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With the exponential growth of the number of interconnected computing platforms, computer 

security becomes a critical issue.  As software continues to grow in size and complexity, so does the 

number of security vulnerabilities: According to the US-CERT Coordination Center, the number of 

vulnerabilities reported has grown from 171 in 1995 to 4,129 in 2002.  One of the major security problems 

is the execution of unauthorized and potentially malicious code.  This problem can be addressed at different 

levels, from more secure software and operating systems, down to solutions based on hardware support.  

The majority of the existing techniques tackle the problem of security flaws at the software level, lacking 

generality, often inducing prohibitive overhead in performance and cost, or generating a significant number 

of false alarms.  On the other hand, a further increase in the number of transistors on a single chip will 

enable integrated hardware support for functions that were so far restricted to the software domain.  

Hardware-supported defense techniques have the potential to be more general and more efficient than 

solely software solutions.  This dissertation proposes new architectural extensions to ensure trusted 

program execution in both high-end and embedded computing platforms.  The eight proposed techniques 

have low performance overhead, low hardware complexity, and minimal or no compiler support. 
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CHAPTER 1 
 
 
 

INTRODUCTION  

“The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but on 

our own readiness to receive him; not on the chance of his not attacking, but rather on 

the fact that we have made our position unassailable.” 

Sun Tzu, “The Art of War”  

 

With the exponential growth of the number of interconnected computing platforms, computer 

security becomes a critical issue.  Today’s society now more than ever relies upon computers and networks.  

Networked computing platforms make up the fabric of society’s infrastructure; in fact, ubiquitous 

accessibility and interconnectivity are the driving forces in our modern economy, education, entertainment, 

medicine, transportation, and the military.  Unfortunately, by connecting a computer system to the Internet 

or a local network, we expose its vulnerabilities to potential attackers.  Failing to resist attacks can incur 

significant direct costs as well as costs in lost revenues and opportunities.  The utmost importance of 

system security is further underscored by the increased complexity of high-end systems as well as the 

expected proliferation of diverse Internet-enabled, low-end embedded systems -- ranging from home 

appliances, cars, and sensor networks to personal health monitoring devices. 

1.1 Background and Motivation  

A very large group of malicious attacks on applications running on general-purpose processors 

consists of different techniques that impair the software integrity, by injecting and then executing the 

malicious code instead of regularly installed programs.  The most widely known type of such attacks is so-

called stack smashing, where an attacker overflows a buffer stored on the stack with a malicious code 
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sequence and replaces a valid return address with the malicious code address [1].  In addition, various other 

examples of attacks exist, such as heap overflow [2], format string attacks [3], and attacks exploiting 

integer errors [4] or dangling pointers [5].  The number of reported software vulnerabilities has grown from 

171 in 1995 to 4,129 in 2002, according to the United States Computer Emergency Readiness Team 

Coordination Center (US-CERT/CC) [6].  

Applications targeting embedded systems may suffer from the same vulnerabilities as applications 

running on general-purpose platforms.  For example, one recent Cyber Security Bulletin from US-CERT 

reports multiple buffer overflow vulnerabilities in a Bluetooth connectivity program for Personal Digital 

Assistants (PDAs) [7].  Another US-CERT Cyber Security Bulletin indicates an emerging trend of mobile 

phone viruses [8].  As the communication and computation capabilities of smart phones, PDAs, and other 

embedded systems continue to grow, so will the number of malicious attacks trying to exploit code 

vulnerabilities. 

1.2 Existing Techniques for Defense Against Code Injection Attacks  

The multitude of code injection attacks prompted development of a large number of 

predominantly software-based counter-measures.  Static software techniques rely on formal analysis and/or 

programmers’ annotations to detect security flaws in the code, and then leave it to the programmers to 

correct these flaws.  However, the use of these techniques has yet to become a common programming 

practice.  Moreover, they fail to discover all vulnerabilities, suffer from false alarms, or put an additional 

burden on programmers.  On the other hand, dynamic software techniques augment the original code or 

operating system to detect malicious attacks and to terminate attacked programs, or to reduce the attacker’s 

chances of success.  Though effective, these techniques can result in significant performance overhead and 

usually require program recompilation, so they are not readily applicable to legacy software. 

Current trends in both hardware and software make us believe that dedicated processor resources 

should be used to ensure software integrity, consequently improving computer system security [9].  

Software techniques by themselves are unlikely to counter all attacks, since more complex applications 

have potentially a larger number of defects, computing systems are becoming more diverse, and time-to-

market constraints severely limit testing time.  On the other hand, a further increase in the number of 
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transistors on a single chip will enable integrated hardware support for functions that so far have been 

restricted to the software domain.  A form of hardware protection from buffer overflow has already found 

its way into mainstream general-purpose processors, AMD’s Athlon-64 and Intel’s Itanium [10].  Several 

recent research efforts propose hardware-supported techniques to prevent unauthorized changes of program 

control flow.  Most of these techniques focus only on stack smashing or have significant performance 

overhead, or do not thoroughly explore the implications of implementation choices.  We believe that there 

is a need for a new hardware security layer to prevent the whole class of code injection attacks. 

1.3 Architectures For Instruction Block Signature Verification 

This dissertation proposes and evaluates new architectural extensions to ensure trusted program 

execution in high-performance and embedded computing platforms at minimal cost, power overhead, and 

performance loss.  We propose several new techniques that share a common mechanism: Instruction blocks 

are signed using secret hardware keys during the secure program installation process, and signatures are 

stored with the code.  During program execution, signatures are recalculated from instructions and 

compared to the stored signatures.  If the two values do not match, the program cannot be trusted and 

should be terminated.  The proposed techniques differ in type of protected instruction blocks, signature 

placement in the address space, signature placement in the physical memory, and signature handling after 

the verification. 

Hardware-supported techniques have the potential to provide trusted program execution with 

lower overhead in performance and overall power consumption than techniques relying solely on software.  

Instead of vulnerability-specific solutions, the proposed architectures offer protection from a whole class of 

vulnerabilities that allow execution of a malicious code.  Moreover, since with our mechanism each 

program requires a secure installation process, viruses cannot penetrate the system without explicit 

permission by the user.  The proposed mechanism does not require significant processor changes and can 

be implemented even as a separate co-processor; it is cost-effective and requires no changes in legacy 

source code; several considered techniques do not require compiler support, while others require minimal 

compiler support.  In addition, encrypted instruction block signatures protect the code from software 

tampering, and enable fault detection in error-prone environments such as Space. 
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1.4 Main Contributions  

The main contribution of this dissertation is a proposal of a novel hardware-supported mechanism 

for defense against code injection attacks.  The proposed mechanism is based on run-time verification of 

instruction block signatures.  We give taxonomy, detailed design, and performance evaluation for eight 

implementations of this mechanism. 

Another contribution is an extensive survey of related work.  The survey encompasses a wide 

range of software and hardware solutions proposed to counter malicious code injection attacks.  Finally, the 

work on this dissertation resulted in a number of extensions for SimpleScalar simulator and a custom-made 

trace-driven simulator.  

1.5 Dissertation Outline  

The rest of this dissertation is organized as follows.  Chapter 2 gives an overview of security 

vulnerabilities that may be exploited by code injection attacks.  

Chapter 3 gives a survey of software-based static and dynamic defense techniques, and hardware-

supported techniques.  Several related fault-tolerant techniques and anti-tampering techniques are also 

mentioned.  The proposed mechanism for run-time instruction block verification is explained in Chapter 4.  

This chapter also includes taxonomy of proposed architectural extensions, detailed descriptions of each 

technique, and a discussion of implementation challenges and limitations. 

Chapter 5 describes experimental methodology used in this dissertation.  It gives a short 

description of execution-driven simulator SimpleScalar and the modifications we made.  It also describes a 

custom-made trace-driven simulator.  The ELF format and various benchmarks used for evaluation are also 

described in this chapter, as well as metrics used for evaluation and simulator parameters fixed for all 

experiments. 

Chapter 6 presents evaluation results and discusses them for a wide set of benchmarks.  Finally, 

Chapter 7 states conclusions and indicates future research possibilities.  
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CHAPTER 2 
 
 
 

SOFTWARE VULNERABILITIES AND CODE INJECTION ATTACKS  

“We made too many wrong mistakes.” 

Yogi Berra 

 

 

A successful code injection attack must achieve two goals: it must inject the malicious code 

sequence, and it must change the value of a code pointer to point to the address of the injected code.  The 

most common software vulnerabilities that can be exploited by code injection attacks are input buffers 

without boundary checks, both on the stack and on the heap; functions from printf family accepting input 

arguments as format strings; and errors related to dynamic memory allocation, such as freeing an already 

freed pointer.  Attacks exploiting these vulnerabilities are rather complex and require deep understanding of 

underlying architecture, operating system, and the application under attack.  In this chapter we give a short 

description of each vulnerability and the corresponding attack, and provide a detailed walk-through 

example for format string vulnerability.   

2.1 Stack-Based Buffer Overflow Attacks  

The mechanism of stack-based buffer overflow attacks, so-called “stack smashing,” is probably 

the most widely known code injection mechanism [1, 11, 12].  Figure 2.1 illustrates one such attack: a 

function accepts untrustworthy values into a local buffer, which is stored on the stack.  In most 

architectures, the direction of the stack growth is opposite to the direction of memory address growth, so if 

we overflow a buffer on the stack over its limits, we can overwrite any location on the stack in the address 
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space after the beginning of the buffer.  One such location holds the return address of the vulnerable 

function.  Hence, if that function does not verify whether the length of the input exceeds the buffer size, an 

attacker might overflow the buffer to insert the malicious code and overwrite the return address with the 

address of the malicious code. 

Stack smashing is probably the most exploited code injection attack, since an attacker knows that 

a return address is somewhere near the local function variables, and only needs to probe to find its exact 

location. 

Program
Code

Literal 
Pool

Heap

Stack

Arg #n

Buf[0]
...
Buf[n-1]

Attack Code

…

...

Arg #1

Return Address
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B
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Figure 2.1    An illustration of a buffer overflow attack on the stack  

2.2 Heap-Based Buffer Overflow Attacks 

Buffer overflow vulnerabilities are not limited to buffers on the stack.  Heap-based buffer 

overflow attacks are another attack category that exploits buffer overflows [2].  Let us assume that a buffer 

is stored on the heap in relative proximity to a code pointer, e.g., a function pointer.  If that buffer accepts 

input without length verification, it may overwrite the function pointer with the address of attacker’s 

choice, where the same or other buffer overflow attack stored the malicious code. 
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2.3 Format String Attacks 

Format string attacks exploit the ability of functions from the printf family to actually accept an 

input argument as a format string, for example by writing printf(string) instead of printf(“%s”, string) [3, 

13].  The printf function interprets its first argument as a format string, and scans the format string looking 

for special format characters such as %d, %x, %s, etc.  These characters specify the type of arguments to be 

retrieved from the stack and the corresponding output format.  If an attacker can pass format strings to the 

printf function, he or she can exploit the printf mechanism to read the content of any memory location.  

This is a so-called read attack, which may be used to gain knowledge to mount the actual write attacks, 

such as stack smashing.   

Allowing user-defined format strings also enables write attacks, based on the %n format character.  

