
i

HARDWARE DATA VALUE TRACING IN MULTICORES

by

MOUNIKA PONUGOTI

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2019

ii

In presenting this dissertation in partial fulfillment of the requirements for a Doctor

of Philosophy degree from The University of Alabama in Huntsville, I agree that the

Library of this University shall make it freely available for inspection. I further

agree that permission for extensive copying for scholarly purposes may be granted

by my advisor or, in his/her absence, by the Chair of the Department or the Dean of

the School of Graduate Studies. It is also understood that due recognition shall be

given to me and to The University of Alabama in Huntsville in any scholarly use

which may be made of any material in this dissertation.

(student signature) (date)

iii

DISSERTATION APPROVAL FORM

Submitted by Mounika Ponugoti in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Engineering and accepted on behalf of

the Faculty of the School of Graduate Studies by the dissertation committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this dissertation. We further certify that we have reviewed the

dissertation manuscript and approve it in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Engineering.

 Committee Chair

(Dr. Aleksandar Milenkovic) (date)

 Committee Member

(Dr. Rhonda Gaede) (date)

 Committee Member

(Dr. Mohammad Haider) (date)

 Committee Member

(Dr. Tauhidur Rahman) (date)

 Committee Member

(Dr. Earl Wells) (date)

 Department Chair

(Dr. Ravi Gorur) (date)

 College Dean

(Dr. Shankar Mahalingam) (date)

 Graduate Dean

(Dr. David Berkowitz) (date)

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering/Electrical &

 Computer Engineering

Name of Candidate Mounika Ponugoti

Title Hardware Data Value Tracing in Multicores

Embedded computing systems powered by modern systems-on-a-chip (SoCs)

running sophisticated software applications are indispensable in modern communi-

cation, transportation, infrastructure, medicine, military, and entertainment. Semi-

conductor technology trends have enabled the design of SoCs that often combine

multiple processor cores, hardware accelerators, direct memory controllers, and pe-

ripheral interfaces, all connected through an on-chip interconnect. Faster, cheaper,

and smaller SoCs have in turn enabled new applications that may have tens of mil-

lions of lines of code. These trends have led to rising software engineering costs in

modern embedded systems that currently account for over 80% of the total engineer-

ing costs. Recent studies found that software developers spend over 50% of their

time finding and fixing software bugs. Thus, software debugging is one of the most

challenging aspects of embedded system development due to growing hardware and

software complexity, limited visibility of system components, and tightening time-to-

market. Providing powerful debugging tools to software developers is thus critical to

expedite software development and improve software reliability.

To find software bugs faster, developers often rely on on-chip trace modules

with large buffers to capture program execution traces with minimum interference

with program execution. However, high volumes of trace data and the high cost of

v

trace modules limit visibility into the system operation to only short program seg-

ments that are often insufficient to locate software bugs. This dissertation introduc-

es a new hardware/software technique for capturing and filtering read data value

traces in multicores that enables a complete reconstruction of parallel program exe-

cution. The proposed technique called mcFiltrate (multicore cache filtered read data

trace) utilizes tracking of data reads in data caches and cache coherence protocol

states to minimize the number of trace messages that needs to be streamed out of

the target platform to the software debugger. The effectiveness of the proposed tech-

nique is determined by analyzing the required trace port bandwidth and trace buffer

sizes as a function of the data cache size and the number of processor cores. The ex-

perimental environment utilizes architectural execution-driven simulator running

benchmarks from two suites, Splash2 and Parsec. The results of the experimental

evaluation show that the proposed technique significantly reduces the required trace

port bandwidth, from 12.2 to 59.6 for a single core processor and from 13.4 to 73.9

times for an octa core processor, when compared to the state-of-the-art Nexus-like

read data value tracing. The proposed technique reduces the requirements for the

on-chip trace buffers by several orders of magnitude and the number of required

trace port pins by up to 16 times when compared to the state-of-the-art Nexus-like

tracing. Consequently, mcFiltrate enables continuous on-the-fly data tracing while

requiring modest changes on the hardware platform and the software debugger.

Abstract Approval: Committee Chair

 (Dr. Aleksandar Milenkovic)

 Department Chair

 (Dr. Ravi Gorur)

 Graduate Dean

 (Dr. David Berkowitz)

vi

This dissertation is dedicated to the love and energy that made it possible

vii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advi-

sor, Dr. Aleksandar Milenkovic. I would not be in this position without his continu-

ous support, guidance, and encouragement. He always inspired me with his patience

even in the very odd times. He has shared profound knowledge with me since I

started working with him. I feel lucky to work with a professor like him who can un-

derstand the educational background and personality of the student from different

countries and guide them accordingly. I sincerely hope to be like him professionally

and personally in my future and continue to collaborate with him.

I would like to thank Dr. Rhonda Gaede, Dr. Mohammad Haider, Dr. Tau-

hidur Rahman, and Dr. Earl Wells for serving on my committee. I would like to

thank Dr. Ravi Gorur, Chair of the Electrical and Computer Engineering Depart-

ment, for supporting me financially with a teaching assistantship. I would like to

thank teaching and non-teaching staff members for teaching me valuable skills and

helping whenever required during my time at the University of Alabama in Hunts-

ville.

Also, I would like to thank Mr. Igor Semenov, Mr. Prawar Poudel, and Mr.

Ranjan Hebbar for sharing their knowledge and answering questions whenever I

ask them without judging the level of the question. I would like to thank Mr. Amrish

K. Tewar who always inspires and teaches me new things whenever I approach him.

Finally, I would like to thank Mr. Srinivas R. Mynampally and his family for

taking care of me since my arrival to the USA. I would like to express my deepest

gratitude to my parents, Bhagavanth R. Ponugoti and Vimala Ponugoti, and my

husband, Vamshi K. Vanapally, for their unconditional love and support.

viii

TABLE OF CONTENTS

Page

LIST OF FIGURES .. ix

LIST OF TABLES .. xv

 INTRODUCTION ...16

 Motivation ..19

 mcFiltrate: Multicore Cache-Filtered Read Data Trace20

 Main Contributions ..21

 Dissertation Outline ..23

 BACKGROUND AND MOTIVATION ...24

 Software Tracing ..25

 Software Tracing Frameworks ...27

 Hardware Tracing ..32

 Types of Hardware Tracing ..32

 Trace and Debug Infrastructure...34

 State-of-the-art Commercial Hardware Trace Solutions37

 Motivation ..43

 Memory Read Data Value Tracing to Detect Race Conditions43

 Memory Read Data Value Tracing Challenges46

 RELATED WORK ..51

 Record and Replay ...52

ix

 Trace Compression...53

 Software Trace Compression ..53

 Hardware Trace Compression ..56

 PROPOSED TECHNIQUE: mcFiltrate ...59

 System View of mcFiltrate ...59

 mcFiltrate Operation on Target Platform ...62

 mcFiltrate Operation on the Software Debugger ..68

 Encoding of Trace Messages ..71

 An Illustrative Example ..73

 mcFiltrate Analytical Model ..77

 EXPERIMENTAL ENVIRONMENT ...81

 Metrics ...81

 Experimental Flow ..82

 Benchmarks ...85

 Experimental Parameters ...90

 Impact of Granularity Size on Trace Port Bandwidth90

 Impact of Encoding Parameters on Trace Port Bandwidth92

 RESULTS ...95

 First-access Miss Rate ...95

 Trace Port Bandwidth in BPI .. 100

 Trace Port Bandwidth in BPC ... 110

x

 Dynamic Trace Port Bandwidth Analysis ... 112

 Trace Buffer Size Analysis .. 116

 Hardware Complexity Analysis ... 122

 DICTIONARY ANALYSIS ... 125

 Preliminaries ... 125

 Operation of mcFiltrate with Dictionaries .. 129

 Experimental Evaluation .. 133

 Results .. 134

 Nexus-like (NX)... 134

 mcFiltrate .. 139

 CONCLUSIONS AND FUTURE WORK ... 143

APENDIX A ... 146

A.1 Trace Port Bandwidth in BPI .. 147

A.1.1 Granularity Size is 4 (G=4) ... 147

A.1.2 Granularity Size is 32 (G=32) ... 148

A.2 Trace Port Bandwidth in BPC ... 151

A.2.1 Granularity Size is 4 (G=4) ... 151

A.2.2 Granularity Size is 32 (G=32) ... 154

A.3 Compression Ratio with Dictionaries .. 157

REFERENCES ... 159

xi

LIST OF FIGURES

Figure Page

Figure 2.1 Multicore SoC with Trace and Debug Infrastructure36

Figure 2.2 Memory Read Data Value Tracing Example ...44

Figure 2.3 Estimation of Required Average TPB in bpi for Nexus-like Memory Read

Data Value Traces..48

Figure 2.4 Estimation of Required Average TPB in bpc for Nexus like Memory Read

Data Value Traces..49

Figure 4.1 System View of mcFiltrate ...61

Figure 4.2 mcFiltrate Operation on Target Platform Core i for a Memory Read64

Figure 4.3 mcFiltrate Operation on Target Platform Core i for a Memory Write67

Figure 4.4 mcFiltrate Operation on Software Debugger (a) a Memory Read (b) a

Memory Write (c) an External Invalidation ..70

Figure 4.5 Encoding of Trace Messages ..72

Figure 4.6 An Illustrative Example of Data Tracing with mcFiltrate76

Figure 4.7 Estimation of Required Average TPB in bpi for mcFiltrate when N=879

Figure 4.8 Estimation of Required Average TPB in bpc for mcFiltrate when N=880

Figure 5.1 Experimental Environment ...83

Figure 5.2 Multicore Model..85

Figure 5.3 Encoding Parameter Selection for Splash2 with MF.I and CS1694

Figure 6.1 Total L1 Data Cache Read Miss Rate ..97

Figure 6.2 Total First-access Miss Rate of Splash2 (top) and Parsec (bottom)99

Figure 6.3 Compression Ratios of Splash2 (top) and Parsec (bottom) 106

xii

Figure 6.4 Break down of TPB in bpi for Splash2 (top) and Parsec (bottom) for CS64

 .. 110

Figure 6.5 Trace Port Bandwidth in bpc for Splash2 (top) and Parsec (bottom)...... 112

Figure 6.6 Dynamic TPB in bpc for Characteristic Benchmarks 116

Figure 6.7 On-chip Trace Buffer Size for Splash2 (top) and Parsec (bottom) for NX

 .. 119

Figure 6.8 On-chip Trace Buffer Size in KB for Splash2 ... 120

Figure 6.9 On-chip Trace Buffer Size in KB for Parsec .. 121

Figure 7.1 System View of a Dictionary-Based Trace Compressor 126

Figure 7.2 Format of Trace Messages Supporting Dictionaries 127

Figure 7.3 mcFiltrate Operation with Dictionary on Target Platform Core i for

Memory Read ... 131

Figure 7.4 mcFiltrate Operation with Dictionary on Software Debugger for Memory

Reads .. 132

Figure. A.1 Total First-access Miss Rate of Splash2 (top) and Parsec (bottom) with

G=32 ... 146

xiii

LIST OF TABLES

Table Page

Table 5.1 Benchmark Characteristics for Splash2 ..86

Table 5.2 Benchmark Characteristics for Parsec ..87

Table 5.3 Distribution of Memory Read Operands in Splash289

Table 5.4 Distribution of Memory Read Operands in Parsec89

Table 5.5 TPB for MF.I with CS64, N=8 as a Function of Granularity Size for

Splash2 ...91

Table 5.6 TPB for MF.I with CS64, N=8 as a Function of Granularity Size for Parsec

 ..92

Table 5.7 Encoding Parameters ...93

Table 6.1 Average TPB in bpi for Splash2 with CS16 .. 101

Table 6.2 Average TPB in bpi for Splash2 with CS64 .. 102

Table 6.3 Average TPB in bpi for Parsec with CS16 ... 103

Table 6.4 Average TPB in bpi for Parsec with CS64 ... 104

Table 6.5 Compression Ratios for Splash2 with CS64 .. 107

Table 6.6 Compression Ratios for Parsec with CS64 .. 108

Table 6.7 Hardware Complexity Estimation ... 124

Table 7.1 Hybrid Dictionary Data Header Encoding (Method 1): An Example 129

Table 7.2 Hybrid Dictionary Data Header Encoding (Method 2): An Example 129

Table 7.3 Compression Ratio for Splash2 with Static Dictionary (DS=256) for NX

(CS64) ... 136

Table 7.4 Compression Ratio of Splash2 with Dynamic Dictionary (DS=256) for NX

(CS64) ... 137

xiv

Table 7.5 Compression Ratio of Parsec with Static Dictionary (DS=128) for NX

(CS64) ... 138

Table 7.6 Compression Ratio of Parsec with Dynamic Dictionary (DS=256) for NX

(CS64) ... 139

Table 7.7 Compression Ratio of Splash2 with Static Dictionary (DS=256) for MF.I

(CS64) ... 140

Table 7.8 Compression Ratio of Splash2 with Dynamic Dictionary (DS=256) for MF.I

(CS64) ... 141

Table 7.9 Compression Ratio of Parsec with Static Dictionary (DS=256) for MF.I

(CS64) ... 141

Table 7.10 Compression Ratio of Parsec with Dynamic Dictionary (DS=256) for MF.I

(CS64) ... 142

Table. A.1 Average TPB in bpi for Splash2 with CS32 (G=4) 147

Table. A.2 Average TPB in bpi for Parsec with CS32 (G=4) 147

Table. A.3 Average TPB in bpi for Splash2 with CS16 (G=32) 148

Table. A.4 Average TPB in bpi for Splash2 with CS32 (G=32) 148

Table. A.5 Average TPB in bpi for Splash2 with CS64 (G=32) 149

Table. A.6 Average TPB in bpi for Parsec with CS16 (G=32) 149

Table. A.7 Average TPB in bpi for Parsec with CS32 (G=32) 150

Table. A.8 Average TPB in bpi for Parsec with CS64 (G=32) 150

Table. A.9 Average TPB in bpc for Splash2 with CS16 (G=4) 151

Table. A.10 Average TPB in bpc for Splash2 with CS32 (G=4) 152

Table. A.11 Average TPB in bpc for Splash2 with CS64 (G=4) 152

Table. A.12 Average TPB in bpc for Parsec with CS16 (G=4) 153

Table. A.13 Average TPB in bpc for Parsec with CS32 (G=4) 153

xv

Table. A.14 Average TPB in bpc for Parsec with CS64 (G=4) 154

Table. A.15 Average TPB in bpc for Splash2 with CS16 (G=32) 154

Table. A.16 Average TPB in bpc for Splash2 with CS32 (G=32) 155

Table. A.17 Average TPB in bpc for Splash2 with CS64 (G=32) 155

Table. A.18 Average TPB in bpc for Parsec with CS16 (G=32)................................. 156

Table. A.19 Average TPB in bpc for Parsec with CS32 (G=32)................................. 156

Table. A.20 Average TPB in bpc for Parsec with CS64 (G=32)................................. 157

Table. A.21 Compression Ratio of Splash2 with DS=256 and DES = 4 and 8 for MF.I

(CS64) ... 157

Table. A.22 Compression Ratio of Parsec with DS=256 and DES = 4 and 8 for MF.I

(CS64) ... 158

16

INTRODUCTION

Embedded systems are computer systems designed to meet the computation-

al requirements of a specific task. They are typically a part of a bigger cyber-physical

system, embedded in the environment they operate in, sensing the environment,

processing the information, storing information, communicating with other systems,

and acting upon the environment. Energy efficiency, low cost, and small form factors

are often primary design constraints for embedded systems. They range from low-

end to high-end and are found in many application domains, such as medical, trans-

portation, military, industrial, and consumer applications.

Every product has a time window to launch in the market. If the product

misses that crucial time window, the sales targets may be missed, resulting in fi-

nancial losses and missed opportunities. Thus, it is extremely important to reduce

the cost and time-to-market, while meeting or exceeding user expectations. To meet

the growing performance requirements while maintaining the energy efficiency,

hardware designers are incorporating complex hardware structures with multiple

processor cores, on-chip interconnect, hardware accelerators, memory controllers,

and a range of input/output interfaces on a single chip. As a result, the complexity of

modern systems-on-a-chip is increasing, which in turn results in diminished visibil-

ity of the system internals.

At the same time, software complexity is also growing rapidly to support

higher levels of functionality to meet user expectations and win market share. For

17

example, today’s high-end cars include many functions which were not possible a

decade ago. To achieve this, they may run over 100 million lines of code [1]. As we

move toward autonomous cars, the code size will continue to increase. Due to shorter

development cycles, companies are failing to test the software rigorously to provide

reliable software. A recent study shows that recalls in medical devices [2] [3] and

automotive devices [4] [5] [6] are mainly due to software bugs. Frequent recalls of

products to fix software bugs often hurt companies’ reputations, customer trust, and

stocks revenue in the long term. Software bugs in cyber-physical systems are even

more challenging as they may lead to significant damage and even loss of life [7].

A study from the Judge Business School at the University of Cambridge [8]

shows that software developers spend 50% of their development time finding and

fixing software bugs, incurring costs of around $312 billion per year. These costs are

likely to increase further due to growing system complexity. In addition, more than

80% of development costs in modern embedded systems come from software engi-

neering [9]. With the increased complexity of hardware and software, challenges and

costs incurred by software debugging are continually increasing. The current market

conditions and trends make it impossible to redesign the development cycles to ac-

commodate additional time for software testing to deliver bug-free software. Hence,

it is imperative to provide better tools for software developers to use to locate bugs in

the software quickly and cheaply.

The most common debugging techniques include printf debugging, software

tracing, and run-control debugging. Printf debugging adds temporary printf state-

ments to track the flow and values used in sections of code under debug. This tech-

nique is effective at finding software bugs related to algorithms. However, it is a

time-consuming process and that is not feasible when the source code reaches mil-

18

lions of instructions. Moreover, it is inefficient for finding problems related to time

sensitivity, memory allocation, and interrupts. Additionally, outputting the data to a

host computer over any communication port can be slow and may impact the behav-

ior of the program. All these reasons make printf debugging not suitable for real-

time embedded systems.

Tracing is a method of recording the details of the program as it executes. In

software tracing, static and/or dynamic binary and/or source code instrumentation is

used to monitor events of interest at the application and/or kernel level. The record-

ed trace data is either stored in the system memory or streamed through a commu-

nication port to the host. The traces are later used for debugging, validation, per-

formance analysis, and performance optimization. Popular examples of software

tracing tools include Ftrace [10], Dtrace [11], LTTng [12], eBPF [13], Systemtap [14],

WPP [15], Pin [16], among others. Ideally, software tracing can be used in any sys-

tem as it does not require an external trace debugger. However, instrumentation

may affect the performance and/or execution flow of the system/program under in-

spection. Moreover, these methods are unavailable or ineffective in helping the de-

velopers to pinpoint hard-to-find software bugs on resource constrained platforms.

Run-control debugging gives better control over processor execution and is

widely used by embedded software developers. In this type of debugging, developers

can get control over the program to run step by step, to set watch points or break

points, to change, or to observe the content of registers and memory locations when

the processor is halted. However, run-control debugging is not practical in many re-

al-time applications – e.g., engine controls, hard disks, robotics, avionics, and auto-

motive, or any application where the processor must run continuously to maintain

mechanical stability. First, the sequence of events on the target platform may

19

change due to run-control debugging, and in the case of multicores, it may not be

practical to halt all the processors at the same time. Second, the problems related to

external events which are caused when the system is running at full speed cannot be

identified. Finally, there is no support to examine the history of the program and

thus visibility into the system is either limited or absent when the application is ex-

ecuting. Because of the dependence on external peripherals and the lack of bug re-

producibility, run-control debugging is insufficient for real-time embedded systems.

To address this problem, modern processors and systems-on-a-chip (SoCs) in-

clude dedicated hardware resources to support hardware tracing and debugging. In

hardware tracing, a processor discloses the detailed and accurate internal infor-

mation at the instruction level granularity with minimal or no performance degra-

dation.

 Motivation

The most common types of hardware traces that can be collected from a pro-

cessor are control-flow and data-flow. A control-flow trace records the execution path

of the program and helps developers understand how the program reached a certain

point in execution. It captures information related to branches, subroutine calls, re-

turns, and exceptions. A data-flow trace captures the address and/or value of every

memory read and write instruction. Data-flow traces enable developers to replay the

program offline and locate bugs in the program under test.

Existing trace modules produce several MB of trace data in a second and they

require an average trace port bandwidth of ~0.3 bits per instruction executed for

control-flow tracing [17], and 8-16 bits per instruction executed for data-flow tracing

for a single core [18]. Since the transfer rate of trace data off-chip is slower than the

20

rate at which the trace data is produced by the processor, dedicated on-chip trace

buffers are used to temporarily hold the trace data. A 2 KB dedicated on-chip trace

buffer can hold control-flow traces for about 54 kilo instructions and data-flow traces

for about 2 kilo instructions on a single core. In the case of multicores, the buffer

space is shared among cores, plus additional bits are required to report the core id.

Thus, existing commercial trace modules allow the user to set filters to capture data-

flow traces for only a limited range of addresses or instructions. Unfortunately, the

traces captured in trace buffers on limited program segments may not be sufficient

to locate bugs as a software bug origin and its manifestation may span millions of

instructions. To capture data-flow traces for an entire program, it is required either

to halt the program when the trace buffer is full or use deep on-chip trace buffers or

wider trace ports (i.e. dedicated physical pins) to empty the trace data faster. How-

ever, these options are not attractive since deep on-chip trace buffers or wider trace

ports increase the system cost for the end user and halting the processor in real-time

systems is not feasible.

 mcFiltrate: Multicore Cache-Filtered Read Data Trace

This dissertation introduces and evaluates mcFiltrate, a new technique for

capturing and filtering read data value traces in multicores. mcFiltrate stands for

multicore filtered memory read data trace. This technique captures and filters the

memory read data traces by using L1 data caches and first-access tracking bits on

the target processor core. In addition, it requires the software debugger to maintain

L1 data cache structures in software identical to those in the target core. The main

goal of this technique is to filter out redundant trace messages that can be inferred

by the software debugger. The first-access tracking bits associated with sub-blocks of

21

an L1 data cache block (or line) are used to determine whether the trace data can be

inferred by the software debugger. In addition, mcFiltrate can exploit cache coher-

ence protocols to minimize the number of redundant trace messages for cache blocks

that are actively shared by multiple processor cores.

This dissertation experimentally evaluates the effectiveness of mcFiltrate

relative to the state-of-the-art Nexus-like data tracing as a function of the number of

cores and cache configurations. As metrics of interest, the average and dynamic re-

quired trace port bandwidth measured in bits per instruction executed (bpi) and bits

per processor clock cycle (bpc) are used. In addition, the worst-case analysis concern-

ing the maximum depth of the trace buffer as a function of trace port emptying rate

is performed. The results show that mcFiltrate offers a significant reduction in the

required trace port bandwidth relative to the existing Nexus-like memory read data

value tracing. It reduces the trace port bandwidth in the range of 13.4 to 59.6 times

for a single core processor, and from 12.2 to 73.8 times for an octa core processor, de-

pending on the size of data caches.

 Main Contributions

The main contributions of this dissertation are as follows:

• It characterizes trace port bandwidth requirements in bits per instruc-

tion and bits per clock cycle in multicores for Nexus-like timestamped

read data value traces. The results demonstrate that this type of trac-

ing is practical for only very short program segments and that it be-

comes cost-prohibitive in both required trace port bandwidth and the

number of dedicated trace port pins as program size increases.

https://www.bing.com/search?q=define+demonstrate

22

• It introduces a hardware/software technique called mcFiltrate to cap-

ture and compress memory read data value traces in multicores. This

technique relies on first-access tracking bits attached to L1 data cache

blocks and cache coherence protocol states to determine when memory

reads need to be traced out to ensure that the program is replayed of-

fline faithfully. This technique is an extension of previous research

[19][20][21].

• It experimentally evaluates the trace port bandwidth required by

mcFiltrate, while varying the number of processor cores and data

cache sizes, when running parallel benchmarks from Splash2 [22] and

Parsec suites [23].

• In addition to analyzing the average required trace port bandwidth,

dynamic changes in the trace port bandwidth requirements during

benchmarks’ execution are evaluated. Moreover, a detailed analysis is

performed to determine the maximum required size of the trace buff-

ers needed for on-the-fly tracing while varying the actual trace port

bandwidth.

• To further reduce the required trace port bandwidth, a dictionary-

based compression technique for Nexus-like and mcFiltrate traces is

proposed. The results of the experimental evaluation show that even

though overall trace compression achieved with dictionaries are mod-

est, some individual benchmarks benefit significantly.

23

 Dissertation Outline

The remaining of the dissertation is organized as follows: CHAPTER 2 briefly

discusses various software and hardware tracing techniques. It describes the chal-

lenges in data tracing using an analytical model. CHAPTER 3 reviews the literature

and state-of-the-art solutions for compressing trace data. CHAPTER 4 introduces

mcFiltrate and details its operation on a target core and on the software debugger

side. CHAPTER 5 discusses the experimental environment used in the evaluation

and CHAPTER 6 discusses the results from the experimental evaluation. CHAPTER

7 discusses the dictionary analysis which can be used to further reduce the trace

port bandwidth requirements and CHAPTER 8 summarizes this work.

24

BACKGROUND AND MOTIVATION

Tracing can be treated as a slow-motion video of the real-time program exe-

cution. It involves recording program details that can be used for debugging, perfor-

mance analysis, performance optimization, or security analysis. Depending on how

these traces are recorded, two types of tracing exist: (a) software tracing, where

software is responsible for capturing and handling traces; and (b) hardware tracing,

where dedicated hardware resources are responsible for capturing traces.

In software tracing, the operating system and/or user application programs

are instrumented statically and/or dynamically with code to capture and record trac-

es. With instrumentation, any instruction can be trapped to collect the required in-

formation. Depending on the configuration, a typical software trace can record vari-

ous details such as current process identifier (pid), call arguments, stack trace, time,

return value of system calls, register values, instruction addresses, and other data.

More details about software tracing and the most widely used software tracing facil-

ities at kernel level and application level are discussed in Section 2.1.

In hardware tracing, a processor gives the complete history of the executed

instructions with minimal or no overhead. Ideally, the real-time behavior of the pro-

gram is not affected by the tracing operation. Depending on the level of support and

required type of trace, a processor can record various details such as time, proces-

sor/thread identifier, instruction addresses, memory values and memory addresses

in the case of memory accessing instructions, and other information for executed in-

structions. Section 2.2 describes hardware tracing and introduces terminology used

25

throughout the dissertation. Section 2.3 discusses existing commercial hardware

tracing solutions. Finally, Section 2.4 discusses how hardware traces can be used in

debugging and why it is important to filter and/or compress hardware data traces.

 Software Tracing

In software tracing, the operating system, a program under debug by itself, or

an observer program records the trace data. To record the traces, instrumentation of

the source code or binary of the operating system and/or user application program is

required. Depending on when the instrumentation is performed, it can be classified

into: (a) static instrumentation or (b) dynamic instrumentation. With static instru-

mentation, the kernel or a user application program includes the dedicated code

which helps in recording the traces when enabled. With dynamic instrumentation,

instrumentation code is inserted or attached dynamically at runtime during the exe-

cution of the application.

A probe point is a debug statement that assists in collecting execution char-

acteristics of a program; e.g. the state of the executing program is captured when the

probe point is reached [24]. Probe points can be inserted and enabled statically and

dynamically. With probe points, the kernel or a user application program is instru-

mented with code and this instrumentation code is run when the specified probe

point is executed by the processor, i.e. when the probe is fired. However, there are

other user space dynamic binary instrumentation frameworks where application bi-

nary is modified on-the-fly and modified code is executed to capture the details of the

execution [16] [25].

Static probe points are inserted by the kernel or application developer at im-

portant locations while writing the code. To enable or insert static probe points, e.g.,

26

inserting printk statements, recompilation of the source code is required. However,

some static probe points can be enabled or disabled dynamically and a probe handler

function can be attached to record the data. Dynamic probe points can be inserted at

any address in the kernel and application code without the need for recompilation of

the source code. In dynamic probing, a trap instruction is inserted at the desired lo-

cations. When the trap instruction is executed, the interrupt is generated and the

corresponding handler for that probe is called. Once the handler is finished, the orig-

inal code continues with normal execution. In dynamic probing the overhead for

each instrumented site execution is larger than for static probing because of the trap

mechanism. In Linux, tracepoints, kprobes, uprobes, and USDT probes are the main

sources of collecting information. Static kernel space probe points are referred to as

tracepoints and static user space probe points are referred to as USDT probes (User

Statically Defined Tracing points). Kprobe and uprobe are dynamic methods of in-

serting probe points to any kernel space and user space code, respectively.

There are many open source tools and frameworks available to collect and

analyze information from kernel and user application programs. Some of these

frameworks support frontend tools to provide an interface (scripting or program-

ming), to insert dynamic probe points, and to enable or disable some of the static

probe points. They differ in the level of detail that they can capture, sources of in-

formation, and how they handle setting the probes, executing the probe handler, da-

ta collection, and frontend tool interface if the probe points are data sources (Section

2.1.1).

27

 Software Tracing Frameworks

Ptrace. Ptrace, process trace, is a system call in Unix and Unix-like operat-

ing systems that enables one process (controller process, parent) to observe or con-

trol the execution of another process (target process) [26]. It can be attached or de-

tached from the process being traced at any time. With ptrace, the ability of the con-

trol process to change registers and memory of the target process allows it to set

breakpoints, run step-by-step, and inject code to a running target process. The con-

troller process can observe and intercept the system calls and signals to and from

the target. Thus, ptrace is used by debuggers – gdb and dbx, tracing tools – strace

and ltrace, and by code coverage tools. Since the communication between the control

process and the target process requires at least two context switches, the perfor-

mance overhead of ptrace is significant. It is supported by OpenBSD, FreeBSD,

NetBSD, IBM AIX, and Linux.

Strace. Strace, system call tracer, is a lightweight diagnostic, debugging and

instructional user space utility for Linux to trace the interactions of a program with

the operating system [27]. Strace uses the ptrace system call to register itself as a

control process (tracer). It is notified of all the system calls and signals and can get

the details such as, the type of a system call, arguments passed, stack of the target

process, return value, and the time spent in the system call. This is quite useful

when debugging the programs where source code is not available.

Ltrace. Ltrace, library call tracer, is used to trace calls and returns from a

dynamic library function executed by the target process [28]. In addition, it can also

trace system calls and signals like strace. Ltrace uses ptrace to place the breakpoints

by hooking into the procedure linkable table (PLT). It is supported by Linux.

