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ABSTRACT 
Software testing and debugging of modern multicore-based 
embedded systems is a challenging proposition because of 
growing hardware and software complexity, increased integration, 
and tightening time-to-market. To find more bugs faster, software 
developers of real-time embedded systems increasingly rely on 
on-chip trace and debug resources, including hefty on-chip buffers 
and wide trace ports. However, these resources often offer limited 
visibility of the system, increase the system cost, and do not scale 
well with a growing number of cores. This paper introduces 
mlvCFiat, a hardware/software mechanism for capturing and 
filtering load data value traces in multicores. It relies on first-
access tracking in data caches and equivalent modules in the 
software debugger to significantly reduce the number of trace 
events streamed out of the target platform. Our experimental 
evaluation explores the effectiveness of the proposed technique as 
a function of cache sizes, encoding mechanism, and the number of 
cores. The results show that mlvCFiat significantly reduces the 
total trace port bandwidth. The improvements relative to the 
existing Nexus-like load data value tracing range from 15 to 33 
times for a single core and from 14 to 20 times for an octa core.   

CCS Concepts 
• Computer systems organization~Embedded 
hardware   • Computer systems organization~Embedded 
software   • Computer systems organization~Real-time system 
architecture   • Computer systems organization~Multicore 
architectures   • Software and its engineering~Software testing 
and debugging  

Keywords 
Real-time embedded systems; Multicores; Software testing and 
debugging; Program Tracing 

1. INTRODUCTION 
Growing complexity and sophistication of modern embedded 
systems and the shift toward multicores make software testing and 
debugging one of the most critical aspects of system development. 
Faster and cheaper processors with an increased level of 
integration have enabled new applications that were impossible 

just a decade ago. Users’ expectations and their reliance on 
embedded systems have also gone up. As a result, the complexity 
of the software stack in embedded systems keeps growing. A 
recent report from the International Technology Roadmap for 
Semiconductors found that the software engineering and tool costs 
account for 80% or more of the total development cost of modern 
high-end embedded systems [2]. 

It is important to give software developers tools to quickly locate 
and correct all software bugs with minimum effort. When 
debugging, software developers often need perfect visibility of the 
system state. However, achieving this visibility is not feasible due 
to high system complexity, limited available bandwidth for 
debugging data, and high operating frequencies. Traditional 
debugging techniques rely on single stepping, setting breakpoints, 
and examining the content of registers and memory locations 
while the processor is halted. This approach is effort- and time-
consuming for software developers. In addition, it perturbs the 
sequence of events on target platforms and thus is not practical in 
real-time cyber-physical systems. Finally, it does not scale well to 
multicores. 

To address these challenges, modern embedded processors 
increasingly rely on on-chip trace and debug infrastructure [4], 
[7], [5], [10]. Figure 1 shows a block diagram of a system-on-a-
chip (SoC) with N processor cores, a DSP, and a DMA core, all 
connected through a system interconnect. Each component 
includes its own tracing and debugging resources, called trace 
modules (see Fig. 1 ignoring mlvCFiat boxes). They are 
responsible for capturing and possibly filtering program execution 
traces and sending them to on-chip trace buffers through a debug 
interconnect. The program traces from buffers are streamed out of 
the chip through a dedicated trace port, typically to an external 
trace probe that interfaces a software debugger on a host 
workstation. These traces are then used by the software debugger 
to enable faithful program replay off-line. The IEEE Nexus 5001 
standard [12] specifies four classes of debugging operations, 
including simple run-control debugging (Class 1), control-flow 
tracing (Class 2), data tracing (Class 3), and emulating memory 
and I/O through a trace port (Class 4). Each level progressively 
requires more on-chip resources and wider trace ports, thus 
increasing the system cost. The existing trace modules can capture 
full program execution traces for relatively small program 
segments only, due to limited capacity of on-chip buffers. 
Unfortunately, these traces are often insufficient to locate 
software bugs. With the growing complexity of the software 
running on embedded systems, the distance between the source of 
a bug and its manifestation may be in billions of instructions. 

This paper focuses on data traces (Class 3 in Nexus 5001). They 
are critical in reconstructing program execution in multicores and 
uncovering bugs caused by data race conditions. To faithfully 
reconstruct a program execution in the software debugger, we 
need to capture and stream out load data values of memory and 
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I/O reads, as well as exceptions on the target platform. However, 
these traces tend to be very large, in the order of 8-16 bits per 
instruction executed per processor core [9]. Capturing data traces 
in multicores is even more challenging because trace messages 
need to be ordered or time stamped. In addition, they need to 
include information about the origin of the trace message (core 
identification). Whereas a number of recent papers focus on 
capturing, compressing, and filtering control-flow traces [3], [5], 
[6], [11], [15], [17], relatively few studies look at on-the-fly data 
tracing [16]. Unfortunately, all these studies focus on single-core 
embedded platforms exclusively. In addition, the prior studies 
were based on functional simulation and did not address 
challenges of producing ordered or time-stamped trace messages 
coming from multiple cores. One interesting solution for 
debugging multicore SoCs called hidICE was proposed by 
Hochberger and Weiss [1]. It relies on a hardware emulator that 
replicates all master cores and memories from the target platform. 
The target platform reports only exceptions and data reads from 
peripherals that cannot be inferred by the emulator. However, 
hidICE is cost-prohibitive because it requires not only changes on 
the target platform to include a synchronization core and a new 
trace port, but also requires a sophisticated hardware emulator that 
replicates all the master modules and the RAM memory of the 
target. In addition, there has been no quantitative evaluation of 
hidICE. To the best of our knowledge, there have been no 
academic studies focusing on quantitative evaluation of data 
tracing requirements and development of cost-effective trace 
filtering mechanisms scalable to multicores.  

 
Figure 1. Multicore debugging and tracing infrastructure. 

In this paper, we first analyze requirements for on-the-fly data 
tracing in multicores as a function of the number of cores by 
running a set of parallel programs (Section 2). Next, we introduce 
mlvCFiat, a hardware/software framework for capturing and 
compressing load data values in multicores. mlvCFiat extends an 
existing method for capturing data traces in single-core platforms 
proposed by Uzelac and Milenkovic [16]. With mlvCFiat, data 
caches are augmented to include first-access tracking bits that 
help filter reads from memory, so that only first load accesses are 
traced out to the software debugger (Section 3). The first-access 
miss events are then encoded using effective and simple to 
implement encoding schemes (Section 3). Our experimental 
evaluation (Section 4) explores the effectiveness of mlvCFiat as a 
function of the number of cores, encoding mechanism, and data 

cache configurations. The results (Section 5) indicate that the 
mlvCFiat offers significant reduction in the required trace port 
bandwidth relative to the existing Nexus-like load data value 
tracing. The mlvCFiat with variable encoding reduces the trace 
port bandwidth in the range from 15 to 33 times for a single core 
with 16 KB and 32 KB data caches, respectively, and in the range 
from 14 to 20 times in a multicore with 8 processor cores, where 
each core has 16KB and 32KB private data caches, respectively.  

