. 2014), 1008–1020. DOI=
http://doi.org/10.1109/TC.2012.267.

[18] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P. and Gupta, A.
1995. The SPLASH-2 Programs: Characterization and
Methodological Considerations. Proceedings of the 22nd
Annual International Symposium on Computer
Architecture (Santa Margherita Ligure, Italy, 1995), 24–36.
DOI= http://doi.org/10.1109/ISCA.1995.524546.