28

Ftrace. Ftrace, function tracer, is a tracing framework built into the Linux

kernel to understand the internals of the kernel [10]. This utility can be used in de-

bugging and to analyze latencies and performance issues which come from kernel

space. Although the name of the tracer is function call tracer, the framework in-

cludes several tracing utilities. With the hundreds of available tracepoints (static

events) that can be enabled via the tracefs file system in the kernel, ftrace can trace

scheduling events, interrupts, virtual guest connections with host, and file systems.

More elaborately, it can disclose the information to answer the questions such as

what happens when the interrupts are disabled and enabled and when is the task

actually scheduled after waking up. The dynamic ftrace can trace any functions of

the kernel and it also allows the filtering of functions by using globs. It can generate

call graphs and provide stack usage reports. It can consume tracepoints, kprobes,

and uprobes trace sources.

LTTng. LTTng, Linux Trace Toolkit Next Generation, is a set of LTTng-

tools, LTTng-UST, and LTTng-modules tools [12]. These tools can be used to in-

strument the Linux kernel (LTTng-modules, includes the modules to instrument and

trace the Linux kernel), user applications (LTTng-UST), and to trace control e.g.,

starting and stopping of the tracing and enabling and disabling of event rules. The

optimized events in LTTng have low overhead compared to existing trace solutions

and can be used to analyze the scheduling decisions, context switches, execution of

various background tasks, actual execution time of the process and blocked time. It

is supported by Linux and FreeBSD.

Dtrace. DTrace, Dynamic tracing, was developed by Sun Microsystems to

examine the behavior of applications and the kernel on production systems in real-

29

time [11]. DTrace can be configured to record the additional data like function ar-

guments, stack trace, and other data whenever the probe of interest is fired. The

probes used by DTrace are not defined by the tool itself, rather, they come from the

kernel modules called providers. Each provider is independent and reports the list of

data points (set of probes) that it can instrument. All the instrumentation in DTrace

is dynamic, i.e. the probes are enabled only when they are utilized – there is no

overhead when they are disabled, and no instrumentation code is added for the inac-

tive probes. D language (inspired by C and awk) is used to write the scripts which

include the list of probes to enable and the associated action of the probe, probe han-

dler. The scripts are converted to a simplified instruction set, Dynamic Intermediate

Format (DIF), by using the compiler which is in libdtrace library and they are inter-

preted by the virtual machine at the kernel level when the probe fires. DTrace is

supported on Solaris, Illumos, MacOS, FreeBSD, NetBSD, Oracle Linux, and Mi-

crosoft Windows.

eBPF. eBPF, extended Berkeley Packet Filter, is an in-kernel virtual ma-

chine native to Linux [13]. In the original BPF, network packets are captured and

filtered by attaching a filter program which runs on a virtual machine to any socket.

eBPF is enhanced over BPF to give better performance through an expanded set of

registers, instructions, helper functions that can be called inside the programs. Ad-

ditionally, global storage called eBPF maps allow sharing of data between eBPF

kernel and user space programs and between eBPF kernel programs. The eBPF pro-

grams written in C are converted to bytecode and attached to the path of the execu-

tion, kprobes, uprobes, and tracepoints as in DTrace. The eBPF virtual machine per-

30

forms a sanity check to ensure security before executing the bytecode. With eBPF,

applications can be traced with low overhead.

Sysdig. Sysdig is a high-performance system call tracer which also supports

tracing of containerized processes [29]. Instrumentation is done by using a device

driver as an external kernel module, sysdig_probe. Sysdig uses static tracepoints to

intercept system calls and does not support kprobes, uprobes, and USDT. However,

a newer version of sysdig incorporates support for using eBPF for event collection as

a backend instead of a kernel module. In addition to tracing, Sysdig includes many

diagnostic tools such as tcpdump, strace, fuser, lsof, iostat, htop, lspci, ethool, and

netstat.

SystemTap. SystemTap is a tool for dynamically instrumenting a Linux ker-

nel based operating systems to monitor the kernel [14]. The scripts are written in

the SystemTap language; however, they are translated to C language to create a

kernel module from it. SystemTap does not have in-kernel virtual machine; instead,

kernel modules are loaded dynamically. When the event specified in the script oc-

curs, the Linux kernel runs the corresponding handler as a quick sub-routine.

Probes in the script are disabled when the SystemTap session expires. It can con-

sume, kprobes, uprobes, kernel tracepoints, and USDT.

ETW. ETW, Event Tracing for Windows, is a tracing facility on the Windows

operating system which allows logging the events of user applications and kernel

device drivers [15]. The application which is to be traced should contain event trac-

ing instrumentation. Even though ETW allows tracing to turn on or off dynamically,

it does not have the ability to insert trace points at runtime. The events – metadata,

localizable message strings, and schematized data payloads are logged to a separate

31

buffer for each processor stored on disk and/or delivered to the consumer in real-

time.

Pin. Pin is a dynamic binary instrumentation framework that allows analy-

sis of user space applications on Linux, Windows, and OS X [16]. It provides APIs to

write instrumentation tools called pintools in C/C++ to profile or trace an application

[25]. Pin APIs allows pintools to access architecture specific details and support IA-

32, x86-64, and MIC instruction-set architectures. The injector loads the pin binary

into the address space of an application by using the Unix Ptrace API and starts it

running. Pin intercepts the execution of the application at the very first instruction

and loads the pintool. Once the pintool initializes itself, it requests pin to start the

application. Depending on the instrumentation APIs used in pintool, pin generates

new instrumented code for one trace at a time using just-in-time (JIT) compiler by

feeding actual executable as input. A trace is defined as a set of consecutive instruc-

tions which terminates at one of the conditions: (a) an unconditional control transfer

(branch, call, or return), (b) a pre-defined number of conditional control transfers, or

(c) a pre-defined number of instructions have been fetched in the trace. After gener-

ating new code, pin transfers control to the generated sequence and it make sure to

regain the control when the branch exists the sequence. After regaining control, pin

generates more code for the branch target and continues execution. To speed up the

instrumentation, pin employs various optimization techniques such as code cache,

trace linking, inlining, register re-allocation, liveness analysis, and instruction

scheduling.

In software tracing, event tracing is most widely used since collecting traces

for every instruction gives the greater performance overhead. Even though software

32

tracing provides high flexibility to analyze and debug the applications and operating

system, these methods are not suitable for real-time embedded system where very

intrusive software modules for tracing interfere with normal program behavior. Add-

ing instrumentation code may increase the footprint of the executable in memory,

may affect cache access patterns, and is intrusive. Moreover, most of these frame-

works cannot be used to debug the firmware and boot time issues because the neces-

sary libraries are not initialized.

 Hardware Tracing

Hardware traces provide a complete history of the instructions executed on a

processor and are collected by dedicated hardware trace modules in modern proces-

sors. Thus, tracing a processor gives better visibility of the system at any given point

than does software. The beauty of hardware tracing is that information is captured

with zero or very low overhead as it uses dedicated hardware circuitry. However,

hardware tracing produces vast amounts of data in a short period of time.

 Types of Hardware Tracing

Depending on the type of information collected by the trace module, hard-

ware tracing can be classified into two types, control-flow tracing and data-flow trac-

ing. A control-flow trace records information related to control-flow instructions and

a data-flow trace records information related to memory read and write instructions

executed by a processor.

Control-Flow Tracing. A basic block is a portion of the program with a sin-

gle entry and a single exit. Branch instructions transfer control from the exit of one

basic block to the entry of another basic block. These are usually used to analyze

33

program behavior, for example, to find hot regions [30], in security (control-flow in-

tegrity), and by compilers (profile guided optimization).

Tracing each and every executed instruction to reconstruct the flow of the

program is expensive as it produces a lot of trace data. In most cases, it is sufficient

to record changes in the path of the program (basic block entries) to determine and

reconstruct the actual execution. Hence, a control-flow trace involves recording trac-

es for jumps, calls, returns, interrupts, and exceptions, while executing on the target

processor. State-of-the-art commercial tracing solutions support capturing the con-

trol-flow traces of a program and compress the trace data by filtering the statically

available data from the program binary, for example, direct unconditional branches.

Control-flow traces can be used in debugging a program to understand how it

reached any given execution point or what path it took to arrive to the given execu-

tion point [31] [32]. These traces can also be useful to profile the instructions, detect

latencies [33], perform path based optimizations, path sensitive prediction tech-

niques such as branch prediction, to understand the behavior of the malware, and in

security [34] [35] [36] [37] [38]. Additionally, these traces can be used to identify the

isolating bugs while varying the input since the program behavior changes.

Data-Flow Tracing. Control-flow traces are helpful for uncovering various

types of bugs. However, control-flow traces alone cannot help to uncover the prob-

lems related to memory accesses, such as data race conditions or memory access pat-

terns in the case of multicores.

A data-flow trace records information about memory read and memory write

instructions. A full data-flow trace records instruction address, addresses of memory

read and memory write operation, size of operand, and value of memory read and

write operation. However, depending on the intended use and tracing requirements,

34

a subset of these fields can be traced out. For example, the addresses of memory

reads and writes are useful (a) to analyze cache performance, internal memory, and

data transfer operations, (b) to identify data locality, which can help to find cache

conscious data layouts, (c) to develop data prefetching techniques, and (d) to find da-

ta race conditions in multicores. The data values are significant in enabling faithful

replay of the program offline. Replay of the program enables software developers to

find bugs with minimal effort as they can move forward and backward in time. In

addition, it is really important to know what data value a processor is reading at a

given point of time in security (data integrity) [39] and to solve problems with exter-

nal inputs in real-time systems. For example, in the case of a sensor malfunctioning,

it is not possible to determine the cause for the crash without actually knowing the

value it read [40].

 Trace and Debug Infrastructure

Figure 2.1 shows a typical multicore system-on-a-chip (SoC) with trace and

debug infrastructure. It has N processor cores, a DSP core, and a DMA core. All the

cores are connected through a system interconnect. Each processor core is connected

to a private trace module for on-chip tracing and debugging support. This trace

module is responsible for capturing and possibly filtering the trace data. As proces-

sors run at very high speeds, megabytes of trace data are generated within a fraction

of a second making it difficult to emit the trace data off-chip.

To continuously emit trace data for longer periods of time, a dedicated high-

speed trace port (parallel or serial) is used. However, dedicated trace ports require

dedicated physical pins which increases the system cost. An external trace probe

that reads traces from the target system includes large buffers, typically in Giga-

35

bytes and it is connected to the development workstation via standard interfaces

such as USB or Ethernet [41] [42] [43] (see Figure 2.1). Most commonly available

commercial trace probes are HSSTP (High Speed Serial Trace Probe) from ARM

[44], SuperTrace Probe from GreenHills [41], PowerTrace Serial from Lauterbach

[42], and Ultra-XD from Ashling [45].

To reduce the packaging size and/or cost introduced by the number of dedi-

cated physical pins to stream the generated trace data off-chip, on-chip trace buffers

are used to store the trace data temporarily. In that case, data from the trace buffer

is either streamed through a low speed trace port like JTAG or a low pin-count trace

port or copied to the target’s system memory with the help of the operating system.

The latter approach burdens the memory bus and system memory, affecting system

performance. Hence, it is not well suited for embedded systems where performance

degradation cannot be tolerated, and system memory is limited. In our work, we fo-

cus on data tracing through trace ports, though our proposed technique can help re-

duce the obtrusiveness of tracing in system memory.

The software debugger on the host workstation can use this information to

understand the interactions between different software components and answer

questions such as

• When are interrupts and context switches occurring?

• What is the execution path of the program?

• What events drive the program to a crash?

• Which parts of the program are taking most of the time?

• What memory address and values are accessed for memory operations?

36

In addition, replay of program execution allows software developers to move forward

and backward in time while investigating bugs.

Figure 2.1 Multicore SoC with Trace and Debug Infrastructure

Recognizing the importance of hardware tracing in debugging, hardware

vendors are adding on-chip support to capture and emit program traces for offline

analysis. State-of-the-art hardware trace capturing technologies include ARM’s

Software Debugger(s) in Host
Workstation

Trace
Probe

System Interconnect

Debug &
Trace Control

Multicore SoC

Trace Port
Interface

Buffers
(~GB)

Trace
Module

Core N-1

Trace
Module

Core i

Trace
Module

CPU
Core 0

Inter-
connect

Trace
Module

On-chip
Trace Buffer

Trace & Debug Interconnect

System
Memory

Trace Port

Host USB/
Ethernet

USB/Ethernet

DSP
Core

Trace
Module

DMA
Core

Trace
Module

37

CoreSight [46], MIPS’s PDtrace [47], Intel’s Processor Trace [48], Infineon’s Multi-

core Debug Solution (MCDS) [49], Synopsys’s Real-Time Trace (RTT) [45], Altera

[50], NXP [51], and others.

The IEEE Nexus 5001 standard [52] provides a standard interface to trace

and debug embedded systems. It is a packet-based protocol and can use either a

JTAG port or a high-speed dedicated Aurora or Auxiliary trace port to emit trace

messages. It defines four classes of debugging capabilities depending on the level of

details traced and exposed. Class 1 supports traditional run-control debugging – sin-

gle stepping, analyzing and changing the memory values, and setting breakpoints

through JTAG. Class 2 supports capturing control-flow traces and Ownership traces

(task identifier). Class 3 includes support for capturing memory read and memory

write traces. Class 4 adds an advanced capability for emulating memory and I/O ac-

cesses through a trace port. Each level progressively supports the features of lower

classes. Thus, higher levels require more on-chip resources and wider trace ports,

both of which increase system cost.

 State-of-the-art Commercial Hardware Trace Solutions

ARM CoreSight. CoreSight is an advanced trace and debug solution for

complex SOC based on the ARM architecture [46]. It is a collection of hardware

components for tracing and debugging. Depending on the level of required debugging

capabilities, a chip designer can choose individual modules and integrate them in

the system. It includes tracing modules such as embedded trace macrocell (ETM),

program trace macrocell (PTM), and system trace macrocell (STM). The collected

trace data is either stored to a circular on-chip trace buffer, embedded trace buffer

38

(ETB), or emptied through a high-speed dedicated trace port interface or debug port

(serial debug port or JTAG).

ARM STM. The STM module is designed to collect traces of system activity

generated by both software and hardware events. A unique pair of master and

channel are assigned to each hardware and software trace source. The number of

available masters and channels is limited. In auto-instrumentation mode, STM can

utilize existing static tracepoints in the kernel and built-in Linux tracing frame-

works. By enabling the STM device driver and existing tracing framework [53], all

the collected trace information is sent to STM hardware. To instrument applications,

an application developer should define the instrumentation statement templates

called tracers (like printf) to include in the source code. Tracers can be grouped into

subsystems and each subsystem can be assigned to a single STM channel [53]. Every

instrumentation statement includes the name, subsystem, and template details. The

traces collected by STM can be interpreted and visualized by existing tracing

frameworks such as LTTng on the host.

ARM PTM. The PTM module collects control-flow traces of a program [54].

To reduce the amount of trace data while enabling off-line reconstruction of the pro-

gram flow, PTM avoids outputting the static information available in the program

binary, program counter for example, and traces the flow changes such as indirect

branches (with address and condition code), direct branches (condition code), context

ID changes, exceptions, instruction barriers, changes in the processor instruction

and security state, and entry and exit to the debug state. The PTM can collect differ-

ential timestamps (the number of clock cycles spent between the current and the

previous trace), global system timestamps, and the destination of direct branches, if

39

required. The trace streams are stored in a FIFO buffer that when full sets an over-

flow signal that prevents further tracing.

ARM ETM. The ETM module can collect instruction and possibly data traces,

memory address and value, for instructions executed by the processor. The ETM can

be configured to generate only control-flow traces as in PTM instead of generating

the traces for every instruction. The data-flow trace in ETM can be either memory

address or memory address and value for load and/or store instructions. To enable

efficient use of ETB and increase the trace coverage, ETM incorporates filtering and

compression capabilities. For example, while collecting control-flow traces continu-

ously, data-flow traces can be triggered for ranges of address or for a certain address

or when the address bus sees a certain data value. In addition, ETM employs multi-

ple trace compression techniques such as encoding multiple traces to a single stream

when possible, excluding the program address for all the traces and target of direct

branches, and avoiding the traces for some branches, when possible by including the

return stack in the trace unit and in the trace analyzer.

Altera Nios II. Like the ARM ETM tracing module, the Nios II trace module

supports tracing instructions and data [50]. To reduce the volume of trace data, Nios

II provides filtering capabilities similar to ARM ETM. For example, it supports trig-

gers to start and stop capturing control-flow and data-flow traces. The on-chip trace

buffer size can be set to any size from 28 to 64 K trace frames, using OCI (on-chip

instrumentation) On-chip Trace. A trace frame can store the execution trace for

more than one instruction and a frame is defined as a unit of allocated memory for

trace data and does not represent the absolute trace depth. The larger trace buffer

consumes more on-chip M4K RAM blocks and every M4K RAM block can store up to

128 trace frames.

40

Infineon MCDS. Multicore Debug Solution (MCDS) is a trace and debug so-

lution for Infineon chips [49]. It complies with the Nexus-5001 standard and sup-

ports program and data-flow tracing. Similar to other tracing solutions, MCDS em-

ploys trace compression and filtering (called trace qualification) to reduce trace data

size. Instead of reporting full addresses, it only reports the changes in the address

from last address in case of indirect branches, single bit for direct branches, and

suppresses repeated zeros and ones in the MSB for data traces. An exception is syn-

chronization traces which occur every few hundreds of clock cycles. Since the data

traces produce large amounts of data, MCDS supports context aware compression

techniques, for example, enabling capturing of data-traces when required.

Intel LBR. Last Branch Record (LBR) logs taken branches, interrupts, and

exceptions to an LBR stack which is generally a set of model specific registers

(MSRs) [55]. For every branch, LBR stores the branch-from address, branch-to ad-

dress, and some additional metadata depending on the format address stored on the

LBR stack. These registers act as a ring buffer and can store up to 32 branches de-

pending on the CPU generation. There is no performance overhead for recording the

branches, however, there is some overhead when reading trace records from these

registers.

Intel BTS. The Branch Trace Store (BTS) provides additional capability to

store branch trace messages (BTMs) to some monitoring device or the system

memory allocated by the user. The format of the BTM record is similar to LBR: it

includes the branch-from address, branch-to address, and a control word in which

bit 4 is used to indicate whether the taken branch was predicted or not predicted.

The size and location of the BTS buffer can be specified by the user and it can be

configured as circular buffer (similar to an LBR stack) or to trigger an interrupt

41

when it is nearly full. Thus, BTS can store a larger number of branch records com-

pared to LBR. However, this facility comes with overhead as the processor needs to

enter special debugging mode in which processor speed drops by 25-30 times [56].

Intel PT. Intel Processor Trace (Intel PTrace) is an advanced version of Intel

BTS which records control-flow traces with low runtime overhead (<5%) [57]. To im-

prove the performance compared to BTS, it stores the encoded and more compact

trace packets temporarily in the internal buffer before copying these to the memory

subsystem. Intel PT supports various types of packets and only records the minimal

information required to reconstruct the program flow. For example, it records only 1-

bit to indicate whether the conditional branch was taken or not taken and it ex-

cludes the unconditional branches, as this information can be extracted from the

program binary. With the support of hardware instruction pointer filtering, it can be

configured to record traces for the instructions which are in or out of a range of ad-

dresses. Along with control flow traces, it also records certain processor mode chang-

es (32/64-bit execution mode, VMCS pointer, TSX transaction state) and periodic

synchronization points (TSC, mode frequency, SW context). It can be configured to

report the cycle count either for every instruction in the trace or periodically.

MIPS PDtrace. PDtrace provides instruction and data trace capability for

the MIPS architecture [47]. The trace logic on the processor outputs traces to a trace

control block (TCB) which is responsible for writing these traces to either on on-chip

or an off-chip trace buffer. When the trace buffer is full, it stalls the pipeline. To re-

duce the amount of trace data, PDtrace only captures the control-flow traces that are

further compressed with synchronization trace except at the beginning of the process

and after buffer overflow. For unpredictable branches, it reports changes in the PC

(difference between the instruction address just before the branch and the branch

42

target). For conditional predictable branches, it either reports a single bit (taken or

not taken). Nothing is reported for direct predictable branches. The synchronization

trace addresses are reported periodically. Data address traces are compressed by re-

porting the delta difference and data values can be compressed with bit-block com-

pression. Moreover, data-flow traces (address and value) can be collected only for the

addresses which match with hardware breakpoint addresses.

Synopsys RTT. RTT, Real-Time Trace, is an optional hardware tracing mod-

ule for Synopsys’ ARC based processor cores. RTT generates trace messages which

are compliant with Nexus 5001 Class 3. Based on power, area, and performance con-

straints, the RTT module can be configured at design time to capture different traces

necessary for debugging. Trace modules are classified as small trace, medium trace,

and full trace depending on their capabilities. Small trace modules record only the

changes in the program-flow and use the dedicated on-chip trace buffer to store the

traces. A medium trace module records program-flow changes and memory reads

and writes and uses either dedicated on-chip memory or system shared memory or

external storage on trace probes to save the traces. Full trace modules record auxil-

iary register reads and writes and CPU register writes in addition to the capabilities

of medium trace modules. Full trace module can store trace messages on shared sys-

tem memory or external storage. To store traces on external trace probes, support

for the high-speed dedicated trace port, auxiliary Nexus port, is required. Just like

any other trace module, RTT supports address range, data, and address trigger fil-

ters to reduce the amount of trace data.

43

 Motivation

Hardware data traces are often necessary to faithfully replay a program un-

der test offline. Generally, hardware data traces (a.k.a., data-flow traces) are gener-

ated by capturing relevant information about memory-referencing instructions, e.g.,

instruction addresses, data addresses, data values, and data sizes and types. How-

ever, not all of this information is necessary to replay a program offline. For exam-

ple, a software debugger can infer memory write values under certain conditions

from the program binary and memory read operations. Thus, to faithfully replay a

parallel program offline, a software debugger requires only memory read data value

traces along with (a) an instruction set simulator for the target platform; (b) the exe-

cutable of the parallel program; (c) the initial state of the target’s general- and spe-

cial-purpose registers; and (d) exception traces. The exception traces and the

memory read data value traces thus need to be captured on the target platform dur-

ing program execution and streamed out through the target trace port. The following

section illustrates the use of memory read data value traces in software debugging,

specifically in the detection of race conditions in parallel programs.

 Memory Read Data Value Tracing to Detect Race Conditions

Figure 2.2 illustrates memory read data value tracing with a simple multi-

threaded OpenMP C program. The program shown in Figure 2.2a accumulates the

scaled elements of an array, a[], to a shared variable sum, by using four threads

running on four cores (C0-C3). Each thread in the program accumulates 13 elements

of the array. The shared variable sum is intentionally not guarded by any locks to

illustrate how memory read data value traces can be useful to detect data race con-

ditions. A data race condition is observed on a shared variable when a memory read

44

followed by a write operation in one thread is interspersed by a memory read or a

memory write operation in another thread on the same variable (e.g., sum in this

example).

Figure 2.2 Memory Read Data Value Tracing Example

Figure 2.2b shows the assembly instructions corresponding to the parallel for

loop. In one iteration of the parallel for loop the following memory reads occur: (a)

loop counter i, (b) element of the array a[i], (c) constant k, and (d) variable sum. The

1 #include <stdio.h>

2 #include <omp.h>

3

4 int main(){

5 int a[52];

6 int sum = 0;

7 const int k = 10;

8 for (int i = 0; i < 52; i++) a[i] = i;

9

10 #pragma omp parallel for num_threads(4)

11 for (int i = 0; i < 52; i++)

12 sum += k*a[i];

13

14 return 0;

15 }

(a) OpenMP C program

 80483b0: mov DWORD PTR [ebp-0xc],edx

 80483b3: mov ecx,DWORD PTR [ebp-0xc]

 80483b6: mov edx,DWORD PTR [ebp+0x8]

 80483b9: mov edx,DWORD PTR [edx]

 80483bb: mov ecx,DWORD PTR [edx+ecx*4] ; read a[i]

 80483be: mov edx,DWORD PTR [ebp+0x8]

 80483c1: mov edx,DWORD PTR [edx+0x4]

 80483c4: mov edx,DWORD PTR [edx] ; read k

 80483c6: imul ecx,edx

 80483c9: mov edx,DWORD PTR [ebp+0x8]

 80483cc: mov edx,DWORD PTR [edx+0x8]

 80483cf: mov edx,DWORD PTR [edx] ; read sum

 80483d1: add ecx,edx

 80483d3: mov edx,DWORD PTR [ebp+0x8]

 80483d6: mov edx,DWORD PTR [edx+0x8]

 80483d9: mov DWORD PTR [edx],ecx ; write sum

 80483db: add DWORD PTR [ebp-0xc],0x1

 80483df: cmp DWORD PTR [ebp-0xc],eax

 80483e2: jl 80483b3

(b) x86 assembly code for parallel loop

(c) Memory read data trace for a snippet of execution

Time Core 0 . . . Core 3 Memory Read Data Traces

[cycles] read/write value read/write value [dts, cid, mrv]

tS+0 read a[0] {0} [0, 0, 0]

tS+1 read k {10} [1, 0, 10]

tS+3 read sum {530} [2, 0, 530]

tS+4 write sum {530} -

tS+72 read a[39] {39} [72 , 3, 39]

tS+73 read k {10} [1, 3, 10]

tS+75 read sum {530} [2, 3, 530]

tS+77 write sum {920} -

. . .

tS+1258 read a[7] {7} [329, 0, 7]

tS+1271 read k {10} read a[47] {47} [13, 0, 10]; [190, 3, 47]

tS+1272 read sum {7980} read k {10} [1, 0, 7980]; [1, 3, 10]

tS+1273 read sum {7980} [1, 3, 7980]

tS+1274 write sum {8050} -

tS+1275 write sum {8450} -

tS+1311 read a[48] {48} [38, 3, 48]

tS+1313 read k {10} [2, 3, 10]

tS+1314 read a[8] {8} read sum {8450} [42, 0, 8]; [1, 3, 8450]

tS+1315 read k {10} [1, 0, 10]

tS+1316 read sum {8450} write sum {8930} [1, 0, 8450]

tS+1383 write sum {8530} -

45

memory writes are as follows: (a) updating loop counter i and (b) updating sum. Fig-

ure 2.2c shows the snippet of parallel execution of the for loop on cores C0 and C3

that execute threads 0 and 3, respectively, starting from the time ts. Threads 0 and 3

sum up elements a[0]-a[12] and a[39]-a[51], respectively. In Figure 2.2c, the first

column shows the timestamp in which the corresponding instruction is retired, and

the last column shows the hardware trace messages corresponding to memory reads.

Each memory read results in a trace message composed of timestamp (dts),

thread/core identifier (cid), and memory read value (mrv) similar to the Nexus 5001

standard [52]. The timestamp, dts, reports the number of clock cycles expired since

the last trace message is reported from the same core/thread.

In the initial iteration of the for loop for C0, a[0], k, and sum are read and

sum is updated at ts+4. The trace messages corresponding to memory read opera-

tions are shown in the last column of the first 3 rows. The memory write operation

does not result a trace message as it can be inferred by the software debugger while

replaying. Similarly, C3 reads array element a[39], as well as k and sum and up-

dates the sum with a new value at ts+77. As we proceed in time, C0 reads a[7], k,

and sum and writes a new value of the sum at ts+1274. However, C3 reads the sum

at ts+1273 before it is updated by C0. Thus, C0 and C3 read the same value of sum

and calculate its new values that are written into sum at ts+1274 by C0 and at

ts+1275 by C1. This is a data race condition. While replaying the program in the

software debugger, the situation where C1 reads the value of sum before it is updat-

ed by C0 is detected when read data traces of the program are supplied. One may

argue that, by using data address access patterns we could also detect the race con-

46

dition. That can be true for this example however it is invaluable when the data is

fed from an external source such as a sensor.

 Memory Read Data Value Tracing Challenges

As discussed in Section 2.3, some commercial products support hardware

tracing up to Class 3 [45] [46] [47] [49] [50] [51]. The trace port bandwidth required

for these products is in the range of ~0.3 bits per instruction [17] for control-flow

tracing and 8-16 bits per instruction for data-flow tracing [18] for a single core. In

multicores, trace port bandwidth increases even further due to the need for report-

ing the processor identification number and timestamp in which the instruction is

retired. With the limited size of on-chip-trace buffers, it is possible to capture traces

only for short program segments. Usually the commercial products support collect-

ing control-flow traces continuously and enables data-flow traces only for a range of

addresses or for a memory address of interest or when a particular value from

memory is read. In modern complex systems, the origin of a bug and its manifesta-

tion may be millions of instructions apart. Thus, it is important to capture traces for

longer program segments or ideally for the entire program execution.

As a metric for quantitative evaluation of demands placed on designers of de-

bug infrastructure, the required average trace port bandwidth (TPB) measured in

bits per instruction (bpi) and bits per clock cycle (bpc) is used. The analytical model

given in Eq.(2.1) and Eq.(2.2) can be used to estimate the average required TPB for

read data value traces.

47

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑋_𝑇𝑃𝐵 [𝑏𝑝𝑖] = 𝑚𝑟𝐹𝑟𝑒𝑞 ∗ (𝑑𝑡𝑠𝑆𝑖𝑧𝑒 + ⌈𝑙𝑜𝑔2𝑁⌉ + 𝑚𝑟𝑣𝑆𝑖𝑧𝑒) (2.1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑋_𝑇𝑃𝐵 [𝑏𝑝𝑐] = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑋_𝑇𝑃𝐵[𝑏𝑝𝑖] ∗ 𝐼𝑃𝐶
(2.2)

where

• mrFreq is the frequency of instructions that read data from memory

• dtsSize is the average size of the differential timestamp field in bits

• mrvSize is the average size of the data read from memory in bits

• N is the number of processor cores

• IPC is the number of instructions executed per clock cycle when all the cores

are considered together

Figure 2.3 shows the estimated TPB in bpi while varying the frequency of in-

structions that read data from memory (10% to 50%), the number of cores (N = 1, 2,

4, and 8), and the average size of data items read from memory (1-byte to 8-bytes).

Please note that, for simplicity, the average required TPB is often referred to just

TPB. The TPB is calculated by using the Eq. (2.1); the number of bits to encode the

timestamp, dts, is set to 8 bits. Figure 2.3 shows how the TPB increases with respect

to the frequency of memory reads and the average size of the data read. As the aver-

age data size read from memory varies from 1 byte to 8 bytes, the TPB ranges from

1.6 bpi to 7.2 bpi when N=1 and from 1.9 bpi to 7.5 bpi when N=8, when 10% of the

instructions are memory reads. For any given configuration, as the number of cores

increases, the required TPB increases slightly due to the additional bits used to re-

port core id. However, when the frequency of memory reads increases, the TPB in-

48

creases gradually as shown by the different rows in the Figure 2.3. When the fre-

quency of memory reads reaches 50% (which is possible in memory intensive appli-

cations), the TPB is as high as 37.5 bpi for 8-byte data. As the number of cores in-

creases, the pressure on the trace port increases due to the reduced execution time

and multiple trace producers. However, this trend is not captured well using TPB

measured in bits per instruction executed.