The main contributions of this work are as follows: 
• We characterize trace port bandwidth requirements in 

multicores for Nexus-like time stamped and untimed load 
data value traces as a function of the number of cores. We 
consider both bits per instruction and bits per clock cycle as 
measures of the required trace port bandwidth. 

• We develop a trace filtering technique called mlvCFiat for 
multicore load value tracing using first-access tracking to 
reduce the trace port bandwidth requirements. 

• We perform a detailed experimental evaluation of the trace 
port bandwidth, while varying the number of cores, cache 
sizes, and encoding approaches.  

• We analyze not only the average trace port bandwidth for 
each benchmark, but also consider variations of the trace port 
bandwidth during benchmark execution. 

2. DATA TRACING IN MULTICORES 
Exception traces and load data value traces captured on the target 
platform and streamed out to a software debugger are necessary to 
deterministically replay programs offline. Load data value traces 
are created by recording values read from memory and I/O 
devices. In addition to these traces, to faithfully replay the 
program offline the software debugger needs the following: (a) an 
instruction set simulator of the target platform, (b) access to the 
program’s binary, and (c) the initial state of the general-purpose 
and special-purpose registers of individual cores. In multicores, 
the traces need to be either streamed in the order of occurrence 
(referred to as untimed traces) or they could be streamed out of 
order, but with global time stamps attached to each trace message 
(referred to as time-stamped traces). In our analysis we consider 
both alternatives.  

To illustrate the tracing challenges in multicores, we consider a 
set of benchmarks and analyze the size of the load data value 
traces while varying the number of processor cores. As a metric 
we use the average trace port bandwidth (TPB) expressed in the 
number of bits per instruction executed (bpi) and the number of 
bits per processor clock cycle (bpc). The average TPB in bpi is 
calculated by dividing the total load data value trace size in bits 
with the number of instructions executed in a given benchmark. 
The average TPB in bpc is calculated by dividing the total trace 
size in bits with the benchmark execution time measured in 
processor clock cycles. The average TPB depends on the number 
of instructions executed, the frequency of instructions that read 
data from memory, and data types. The TPB in bpc also depends 
on the multicore model (pipeline, out-of-order execution, caches, 
and others), which can be characterized by the number of 
instructions committed per clock cycle (IPC). 

Table 1 shows characteristics of interest for data tracing for the 
SPLASH-2 benchmarks [18] [8]. The benchmarks are compiled 
for the IA32 ISA and run on a cycle-accurate Multi2Sim [14] 
simulator that models multicores with N=1, 2, 4, and 8 cores. 
Table 1 shows (a) the number of instructions executed in billions 
(IC), (b) the IPC, and (c) the frequency of instructions that read 
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data from memory. The IC remains constant or slightly increases 
with an increase in the number of cores, with an exception of 
cholesky where the IC increases significantly. The average IPC 
depends on the type of benchmarks, multicore models, and the 
number of cores. Thus, when N=1, the IPC ranges from 0.19 for 
cholesky to 0.66 for water-sp. The total IPC for the entire 
benchmark suite is calculated as the sum of all instructions 
executed by all benchmarks divided by the sum of all execution 
times in clock cycles. It ranges from 0.4 for N=1 to 1.95 for N=8. 
The IPC as a function of the number of cores indicates how well 
performance scales. The frequency of instructions reading data 
from memory varies from 13% for fmm to 35% for radix and its 
total is ~23% for the entire benchmark suite. It increases slightly 
with an increase in the number of cores. 

The Multi2Sim simulator is modified to capture load data values 
for committed instructions only. For untimed tracing we assume 
that trace messages coming from individual cores contain internal 
time stamps. These time stamps are used by the trace buffer 
control logic to order trace messages coming from different cores. 
The ordered trace messages are streamed out untimed, i.e., with 
no time field. Each trace message includes a (Ti, LV) pair, where 
Ti represents the core index (equivalent to the thread index) and 
LV represents the data value read from memory. We assume the 
software debugger can infer all other parameters (memory 
address, size of data) from the binary and the context maintained 
by the instruction set simulator(s). For time stamped trace 
messages, each trace message includes a (dCC, Ti, LV) triplet, 
where dCC represents the time in clock cycles measured from the 
beginning of the program execution or from the most recently 
streamed trace message at the given processor core (Figure 6a). 
This trace format complies with the Nexus format for single-
cores, but it is extended to include information about the core id 
and the time stamp. 

Figure 2a shows the average TPB in bpi broken down into 
individual fields of trace messages. The TPB is highly correlated 
with the frequency of memory reads and the size of typical 
operands read from memory. For untimed traces the TPB ranges 
from 7.6 for fmm to 12.8 bpi for cholesky, when N=1. It increases 
slightly with an increase in the number of cores due to (a) an 
increased overhead in reporting Ti and (b) an increase in the 
frequency of memory reads. When N=8, the TPB ranges from 8.1 
for fmm to 13.4 bpi for raytrace. The total trace port bandwidth 
for the entire benchmark suite is calculated as the sum of all trace 
messages for all benchmarks divided by the sum of all instructions 
executed for all benchmarks. It ranges from 10.3 for N=1 to 11.0 
bpi for N=8. For timed traces, the average TPB ranges from 8.8 
for fmm to 15.4 bpi for cholesky when N=1, and from 9.3 for fmm 

to 16 bpi for raytrace when N=8. The total trace port bandwidth 
for the time-stamped traces ranges from 12.3 for N=1 to 13.2 bpi 
when N=8. 