If %n is encountered in the format string, the number of characters output before %n is stored at the address 

passed as the next argument.  Figure 2.2 shows one such example: in the first printf call, the number of 

characters output before %n is 6: 4 digits of x, a comma, and a space.  The value 6 is stored in the variable 

pos, as shown in the memory layout.  The use %n actually results in storing the number of characters that 

should have been output, not the actual count of characters that were output.  For example, the snprintf 

function writes no more than size characters to the string str, where both str and size are arguments of 

snprintf.  Let us assume that the size of a string buffer buf is 20.  Then the function call snprintf(buf, 

sizeof(buf),"%.100d%n",x,&pos) will store 100 in the variable pos. An intelligent use of %n 

enables the attacker to write any value to almost any address in the program space. 

…

0xbffffad4

0xbffffad0

0xbffffacc

Address

00000006

0000056d

00004e4c

3210

…

0xbffffad4

0xbffffad0

0xbffffacc

Address

00000006

0000056d

00004e4c

3210

x

y

pos

int main(){
int pos, x=1389, y=20044;

printf("%d, %n%d\n", x, &pos, y);
printf("The offset was %d\n", pos);
}

1389, 20044
The offset was 6

Output

 

Figure 2.2    An illustration of the use of the %n format character 
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2.4 Integer Error Attacks  

Various integer errors that can compromise the system safety include unsigned integer overflow 

and underflow, precision error, and integer comparison [4].  A code injection attack cannot be based only 

on integer errors, but these errors can enable another type of attacks.   

For example, overflow of an unsigned integer actually causes storing by modulo: a one-byte 

unsigned char variable can hold values 0-255, so the value 256 will be stored as 0, 257 as 1, etc.  Let us 

assume that such a variable is used for buffer allocation and that it is overflowed.  For instance, we want a 

buffer of 257 bytes, but the variable that controls dynamic buffer allocation is an unsigned char.  Instead of 

257 bytes, the size of the buffer is 1 byte.  A “safe” function that stores data in the buffer may even verify 

whether the output exceeds the allowed values.  However, the allowed value is 257 bytes, and the allocated 

size is only 1 byte.  Here is an opportunity for a heap-based buffer overflow as explained before.   

2.5 Double free() attacks  

To understand the principle of double free() vulnerabilities, we must first understand how dynamic 

memory allocation and deallocation work.  Dynamic memory management information is usually kept 

together with the actual allocated memory chunk.  Figure 2.3 shows the fields in allocated and free memory 

chunks, when using the GNU C library [14].  An allocated chunk has prev_size, size, and data fields.  The 

prev_size field defines the size of the previous chunk if it is free (i.e., not allocated), or it belongs to data 

field of the previous chunk.  The size field defines the size of the current chunk and also includes some 

status bits.  The actual data is stored in the data field, and the pointer to data mem is what is returned by 

malloc().  When a memory chunk is freed, it is linked to a doubly linked list of all free chunks of the 

similar size, so it also has fields fd (pointer to a chunk forward in the list) and bk (pointer to a chunk 

backward in the list).  If one of its physical neighbors is free, these two chunks are merged into one larger 

chunk.  The linked list of free chunks is ordered by size, so that a chunk with the same size as some chunk 

in the list is inserted before that chunk, and all relevant forward and backward fields are set accordingly.  

The list is re-linked when a chunk is allocated by using a macro unlink(). 
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When a chunk C1 is freed twice, its bk and fd fields both point to itself, if there was no merging to 

a larger chunk between two calls to free() [5, 15].  When a program now needs to allocate a chunk of the 

same size as C1, the C1 will be unlinked from the list of free chunks and user data will be written in the 

field data.  However, since C1 points to itself, it will not be really unlinked, so first eight bytes of data are 

actually bk and fd.  Hence, an attacker might overwrite the fd and bk with addresses of his/her choice.   

Next time when a chunk of C1 size is requested, unlink() will cause the content of bk field to be 

written at the address stored in fd plus offset of 12 bytes.  One option is to overwrite a return address with 

the address of injected code in the data field.  Therefore, exploiting the double free() vulnerability the 

attacker may satisfy both conditions for code injection attacks – inject the code and change a code pointer. 

old data
…

bk

fd

size

prev_size

old data
…

bk

fd

size

prev_sizechunk

memdata
…

size

prev_size

data
…

size

prev_sizechunk

mem

Allocated chunk Free chunk  

Figure 2.3    Allocated and free memory chunk organization, GNU C library malloc() 

2.6 A Format String Attack Example 

Figure 2.4 illustrates the effect of format string attack on a variable named x, which is set to 1 and 

not changed by any of the program instructions.  The code in Figure 2.4 is slightly modified code from [3].  

This attacks exploits the use of snprintf() with no specified format string.  If the input argument argv[1] 

does not contain format characters, it is treated as a string, and its sizeof(buf) characters are simply copied 

to the string buffer buf.  However, any format character will cause a value to be popped from the stack and 

stored in the buf.  If we know the address of the variable x, we can change the value of x by using an input 

string that includes both the address of x and the %n format character.  One way to do it is to store the 

address of x at the beginning of the buffer buf, and to include enough format string characters so that the 

argument for %n is read precisely from the buf beginning.   
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#include <stdio.h>

int main(int argc, char **argv){   
char unsigned buf[96]; 
int x, y;

if(argc != 2) exit(1); 
x=1; y=2;  
snprintf(buf, sizeof buf, argv[1]); 
buf[sizeof(buf) - 1] = 0;  
printf("buffer (%d): %s\n", strlen(buf), buf);  
printf("x is %d/%#x (@ %p)\n", x, x, &x); 
printf("y is %d/%#x (@ %p)\n", y, y, &y); 
printf("buffer[3:0]: %2x%2x%2x%2x\n", 

buf[3], buf[2], buf[1], buf[0]);  
return 0;

}  

Figure 2.4    An example of a vulnerable program 

Let us assume that the x is stored at the address 0xbffff8cc (Figure 2.5).  “Above” x on the 

stack are stored y and some other three values, and the buf starts below x.  The input string 

\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n will cause the following to happen.  First, 

0xbffff8cc will be stored in buf[0:3].  Then, five integer values will be popped from the stack and 

stored to buf, starting from the location below the stack pointer SP (this is the stack pointer when snprintf() 

starts to execute).  Finally, the number of stored characters as specified by the format string will be stored 

to the address popped from the stack, i.e., the address of x stored at the beginning of the buf.  Since the 

format string specifies writing of 49 characters before %n (4+9*5), the value of x will be changed to 49, as 

seen in the program output.  Note that we used perl for input, since the address of x in hexadecimal form 

could not be specified when program was executed interactively under RedHat 7.0 Linux.  
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perl -e 'system 
"./fmtme","\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n"'

Input

buffer (49): Ìøÿ¿.420069e8.4212a2d0.bffffaa0.00000002.00000001
x is 49/0x31 (@ 0xbffff8cc)
y is 2/0x2 (@ 0xbffff8c8)
buffer[3:0]: bffff8cc

Output

snprintf(buf,96,
"\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n");

 
 

…

420069e8

4212a2d0

0xbffff8d0

0xbffff8cc

0xbffff8c8

Address

bffff8cc

00000001

00000002

bffffaa0

3210

…

420069e8

4212a2d0

0xbffff8d0

0xbffff8cc

0xbffff8c8

Address

bffff8cc

00000001

00000002

bffffaa0

3210

x

y

buf

SP

(0xbffff8cc)

0x00000031

 

Figure 2.5    Malicious input and the corresponding output for the above program, 
and the stack content (SP –stack pointer) 
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CHAPTER 3 
 
 
 

EXISTING TECHNIQUES FOR DETECTION AND PREVENTION  
OF CODE INJECTION ATTACKS 

“Don’t always follow the crowd, because nobody goes there anymore; it's too crowded.”  

Yogi Berra 

 

Techniques for countering code injection attacks can be classified in two broad categories: those 

that are completely software-based and those that require some hardware support.  The software techniques 

can be further classified into static techniques and dynamic techniques.  Static software-based techniques 

try to find possible security vulnerabilities in the code, so they can be corrected before the release version 

of the code.  Dynamic software-based techniques augment the code so that in run-time an attack can be 

detected, prevented, or made very difficult, depending on a particular technique.  Younan et al. survey a 

large number of software-based techniques [15], and Cowan et al. give a qualitative assessment of several 

buffer-overflow defenses [16, 17].  More recent hardware-aided techniques are less often studied.  The goal 

of this chapter is to give an up-to-date survey of existing techniques for prevention and detection of code 

injection attacks.  

3.1 Static Software-Based Techniques 

Static code analysis can find a significant number of security flaws and suggest where changes in 

the code should be made.  However, the problem of static analysis is generally undecidable [18], so it is 

virtually impossible to discover all vulnerabilities in any given program by automated static analysis alone.  

Completely automated tools for detection of security-related flaws must choose between precise but not 
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scalable analysis and lightweight analysis that may produce a lot of false positives and false negatives.  The 

need for precise automated analysis can be alleviated if programmers manually add specially formulated 

comments about program constraints, but such techniques put an additional burden on programmers.  

Moreover, one can argue that adding program constraints may be as error-prone as programming.  Table 

3.1 lists static software-base techniques aimed to discover potential security defects, including the 

possibility of code injection.   

While the simple Unix utility grep can be used to find some of the known security vulnerabilities 

in the code [19],  it is not able to make distinction between safe and unsafe use of potentially vulnerable 

functions, nor it can assign rank to security warnings.  For example, if we want to find format string 

vulnerabilities, the grep search for printf() function will give all printf() instances, and the majority of 

instances will be safe.  

Several tools are developed to be essentially a smart grep.  Viega et al. developed a token-based 

scanning tool called It’s The Software, Stupid! Security Scanner (ITS4) [20-22].  ITS4 breaks a source file 

into tokens and then compares tokens against a vulnerability database.  The analysis results can be further 

refined by checking the parameters of string functions and race conditions.  The report severity is reduced 

for function calls with constant string parameters.  On the other hand, a heuristic for race condition check 

increases report severity if it discovers a related race condition.  Willander developed a similar open-source 

tool called Flawfinder [23].  Flawfinder checks for Unicode constant strings, which may further reduce the 

number of false alarms.  Another similar tool is RATS (Rough Auditing Tool for Security) [24].  DeKok 

developed a tool called PScan (a limited problem scanner for C source files) [25].  PScan looks only for 

format string vulnerabilities and it gives a warning if a format string is not a constant value.   
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Table 3.1    Static software-based techniques 

Technique Description 

ITS4 [20-22], Flawfinder [23],  
RATS [24] 

Marks potential vulnerabilities by comparing parsed code  
to a vulnerability database 

PScan [25] Scans code for format string vulnerabilities 

BOON [26, 27] Automatically detects potential string buffer overflow 
vulnerabilities  

Buffer Overrun Tool [28] Automatically detects buffer overflow vulnerabilities by using 
linear programming  

ARCHER [29] Automatically detects memory access errors 

Splint [30-32] Finds potential vulnerabilities if annotated by programmers 

Propagation of tainted qualifiers [33] Detects format string vulnerabilities by using a special qualifier 
for untrustworthy data 

CSSV [34] Detects all string manipulation errors in the code annotated by 
contracts 

Compiler extensions using 
metacompilation [35] 

Detects security errors by using programmer-written 
metacompiler extensions 

Eau Claire [36] Detects security errors by using error specifications and an 
automatic theorem prover 

UNO [37] Detects several types of errors, plus user-defined properties 

 

Wagner et al. propose a tool for automated detection of code that might cause overflow of string 

buffers and introduce a tool prototype called Buffer Overrun detectiON (BOON) [26, 27].  The problem of 

string buffer overflow is formulated as an integer constraint problem: a string buffer is modeled as a pair of 

integers, one for the current buffer length and another for the allocated size, so the tool needs to verify 

whether the maximum length is not greater than the allocated size.  The BOON’s analysis is flow-

insensitive and context-insensitive.  Flow-insensitive means that the order of statements is ignored, and 

context-insensitive means that calls to a same function from different places are not treated in different 

way.  The authors admit they sacrificed precision in order to have a scalable tool.  BOON produces a 

relatively high number of false positives, e.g., 40 out of 44 generated warnings for sendmail program are 

false positives. 
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Ganapathy et al. propose a similar approach to BOON, but with more precise pointer analysis and 

context-sensitivity [28].  A code understanding tool is first used to generate abstract syntax trees (AST) for 

program expressions and points-to information, and this data is used to generate linear constraints.  