Figure 2.3 Estimation of Required Average TPB in bpi for Nexus-like Memory Read

Data Value Traces

Figure 2.4 shows the estimated TPB in bpc while varying the frequency of in-

structions that read data from memory (10% to 50%), the number of cores (N = 1, 2,

4, and 8), and the average data size read from memory (1-byte to 8-bytes). The TPB

shown in Figure 2.4 is calculated by using Eq. (2.2) with IPC set to N/4. It ranges

0

5

10

15

20

25

30

35

40

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 byte 2 bytes 4 bytes 8 bytes

TP
B

 [
b

p
i]

Estimated TPB for Nexus-like Memory Read Data Value Traces (bpi)

mrFreq=10% mrFreq=20% mrFreq=30% mrFreq=40% mrFreq=50%

49

from 0.4 bpc (N=1) to 3.8 bpc (N=8) when mrvSize is 1-byte and from 3.6 bpc (N=1)

to 30 bpc (N=8) when mrvSize is 8-byte when 10% of the instructions are memory

reads. When the frequency of memory reads is 50%, the required TPB is as high as

75 bpc. For TPB estimation, we assumed that memory reads are evenly distributed

over the execution of the program. However, there is a possibility of having skewed

data reads. In that case, the pressure on the trace port will be even higher.

Figure 2.4 Estimation of Required Average TPB in bpc for Nexus like Memory Read

Data Value Traces

To capture Nexus trace data (NX) without halting the program execution or

without losing trace data requires either deep on-chip trace buffers or wide trace

ports or both. The speed of emptying trace data through the trace port pins cannot

keep pace with fast generating trace data, because the clock rate at I/O pins is typi-

0

10

20

30

40

50

60

70

80

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 byte 2 bytes 4 bytes 8 bytes

TP
B

 [
b

p
c]

Estimated TPB for Nexus-like Memory Read Data Value Traces (bpc)

mrFreq=10% mrFreq=20% mrFreq=30% mrFreq=40% mrFreq=50%

50

cally lower than the clock rate of the processor [49]. Thus, a better solution is re-

quired to filter and compresses the trace data with minimal hardware resources to

provide better debugging tools. Therefore, our work focuses on filtering data value

traces as they are important to replay the program.

51

RELATED WORK

Debugging is a critical part of the software development process in which de-

velopers are required to find and fix the bugs quickly. A study from Cambridge Uni-

versity [8] shows that software developers spend about 50% of their time debugging

the programs. The challenges in debugging are due to required deeper understand-

ing of the code as well as bugs. In addition, fixing mis-interpreted bugs may intro-

duce new bugs and some bugs are not easy to reproduce in production systems.

Deterministic replay of a program allows software developers to reproduce

bugs. For this, details of the program are collected while it is running on the actual

target. These details are used for partial or full replay of the program execution of-

fline. Details of program execution can be collected either using software (most of

the times with instrumentation) or hardware support. To record traces using soft-

ware, instrumentation of the program is required. However, instrumentation intro-

duces overhead which cannot be tolerated in real-time embedded systems as the se-

quence of events in the instrumented runs may differ from native program execu-

tion. Section 3.1 discusses record and replay frameworks which allow deterministic

replay of the program.

As modern processors generate a vast amount of trace data, capturing and

streaming it out of the chip in a cost-effective way is a challenging task. Section 3.2

reviews prior work addressing trace compression solutions in both software as well

as hardware.

52

 Record and Replay

Pin-play [58] and Microsoft’s [59] framework allow deterministic replay of us-

er level programs by logging some details while it is running. These frameworks de-

pend on the dynamic binary instrumentation of the program. Thus, the overhead of

these methods cannot be tolerated in real-time embedded systems.

To deterministically replay program execution in software debuggers to iden-

tify causes of buggy states and debug multithreaded programs in high-end compu-

ting platforms, hardware-assisted techniques are available. One popular approach is

to log how memory accesses interleave during program execution. Several groups

have introduced approaches for deterministic replay in high-performance multipro-

cessors, including FDR [60], BugNet [61], RTR [62], DeLorean [63], and LReplay

[64]. These schemes are designed to run on production systems where software in-

strumentation can be tolerated. They rely on a certain level of hardware support to

capture production-run bugs with minimal overhead in performance and logging re-

quirements. The logs are typically kept in a dedicated portion of main memory and

the operating system is responsible for flushing logs from on-chip buffers to main

memory, usually during periods when the memory bus is idle, thus minimizing the

performance overhead. However, these methods rely on software instrumentation

and system memory and thus interfere with program execution, which cannot be

tolerated in real-time systems [17]. In addition, the performance degradation and

increased energy consumption due to logging may not be tolerable in real-time em-

bedded systems. Thus, hardware support for logging the data which can enable de-

terministic replay is required.

53

One interesting solution for debugging multicore SoCs called hidICE is pro-

posed by Hochberger and Weiss [65]. It relies on a hardware emulator that repli-

cates all master cores and memories from the target platform. The target platform

reports only exceptions and data reads from peripherals that cannot be inferred by

the emulator. However, hidICE is cost-prohibitive because it requires not only

changes on the target platform to include a synchronization core and a new trace

port, but also requires a sophisticated hardware emulator that replicates all the

master modules and the RAM memory of the target.

 Trace Compression

 Software Trace Compression

Software program and data tracing has been widely used for trace driven

simulations, architectural evaluation, optimization, and profiling programs. It is

popular since instrumentation techniques have been employed to capture software

traces. As software traces require a vast amount of disk space to store them, com-

pression of these traces offline is widely explored in academia. One approach to com-

press the traces is using general-purpose compression algorithms, such as the

Lempel-Ziv (LZ) algorithm [66] used in gzip or the Burrows-Wheeler transform [67]

used in bzip2. However, compression ratios achieved with general purpose compres-

sors are not optimal as it is hard to find repeating data patterns. Higher compres-

sion ratios can be achieved with trace-specific compressors.

One class of compressors exploits the spatial locality in progams. The basic

idea is to take advantage of two successive memory accessing operations that might

be consecutive in memory. Mache [68] is a one pass trace compression algorithm.

54

This algorithm separates instruction, memory read, and memory write traces and

reports the differences in nearby addresses instead of full addresses. The trans-

formed traces are then compressed using the LZ compression algorithm. Pleszkun

[69] presented a two pass algorithm for compressing traces with instruction and da-

ta addresses by replacing repeating patterns of data with a code which requires a

lower number of bits. The first pass is a pre-processing step to identify the dynamic

basic blocks and procedure calls. The trace is encoded by specifying the basic block

and its successor. PDATS (Packed Differential Address and Time Stamp) [70] and

PDATS II [71] improves the compression ratio by reporting the variable length ad-

dress offset calculated from the same type of trace (instruction, data read, and

write) and optional repetition count.

Dictionary based compression is used in general purpose compressors [66]

[72]. Usually, a dictionary is filled either statically or dynamically. The basic idea of

a dictionary is to replace incoming data found in the dictionary with a corresponding

index in the dictionary. PDI [73] instruction words are compressed by using the 256

most frequently used instruction words and are stored at the beginning of a trace

file. PDI addresses are compressed using the PDATS method. N-Tuple [74] com-

presses branch instruction traces by replacing the traces with the index of an N-

Tuple record table (N-TRT). Traces are divided into N-tuples and the N-TRT table

includes unique N-tuples encountered in the program. Stream-Based Compression

(SBC) [75] is a one-pass instruction and data address trace compression algorithm. A

stream table keeps the details such as starting address, stream length, and instruc-

tion words and type of instruction stream (basic block). SBC performs compression

by replacing each instruction from a stream by its index in the stream table. Data

55

addresses are written separately to a different file with offset and the number of

repetitions corresponding to the stream table.

Value predictors are cache like structures used to predict the next value de-

pending on the history of streamed values [76] [77] [78]. This method is employed to

predict the register value, next data address for pre-fetching [78] [79], and memory

load operation [76] to speed up microprocessors. Data address and data value predic-

tors can also be used to compress software traces. The VPC [80] compression algo-

rithm is a set of value prediction-based algorithms – last value predictor, stride pre-

dictor, etc., that works on memory addresses or data values. If one of the predictors

is correct, the index of that predictor is reported; otherwise, a special code followed

by the original value is reported. TCgen [81] generates VPC like high performance

trace compressors for a user defined trace format. It translates the user specified

trace format to an optimized compressor by using selection of value predictors – last-

value predictors, finite-context-method predictors, and differential-finite context-

method predictors.

Caches are widely used in software and hardware to speed up program exe-

cution by exploiting temporal and spatial locality of instructions and data. Locality

Based Trace Compression (LBTC) [82] employs offset encoding of the memory refer-

ences (as in Mache and PDATS) and static property of attributes and temporal local-

ity of memory references. It assumes that most of the attributes are static and do not

change frequently from one dynamic access to another. A small direct mapped cache

is emulated to store the memory references. When a memory reference is a hit in the

cache, all the static attributes can be extracted without storing them in the trace

file. Microsoft’s framework uses an iDNA component [59] to record and retrieve in-

struction level traces. The execution traces include executed code bytes and the state

56

of the memory location which is accessed to enable faithful replay of the user-mode

program. iDNA maintains a tag-less direct cache which is indexed with accessed ad-

dress. When the instruction accesses memory, the trace is not logged if the value in

the cache matches value read from memory. If not, the trace is logged, and the value

is updated in the cache.

Another class of compression algorithms depends on Whole Program Paths

(WPP) [83] and loops in the program [84]. WPP captures the control traces of a pro-

gram and uses modified Sequitur to compress acyclic paths. These traces can be

used to guide compiler optimizations and identify hot spots in the program. Howev-

er, WPP is a two-pass algorithm. Data addresses can be compressed by linking them

to the program loops [84]. In the first pass, loops in the trace are detected by using

control flow analysis. In the second pass, data addresses in the loop are classified as

constant, loop varying, and chaotic. Constant and loop varying addresses are encod-

ed only once in the compressed trace and chaotic addresses are stored separately in

a file.

 Hardware Trace Compression

Commercial trace modules usually support run-control debugging, often con-

trol-flow tracing, and less often data-flow tracing. For control-flow and data-flow

traces, existing commercial trace modules apply on-chip trace filtering (capture the

traces for interested instructions and/or memory locations or for specific code seg-

ments) and compression (differential encoding or ignoring the most significant ze-

ro’s) to reduce trace port bandwidth. Yet, the required trace port bandwidths are

still in the range from 0.5-4 bits per instruction executed per core for control-flow

traces [17] and 8-16 bits for data-flow traces [18]. Thus, even with compression, the

57

required trace port bandwidth for control-flow and data-flow traces is still in the

range of dozens of Gbits/sec, which is not practical. To support control-flow and data

tracing, commercial trace modules rely on hefty on-chip buffers to store traces cap-

tured. The traces are then read out through the trace port in near real-time. Howev-

er, large trace buffers and wide trace ports significantly increase the system com-

plexity and cost, making embedded processor vendors reluctant to support higher

classes of Nexus 5001 operation. Alternatively, these traces are stored in system

memory and they are emptied through system software in the case of self-hosted de-

bugging.

To compress hardware traces, general purpose compression algorithms can be

used. However, general-purpose compressors do not yield high compression ratios,

as traces combine multiple diverse fields that limit the redundancy visible to com-

pressors. In addition, compression algorithms rely on large search buffers, so their

hardware implementations are very expensive. Moreover, general-purpose compres-

sion algorithms suffer from long latencies, which are not desirable in program trac-

ing. To partially alleviate these constraints, several research efforts have proposed

trace-specific implementations of general-purpose compression algorithms targeting

control-flow traces, such as LZ-based trace compressors [85][86].

The Double-move-to-front compressor [87] (DMTF) uses basic block proper-

ties and Move-To-Front transformation, which is used in bzip2. DMTF uses two his-

tory tables storing a stream, basic block length and size. When a stream is found in

the first table, the second table is also searched. If it is a hit in the second table, the

index of the second table is reported; otherwise, the index of the first table is report-

ed and it is stored in the second table. If it is a miss in the first table, the trace cor-

responding to the stream is reported and it is inserted in the first table.

58

Stream cache and predictor [88] is a hardware trace compression mechanism

for control flow traces. In this mechanism, stream descriptors describe instruction

streams (address and length) that are stored in a stream descriptor cache (SDC). If

it is a hit, the stream index (result of concatenation of set and way index of SDC) is

reported to the last stream predictor (LSP). If it is a hit in the LSP, a single bit re-

ported, otherwise stream index is reported. If it is a miss in the SDC, the original

stream is reported.

In computer architecture, branch predictors are widely used to predict the

output of control-flow instruction depending on the history to avoid flushing of the

pipeline. However, branch predictors are also explored in compressing control-flow

traces [89] [90] [91]. In these techniques, a trace message is reported only when the

branch is mis-predicted by the branch predictor in the trace module instead of emit-

ting every trace message. These techniques significantly reduce the number of trace

events, and thus reduce the required trace port bandwidth. However, these studies

focus on control-flow traces that are easier to compress rather than data traces.

Another class of trace compressor produces the more compact traces [92].

However, the compression ratio achieved with this method is only 8.4% for program

traces and 24% for data traces. Unfortunately, data value traces exhibit little re-

dundancy and are typically streamed out uncompressed [92].

Whereas a number of recent papers focuses on capturing, compressing, and

filtering control-flow traces, to the best of our knowledge, very few studies focus on

compressing the real-time hardware memory read data value traces that are crucial

in debugging parallel programs and hard to find errors. This work builds on the pre-

vious efforts from the LaCASA laboratory [93] [19] [20], and expands them to multi-

cores and makes the data tracing scalable for parallel programs.

59

PROPOSED TECHNIQUE: mcFiltrate

This chapter discusses the details of the proposed technique, mcFiltrate, and

its operation on the target core and in the software debugger. The system view of

mcFiltrate and the terminology used is discussed in Section 4.1. The operation of

mcFiltrate for memory read, memory write, and invalidation operations on the tar-

get core and in the software debugger are discussed in Section 4.2 and Section 4.3,

respectively. The format of the trace message emitted by the hardware is discussed

in Section 4.4. Section 4.5 illustrates the operation of mcFiltrate in both the target

core as well as in the software debugger with an example. Section 4.6 discusses the

analytical model which allows estimation of the required average trace port band-

width.

 System View of mcFiltrate

mcFiltrate – multicore filtered memory read data trace – is a hardware/

software technique for filtering memory read data value traces. The basic idea of

mcFiltrate is to avoid sending unnecessary trace messages for data items that have

already been reported and/or can be inferred by the software debugger. Thus, this

technique relies on L1 data caches and first-access (FA) tracking bits to filter the

memory read traces.

Figure 4.1 shows a block diagram of a system that uses mcFiltrate hardware

and software modules. Items colored in purple color in Figure 4.1 are additional

hardware required for the operation of mcFiltrate. As shown in a detailed view of

60

mcFiltrate, the L1 data cache on each processor core is expanded to include FA

tracking bits. The size of the sub-block being protected by a single FA bit is called

the granularity size (G). The main purpose of the FA bits is to indicate whether the

sub-block is accessed for the first time or not. When the sub-block(s) is accessed for

the first-time, it is traced out and the corresponding FA bit is set to prevent redun-

dant trace messages for the same sub-block in case of future read accesses. This way

we can exploit the temporal and spatial locality of data accesses to reduce the num-

ber of trace messages that need to be reported to the software debugger. To synchro-

nize an FA hit event on the target platform and on the software debugger while re-

playing the program, a first-access hit counter (fct) is used. The value of this counter

is incremented by one for every FA hit event and it is reported along with the next

trace message i.e. emitted when an FA miss event occurs.

mcFiltrate requires the software debugger to maintain a software model of

the L1 data cache which is identical to the actual L1 data cache on the target plat-

form, i.e., it uses the same cache organization and updating policy. In addition, the

software debugger also maintains a software copy of the first-access hit counter.

61

Figure 4.1 System View of mcFiltrate

Trace
Probe

System Interconnect

Debug & Trace
Control

Multicore
SoC

On-chip
Trace Buffer

Trace & Debug Interconnect

Trace Port
Interface

L1 Data Cache

Data
Address

Tag FA Flags

index 0
way 0

way k-1

C0.PCC

-

dts

mrv

C0.CC

index q-1

index 1

Trace Module

Data

 ...

 ...

 ...

Set/Reset FA flags

Read Value

C0.fahCnt
fct

Cache Hit FA Hit

mcFiltrate

Inter-
connect

Trace
Module DSP

Core

Trace
Module

To
 O

n
-ch

ip
 Trace B

u
ffer

Host
Interface
Buffers
(~GB)
Target

Interface

Trace Port

Software Debugger System View

GUI

Trace Decoder and Control

Multicore Instruction Set Simulator

Core i
mcFiltrate

Model

Core 0
mcFiltrate

Model
Binaries

Core N-1
mcFiltrate

Model

Software
Debugger(s)

in Host
Workstation

DMA
Core

Trace
Module

Core N-1

mcFiltrate

Trace

Module

Core i

mcFiltrate

Trace

Module

CPU
Core 0

mcFiltrate

Trace

Module

62

 mcFiltrate Operation on Target Platform

Memory reads. The operation of mcFiltrate for memory reads on the target

core i is shown in Figure 4.2. For every memory read operation, a data cache lookup

is performed (step 1). If the requested data is found in the data cache, it is referred

to as a cache hit event; otherwise it is a cache miss event (step 2). If all the FA bit(s)

corresponding to the requested data item are set, it is referred to as an FA hit event;

otherwise it is an FA miss event (step 3). The blue boxes in Figure 4.2 indicate the

additional steps required to support mcFiltrate with respect to a regular memory

read operation in a processor core.

In the case of an FA hit event, the software debugger can find the data item

in the software version of the data cache, thus, no trace message is emitted. Instead,

fct is incremented by 1 (step 4) to indicate the FA hit event. If the corresponding FA

bit(s) is not set, a trace message composed of timestamp (dts), core id (cid), first-

access hit counter (fct), and data value (mrv) corresponding to the cache sub-block(s)

is emitted. Additionally, fahCnt is reset to zero and the corresponding FA bit(s) is set

(step 6). Please note that FA bits for sub-blocks are verified independently and the

trace message includes sub-blocks for which FA bit are not set.

In the case of a cache miss event, a Coherent Read Transaction is initiated

(step 5). Without loss of generality we assume that the MOESI [94] cache coherence

protocol is used. The five letters of MOESI represent the possible states of a cache

block at any given time. The possible states are M – Modified, O – Owned, E – Ex-

clusive, S – Shared, and I – Invalid. The MOESI cache coherence protocol allows the

cache-to-cache transfers of the dirty data without updating the main memory. A

brief description of MOESI states is given below:

63

M – This is the only valid copy of the cache block and main memory is not up

to date. From this state, the valid state transitions are O (with coherent read) and I

(with coherent read and invalidate or coherent invalidate).

O – This state allows the cache-to-cache transfer of a dirty cache block with-

out updating the main memory. Multiple caches may have the valid cache block in

state S. However, only one cache can be in state O. It can transition to state M (with

memory write) or I (with coherent read and invalidate or coherent invalidate) or S

(by writing cache block to memory).

E – A single cache is the exclusive owner of the cache block and its content is

the same as in main memory. It can transition to state M (with memory write) or S

(with coherent read) or I (with coherent read and invalidate or coherent invalidate).

S – Several caches may have a copy of the cache block in state S or O (only

one can be in the owned state). The main memory does not necessarily have to be up

to date. It can transition to state M (with memory write) or E (by issuing coherent

invalidate) or I ((with coherent read and invalidate or coherent invalidate).

I – This cache block is not valid. It can transition to M (with memory write)

or E (with memory read), and S (with coherent read and when multiple copies exist

in other caches).

In Coherent Read Transaction, all other processors perform a snoop lookup to

determine whether the requested data is available in their cache or not (step 7). In

Figure 4.2, Cx represents any processor core other than the requesting processor

core Ci. If the data is available in any other processor data cache (a remote cache)

and if that processor is responsible for cache-to-cache (C2C) data transfer, the cache

block is transferred to the requesting processor, Ci (steps 8-10). The state of the

64

cache block in both the requesting and the responding processor is updated accord-

ing to the cache coherence protocol and FA bits corresponding to the cache block are

cleared in processor Ci (step 11). The state of the cache block is updated to S in Ci

(Ci.CBj.state) and to either S or O in Cx (Cx.CBj.state), depending on the initial

state - new state is O if the initial state is M or O, otherwise it is S.

Figure 4.2 mcFiltrate Operation on Target Platform Core i for a Memory Read

In multithreaded programs data is usually shared among multiple threads

while the program is executing in parallel. As we have seen in Coherent Read

Transaction, when the data is found in a remote cache (snoop hit), the cache block is

transferred to the requesting processor. In this case there is a possibility that the

Ci: Cache Lookup

Ci: CPU READ

Hit?

Corresponding
FA Bit(s) Set?

Y

Y
• Emit Trace Msg.

[dts, cid, fct, mrv]
• Set Corresponding

Ci.CBj.FA Bits
• Ci.fahCnt = 0

N

N

END

Ci: Coherent Read
Trans.

Ci.fahCnt++

1

2

3

6

4

5

Cx: Snoop Lookup

Cx: Snoop
Hit?

Y

Clear all Ci.CBj.FA Bits
or Ci.CBj.FA = Cx.CBj.FA

N

• Read block
 from memory
• Ci.CBj.State = E

Clear all
Ci.CBj.FA Bits

7

8

9

10

12

13

• Cx supplies CBj to Ci
• Cx.CBj.State = O or S
• Ci.CBj.State = S

 Cx Supplies
Block?

Y

N

11

END

Ci: Coherent Read Trans.

65

cache block might have already been reported to the software debugger by the re-

sponding processor. Since the FA bits are cleared for newly fetched cache block in Ci,

the data will be reported again. Thus, to reduce redundant trace messages generated

for shared data by multiple threads/cores, we consider inheriting the FA bits from

the responding processor, Cx (step 11). However, to keep track of which core has ac-

tually modified the data and when it is modified, inheriting FA bits cannot be al-

lowed when Cx has the cache block in the Modified (M) state. This exception allows

the software debugger to properly serialize reads and writes while replaying a pro-

gram without assuming a cycle-accurate target simulator. Since the FA bits are

cleared, the trace message Ci will emit a trace message with a timestamp and data

content that helps the software debugger to infer the order of reads and writes on

shared variables as it occurred on the hardware platform.

Please note that, to inherit the FA bits, mcFiltrate requires additional hard-

ware support. Two possible solutions for supporting inheriting FA bits are: (a) issu-

ing an extra bus transaction and (b) adding extra data lines to transfer FA bits be-

tween caches. The former approach adds additional bus traffic, thus increasing the

latency, whereas the latter approach requires additional hardware support that is

proportional to the number of FA bits per cache block. The rest of this dissertation

assumes the latter approach.

In the case of a snoop miss event, the requested cache block is retrieved from

the main memory. Since the software debugger does not have access to the contents

of the main memory, the FA bits are cleared, and the state of the cache block is up-

dated to E (step 13).

66

Memory writes. Figure 4.3 shows the sequence of steps carried out in

mcFiltrate for memory writes on the target processor core Ci. In the case of a cache

hit event, a Coherent Invalidate Transaction (step 7) is initiated by the processor core

Ci to acquire ownership if the cache block is in the state S or O. In Coherent Invali-

date Transaction all the other processors perform the snoop lookup. In the case of a

snoop hit event, the cache block is invalidated (steps 10-12) and the corresponding

FA bits are cleared (step 13).

In the case of a cache miss event, a Coherent Read and Invalidate Transaction

is issued by the processor core Ci (step 3). If the requested data block is found in any

other processor’s data cache and if that processor is responsible for transferring the

cache block, then the cache block is transferred to the processor core Ci and the cor-

responding FA bits are cleared for processor Ci (steps 19-21). If inheriting the FA

bits is supported, then the FA bits are also copied along with the cache block (step

21). The state of the cache block in any other processor’s cache is updated to I (step

22) and the corresponding FA bits are cleared (step 23). Once the processor Ci ac-

quires the ownership (the state of the cache block is M) (step 8), its data cache is up-

dated with the current write operation and the FA bits are set for all sub-blocks

which are written completely (step 5). If the data is retrieved from the main

memory, the state of the cache block is updated to M (step 17), and all the FA bits

for the corresponding cache block are cleared (step 18).

67

Figure 4.3 mcFiltrate Operation on Target Platform Core i for a Memory Write

Ci: Coherent
Invalidate Trans.

Cx: Snoop
Hit?

N

Y

Cx.CBj.State
== S or O?

Clear all Cx.CBj.FA Bits

Y

N

9

11

12

14

Cx: Snoop Lookup

10

END

Impossible

Cx.CBj.State = I

13

Cx: Snoop Lookup

Ci: Coherent Read &
Invalidate Trans.

Cx: Snoop
Hit?

Y
• Cx Supplies CBj to Ci
• Ci.CBj.State = M

Clear all Cx.CBj.FA Bits

N

• Read Block From
Memory

• Ci.CBj.State = M

Clear all Ci.CBj.FA Bits

15

16

19

20

17

18

Cx Supplies
Block?

Y

21

N

END

Clear all Ci.CBj.FA Bits or
Ci.CBj.FA = Cx.CBj.FA

22

Cx.CBj.State = I

23

Ci: Cache Lookup

Ci: CPU WRITE

Hit?

Ci.CBj.State
== E or M?

Y

Y

N

N

Ci: Coherent Read &
Invalidate Trans.

Ci: Coherent
Invalidate Trans.

Update Cache

1

2

6

7

8
3

Ci.CBj.State = M

4

END

Set Corresponding
Ci.CBj.FA bits

5

68

 mcFiltrate Operation on the Software Debugger

The software debugger replays the program using an instruction set simula-

tor (ISS) and the program binary as well as reading and decoding the trace messages

received from the target. The format of the trace messages and length of the encod-

ing parameters is already known to the software debugger. The software debugger

maintains software copies of data caches with the same cache size and organization

and applies updating policies that match those on the target platform. It also main-

tains a software copy of the first-access hit counter.

The operation of mcFiltrate on the software debugger side for memory reads,

memory writes, and external invalidations is shown in Figure 4.4. Timestamps and

core identifiers from trace messages allow all software threads to synchronize and

establish the ordering of events that matches the one on the target platform for

shared variables. The first-access hit counter specifies the number of memory read

operations executed in the debugger before reading the value of mrv from the cur-

rent trace message.

Memory reads. For every memory read (Figure 4.4(a)), Ci.fahCnt is decre-

mented by 1 if its value is greater than 0. Ci.fahCnt>0 indicates the FA hit event on

the target core, hence the software debugger reads the data from the processor core

Ci software cache or other processor’s software cache, if inheriting the FA bits is

supported on the target platform (step 6). If the data is read from a remote cache,

the FA bits are also copied (step 12). If Ci.fahCnt=0, the software debugger extracts

the data from the previously decoded trace message and updates the software cache

(step 2). In addition, it reads a new trace message originated on core Ci from the

trace buffer and decodes it (step 3). Ci.fahCnt is updated with the new value ex-

69

tracted from the decoded trace message. Please note that the value of Ci.fahCnt is

set to zero before the start of program execution.

Memory writes and invalidations. For every memory write (Figure 4.4

(b)), the processor core Ci acquires the ownership (step 23) mirroring steps taken on

the target platform if the data is found in the software cache (a cache hit event). For

a cache miss event, the processor core Ci gets the cache block along with FA bits

from a remote cache (step 27) if the FA bit inheritance is supported. If the inheriting

of the FA bits is not supported, the FA bits corresponding to the cache block are

cleared (step 29). If the data is not available in any of the remote processor software

caches, meaning that the cache block was supplied by the main memory on the tar-

get platform, the FA bits are cleared (step 28). Regardless of cache hit or miss event,

the software cache is updated with the current write operation and the FA bits for

the sub-blocks which are written completely are set (step 24). For external invalida-

tions (Figure 4.4(c)), the FA bits corresponding to the invalidated cache block are

cleared.

70

Figure 4.4 mcFiltrate Operation on Software Debugger (a) a Memory Read

(b) a Memory Write (c) an External Invalidation

Ci.fahCnt--

Ci: Memory Read

Ci.fahCnt > 0?

• Get mrv Field From
Trace Msg.

• Update SW Cache
• Set Corresponding

FA Bits

END

Y

N

1

2

3

Return Data From
SW Cache

6

Ci: Lookup SW Cache

Hit?

Corresponding
FA Bits Set?

Y

Y

N

ERROR in tracing

N
7

8 13

9

5 Exploiting FA
Inheritance?

Y

• Get New Trace Message:
[dts, cid, fct, mrv]

• Ci.fahCnt = fct

4

11

(a)

Hit in Other
Caches?

N

Copy Cache Block

ERROR in
tracing

• Invalidate Cache
Block

• Clear FA Bits

END

External
Invalidation

(b) (c)

31
Ci: Cache Lookup

Ci: Memory Write

Hit?

Y

N

21

22

23

25

Acquire Ownership

29

Exploiting FA
Inheritence?

27

26

Y

Hit in Other
Caches?

Y

N

N

• Copy Cache Block
• Clear FA Bits

• Copy Cache Block
• Copy FA Bits

• Update SW Cache
• Set Corresponding FA Bits

END

24

Clear FA Bits

28

Y

N

10

12

14

Clear FA Bits or
Copy FA Bits

71

 Encoding of Trace Messages

This section describes the encoding of Nexus-like and mcFiltrate trace mes-

sages. Each Nexus-like (NX) trace message is composed of dts, cid, and mrv fields as

discussed in 2.3 (Figure 4.5). The timestamp, dts, carries information about the clock

cycle in which the current trace-generating instruction has retired. To reduce the

number of bits required to represent the timestamp, we report a differential

timestamp, i.e, rather than reporting absolute clock cycle, we report the number of

clock cycles expired since the last trace message was emitted by the core i,

Ci.dts=Ci.CC–Ci.PCC; Ci.PCC=Ci.CC (CC – Current Clock Cycle, PCC – Previous

Clock Cycle). Note: the first trace message contains the time from the beginning of

the program. For simplicity, we assume all cores share a global clock. The number of

bits needed to represent the dts field changes from one program to other and within

the program during execution. Thus, we use 8-bit chunks to encode dts. The connect

bit (C) determines whether more 8-bit chunks are needed to fully encode the dts val-

ue (C=1) or not (C=0). For example, a dts value of 260 is encoded as

00100000110000000 (bits are aligned from the least to the most significant). The

length of the cid field is fixed and is a function of the number of cores. For N cores,

the length of cid is ⌈log2 𝑁⌉ bits. The length of the mrv field depends on the size of

the operand read from memory (for IA32 ISA it ranges from 1 to 120 bytes) and is

thus 8•sizeof(operand type) bits.