To further illustrate tracing challenges in multicores, we consider 
the TPB in bpc (Figure 2b). The required TPB for untimed traces 
ranges from 2.3 for fft to 6.5 bpc for water-sp when N=1, and 
from 7.3 for radix to 37.7 bpc for water-ns when N=8. 
Benchmarks with a high frequency of memory reads that scale 
well with the number of cores (e.g., water-sp) place a lot of 
pressure on the trace port. The total average TPB ranges from 4.1 
for N=1 to 21.5 bpc for N=8. In case of timed traces, the total 
average TPB increases even further to 4.9 when N=1 and to 25.6 
bpc when N=8. Some benchmarks, e.g. raytrace and water-ns, 
require the average TPB of over 42 bpc. Whereas the results in 
Figure 2 indicate the average TPB for each benchmark, even 
higher peak bandwidths at the trace port are likely to occur during 
a benchmark execution. All these observations thus underscore a 
need for techniques that will reduce the volume of trace data that 
needs to be streamed out of the chip. 

 
Figure 2. Trace port bandwidth for Nexus-like load data value 

traces. 

3. mlvCFiat 
mlvCFiat (multicore load value cache first access tracking) is a 
hardware-based mechanism that reduces load data value traces by 
capturing a minimal set of trace messages through the use of a 
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Table 1. Splash2 benchmark suite characterization 

Benchmarks Instruction Count [IC] x109 Instructions Per Cycle [IPC] % Loads 
No. of Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 
barnes 2.13 2.13 2.13 2.14 0.37 0.54 0.96 1.69 28.78 28.78 28.78 28.79 
cholesky 1.27 1.43 1.95 3.07 0.19 0.41 0.92 2.12 27.78 29.54 30.32 31.30 
fft 0.92 0.92 0.92 0.92 0.26 0.44 0.72 1.04 19.20 19.20 19.20 19.21 
fmm 2.79 2.80 2.82 2.86 0.41 0.80 1.52 2.70 13.02 13.06 13.27 13.49 
lu 0.45 0.45 0.45 0.45 0.39 0.74 1.27 1.95 20.20 20.22 20.25 20.31 
radiosity 2.23 2.33 2.29 2.32 0.48 0.87 1.65 2.99 27.51 27.45 27.38 26.79 
radix 1.59 1.59 1.59 1.60 0.23 0.36 0.54 0.65 35.09 35.09 35.09 35.09 
raytrace 2.47 2.46 2.47 2.47 0.50 0.93 1.68 2.67 28.49 28.48 28.48 28.47 
water-ns 0.74 0.74 0.74 0.75 0.61 1.17 2.22 3.90 16.31 16.33 16.36 16.42 
water-sp 5.03 5.03 5.03 5.03 0.66 1.07 1.73 2.73 17.38 17.38 17.38 17.38 
Total 19.61 19.87 20.39 21.60 0.40 0.69 1.21 1.95 22.77 22.96 23.21 23.67 

 



cache first access mechanism.  Figure 1 shows the block diagram 
of system debugging with light blue boxes representing additional 
mlvCFiat hardware and software modules. With mlvCFiat, each 
L1 data cache block in each processor core on the target platform 
is augmented with first access tracking bits (Figure 3). These bits 
keep track of sub-blocks that need to be reported to the software 
debugger. Let us assume an L1 data cache with 32-byte cache 
blocks. If a first-access tracking bit protects a 4-byte sub-block, 
each cache block needs to be augmented with an 8-bit first-access 
vector. The previously reported sub-blocks do not have to be 
reported again as they can be inferred by the software debugger. 
This way we exploit the temporal and spatial locality of data 
accesses to significantly reduce the number of trace events that 
needs to be reported. In addition to the first-access tracking bits, 
each trace module includes a local first-access counter (Ti.fahCnt) 
that counts the number of consecutive first-access hits. 

 
Figure 3. mlvCFiat structures for core i. 

Figure 4 describes operation of the mlvCFiat mechanism on core i 
carried out for memory reads (lines 2-12), memory writes (lines 
15-16), and external invalidate requests (line 19). Each memory 
read causes an L1 data cache lookup; if the requested data item is 
found in the data cache (a cache hit event) and the corresponding 
first-access bit(s) is set (an FA hit event), the data value does not 
need to be reported to the software debugger and Ti.fahCnt is 
incremented (line 3, Figure 4). In case of an FA miss event, a 
trace message is streamed out of the chip. The message includes 
the time stamp (Ti.dCC), the core id (Ti), the current value of 
Ti.fahCnt, and the load data value (Ti.LV) that is being reported 
for the first time (line 5). In addition, the corresponding FA bit(s) 
is set and the counter Ti.fahCnt is cleared (lines 6 and 7). In case 
of a data cache miss event, the newly fetched block’s FA tracking 
bits are cleared and then the steps 5-7 are carried out. Similarly, 
external cache block invalidation or update requests invalidate the 
cache block and clear the corresponding FA bits (line 19). Finally, 
each memory write operation includes acquiring the exclusive 
ownership of the block and setting the corresponding FA tracking 
bit(s) (lines 15-16). Please note that we assume that the first-
access tracking bits are tied to L1 data caches. By capturing trace 
events at the L1 level, cache coherence protocols are transparent 
to mlvCFiat. Thus, a write request to a shared block is treated as a 
miss in mlvCFiat. By capturing trace messages at each core, 
mlvCFiat complies with modular and scalable design 
methodologies. 

Figure 5 describes steps carried out by the software debugger in 
response to memory reads (lines 2-10), memory writes (lines 13-
15), and external invalidate requests (line 18). The debugger 
maintains software copies of the data caches and the Ti.fahCnt 

counters; these are updated during program replay using the same 
policies employed on the target platform. The program replay 
starts by reading and decoding the trace messages received from 
the target for each core separately. The format of the trace 
messages and the lengths of the individual fields are known to the 
software debugger. The debugger replays the instructions for each 
core using the corresponding instruction set simulator. For each 
memory read operation, the software copy of the counter 
Ti.fahCnt is decremented (line 2). If Ti.fahCnt>0, the debugger 
retrieves the load data value from the software copy of the data 
cache and moves to the next instruction (lines 4 and 5). If 
Ti.fahCnt=0, we have a first read miss event: the load data value is 
retrieved from the current trace message, the software copy of the 
data cache is updated, a new trace message for a given core is read 
from the trace probe, and the software copy of the Ti.fahCnt 
counter is loaded with a new value from the trace message (lines 
7-9). For memory writes, if the block is shared in the cache, the 
current core acquires and exclusive ownership by invalidating 
copies of the block in other caches (line 13). The software copy of 
the cache block is updated and the corresponding FA bits are set 
(lines 14-15). In case of an invalidate request, the specified cache 
block is invalidated and all FA bits attached to that cache block 
are cleared.  