Constraints that cannot be solved by linear programming are then removed from the set of all constraints 

(variables that get an infinite value and uninitialized constraint variables).  The rest of constraints are 

solved using two solvers based on linear programming.  Finally, heuristics are used to decide whether a 

particular buffer can be overflowed.  This approach still lacks flow-sensitivity.  The authors also note that 

modeling constraints in terms of pointers to buffers instead of buffers can lead to false negatives.   

Xie et al. proposed another tool for automatic detection of memory access errors, named 

ARCHER (ARray CHeckER) [29].  ARCHER uses interprocedural, flow-sensitive and context-sensitive 

data-flow analysis: C source code is first parsed into AST trees and transformed to a canonical 

representation with reduced number of syntactic constructs.  The canonical representation is then used to 

generate a control-flow graph (CFG) for each function and an approximate program call graph.  This call 

graph is traversed bottom-up: for each function call, the corresponding CFG is traversed using randomized 

depth-first search and the ARCHER solver module is called to evaluate conditional expressions and verify 

whether memory accesses are unsafe.  The tool gives warnings for unsafe memory accesses.  Although 

ARCHER can discover more errors and give less false positives when compared to BOON, it still cannot 

reliably discover all memory access errors.  It does not handle C string operations and does not track 

function pointers.   

The need for precise automated analysis can be alleviated if programmers add specially 

formulated comments about constraints.  Larochelle and Evans propose one such tool called Splint [30-32].  

Splint is an extension of LCLint, an annotation-assisted lightweight static checking tool, developed by 

Evans et al. [38].  Function preconditions and postconditions can be stated using requires and ensures 

clauses.  Within these clauses programmers may specify minimum and maximum buffer indices that can be 

read or written to: maxSet, minSet, maxRead, and minRead.   

Shankar et al. propose a tool for detection of format string vulnerabilities [33], built on the top of 

cqual, an extensible type qualifying framework for language C [39].  The authors propose an additional  
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C qualifier, tainted, for data that cannot be trusted.  The tool then analyzes how tainted data propagates 

through the program and gives a warning if tainted data is used as a format string.   

In a recent study, Dor et al. propose a tool for detection of all string manipulation errors with very 

few false positives, CCSV (C String Static Verifier) [34].  While the previous work by the same authors 

discussed a similar algorithm with certain limitations [40], CCSV is able to find all such errors.  It can 

handle all C constructs, including multi-level pointers, multidimensional structures, and pointer arithmetic.  

However, this approach requires that the potentially vulnerable functions are annotated with so-called 

contracts, including pre-conditions, post-conditions, and potential side effects.  CCSV reports an error 

when a specified post-condition is not guaranteed to hold.  The authors also propose algorithms for 

automated strengthening of post- and pre-conditions, reducing the burden placed on the programmer, but at 

the cost of increased imprecision.   

Instead of annotating the code, a programmer can write compiler extensions that describe potential 

security errors.  Ashcraft and Engler propose to use the metacompilation approach to look for security 

errors in the code [35].  With metacompilation a programmer can easily add a high-level checking rule to 

the compiler.  The authors use belief inference approach to detect incomplete rule specifications.  A range 

checker extension is used to demonstrate the metacompiler approach.  The range checker finds errors in the 

Linux kernel code where the integer data from untrustworthy sources is used without first being checked.   

Chess proposes another code checker, named Eau Claire [36].  Similar to the metacompilation 

approach, Eau Claire requires specifications of security vulnerabilities it is supposed to find.  For each 

function, the function code and security specifications are translated to a series of verification conditions, 

which are then used as an input to an automatic theorem prover.  A disproved theorem means that the 

corresponding function violates its security specifications.  

Holzmann proposes a code checker named UNO [37].  The author extends an open-source 

C parser to generate control-flow graphs and check the code for the use of uninitialized variables, nil-

pointer dereferencing, and out-of-bound array indexing.  UNO can also check for user-defined properties, 

where property definitions consist of actions and queries.   

The authors of the static code analysis techniques rarely give quantitative comparisons of their 

techniques with other approaches.  Wilander compared five static tools, ITS4, Flawfinder, RATS, BOON, 



  17 

  

and Splint [41].  His test cases are based on 20 vulnerable functions from the ITS4 database and consist of 

21 safe and 23 unsafe function calls with possibilities of buffer overflow and string format errors.  Not 

surprisingly, “smart grep” techniques generated over 50% false positives and very few false negatives.  

Zitser et al. compared ARCHER, Boon, Splint, UNO and a commercial tool Polyspace C Verifier [42].  

Test cases are based on known buffer overflow vulnerabilities and the corresponding code patches 

extracted from real applications, since the compared techniques were not able to process the complete code 

of sendmail and similar vulnerable programs.  Splint and Polyspace were able to find a significant number 

of errors, but all tools gave a very high number of false warnings. 

3.2 Dynamic Software-Based Techniques 

Precise static analysis and high coverage testing techniques can reduce the number of security 

vulnerabilities, but they can rarely solve all potential problems before the code is released.  Dynamic 

software techniques aim to prevent or detect attacks in run-time.  We can distinguish several groups of 

these techniques.  The largest group encompasses techniques that automatically add run-time checks for 

security vulnerabilities to code (Table 3.2); some of these techniques are designed only for testing 

purposes, or target only one type of attack (Table 3.3).  Several “safe dialects” of language C prevent code 

injection attacks by restricting the use of unsafe constructs, static analysis, run-time checks, and changes in 

memory management (Table 3.4).  Various obfuscating techniques make vulnerability exploits more 

difficult (Table 3.5).  Another group consists of various monitoring techniques (Table 3.6).  Finally, some 

portions of the memory address space can be made non-executable with operating system support, thus 

preventing the execution of injected code stored at those addresses.  Most of dynamic software techniques 

require program recompilation, so they are not readily applicable to legacy software.  These techniques 

essentially increase the number of executed instructions, so they incur a significant performance overhead. 
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Table 3.2    Techniques that instrument code to verify run-time bounds 

Technique Description 

bcc [43]  Extended pointers are used to checks bounds on pointer 
dereferences and array accesses 

RTCC [44] Similar approach as bcc  

Safe-C [45] Safe pointers enable detection of both spatial and temporal 
memory access errors  

Guarding [46] Run-time checking is decoupled from the original computation 

Backward-compatible bounds checking 
[47] Unchanged pointer representation  

Type-assisted run-time checks [48] Run-time checks are based on type information stored in 
“mirror” memory 

Type-assisted dynamic buffer overflow 
detection [49], TIED+LibsafePlus [50] Target only buffer overflows  

Fail-Safe ANSI-C Compiler [51] A memory-safe implementation of full ANSI-C 

CRED [52] Detect buffer overflows of user-supplied string data 

Optimized bounds checking using 
metadata [53] Information about pointers is kept separated from the pointers 

Boundless memory blocks [54] Allows program to continue after an out-of-bound write, by 
storing it in a hash table 

Appropriate location bits [55] “Unsafe” pointers may point only to locations designated as 
appropriate in “mirror” memory 

Purify [56], STOBO [57], detection of 
input-related security faults [58],  
SFI [59] 

Testing tools 
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Table 3.3    Attack-specific techniques 

StackGuard [60], StackShield [61],  
RAD [62, 63], SSP [64] Defense against stack smashing 

Libsafe, Libverify [65] Defense against stack smashing implemented in libraries 

HEALERS [66, 67] Detects heap-based buffer overflows 

Modified dlmalloc() [68] Protects dynamic allocation information 

FormatGuard [13] Detects format string attacks 

Table 3.4    “Safe dialects” of C 

Vault [69, 70] Enables resource management protocols in source code;  
supports region-based memory management 

Cyclone [71, 72] “Unsafe” C features replaced by ‘safe” extensions; supports 
garbage-collection or region-based memory management 

CCured [73] Additional pointer types: safe, sequence, dynamic; 
garbage-collection 

Control-C [74, 75] Restricts dynamic memory allocation and pointer arithmetic; 
region-based memory management  

Table 3.5    Obfuscation techniques 

ASLR [76, 77], TRR [78]  Randomizes base addresses of memory regions 

Randomization of system call mappings 
[79] 

System call mappings are randomized in linking time or before 
loading using binary rewriting 

Code relocation [80] Randomizes the order of variables and routines,  
and uses random stack frame padding 

Code randomization [81] Scrambles each byte of code 

PointGuard [17] Encrypts code pointer values 
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Table 3.6    Program monitoring techniques 

Monitoring systems calls behavior [82], 
[83], [84], [85], [86] 

An attack is detected when the monitored system call sequence 
deviates from the expected one 

Monitoring performance register values 
[87] 

An attack is detected when the monitored program deviates from 
its performance signature 

Janus [88] Untrusted applications are executed within a process-tracing 
framework, which allows or denies system call execution  

Reference monitor [89] Critical system calls are instrumented with access control tests 

Program shepherding [90] Security policies are enforced by monitoring control flow 
transfers 

 

Bcc, a source-to-source translator for inserting boundary checks was proposed as early as 1983, by 

Kendall [43].  The source code is transformed so that a checking function is called on each pointer 

dereference and array access.  These function calls are to a separate run-time package.  Checking functions 

verify whether an array access is within the array bounds, a null pointer is dereferenced or pointer access is 

not properly aligned; pointer arithmetic operations are checked for overflows.  Pointers are converted to 

pointer structures: one such structure contains lower and upper bounds of the object that pointer is pointing 

to.   Bcc also adds function wrappers to vulnerable functions.  The reported slowdown is about 30 times.  

The run-time checking compiler (RTCC) implements bcc as a part of the compiler front-end, in 

order to reduce its execution overhead [44].  It also gets rid of some bcc checks as too restrictive or unlikely 

errors, e.g., pointer arithmetic overflow.  Since the size of a pointer structure is three times larger than the 

size of a “normal” pointer, a “fat” pointer must be reduced to its normal size before being passed to a 

system call.  RTCC solves this problem by encapsulating all system calls so that the boundary information 

is added or removed as needed.  Encapsulation wrapper also verifies that character string arguments are 

terminated with a null character within bounds.  C libraries are recompiled with RTCC, so there is no need 

for encapsulation of library calls.  RTCC-compiled code runs about 10 times slower then original code.  A 

similar project is called Bounded Pointers [91]. 

Austin et al. propose a source-to-source translator technique called Safe-C that detects not only the 

spatial memory errors such as accesses outside an object’s bounds, but also the temporal errors, such as 
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accesses outside an object’s lifetime [45].  To achieve this level of detection, Safe-C extends pointer 

representation even more than bcc/RTCC: a safe pointer structure consists of pointer value, base address, 

size, storage class, and capability.  Storage class can be Heap, Global, or Local; it is used to detect errors in 

pointer deallocation.  Capability is used to detect temporal errors.  When a safe pointer is allocated, it is 

assigned a unique capability value, which is stored into an associative table and deleted from the table after 

pointer deallocation.  Global objects and invalid pointers have special capability values.  Calls to malloc() 

and free() are performed through function wrappers, which set/destroy capability values.  Some checks can 

be avoided either by compile-time or run-time optimization.  Even with optimization, Safe-C can incur a 

significant performance overhead (up to 6 times for considered benchmarks), so it is still not suitable for 

release software.  