72

Figure 4.5 Encoding of Trace Messages

mcFiltrate trace messages (MF) include the first-access hit counter field, fct,

in addition to the fields which are in NX (Figure 4.5). The number of bits required to

encode fct varies with the distribution of FA miss rate while the program is execut-

ing. The length of the mrv field depends on the granularity size and can be calculat-

ed as follows: 8•G•sizeof(type)/G bits. For example, if the operand size is 2-bytes

and G=4, the length of the mrv field is 4 bytes or 32 bits. Note: if the data address is

not perfectly aligned with sub-block then there is the possibility that the size of the

mrv field is more than 8•G•sizeof(type)/G bits. For example, consider the same

example as above except that now the operand spans two sub-blocks, then the length

of the mrv field is 8 bytes or 64 bits. Unlike in NX, to further squeeze the trace port

bandwidth we employ a variable encoding mechanism. We allow chunks for encoding

fct (i0, i1, i2, …) and chunks for encoding dts (h0, h1, h2, …) to be variable in size as

shown in Figure 4.5 [21]. Chapter 5.4 gives the results of an evaluation that explores

different encoding arrangements in order to select good values that minimize the

number of bits needed to encode these fields.

(b) mcFiltrate Encoding (MF)

fct mrvciddts

fct[0:i0-1]
 i0 b

fct[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

dts[0:h0-1]
 h0 b

C
1 b

dts[h0:h0+h1-1]
h1 b

C
1 b

...

dts Timestamp (Differential Enc.)
cid Thread/Core ID
mrv Memory Read Value
C Connect Bit
fct First Access Hit Counter

mrvciddts

dts[0:7]
8 b

C
1 b

dts[8:15]
8 b

C
1 b

..
.

(a) Nexus-like Trace Message (NX)

73

 An Illustrative Example

To illustrate trace operations in the hardware module and the software de-

bugger with mcFiltrate, an example shown in Figure 4.6 is considered. We will as-

sume two cores (C0 and C1) that have a single-block direct-mapped cache with a size

of 4 bytes. Four one-byte variables, p, q, r, and s are mapped into a single cache

block. The granularity size is 2 bytes; thus, a cache block has two first-access bits,

one guarding p and q and the other guarding r and s.

Let us consider a sequence of memory operations executed on the target plat-

form in the order as described in Figure 4.6(a). Figure 4.6(b) shows the state of the

caches and tracing structures on the hardware platform. Initially, the caches are

empty, the first-access bits are cleared, as well as fahCnt counters. At time 1, C0

reads p – this operation results in a cache read miss (RM) and a coherent read

transaction (CR) is issued. The cache block is retrieved from main memory and its

state is Exclusive (E). This is a first-access miss (FA miss), thus a trace message is

emitted containing the differential timestamp (1), core id (0), fahCnt (0), and data

value (0x1122). At time T=7, C1 reads r. This operation also results in a cache read

miss. A coherent read transaction is issued and C0 will supply the requested cache

block together with its FA bits; the fetched cache block is in the Shared (S) state. As

the FA bit guarding the variable r is not set, a new trace message is emitted as

shown in the Figure 4.6 (b). At time T=9, C0 reads q. This operation results in a

cache read hit and first-access hit; fahCnt is incremented and no other actions are

taken. Please note that though q is read for the first time in this sequence, it has

been reported previously as it shares the FA bit with the variable p. At time T=12,

C0 reads r. This operation results in a cache read hit and an FA miss, causing a new

74

trace message to be emitted. At time T=17, C0 performs a write operation on r. A

coherent invalidate transaction (CI) is issued causing invalidation in the C1 data

cache. At time T=19, C1 reads p. This operation results in a read miss and a coher-

ent read transaction is issued. C0 will supply the requested block. Though C0 con-

tains the requested cache block with both FA bits set, we cannot allow C1 to inherit

FA bits from C0 and thus a new trace message is emitted. The reason for this seem-

ingly unnecessary trace operation is to ensure that software debugger can infer the

order of memory operations on shared variables without requiring a cycle-accurate

simulator.

Now, let us describe the steps that will take place on the software debugger

side (Figure 4.6(c)-(f)). The software debugger replays instructions in the ISS as

shown in Figure 4.6(e) and parses the trace messages retrieved from the hardware

platform shown in Figure 4.6 (f). We assume identical starting conditions: the cur-

rent time T=0, software copies of the data caches are empty with cleared FA bits,

and the software copies of fahCnt counters are cleared. For simplicity we only look at

memory operations presented by the ISS from the program binary. The fahCnt coun-

ters are cleared and thus the first two messages for C0 and C1 are decoded as shown

in row 2 of Figure 4.6(d). The first events occur at time T=1 on C0 and at time T=7

on C1. Thus, the debugger will replay the “read p” operation on C0 first. The cache is

empty, so the data is retrieved from C0.mrv, the FA bit is set, and the software

cache updated accordingly. Because fahCnt=0, the following trace message (TM1) for

C0 will be processed. The fahCnt counter is updated from the content of that mes-

sage (C0.fahCnt=1). The timestamp of the next memory operation that resulted in a

miss at C0 is set to C0.T=C0.T+C0.TM1.dts=1+11=12. As the C0.fahCnt=1, that

75

means “read q” can be replayed using information from the software data cache only.

The next operation to be replayed is “read r” at T=7 on C1. By replaying “read r” on

C1, the software copy of the data cache is updated, and the following trace message

(TM1) is parsed (C1.fahCnt=0, C1.T=C1.T+C1.TM1.dts=7+12=19). The next event

scheduled at C0 is “read r” at T=12 (please note that the previous operation on C0 is

replayed before). The software copy of the data cache is updated accordingly. The

next event scheduled to replay is “read p” on C1 at T=19. However, this trace mes-

sage is resulted on the shared data block because of the write after read operation.

This means, “write #2, r” on C0 is executed before “read p” on C1. Thus, the software

debugger replays “write #2, r” on C0 before replaying “read p” on C1.

76

 Figure 4.6 An Illustrative Example of Data Tracing with mcFiltrate

Target System

Software Debugger

Time
Mem. Operations

Events
Cache / Trace Module States

Core 0 Core 1 Core 0 Core 1

0 - -

-
fahCnt=0; FA=00; St=I;
Data=0x????????

fahCnt=0; FA=00; St=I
Data=0x????????

1 read p
 C0: RM; CR; FA Miss;

EmitTM: 1.0.0.0x1122

fahCnt=0; FA=10; St=E;
Data=0x11223344

(no change)

7 read r
 C1: RM; CR; FA Miss

EmitTM: 7.1.0.0x3344

fahCnt=0; FA=10; St=S;
Data=0x11223344

fahCnt=0; FA=11; St=S
Data=0x11223344

9 read q
 C0: RH; FA Hit

C0.fahCnt++

fahCnt=1; FA=10; St=S;
Data=0x11223344

(no change)

12 read r
 C0: RH; FA Miss

EmitTM: 11.0.1.0x3344

fahCnt=0; FA=11; St=S;
Data=0x11223344

(no change)

17 write #2, r
 C0: WH; CI;

fahCnt=0; FA=11; St=M;
Data=0x11220244

fahCnt=0; FA=00; St=I
Data=0x????????

19 read p
 C1: RM; CR; C0 to C1 tr;

EmitTM: 12.1.0.0x1122

fahCnt=0; FA=11; St=O;
Data=0x11220244

fahCnt=0; FA=10; St=S
Data=0x11220244

Mem. Operations from ISS

Core 0 Core 1

read p read r

read q read p

read r

write #2, r

Trace Messages

ID Core 0 Core 1

TM0 1.0.0.0x1122 7.1.0.0x3344

TM1 11.0.1.0x3344 12.1.0.0x1122

Time
Mem. Operations

Trace Decoding
Core 0

Software Cache
Core 1

Software Cache Core 0 Core 1

0 - -

fahCnt=0; FA=00; St=I;
Data=0x????????

fahCnt=0; FA=00; St=I;
Data=0x????????

 Read TM0 from Core 0 and Core 1

C0.T=1, C0.fahCnt=0; C0.mrv=0x1122
C1.T=7, C1.fahCnt=0; C1.mrv=0x3344

(no change) (no change)

1 read p
 Read TM1 from Core 0

C0.T=12, C0.fahCnt=1; C0.mrv=0x3344
fahCnt=1; FA=10; St=E;
Data=0x1122????

(no change)

7 read r
 Read TM1 from Core 1

C1.T=19, C1.fahCnt=0; C1.mrv=0x1122
fahCnt=1; FA=10; St=S;
Data=0x1122????

fahCnt=0; FA=11; St=S;
Data=0x11223344

? read q

fahCnt=0; FA=10; St=S;
Data=0x1122????

(no change)

12 read r

fahCnt=0; FA=11; St=S;
Data=0x11223344

(no change)

 write #2,r

fahCnt=0; FA=11; St=M;
Data=0x11220244

fahCnt=0; FA=00; St=I;
Data=0x????????

19 read p

fahCnt=0; FA=11; St=O;
Data=0x11220244

fahCnt=0; FA=10; St=S;
Data=0x11220244

(a) (b)

(e) (f)

(c) (d)

Initial conditions:
p = 0x11
q = 0x22
r = 0x33
s = 0x44

RM – Read Miss
RH – Read Hit
WM – Write Miss
WH – Write Hit
FA – First Access
FA Miss – First-access Miss
CR – Coherent Read Trans.
CI – Coherent Invalidate
Trans.
St – Cache Block State

TM – Trace Message
(dts.cid.fct.mrv)

77

 mcFiltrate Analytical Model

It is useful to derive an analytical model for assessing the required TPB for

mcFiltrate. The required average TPB for mcFiltrate can be estimated as a function

of the FA miss rate as shown in Equations (4.1) and (4.2).

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐹_𝑇𝑃𝐵 [𝑏𝑝𝑖] = 𝑚𝑟𝐹𝑟𝑒𝑞 ∗ 𝑓𝑎𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 ∗ (𝑑𝑡𝑠𝑆𝑖𝑧𝑒 + 𝑓𝑐𝑡𝑆𝑖𝑧𝑒 + ⌈𝑙𝑜𝑔2𝑁⌉ +

 (𝐺 ∗ ⌈𝑚𝑟𝑣𝑆𝑖𝑧𝑒
𝐺⁄ ⌉ ∗ 8))

(4.1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐹_𝑇𝑃𝐵[𝑏𝑝𝑐] = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐹_𝑇𝑃𝐵 [𝑏𝑝𝑖] ∗ 𝐼𝑃𝐶 (4.2)

where

• mrFreq is the frequency of instructions that read data from memory

• faMissRate is the first-access miss rate; depends on the temporal and spatial

locality of the data

• dtsSize is the average size of the differential timestamp field in bits

• fctSize is the average size of the first-access hit counter field in bits

• N is the number of processor cores

• G is the granularity size; size of the sub block protected by a FA bit

• mrvSize is the average size of the data read from memory in bytes

• IPC is the number of instructions executed per clock cycle when all the cores

are considered together

Figure 4.7 shows the estimated average TPB in bpi while varying the fre-

quency of instructions that read data from memory (10% to 50%) and the FA miss

rate (5% to 55%) when N=8. While calculating the TPB using Eq. (4.1), the number

78

of bits to encode timestamp (dtsSize) and first-access hit counter (fctSize) is set to 8

bits each and the granularity is set to 4 for simplicity. We assume that the dominant

data type is 64-bit long, memory accesses are aligned, and every trace message in-

cludes the data value from two sub-blocks. However, in reality, a trace message may

include data values from one or more sub-blocks depending on the size of the

memory read operation, memory alignment, and temporal and special locality of the

data in the data cache.

The estimated TPB with mcFiltrate ranges from 0.42 bpi with 10% of memory

reads to 2.08 bpi with 50% of memory reads when the FA miss rate is 5%. As the FA

miss rate increases, the average TPB increases (see Eq. (4.1)). Thus, with a 55% FA

miss rate, the TPB ranges from 4.57 bpi to 22.83 bpi. However, the equivalent TPB

for NX from Section 2.4.2 with N=8 ranges from 7.5 bpi to 37.5 bpi when the fre-

quency of memory reads ranges from 10% to 50% and the dominant data type is 64-

bit long. The results clearly show that mcFiltrate has a potential to reduce the TPB

requirements.

79

Figure 4.7 Estimation of Required Average TPB in bpi for mcFiltrate when N=8

Figure 4.8 shows the estimated TPB in bpc calculated using Eq. (4.2) with

IPC = N/4 when N=8. With 10% of memory reads, the required TPB ranges from

0.83 bpc when the FA miss rate is 5% to 9.13 bpc when the FA miss rate is 55%.

With 50% of memory reads, the TPB ranges from 4.15 bpc when the FA miss rate is

5% to 45.65 bpc when FA miss rate is 55%. However, the equivalent TPB for NX

ranges from 15 bpc to 75 bpc. Thus, mcFiltrate reduces the required TPB relative to

NX by ~1.6 times (when the FA miss rate is high) to ~17.9 times (when the FA miss

rate is low). The effectiveness of mcFiltrate in reducing the required TPB for actual

workloads is discussed in CHAPTER 6.

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50 55

TP
B

 [
b

p
i]

FA Miss Rate [%]

Estimated TPB for mcFiltrate Traces (bpi)

mrFreq=10% mrFreq=20% mrFreq=30% mrFreq=40% mrFreq=50%

80

Figure 4.8 Estimation of Required Average TPB in bpc for mcFiltrate when N=8

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55

TP
B

 [
b

p
c]

FA Miss Rate [%]

Estimated TPB for mcFiltrate Traces (bpc)

mrFreq=10% mrFreq=20% mrFreq=30% mrFreq=40% mrFreq=50%

81

EXPERIMENTAL ENVIRONMENT

This chapter discusses the experimental environment used to evaluate the

proposed technique, mcFiltrate. We define the metrics for quantitively evaluating

the baseline and mcFiltrate in Section 5.1. The experimental flow used to create NX

and mcFiltrate filtered hardware traces is discussed in Section 5.2. Section 5.3 dis-

cusses the benchmarks used for the evaluation and Section 5.4 discusses the analy-

sis of experimental parameters like granularity size and encoding parameters.

 Metrics

To evaluate the effectiveness of NX and mcFiltrate, we use the average TPB

measured in bits per instruction (bpi) and bits per clock cycle (bpc). Each benchmark

within a suite exhibits a unique behavior. Benchmarks differ in execution time,

number of instructions, frequency of memory reads, size of data reads and others. To

summarize the effectiveness of mcFiltrate using a single number for an entire

benchmark suite, we use the total average TPB. Calculating the arithmetic mean is

not a good option since it gives equal weight to all the benchmarks regardless of

their trace size. Hence, we calculate the total average TPB that considers read data

traces generated by all benchmarks in the suite as shown below:

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑃𝐵 [𝑏𝑝𝑖] =
∑ 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑐𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑏𝑖𝑡𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.
 (5.1)

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑃𝐵 [𝑏𝑝𝑐] =
∑ 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑐𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑏𝑖𝑡𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

(5.2)

82

We also evaluate the maximum size of on-chip trace buffers required to col-

lect memory read traces without stalling the program to empty the trace buffer

when it is full and without losing trace data, while varying the number of bits that

can be emitted off-chip per clock cycle (actual emptying trace port bandwidth).

 Experimental Flow

To evaluate the effectiveness of the mcFiltrate mechanism in filtering

memory read traces, the first step is to determine the impact of configuration pa-

rameters such as granularity size and encoding parameters. While evaluating per-

formance, we use the total average TPB measured in bits per instruction (bpi) and

bits per clock cycle (bpc) as a yardstick. Although the total average TPB provides an

opportunity to quantify the trace port bandwidth requirements, it does not fully cap-

ture dynamic changes of the required trace port bandwidth during various phases of

a program execution. Thus, we use dynamic trace port bandwidth analysis to deter-

mine the peak bandwidth requirements while the benchmark is executing.

83

Figure 5.1 Experimental Environment

The experimental flow used to create hardware traces is shown in Figure 5.1.

To evaluate mcFiltrate, Multi2Sim [95] – a cycle-accurate architectural simulator for

Intel32 processors is used. Multi2Sim is extended with a custom TmTrace [96]

module to facilitate collecting time-stamped memory reads and memory writes

(tmrwTrace). The timestamp represents the clock cycle in which the trace generating

instruction is committed. The traces can be collected by using either a global clock or

separate local clocks for each processor. We use global timestamps in the experi-

ments. As a baseline we generate Nexus like (NX) traces which comply with the

Nexus 5001 standard [52]. NX traces are produced by filtering the memory reads

TmTrace: Software Timed Trace Generator

32 bit
Target

Application

Application
Input

Number Of
Threads

Application
Output

Multi2Sim
Configuration

Files

TmTrace
Flags

Performance
Statistics

tmls
Trace

mcFiltrate
Configuration

mcFiltrate
Trace

Memory Read
Hardware Traces

NX

MF

Multi2Sim TmTrace

mcFiltrate
Simulator

Trace
Filtering

Fixed
Encoding

Variable
Encoding

84

from tmrwTraces and encoding them using the format of trace messages shown in

Figure 4.5. The tmrwTraces are also read by the mcFiltrate simulator to generate

filtered memory read traces as discussed in CHAPTER 4. The filtered traces are pro-

cessed by variable encoder with the parameters discussed in Table 5.7 to generate

the final MF hardware traces. These final hardware traces, NX and MF, are used to

determine the trace port bandwidth. To differentiate mcFiltrate hardware traces

with and without inheriting FA bits from remote caches, we name these traces as

MF.I and MF.B, respectively. The mcFiltrate simulator implements mcFiltrate oper-

ations using L1D cache with the MOESI cache coherence protocol.

The Multi2Sim simulator supports building a cycle-accurate model for a mul-

ticore processor including processor and memory hierarchy. We use a multicore with

up to 8 single-threaded x86 processor cores as shown in Figure 5.2. Each core has its

private level 1 instruction (L1I) and data (L1D) caches with a hit latency of 4 clock

cycles. To evaluate the effectiveness of mcFiltrate as a function of the cache size, we

consider three configurations of caches: CS16 with 16 KB L1D/L1I, CS32 with 32 KB

L1D/L1I, and CS64 with 64 KB L1D/L1I. The FA tracking bits are added to the L1

data cache tags. The L1 data caches are 4-way set-associative with the Least-

Recently Used (LRU) replacement policy, and cache block sizes are set to 32 bytes.

The unified L2 cache memory is shared by all cores and has a hit latency of 12 clock

cycles. The L2 cache size varies with the number of cores, N, and it is set to N•64

KB for the CS16 configuration, N•128 KB for the CS32 configuration, and N•256

KB for the CS64 configuration. The main memory latency is set to 100 clock cycles.

85

Figure 5.2 Multicore Model

 Benchmarks

To evaluate mcFiltrate, we use the Splash2 [22] [97] and Parsec [23] bench-

mark suites. These suites are composed of multithreaded programs and each

benchmark can run multiple input sets differing in size – test, simdev, simsamll,

simmedium, simlarge, and native. The test and simdev inputs are very small input

sets and cannot be used for performance measurements. The native input is a very

large input set intended for large-scale experiments on real machines. In our exper-

iments, we use the simsmall input set. The benchmarks are precompiled for Intel

IA32 instruction set architecture to run on the Multi2Sim simulator that models

processors N=1, 2, 4, and 8 cores as shown in Figure 5.2.

Table 5.1 and Table 5.2 show the benchmark characteristics such as the in-

struction count (IC), the number of instructions executed per clock cycle (IPC), and

the frequency of instructions that read from memory for each benchmark from

L1I L1D

 ...

L2 Cache

Main Memory

Network L1-L2

Network L2-MM

CS16:
L1D/L1I cache size: 16 KB
L2 cache size: N*64 KB

CS32:
L1D/L1I cache size: 32 KB
L2 cache size: N*128 KB

L1D/L1I hit time: 4 cc
L1D/L1I associativity: 4-way
L2 hit time: 12 cc
L2 associativity: 16-way
Cache block size: 32 B
Memory latency: 100 cc

Core 0

L1I L1D

Core 1

L1I L1D

Core N-1

CS64:
L1D/L1I cache size: 64 KB
L2 cache size: N*256 KB

86

Splash2 and Parsec, respectively. In Splash2, the smallest benchmark, lu, executes

about 0.45 billion instructions and the largest benchmark, water-sp, executes about

5 billion instructions on a single core (N=1). In Parsec, the smallest benchmark is

blackscholes with 0.23 billion instructions and the largest benchmark is x264 with

6.37 billion instructions. Except for cholesky, the total number of executed instruc-

tions remains constant or increases slightly as the number of cores increases due to

the added instructions for synchronization. The total number of instructions execut-

ed from both suites is comparable.

Table 5.1 Benchmark Characteristics for Splash2

Benchmarks Instruction Count [x109] Instructions Per Cycle [IPC] % Memory Reads

Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 2.13 2.13 2.13 2.14 0.37 0.54 0.96 1.69 28.78 28.78 28.78 28.79

cholesky 1.27 1.43 1.95 3.07 0.19 0.41 0.92 2.12 27.78 29.54 30.32 31.30

fft 0.92 0.92 0.92 0.92 0.26 0.44 0.72 1.04 19.20 19.20 19.20 19.21

fmm 2.79 2.80 2.82 2.86 0.41 0.80 1.52 2.70 13.02 13.06 13.27 13.49

lu 0.45 0.45 0.45 0.45 0.39 0.74 1.27 1.95 20.20 20.22 20.25 20.31

radiosity 2.23 2.33 2.29 2.32 0.48 0.87 1.65 2.99 27.51 27.45 27.38 26.79

radix 1.59 1.59 1.59 1.60 0.23 0.36 0.54 0.65 35.09 35.09 35.09 35.09

raytrace 2.47 2.46 2.47 2.47 0.50 0.93 1.68 2.67 28.49 28.48 28.48 28.47

water-ns 0.74 0.74 0.74 0.75 0.61 1.17 2.22 3.90 16.31 16.33 16.36 16.42

water-sp 5.03 5.03 5.03 5.03 0.66 1.07 1.73 2.73 17.38 17.38 17.38 17.38

Total 19.61 19.87 20.39 21.60 0.40 0.69 1.21 1.95 22.77 22.95 23.20 23.67

87

Table 5.2 Benchmark Characteristics for Parsec

Benchmarks Instruction Count [x109] Instructions Per Cycle [IPC] % Memory Reads

Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 0.23 0.23 0.23 0.23 0.52 0.84 1.18 1.50 25.47 25.47 25.47 25.47

bodytrack 1.41 1.41 1.41 - 0.25 0.41 0.62 - 27.51 27.51 27.51 -

canneal 1.58 1.58 1.58 1.58 0.19 0.23 0.26 0.27 32.61 32.61 32.61 32.61

dedup 1.97 1.97 1.98 1.98 0.21 0.38 0.68 1.03 36.97 36.97 36.97 36.97

ferret 1.98 1.99 1.98 1.98 0.25 0.52 0.84 1.07 26.35 26.34 26.35 26.36

fluidanimate 1.77 1.82 1.87 2.02 0.50 0.82 1.10 1.33 27.08 27.25 27.40 27.84

swaptions 0.76 0.76 0.77 0.77 0.43 0.79 1.35 2.02 27.41 27.41 27.33 27.42

vips 3.74 3.74 3.74 3.74 0.26 0.48 0.97 1.70 25.15 25.16 25.16 25.16

x264 6.37 6.35 6.35 6.32 0.64 0.86 1.39 1.90 28.70 28.68 28.66 28.62

Total 19.83 19.86 19.90 18.61 0.32 0.52 0.82 1.09 28.61 28.62 28.62 28.73

The total IPC for the entire benchmark suite is calculated as the sum of all in-

structions executed by all benchmarks divided by the sum of all execution times in

clock cycles as shown in Eq.(5.3). The IPC as a function of the number of cores indi-

cates how well performance scales. Thus, Splash2’s radix scales poorly because its 8-

core speedup is S(8)=IPC(8)/IPC(1)=2.8, but water-ns scales well because its 8-core

speedup is S(8)=6.4. In Parsec, canneal scales poorly with S(8)=1.5 and vips scales

well with S(8)=6.7.

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝐼𝑃𝐶 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.
 (5.3)

An important parameter in read data tracing is the size of operands. Table

5.3 and Table 5.4 show the distribution of operand sizes of memory reads in single-

threaded benchmarks, for Splash2 and Parsec, respectively. The frequency of in-

88

structions reading data from memory increases slightly with an increase in the

number of cores; hence the distribution is still valid for all other core configurations.

In tables Table 5.3 and Table 5.4, a byte operand is 1-byte long, a word operand is 2-

bytes long, a double word operand is 4-bytes long, etc. The row named total shows

the total memory read instructions and also indicates the percentage of memory

reads when all the benchmarks are considered together for a given data type. It is

calculated by dividing sum of memory reads for corresponding operand size from all

the benchmarks with the sum of all memory reads. In Splash2, memory read opera-

tions are dominated by double word (4-bytes) and quad word (8-byte) operands.

However, very few benchmarks (radix) have a significant number of memory reads

that are words (29.3%). On the other hand, Parsec is dominated by memory reads

which are byte (27.66%) and double word (61.35%) operands. A few benchmarks

have a significant percentage of memory reads which are words (bodytrack, vips)

and quad words (swaptions, blackscholes). With these results we could hypothesize

that a granularity of size 4 bytes may work better for both benchmark suites. How-

ever, before proceeding to evaluate mcFiltrate, we need to do the experimental eval-

uation to determine the granularity size.

89

Table 5.3 Distribution of Memory Read Operands in Splash2

Benchmarks

Total

Memory

Reads

% of Memory Reads

Byte Word
Double

Word

Quad

Word

Extended

Precision

Octa

Word
Others

barnes 613093875 0 3.26 60.10 36.65 0 0 0

cholesky 352542470 1.33 0 54.09 44.59 0 0 0

fft 176252532 0.01 9.52 41.16 49.31 0 0 0

fmm 362804834 0 0.15 16.3 83.55 0 0 0

lu 90032066 0 2.04 41.77 56.19 0 0 0

radiosity 613309897 0 0 90.61 9.39 0 0 0

radix 558023567 4.51 29.31 57.16 9.02 0 0 0

raytrace 702412760 0.80 0.96 58.93 39.30 0 0 0

water-ns 120913006 0.60 0.01 23.20 76.19 0 0 0

water-sp 874383440 0.55 0.02 22.63 76.80 0 0 0

Total 4463768447 0.92 4.70 50.25 44.14 0 0 0

Table 5.4 Distribution of Memory Read Operands in Parsec

Benchmarks

Total

Memory

reads

% of Memory Reads

Byte Word
Double

Word

Quad

Word

Extended

Precision

Octa

Word
Others

blackscholes 58642406 4.31 0.04 71.16 24.49 0 0 0

bodytrack 388711884 12.95 17.24 69.21 0.60 0 0 0

canneal 513684647 17.85 0 81.47 0.68 0 0 0

dedup 730041560 13.00 12.40 74.60 0 0 0 0

ferret 522918974 11.31 3.92 79.21 5.56 0 0 0

fluidanimate 480078577 2.44 0.31 97.25 0 0 0 0

swaptions 209573296 0.03 0 75.09 24.88 0 0 0

vips 940633141 8.62 14.97 70.57 5.84 0 0 0

x264 1829814170 64.37 8.03 27.60 0 0 0 0

Total 5674098655 27.66 8.24 61.35 2.76 0 0 0

90

 Experimental Parameters

In this section we evaluate the experimental parameters, granularity size

and encoding parameters which are used in the experiments.

 Impact of Granularity Size on Trace Port Bandwidth

The effectiveness of the mcFiltrate mechanism depends on the size of sub-

blocks protected by a single FA bit. Hence, a part of the experimental evaluation is

to select granularity size that works well across all benchmarks. As we have seen in

Table 5.3 and Table 5.4, the number of memory reads and their distribution among

different operand sizes varies from one benchmark to another. Thus, each benchmark

may require different granularity size to reduce the trace port bandwidth require-

ments. Whereas implementing mcFiltrate with configurable granularity size is possi-

ble, in this dissertation we chose the granularity size which works well among all the

benchmarks for all the core configurations. Table 5.5 and Table 5.6 show the total

average trace port bandwidth in bpi for Splash2 and Parsec, respectively, while vary-

ing the granularity size from 1-byte, G(1), to 32-byte, G(32), with MF.I and CS64 con-

figuration when N=8. The green boxes mark the best-performing granularity size for

the given benchmark. As we can observe, overall, the granularity of size 4 (G(4))

works the best for Splash2 and Parsec. The same observation holds for different core

configurations (N= 1, 2, 4, and 8), cache configurations (CS16, CS32, and CS64), and

mcFiltrate configurations (MF.B and MF.I) for both Splash2 and Parsec.

However, mcFiltrate performs better with G(32) for some of the Splash2

benchmarks, e.g., cholesky, fft, radix, reducing the TPB from 6.2% to 25.8% com-

pared to G(4) with CS64 and MF.I (Table 5.5). This finding is the result of strong

spatial locality in these benchmarks, where reporting multiple trace messages with

91

smaller granularity size increases the overhead due to dts and cid fields. Similarly,

several Parsec benchmarks, e.g., vips, fluidanimate, x264, achieve lower TPB for

granularity sizes other than G(4), ranging from 0.4% to 14.8% (Table 5.6).