 
1. // For each read operation core i 
2. if (CacheHit) { 
3.  if (corresponding FA bits are set) Ti.fahCnt++; 
4.  else { 
5.   Generate message (Ti.dCC, Ti, Ti.fahCnt, Ti.LV); 
6.   Set corresponding FA bits; 
7.   Ti.fahCnt = 0; 
8.  } 
9. } else { // cache miss event 
10.  Clear all FA bits for newly fetched cache block; 
11.  Perform steps 5-7; 
12. } 
13.  
14. // For each retired write operation 
15. If (Shared) Acquire exclusive ownership; 
16. Set the corresponding FA bits; 
17.  
18. // For external invalidation/update request 
19. Invalidate the block and clear all FA bits; 

Figure 4. mlvCFiat operation on the target core i. 

1. // For each read operation on core i  
2. Ti.fahCnt --; 
3. if (Ti.fahCnt > 0) { 
4.  Perform lookup in the SW data cache; 
5.  Retrieve data value from SW cache; 
6. } else { // FA miss event 
7.  Read n bytes from trace record; 
8.  Update SW cache; 
9.  Get new message (Ti.dCC, Ti, Ti.fahCnt, Ti.LV); 
10. } 
11.  
12. // For each store that writes n bytes 
13. If (Shared) Acquire exclusive ownership; 
14. Update SW cache; 
15. Set the corresponding n SW cache FA bits; 
16.  
17. // For external block invalidate/update request 
18. Invalidate the block and clear FA bits; 

Figure 5. mlvCFiat operation in the software debugger for 
core i. 
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3.1 Hardware Implementation 
mlvCFiat requires hardware extensions to support first-access 
tracking in L1 data caches for all processor cores. The majority of 
hardware overhead is due to the first-access tracking bits. The 
overhead depends on first-access tracking bits granularity and 
location, data cache size, and block size. The first-access tracking 
can be attached to the data cache blocks and control logic is added 
to maintain them (Figure 3). For example, if we assume cores 
with 32 KB data cache, 32-byte cache blocks, and first-access bit 
granularity of 4 bytes, the overhead is 1/32nd of the data cache 
capacity, or 1 KB of additional storage. Using complexity 
estimation based on Cacti tools [13], the total overhead is less 
than 3% of the regular L1 data cache area [16]. With finer 
granularity when each byte is protected with a first-access bit, we 
can possibly reduce the size of trace messages when byte sized 
memory reads dominate. However, the area overhead increases. 
With a coarse-grain granularity, every first-access miss event 
results in reporting the entire sub-block, regardless of the size of 
the memory read. Interestingly, coarse-grain granularity may have 
negative effects on the total size of trace messages in cases with 
poor spatial locality. However, it can also contribute to reducing 
the number of trace messages in cases when short operands are 
accessed sequentially (strong spatial locality). 

Alternatively, the first-access flags can be implemented outside of 
processor cores in trace modules and connected to processor cores 
through a well-defined interface. In this case, mlvCFiat would 
need to include cache tags and address decoding, which 
introduces the additional hardware overhead. However, this 
approach may offer higher modularity and flexibility because the 
geometries of data caches in trace modules do not have to mirror 
actual processor data caches. However, duplicating cache tags 
results in an increased overhead that is slightly over 13% of the 
total L1 data cache area. In our analysis, we assume that the first-
access bits are tied to the L1 data cache. 

3.2 Encoding of Trace Messages 
Trace messages streamed out through the trace port should be 
encoded in such a way to minimize the total number of bits. 
Figure 6 shows formats of trace messages for the Nexus-like load 
value trace (NX_b), mlvCFiat base encoding (CF_b), and 
mlvCFiat variable encoding (CF_e). With NX_b, each load data 
value, LV, is streamed out through the trace port together with a 
core index on which the read operation is carried out, Ti, and a 
differentially encoded time stamp, dCC. The length of the Ti field 
is fixed and is a function of the number of cores (0 bits for N=1, 1 
bit for N=2, 2 bits for N=4). In NX_b, the length of the LV field 
depends on the size of the operand read from memory (for IA32 
ISA it ranges from 1 to 120 bytes) and is thus 8⋅sizeof(type) 
bits. In mlvCFiat, the length of the LV field also depends on the 
granularity size, GS, and can be calculated as follows: 
8⋅GS⋅sizeof(type)/GS bits. For example, if the operand size 
is one byte and the granularity size is 4 bytes, the length of the LV 
field is 4 bytes or 32 bits. The time field, dCC, carries information 
about the clock cycle in which the current trace-generating 
instruction has retired. Rather than recording the absolute clock 
cycle from the beginning of the program, it contains the number 
of clock cycles expired from the previous trace event on the core 
i, Ti.dCC = Ti.CC – Ti.P.CC, Ti.P.CC = Ti.CC. Note: the first 
trace message contains the time from the beginning of the 
program. For simplicity, we assume all cores share a global clock. 
The number of bits needed to encode dCC varies among programs 
and during program execution. With NX_b and CF_b we use at 
least 8 bits to encode dCC. The connect bit (C) determines 

whether more 8-bit chunks are needed to fully encode dCC value 
(C=1) or not (C=0). 

With mlvCFiat, trace messages consist of the following fields: 
dCC, Ti, fahCnt, and LV. The fahCnt field contains the value of 
the counter Ti.fahCnt (the number of consecutive first-access hit 
events on core i). The number of bits needed to encode fahCnt 
varies as a function of FA miss rate. With CF_b we use at least 8 
bits to encode the fahCnt. The connect bit (C) determines whether 
another 8-bit chunk is needed to fully encode the fahCnt value 
(C=1) or not (C=0). With CF_e, we allow chunks for encoding 
fahCnt (i0, i1, i2, …) and chunks for encoding dCC (h0, h1, h2, 
…) to be variable in size as shown in Figure 6c. We evaluate 
different encoding arrangements to select good values that 
minimize the number of bits needed to encode these fields. 

 
Figure 6. Formats of trace messages. 

4. EXPERIMENTAL ENVIRONMENT 
The goal of the experimental evaluation is to determine the 
effectiveness of the proposed mlvCFiat as a function of the 
number of cores. In addition, the goal is to quantitatively assess 
the impact of mlvCFiat configuration parameters (cache sizes, 
granularity sizes), and encoding parameters (baseline and 
variable) on its performance. As a measure of effectiveness, we 
use the average trace port bandwidth requirements expressed in 
bits per instruction and bits per clock cycle. Whereas the average 
trace port bandwidth allows us to quantify the effectiveness of the 
proposed technique, it does not fully capture the peak rates that 
occur in individual benchmarks during their execution. 
Consequently, we also analyze the trace port bandwidth as a 
function of time during benchmark execution. 