With the guarding technique, Patil and Fischer try to reduce the performance overhead of bound 

checking by decoupling run-time checking from original computation [46].  This approach creates objects 

called guards with similar properties as safe pointers in Safe-C [45].  Source-to-source translation adds 

guard arguments to functions with pointer arguments.  The authors argue that programs with run-time 

checks are mostly used to find errors, and not to perform actual computations.  Hence, they propose to 

reduce the code by deleting computations not relevant to guarding and to run such program before or after 

the original program.  If a program is running on a multiprocessor system, checking is performed by a 

shadow process executing on an idle processor, thus further reducing the overhead.  In this case the main 

process is slowed down up to 10%, due to interprocess communication.  

Jones and Kelly propose a run-time bounds checking technique that is backward compatible, i.e., 

instrumented programs can be linked with uninstrumented libraries [47].  This is achieved by not changing 

the representation of pointers.  Information needed for bounds checking is not kept as a pointer extension, 

but in a separate objects table.  Object list is stored as a splay tree, which is a binary tree where frequently 

used nodes migrate towards the top.  The authors report 5-6 times slowdown for most considered programs.  

Loginov et al. propose a checking technique based on type information [48].  The type of each 

object can be unallocated, uninitialized, integral, real, or pointer; each element of structures and arrays has 

its own type tag.  Type information is stored in a “mirror” of memory used by the program, so that each 
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byte of used memory has a corresponding 4 bits in the “mirror,” describing object’s type and size.  The goal 

of this technique is to be used in debugging, since the reported slowdown can be more than 100 times.  

Lhee and Chapin propose a technique that detects only buffer overflows, so it has lower 

performance overhead than previously described techniques [49].  Automatic and static buffers are 

described by an additional data structure generated by a compiler extension, and information about 

dynamically allocated buffers is kept in a table.  Range checking is performed by functions in a shared 

library.  This approach cannot detect the overflow of buffers allocated with alloca() and variable-length 

automatic arrays.  A similar recent solution that works with binary files is proposed by Avijit et al. [50].  

The authors propose a buffer overflow defense based on the use of two tools, TIED (Type Information 

Extractor and Depositor) and LibsafePlus.  TIED extracts buffer information from a binary file compiled 

with –g option and writes in a new ELF section; this information is used by wrapper functions provided in 

LibsafePlus.  Maximal reported execution slowdown is 2.4.  

Oiwa et al. propose the Fail-Safe ANSI-C compiler, which fully supports ANSI C [51].  This 

approach is also based on extended pointer representation.  A “fat” pointer is described by the base address 

of a memory region, offset in that region, and a cast flag.  If a pointer has its cast flag set, it may refer to a 

value of different type than the pointer’s static type.  In the proposed implementation both pointers and 

integers occupy two machine words, one word for base and cast flag bit and another for offset.  A value of 

an integer is stored in the offset field.  This approach enables casting from a pointer to an integer and back 

to a pointer.  The reported slowdown is up to 8 times.  

Ruwase and Lam propose the C Range Error Detector (CRED), which detect buffer overflows 

with lower overhead than previous techniques [52].  CRED is implemented on the top of the technique 

presented by Jones and Kelly [47], with several improvements.  It allows program manipulations of out-of-

bounds addresses that do not result in buffer overflows, by creating an out-of-bound object (OOB) for 

every out-of-bound address value in a special OOB hash table.  The performance overhead is reduced by 

verifying only user-supplied string data.  The resulting approach detects all buffer overflows in tests 

described by Wilander and Kamkar [92], with maximum overhead of 130%.  

Xu et al. propose a more efficient technique for detection of both temporal and spatial memory 

errors [53].  This approach does not handle customized memory management functions, cast of integers to 
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pointers, and cast of pointers to structures to pointers of structures of unrelated type.  Pointer-related 

information (metadata) is kept separated from the pointer, unlike various fat pointer techniques.  Metadata 

is similar to information kept in Safe-C [45].  Average performance slowdown with various optimizations 

is 2.21 times, with maximum slowdown 3.37 times.  Optimizations include splitting metadata into header 

and info structures, eliminating unnecessary operations on the stack capability store, and converting 

metadata structures to individual variables. 

Most defense techniques cause programs to abort execution when a buffer overflow is detected.  

Rinard et al. propose an approach called boundless memory blocks, which prevents harmful effects of 

buffer overflows, but allows programs to continue execution [54].  The values of out-of-bounds writes are 

stored in a hash table, so they can be read by out-of-bounds reads.  In order to limit the amount of memory 

occupied by the out-of-bound writes, the hash table is implemented as a fixed size LRU cache.  The 

checking scheme is based on techniques proposed by Jones and Kelly [47] and Ruwase and Lam [52].  

Reported slowdown ranges from negligible for Apache HHTP server processing requests to 8.9 times for 

composing mail in Pine. 

Yong and Horwitz propose a technique that keeps track of all locations that may be pointed to by 

an unsafe pointer in a memory “mirror” [55].  Each memory byte has one bit mirror tag indicating whether 

it belongs to appropriate or inappropriate locations.  Unsafe pointers and locations they can legitimately 

point to are determined by static analysis.  The location tag is set to appropriate when that location is 

allocated, and reset after deallocation.  Write operations via unsafe pointers and free() are instrumented to 

verify the appropriate tag.  Maximum reported slowdown is 8.02. 

High overhead of most bounds-checking techniques limits their use in release code versions, but 

they can be successfully used for testing.  Several techniques are designed particularly for testing purposes.  

Widely used commercial testing tool Purify may detect security vulnerabilities related to memory access 

errors, such as heap-based buffer overflows [56].  Haugh and Bishop propose a testing tool called STOBO 

(Systematic Testing of Buffer Overflows) which detects potential buffer overflows during tests with regular 

data [57].  STOBO generates one type of warnings when both the source and destination are statically 

allocated, and another type when the destination is dynamically allocated; it reports an error when source is 

dynamically allocated, and destination statically allocated.  Larson and Austin propose a tool for detection 
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of input-related security faults, which also does not require “unsafe” test data [58].  All external input 

variables and derived variables are shadowed with a state variable: e.g., an integer is shadowed by a 

variable that stores the lower and upper variable bounds, and a string shadow variable encompasses 

maximum possible size of the string and null character information.  Bounds are adjusted by control 

decisions (e.g., loops) and arithmetic operations.  The tool generates an error report if any of values within 

the bounds causes can jeopardize security.  Ghosh et al. propose to apply software fault injection (SFI) to 

discover potential security flaws [59].  

Some dynamic techniques focus on only one type of attack targets: return addresses on the stack 

[60-65], format strings [13], or dynamically allocated memory [66-68].  Cowan et al. propose a compiler 

extension named StackGuard which detects or prevents changes of the return address on the stack [60].  

With StackGuard detection, the function prologue places a dummy value, the so-called canary, between the 

return address and the rest of the stack.  The canary is verified in the function epilogue before return 

execution.  A buffer overflow attack that overwrites the return address must also overwrite the canary, so 

an attack is detected if the value of the canary has changed.  The canary value may be randomized to 

prevent attack strings to overwrite it with the original value; however, even randomization does not prevent 

a write buffer overflow attack following a read attack.  The overhead of canary mechanism is 125% for the 

worst-case function call, so it is very low for complete applications.  StackGuard prevention of return 

address change is based on the debugging tool MemGuard, which protects values by marking the 

corresponding virtual pages as read-only and then emulating writes to non-protected values on those pages.  

Even with an optimization that uses Pentium debug registers to protect only last four return addresses, this 

approach has a significant slowdown.   

StackShield also protects from stack smashing [61].  It applies two methods, Global Ret Stack and 

the Ret Range Check.  In Global Ret Stack, return addresses are copied to a dedicated array in function 

prologue and restored from that array in function epilogue.  The number of protected nested function calls 

is limited by array size.  With Ret Range Check, a return address is copied to a global variable at the 

beginning of data segment.  Newer versions of StackShield can also detect overwriting of function pointers.  

StackShield modifies assembly files, although it may be part of compiler chain.  
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Chiueh and Hsu propose the Return Address Defender compiler patch (RAD) [62].  The RAD 

technique is similar to the StackShield: return addresses are copied to the Return Address Repository 

(RAR) in the data segment.  To protect the RAR from being overwritten by attackers, the authors propose 

two RAD implementations, MineZone RAD and Read-Only RAD.  With MineZone RAD, the RAR area is 

in the middle of a global array, with the array beginning and end set as read-only areas by mprotect() 

system call.  A buffer spilling into RAR will cause a trap, but MineZone will not prevent attacks writing 

directly into the RAR.  With Read-Only RAD, the whole RAR is read-only except when return addresses 

are written into it.  Read-Only RAD completely protects the RAR, but at the price of increased overhead 

for set/remove of read-only protection.  MineZone RAD increases the execution time of two considered 

benchmarks 1.02 and 1.3 times, and Read-Only RAD 18 and 43 times.  RAD handles the 

setjmp()/longjmp() issue in the following way: if the address on the top of the RAR does not match the 

return address, addresses are popped from the RAR until the correct address is found or the RAR bottom is 

reached.  Prasad and Chiueh propose a way to implement RAD as a binary rewriting technique [63]. 

Etoh and Yoda propose a stack-smashing defense compiler extension called the Stack Smashing 

Protector (SSP) [64].  SSP places a pseudo-random guard value on the stack to protect a return address and 

the corresponding frame pointer, similar to the canary in StackGuard.  In addition, SSP reorders local 

variables so that buffers are placed after pointers.  It also protects pointers in function arguments by 

copying them to an area preceding local buffer variables.  To reduce overhead, SSP instruments only 

functions that have string buffers as arguments or local variables.  For three considered applications, SSP 

overhead ranges from 0 to 4%, while StackGuard overhead for same applications is 0-8%.  SSP cannot 

prevent certain types of buffer overflows: for example, a buffer may overflow into a pointer variable if both 

are part of the same structure, since the order of structure elements cannot be changed.  

One limitation of StackGuard and similar techniques is that they require source or assembly code.  

Baratloo et al. propose a transparent run-time defense against smashing attacks that works with 

precompiled binaries [65].  The transparent defense is based on two dynamically loadable libraries, libsafe 

and libverify.  Libsafe implements “safe” versions of functions which can cause buffer overflows, such as 

strcpy().  The size of buffers in those functions is limited by the size of the corresponding stack frame, so 

they can never overflow beyond the frame pointer.  Libverify protects all return address as the StackGuard 
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does, but canary code is completely contained within the library.  Both libsafe and libverify rely on preload 

feature of ELF libraries to load with processes that need protection.  For each function in a protected 

process, the _init() function of libverify copies function code to heap, and replaces first instruction in 

original function and last instruction in the copy with jumps to wrapper entry/exit routines.  The entry 

wrapper writes a canary value on the canary stacks and jumps to function copy, and the exit wrapper 

verifies the canary.  The canary value is the return address itself, as in StackShield.  The canary stack is 

protected by read-only regions like MineZone RAD.  Libverify has slightly larger performance overhead 

than StackShield.  