Table 5.5 TPB for MF.I with CS64, N=8 as a Function of Granularity Size for

Splash2

Benchmark
Granularity Size

G(1) G(4) G(8) G(16) G(32)

barnes 0.2126 0.1975 0.2558 0.2620 0.3196

cholesky 0.3128 0.3128 0.2958 0.3007 0.2932

Fft 1.2765 1.2765 1.2766 1.2190 1.1353

fmm 0.1373 0.1372 0.1801 0.2093 0.2453

lu 0.0523 0.0523 0.0526 0.0841 0.0718

radiosity 0.0379 0.0379 0.0502 0.0553 0.0636

radix 0.5375 0.5375 0.4717 0.4241 0.3987

Raytace 0.0679 0.0684 0.0783 0.0903 0.1024

Swater-ns 0.0128 0.0127 0.0156 0.0239 0.0304

water-sp 0.0230 0.0230 0.0240 0.0318 0.0399

Total 0.1960 0.1945 0.2016 0.2054 0.2136

92

Table 5.6 TPB for MF.I with CS64, N=8 as a Function of Granularity Size for Parsec

Benchmark
Granularity Size

G(1) G(4) G(8) G(16) G(32)

blackscholes 0.5718 0.5720 0.8490 1.4126 2.5463

bodytrack - - - - -

canneal 1.4369 1.2993 1.7351 2.2709 3.1809

dedup 0.9781 0.8806 1.0285 1.1223 1.2894

ferret 0.5638 0.5399 0.5858 0.6573 0.7650

fluidanimate 0.2150 0.2158 0.2134 0.2131 0.2144

swaptions 0.0008 0.0008 0.0013 0.0149 0.0139

vips 0.9927 1.1653 1.0725 1.0290 1.0248

x264 0.2822 0.1611 0.1524 0.1544 0.1785

Total 0.6113 0.5805 0.6195 0.6819 0.8096

 Impact of Encoding Parameters on Trace Port Bandwidth

The format of the encoded trace messages is shown in Figure 4.5. The num-

ber of bits required to encode dts and fct varies during different phases of program

execution and depends on the frequency and distribution of FA misses, which in turn

depend on the number of cores and cache configurations. Chunk sizes can be tailored

to each benchmark to get the best possible compression ratio. However, in our exper-

iments we seek chunk sizes that perform well across all the benchmarks to reduce

the complexity of encoding hardware. We can utilize multiple chunks with different

lengths h0, h1, h2... hk and i0, i1, i2... ik to encode dts and fct, respectively, as

shown in Figure 4.5. However, to reduce the complexity we limit the search space by

setting h1=h2=…=hk and i1=i2=…=ik.

Figure 5.3 shows the average bit length for dts and fct when all the bench-

marks are considered together while varying the chunk size with CS16 for Splash2.

93

The chunk sizes are varied from (2,1) to (6,6) for (h0,h1) and (i0,i1). As we can see,

the chunk size (h0,h1)=(4,2) works the best for dts and (i0,i1)=(2,2) works the best

for fct. Similar experimental analysis is performed with different cache configura-

tions and mcFiltrate configurations. We find that chunk sizes (h0,h1)=(4,2) and

(i0,i1)=(2,2) work the best for the Parsec benchmark suite, regardless of the flavor of

mcFiltrate and the cache configurations (Table 5.7). However, Splash2 requires dif-

ferent encoding parameters (h0,h1)=(4,2) or (5,4) and (i0,i1)=(4,2) or (2,2) depending

on the configuration as summarized in (Table 5.7). Surprisingly we find that the

chunk sizes given in (Table 5.7) exhibit good performance regardless of the number

of cores.

Table 5.7 Encoding Parameters

Mechanism

Encoding

Parameters

Splash2 Parsec

CS16 CS32 CS64 CS16 CS32 CS64

MF.B
h0,h1 4,2 4,2 5,4 4,2 4,2 4,2

i0,i1 2,2 3,2 3,2 2,2 2,2 2,2

MF.I
h0,h1 4,2 4,2 5,4 4,2 4,2 4,2

i0,i1 2,2 2,2 3,2 2,2 2,2 2,2

94

Figure 5.3 Encoding Parameter Selection for Splash2 with MF.I and CS16

8.5

9.0

9.5

10.0

10.5

11.0

N=1 N=2 N=4 N=8

Average bit length of dts field (CS16)

(2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (3,5) (4,1)

(4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (5,4) (5,5) (5,6) (6,6)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

N=1 N=2 N=4 N=8

Average bit length of fct field (CS16)

(2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (3,5) (4,1)

(4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (5,4) (5,5) (5,6) (6,6)

95

RESULTS

This chapter compares the results from the experimental evaluation of mcFil-

trate and the existing and the proposed techniques for read data tracing. The effec-

tiveness of mcFiltrate depends on the FA miss rate. Hence, we first evaluate the FA

miss rate (Section 6.1) and then the average trace port bandwidth (TPB) measured

in bits per instruction (bpi) (Section 6.2) and bits per clock cycle (bpc) (Section 6.3).

Since the average TPB does not capture changes in the required trace port during

program execution, we also evaluate the dynamic required TPB in Section 6.4. Sec-

tion 6.5 describes the results of trace buffer analysis under different emptying rates

on the trace port. Finally, Section 6.6 discusses the hardware complexity of mcFil-

trate.

 First-access Miss Rate

The effectiveness of mcFiltrate depends on the FA miss rate as described in

an analytical model given in Eq.(4.1). The FA miss rate is, in turn, a function of the

L1 data cache read miss rate. So, first we will discuss the L1 data cache read miss

rates as a function of the data cache size. From now on the L1 data cache read miss

rate is simply referred to as cache read miss rate. The total cache read miss rate per

benchmark suite is calculated by dividing the sum of cache read misses from all the

benchmarks by the sum of executed instructions from all the benchmarks as shown

below:

96

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑐ℎ𝑒 𝑅𝑒𝑎𝑑 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑐ℎ𝑒 𝑟𝑒𝑎𝑑 𝑚𝑖𝑠𝑠𝑒𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

(6.1)

The cache read miss rate depends on the size of the data cache, the temporal

and spatial locality of data accesses, coherence invalidations in multicores, and the

cache replacement policy. Figure 6.1 shows the total cache read miss rates for

Splash2 and Parsec benchmark suites with different cache configurations (CS16,

CS32, CS64), while varying the number of cores (N=1, 2, 4, 8). The error bars repre-

sent the minimum and maximum cache read miss rates for a given configuration

within the given benchmark suite. In Splash2 with CS16, the total cache read miss

rate is 1.7% and it ranges from 0.19% (water-sp) to 4.6% (fft) when N=1. As the cache

size increases, the total cache read miss rate decreases due to a lower number of ca-

pacity misses. Thus, in Splash2 with CS64, the cache read miss rate is 0.36% and it

ranges from 0.05% (water-sp) to 2.1% (fft). As the number of cores increases, the ca-

pacity misses still dominate in configurations with smaller caches, whereas the cold

and coherence misses dominate in configurations with larger caches. As a result, the

cache read miss rate increases as the number of cores increases. Thus, when N=8

the total cache read miss rate ranges from 1.2% (CS64) to 2% (CS16) and it reaches

a maximum of 4.6% for CS16 (fft) and 2.87% for CS64 (fft).

Parsec follows similar trends and has cache read miss rates comparable to

those in Splash2. The total cache read miss rate ranges from 0.93% (CS64) to 1.62%

(CS16) when N=1 and 1.34% (CS64) to 1.98% (CS16) when N=8. It reaches as high

as 5.87% when N=8 with CS64 for blackscholes.

97

Figure 6.1 Total L1 Data Cache Read Miss Rate

The FA miss rates are higher than the cache read miss rates. A cache block

fetched into the data cache (a single read miss) may contain multiple data items that

are read consecutively, each resulting in a single FA miss. Thus, a 32-byte cache

block that contain 8 4-byte data items that are read consecutively, results in 8 FA

misses. If a data item is guarded by multiple FA bits, an FA hit requires that all FA

bits are set; if at least one FA bit is not set, we consider this event as a FA miss. The

total FA miss rate of a benchmark suite is calculated as shown in Eq.(6.2)

𝑇𝑜𝑡𝑎𝑙 𝐹𝐴 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐴 𝑚𝑖𝑠𝑠𝑒𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙 𝑏𝑒𝑛𝑐ℎ.

(6.2)

Figure 6.2 shows the total first-access (FA) miss rate for Splash2 (top) and

Parsec (bottom) while varying the number of cores and cache configurations. In

Splash2, the FA miss rate ranges from 1.47% (CS64) to 5.39% (CS16) when N=1. As

0

1

2

3

4

5

6

7

CS16 CS32 CS64 CS16 CS32 CS64

Splash2 Parsec

Total Cache Read Miss Rate [%]

N=1 N=2 N=4 N=8

98

the number of cores increases, the FA miss rate increases for MF.B because of an

increase in the cache read miss rate. Thus, when N=8, the FA miss rate ranges from

3.44% (CS64) to 5.68% (CS16). However, opposite trends occur with MF.I when in-

heriting the FA bits in cache-to-cache transfers. With MF.I, the FA miss rate ranges

from 1.16% (CS64) to 3.10% (CS16) when N=8. The maximum FA miss rate reaches

as high as ~18% for fft with CS16 and ~7.8% with CS64, regardless of the number of

cores. One interesting observation is that some benchmarks, e.g., fft and cholesky, do

not benefit from inheriting FA bits and some benchmarks benefit greatly, e.g.,

barnes (28% to 89%), radiosity (76% to 93%), and water-ns (6% to 96%). In these

benchmarks, the benefit of MF.I increases as the number of cores increases.

In Parsec, the total FA miss rate ranges from 5.36% when N=1 to 5.94%

when N=8 with CS16 and 3.82% when N=1 to 4.45% when N=8 with CS64. Similar

trends as in Splash2 are observed in Parsec, except that the FA miss rate does not

decrease significantly as we increase the data cache size. This is because the Parsec

data set does not fit completely in the data caches explored in our experiments.

Overall, regardless of the cache configurations and the number of cores, the FA miss

rate is less than 11.3%. Whereas MF.I has no or little impact in reducing the FA

misses in some benchmarks – canneal, dedup, and ferret, it greatly helps

blackscholes, bodytrack, fluidanimate, and swaptions. Overall, MF.I reduces the FA

miss rate by 8% to 18% depending on the benchmark and cache configuration. These

results confirm that mcFiltrate has a great potential to reduce the required TPB.

99

Figure 6.2 Total First-access Miss Rate of Splash2 (top) and Parsec (bottom)

0

4

8

12

16

20

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Splash2: Total FA Miss Rate [%]

N=1 N=2 N=4 N=8

0

2

4

6

8

10

12

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Parsec: Total FA Miss Rate [%]

N=1 N=2 N=4 N=8

100

 Trace Port Bandwidth in BPI

The average TPB in bpi for NX and MF tracing for Splash2 with CS16 and

CS64 is shown in Table 6.1 and Table 6.2, respectively. The results for CS32 are

shown in Appendix A.1. The light green and orange boxes mark the benchmarks

that have the lowest and highest TPB for a given column and thick borders mark the

cases where inheriting FA bits has no advantage. In the case of NX tracing for

Splash2, the total average TPB is 12.34 bpi, and ranges from 8.82 bpi (fmm) to 15.35

bpi (cholesky) when N=1. As the cache size increases, the average TPB remains con-

stant. It increases slightly as the number of cores increases because of an increase in

the number of memory reads due to synchronizations in multicores and the addi-

tional bits needed to encode the core/thread identifier (cid). The total average TPB

when N=8 is 13.17 bpi and it ranges from 9.33 bpi (fmm) to 15.86 bpi (barnes). When

we consider individual benchmarks, barnes, cholesky, radix, and raytrace require

high TPB because of higher frequency of memory reads and larger average size of

operands read from memory.

MF.B with CS16 requires an average TPB of 0.77 bpi (ranges from 0.07 bpi to

2.57 bpi) when N=1 and 0.88 bpi (ranges from 0.08 bpi to 2.67 bpi) when N=8. As the

cache size increases, the average TPB decreases because of a decrease in FA miss

rates. Thus, with CS64 the average TPB ranges from 0.21 bpi when N=1 to 0.53 bpi

when N=8. In MF.B, the average TPB increases due to the additional bits emitted to

report the core/thread identifier and due to an increase in the number of coherence

misses. However, MF.I takes advantage of cache-to-cache transfers to reduce the

TPB by inheriting the FA bits. Thus, with MF.I the average TPB goes down up to

~97% depending on the benchmark, number of cores, and cache configurations.

101

When we look at individual benchmarks with MF.I fft does not benefit at all, chole-

sky and fmm benefit 9-15%, and all other benchmarks benefit at least ~40% when

N=8, regardless of the cache configuration. Thus, the total average TPB decreases to

0.48 bpi with CS16 and 0.18 bpi with CS64 when N=8.

Table 6.1 Average TPB in bpi for Splash2 with CS16

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.03 2.17 15.31 2.26 1.63 15.59 2.35 1.19 15.86 2.40 0.89

cholesky 15.35 1.76 16.21 1.21 1.20 15.87 0.88 0.83 15.59 0.56 0.50

fft 10.65 2.57 10.84 2.62 2.62 11.02 2.65 2.65 11.19 2.67 2.67

fmm 8.82 0.33 8.96 0.34 0.30 9.14 0.34 0.28 9.33 0.35 0.28

lu 11.88 0.54 12.07 0.57 0.54 12.27 0.58 0.45 12.47 0.61 0.43

radiosity 12.11 0.22 12.36 0.51 0.12 12.59 0.51 0.12 12.58 0.59 0.09

radix 13.41 0.75 13.75 1.64 0.77 14.09 1.73 0.79 14.54 1.78 0.82

raytrace 15.17 0.93 15.45 1.10 0.78 15.73 1.18 0.72 16.01 1.34 0.64

water-ns 10.64 0.47 10.81 0.50 0.48 10.98 0.54 0.37 11.15 0.54 0.08

water-sp 11.38 0.07 11.55 0.07 0.06 11.73 0.08 0.06 11.90 0.08 0.06

Total 12.34 0.77 12.63 0.88 0.64 12.89 0.88 0.56 13.17 0.88 0.48

102

Table 6.2 Average TPB in bpi for Splash2 with CS64

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.02 0.19 15.31 0.67 0.16 15.59 1.04 0.16 15.86 1.50 0.18

cholesky 15.29 0.62 16.23 0.65 0.62 15.87 0.51 0.45 15.62 0.36 0.29

fft 10.63 1.15 10.82 1.17 1.17 11.00 1.18 1.18 11.19 1.19 1.19

fmm 8.82 0.14 8.96 0.14 0.14 9.14 0.15 0.13 9.33 0.15 0.13

lu 11.86 0.47 12.06 0.30 0.28 12.26 0.32 0.19 12.47 0.16 0.05

radiosity 12.11 0.04 12.32 0.39 0.03 12.61 0.40 0.04 12.61 0.50 0.03

radix 13.38 0.43 13.74 1.29 0.44 14.09 1.36 0.46 14.53 1.42 0.47

raytrace 15.16 0.11 15.45 0.34 0.09 15.73 0.44 0.07 16.01 0.62 0.06

water-ns 10.64 0.02 10.81 0.05 0.02 10.97 0.31 0.01 11.15 0.39 0.01

water-sp 11.38 0.03 11.55 0.04 0.03 11.73 0.05 0.03 11.90 0.05 0.02

Total 12.33 0.21 12.62 0.40 0.20 12.88 0.47 0.19 13.17 0.53 0.18

Table 6.3 and Table 6.4 show the average TPB in bpi for NX and MF for Par-

sec with CS16 and CS64, respectively. In the case of NX tracing, the total average

TPB ranges from 9.71 bpi to 10.62 bpi when N=8. Even though the frequency of

memory reads in Parsec is comparable to Splash2, the total TPB in Parsec is less

than that in Splash2. This is because the average size of the operands read from

memory is different (Table 5.3 and Table 5.4). Whereas in Splash2 ~94% of the

memory reads are either 4-bytes or 8-bytes, in Parsec only ~61.35% of the memory

reads are 4-bytes and 27.66% are 1-byte.

103

Table 6.3 Average TPB in bpi for Parsec with CS16

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.18 0.49 12.43 0.97 0.49 12.68 1.13 0.50 12.94 1.18 0.51

bodytrack 9.77 0.62 10.02 0.97 0.59 10.29 1.11 0.55 - - -

canneal 12.12 1.32 12.41 1.34 1.33 12.72 1.36 1.36 13.04 1.39 1.39

dedup 13.32 1.15 13.69 1.17 1.17 14.03 1.19 1.18 14.39 1.21 1.20

ferret 10.42 1.49 10.67 1.50 1.50 10.93 1.51 1.51 11.19 1.47 1.46

fluidanimate 10.94 0.24 11.28 0.42 0.24 11.63 0.59 0.25 12.14 0.65 0.24

swaptions 13.42 0.06 13.69 0.20 0.07 13.96 0.45 0.09 14.24 0.73 0.10

vips 9.71 1.13 9.95 1.23 1.14 10.19 1.26 1.16 10.43 1.33 1.17

x264 6.98 0.22 7.22 0.28 0.28 7.49 0.27 0.26 7.76 0.26 0.25

Total 9.74 0.73 10.01 0.82 0.75 10.30 0.86 0.75 10.62 0.87 0.76

With MF.B, the total average TPB ranges from 0.73 bpi (N=1) to 0.87 bpi

(N=8) with CS16 and 0.51 bpi (N=1) to 0.65 bpi (N=8) with CS64. MF.I reduces the

total TPB by 9% to 20%. However, when we look at individual benchmarks, only

three benchmarks blackscholes, fluidanimate, and swaptions, benefit from inheriting

FA bits (~43% to ~100%) regardless of the cache configuration, whereas other

benchmarks see little or no benefit at all. Thus, the total average TPB ranges from

0.73 bpi (N=1) to 0.76 bpi (N=8) with CS16 and 0.51 bpi (N=1) to 0.52 bpi (N=8) with

CS64.

104

Table 6.4 Average TPB in bpi for Parsec with CS64

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.17 0.47 12.43 0.96 0.47 12.68 1.13 0.48 12.94 1.17 0.49

bodytrack 9.72 0.42 10.00 0.79 0.34 10.29 0.93 0.28 - - -

canneal 12.06 1.10 12.39 1.12 1.12 12.71 1.15 1.14 13.04 1.18 1.16

dedup 13.28 0.79 13.66 0.80 0.79 14.02 0.81 0.80 14.39 0.83 0.81

ferret 10.39 0.50 10.66 0.48 0.48 10.93 0.48 0.48 11.19 0.48 0.47

fluidanimate 10.93 0.21 11.28 0.38 0.20 11.63 0.56 0.20 12.13 0.61 0.19

swaptions 13.42 0.00 13.69 0.11 0.00 13.97 0.42 0.00 14.24 0.64 0.00

vips 9.67 1.00 9.93 1.06 1.03 10.17 1.13 1.04 10.43 1.24 1.05

x264 6.97 0.14 7.21 0.17 0.17 7.49 0.16 0.16 7.76 0.16 0.15

Total 9.71 0.51 10.00 0.58 0.51 10.29 0.63 0.51 10.62 0.65 0.52

To underscore the effectiveness of mcFiltrate, we compare it to a software

compressor. We feed the NX traces to the gzip compressor with level-1 compression

to determine the trace port bandwidth requirements, if such a utility is implemented

in hardware. The reason to use compression level-1 is that it requires smaller buff-

ers, offering compression ratios that closer match those that could be achieved in

hardware compressors. Please note that implementing a full general-purpose com-

pressor requires a significant amount of hardware resources.

We consider two variants of software compression of NX traces. The first one,

NX_u.gz, feeds encoded NX trace messages directly to the gzip compressor. However,

the NX messages combine header information with data values, thus limiting the

compression ratio. To exploit redundancies in data values (mrv field), the trace mes-

sages are divided into two streams that are compressed separately, one with

memory read values (mrv) and the other with timestamp and core identifier (dts,

105

cid). This approach is referred to as NX_s.gz. Figure 6.3 shows the total average

compression ratios achieved by the gzip compressors and mcFiltrate for Splash2 and

Parsec, while varying the number of cores and cache configurations. Table 6.5 and

Table 6.6 also show the compression ratios for individual benchmark from Splash

and Parsec respectively for CS64. The compression ratios given in Table 6.5 and Ta-

ble 6.6 are calculated using Eq (6.3):

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝑃𝐵 𝑓𝑜𝑟 𝑁𝑋

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇𝐵𝑃 𝑓𝑜𝑟 𝑁𝑋_𝑢. 𝑔𝑧 𝑜𝑟 𝑁𝑋_𝑠. 𝑔𝑧 𝑜𝑟 𝑚𝑐𝐹𝑖𝑙𝑡𝑎𝑡𝑒
 (6.3)

The compression ratios achieved with NX_u.gz are relatively low, ranging

from 1.5 to 1.7 regardless of the number of cores. The maximum possible compres-

sion ratio is 2.5 for cholesky from Splash2 and 2.0 for fluidanimate from Parsec.

Even with NX_s.gz, the compression ratio is still relatively moderate and it is in the

range of 2.1 to 3.4 for Splash2 and Parsec. The maximum compression ratio that can

be achieved is 7.29 for cholesky from Splash2 and 5.45 for blackscholes from Parsec.

mcFiltrate reduces the total TPB regardless of the configurations and the

number of cores. For Splash2 with CS16, the overall compression ratio ranges from

16.1 (N=1) to 15 (N=8) with MF.B. The compression ratio achieved with CS64 is

even higher because of reduced FA miss rates. Thus, the overall compression ratio

ranges from 59.6 (N=1) to 24.8 (N=8). However, with MF.I the overall compression

ratio reaches to 27.59 with CS16 and to 73.8 with CS64 when N=8. If we consider

individual benchmarks, all the benchmarks except fft achieve good compression rati-

os regardless of the cache configuration. The maximum achieved compression ratio

is 944.9 for water-ns with CS64 when N=8. For Parsec with MF.I, the overall com-

pression ratio ranges from 13.38 (N=1) to 14.05 (N=8) with CS16 and from 19.22

106

(N=1) to 20.3 (N=8) with CS64. However, the maximum possible compression ratio is

139,655 with CS64 when N=4 for swaptions.

Figure 6.3 Compression Ratios of Splash2 (top) and Parsec (bottom)

1

10

100

1,000

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

CS16 CS32 CS64

Splash2: Compression Ratios

NX_u.gz NX_s.gz MF.B MF.I

1

10

100

1,000

10,000

100,000

1,000,000

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

CS16 CS32 CS64

Parsec: Compression Ratios
NX_u.gz NX_s.gz MF.B MF.I

107

Table 6.5 Compression Ratios for Splash2 with CS64

Cores N=1 N=2 N=4 N=8

Mechanism
NX_s

.gz

NX_u

.gz
MF.B|I

NX_s

.gz

NX_u

.gz
MF.B MF.I

NX_s

.gz

NX_u

.gz
MF.B MF.I

NX_s

.gz

NX_u

.gz
MF.B MF.I

barnes 2.21 1.40 79.49 1.79 1.31 22.89 94.57 1.66 1.24 14.95 98.66 1.58 1.27 10.59 85.98

cholesky 7.36 1.79 24.73 3.78 1.67 25.12 25.99 3.50 1.83 31.14 35.07 4.09 2.50 43.95 54.36

fft 1.94 1.39 9.24 1.80 1.37 9.28 9.28 1.70 1.31 9.33 9.33 1.67 1.38 9.39 9.40

fmm 5.05 1.98 64.82 3.82 1.92 62.98 66.34 3.10 1.59 61.78 68.65 2.77 1.60 60.73 72.93

lu 5.95 1.60 25.04 3.58 1.57 39.77 43.75 3.11 1.43 38.04 64.67 3.10 1.80 75.64 250.97

radiosity 3.90 1.64 288.25 2.50 1.55 31.57 355.07 2.10 1.38 31.41 343.56 1.95 1.48 25.27 369.85

radix 4.31 2.11 30.87 2.96 1.91 10.68 30.94 2.09 1.47 10.38 30.88 1.96 1.42 10.25 30.85

raytrace 3.99 1.52 140.54 2.60 1.49 45.56 178.39 2.25 1.32 36.01 211.96 2.08 1.40 25.62 255.68

water-ns 2.72 1.41 521.52 2.09 1.39 232.90 628.28 1.92 1.27 35.21 971.23 1.86 1.34 28.85 944.94

water-sp 3.04 1.36 354.44 2.41 1.39 295.43 391.57 2.11 1.26 244.78 449.24 2.02 1.39 218.33 543.33

Total 3.41 1.56 59.58 2.52 1.51 31.49 63.44 2.21 1.38 27.68 67.63 2.17 1.52 24.85 73.80

108

Table 6.6 Compression Ratios for Parsec with CS64

Cores N=1 N=2 N=4 N=8

Mechanism
NX_s

.gz

NX_u

.gz
MF.B|I

NX_s

.gz

NX_u

.gz
MF.B MF.I

NX_s

.gz

NX_u

.gz
MF.B MF.I

NX_s

.gz

NX_u

.gz
MF.B MF.I

blackscholes 5.45 1.68 25.94 3.51 1.69 12.97 26.21 2.47 1.43 11.25 26.28 2.24 1.45 11.11 26.44

bodytrack 3.22 1.69 22.92 2.66 1.67 12.65 29.02 2.26 1.49 11.06 36.49 - - - -

canneal 3.48 1.66 11.00 3.32 1.74 11.02 11.06 3.13 1.67 11.06 11.13 3.14 1.87 11.10 11.22

dedup 2.86 1.78 16.74 2.31 1.70 17.08 17.25 2.04 1.54 17.30 17.63 1.94 1.56 17.33 17.85

ferret 3.75 1.73 20.70 2.53 1.66 22.07 22.10 2.21 1.53 22.87 22.93 2.15 1.63 23.53 23.67

fluidanimate 4.81 2.00 53.30 3.05 1.86 29.39 56.73 2.58 1.64 20.90 56.85 2.40 1.65 19.74 63.50

swaptions 3.94 1.83 134168 2.71 1.73 128.67 136909 2.30 1.49 33.37 139655 2.15 1.49 22.08 20343

vips 4.05 1.82 9.63 2.34 1.62 9.41 9.68 1.95 1.47 8.97 9.77 1.80 1.45 8.41 9.93

x264 2.75 1.56 49.00 2.42 1.60 41.95 42.69 1.98 1.45 46.18 48.26 1.97 1.58 49.31 52.38

Total 3.40 1.73 19.22 2.56 1.67 17.32 19.56 2.18 1.52 16.31 20.316 2.09 1.58 16.37 20.319

109

Understanding how the required trace port bandwidth is utilized across different

fields of the trace messages is helpful to design and attain a better compression ratio if

required. The distribution of trace port bandwidth among different fields of trace mes-

sage, dts, cid, fct, mrv, for Splash2 and Parsec for CS64 is shown in Figure 6.4. Expected-

ly, much of the required trace port bandwidth is occupied by the memory read values

(mrv). For NX, the mrv portion ranges from 83% for N=1 to 78% for N=8. The time field is

responsible for ~17% and ~27% of the total required TPB regardless of the number of

cores for Splash2 and Parsec, respectively. Thus, ordering the trace messages coming

from different cores in the trace buffer and streaming them out without the time field re-

duces the required TPB only by ~17% and ~27% for Splash2 and Parsec, respectively.

However, buffering and ordering the trace messages from multiple cores requires addi-

tional hardware support. With mcFiltrate, the mrv field accounts for 68%-80% of the trace

port bandwidth depending on the number of cores, the fct field for ~10%, and the dts field

for ~19% regardless of the cache configuration for both benchmark suites.

110

Figure 6.4 Break down of TPB in bpi for Splash2 (top) and Parsec (bottom) for CS64

 Trace Port Bandwidth in BPC

Figure 6.5 shows the total average TPB in bpc for both Splash2 and Parsec. For

Splash2, NX with CS16 requires a total average TPB of 4.92 bpc and it ranges from 2.79

bpc (fft) to 7.53 bpc (raytrace) when N=1. The TPB in bpc for individual benchmarks and

Splash2 and Parsec for different cache configurations are available in Appendix A.2. As

0

2

4

6

8

10

12

14

N=1 N=2 N=4 N=8

NX

0.0

0.2

0.4

0.6

0.8

1.0

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

MF.B MF.I

Splash2: Total Average TPB [bpi]
mrv fct cid dts

0

2

4

6

8

10

12

N=1 N=2 N=4 N=8

NX

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

MF.B MF.I

Parsec: Total Average TPB [bpi]
mrv fct cid dts

111

the cache size increases the trace port bandwidth increases because of reduced execution

time and increased pressure on the trace port (the same amount of trace data needs to be

taken off of the chip in a shorter period of time). Thus, with CS64 the average TPB in-

creases to 5.65 bpc. As the number of cores increases, the average TPB increases due to

increased overall IPC and reduced execution time. When N=8, the average TPB ranges

from 25.64 bpc (CS16) to 26.14 bpc (CS64). When we consider individual benchmarks,

more than half of the benchmarks from Splash2 require more than the total average TPB

and raytrace reaches as high as 46.47 bpc when N=8 with CS64. With MF.B, the average

TPB ranges from 0.09 bpc (CS64) to 0.31 bpc (CS16) when N=1 and 1.05 bpc (CS64) to

1.71 bpc (CS16). However, with MF.I the average TPB is reduced due to inheriting FA

bits and it ranges from 0.35 bpc (CS64) to 0.93 bpc (CS16). With mcFiltrate, the average

TPB decreases as cache size increases because of the reduced FA miss rates. Even the

worst-case benchmark requires an average TPB that is less than ~4 bpc for MF.B/I.

For Parsec, mcFiltrate with CS16 reduces the total average TPB from 3.12 bpc in

NX to 0.23 bpc when N=1 and from 11.56 bpc in NX to 0.95 bpc (MF.B) and to 0.82 bpc

(MF.I) when N=8. MF.I with CS64 requires a total average TPB of 0.59 bpc (N=8). These

results confirm that the mcFiltrate reduces the pressure on the trace port and scales well

with increasing the number of processor cores.

112

Figure 6.5 Trace Port Bandwidth in bpc for Splash2 (top) and Parsec (bottom)

 Dynamic Trace Port Bandwidth Analysis

The average TPB allows us to quantify the overall effectiveness of mcFiltrate.

However, it does not fully capture the peak TPB requirements that occur in individual

benchmarks during their execution. The TPB depends on the frequency and distribution

of memory reads and FA misses. Thus, the bandwidth requirements may exceed the aver-

age TPB at any given moment during program execution.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Splash2: Total Average TPB [bpc] N=1 N=2 N=4 N=8

0

5

10

15

20

25

30

35

40

45

50

CS16 CS32 CS64

NX

0

5

10

15

20

25

30

35

CS16 CS32 CS64

NX

0.0

0.5

1.0

1.5

2.0

2.5

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Parsec: Total Average TPB [bpc] N=1 N=2 N=4 N=8

113

We analyze the required TPB for NX, MF.B, and MF.I with all the cache configu-

rations (CS16, CS32, and CS64) and core configurations (N=1, 2, 4, and 8) for all the indi-

vidual benchmarks from Splash2 and Parsec. For this analysis, the average TPB in bpc is

logged every 1 million clock cycles. Figure 6.6 shows the dynamic TPB requirements for

several characteristic benchmarks when N=8 with the CS64 configuration. The selected

benchmarks, raytrace, water-ns, and swaptions, require the highest average TPB for the

NX traces among all the benchmarks from both suites. In addition, the benchmarks chole-

sky and fft are considered because of their unique dynamic behavior. The average TPB

required for NX with CS64 for the worst-case benchmarks, raytrace and water-ns from

Splash2 and swaptions from Parsec is 46.47 bpc, 43.43 bpc, and 30.99 bpc, respectively.