Figure 7 shows the experimental flow used to create hardware 
traces and evaluate the trace port bandwidth. The timed traces are 
collected using the Multi2Sim simulator executing IA32 ISA. The 
Multi2Sim simulator is extended with a custom TmTrace module 
that captures full time-stamped memory read and write traces 
(tmlsTrace). The time stamp contains the global clock cycle in 
which the trace-generating instruction is committed. The 
tmlsTraces traces are read by the mlvCFiat simulator that 
simulates the behavior of data caches and mlvCFiat modules and 
generates compressed load data value traces (mlvCFiat trace). The 
output traces are then processed by trace filtering and encoding 
tools that determine trace port bandwidth and generate minimal 
hardware traces, namely the Nexus like trace, NX_b, and the 
compressed traces, CF_b and CF_e.  

As the workload we use Splash2 [18] [8] benchmarks run with 
N=1, 2, 4, and 8 cores. Whereas the Splash2 benchmark suite may 
not be an ideal representative of cyber-physical systems targeted 
by this research, it includes well-understood standard parallel 
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applications and application kernels that can work with a cycle-
accurate simulator such as Multi2Sim.  

The Multi2Sim simulator supports building a cycle-accurate 
model for a multicore processor including processor and memory 
hierarchy. We use a multicore with up to 8 single-threaded x86 
processor cores as shown in Figure 8. Each core has its private 
level 1 instruction (L1I) and data (L1D) caches with hit latency of 
4 clock cycles. To evaluate effectiveness of mlvCFiat as a 
function of the cache size, we consider two configurations of 
caches: CS16 with 16 KB L1D, and CS32 with 32 KB L1D. The 
mlvCFiat tracking bits are added to L1 data cache tags. The L1 
data caches are 4-way set-associative with the least-recently used 
replacement policy, cache block sizes are set to 32 bytes. The 
unified L2 cache memory is shared by all cores and has a hit 
latency of 12 clock cycles. The L2 cache size varies with the 
number of cores, N, and it is set to N⋅64KB for the CS16 
configuration and N⋅128KB for the CS32 configuration. The main 
memory latency is set to 100 clock cycles. 

 
Figure 7. Experimental environment. 

 
Figure 8. Multicore model. 

An important part of experimental evaluation is determining a 
good granularity size. Figure 9 shows the normalized TPB for two 
representative benchmarks as a function of the number of cores, 
the cache configuration, and the granularity size. We consider 
granularity sizes of 1-byte, GS(1), 8-bytes, GS(8), 16-bytes, 
GS(16), and 32-bytes, GS(32). The TPB is normalized to the 

granularity size of 4 bytes, GS(4). The results show GS(1) offers 
limited (less than 4% for barnes) or no benefit at all (for water-
ns). In general, we observed just a few benchmarks that read 
memory operands shorter than 4 bytes. By increasing the first-
access granularity from 4 to 8 bytes, some benchmarks see an 
increase in the TPB (e.g., barnes), but some benchmarks do not 
(water-ns). Coarse-grained granularity of 16 bytes increases the 
TPB in the range from 40% to 70% relative to GS(4), depending 
on the benchmark, cache size, and the number of processor cores. 
When we use a single first-access bit per each cache block, 
GS(32), the TPB increases in the range from 60% to 145%. 
Consequently, our choice to use granularity of 4 bytes strikes a 
good balance between the method effectiveness and the hardware 
overhead. 

 
Figure 9. Normalized TPB as a function of FA granularity. 

A part of the experimental evaluation is finding good chunk sizes 
for the variable encoded dCC and fahCnt fields used in CF_e. The 
number of bits needed to encode dCC and fahCnt depends on the 
frequency and distribution of first-access misses, which in turn 
depends on the number of cores and cache configurations. 
Whereas chunk sizes can be tailored for each combination of 
benchmarks and the mlvCFiat configurations, we seek chunk sizes 
that perform well across all benchmarks and configurations. We 
limit the search space by setting i1=i2=…=ik, and h1=h2=…=hk. 
Figure 10 shows the average bit length of the fahCnt field (left) 
and dCC field (right) when all benchmarks are considered 
together for different chunk sizes. The results show that chunk 
sizes (i0, i1)=(2, 2) and (h0, h1)=(4, 2) perform well for the 
fahCnt and dCC fields, respectively. Somewhat surprisingly we 
find that these chunk sizes exhibit good performance regardless of 
the number of cores. The findings hold for the CS32 
configuration. 

 
Figure 10. Average bit length of the fahCnt and dCC fields as 

a function of chunk sizes. 

5. RESULTS  
The effectiveness of mlvCFiat directly depends on (a) benchmark 
characteristics – namely, the type, frequency, and distribution of 
memory read operations, (b) data cache miss rates and first-access 
flag miss rates, and (c) encoding parameters. The first-access miss 
rate is a good indicator of the mlvCFiat effectiveness – the lower 
it is, the fewer trace messages need to be streamed out through the 
trace port. Figure 11 shows the total read L1 data cache miss rate 
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and the total first-access miss rate for the entire benchmark suite 
as a function of the number of cores and the data cache 
configurations (CS16 and CS32). It also shows the minimum and 
the maximum read data cache and first-access miss rates. The 
total L1 data cache read miss rate is calculated as the total number 
of read misses divided by the total number of read requests when 
all benchmarks are considered together. The total FA miss rate is 
calculated as the total number of first-access misses divided by the 
total number of data reads when all benchmarks are considered 
together. For the CS16 configuration, the total read L1 data cache 
miss rate is ~2% regardless of the number of cores, with the 
maximum of 4.66%. For the CS32 configuration, the total read L1 
data cache miss rate is below 1.5% with the maximum of 3.18%. 
The total FA miss rate ranges between 5.67% (N=1) and 6.32% 
(N=2) for the CS16 configuration, and from 2.61% (N=1) and 
4.24% (N=8) for the CS32 configuration. However, the maximum 
FA miss rate reaches as high as 17.99% with CS16 and 10.17% 
for CS32 (fft benchmark). Overall, the results confirm our 
expectations that mlvCFiat can indeed significantly reduce the 
number of trace messages that needs to be streamed out through 
the trace port. We find that the total FA miss rate does not 
increase significantly as we increase the number of cores. With an 
increase in the number of cores we may decrease the number of 
conflict-induced misses, but we may also increase the number of 
misses caused by invalidations. 