Wilander tested StackGuard, StackShield, ProPolice (an old name for SSP), Libsafe, and Libverify 

with 20 buffer overflow benchmarks [92].  Although all these techniques effectively protected return 

addresses, they were not able to detect/prevent other buffer overflow attacks, such as buffer overflow on 

the heap.  The best technique, ProPolice, missed 9 of 20 attacks.  

Fetzer and Xiao propose transparent defense against heap smashing attacks by using a 

dynamically loadable C function wrapper called HEALERS [66].  HEALERS wrapper intercepts 

C functions that could be used to write to the heap and performs boundary checking of function arguments.  

Wrapper for malloc() records position and size of allocated memory in an internal table, and wrapper for 

free() deletes the corresponding table entry.  The overhead of HEALERS is up to 10% for considered 

applications.  The authors later extended the HEALERS toolkit to automatically discover problems in 

C libraries using automated fault injection experiments and to support flexible wrapper generation [67]. 

Heap-based buffer overflows may target memory management information, which is stored at the 

beginning of each memory chunk.  Robertson et al. propose to protect this information by storing a canary 

value when a chunk is allocated, and verifying it when the chink is freed [68].  The canary is the checksum 

of the chunk header seeded with a global random value, initialized during process startup.  The proposed 

approach is implemented as a library patch for glibc library.  Memory allocation functions in glibc are 

implemented using dlmalloc, so the authors needed to modify only this routine.  For the worst-case 

microbenchmark, the execution slowdown is 28%.  Performance impact for real applications is negligible. 

Another tool targeting only one class of attacks is FormatGuard, proposed by Cowan et al. [13].  

FormatGuard is a library patch for protection from printf() format string attacks.  It counts the number of 
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actual arguments presented to printf and compares is with the number of arguments specified in the format 

string.  If the format string specifies more arguments than printf() receives, FormatGuard aborts the 

program.  Although this technique was able to detect most format string exploits known at the time, it 

cannot defend against attacks in which the number of actual arguments is not less than specified, and does 

not detect calls to printf() via pointers.  

Toth and Kruegel propose a completely different approach for run-time detection of code injection 

attacks, for Internet services applications [93].  Any injected code must be a part of a client request, so the 

authors propose abstract execution of payload in client requests before requests are serviced.  Abstract 

execution of a byte sequence determines its maximum executable length (MEL).  If MEL for a request is 

beyond a specified threshold, that request is dropped by the system. 

Several researchers proposed “safe dialects” of C language.  “Safe dialects” restrict the use of C 

language constructs that can be sources of security vulnerabilities.  In addition, the corresponding 

compilers use static analysis to prove that the program is safe or to abort compilation.  “Safe dialects” may 

provide C extensions for programmer annotations and/or insert run-time checks.  They also may replace C 

dynamic memory allocation/deallocation mechanism with automated garbage collection or region-based 

memory management. 

DeLine and Fähndrich designed Vault programming language [69, 70].  Vault allows 

programmers to describe domain-specific resource management protocols, which are then enforced by the 

compiler.  Hence, memory-related errors such as dangling pointers can be discovered in compile time.  

Vault extends the type of a value with a type guard predicate, which specify conditions when that value can 

be used.  These conditions relate to so-called keys, compile-time tokens representing run-time resources.  

In the simplest case, a type guard is true when the corresponding key is part of the global state.  Function 

types have preconditions and postconditions.  Vault has primitives for region-based memory management, 

where objects are individually allocated from a region (a named subset of the heap), but the region is 

deallocated as a whole.  

A safe C dialect named Cyclone by Jim et al. is designed to prevent safety violations [71, 72].  

Cyclone compiler uses static analysis to insert run-time checks.  If the compiler cannot guarantee the 

program safety even with the checks, it does not perform compilation.  Cyclone supports programmer 
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annotations such as hints to static analysis or enforced bounds checking.  Cyclone restricts C features that 

might violate safety, but adds additional features that provide the same functionality in a safe way.  For 

example, pointer arithmetic is permitted only on “fat” pointer structures.  Instead of using free(), 

programmers may reclaim heap space either by using garbage collector, or region-base memory 

management.  The worst reported slowdown for Cyclone program with garbage collection and bound 

checking is 2.85.  

CCured technique, proposed by Necula et al., also inserts run-time checks based on static analysis 

[73].  CCured introduces additional pointer types: a pointer is safe, sequence, or dynamic.  Pointer type is 

determined by programmer annotations or by static analysis.  Different pointer types require different run-

time checks.  For example, a pointer is marked as sequence if it is used for array access.  Sequence pointers 

require null pointer checks and bounds check when dereferenced or cast to safe pointers.  Like Cyclone, 

CCured ignores free(), but it implements only automatic garbage collection.  The worst reported slowdown 

is 2.44.  

Kowshik at el. propose another “safe” C dialect named Control-C, for real-time control systems 

and other embedded programs [74, 75].  The main goal of Control-C is to guarantee safety by static-

analysis only, without adding run-time checks and without programmer annotations.  This goal is achieved 

by restricting dynamic memory allocation and array operations, and providing type safety.  Memory 

allocation is region-based, restricted to a single dynamic region at a time.  Type safety requires strong 

typing of all variables, assignments, expressions, and functions.  It also forbids casts between pointer and 

other types, pointer arithmetic, and the use of uninitialized variables.  Control-C implementation assumes a 

low-level typed virtual instruction set and system support to trap accesses to a range of reserved addresses.  

Vulnerability exploits can be made more difficult by various obfuscating techniques.  For 

example, the PaX kernel patch includes the feature named Address Space Layout Randomization (ASLR) 

[76, 77].  At task creation time, ASLR randomizes base addresses of memory regions such as code/data 

segments, heap, libraries, and stack.  Chew and Song [79] propose three randomizing methods: 

randomizing of system call mappings, changing library entry points, and randomizing stack placement.  

First two methods are implemented by binary rewriting in linking time or before loading.  Xu et al. propose 

Transparent Runtime Randomization (TRR) [78].  TRR randomly relocates stack, heap, shared libraries, 
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and the global offset table (GOT), in load-time.  Bhatkar et al. expand the idea of address obfuscation with 

permutation of the order of variables/routines and generation of random padding between the objects [80].  

The implemented prototype includes base address randomization of stack, heap, DLL, text, and data 

segments.  It also applies random stack frame padding.  Performance overhead is negligible if code 

relocation is performed at link-time, and up to 21% if performed dynamically at load-time.  Another option 

is to randomize the code: Barrantes et al. propose a randomized instruction set emulator (RISE) which 

scrambles each byte of the program code in load time using pseudorandom numbers [81].  PointGuard by 

Cowan et al. keeps address pointer values encrypted in memory and decrypts them only before loading into 

CPU registers [17].  In the implemented prototype, pointer values are encrypted by XOR with a key. 

Most dynamic software-based techniques require the access to source code, since the compiled 

and linked code version does not contain enough information, unless it is compiled with a debug option.  

DuVarney et al. propose SELF, a security extension for ELF binaries [94].  SELF extends the ELF format 

with an extra section with information about address, size, and alignment requirements of each code and 

static data item.  The goal of this approach is to provide information necessary for binary transformations 

such as address obfuscation, and yet to reduce the number of details present in debugging sections that may 

be used for reverse engineering. 

Several researchers suggest intrusion detection by monitoring the system calls of a program [82], 

[83], [84], [85], [86].  If the system call sequence for a particular program deviates from a normal behavior, 

an intrusion is suggested.  The normal program behavior is obtained either by profiling, or by encoding the 

specification of expected behavior using a special high-level specification language.  If profiling is used, 

false positives may be generated when a rarely used region of the code is executed.  A specification-based 

approach, on the other hand, is as error prone as the coding process itself.  Finally, although a malicious 

code is very likely to encompass a system call, an attack may be potentially devised with the same call 

sequence as the vulnerable program, or may inflict some damage even without system calls.  Another 

profiling approach by Oppenheimer and Martonosi suggests using the values of performance monitoring 

registers to verify whether the program deviates from its performance signature [87].  For example, 

execution of injected code will change the memory reference profile of the attacked program.  
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Goldberg et al. propose Janus, a secure user-level environment that restricts system calls from 

untrusted applications [88].  Janus utilizes process-tracing facilities available in some operating systems.  

Untrusted applications run as child processes, which are stopped at each system call that might impede 

security.  Policy modules specify which system calls are allowed to continue execution, and which get an 

abort signal.  System calls can have a fixed security policy (always allow/deny), or the policy can be 

specified in a configuration file and can be dependant on system call arguments.  In run-time, configurable 

policies are stored in a dispatch table structure.  If write() and read() system calls are always allowed, 

performance overhead of Janus is negligible.  However, Janus cannot be applied to applications with 

system calls that may be exploited by attackers. 

Similar approach is proposed by Bernaschi et al. [89].  Instead of user-level tracing, the authors 

propose a kernel extension, based on the concept of operating system reference monitor.  OS reference 

monitor decides which system calls can be executed, according to predefined access rules.  This concept is 

implemented by instrumenting system calls that might be misused in a buffer overflow attack with access 

control tests.  The access rules are stored in the Access Control Database (ACD).  For each instrumented 

system call, this database specifies which processes are allowed to execute instrumented system calls and 

with which arguments.  The authors also implemented special system calls for ACD access.  For considered 

applications this approach has a negligible overhead.  

Kiriansky et al. propose an approach named program shepherding, where execution of malicious 

code is prevented by monitoring all branch instructions [90].  Instead of instrumenting the code, the authors 

propose to use the runtime binary interpreter for runtime introspection and optimization (RIO).  Program 

shepherding encompasses three techniques: restricted code origins, restricted control transfers, and 

uncircumventable sandboxing.  All code pages are write-protected, so a basic block can be executed only if 

it is copied to RIO code cache from a write-protected page.  If code and data share a page, program 

shepherding makes a write-protected copy of the page, and basic blocks are read from the protected copy.  

Restricted control transfers means that an arbitrary policy can be applied to each type of branch 

instructions, e.g., a return instruction must jump after the corresponding call, or library code can be 

executed only through declared entry points.  Sandboxing is used for restrictions not covered by the first 

two techniques, e.g., to detect execv() system calls . Sandboxing is also used to prevent an application from 
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changing RIO’s data.  For the considered set of security policies and SPEC CPU2000 benchmarks, the 

slowdown is up to 1.7 times under Windows and up to 7.6 times under Linux operating system.  

Code injection attacks assume that the memory segment with injected code is executable.  

Therefore, one defense technique is to make some memory portions permanently or temporarily non-

executable.  PaX offers non-executable memory pages [76, 77].  However, the IA32 architecture does not 

support non-executable pages, so PaX uses two techniques circumvent this issue, based on the IA32 paging 

or segmentation logic.  The first technique is based on the split data and instruction translation look-aside 

buffer (TLB), which is implemented in all Intel CPUs since the Pentium.  The pages whose execution 

should be prevented are marked as requiring supervisor access, so application accesses to those pages result 

in a data TLB page fault.  The page fault handler then decides whether an access is an instruction fetch or a 

regular data access.  For data accesses, the user/supervisor bit in the corresponding page table entry is 

temporarily cleared.  Another technique is to divide the virtual address space in two halves.  Application 

code and data are mapped to one half, and instructions are mirrored in the other; instructions can be 

executed only from the instruction space.  The paging-based PaX approach can have significant 

performance overhead, and the segment-based approach reduces the available virtual memory space.  PaX 

has support for stack-executable code and can be turned off for each particular application.  PaX is 

incorporated into several operating systems with security features, such as Adamantix and Hardened 

Gentoo [95].  Non-executable heap and stack pages are also supported in RedHat [77].   