However, the peak TPB for raytrace, water-ns, and swaptions reaches as high as 64.8 bpc,

57.84 bpc, and 34.34 bpc respectively. Thus, the on-chip trace buffer requirements to cap-

ture the traces with no loss exceeds those implied by the average total TPB.

For raytrace, MF.B and MF.I require average TPBs of 1.81 bpc and 0.18 bpc, re-

spectively. The peak TPB requirements reach 5.97 bpc (MF.B) and 5.45 bpc (MF.I). For

water-ns and swaptions with MF.I the peak TPB reaches 1.41 bpc and 0.16 bpc, respec-

tively. The results confirm that mcFiltrate not only reduces the average TPB, but it also

reduces the peak TPB requirements.

The analysis of benchmark execution reveals its behavior and helps make deci-

sions on size of on-chip-trace buffers that can hold the trace data in the worst case. How-

ever, the deep trace buffer requirements do not have to come from the benchmarks that

have the highest average TPB. Any benchmark that has a burst of data reads in a short

period of time may present the worst-case scenario for data tracing. For example, cholesky

requires an average TPB of 33.06 bpc. However, the peak bandwidth reaches 278.8 bpc

with CS64 (Figure 6.6) because of the accumulation of memory reads towards the end of

114

the program. mcFiltrate effectively works in this case and reduces the required peak TPB

to 4.19 bpc and 3.9 bpc with MF.B and MF.I respectively. fft shows a unique behavior

among all the benchmarks (Figure 6.6). Even though the required TPB is moderate in the

beginning of the program execution it reaches the peak of 45.9 bpc, due to the burst of

memory reads towards the end of the program. This effect is not observed by analyzing

the average TPB because it distributes the trace data evenly over the entire execution of

the program. mcFiltrate works effectively and no trace message is emitted in the begin-

ning of the program but due to the skewed memory reads in the end, the peak TPB reach-

es 6.05 bpc with MF.I.

115

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900

Clock Cycles [x109]

Raytrace: Dynamic TPB [bpc] (CS64)
NX MF.B MF.I

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180 200

Clock Cycle [x106]

Water-ns: Dynamic TPB [bpc] (CS64)
NX MF.B MF.I

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350

Clock Cycles [x106]

Swaptions: Dynamic TPB [bpc] (CS64)
NX MF.B MF.I

116

Figure 6.6 Dynamic TPB in bpc for Characteristic Benchmarks

 Trace Buffer Size Analysis

Trace messages are temporarily stored in on-chip trace buffers before they are

emitted off-chip through the trace port over dedicated physical pins. Even though dynam-

ic TPB analysis gives deeper insights in trace port bandwidth requirements, it does not

fully reveal the information about the required size of on-chip-trace buffers and their

emptying rate. Assume that a program is generating 10 bits per clock cycle, but the trace

port can trace out only 2 bits per clock cycle. The internal trace buffers will get filled

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

Clock Cycles [x106]

Cholesky: Dynamic TPB [bpc] (CS64)
NX MF.B MF.I

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900

Clock Cycles [x106]

FFT: Dynamic TPB [bpc] (CS64)
NX MF.B MF.I

117

quickly resulting in lost trace messages. However, if we empty the trace data at the rate

of 10 bpc, the required on-chip trace buffer size is moderate. Thus, to evaluate the re-

quirements of on-chip trace buffer, we use the metric actual TPB which represents the

ability of the trace module to send the trace data off the chip through the trace port. By

changing the actual TPB we evaluate the on-chip trace buffer sizes needed to capture the

traces for the entire program without stalling the processor to empty the trace data or

without losing the trace data.

Figure 6.7 shows the maximum on-chip trace buffer size required for Splash2 and

Parsec for NX tracing, while varying the actual TPB as N•8 and N•16, where N is the

number of processor cores. Although allocating this many port pins to the trace port is

cost-prohibitive, the purpose of this exercise is to emphasize challenges in on-the-fly trac-

ing using the state-of-the-art.

With the actual TPB of 8 bpc when N=1, most of the benchmarks from Splash2 re-

quire less than 20 KB of on-chip trace buffer. However, the worst-case benchmark, ray-

trace, requires 543.9 MB with CS64, which is cost-prohibitive. In most of the benchmarks,

as the cache size increases, the required trace-buffer size increases because of the reduced

execution time of the benchmarks. When the actual TPB is increased to 16 bpc, the re-

quired trace buffer size is 0.35 KB for most of the benchmarks except raytrace which re-

quires ~41 KB. When N=8 with the actual TPB of 64 bpc, cholesky requires 1.75 GB with

CS16 and the other benchmarks from Splash2 require about 0.3 KB to 21 MB. When the

actual TPB is increased to 128 bpc, cholesky requires 226 MB and all other benchmarks

require about 0.3 KB. Similar trends are observed for Parsec. With the actual TPB of

N•16 bpc, the required trace buffer is ~1.7 KB when N=1 and about 0.5 KB when N=8.

The worst-case fluidanimate requires ~191 KB with N•16 bpc when N=8. Except for a few

outliers – cholesky, fmm, fluidanimate, all the other benchmarks require a few KBs of on-

118

chip-trace buffer with the actual TPB of either N•8 or N•16. However, clocks to transmit

the data off-chip runs way slower than the processor clock. Thus, it requires more physi-

cal pins than the actual TPB which further increases the system cost. This analysis shows

that even with almost unlimited actual trace port bandwidth, the on-chip trace buffers

may still be relatively large.

Figure 6.8 and Figure 6.9 show the on-chip trace buffer requirements while vary-

ing the actual TPB from N to 8•N with MF.B and MF.I for Splash2 and Parsec, respec-

tively. With an actual TPB of 1 bpc when N=1, all the benchmarks except fft with MF.B

require less than 1.4 MB (fft with CS16 requires 33.3 MB). As the actual TPB increases

to 8 bpc, the required trace buffer is less than 11 KB and most of the benchmarks require

less than 1 KB in Splash2 and less than 2 KB in Parsec. As the number of cores increases,

the required trace buffer size decreases because of the wider trace port (except for fft).

When N=8, with the actual TPB of 8 bpc, all benchmarks from Splash2 and Parsec except

fft require the trace buffer sizes from 0.1 KB to 89 KB, whereas fft with CS16 requires

45.44 MB. However, when the actual TPB is increased to 64 bpc, the required trace buffer

size is less than ~ 0.1 KB. Overall, when we allocate the actual TPB of 4 bpc for N=1 and

N=2, 8 bpc for N=4 and N=8, all the benchmarks except cholesky with CS16 (45.45 MB)

require a trace buffer less than ~120 KB. As we pointed out before, the benefits of MF.I

over MF.B vary across benchmarks. Thus, for some benchmarks, MF.I helps to reduce the

trace buffer size moderately (1% to 20%) and for some other benchmarks it reduces the

maximum trace buffer size from 20% to 95% depending on the number of cores, cache con-

figuration, and actual TPB.

119

Figure 6.7 On-chip Trace Buffer Size for Splash2 (top) and Parsec (bottom) for NX

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10000000.00

b
ar

n
e

s

ch
o

le
sk

y ff
t

fm
m lu

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

w
at

e
r-

n
s

w
at

e
r-

sp

b
ar

n
e

s

ch
o

le
sk

y ff
t

fm
m lu

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

w
at

e
r-

n
s

w
at

e
r-

sp

N=1 N=8

Splash2: Trace Buffer size in KB for NX
8*N (CS16) 8*N (CS64) 16*N (CS16) 16*N (CS64)

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l

d
ed

u
p

fe
rr

e
t

fl
u

id
an

im
at

e

sw
ap

ti
o

n
s

vi
p

s

x2
6

4

b
la

ck
sc

h
o

le
s

ca
n

n
ea

l

d
ed

u
p

fe
rr

e
t

fl
u

id
an

im
at

e

sw
ap

ti
o

n
s

vi
p

s

x2
6

4

N=1 N=8

Parsec: Trace Buffer size in KB for NX
8*N (CS16) 8*N (CS64) 16*N (CS16) 16*N (CS64)

120

Figure 6.8 On-chip Trace Buffer Size in KB for Splash2

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

b
ar

n
e

s

ch
o

le
sk

y ff
t

fm
m lu

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

w
at

e
r-

n
s

w
at

e
r-

sp

b
ar

n
e

s

ch
o

le
sk

y ff
t

fm
m lu

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

w
at

e
r-

n
s

w
at

e
r-

sp

b
ar

n
e

s

ch
o

le
sk

y ff
t

fm
m lu

ra
d

io
si

ty

ra
d

ix

ra
yt

ra
ce

w
at

e
r-

n
s

w
at

e
r-

sp

MF (N=1) MF.B (N=8) MF.I (N=8)

Splash2: Trace Buffer Size in KB for mcFiltrate

N (CS16) 2*N (CS16) 4*N (CS16) 8*N (CS16) N (CS64) 2*N(CS64) 4*N (CS64) 8*N(CS64)

121

Figure 6.9 On-chip Trace Buffer Size in KB for Parsec

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l

d
ed

u
p

fe
rr

e
t

fl
u

id
an

im
at

e

sw
ap

ti
o

n
s

vi
p

s

x2
6

4

b
la

ck
sc

h
o

le
s

ca
n

n
ea

l

d
ed

u
p

fe
rr

e
t

fl
u

id
an

im
at

e

sw
ap

ti
o

n
s

vi
p

s

x2
6

4

b
la

ck
sc

h
o

le
s

ca
n

n
ea

l

d
ed

u
p

fe
rr

e
t

fl
u

id
an

im
at

e

sw
ap

ti
o

n
s

vi
p

s

x2
6

4

MF (N=1) MF.B (N=8) MF.I (N=8)

Parsec: Trace Buffer Size in KB for mcFiltrate

N (CS16) 2*N (CS16) 4*N (CS16) 8*N (CS16) N (CS64) 2*N(CS64) 4*N (CS64) 8*N(CS64)

122

 Hardware Complexity Analysis

mcFiltrate requires hardware extensions to support the first-access tracking

in L1 data caches for all processor cores. The majority of hardware overhead is due

to the FA bits. In the case of inheriting FA bits to further filter the shared data in

multicores, additional hardware support is required. The overall overhead depends

on the granularity of the FA bits and their location, data cache size, and block size.

The overhead due to the control logic for the FA bits and trace encoding is negligible.

The size of the sub-block which is being protected by a single FA bit is called

the granularity size (G). The hardware complexity of mcFiltrate primarily depends

on granularity size as shown in Eq. (6.4). For example, consider a 16 KB L1 data

cache with 32-byte cache block size. For the granularity of size 4 (i.e. 4-bytes), a sin-

gle cache block requires 8 FA bits and all the cache blocks require 512 bytes which is

1/32 of the data cache size. However, for the granularity of 1 (1-byte), it requires 32

FA bits and overall overhead is 1/8 of the cache size, i.e. 2 KB.

𝐹𝐴 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 =
𝐶𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 (𝐶𝑆) 𝑖𝑛 𝑏𝑦𝑡𝑒𝑠

𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑖𝑧𝑒 (𝐺) 𝑖𝑛 𝑏𝑦𝑡𝑒𝑠 ∗ 8
 𝑏𝑦𝑡𝑒𝑠

(6.4)

If the data cache physical design can be changed then, the first-access track-

ing can be attached to the data cache blocks and control logic is added to maintain

them (Figure 4.1). If we assume a processor core with 32 KB data cache, 32-byte

cache blocks, and FA bit granularity of 4 bytes, then the overhead is 1/32nd of the

data cache capacity, or 1 KB of additional storage. With finer granularity, i.e. when

each byte is protected with FA bit, the size of trace messages can be reduced if the

byte sized memory reads dominate. However, the required on-chip area increases.

On the other hand, with a coarse-grain granularity, every FA miss event results in

123

reporting the entire sub-block regardless of the size of the memory read. In cases of

poor spatial locality, coarse-grain granularity may have negative effects on the total

size of trace messages. However, it can also contribute to reducing the number of

trace messages in cases of strong spatial locality. For example, when short operands

are accessed sequentially, the number of bits needed to report the dts, cid, and fnt is

reduced with coarse-grain granularity.

If the physical design of the data cache cannot be changed, alternatively, the

FA bits can be implemented outside of processor cores in trace modules and connect-

ed to processor cores through a well-defined interface. In this case, mcFiltrate would

need to include cache tags and an address decoding unit, which introduces addition-

al hardware overhead. However, this approach may offer higher modularity and

flexibility because trace modules do not have to mirror actual processor data caches.

The hardware complexity is estimated using Cacti tools [98] that report the

area occupied by the tag and data portions of cache structures. Table 6.7 shows the

area required by each original L1 data caches (columns 2-4), the area required by

the data cache when the FA bits are attached to the cache block (columns 5-7), and

the area required by the data cache when the FA bits are external (column 9). When

the FA bits are attached to the cache block, the total overhead ranges from ~0.5 to

4.2% (column 8) of the regular L1 data cache area. However, duplicating cache tags

results in an increased overhead that is 12.1% to 13.5% (column 10) of the total L1

data cache area. In our analysis, we assume that the first-access bits are tied to the

L1 data cache and cache to cache transferring of FA bits. Please note that hardware

support is required to inherit FA bits from a source cache if the cache coherence pro-

tocol states are utilized to reduce the trace port bandwidth. One way to copy FA bits

is, issuing an extra bus transaction. However, this approach may add additional bus

124

traffic. Another way is to add extra data lines connecting each cache for cache-to-

cache transfer of FA bits.

Table 6.7 Hardware Complexity Estimation

Cache

Size

Base Cache

Area (μm2)

FA Bits Tied to the

Data Cache (μm2)

External

FA bits (μm2)

Tag

Area

Data

Area

Total

Area

Tag + FA

Bits Area

Data

Area

Total

 Area

Over-

head

Tag + FA

Bits Area

Over-

head

16KB 16,693 154,916 171,609 23,179 154,916 178,094 1.038 23,179 1.135

32KB 22,105 215,620 237,725 32,130 215,620 247,750 1.042 32,130 1.135

64KB 44,130 336,040 380,170 45,998 336,040 382,038 1.005 45,998 1.121

125

DICTIONARY ANALYSIS

This chapter considers further improvements to data tracing by exploiting

redundancy in data values read from memory. It applies to both NX and mcFiltrate

tracing techniques. As shown in CHAPTER 6 (Figure 6.4), the most significant por-

tion of the required trace port bandwidth, ~60%-80% of the total, is used for report-

ing data values read from memory (the mrv field). Thus, eliminating redundant data

values in trace messages is the most beneficial approach in a quest to further reduce

the required TPB. Towards this end, this chapter explores how to augment tracing

techniques with statically selected dictionaries or dynamic dictionaries or a combi-

nation of both (hybrid dictionaries).

Section 7.1 discusses the details of how dictionaries can be used to filter the

trace messages and Section 7.2 discusses the operation of mcFiltrate when diction-

aries are used. Section 7.3 discusses the experimental details and Section 7.4 dis-

cusses the results from the experimental evaluation.

 Preliminaries

Dictionaries keep the most frequent data values read from memory. A dic-

tionary contains a certain number of entries (DS – dictionary size) of given length

(DES – dictionary entry size) as shown in Figure 7.1. When a trace message with a

data value is ready, a dictionary lookup is performed instead of sending it to the

trace port. If the dictionary contains a entry matching the data field in the trace

message (a dictionary hit), a shorter trace message is going to be created as follows.

126

The data field in the trace message is replaced by an index of the dictionary entry

(dIn) that matches the data value from the trace message. This way long data fields

encoding an operand value are replaced by a few bits encoding an entry in the dic-

tionary. If both the target platform trace module and the software debugger main-

tain synchronized dictionaries, the software debugger can recreate the operand val-

ues, even though they are not sent through the trace port. If the data value is not

found in the dictionary, i.e., a dictionary miss occurs, the original data value is emit-

ted.

Figure 7.1 System View of a Dictionary-Based Trace Compressor

Dictionary compression can be applied to both Nexus-like and mcFiltrate

trace messages. Figure 7.2 shows the format of the corresponding trace messages

that support dictionary compression. The dts, cid, fct fields are encoded as described

in Figure 4.5. To indicate whether the modified data field in the trace message con-

Dictionary of width DES

Data

H/M

= DES

d
In

/m
rv

H
/M

dIn

mrv

Dictionary
Enable

Index

 ...

1

0

Operand
Size

mrv

0DES-1 . . .

0

1

DS-1

127

tains an index in the dictionary or the data value, a data header bit called H/M is

needed (1 indicates a dictionary hit, 0 indicates a dictionary miss). Thus, the size of

the data field is 1+⌈𝑙𝑜𝑔2(𝐷𝑆)⌉ in the case of a dictionary hit, or 1+sizeof(operand) in

the case of a dictionary miss.

A dictionary is implemented in hardware using content-addressable memo-

ries (CAM). The CAM memories are somewhat costly, so dictionaries should have a

limited number of entries to reduce the cost of their implementation and the length

of the trace messages. Yet, they should be large enough so that the number of dic-

tionary hits is sufficiently large to outweigh overhead due to the additional data

header bit in the trace message.

Figure 7.2 Format of Trace Messages Supporting Dictionaries

A dictionary can be initialized statically or it can be updated dynamically. A

statically initialized directory contains predefined most frequently used operand

values of a given size (DES). These values can be either known constants or known

(b) mcFiltrate Encoding with dictionary (MF)

fct dIn/mrvciddts

fct[0:i0-1]
 i0 b

fct[i0:i0+i1-1]
i1 b

C
1 b

...
C

1 b

dts[0:h0-1]
 h0 b

C
1 b

dts[h0:h0+h1-1]
h1 b

C
1 b

...

H/M

dts Timestamp (Differential Enc.)
cid Thread/Core ID
mrv Memory Read Value, sent if miss in

dictionary
C Connect Bit
fct First Access Hit Counter
H/M – miss, 1 – hit in the dictionary
dIn Dictionary Index, sent if hit in

dictionary; bits = log2(dictSize)

dts

dts[0:7]
8 b

C
1 b

dts[8:15]
8 b

C
1 b

...

(a) Nexus-like Trace Message (NX)

dIn/mrvH/Mcid

128

contents of memory locations in the program or can be extracted by profiling the ac-

tual program. In the case of a static dictionary, the trace module controller should

enable initialization of the directory entries for a given program before the tracing

starts.

A dynamic dictionary is not initialized in advance, rather it is updated con-

tinuously based on an update policy. Initially, the dictionary is empty and is filled

with data values from trace messages. Both the hardware component in the trace

module of the target platform and its software counterpart in the software debugger

should use identical policies when updating the dictionary for both hit and miss

events (e.g., round-robin or LRU replacement policy).

Finally, a combination of a static and a dynamic dictionary can also be used.

In this case, the most frequently used values, e.g., constants like , 0, or 1 are stored

in the static dictionary and other values are updated in the dynamic dictionary.

Such a scheme requires more than one data header bit to indicate whether the data

is a hit in the static or dynamic dictionary. By design, hybrid dictionaries can be of

two types. One method uses separate static and dynamic dictionaries and the 2-bit

H/M indicates whether data is a hit in static dictionary or dynamic dictionary or

missed in both as described in Table 7.1. The other method is to incorporate the stat-

ic dictionary in the H/M field as described in Table 7.2. In the latter method, the size

of the data header field is adjusted depending on the number of entries in the static

dictionary.

129

Table 7.1 Hybrid Dictionary Data Header Encoding (Method 1): An Example

H/M Value Event

00 Miss followed by actual memory read data value

01 Hit in the static dictionary followed by index

10 Hit in the dynamic dictionary followed by index

11 Unused

Table 7.2 Hybrid Dictionary Data Header Encoding (Method 2): An Example

H/M Value Event

00 Miss followed by actual memory read data value

01 Constant 0

10 Constant 1

11 Hit in dynamic dictionary followed by index

 Operation of mcFiltrate with Dictionaries

Figure 7.3 shows the memory read operation of mcFiltrate on target core i

when dictionaries are enabled. Light purple colored boxes show the additional steps

required for dictionaries compared to the original memory read operation with base-

line mcFiltrate. In the case of an FA miss event, a lookup in the dictionary is per-

formed if the dictionary is available for current operand size (steps 6 and 9) before

emitting the trace message. If the dictionary is not available or the data value is not

found in the dictionary, a dictionary miss event occurs and a trace message is report-

ed. The trace message includes the time stamp (dts), the core identifier (cid), the

first-access hit counter (fct), H/M set to 0, and the memory read value (mrv) (step

10). If the value is found in the dictionary, a dictionary hit event occurs, the index of

the matching dictionary entry (dIn) is reported and the H/M is set to 1 (step 11). FA

130

bits are not set in the case of dictionary hit events because the value of full sub-

block(s) may not be reported when the memory reads are not aligned and when the

operand size is less than the granularity size. Please note that the dictionary holds

the actual values of the operands instead of values of the sub-blocks. FA bits for sub-

blocks corresponding to a memory read operation are verified independently. In the

case of an FA miss event, the mrv field may include the data from a single sub-block

or multiple sub-blocks for which FA bits are not set. Thus, reported sub-blocks may

not be contiguous. If the dictionary is enabled to store values of sub-blocks instead of

original memory read data value, multiple dictionary indices may need to be report-

ed in a single trace message. Hence, dictionaries are used for actual memory read

values with the sizes matching the original data sizes. mcFiltrate with dictionaries

does not require any operation changes for memory writes and the flowchart in Fig-

ure 4.3 is used.

131

Figure 7.3 mcFiltrate Operation with Dictionary on Target Platform Core i for

Memory Read

Figure 7.4 shows the operation of mcFiltrate with dictionaries on the software

debugger side for memory reads. These steps are similar to the steps described in

Figure 4.4 except when the first-access hit counter is zero (Ci.fahCnt=0). If the dic-

tionary is enabled for current memory read operation operand size, the H/M bit of

the trace message is checked to determine whether the data following the H/M field

is a dictionary index or the actual data value (step 2). In the case of a dictionary hit

event (H/M=1), the index (dIn) is read from the trace message and the actual value

of memory read is fetched from the dictionary (steps 3 and 5). Otherwise (H/M=0),

Ci: Cache Lookup

Ci: CPU READ

Hit?

Corresponding
FA Bit(s) Set?

Y

Y

• Emit Trace Msg.
[dts, cid, fct, H/M, dIn]

• Ci.fahCnt = 0

N

N

END

Ci: Coherent Read Trans.

Ci.fahCnt++

1

2

3 6

4

5

Dictionary for
Current Operand

Size Enabled?

Y

Emit Trace Msg.
[cid, dts, fct, H/M, mrv]

N 10

11

Data is Available
in Dictionary?

Y

N

9

Emit Trace Msg.
[dts, cid, fct, mrv]

7

8

• Set Corresponding
Ci.CBj.FA Bits

• Ci.fahCnt = 0

132

the actual data value (mrv) is read from the trace message (step 4). The software

cache is updated with the new value and the next trace message is read. The

memory writes and invalidation operations are the same as in Figure 4.4.

Figure 7.4 mcFiltrate Operation with Dictionary on Software Debugger for Memory

Reads

Ci.fahCnt--

Ci: Memory Read

Ci.fahCnt > 0?

• Get mrv Field From
Trace Msg.

• Update SW Cache
• Set Corresponding

FA Bits

END

Y

N

1

3

4

Return Data From
SW Cache

9

Ci: Lookup SW Cache

Hit?

Corresponding
FA Bits Set?

Y

Y

N

ERROR in tracing

N

10

11 16

12

8

Exploiting FA
Inheritance?

Y

• Get New Trace Message:
[dts, cid, fct, H/M, mrv/dIn]

• Ci.fahCnt = fct

7

14

Hit in Other
Caches?

N

Copy Cache Block

ERROR in
tracing

Y

N

13

15

17

Clear FA Bits or
Copy FA Bits

Hit in
Dictionary?

• Get dIn Field From
Trace Msg.

• Get Value from
Dictionary

• Update SW Cache

N

Y

5

6

Dictionary for
Current Operand

Size Enabled?

Y

N
2

133

 Experimental Evaluation

We evaluate the ability of static and dynamic dictionaries to compress the da-

ta value field in trace messages, while varying the cache configurations, mcFiltrate

configurations, and the size of the dictionary. In static dictionary analysis, dictionar-

ies are filled with the most frequently used data extracted from the trace files pro-

duced by tmTrace. In dynamic dictionary analysis, the LRU replacement policy is

used to replace the data in the case of a dictionary miss.

For simplicity, a dictionary lookup or update is performed only when the size

of the memory read operand matches the size of the dictionary entry (DES). Thus,

even if a 4-byte (e.g., type integer) and an 8-byte (e.g., type long integer) operand da-

ta values are the same, they are not stored in the same dictionary. The number of

entries in a dictionary (DS) is varied and we explore 4, 8, 16, 32, 64, 128, and 256

entries. At any given time, only one dictionary is active and thus, each data type is

analyzed independently. When the dictionary is enabled for the given operand size,

it uses the trace format as shown in Figure 7.2, otherwise the trace format given in

Figure 4.5 is used to avoid reporting the H/M bit when not required. Please note that

a dictionary is global to all processor cores. Depending on the available resources,

the sizes of the dictionary and the number of dictionaries which support different

size of data can be adjusted.

The effectiveness of dictionaries is quantitatively measured by reporting the

compression ratio as shown in Eq.(7.1). The compression ratio achieved with dic-

tionary for NX and mcFiltrate is calculated by dividing the required TPB when the

dictionaries are not enabled with the TPB when the dictionaries are enabled.

134

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
 𝑇𝑃𝐵 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠

𝑇𝐵𝑃 𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 𝑜𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
 (7.1)

 Results

This section discusses the compression ratios of NX and mcFiltrate traces

when static and dynamic dictionaries are enabled.

 Nexus-like (NX)

The frequency of memory reads of 1-byte and 2-byte operands is relatively

low in Splash2 benchmarks. Thus, even if the dictionaries are used for these oper-

and sizes, savings due to reporting the index instead of data value will be reduced

because of the additional H/M bit. Thus, this section mainly focusses on evaluating

the effectiveness of dictionaries in compressing data values when the size of a dic-

tionary entry is 4-bytes (DES=4) and 8-bytes (DES=8).

Table 7.3 shows the compression ratios for Splash2 benchmarks (CS64)

achieved by a 256-entry static dictionary (DS=256), with DES=4 and DES=8. Please

note that the boxes shaded in green and orange color in the table represents the

best-case and worst-case benchmarks respectively for a given column. However,

sometimes only best-case benchmarks are marked when they are few to avoid the

clutter created by marking worst-case benchmarks. The total average TPB is re-

duced by ~8% with DES=4 and ~12% with DES=8 when N=1. When considering in-

dividual benchmarks, the compression ratios when DES=4 are significant for radios-

ity, radix, barnes, and raytrace since they have a high frequency of 4-byte memory

reads (see Table 5.3). With DES=8, fmm, water-ns, water-sp, and raytrace see rela-

tively high compression ratios because they have a high frequency of 8-byte reads.

135

As the number of cores increases, the compression ratio may increase or decrease

depending on the benchmark. For example, as the number of cores increases the

compression ratio for cholesky increases, however, for radiosity it decreases. The

reason for this could be the behavior of the benchmark. In the case of multithreaded

programs, dictionaries may give good compression ratio when the amount of shared

work is high but may affect the efficiency of the dictionaries when all the threads

work independently. Please note that for simplicity results are shown for DS=256

though dictionary with 4 entries (DS=4) give reasonable compression ratios for most

of the benchmarks. As the dictionary size increases, the compression ratios for some

benchmarks decreases due to the additional index bits. In these cases, the level of

redundancy that can be exploited by static dictionaries is not sufficient to compen-

sate for longer index fields. On the other hand, the compression ratio increases for

some benchmarks since the dictionary can hold more values. Similar trends are ob-

served for NX with CS16 and CS32 cache configurations. When multiple dictionaries

are used, the compression ratio will be higher (Table. A.21). However, to reduce the

design and simulation space, results are shown only for a single dictionary.

136

Table 7.3 Compression Ratio for Splash2 with Static Dictionary (DS=256) for NX

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 1.13 1.13 1.13 1.12 1.09 1.09 1.09 1.09

cholesky 1.03 1.06 1.20 1.39 1.01 1.01 1.01 1.00

fft 1.08 1.08 1.08 1.08 1.04 1.04 1.04 1.04

fmm 1.01 1.01 1.02 1.03 1.43 1.42 1.40 1.38

lu 1.08 1.08 1.08 1.08 0.99 0.99 0.99 0.99

radiosity 1.22 1.21 1.20 1.18 1.05 1.04 1.04 1.04

radix 1.15 1.15 1.15 1.14 1.08 1.08 1.08 1.07

raytrace 1.10 1.09 1.09 1.09 1.12 1.11 1.11 1.11

water-ns 1.04 1.04 1.04 1.04 1.16 1.15 1.15 1.15

water-sp 1.03 1.03 1.03 1.03 1.16 1.16 1.16 1.15

Total 1.08 1.09 1.10 1.13 1.12 1.12 1.11 1.10

Table 7.4 shows the compression ratios achieved with the dynamic dictionary

of size 256 entries (DS=256) for Splash2 benchmarks with CS64 when DES=4 and

DES=8. For a single core, the total average TPB is reduced by 22% with DES=4 and

40% with DES=8. With DES=4 except fmm, water-ns, and water-sp and with DES=8,

except fft, radiosity, and raytrace all other benchmarks achieve good compression

ratio. When N=8, the average TPB is reduced by ~22% with DES=4 and ~24% with

DES=8. However, when the dictionaries are enabled for both DES=4 and DES=8,

compression ratio reaches as high as 12.93 for swapations when N=1 (Table. A.21).

Overall, the compression ratios with dynamic dictionaries outperform the corre-

spondingly ones with static dictionaries.