 
Figure 11. Data cache read miss rate & first access miss rate. 

5.1 Trace Port Bandwidth in bpi 
Figure 12 shows the total trace port bandwidth with the min-max 
ranges in bpi for the timed Nexus-like load data value traces 
(NX_b), the mlvCFiat with base encoding (CF_b), and the 
mlvCFiat with variable encoding (CF_e) as a function of the 
number of cores (N=1, 2, 4, 8). Table 2 shows the average trace 
port bandwidth in bpi for individual Splash2 benchmarks as well 
as the total average trace port bandwidth (row Total) for NX_b 
and CF_e with CS16 and CS32 configurations as a function of the 
number of cores. The results show that NX_b requires from 12.34 

bpi when N=1 (ranging from 8.82 bpi for fmm to 15.35 bpi for 
cholesky) to 13.17 bpi when N=8 (from 9.33 bpi for fmm to 16.01 
bpi for raytrace). An increase in the required TPB with an 
increase in the number of cores can be explained by an increased 
size of the Ti field in trace messages and an increase in the 
number of memory reads due to synchronization operations.  

The mlvCFiat mechanism dramatically reduces the total trace port 
bandwidth requirements relative to NX_b. The total average TPB 
for CF_b with CS16 is 0.88 bpi when N=1 (from 0.07 for water-sp 
to 2.84 for fft) and 1.0 bpi when N=8 (from 0.09 for water-sp to 
2.93 for fft). Compared to NX_b, CF_b(CS16) thus reduces the 
bandwidth 14.0 times for N=1 and 13.1 times for N=8. 
Expectedly, increasing the size of data caches leads to even lower 
trace port bandwidths. Thus, CF_b with CS32 requires only 0.40 
bpi when N=1 (from 0.06 for water-sp to 1.63 for fft), and 0.71 
bpi when N=8 (from 0.08 for water-sp to 1.89 for barnes). 
Compared to NX_b, CF_b(CS32) reduces the TPB 30.6 times 
when N=1 and 18.6 times when N=8.  

 
Figure 12. Total trace port bandwidth in bpi. 

The variable encoding further reduces the total trace port 
bandwidth from 8% to 9% compared to CF_b for all 
configurations. CF_e with CS16 thus requires 0.80 bpi for N=1 
(from 0.07 for water-sp to 2.57 bpi for fft) and 0.92 bpi for N=8 
(from 0.08 for water-sp to 2.67 for fft). Compared to NX_b, CF_e 
with CS16 reduces the average trace port bandwidth 15.3 times 
when N=1 and 14.3 times when N=8. CF_e with CS32 requires 
merely 0.37 bpi when N=1 (from 0.05 bpi for water-sp to 1.48 bpi 
for fft) and 0.66 bpi when N=8 (from 0.08 bpi for water-sp to 1.77 
bpi for barnes). Relative to the NX_b, CF_e with CS32 reduces 
the trace port bandwidth by 33.4 times when N=1 and 20.1 times 
when N=8. Table 3 shows the speedup (or compression ratio) 
achieved by CF_e with CS32 relative to NX_b for all individual 
benchmarks. The speedups range from as low as 4.2 times for fft 
to 210.3 times for water-sp when N=1 and to 156.2 times when 
N=8. 
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Table 2. Trace port bandwidth in bpi 

# Cores N=1 N=2 N=4 N=8 
Mechanism NX_b CF_e CF_e NX_b CF_e CF_e NX_b CF_e CF_e NX_b CF_e CF_e 
Config. - CS16 CS32 - CS16 CS32 - CS16 CS32 - CS16 CS32 
barnes 15.03 2.21 0.79 15.31 2.30 1.16 15.59 2.39 1.47 15.86 2.44 1.77 
cholesky 15.35 1.86 0.75 16.21 1.30 0.79 15.87 0.95 0.62 15.59 0.61 0.44 
fft 10.65 2.57 1.48 10.84 2.62 1.50 11.02 2.65 1.52 11.19 2.67 1.54 
fmm 8.82 0.36 0.23 8.96 0.37 0.24 9.14 0.38 0.25 9.33 0.38 0.26 
lu 11.88 0.58 0.57 12.07 0.61 0.57 12.27 0.62 0.58 12.47 0.65 0.45 
radiosity 12.11 0.25 0.09 12.36 0.55 0.45 12.59 0.56 0.44 12.58 0.63 0.54 
radix 13.41 0.75 0.54 13.75 1.64 1.44 14.09 1.73 1.52 14.54 1.79 1.57 
raytrace 15.17 1.06 0.34 15.45 1.28 0.61 15.73 1.38 0.71 16.01 1.54 0.90 
water-ns 10.64 0.49 0.22 10.81 0.52 0.25 10.98 0.56 0.39 11.15 0.56 0.42 
water-sp 11.38 0.07 0.05 11.55 0.07 0.06 11.73 0.08 0.07 11.90 0.09 0.08 
Total 12.34 0.80 0.37 12.63 0.92 0.57 12.89 0.93 0.61 13.17 0.92 0.66 

 



Table 3. Speedup TPB(NX_b)/TPB(CF_e) 

# Cores N=1 N=2 N=4 N=8 
Config. CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 
barnes 6.8 19.1 6.7 13.1 6.5 10.6 6.5 9.0 
cholesky 8.2 20.4 12.5 20.4 16.7 25.5 25.7 35.1 
fft 4.2 7.2 4.1 7.2 4.2 7.3 4.2 7.3 
fmm 24.2 37.8 24.1 37.2 24.2 36.7 24.4 36.6 
lu 20.5 20.7 19.8 21.3 19.8 21.2 19.2 27.6 
radiosity 47.7 128.8 22.3 27.6 22.6 28.4 19.8 23.4 
radix 17.9 24.8 8.4 9.6 8.1 9.3 8.1 9.3 
raytrace 14.3 44.2 12.1 25.4 11.4 22.1 10.4 17.9 
water-ns 21.7 47.4 20.8 42.8 19.7 28.0 20.0 26.6 
water-sp 168.1 210.3 158.5 189.4 147.3 170.9 136.9 156.2 
Total 15.3 33.4 13.7 22.3 13.9 21.0 14.3 20.1 

 

 
Figure 13. Total trace port bandwidth of individual trace 

fields in bpi. 