3.3 Defense Techniques With Hardware Support 

Some of the performance overhead of purely software-based dynamic techniques may be reduced 

with hardware support.  Table 3.7 lists techniques with hardware support that can be used for full or partial 

defense from code injection. 

A large portion of existing attacks targets return addresses on the stack, so several hardware-

supported techniques protect only from stack smashing.  The first such technique was proposed by Xu et al. 

[96].  The main idea is to use separate stacks for data and control information, so any overflow of a buffer 

stored on the stack can overwrite only other local data, and not any return addresses.   
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Table 3.7    Techniques with hardware support 

Technique Description 

Split control and data stack [96] Protects against attacks on function return addresses  
by keeping separate stacks for data and addresses 

Secure Return Address Stack [96], [97], 
SmashGuard [98],  
Reliable Return Address Stack [99] 

Protects against attacks on function return addresses by keeping 
a copy on the hardware return address stack 

DISE [100] Protects against attacks on return addresses by keeping a copy 
on the secure return address stack on the heap 

SCache [101] Reduces the possibility of success of attacks on return addresses 
by replicating cache lines where return addresses are stored 

HSAP [102]  
Protects against attacks on function return addresses by 
preventing writes on stack after frame pointer; makes difficult 
attacks on function pointers by encoding jump addresses 

Hardware and binary modification 
support for code pointer protection [103] 

Protects code pointers against buffer overflow  
by encoding jump addresses 

HAT [104] Protects from buffer overflow by keeping track of pointer size, 
allocation, deallocation, and liveness 

SPEF [105] Protects code integrity by transforming code blocks according to 
the encrypted transformation-invariant block value  

Randomized instruction set [106] Protects code integrity by randomizing  
underlying system’s instructions  

Data tagging [107] Prevents control flow transfer based on data tagged as spurious 

Minos [108] Prevents control flow transfer base on low integrity data 

Instruction block signatures  
[109], [110], [111] 

Protects code integrity by verifying the signature  
of executing instruction blocks 

 

This approach can be implemented as software-only, by modifying compiler to write/read return 

addresses on the control stack in prologue/epilogue of each function, allocate control stack space, and 

manage the control stack pointer.  For considered benchmarks the performance overhead is from 0.01 to 

23.77%.  This overhead is due to extra memory accesses for saving and restoring return addresses: e.g., 

saving of a return address requires a read from the “regular” stack, a write to the control stack, and two 

memory operations for control stack pointer update.  If this approach is implemented with hardware 
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support, the performance overhead can be completely avoided.  The required processor modifications are 

relatively simple: changed implementations of call and return instructions and an additional register for the 

control stack pointer.  The split stack technique prevents return addresses from being overwritten with very 

small additional hardware complexity and no performance overhead.  However, it does not protect from 

other attacks, such as heap smashing.   

Most modern processors already have a hardware resource that can be used for protection of return 

addresses: the Return Address Stack (RAS), used to predict a target address for return instructions in the 

pipeline fetch stage.  Xu et al. propose three RAS extensions under the common name Secure RAS (SRAS) 

[96].  The first such extension keeps SRAS lookup in the fetch stage, so an exception to the operating 

system is raised both when a return address has been overwritten by a stack smashing attack, and when it 

was just mispredicted due to RAS speculative update or RAS overflow.  The operating system decides why 

the addresses on the “regular” stack and the SRAS do not match, by keeping the trace of stack accesses and 

valid return points.  This technique has a very large performance overhead: with 64-entry RAS, some 

applications are slowed down for more than 100%.  Another option is to move SRAS lookup to the pipeline 

commit stage.  In this case there are no SRAS mispredictions due to speculation, so the maximum observed 

performance overhead is 4%.  Finally, the third option also eliminates mispredictions due to overflow, by 

keeping a part of the SRAS in a memory data structure.  Just like the split stack technique, the SRAS is 

relatively simple to implement and its third option has a very small performance overhead.  On the other 

hand, it protects only return addresses.   

Similar efforts expand the idea of the SRAS [97], [98], [99].  The advantage of all these 

techniques is small performance and complexity overhead, and minimal or no code changes.  

Independently of Xu et al., Lee et al. propose a structure called also Secure Return Address Stack (SRAS) 

[97].  This SRAS is not en extension of RAS used for return address prediction, but rather a completely 

separate structure.  Hence, a mismatch between an address stored on the SRAS and the “regular” stack can 

be due only to a successful stack smashing attack.  The hardware support for this technique includes the 

SRAS and modified implementations of call and return instructions.  An OS exception is raised in the case 

of a SRAS overflow/underflow.  An exception handler writes/reads a half of the SRAS entries to the 

memory space accessible only to the OS kernel.  The kernel maintains separate SRAS overflow areas for 
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different processes.  While this approach successfully protects return address from buffer overflow, it 

prevents the so-called non-LIFO control flow, where a return address does not have to be located on the top 

of the stack.  The use of setjmp() and longjmp() functions is one example of non-LIFO control flow.  This 

problem can be solved with additional instructions that will push and pop addresses directly to the SRAS, 

or even turn off the SRAS protection.  These instructions can be inserted in the code by compiler or a 

disassembling program, or even in run-time.   

Ozdoganoglu et al. propose a solution called the SmashGuard [98].  The core of this technique is 

also a separate hardware stack for return addresses; it differs from previous such techniques in solving the 

issue of setjmp()/longjmp().  The authors propose that the longjmp() function should use an indirect jump 

instead of return instruction, so its return address is not read from the stack.  At each call, both return 

address and “regular” stack pointer are stored on the secure stack.  At return, the secure stack is searched 

for the corresponding pair.  This technique leaves unprotected the return address of the longjmp(), but since 

both setjmp() and longjmp() are library functions, they could be protected using software methods.  To 

avoid problems with speculative execution, the secure stack is accessed in the commit pipeline stage.  The 

values of return address register and link register are saved in an additional processor resource, called RAT 

(return address table).  Another option is to completely or partially stall the processor and read the required 

values from the register file.  The implementation with complete stalling degrades performance up to 7% 

for considered benchmarks executing by a 4-way superscalar processor; the worst case with partial stall is 

about 2% degradation. 

Another recent technique based on a secure hardware stack is called Reliable Return Address 

Stack (RRAS) [99].  The authors pair the RRAS with a structure called Address Pair Table (APT), which 

stores the entry and exit point of all active functions.  This solution is able to handle non-LIFO control 

flow.  Entry repetition in the RRAS for recursive functions is avoided using 3-bit tags.   

The secure stack does not have to be implemented in hardware: using a technique called Dynamic 

Instruction Stream Editing (DISE), the ‘shadow” stack is kept in a protected area on the heap [100].  DISE 

is a one-to-many instruction macro expander with programmable rewriting rules: to protect return addresses 

from the attack, call and return instructions are dynamically rewritten in the runtime to write/verify data 

from the shadow stack.  When a call instruction is executed, both the current stack pointer and the return 
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address are saved on the shadow stack.  When the return address on the top of the shadow stack differs 

from the top of the “regular” stack, the shadow stack is searched for the matching (stack pointer, return 

address) pair.  The shadow stack is protected either by XORing its entries with a random value selected at 

the application start (DISE/XOR), or by testing all stores and allowing only DISE-expanded code to store 

data to shadow stack memory segment (DISE/MFI).  Since DISE is implemented in hardware, it does not 

require code changes and does not introduce additional instruction cache misses.  However, expanded 

instructions can significantly degrade performance.  With a 4-way superscalar processor and considered 

benchmarks, the worst-case performance overhead is more than 15% for DISE/XOR and more than 30% 

for DISE/MFI. 

The redundancy of return addresses can be achieved not only by duplicating stack entries, but by 

replicating cache lines with return addresses, as Inoue proposes in the SCache technique [101].  When a 

return address store is executed, this technique writes it to one or more cache line replicas, depending on 

implementation.  Replicas are stored in the same cache set as the original cache line (the master line).  

Cache lines have a one-bit replica flag.  A buffer overflow attack can overwrite only the master line, while 

values in the replicas are preserved.  When a return-address load is executed, one of the replicas is 

randomly selected and the value of the replicated address is compared to the corresponding master line 

value.  If the two values do not match, the SCache detects an attack and terminates the executing program.  

If there are no replicas due to the cache replacement policy, the SCache generates an indicator of 

potentially unsafe address.  This technique cannot protect all return addresses, but the percentage of 

protected addresses is relatively high.  With SPEC CPU2000 integer benchmarks, a 16KB L1 SCache with 

4 ways and 32B line protects more than 98% return addresses with up to three replicas, and more than 94% 

with one replica.  The worst-case performance overhead is 1.1%.   

The main drawback of techniques discussed so far is that they provide protection from only one 

type of attack.  A successful buffer overflow attack can overwrite not only return addresses on the stack, 

but any function pointer.  To protect both return addresses and function pointers, Shao et al. propose the 

Hardware/Software Address Protection (HSAP) technique [102].  The HSAP consists of two 

complementary techniques: protection against stack smashing and protection of function pointers.  The 

stack smashing is prevented by denying any writes to the memory if the write address is equal to or larger 
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than the value of the current stack frame pointer.  The address check is performed in an additional pipeline 

stage before the write stage, so this approach has very low performance overhead.  The authors also 

propose to make it difficult for potential attackers to change the values of function pointers to point to 

addresses of their choice.  During code compilation, each function pointer assignment instruction is 

preceded by an XOR instruction, which XORs the function address with a key from a special register.  This 

key is randomly generated for each process.  An additional instruction, secure jump (sjmp), is used when a 

function is called using the value of a function pointer.  The authors do not provide details about 

performance overhead of function pointer protection.  One disadvantage of this approach is that it requires 

the change of the code.  More important issue is the level of protection of this technique.  Some processes 

run for a very long time, so an attacker might be able to discover the value of the key used for XOR: a read 

buffer overflow attack can be used to read the encrypted address value, and then a simple XOR with the 

“real” address will reveal the key.   

Tuck et al. propose to protect code pointers from both read and write buffer overflow attacks by 

encrypting them [103], similarly to the software technique PointGuard [17].  By code pointers the authors 

refer both to return addresses on the stack and function pointers.  Code pointers are encrypted and 

decrypted using special instructions: encrypt-store and decrypt-load.  The authors propose three levels of 

encryption: XOR with a secret key, XOR with a value from random permutation table, or a Feistel network.  

While this technique does not prevent so-called replay attacks, the third encryption level offers very good 

protection against read attacks.  However, the Feistel encryption/decryption latency is 40 or 80 processor 

cycles, depending on the implementation.  This latency can be partially hidden for call and return 

instructions.  Decrypted values of function pointers are cached in the L1 cache memory and protected from 

overwriting by a special cache bit.  The performance overhead is up to 30%. 

Other software techniques such as dynamic validity checking of augmented pointers can also be 

partially implemented in hardware.  An approach presented by Keen et al. [104] combines static code 

analysis and instrumentation with dynamic run-time checking using a hardware structure, the Hardware 

Accelerated Table (HAT).  Pointer validity checking has two components, spatial and temporal.  Spatial 

component verifies whether the value of the pointer is within the bounds of the corresponding object, and 

temporal component verifies whether the object is alive.  Temporal verifications use a hash table, and hash 
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table operations are the largest contributor to the overhead of the purely software implementation.  The 

authors propose to implement the hash table and the relevant hash table operations in hardware (HAT).  