137

Table 7.4 Compression Ratio of Splash2 with Dynamic Dictionary (DS=256) for NX

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 1.31 1.30 1.29 1.28 1.15 1.15 1.15 1.15

cholesky 1.25 1.24 1.36 1.51 1.50 1.45 1.30 1.14

fft 1.17 1.17 1.16 1.16 1.07 1.06 1.06 1.06

fmm 1.05 1.04 1.04 1.04 2.10 2.04 1.90 1.48

lu 1.15 1.15 1.15 1.15 1.76 1.74 1.75 1.71

radiosity 1.27 1.25 1.25 1.25 1.07 1.07 1.07 1.07

radix 1.56 1.52 1.47 1.37 2.30 2.16 1.92 1.61

raytrace 1.44 1.45 1.40 1.35 1.07 1.08 1.07 1.06

water-ns 1.07 1.05 1.05 1.04 1.70 1.67 1.49 1.40

water-sp 1.07 1.05 1.05 1.04 1.69 1.65 1.55 1.44

Total 1.22 1.21 1.21 1.22 1.40 1.38 1.33 1.24

The compression ratios achieved with static and dynamic dictionaries for

Parsec with DES=4 and DES=8 are showed in Table 7.5 and Table 7.6, respectively.

The average TPB is reduced by 8% to 22% with static a dictionary and 44% to 52%

with a dynamic dictionary when DES=4. Even though 1-byte operand size memory

reads are dominating in most of the benchmarks (Table 5.4), the benefits with using

the dictionary with DES=1 is not significant. The reason for this is the size of mrv

field is 8-bits when the operand size is 1-byte. When dictionaries are enabled, an ad-

ditional H/M bit is reported in every trace message and 2 index bits when DS=4 and

8 bits when DS=256 are reported in case of a hit in the dictionary. Hence, the num-

ber of bits saved with reporting dictionary index are not significant. On the other

138

hand, few benchmarks have memory reads dominated by 8-bytes, thus, few bench-

marks benefit from an 8-byte data type dictionary (DES=8).

Table 7.5 Compression Ratio of Parsec with Static Dictionary (DS=128) for NX

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.26 1.25 1.24 1.24 1.12 1.12 1.12 1.12

bodytrack 1.24 1.23 1.22 - 1.00 1.00 1.00 -

Canneal 1.30 1.29 1.28 1.27 1.00 1.00 1.00 1.00

Dedup 1.16 1.13 1.12 1.11 1.00 1.00 1.00 1.00

Ferret 1.16 1.16 1.15 1.15 1.02 1.02 1.02 1.02

fluidanimate 1.30 1.29 1.28 1.28 1.00 1.00 1.00 1.00

swaptions 1.28 1.23 1.20 0.99 1.16 1.16 1.15 1.15

Vips 1.27 1.25 1.24 0.98 1.09 1.09 1.09 1.08

x264 1.17 1.16 0.99 0.99 1.00 1.00 1.00 1.00

Total 1.22 1.21 1.15 1.08 1.03 1.03 1.03 1.03

139

Table 7.6 Compression Ratio of Parsec with Dynamic Dictionary (DS=256) for NX

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.32 1.38 1.30 1.28 1.32 1.32 1.30 1.28

bodytrack 1.52 1.52 1.52 - 1.01 1.01 1.01 -

canneal 1.70 1.67 1.63 1.59 1.01 1.01 1.01 1.01

dedup 1.67 1.64 1.60 1.56 1.00 1.00 1.00 1.00

ferret 1.62 1.59 1.56 1.53 1.03 1.03 1.02 1.02

fluidanimate 2.13 2.04 1.97 1.90 1.00 1.00 1.00 1.00

swaptions 1.44 1.43 1.41 1.38 1.28 1.25 1.24 1.23

vips 1.46 1.44 1.42 1.39 1.08 1.07 1.07 1.07

x264 1.27 1.25 1.24 1.22 1.00 1.00 1.00 1.00

Total 1.52 1.50 1.47 1.44 1.03 1.03 1.03 1.03

 mcFiltrate

Table 7.7 and Table 7.8 show the compression ratios for mcFiltrate with MF.I

when using static and dynamic dictionary for Splash2, respectively. The total TPB is

reduced from 1% to 6% with the static dictionary and 5% to 9% with dynamic dic-

tionary. However, when we consider individual benchmarks, fmm TPB is reduced by

~25% with static dictionaries. With dynamic dictionaries, radix (DES=4) and chole-

sky (DES=8) achieve a better compression ratio (~19% to ~69%) compared to the

other benchmarks. The compression ratios are in the same range for CS16 and CS32

with MF.I and for all cache configurations for mcFiltrate with MF.B.

140

Table 7.7 Compression Ratio of Splash2 with Static Dictionary (DS=256) for MF.I

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 1.02 1.02 1.02 1.03 1.07 1.02 1.00 1.01

cholesky 1.02 1.02 1.02 1.02 1.14 1.12 1.12 1.12

fft 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99

fmm 1.02 1.02 1.02 1.02 1.25 1.24 1.24 1.23

lu 1.00 1.00 1.00 1.01 0.99 0.99 0.99 1.01

radiosity 0.86 0.84 0.85 0.86 1.00 1.00 1.00 1.00

radix 1.06 1.04 1.04 1.03 1.03 1.02 1.01 1.01

raytrace 1.07 1.07 1.09 1.10 1.00 1.00 1.00 1.00

water-ns 1.02 1.03 1.04 1.03 1.16 1.13 1.10 1.09

water-sp 1.01 1.01 1.01 1.01 1.10 1.10 1.10 1.10

Total 1.02 1.02 1.01 1.01 1.06 1.05 1.05 1.05

Table 7.9 and Table 7.10 show the compression ratio for Parsec benchmarks

for CS64 with static and dynamic dictionary, respectively. The average TPB is re-

duced by 3% to 14% depending on the dictionary type, dictionary entry size (DES),

and number of cores. When individual benchmarks are considered, x264 and

bodytrack with DES=1, dedup with DES=2, and blackscholes with DES=4 benefit

the most.

141

Table 7.8 Compression Ratio of Splash2 with Dynamic Dictionary (DS=256) for MF.I

(CS64)

Dictionary Entry

Size in Bytes
DES=4 DES=8

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

barnes 1.00 1.00 1.00 1.01 0.99 0.99 0.99 1.00

cholesky 1.07 1.09 1.10 1.11 1.69 1.61 1.54 1.47

fft 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99

fmm 1.02 1.02 1.02 1.02 1.31 1.28 1.27 1.25

lu 1.00 1.00 1.00 1.00 0.99 0.99 1.29 1.29

radiosity 1.30 1.66 1.79 2.63 1.00 1.00 1.00 1.00

radix 1.46 1.31 1.25 1.19 1.12 1.07 1.05 1.04

raytrace 1.09 1.05 1.04 1.03 1.00 1.00 1.00 1.00

water-ns 1.00 1.00 1.00 1.00 1.13 1.13 1.13 1.10

water-sp 1.01 1.00 1.01 1.01 1.13 1.12 1.12 1.12

Total 1.06 1.05 1.06 1.06 1.09 1.08 1.08 1.08

Table 7.9 Compression Ratio of Parsec with Static Dictionary (DS=256) for MF.I

(CS64)

Dictionary Entry

Size in Bytes
DES=1 DES=2 DES=4

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.12 2.08 2.03 1.97

bodytrack 1.55 1.49 1.43 - 1.00 1.00 1.00 - 1.04 1.03 1.03 -

canneal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.19 1.19 1.18

dedup 1.17 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.12 1.13 1.13 1.13

ferret 1.04 1.04 1.04 1.03 1.01 1.01 1.01 1.01 1.09 1.10 1.09 1.09

fluidanimate 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.18 1.18 1.18 1.19

swaptions 1.20 1.28 1.33 0.95 1.14 1.21 1.26 0.94 1.45 1.57 1.67 1.04

vips 1.12 1.12 1.12 1.12 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01

x264 1.66 1.59 1.61 1.60 1.02 1.03 1.02 1.02 1.03 1.04 1.03 1.03

Total 1.14 1.14 1.13 1.12 1.03 1.03 1.03 1.04 1.08 1.08 1.08 1.09

142

Table 7.10 Compression Ratio of Parsec with Dynamic Dictionary (DS=256) for MF.I

(CS64)

Dictionary Entry

Size in Bytes
DES=1 DES=2 DES=4

Benchmark

/Cores
N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.12 2.08 2.03 1.97

bodytrack 1.45 1.42 1.39 - 1.00 1.00 1.00 - 1.05 1.06 1.07 -

canneal 1.08 1.07 1.07 1.07 1.00 1.00 1.00 1.00 1.18 1.17 1.17 1.17

dedup 1.10 1.09 1.08 1.07 1.16 1.16 1.16 1.15 1.16 1.15 1.14 1.14

ferret 1.04 1.03 1.03 1.02 1.01 1.01 1.01 1.01 1.21 1.21 1.20 1.20

fluidanimate 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.17 1.18 1.18 1.18

swaptions 1.18 1.26 1.31 0.94 1.14 1.21 1.26 0.94 1.27 1.37 1.46 1.01

vips 1.12 1.11 1.09 1.08 1.02 1.02 1.01 1.01 1.03 1.02 1.02 1.02

x264 1.62 1.54 1.57 1.57 1.02 1.02 1.02 1.01 1.04 1.05 1.04 1.04

Total 1.14 1.13 1.12 1.10 1.03 1.03 1.03 1.03 1.10 1.10 1.09 1.10

In conclusion, a dictionary helps reduce the number of reported trace bits.

However, the effectiveness of a dictionary depends on the behavior of the bench-

marks. In embedded systems, most of the time applications run by a processor are

fixed and known ahead of the time. Thus, designers can use these dictionaries de-

pending on the application.

143

CONCLUSIONS AND FUTURE WORK

The growing complexity of hardware with a shift to multicores and systems-

on-a-chip, the growing complexity and sophistication of the software stack, and

tightening time-to-market requirements make software testing and debugging one of

the most critical and time-consuming aspects of embedded systems development.

Thus, providing better tools to locate and fix software bugs faster helps increase the

software reliability and reduce development cost.

Many vendors of embedded platforms are allocating on-chip resources dedi-

cated to hardware tracing and debugging. Hardware control-flow and data-flow trac-

es can be used to faithfully replay programs offline and thus locate bugs faster, and

determine the history of events that led to a system crash. However, state-of-the-art

hardware trace solutions typically do not support the on-the-fly data tracing that is

crucial to debug and replay parallel programs because it is cost-prohibitive, requir-

ing both deep on-chip trace buffers and wide trace ports.

This dissertation introduces a new hardware/software technique for on-the-

fly capturing and filtering read data value traces in multicore systems called mcFil-

trate. mcFiltrate uses first-access tracking bits attached to the L1 data caches of

each processor core to keep track of data items that have already been emitted. In

addition, mcFiltrate exploits cache coherence protocol states to further reduce the

number of trace messages by eliminating the need to report a single shared data

item by multiple processor cores. The software debugger with instruction set simula-

144

tor is extended to model the behavior of tracing hardware structures and to decode

incoming trace messages to ensure faithful program replay on its side.

 mcFiltrate effectiveness is explored using a simulation-based experimental

environment built on top of the Multi2Sim architectural simulator running parallel

programs from the Splash2 and Parsec benchmark suites. As a measure of effective-

ness, the trace port bandwidth expressed in the number of bits streamed on the

trace port per instruction executed and the number of bits per processor clock cycle

is used. In addition, the size of on-chip trace buffers and the number of trace pins

required for on-the-fly tracing is determined. The results show that mcFiltrate sig-

nificantly reduces the required trace port bandwidth when compared to the original

Nexus-like or even compressed Nexus-like read data tracing. The effectiveness of

mcFiltrate is higher in systems with larger private caches and improves as the num-

ber of processors increase if inheriting FA bits is used in cache-to-cache transfers.

For a single core processor, mcFiltrate reduces the average required trace port

bandwidth relative to Nexus-like tracing from 13.4 times for Parsec running on the

small cache configuration to 59.6 times for Splash2 running on the large cache con-

figuration. For an octa-core processor, mcFiltrate reduces the average trace port

bandwidth from 14.1 times for Parsec running on the small cache configuration to

73.8 times for Splash2 running on the large cache configuration. In addition, mcFil-

trate makes real-time data tracing feasible as it reduces the requirements for on-

chip trace buffers by the several orders of magnitude, and the number of required

trace port pins is reduced up to 16 times. This dissertation also explores the effec-

tiveness of additional dictionary-based trace compression and finds its overall effec-

tiveness to be modest, although several benchmarks experienced significant benefits.

145

Although this dissertation focuses on unobtrusive data tracing through trace

debug ports, mcFiltrate is applicable to hardware supported tracing scenarios where

collected traces are written into the system memory. Future research can explore

the obtrusiveness of mcFiltrate when traces are exposed to the system memory. An-

other possible venue for future research is to explore scaling to a larger number of

processor cores and how hidden processor cores solely dedicated to handling trace

data can be utilized for achieving even higher effectiveness.

146

APENDIX A

Figure. A.1 Total First-access Miss Rate of Splash2 (top) and Parsec (bottom) with

G=32

0

1

2

3

4

5

6

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Splash2: Total FA Miss Rate [%]

N=1 N=2 N=4 N=8

0

1

2

3

4

5

6

7

CS16 CS32 CS64 CS16 CS32 CS64

MF.B MF.I

Parsec: Total FA Miss Rate [%]

N=1 N=2 N=4 N=8

147

A.1 Trace Port Bandwidth in BPI

A.1.1 Granularity Size is 4 (G=4)

Table. A.1 Average TPB in bpi for Splash2 with CS32 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.03 0.77 15.31 1.15 0.57 15.59 1.45 0.44 15.87 1.75 0.38

cholesky 15.33 0.67 16.27 0.71 0.70 15.85 0.56 0.52 15.61 0.40 0.34

fft 10.64 1.49 10.82 1.51 1.50 11.00 1.53 1.52 11.19 1.55 1.53

fmm 8.82 0.21 8.96 0.22 0.20 9.14 0.22 0.20 9.34 0.23 0.19

lu 11.87 0.52 12.06 0.52 0.50 12.26 0.53 0.37 12.47 0.40 0.23

radiosity 12.11 0.08 12.36 0.43 0.06 12.61 0.42 0.05 12.61 0.52 0.05

radix 13.40 0.53 13.74 1.41 0.56 14.09 1.48 0.57 14.53 1.53 0.60

raytrace 15.17 0.32 15.45 0.53 0.25 15.73 0.62 0.23 16.01 0.81 0.20

water-ns 10.64 0.22 10.81 0.25 0.22 10.98 0.39 0.03 11.15 0.41 0.03

water-sp 11.38 0.05 11.55 0.06 0.05 11.73 0.07 0.05 11.90 0.07 0.05

Total 12.34 0.35 12.62 0.54 0.32 12.88 0.59 0.29 13.17 0.63 0.27

Table. A.2 Average TPB in bpi for Parsec with CS32 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.17 0.47 12.43 0.99 0.48 12.68 1.13 0.48 12.94 1.17 0.49

bodytrack 9.74 0.57 10.01 0.93 0.52 10.29 1.06 0.47 - - -

canneal 12.08 1.19 12.39 1.22 1.21 12.71 1.24 1.24 13.04 1.27 1.26

dedup 13.30 0.99 13.66 1.02 1.01 14.02 1.01 1.00 14.39 1.04 1.02

ferret 10.41 0.77 10.67 0.77 0.77 10.92 0.75 0.75 11.19 0.73 0.73

fluidanimate 10.94 0.22 11.28 0.40 0.22 11.63 0.57 0.22 12.14 0.63 0.21

swaptions 13.42 0.02 13.69 0.16 0.02 13.96 0.41 0.02 14.24 0.64 0.02

vips 9.70 1.05 9.93 1.07 1.07 10.17 1.19 1.08 10.43 1.28 1.10

x264 6.97 0.18 7.21 0.22 0.22 7.49 0.22 0.21 7.76 0.21 0.20

Total 9.73 0.59 10.00 0.67 0.61 10.29 0.72 0.60 10.62 0.73 0.61

148

A.1.2 Granularity Size is 32 (G=32)

Table. A.3 Average TPB in bpi for Splash2 with CS16 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.03 3.97 15.31 4.07 2.95 15.59 4.14 2.13 15.86 4.20 1.58

cholesky 15.35 1.73 16.21 1.23 1.21 15.87 0.91 0.85 15.59 0.59 0.51

fft 10.65 2.42 10.84 2.46 2.46 11.02 2.46 2.46 11.19 2.46 2.46

fmm 8.82 0.53 8.96 0.55 0.49 9.14 0.56 0.47 9.33 0.57 0.46

lu 11.88 0.49 12.07 0.52 0.49 12.27 0.52 0.28 12.47 0.56 0.26

radiosity 12.11 0.54 12.36 1.19 0.31 12.59 1.21 0.29 12.58 1.38 0.21

radix 13.41 1.39 13.75 4.15 1.40 14.09 4.33 1.41 14.54 4.39 1.42

raytrace 15.17 1.95 15.45 2.27 1.56 15.73 2.43 1.40 16.01 2.70 1.22

water-ns 10.64 0.82 10.81 0.92 0.82 10.98 1.04 0.63 11.15 1.15 0.15

water-sp 11.38 0.12 11.55 0.14 0.12 11.73 0.16 0.12 11.90 0.17 0.11

Total 12.34 1.23 12.63 1.55 1.00 12.89 1.56 0.85 13.17 1.55 0.70

Table. A.4 Average TPB in bpi for Splash2 with CS32 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.03 1.39 15.31 2.01 1.04 15.59 2.46 0.79 15.87 2.92 0.66

cholesky 15.33 0.68 16.27 0.73 0.71 15.85 0.58 0.52 15.61 0.41 0.35

fft 10.64 1.41 10.82 1.42 1.42 11.00 1.42 1.42 11.19 1.43 1.43

fmm 8.82 0.36 8.96 0.38 0.35 9.14 0.40 0.35 9.34 0.41 0.33

lu 11.87 0.48 12.06 0.48 0.45 12.26 0.49 0.25 12.47 0.40 0.17

radiosity 12.11 0.19 12.36 0.95 0.14 12.61 0.95 0.12 12.61 1.16 0.10

radix 13.40 0.67 13.74 3.45 0.67 14.09 3.60 0.68 14.53 3.64 0.69

raytrace 15.17 0.61 15.45 1.01 0.46 15.73 1.21 0.41 16.01 1.52 0.35

water-ns 10.64 0.37 10.81 0.47 0.37 10.98 0.82 0.06 11.15 1.06 0.05

water-sp 11.38 0.10 11.55 0.12 0.10 11.73 0.14 0.09 11.90 0.15 0.08

Total 12.34 0.52 12.62 0.96 0.45 12.88 1.04 0.39 13.17 1.11 0.35

149

Table. A.5 Average TPB in bpi for Splash2 with CS64 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 15.02 0.37 15.31 1.13 0.31 15.59 1.70 0.28 15.86 2.44 0.32

cholesky 15.29 0.62 16.23 0.65 0.63 15.87 0.51 0.45 15.62 0.36 0.29

fft 10.63 1.09 10.82 1.10 1.10 11.00 1.10 1.10 11.19 1.11 1.11

fmm 8.82 0.26 8.96 0.28 0.26 9.14 0.30 0.25 9.33 0.31 0.24

lu 11.86 0.45 12.06 0.30 0.27 12.26 0.32 0.15 12.47 0.20 0.07

radiosity 12.11 0.09 12.32 0.87 0.07 12.61 0.90 0.08 12.61 1.12 0.06

radix 13.38 0.38 13.74 3.17 0.38 14.09 3.30 0.38 14.53 3.35 0.39

raytrace 15.16 0.19 15.45 0.63 0.15 15.73 0.83 0.12 16.01 1.15 0.10

water-ns 10.64 0.03 10.81 0.13 0.03 10.97 0.76 0.03 11.15 1.04 0.03

water-sp 11.38 0.06 11.55 0.08 0.06 11.73 0.10 0.05 11.90 0.12 0.04

Total 12.33 0.26 12.62 0.72 0.24 12.88 0.84 0.23 13.17 0.95 0.21

Table. A.6 Average TPB in bpi for Parsec with CS16 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.18 2.53 12.43 3.24 2.52 12.68 3.83 2.53 12.94 4.24 2.53

bodytrack 9.77 2.02 10.02 3.37 1.62 10.29 4.12 1.22 - - -

canneal 12.12 3.89 12.41 3.92 3.90 12.72 3.93 3.91 13.04 3.95 3.91

dedup 13.32 2.39 13.69 2.43 2.42 14.03 2.41 2.39 14.39 2.42 2.40

ferret 10.42 2.15 10.67 2.13 2.13 10.93 2.11 2.11 11.19 1.99 1.98

fluidanimate 10.94 0.26 11.28 1.14 0.27 11.63 2.02 0.28 12.14 2.36 0.28

swaptions 13.42 0.76 13.69 1.10 0.77 13.96 1.73 0.79 14.24 2.49 0.79

vips 9.71 1.48 9.95 1.79 1.42 10.19 1.81 1.43 10.43 2.00 1.40

x264 6.98 0.36 7.22 0.46 0.46 7.49 0.43 0.42 7.76 0.40 0.38

Total 9.74 1.38 10.01 1.67 1.37 10.30 1.83 1.33 10.62 1.75 1.30

150

Table. A.7 Average TPB in bpi for Parsec with CS32 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.18 2.48 12.43 3.25 2.48 12.68 3.86 2.48 12.94 4.25 2.45

bodytrack 9.77 1.85 10.02 3.22 1.42 10.29 3.95 1.01 - - -

canneal 12.12 3.48 12.41 3.51 3.49 12.72 3.52 3.49 13.04 3.54 3.48

dedup 13.32 1.85 13.69 1.88 1.88 14.03 1.85 1.83 14.39 1.87 1.84

ferret 10.42 1.20 10.67 1.16 1.16 10.93 1.11 1.11 11.19 1.07 1.07

fluidanimate 10.94 0.25 11.28 1.14 0.24 11.63 2.01 0.25 12.14 2.33 0.24

swaptions 13.42 0.13 13.69 0.47 0.12 13.96 1.18 0.16 14.24 1.88 0.18

vips 9.71 1.21 9.95 1.23 1.21 10.19 1.54 1.17 10.43 1.76 1.14

x264 6.98 0.27 7.22 0.34 0.34 7.49 0.32 0.31 7.76 0.29 0.28

Total 9.74 1.08 10.01 1.31 1.07 10.30 1.52 1.02 10.62 1.45 0.99

Table. A.8 Average TPB in bpi for Parsec with CS64 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 12.18 2.48 12.43 3.33 2.48 12.68 3.88 2.45 12.94 4.25 2.31

bodytrack 9.77 1.10 10.02 2.44 0.66 10.29 3.21 0.41 - - -

canneal 12.12 3.17 12.41 3.20 3.17 12.72 3.22 3.16 13.04 3.23 3.14

dedup 13.32 1.26 13.69 1.27 1.26 14.03 1.28 1.26 14.39 1.30 1.27

ferret 10.42 0.84 10.67 0.80 0.80 10.93 0.78 0.77 11.19 0.76 0.75

fluidanimate 10.94 0.22 11.28 1.11 0.21 11.63 1.98 0.22 12.14 2.31 0.21

swaptions 13.42 0.00 13.69 0.27 0.00 13.96 1.08 0.00 14.24 1.85 0.01

vips 9.71 1.08 9.95 1.16 1.07 10.19 1.35 1.05 10.43 1.64 1.01

x264 6.98 0.19 7.22 0.23 0.23 7.49 0.20 0.19 7.76 0.19 0.18

Total 9.74 0.85 10.01 1.08 0.83 10.30 1.28 0.79 10.62 1.27 0.80

151

A.2 Trace Port Bandwidth in BPC

A.2.1 Granularity Size is 4 (G=4)

Table. A.9 Average TPB in bpc for Splash2 with CS16 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 5.50 0.79 8.24 1.22 0.88 14.96 2.25 1.14 26.79 4.05 1.50

cholesky 2.93 0.34 6.58 0.49 0.49 14.67 0.81 0.77 32.99 1.19 1.05

fft 2.79 0.67 4.78 1.16 1.16 7.93 1.91 1.91 11.59 2.77 2.77

fmm 3.59 0.14 7.17 0.27 0.24 13.92 0.53 0.43 25.16 0.94 0.74

lu 4.67 0.21 8.97 0.42 0.40 15.56 0.73 0.58 24.38 1.19 0.84

radiosity 5.87 0.11 10.79 0.45 0.11 20.81 0.85 0.19 37.60 1.77 0.26

radix 3.14 0.18 5.01 0.60 0.28 7.67 0.94 0.43 9.41 1.15 0.53

raytrace 7.53 0.46 14.35 1.02 0.72 26.40 1.98 1.21 42.70 3.57 1.70

water-ns 6.49 0.29 12.68 0.59 0.56 24.34 1.19 0.82 43.51 2.12 0.31

water-sp 7.50 0.04 12.40 0.08 0.07 20.29 0.13 0.11 32.48 0.23 0.17

Total 4.92 0.31 8.76 0.61 0.44 15.61 1.07 0.68 25.64 1.71 0.93

152

Table. A.10 Average TPB in bpc for Splash2 with CS32 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 6.20 0.32 8.92 0.67 0.33 15.82 1.47 0.45 27.43 3.02 0.65

cholesky 3.30 0.14 7.44 0.33 0.32 16.75 0.60 0.54 32.91 0.85 0.73

fft 3.07 0.43 5.32 0.74 0.74 8.77 1.22 1.21 11.83 1.63 1.62

fmm 3.70 0.09 7.37 0.18 0.16 14.12 0.34 0.30 25.36 0.61 0.52

lu 5.16 0.23 9.68 0.41 0.40 16.68 0.72 0.50 24.64 0.80 0.46

radiosity 6.11 0.04 11.26 0.39 0.05 21.85 0.73 0.09 38.37 1.57 0.14

radix 3.39 0.13 5.20 0.53 0.21 7.87 0.83 0.32 9.47 0.99 0.39

raytrace 8.62 0.18 16.01 0.55 0.26 29.03 1.15 0.42 45.82 2.31 0.57

water-ns 7.00 0.15 13.50 0.31 0.28 24.71 0.87 0.07 43.29 1.59 0.10

water-sp 7.63 0.04 12.57 0.06 0.06 20.42 0.12 0.09 32.64 0.20 0.13

Total 5.31 0.15 9.32 0.40 0.24 16.44 0.75 0.37 25.99 1.24 0.52

Table. A.11 Average TPB in bpc for Splash2 with CS64 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 6.63 0.08 9.20 0.40 0.10 16.20 1.08 0.16 28.05 2.65 0.33

cholesky 4.10 0.17 7.68 0.31 0.30 16.64 0.53 0.47 33.06 0.75 0.61

fft 3.37 0.36 5.41 0.58 0.58 8.91 0.96 0.95 11.91 1.27 1.27

fmm 3.77 0.06 7.41 0.12 0.11 14.19 0.23 0.21 25.38 0.42 0.35

lu 5.59 0.22 9.82 0.25 0.22 16.87 0.44 0.26 24.82 0.33 0.10

radiosity 6.23 0.02 11.33 0.36 0.03 21.99 0.70 0.06 38.50 1.52 0.10

radix 3.57 0.12 5.28 0.49 0.17 7.91 0.76 0.26 9.49 0.93 0.31

raytrace 9.05 0.06 16.53 0.36 0.09 29.89 0.83 0.14 46.47 1.81 0.18

water-ns 7.50 0.01 14.51 0.06 0.02 25.04 0.71 0.03 43.43 1.51 0.05

water-sp 7.72 0.02 12.61 0.04 0.03 20.47 0.08 0.05 32.68 0.15 0.06

Total 5.65 0.09 9.49 0.30 0.15 16.59 0.60 0.25 26.14 1.05 0.35

153

Table. A.12 Average TPB in bpc for Parsec with CS16 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 6.31 0.26 10.47 0.82 0.41 15.01 1.34 0.59 19.36 1.77 0.76

bodytrack 2.43 0.16 4.10 0.40 0.24 6.38 0.69 0.34 - - -

canneal 2.24 0.24 2.90 0.31 0.31 3.36 0.36 0.36 3.58 0.38 0.38

dedup 2.78 0.24 5.19 0.44 0.44 9.60 0.81 0.81 14.82 1.24 1.23

ferret 2.64 0.38 5.60 0.79 0.79 9.21 1.27 1.27 12.01 1.57 1.57

fluidanimate 5.49 0.12 9.20 0.34 0.19 12.83 0.65 0.27 16.13 0.87 0.31

swaptions 5.71 0.03 10.78 0.15 0.05 18.79 0.61 0.12 28.80 1.47 0.20

vips 2.48 0.29 4.76 0.59 0.54 9.89 1.23 1.13 17.74 2.27 1.99

x264 4.45 0.14 6.18 0.24 0.24 10.42 0.37 0.37 14.72 0.49 0.47

Total 3.12 0.23 5.24 0.43 0.39 8.41 0.70 0.61 11.56 0.95 0.82

Table. A.13 Average TPB in bpc for Parsec with CS32 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 7.57 0.29 11.31 0.90 0.43 15.88 1.41 0.61 19.68 1.78 0.75

bodytrack 2.89 0.17 4.36 0.41 0.23 6.58 0.68 0.30 - - -

canneal 2.63 0.26 3.16 0.31 0.31 3.47 0.34 0.34 3.67 0.36 0.36

dedup 3.55 0.27 6.58 0.49 0.49 11.21 0.81 0.80 15.09 1.09 1.07

ferret 3.62 0.27 7.05 0.51 0.51 11.27 0.78 0.78 14.72 0.96 0.96

fluidanimate 5.72 0.12 9.46 0.34 0.18 13.00 0.64 0.25 16.19 0.84 0.28

swaptions 6.43 0.01 11.89 0.14 0.01 20.05 0.59 0.03 30.22 1.36 0.03

vips 2.85 0.31 6.01 0.65 0.65 10.77 1.26 1.14 17.93 2.20 1.88

x264 5.18 0.14 7.07 0.22 0.22 11.11 0.32 0.31 15.01 0.40 0.39

Total 3.73 0.23 6.12 0.41 0.37 9.07 0.64 0.53 12.01 0.83 0.69

154

Table. A.14 Average TPB in bpc for Parsec with CS64 (G=4)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 7.59 0.29 11.10 0.86 0.42 15.89 1.41 0.60 19.70 1.77 0.75

bodytrack 3.21 0.14 4.43 0.35 0.15 6.61 0.60 0.18 - - -

canneal 2.84 0.26 3.22 0.29 0.29 3.53 0.32 0.32 3.74 0.34 0.33

dedup 4.29 0.26 6.88 0.40 0.40 11.50 0.67 0.65 15.31 0.88 0.86

ferret 4.20 0.20 7.06 0.32 0.32 10.61 0.46 0.46 12.86 0.55 0.54

fluidanimate 5.93 0.11 9.51 0.32 0.17 13.04 0.62 0.23 16.20 0.82 0.26

swaptions 6.62 0.00 12.49 0.10 0.00 21.07 0.63 0.00 30.99 1.40 0.00

vips 3.38 0.35 6.00 0.64 0.62 11.31 1.26 1.16 18.18 2.16 1.83

x264 6.00 0.12 7.21 0.17 0.17 11.15 0.24 0.23 15.12 0.31 0.29

Total 4.26 0.22 6.21 0.36 0.32 9.19 0.56 0.45 11.99 0.73 0.59

A.2.2 Granularity Size is 32 (G=32)