Figure 13 shows the total trace port bandwidth in bpi broken 
down into individual fields of trace messages: LV, Ti, fahCnt, 
dCC. Expectedly, the majority of trace port bandwidth is 
consumed by streaming out the load values (LV). For NX_b, the 
LV portion ranges from 83% for N=1 to 78% for N=8. The time 
field is responsible for ~17% of the bandwidth regardless of the 
number of cores. Thus, if we order trace messages coming from 
different cores in the trace buffer and stream them out without the 
time field, the trace port bandwidth requirements will be lower for 
~17%. However, this would require hardware support for 
buffering and sorting trace messages coming from individual 
processor cores before they are streamed out through the trace 
port. For CF_b, the LV field accounts for 67%-72% of the trace 
port bandwidth depending on the number of cores, the fahCnt 
field for ~13%, and the dCC field for ~16%. In CF_e, the LV field 
accounts for 73%-79% of the total bandwidth, the fahCnt for 
~9%, and the dCC field accounts for ~15%. Thus, if further trace 
reduction is desired, reducing the size of the LV field (e.g., using 

dictionaries or predictors) would be the most beneficial approach. 

5.2 Trace Port Bandwidth in bpc 
Figure 14 shows the total trace port bandwidth with the min-max 
ranges in bpc for the timed NX_b, CF_b, and CF_e traces as a 
function of the number of cores and L1 data cache sizes. Table 4 
shows the average trace port bandwidth for individual Splash2 
benchmarks and the total bandwidth for NX_b and CF_e with the 
CS16 and CS32 configurations, as a function of the number of 
cores. Please note that we have trace port bandwidth in bpc 
reported for NX_b for both configurations CS16 and CS32 
because the benchmark execution time depends on the data cache 
size. The results show that the total trace port bandwidth for 
NX_b scales linearly with the number of cores. With CS16, the 
TPB is from 4.92 bpc for N=1 (ranging from 2.79 for fft to 7.53 
for raytrace) to 25.64 bpc for N=8 (ranging from 9.41 for radix to 
43.51 for water-ns). With CS32, the total trace port bandwidth 
increases because larger data caches reduce the program execution 
time. The TPB is from 5.31 bpc for N=1 (ranging from 3.07 for fft 
to 8.62 bpc for raytrace) to 25.99 bpc for N=8 (ranging from 9.47 
for radix to 45.82 bpc for raytrace). These results underscore the 
challenges in on-the-fly data tracing. The average trace port 
bandwidth of over 40 bpc would require a very wide trace port of 
over 100 pins dedicated to tracing because trace ports typically 
cannot run at processor clock speeds. In addition, it should be 
noted that more aggressive processor models with a higher IPC or 
multicores with a larger number of cores would both require even 
higher trace port bandwidth.  

 
Figure 14. Trace port bandwidth in bpc. 

Both CF_b and CF_e provide significant reductions in the trace 
port bandwidth. CF_e with CS16 requires from 0.32 bpc for N=1 
(ranging from 0.04 for water-sp to 0.81 for barnes) to 1.79 bpc for 
N=8 (ranging from 0.24 for water-sp to 4.13 for barnes). CF_e 
with CS32 requires from 0.16 bpc for N=1 (from 0.04 for water-
sp to 0.43 for fft) to 1.29 bpc for N=8 (from 0.21 for water-sp to 
3.05 for barnes). Thus, we can say that CF_e with CS32 reduces 
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Table 4. Trace port bandwidth in bpc 

# Cores N=1 N=2 N=4 N=8 
Mechanism NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e NX_b NX_b CF_e CF_e 
Config CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 CS16 CS32 
barnes 5.50 6.20 0.81 0.33 8.24 8.92 1.24 0.68 14.96 15.82 2.29 1.49 26.79 27.43 4.13 3.05 
cholesky 2.93 3.30 0.36 0.16 6.58 7.44 0.53 0.36 14.67 16.75 0.88 0.66 32.99 32.91 1.28 0.94 
fft 2.79 3.07 0.67 0.43 4.78 5.32 1.16 0.74 7.93 8.77 1.91 1.21 11.59 11.83 2.77 1.62 
fmm 3.59 3.70 0.15 0.10 7.17 7.37 0.30 0.20 13.92 14.12 0.58 0.38 25.16 25.36 1.03 0.69 
lu 4.67 5.16 0.23 0.25 8.97 9.68 0.45 0.46 15.56 16.68 0.78 0.79 24.38 24.64 1.27 0.89 
radiosity 5.87 6.11 0.12 0.05 10.79 11.26 0.48 0.41 20.81 21.85 0.92 0.77 37.60 38.37 1.89 1.64 
radix 3.14 3.39 0.18 0.14 5.01 5.20 0.60 0.55 7.67 7.87 0.94 0.85 9.41 9.47 1.16 1.02 
raytrace 7.53 8.62 0.53 0.20 14.35 16.01 1.19 0.63 26.40 29.03 2.31 1.32 42.70 45.82 4.10 2.57 
water-ns 6.49 7.00 0.30 0.15 12.68 13.50 0.61 0.32 24.34 24.71 1.24 0.88 43.51 43.29 2.17 1.63 
water-sp 7.50 7.63 0.04 0.04 12.40 12.57 0.08 0.07 20.29 20.42 0.14 0.12 32.48 32.64 0.24 0.21 
Total 4.92 5.31 0.32 0.16 8.76 9.32 0.64 0.42 15.61 16.44 1.13 0.78 25.64 25.99 1.79 1.29 

 



the pressure on the trace port relative to NX_b between 33 times 
when N=1 to 20 times when N=8. In addition, we should note that 
the worst average TPB is reduced from 43.51 for NX_b to 2.17 
for CF_e in the CS16 configuration. Similarly, the TPB is reduced 
from 45.82 for NX_b to 2.57 for CF_e in the configuration with 
CS32 (see Table 4).  

5.3 mlvCFiat vs. Software Trace Compression 
To underscore the effectiveness of the proposed mechanism we 
will compare it to a software trace compression. We consider the 
NX_b trace as an input trace and use gzip compression utility with 
compression level -1 to determine the compression ratio and thus 
the trace port bandwidth that can be achieved if such a mechanism 
is employed. The level -1 is used because of its relatively modest 
memory requirements, offering compression ratios that closer 
match those that could be achieved in hardware compressors. The 
trace messages from all cores are streamed into the compressor as 
they appear in the original NX_b trace. Please note that 
implementing a full general-purpose compressor dedicated to 
compressing load data value traces would require significant 
hardware resources.  
Unfortunately, the software compression yields relatively modest 
compression ratios because the original NX_b trace is bit-packed 
to minimize the number of bits required on the trace port. Thus, 
possible redundancy in data traces cannot be exploited because 
gzip is a byte oriented compressor. Columns marked with Unif in 
Table 5 show the compression ratios for individual Splash2 
benchmarks achieved by gzip with -1 as a function of the number 
of processors. The total compression ratios vary from 1.38 for 
N=4 to 1.54 times for N=1. These results show that the software 
compression will not significantly reduce the trace port bandwidth 
under given conditions.  