Hash table find, insert, and remove can be implemented as new instructions (GenHAT), or performed by a 

specialized checking engine (SpecHAT).  With a small set of benchmarks, the SpecHAT reduces the 

overhead of the software technique for up to 3 times.  The maximal observed overhead is 6% for SpecHAT 

and 12% for GenHat.  The main disadvantage of this method is that it relies on correct instrumentation of 

source code.   

Kirovski et al. propose the Secure Program Execution Framework for intrusion prevention (SPEF) 

[105].  The underlying idea is that a program executable can have different representations that produce the 

correct program behavior.  Possible code transformations include instruction scheduling, basic block 

reordering, branch-type selection, and register permutation.  During installation, a transformation-invariant 

(TI) hash value is calculated for each instruction block and is encrypted using a secret processor key.  The 

encrypted hash value defines the transformation of the instruction block.  During execution, the verifier 

component calculates the TI hash for every instruction block that is fetched after an instruction cache miss.  

It then encrypts the hashed value, and verifies whether the obtained transformation is equal to the actual 

code.  If there is no match, an abort signal is sent to the processor.  This solution successfully prevents 

execution of injected code, but at the cost of relatively significant performance overhead, up to 25% for 

MediaBench applications running in embedded systems.  The overhead of encryption can be reduced with a 

TI cache; maximum overhead of the SPEF technique with a TI cache with twice as many entries as the I-

cache is about 17%.  Another disadvantage of the SPEF is that it must be customized for different platforms 

and instruction sets. 

One possible defense against code injection is to encrypt complete program code.  A technique 

proposed by Kc et al. “randomizes” the code of each user-level process [106].  Randomization is performed 

by XOR of a memory block with a key or by bit-transposition, also based on a key.  The key is stored in an 

encrypted form in the program file header.  This approach does not work with dynamically loaded libraries.  

Instruction blocks are decrypted in the fetch-decode pipeline stage, so this technique incurs a significant 

overhead.   
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Suh at al. propose to tag all data coming from “the outside world” (e.g., I/O channels) as spurious 

and to prevent execution of any control transfer instruction if the target address depends on spurious data 

[107].  This approach may generate some false positives, since the target address may be input-dependant, 

for example in switch constructs.  Generally, input data can propagate to a target address through a series of 

calculations, so this technique requires a relatively complex data dependency analysis.  A similar approach, 

Minos, augments every memory word and registers with an integrity low/high bit [108].  The integrity bit is 

set by the kernel when that memory word is written and determines the trust the kernel has in the data.  The 

trust is propagated using a low-water-mark integrity policy with two rules: a subject can modify an object 

of same or less integrity, and when a subject reads an object of low integrity, its integrity also becomes 

lower.  The low trust data cannot be used for control transfers. 

The code integrity in run-time can be successfully protected if all instruction blocks are signed 

with a cryptographically secure signature.  In run-time the actual signature is verified against the calculated 

signature.  The signature mismatch means that there is change in the original code.  We did preliminary 

research on protection of basic blocks and cache blocks using signatures [109], [110].  Drinic et al. also 

propose to sign all cache blocks and to verify signatures in run-time on a cache miss [111].  With this 

approach, a 16-byte instruction block signature is obtained by encrypting the instruction block using a 128-

bit Rijndael cipher, and then XOR-ing the 16-byte sub-blocks.  The overhead of Rijndael decryption 

implemented in hardware can be hidden if the instructions in an instruction block can be reordered in such 

a way that critical instructions such as stores are executed after decryption delay time.   

3.4 Other Related Work 

The problem of detection of code injection attacks can be related to the problem of detection of 

control flow hardware faults using fault-tolerant techniques, and valuable lessons can also be learned from 

techniques for detection of software tampering. 

Mahmood and McCluskey’s study from 1988 surveys various techniques for concurrent error 

detection using watchdog processors [112].  One of the discussed techniques for control flow checking is 

actually based on verification of basic block signatures.  However, the approach presented in this 

dissertation does not require a dedicated watchdog processor, and focuses rather on seamless integration on 
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verification mechanism into existing processor architecture.  Moreover, the signatures in our mechanism 

are also protected from read attacks.  

Wilken and Chen propose a control flow error detection mechanism with reduced number of 

embedded signatures [113].  Ohlsson and Rimen propose another signature placement technique that does 

not require the knowledge of the program control flow graph [114].  In a more recent study, Kim and 

Somani propose a technique for checking the integrity of instructions and their sequencing from fetch to 

commit point [115].  Oh et al. propose a software-based technique for control-flow checking using assigned 

signatures, by embedding in code both signatures and instructions for error detection [116]. 

Joseph and Avizienis propose a virus protection technique using an extended Program Flow 

Monitor, which verifies basic block signatures [117].  However, the paper does not include any 

implementation details or evaluation.  Davida et al. discuss various possible granularity levels for blocks 

protected by signatures, from whole program files to individual instructions [118]. 

Various techniques for tamper-resistant software aim to protect software integrity from potentially 

hostile operating system and other programs running on the same processor, in order to preserve the 

originally installed code and to prevent software piracy.  To support copy and tamper resistant software, 

Lie et al. propose an approach called XOM (eXecute Only Memory) [119, 120].  The XOM main idea is 

memory in certain cases can be only executed, and not read or written, so that one program cannot read 

instructions or data of another program.  This goal is achieved by keeping programs encrypted in off-chip 

storage, and tagging instructions and data with a program ID in on-chip storage.  Each XOM processor has 

a public/private key pair, with private key unknown to the user.  When the user installs an application, 

XOM generates a symmetric key to encrypt it and appends the symmetric key encrypted with the private 

key.  During execution, instructions are decrypted when stored in the cache memory.   

Collberg and Thomborson survey software tools for software protection against reverse 

engineering, software piracy, and tampering [121].  Reverse engineering can be made more difficult by 

obfuscation, where a program is transformed to an equivalent form that is harder to understand.  Software 

piracy may be countered with watermarking, which embeds copyright in code.  Tampering may be 

countered with tamper-proofing code embedded in the original application.   
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Horne et al. propose a software technique to improve run-time tamper resistance [122].  The 

authors propose an implementation of self-checking, where a program checks itself for modification while 

it is running.  Embedded testers calculate hash values of large code portions and verify them against 

original values.  A similar approach called oblivious hashing is proposed by Chen et al. [123].  Oblivious 

hashing protects the executed code only.   

Software does not have to be protected only from tampering by  “hostile” host machine.  Mobile 

applications can also be changed in transit by malicious attackers.  Jochen et al. propose a framework 

named StEgo-CRYpto Tamper detection (SECRYT) [124], which enables validation of mobile 

applications. 

The Trusted Computing Group (TCG) is an industry-standards organization, with the goal of 

creating specifications of various hardware-supported security features [125].  TCG specifications describe 

hardware support for various high-level security features, such as storing passwords and digital certificates 

in hardware, protecting online transactions, and providing authentication between systems and networks.  

Our techniques provide a low-level security, so they can be integrated into TCG models.  
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CHAPTER 4 
 
 
 

PROPOSED ARCHITECTURES  
FOR INSTRUCTION BLOCK VERIFICATION 

“Before you build a better mousetrap, make sure you have some mice out there.”  

Yogi Berra 

 

In this chapter we introduce the basic mechanism common to all proposed techniques for 

instruction block verification.  Next, we present the taxonomy of different techniques and discuss 

techniques’ pros and cons.  Finally, we describe the implementation details of each technique and discuss 

various related issues. 

4.1 Basic Mechanism of Proposed Techniques 

All proposed techniques for instruction block verification share the same basic mechanism 

(Figure 4.1) and require minimal or no compiler support.  The basic mechanism encompasses two phases: a 

secure program installation and program execution.  During the secure installation process, signatures are 

calculated for each instruction block and added to the program binary.  A signature is obtained in the 

following way: All instructions in the instruction block pass through a Multiple Input Signature Register 

(MISR).  A MISR is essentially an array of D flip-flops with linear feedback coefficients (Figure 4.2).  A 

new value of the i-th MISR bit is calculated as an XOR function of the i-th bit of an incoming instruction, 

the (i-1)-th MISR bit, and possibly some other MISR bits.  Linear feedback connections are determined by 

a secret processor key hidden in hardware.  The result of the final MISR calculation is then encrypted using 

Advance Encryption Standard (AES) [126], also with a secret hardware key, which can be different from 
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the MISR key.  For each new protected block, the MISR is initialized to the same value, which is also 

secret. 

Signatures are verified in parallel with program execution using a dedicated hardware resource 

called the Instruction Block Signature Verification Unit (IBSVU).  The IBSVU encompasses registers for 

buffering instructions and signatures, support for AES decryption, MISR, and control logic.  Without loss 

of generality, let us consider a processor with only the first level of instruction (L1I) and data (L1D) caches 

(Figure 4.3).  To simplify abbreviations, the L1I cache is denoted further as the I-cache.  Since the I-cache 

is a read-only resource, instruction block signatures are verified only on I-cache misses.  Fetched 

instructions pass through a MISR register with the linear coefficients that are equal to the linear coefficients 

used during secure installation.  Concurrently with MISR calculation, the AES block decrypts the signature 

fetched from memory.  Hence, the decryption time is partially or completely overlapped with the 

instruction block fetch phase.  The decrypted signature is compared to the final MISR calculation: If the 

two values match, the instruction block is properly installed and can be trusted.  If the values differ, the 

instruction block includes injected code or it is not properly installed, so a trap to the operating system is 

asserted.  The operating system than aborts the process whose code integrity cannot be guaranteed and 

possibly audits the event. 
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Figure 4.1    Mechanism for trusted instruction execution 
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Figure 4.2    An implementation of a 4-bit MISR 

A computing system might be designed to run only in the protected mode where all instruction 

blocks must be signed, as described above.  However, some applications do not need instruction block 

protection.  For example, some components of the operating system may not accept external inputs from 

untrustworthy channels and thus are not in danger from code injection attacks.  Such programs may be 

installed without signatures and executed in the unprotected mode.  The information about required 

execution mode is added to the program header. 

L1I

L1DMMU

Datapath

FPUs IF

Control IBSVU

Processor

 

Figure 4.3    Processor components 

Legend: MMU – Memory Management Unit, IF – Instruction Fetch Unit, FPUs – Floating Point Unit(s), 
Control – Control Unit, L1D – Level 1 Data Cache,  L1I – Level1 Instruction Cache, IBSVU – Instruction 
Block Signature Verification Unit. 
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4.2 Taxonomy of Proposed Techniques 

Instruction block verification techniques can be classified according to the following criteria: 

 Type of protected instruction blocks,  

 Signature placement,  

 Signature handling after verification, 

 Signature visibility to the I-cache. 

The taxonomy of instruction block verification techniques is given in Figure 4.4.  The name of a 

verification technique starts with SIG, and the rest of the name specifies the categories to which the 

technique belongs.  For example, the SIGCED technique protects a code block with the size equal to the 

size of an I-cache line (C), with signatures embedded in the code (E), and disposed after verification (D). 

A protected block can be of variable or fixed size.  With variable-size blocks, one signature 

protects a logical code unit such as a basic block or an instruction stream (dynamic basic block).  A basic 

block is a straight-line code sequence with no branch instructions out except at the exit and no branch 

instructions in except to the entry.  An instruction stream or a dynamic basic block is a sequential run of 

instructions from the target of a taken branch to the first taken branch in sequence.  With fixed-size blocks, 

one signature protects a physical code unit of the size equal to the size of one or more I-cache lines. 