Table. A.15 Average TPB in bpc for Splash2 with CS16 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 5.50 6.20 8.24 8.92 1.59 14.96 15.82 27.43 26.79 27.43 2.66

cholesky 2.93 3.30 6.58 7.44 0.49 14.67 16.75 32.91 32.99 32.91 1.09

fft 2.79 3.07 4.78 5.32 1.08 7.93 8.77 11.83 11.59 11.83 2.54

fmm 3.59 3.70 7.17 7.37 0.39 13.92 14.12 25.36 25.16 25.36 1.23

lu 4.67 5.16 8.97 9.68 0.36 15.56 16.68 24.64 24.38 24.64 0.51

radiosity 5.87 6.11 10.79 11.26 0.27 20.81 21.85 38.37 37.60 38.37 0.62

radix 3.14 3.39 5.01 5.20 0.51 7.67 7.87 9.47 9.41 9.47 0.92

raytrace 7.53 8.62 14.35 16.01 1.44 26.40 29.03 45.82 42.70 45.82 3.25

water-ns 6.49 7.00 12.68 13.50 0.96 24.34 24.71 43.29 43.51 43.29 0.58

water-sp 7.50 7.63 12.40 12.57 0.13 20.29 20.42 32.64 32.48 32.64 0.31

Total 4.92 5.31 8.76 9.32 0.69 15.61 16.44 25.99 25.64 25.99 1.36

155

Table. A.16 Average TPB in bpc for Splash2 with CS32 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 6.20 1.45 8.92 2.19 0.60 15.82 3.97 7.09 27.43 7.09 1.14

cholesky 3.30 0.33 7.44 0.50 0.33 16.75 0.84 1.25 32.91 1.25 0.74

fft 3.07 0.63 5.32 1.08 0.70 8.77 1.77 2.55 11.83 2.55 1.51

fmm 3.70 0.22 7.37 0.44 0.29 14.12 0.86 1.54 25.36 1.54 0.91

lu 5.16 0.19 9.68 0.38 0.36 16.68 0.66 1.10 24.64 1.10 0.33

radiosity 6.11 0.26 11.26 1.04 0.13 21.85 1.99 4.12 38.37 4.12 0.30

radix 3.39 0.33 5.20 1.51 0.25 7.87 2.35 2.84 9.47 2.84 0.45

raytrace 8.62 0.97 16.01 2.11 0.47 29.03 4.08 7.21 45.82 7.21 1.00

water-ns 7.00 0.50 13.50 1.08 0.47 24.71 2.30 4.48 43.29 4.48 0.21

water-sp 7.63 0.08 12.57 0.15 0.10 20.42 0.27 0.47 32.64 0.47 0.23

Total 5.31 0.49 9.32 1.07 0.33 16.44 1.89 3.02 25.99 3.02 0.68

Table. A.17 Average TPB in bpc for Splash2 with CS64 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

barnes 6.63 0.57 9.20 1.17 0.18 16.20 2.50 5.05 28.05 5.05 0.57

cholesky 4.10 0.15 7.68 0.33 0.30 16.64 0.61 0.87 33.06 0.87 0.61

fft 3.37 0.41 5.41 0.70 0.55 8.91 1.14 1.51 11.91 1.51 1.18

fmm 3.77 0.15 7.41 0.31 0.21 14.19 0.61 1.11 25.38 1.11 0.66

lu 5.59 0.21 9.82 0.39 0.22 16.87 0.67 0.79 24.82 0.79 0.14

radiosity 6.23 0.10 11.33 0.87 0.07 21.99 1.65 3.54 38.50 3.54 0.19

radix 3.57 0.17 5.28 1.31 0.15 7.91 2.01 2.37 9.49 2.37 0.26

raytrace 9.05 0.34 16.53 1.05 0.16 29.89 2.22 4.34 46.47 4.34 0.29

water-ns 7.50 0.24 14.51 0.59 0.04 25.04 1.86 4.12 43.43 4.12 0.12

water-sp 7.72 0.07 12.61 0.13 0.06 20.47 0.24 0.42 32.68 0.42 0.11

Total 5.65 0.22 9.49 0.71 0.18 16.59 1.33 2.20 26.14 2.20 0.42

156

Table. A.18 Average TPB in bpc for Parsec with CS16 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 6.31 1.31 10.47 2.73 2.12 15.01 4.53 2.99 19.36 6.34 3.79

bodytrack 2.43 0.50 4.10 1.38 0.66 6.38 2.55 0.76 - - -

canneal 2.24 0.72 2.90 0.92 0.91 3.36 1.04 1.03 3.58 1.08 1.07

dedup 2.78 0.50 5.19 0.92 0.92 9.60 1.65 1.64 14.82 2.49 2.47

ferret 2.64 0.54 5.60 1.12 1.12 9.21 1.78 1.78 12.01 2.13 2.13

fluidanimate 5.49 0.13 9.20 0.93 0.22 12.83 2.23 0.31 16.13 3.14 0.37

swaptions 5.71 0.33 10.78 0.87 0.61 18.79 2.33 1.06 28.80 5.03 1.60

vips 2.48 0.38 4.76 0.85 0.68 9.89 1.76 1.39 17.74 3.39 2.38

x264 4.45 0.23 6.18 0.39 0.39 10.42 0.59 0.58 14.72 0.75 0.72

Total 3.12 0.44 5.24 0.88 0.72 8.41 1.50 1.09 11.56 1.91 1.42

Table. A.19 Average TPB in bpc for Parsec with CS32 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 7.57 1.54 11.31 2.96 2.26 15.88 4.83 3.10 19.68 6.46 3.73

bodytrack 2.89 0.55 4.36 1.41 0.62 6.58 2.53 0.65 - - -

canneal 2.63 0.76 3.16 0.89 0.89 3.47 0.96 0.95 3.67 1.00 0.98

dedup 3.55 0.49 6.58 0.91 0.90 11.21 1.48 1.47 15.09 1.96 1.93

ferret 3.62 0.42 7.05 0.77 0.76 11.27 1.15 1.15 14.72 1.41 1.41

fluidanimate 5.72 0.13 9.46 0.95 0.20 13.00 2.24 0.28 16.19 3.10 0.32

swaptions 6.43 0.06 11.89 0.41 0.10 20.05 1.69 0.23 30.22 4.00 0.38

vips 2.85 0.36 6.01 0.74 0.73 10.77 1.63 1.24 17.93 3.03 1.97

x264 5.18 0.20 7.07 0.34 0.33 11.11 0.47 0.46 15.01 0.57 0.54

Total 3.73 0.41 6.12 0.80 0.66 9.07 1.34 0.90 12.01 1.64 1.12

157

Table. A.20 Average TPB in bpc for Parsec with CS64 (G=32)

Cores N=1 N=2 N=4 N=8

Mechanism NX MF.B|I NX MF.B MF.I NX MF.B MF.I NX MF.B MF.I

blackscholes 7.59 1.55 11.10 2.97 2.22 15.89 4.86 3.07 19.70 6.47 3.52

bodytrack 3.21 0.36 4.43 1.08 0.29 6.61 2.06 0.26 - - -

canneal 2.84 0.75 3.22 0.83 0.82 3.53 0.89 0.88 3.74 0.93 0.90

dedup 4.29 0.41 6.88 0.64 0.64 11.50 1.05 1.04 15.31 1.38 1.35

ferret 4.20 0.34 7.06 0.53 0.53 10.61 0.76 0.75 12.86 0.87 0.87

fluidanimate 5.93 0.12 9.51 0.94 0.18 13.04 2.22 0.25 16.20 3.08 0.28

swaptions 6.62 0.00 12.49 0.25 0.00 21.07 1.63 0.00 30.99 4.02 0.03

vips 3.38 0.38 6.00 0.70 0.65 11.31 1.50 1.16 18.18 2.86 1.76

x264 6.00 0.16 7.21 0.23 0.23 11.15 0.31 0.29 15.12 0.37 0.34

Total 4.26 0.37 6.21 0.67 0.51 9.19 1.14 0.70 11.99 1.43 0.90

A.3 Compression Ratio with Dictionaries

Table. A.21 Compression Ratio of Splash2 with DS=256 and DES = 4 and 8 for MF.I

(CS64)

Dictionary Entry

Size in Bytes
Static Dynamic

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.25 1.25 1.24 1.23 1.58 1.56 1.55 1.53

bodytrack 1.04 1.08 1.22 1.41 2.14 2.03 1.97 1.84

canneal 1.13 1.13 1.12 1.12 1.27 1.25 1.24 1.23

dedup 1.44 1.44 1.44 1.43 2.33 2.23 2.05 1.57

ferret 1.08 1.07 1.07 1.07 2.29 2.27 2.28 2.22

fluidanimate 1.28 1.28 1.26 1.24 1.39 1.36 1.36 1.36

swaptions 1.26 1.25 1.25 1.24 12.93 8.38 5.04 2.87

vips 1.24 1.23 1.22 1.22 1.60 1.61 1.54 1.46

x264 1.21 1.21 1.20 1.20 1.91 1.81 1.60 1.49

Total 1.21 1.21 1.20 1.20 1.89 1.80 1.67 1.54

158

Table. A.22 Compression Ratio of Parsec with DS=256 and DES = 4 and 8 for MF.I

(CS64)

Dictionary Entry

Size in Bytes
Static Dynamic

Benchmark/Cores N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

blackscholes 1.46 1.44 1.43 1.42 1.95 2.07 1.84 1.79

bodytrack 1.24 1.23 1.22 - 1.53 1.54 1.54 -

canneal 1.30 1.29 1.28 1.27 1.72 1.68 1.64 1.61

dedup 1.16 1.13 1.12 1.11 1.67 1.64 1.60 1.56

ferret 1.18 1.18 1.17 1.17 1.70 1.66 1.62 1.58

fluidanimate 1.30 1.29 1.28 1.28 2.13 2.04 1.97 1.90

swaptions 1.55 1.47 1.42 1.13 2.12 2.00 1.92 1.85

vips 1.42 1.39 1.38 1.06 1.63 1.59 1.57 1.52

x264 1.17 1.16 0.99 0.99 1.27 1.25 1.24 1.22

Total 1.26 1.24 1.18 1.11 1.60 1.57 1.54 1.51

159

 REFERENCES

[1] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum: Technology, Engi-

neering, and Science News, 01-Feb-2009.

[2] E. Sweeney, “Medical device recalls reach historic levels in 2018 with software

as leading cause,” FierceHealthcare, 09-May-2018.

[3] Z. Fu, C. Guo, S. Ren, Y. Jiang, and L. Sha, “Study of Software-Related Causes

in the FDA Medical Device Recalls,” in 2017 22nd International Conference on

Engineering of Complex Computer Systems (ICECCS), Fukuoka, Japan, 2017,

pp. 60–69.

[4] “5 Automotive Embedded Software Recalls and Updates we’ve seen in 2014 |

Vector Software.” [Online]. Available:

https://www.vectorcast.com/blog/2014/06/5-automotive-embedded-software-

recalls-and-updates-weve-seen-2014-0. [Accessed: 01-Jul-2018].

[5] J. Wakefield, “Nest thermostat bug leaves users cold,” BBC News, 14-Jan-2016.

[6] J. Plungis, “Fiat Chrysler Recalls 4.8 Million Vehicles Because Cruise Control

May Not Turn Off,” Consumer Reports. [Online]. Available:

https://www.consumerreports.org/car-recalls-defects/fiat-chrysler-recalls-4-8-

million-vehicles-because-cruise-control-may-not-turn-off/. [Accessed: 01-Jul-

2018].

[7] A. Al-Heeti and D. Kerr, “Uber’s fatal self-driving crash reportedly caused by

software,” CNET, 07-May-2018.

[8] “University of Cambridge Reverse Debugging Study.” [Online]. Available:

https://www.roguewave.com/company/news/2013/university-of-cambridge-

reverse-debugging-study. [Accessed: 17-Dec-2017].

[9] “International Technology Roadmap for Semiconductors 2007 Edition.”

[Online]. Available: https://goo.gl/TdZY52. [Accessed: 08-Apr-2016].

160

[10] S. Rostedt, “ftrace - Function Tracer — The Linux Kernel documentation.”

[Online]. Available: https://www.kernel.org/doc/html/v4.18/trace/ftrace.html.

[Accessed: 19-Apr-2019].

[11] “About DTrace.” [Online]. Available: http://dtrace.org/blogs/about/. [Accessed:

26-Apr-2019].

[12] “LTTng v2.10 — LTTng Documentation,” LTTng. [Online]. Available:

http://lttng.org/docs/v2.10/. [Accessed: 26-Apr-2019].

[13] M. Fleming, “A thorough introduction to eBPF.” [Online]. Available:

https://lwn.net/Articles/740157/. [Accessed: 26-Apr-2019].

[14] “SystemTap.” [Online]. Available: https://sourceware.org/systemtap/. [Accessed:

26-Apr-2019].

[15] windows-sdk-content, “About Event Tracing - Windows applications.” [Online].

Available: https://docs.microsoft.com/en-us/windows/desktop/etw/about-event-

tracing. [Accessed: 19-Mar-2019].

[16] C.-K. Luk et al., “Pin: building customized program analysis tools with dynamic

instrumentation,” in Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation, Chicago, IL, USA, 2005, pp.

190–200.

[17] M. Williams, “ARMV8 debug and trace architectures,” in Proceedings of the

2012 System, Software, SoC and Silicon Debug Conference, Vienna, Austria,

2012, pp. 1–6.

[18] W. Orme, “Debug and Trace for Multicore SoCs,” 2008. [Online]. Available:

https://www.arm.com/files/pdf/CoresightWhitepaper.pdf. [Accessed: 28-Mar-

2016].

[19] M. Ponugoti and A. Milenković, “Exploiting Cache Coherence for Effective On-

the-Fly Data Tracing in Multicores,” in 2016 IEEE 34th International Confer-

ence on Computer Design (ICCD), Phoenix, AZ, 2016, pp. 312–319.

[20] M. Ponugoti, A. K. Tewar, and A. Milenkovic, “On-the-fly load data value trac-

ing in multicores,” in Proceedings of the International conference on Compilers,

161

Architectures and Synthesis for Embedded Systems (CASES’16), Pittsburgh,

PA, 2016, pp. 312–319.

[21] V. Uzelac and A. Milenkovic, “Hardware-Based Load Value Trace Filtering for

On-the-Fly Debugging,” ACM TECS, vol. 12, no. 2s, pp. 1–18, May 2013.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations,” in Proceedings of

the 22nd Annual International Symposium on Computer Architecture, Santa

Margherita Ligure, Italy, 1995, pp. 24–36.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite,” in

Proceedings of the 17th international conference on Parallel architectures and

compilation techniques, Toronto, Ontario, Canada, 2008, p. 72.

[24] P. Anand, “Dynamic tracing in Linux user and kernel space,” Opensource.com,

06-Jul-2017. [Online]. Available: https://opensource.com/article/17/7/dynamic-

tracing-linux-user-and-kernel-space. [Accessed: 26-May-2019].

[25] A. R. Myers, “A Binary Instrumentation Tool Suite for Capturing and Com-

pressing Traces for Multithreaded Software,” University of Alabama in Hunts-

ville, Huntsville, AL, USA, 2014.

[26] P. Padala, “Playing with ptrace, Part I | Linux Journal.” [Online]. Available:

https://www.linuxjournal.com/article/6100. [Accessed: 19-Mar-2019].

[27] “Strace.” [Online]. Available: https://strace.io/. [Accessed: 28-Apr-2019].

[28] “ltrace.” [Online]. Available: https://www.ltrace.org/. [Accessed: 28-Apr-2019].

[29] “Linux system exploration and troubleshooting tool with first class support for

containers: draios/sysdig.” [Online]. Available: https://github.com/draios/sysdig.

[Accessed: 26-Apr-2019].

[30] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to

find periodic behavior and simulation points in applications,” in Proceedings

2001 International Conference on Parallel Architectures and Compilation Tech-

niques, Barcelona, Spain, 2001, pp. 3–14.

162

[31] Free Software Foundation, “Debugging with GDB: Process Record and Replay.”

[Online]. Available: https://sourceware.org/gdb/onlinedocs/gdb/Process-Record-

and-Replay.html. [Accessed: 19-Mar-2019].

[32] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure sketch-

ing: a technique for automated root cause diagnosis of in-production failures,”

in Proceedings of the 25th Symposium on Operating Systems Principles - SOSP

’15, Monterey, California, 2015, pp. 344–360.

[33] S. D. Sharma and M. Dagenais, “Hardware-assisted instruction profiling and

latency detection,” The Journal of Engineering, vol. 2016, no. 10, pp. 367–376,

Oct. 2016.

[34] L. Chen, S. Sultana, and R. Sahita, “HeNet: A Deep Learning Approach on In-

tel Processor Trace for Effective Exploit Detection,” arXiv:1801.02318 [cs], Jan.

2018.

[35] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding Control Flows Using Intel

Processor Trace,” in Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating Systems,

New York, NY, USA, 2017, pp. 585–598.

[36] D. Kwon, J. Seo, S. Baek, G. Kim, S. Ahn, and Y. Paek, “VM-CFI: Control-Flow

Integrity for Virtual Machine Kernel Using Intel PT,” in Computational Science

and Its Applications – ICCSA 2018, 2018, pp. 127–137.

[37] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent Backward-Edge

Control Flow Violation Detection Using Intel Processor Trace,” presented at the

Proceedings of the Seventh ACM on Conference on Data and Application Secu-

rity and Privacy, Scottsdale, Arizona, USA, 2017, pp. 173–184.

[38] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent and Effi-

cient CFI Enforcement with Intel Processor Trace,” in 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), Austin, TX,

USA, 2017, pp. 529–540.

163

[39] X. Wang, F. Huang, and H. Chen, “DTrace: fine-grained and efficient data in-

tegrity checking with hardware instruction tracing,” Cybersecurity, vol. 2, no. 1,

p. 1, Jan. 2019.

[40] J. Glanz, J. Creswell, T. Kaplan, and Z. Wichter, “After a Lion Air 737 Max

Crashed in October, Questions About the Plane Arose,” The New York Times,

10-Mar-2019.

[41] Greenhills, “SuperTrace Probe hardware debugger.” [Online]. Available:

https://www.ghs.com/products/supertraceprobe.html. [Accessed: 30-Jun-2018].

[42] Lauterbach, “TRACE32 PowerTrace Serial.” [Online]. Available:

https://www.lauterbach.com/frames.html?home.html. [Accessed: 30-Jun-2018].

[43] ARM, “DSTREAM.” [Online]. Available:

https://developer.arm.com/products/software-development-tools/debug-probes-

and-adapters/dstream. [Accessed: 02-Jul-2018].

[44] ARM, “ARM High Speed Serial Trace Probe (HSSTP),” ARM Developer.

[Online]. Available: https://developer.arm.com/products/software-development-

tools/debug-probes-and-adapters/dstream-family/dstream/high-speed-serial-

trace-probe. [Accessed: 25-Mar-2019].

[45] J. Campbell, V. Kazantsev, and H. O’Keeffe, “Real-Time Trace: A Better Way to

Debug Embedded Applications,” Ashling Microsystems, White Paper.

[46] ARM, “Arm Embedded Trace Macrocell Architecture Specification ETMv4.0 to

ETMv4.4,” 30-Apr-2018. [Online]. Available:

https://static.docs.arm.com/ihi0064/f/etm_v4_4_architecture_specification_IHI0

064F.pdf. [Accessed: 07-Jun-2018].

[47] MIPS Technologies, “MIPS PDtrace Specification,” 19-Dec-2012. [Online].

Available: http://www.t-es-t.hu/download/mips/md00439g.pdf. [Accessed: 01-

Apr-2016].

[48] Intel, “Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3C,” Sep-

2016. [Online]. Available: https://goo.gl/QLKR85. [Accessed: 11-Jul-2017].

164

[49] A. Mayer, H. Siebert, and K. D. McDonald-Maier, “Boosting Debugging Support

for Complex Systems on Chip,” Computer, vol. 40, no. 4, pp. 76–81, Apr. 2007.

[50] Intel, “Nios II Processor Reference Guide,” Intel, Apr. 2018.

[51] Freescale, “Freescale - MPC555 / MPC556 USER’S MANUAL,” Nov-2009.

[Online]. Available:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf.

[Accessed: 28-Mar-2016].

[52] IEEE-ISTO, “The Nexus 5001 Forum Standard for a Global Embedded Proces-

sor Debug Interface,” 2012. [Online]. Available: http://nexus5001.org/nexus-

5001-forum-standard/. [Accessed: 28-Mar-2016].

[53] R. Mijat, “Better Trace for Better Software,” ARM, White Paper, 2010.

[54] ARM, “CoreSight PTM-A9 Technical Reference Manual,” 08-Jul-2011. [Online].

Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0401c/DDI0401C_coresight

_ptm_a9_r1p0_trm.pdf. [Accessed: 25-Mar-2019].

[55] “Intel® 64 and IA-32 Architectures Software Developer Manual: Vol 3.” Intel,

Sep-2016.

[56] M. L. Soffa, K. R. Walcott, and J. Mars, “Exploiting Hardware Advances for

Software Testing and Debugging (NIER Track),” in Proceedings of the 33rd In-

ternational Conference on Software Engineering, New York, NY, USA, 2011, pp.

888–891.

[57] “Intel PT Micro Tutorial.” [Online]. Available:

https://sites.google.com/site/intelptmicrotutorial/home. [Accessed: 21-Mar-

2019].

[58] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay: A Frame-

work for Deterministic Replay and Reproducible Analysis of Parallel Pro-

grams,” in Proceedings of the 8th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, New York, NY, USA, 2010, pp. 2–11.

165

[59] S. Bhansali et al., “Framework for Instruction-level Tracing and Analysis of

Program Executions,” in Proceedings of the 2Nd International Conference on

Virtual Execution Environments, New York, NY, USA, 2006, pp. 154–163.

[60] M. Xu, R. Bodik, and M. D. Hill, “A ‘Flight Data Recorder’ for Enabling Full-

system Multiprocessor Deterministic Replay,” in Proceedings of the 30th Annu-

al International Symposium on Computer Architecture, New York, NY, USA,

2003, pp. 122–135.

[61] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously Recording

Program Execution for Deterministic Replay Debugging,” SIGARCH Comput.

Archit. News, vol. 33, pp. 284–295, 2005.

[62] M. Xu, M. D. Hill, and R. Bodik, “A Regulated Transitive Reduction (RTR) for

Longer Memory Race Recording,” in Proceedings of the 12th international con-

ference on Architectural support for programming languages and operating sys-

tems, San Jose, California, USA, 2006, pp. 49–60.

[63] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Recording and Determin-

istically Replaying Shared-Memory Multiprocessor Execution Efficiently,” in

Proceedings of the 35th International Symposium on Computer Architecture,

Beijing, China, 2008, pp. 289–300.

[64] Y. Chen, W. Hu, T. Chen, and R. Wu, “LReplay: A Pending Period Based De-

terministic Replay Scheme,” in Proceedings of the 37th annual international

symposium on Computer architecture, Saint-Malo, France, 2010, pp. 187–197.

[65] C. Hochberger and A. Weiss, “Acquiring an exhaustive, continuous and real-

time trace from SoCs,” in IEEE International Conference on Computer Design,

2008. ICCD 2008, Lake Tahoe, CA, 2008, pp. 356–362.

[66] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Transaction on Information Theory, vol. 23, pp. 337–343, 1977.

[67] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data Compression

Algorithm,” Digital SRC, 1994.

166

[68] A. D. Samples, “Mache: No-loss Trace Compaction,” in Proceedings of the 1989

ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, New York, NY, USA, 1989, pp. 89–97.

[69] A. R. Pleszkun, “Techniques for compressing program address traces,” in Pro-

ceedings of the 27th annual international symposium on Microarchitecture, San

Jose, CA, USA, 1994, pp. 32–39.

[70] E. E. Johnson and Jiheng Ha, “PDATS Lossless Address Trace Compression

For Reducing File Size And Access Time,” in Proceeding of 13th IEEE Annual

International Phoenix Conference on Computers and Communications, Phoenix,

Arizona, USA, 1994, p. 213.

[71] E. E. Johnson, “PDATS II: improved compression of address traces,” in Proceed-

ings of the IEEE International Performance, Computing and Communications

Conference, Phoenix, Arizona, USA, 1999, pp. 72–78.

[72] N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,” Proceed-

ings of the IEEE, vol. 88, no. 11, pp. 1722–1732, Nov. 2000.

[73] E. E. Johnson, J. Ha, and M. B. Zaidi, “Lossless Trace Compression,” IEEE

Transactions on Computers, vol. 50, no. 2, pp. 158–173, 2001.

[74] A. Milenkovic, M. Milenkovic, and J. Kulick, “N-Tuple Compression: A Novel

Method for Compression of Branch Instruction Traces,” in Proceedings of the

ISCA 16th International Conference on Parallel and Distributed Computing

Systems, Reno, Nevada, USA, 2003, pp. 49–55.

[75] A. Milenkovic and M. Milenkovic, “Stream-Based Trace Compression,” IEEE

Computer Architecture Letter, vol. 2, no. 1, pp. 9–12, 2003.

[76] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Load Value

Prediction,” in Proceedings of the 7th International Conference on Architectural

Support for Programming Languages and Operating Systems, New York, NY,

USA, 1996, pp. 138–147.

[77] M. Burtscher and B. G. Zorn, “Exploring Last n Value Prediction,” in Interna-

tional Conference on Parallel Architectures and Compilation Techniques, New-

port Beach, CA, USA, 1999.

167

[78] K. Wang and M. Franklin, “Highly Accurate Data Value Prediction Using Hy-

brid Predictors,” in Proceedings of the 30th Annual ACM/IEEE International

Symposium on Microarchitecture, Washington, DC, USA, 1997, pp. 281–290.

[79] Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” in Proceedings

of the 30th Annual ACM/IEEE International Symposium on Microarchitecture,

Washington, DC, USA, 1997, pp. 248–258.

[80] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and N. B.

Sam, “The VPC Trace-Compression Algorithms,” IEEE Trans. Comput., vol. 54,

no. 11, pp. 1329–1344, 2005.

[81] M. Burtscher, “TCgen 2.0: a tool to automatically generate lossless trace com-

pressors,” SIGARCH Computer Architecture News, vol. 34, no. 3, pp. 1–8, 2006.

[82] Y. Luo and L. K. John, “Locality-Based Online Trace Compression,” IEEE

Transactions on Computers, vol. 53, no. 6, pp. 723–731, 2004.

[83] J. R. Larus, “Whole Program Paths,” in Proceedings of the ACM SIGPLAN 1999

Conference on Programming Language Design and Implementation, New York,

NY, USA, 1999, pp. 259–269.

[84] E. N. Elnozahy, “Address Trace Compression Through Loop Detection and Re-

duction,” in Proceedings of the 1999 ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems, New York, NY, USA,

1999, pp. 214–215.

[85] K. Irrgang and T. B. Preußer, “An LZ77-style bit-level compression for trace

data compaction,” in 2015 25th International Conference on Field Programma-

ble Logic and Applications (FPL), London, UK, 2015, pp. 1–4.

[86] C.-F. Kao, S.-M. Huang, and I.-J. Huang, “A Hardware Approach to Real-Time

Program Trace Compression for Embedded Processors,” IEEE Transactions on

Circuits and Systems, vol. 54, no. 3, pp. 530–543, Mar. 2007.

[87] V. Uzelac and A. Milenkovic, “A Real-Time Program Trace Compressor Utiliz-

ing Double Move-to-Front Method,” in Proceedings of the Design Automation

Conference, San Francisco, CA, 2009, pp. 738–743.

168

[88] A. Milenković, V. Uzelac, M. Milenković, and B. Burtscher, “Caches and Predic-

tors for Real-Time, Unobtrusive, and Cost-Effective Program Tracing in Em-

bedded Systems,” IEEE Transactions on Computers, vol. 60, no. 7, pp. 992–

1005, Jul. 2011.

[89] A. Tewar, A. Myers, and A. Milenković, “mcfTRaptor: Toward unobtrusive on-

the-fly control-flow tracing in multicores,” Journal of Systems Architecture, vol.

61, no. 10, pp. 601–614, Nov. 2015.

[90] V. Uzelac, A. Milenković, M. Milenković, and M. Burtscher, “Using Branch Pre-

dictors and Variable Encoding for On-the-Fly Program Tracing,” IEEE Transac-

tions on Computers, vol. 63, no. 4, pp. 1008–1020, Apr. 2014.

[91] B. Mihajlović, Ž. Žilić, and W. J. Gross, “Architecture-Aware Real-Time Com-

pression of Execution Traces,” ACM Trans. Embed. Comput. Syst., vol. 14, no.

4, pp. 75:1–75:24, Sep. 2015.

[92] A. B. T. Hopkins and K. D. McDonald-Maier, “Debug Support Strategy for Sys-

tems-on-Chips with Multiple Processor Cores,” IEEE Transactions on Comput-

ers, vol. 55, no. 2, pp. 174–184, Feb. 2006.

[93] V. Uzelac and A. Milenković, “Hardware-based data value and address trace

filtering techniques,” in Proceedings of the 2010 international conference on

Compilers, architectures and synthesis for embedded systems (CASES ’10), New

York, USA, 2010, pp. 117–126.

[94] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 5th ed. Waltham MA: Morgan Kaufmann/Elsevier, 2012.

[95] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A Simulation

Framework for CPU-GPU Computing,” in Proceedings of the 21st International

Conference on Parallel Architectures and Compilation Techniques, Minneapolis,

MN, USA, 2012, pp. 335–344.

[96] A. K. Tewar, “Experimental Evaluation of Techniques for Capturing and Com-

pressing Hardware Traces in Multicores,” University of Alabama in Huntsville,

Huntsville, AL, USA, 2015.

169

[97] “Multi2Sim/m2s-bench-splash2,” GitHub. [Online]. Available:

https://github.com/Multi2Sim/m2s-bench-splash2. [Accessed: 01-Apr-2016].

[98] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.1,”

HPL-2008-20, Apr. 2008.