Table 5. Speedup TPB(NX_b)/TPB(compressed NX_b) 

# Cores N=1 N=2 N=4 N=8 
Config. Split Unif. Split Unif. Split Unif. Split Unif. 
barnes 2.10 1.38 1.78 1.30 1.66 1.24 1.58 1.27 
cholesky 6.73 1.74 3.85 1.67 3.53 1.85 4.13 2.50 
fft 1.93 1.39 1.79 1.36 1.68 1.30 1.66 1.37 
fmm 4.95 1.95 3.73 1.85 3.06 1.58 2.75 1.59 
lu 5.93 1.56 3.58 1.54 3.14 1.42 3.06 1.77 
radiosity 3.86 1.63 2.50 1.54 2.10 1.37 1.95 1.48 
radix 4.23 2.02 3.05 1.81 2.08 1.46 1.96 1.42 
raytrace 3.88 1.51 2.61 1.47 2.26 1.32 2.08 1.38 
water-ns 2.69 1.41 2.08 1.38 1.94 1.27 1.87 1.35 
water-sp 3.03 1.37 2.40 1.36 2.11 1.26 2.02 1.39 
Total 3.33 1.54 2.52 1.49 2.21 1.38 2.18 1.52 

 
To achieve a higher compression ratio, we split the input NX_b 
trace into two streams, one with the (dCC, Ti) fields and the other 
with the load data values (LV). These two streams are fed into 
separate software compressors that use gzip utility. By splitting 
the input trace, we can better exploit redundancy present in 
individual trace fields. However, even with this modification, the 
total compression ratio remains fairly limited. Columns marked 
with Split in Table 5 show the compression ratios for individual 
Splash2 benchmarks achieved by gzip -1 as a function of the 
number of processors. The total compression ratios vary from 
3.33 times when N=1 to 2.18 when N=8. By comparing these 
compression ratios to the ones presented in Table 3, we can 
conclude that CF_e significantly outperforms even software trace 
compression.  

5.4 Dynamic Trace Port Bandwidth Analysis 
Whereas the average trace port bandwidth allows us to quantify 
the effectiveness of mlvCFiat, it does not fully capture the peak 
rates that occur in individual benchmarks during their execution. 
Depending on frequency and distribution of memory reads and 
first-access misses, the trace port bandwidth at a given moment in 
a program execution may exceed the average trace port bandwidth 
discussed above. 

Figure 15 and Figure 16 show the trace port bandwidth during 
execution of two benchmarks, raytrace and water-ns, 
respectively. The number of cores is set to N=8. We analyze the 
bandwidth required for the time-stamped NX_b and CF_e traces 
with both configurations, CS16 and CS32. The benchmarks 
raytrace and water-ns are selected because they require the 
highest average total trace port bandwidth for the time-stamped 
load data value traces. The trace port bandwidth in bpc is logged 
every 1 million clock cycles.  

Let us first analyze the bandwidth as a function of time for 
raytrace. The average TPB for NX_b with CS16 is 42.7 bpc. 
However, the peak bandwidth reaches ~61.5 bpc, further 
underscoring the challenges in load data value tracing. CF_e with 
CS16 requires the average TPB of 4.10 bpc with the peak values 
of 7.3 bpc, which is almost an order of magnitude smaller trace 
port bandwidth than for NX_b. CF_e with CS32 requires the 
average TPB of 2.57 bpc with the peak value of 4.9 bpc. These 
results indicate that CF_e not only reduces the average TPB, but 
also reduces the requirements for on-chip trace buffers. Similar 
observations stand for water-ns. The average TPB for NX_b with 
CS16 is 43.5 bpc and the peak TPB reaches 56.4 bpc. CF_e 
requires the average TPB of 2.17 bpc with the peak of 6.3 bpc 
with CS16 and 1.63 bpc with the peak of 6.0 bpc with CS32. 

 
Figure 15. Dynamic trace port bandwidth in bpc during 

execution of raytrace for N=8. 

 
Figure 16. Dynamic trace port bandwidth in bpc during 

execution of water-ns for N=8. 
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6. CONCLUSIONS 
Growing complexity of hardware and software stacks, a recent 
shift toward multicores, and ever-tightening time-to-market make 
software testing and debugging one of the most critical aspects of 
embedded system development. Improved on-chip debugging and 
tracing infrastructure, coupled with sophisticated software 
debuggers, promises to reduce time and effort in finding difficult 
and intermittent bugs, thus resulting in higher quality software and 
increased productivity. 

This paper introduces mlvCFiat, a technique for on-the-fly 
capturing and filtering load data value traces in multicore systems. 
mlvCFiat requires extensions of data caches to include first-access 
tracking bits, as well as software copies of data caches maintained 
by the software debugger. The first-access tracking bits, updated 
by memory read and write operations, determine which memory 
read operations need to be streamed out to the software debugger. 
This way we reduce the number of trace messages needed to 
replay the programs in the software debugger. 

Our simulation-based experimental evaluation explores the 
effectiveness of mlvCFiat as a function of data cache sizes (16 
and 32 KB), the encoding mechanism, and the number of 
processor cores (N=1-8). As a measure of the effectiveness, we 
use the trace port bandwidth expressed in the number of bits 
streamed on the trace port per instruction executed and the 
number of bits per processor clock cycle. mlvCFiat compression 
ratio relative to the Nexus-like load data value traces ranges from 
15 to 33 times when N=1 and from 14 to 20 times when N=8. The 
effectiveness of mlvCFiat increases with an increase of private 
data cache size. The variable encoding scheme for time stamps 
and first-access counter fields of trace messages improves the 
effectiveness of mlvCFiat.  

The future research efforts may focus on exploiting the first-
access tracking bits with cache coherent protocol states, so that 
load data values are not reported on first-access misses if they are 
available in data caches of other processor cores. Another 
promising avenue is to explore whether a simple hardware scheme 
can be used to exploit redundancy in load data value traces. 
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