Verification techniques can be further classified depending on the placement of signatures in a 

binary file.  A signature can be embedded in the code, i.e., placed before or after the instruction block it 

protects.  Another option is to store all signatures in a separate table, i.e., a separate code section. 

After verification, a signature can be discarded or stored in a dedicated resource called the 

signature cache (S-cache).  The S-cache’s number of entries and organization differ from the I-cache in 

order to keep decrypted signatures fetched from memory even when the corresponding instruction blocks 

are evicted from the I-cache.  The S-cache may reduce the performance and energy overhead of run-time 

signature verification at the price of increased hardware complexity. 
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Figure 4.4    Taxonomy of proposed instruction block verification techniques 

Basic block protection techniques differ slightly from the basic mechanism described above: A 

signature cannot be calculated in parallel with the fetch stage of the pipeline, since the end of a basic block 

is not known in that stage.  The calculated signature is known only after the last instruction in the 

corresponding basic block has been decoded, so the signature verification for one basic block is done in 

parallel with execution of the following basic block. 

The basic block protection technique with embedded signatures must keep signatures together 

with the instructions in the I-cache, since embedded signatures cannot be extracted from the code in the 

fetch stage without decoding [110].  The name of this technique in our taxonomy is SIGBEV.  With the 

SIGBEV technique, the instruction decoder must be able to tell the difference between a signature and a 

regular instruction.  This can be achieved by reserving one instruction bit for the signature flag, or by using 

a special opcode that indicates to the decoder that instruction words that immediately follow the current 

word represent a signature. 

Basic block protection techniques with signatures stored in the separate code section work in the 

following way.  When the instruction decoder detects the end of a basic block that caused at least one cache 

miss, the signature of that block must be fetched from the signature code section, decrypted, and compared 
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to the calculated signature.  These techniques can be classified depending on whether a decrypted signature 

is kept in a dedicated S-cache after verification (SIGBTK) [109], or it is disposed of (SIGBTD).  

Basic block protection techniques require compiler support, since disassembling generally cannot 

extract the basic block list from the executable code with 100% accuracy [63].  However, the required 

support is relatively simple:  With SIGBT techniques, the program compilation process only needs to 

generate a list of all basic blocks in the code and to append it to the executable (Figure 4.5).  With the 

SIGBEV technique, embedded signatures are converted to no-ops in the decode stage, so they are visible 

only to the dedicated signature verification unit and not to the rest of the processor core.  However, 

instruction addresses will change due to embedded signatures, so the installation process must recalculate 

all target addresses.  Hence, the list of basic block must also include target addresses.  

Compiler support is not necessary for techniques protecting instruction blocks of a fixed size 

(Figure 4.5).  Moreover, the signatures can be verified in parallel with the fetch stage, since the exact 

placement of signatures and protected blocks is known in advance.  Similarly to the basic block protection 

techniques, embedded cache line signatures are not visible to the processor, i.e., the processor is aware only 

of the executable code.  This invisibility is achieved with the use of a relatively simple address translation, 

so that the processor “sees” instruction addresses as if there were no embedded signatures.  The address 

translation can be done before or after the instructions are stored in the I-cache; that is, the signatures can 

be hidden from the I-cache or visible to it (SIGCEV in our taxonomy).  If signatures are hidden from the I-

cache, they can be disposed of after verification (SIGCED) or kept in the S-cache (SIGCEK).  As in the 

previously described techniques, cache line signatures placed in a separate code section can be discarded 

after verification (SIGCTD) or kept in the S-cache (SIGCTK). 
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Figure 4.5    Modification of executable code  

Table 4.1 illustrates the most important pros and cons of the proposed techniques.  Relevant 

parameters include the need for compiler support; hardware complexity, i.e., the estimated area on the chip 

required by a particular technique; the projected performance overhead, based on delays that a technique 

introduces to program execution; applicability of a technique in systems without cache memory; and the 

requirement to change the instruction set architecture (ISA). 
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As explained before, the techniques protecting the basic blocks (SIGBEV, SIGBTD, and 

SIGBTK) require some compiler support, whereas the techniques protecting cache lines (SIGC) are 

applicable to the already compiled code.  However, the SIGCE techniques (protected cache lines with 

embedded signatures) may benefit from compiler support.  The branch target addresses change due to 

embedded signatures, so either a compiler recalculates all target addresses, or address translation is done in 

hardware.  In this dissertation we evaluate the SIGCE techniques that use hardware address translation. 

All proposed techniques require a relatively simple processor modification: a dedicated processor 

resource for signature verification, the IBSVU (Figure 4.3).  Techniques that keep signatures in the S-cache 

require additional on-chip area, so they are marked as having Medium hardware complexity in Table 4.1: 

SIGBTK, SIGCEKT, and SIGCTK.   

The overhead of fetching a signature from the memory and its decryption is avoided if a signature 

is found in the S-cache, so techniques with the S-cache have a low projected performance overhead.  The 

SIGBEV and SIGBTD techniques have potentially higher performance overhead than the corresponding 

SIGC techniques.  With the SIGBEV, embedded basic block signatures may reduce the number of cache 

hits, leading to a medium performance overhead.  With the SIGCTD, the access function of the signature 

table in memory is relatively simple, whereas with the SIGBTD a more complex hash function must be 

used to access a table of basic block signatures, thus adding additional latency.  Figure 4.6 illustrates the 

qualitative assessment of signature verification techniques in the performance overhead - hardware 

complexity design space. 

The advantage of the basic block protection techniques is that they can be used in systems without 

cache memory.  Another advantage is that only instructions that are executed are verified, whereas only a 

portion of instructions in a cache line might be really needed.  However, if protected blocks of a fixed size 

correspond to the prefetch buffer size and not to the cache line, they can also be used in a cache-less 

system.  All techniques but one, the SIGBEV, do not require the change of the processor instruction set. 
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Table 4.1    Pros and cons of different techniques 

 Compiler 
support 

Hardware 
complexity 

Projected performance 
overhead 

Applicable without 
cache  

ISA 
change 

SIGBEV Yes Low Medium Yes Yes 

SIGBTD Yes Low Medium Yes No 

SIGBTK Yes Medium Low Yes No 

SIGCEV No;  
may be used Low Low to medium No No 

SIGCED No;  
may be used Low Low to medium No No 

SIGCEK No;  
may be used Medium Low No No 

SIGCTD No Low Low to medium No No 

SIGCTK No Medium Low No No 
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Figure 4.6    Qualitative assessment of signature verification techniques 
in the performance overhead - hardware complexity design space 
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4.3 Details of SIGCE Techniques 

In this section we explain details of three SIGCE techniques.  These techniques are 

 SIGCED – signatures are invisible to the I-cache and discarded after verification; 

 SIGCEK – signatures are invisible to the I-cache and kept in the S-cache;  

 SIGCEV – signatures are visible to the I-cache. 

We assume that all three techniques do not use compiler support, i.e., the original binary is 

modified during the secure installation process only by inserting signatures and necessary padding.  If the 

last instruction block is shorter than the cache line, it is padded by instructions that do not change the state 

of the processor.  If the code with embedded signatures is larger than a page size, it must be padded so that 

no instruction block is split between two pages.  This padding is necessary for each page but the last. 

4.3.1 SIGCED 

The flow of the instruction fetch process is shown in Figure 4.7.  The value of the program counter 

(PC) is used to access the I-cache.  Note that without loss of generality we assume that the I-cache is 

indexed by virtual addresses and it is virtually tagged.  This is a frequent case in embedded processor 

caches, for example in Intel’s Xscale processor [127], and also in some high-end processors, for example 

Alpha 21264 [128].  In the case of a cache hit, the instruction is fetched from the I-cache and there is no 

need for instruction verification.  In the case of a cache miss, we need to calculate the address of the 

instruction block to be fetched in the virtual memory.  The instruction block address has changed because 

of signature embedding and added padding.  If the padding is not necessary, i.e., one memory page can be 

completely filled with the protected instruction blocks and corresponding signatures, the true virtual 

address tPCtemp can be calculated as in Equation (4.1).  The value SigSize is the size of the signature, 

BlockSize is the size of the protected block, and TextBase is the starting address of the text segment for a 

given program. 

 )
BlockSize

ePC-TextBas(SigSize PCtPCtemp 1+⋅+= . (4.1) 
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Figure 4.7    SIGCED: Signature verification control flow 

Legend: Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently 
with instruction block fetch.  Shaded blocks indicate steps needed to support instruction block verification. 

The size of the padding PagePad is given in Equation (4.2), with PageSize denoting the size of a 

virtual memory page.  The final true address tPC can be calculated as in Equation (4.3). 

 )(mod SigSizeBlockSizePageSizePagePad += , (4.2) 

 PagePad
PagePadPageSize- 

xtBasetPCtemp-TetPCtemptPC ⋅+= . (4.3) 

For example, consider a case where the I-cache line is 128B, the signature size is 16B, the page 

size is 4096B, the TextBase address is 131072, and the value of the PC of the instruction to be fetched as 

seen by the processor is 135200.  In the original code without signatures, the size of a page is equal to the 

size of 32 instruction blocks.  In the signed code, the size of a protected block together with its signature is 

144B.  Hence, 28 signed blocks can fit in one page, filling 4032 out of 4096B.  Since one instruction block 
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cannot be split between two pages, the code must be padded so that the remaining 64B in a page are 

unused.  All instruction blocks must have the same size, so if the last instruction block in a binary is shorter 

than the I-cache block, it is padded with randomly chosen instructions that do not change the state of the 

processor.   

When a correct virtual address is calculated, the translation look-aside buffer (TLB) is accessed 

for virtual to physical address translation.  In all considered SIGCE techniques a signature is inserted into 

the code just before the corresponding protected instruction block, so the signature can be fetched first.  

While instructions of a protected instruction block are being fetched, the signature is decrypted using a key 

hidden in the hardware.  Each fetched instruction passes through the MISR register, and the final MISR 

output is compared to the decrypted signature.  If the calculated and the decrypted signature differ, a trap to 

operating system is asserted; otherwise, the instructions proceed with execution. 

If the time needed to fetch a cache line from memory is greater than or equal to the decryption 

time, there is no decryption performance overhead.  The MISR calculation is completely overlapped with 

instruction fetch, so there is no MISR overhead either.  Since in the I-cache the instruction addresses of the 

protected code are equal to the corresponding instruction addresses in the original code without signatures, 

the number of I-cache misses for the protected code is the same as for the original code.  Hence, the 

performance overhead of the SIGCED technique is due only to the additional number of processor cycles 

during instruction fetch.  Let tSigLat be the additional latency due to signature verification mechanism.  Then 

tSigLat(SIGCED) is the sum of the time needed for address translation tTrans and time needed to fetch a 

signature from the memory, tSigFetch, as shown in Equation (4.4).  The MemBusWidth value is the width of 

the data bus between memory and the I-cache in bytes.  The tDbus value is the time needed for one data bus 

transfer. 

  DbusTransSigFetchTransSigLat t
hMemBusWidt

SigSizetttSIGCEDt *)( ⎥⎥
⎤

⎢⎢
⎡+=+=  . (4.4) 

The signature verification is done by the Instruction Verification Unit (IBSVU), as illustrated in 

Figure 4.8.  Signature bytes are stored only in the SIGM buffer and then decrypted, while instruction bytes 
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go both to the MISR logic and to the I-cache.  An internal IBSVU signal, sig, controls the path of data from 

the data bus. 
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Figure 4.8    SIGCED: Instruction Block Signature Verification Unit 

Legend: SIGM – buffer for storing the signature fetched from memory, sig – signal indicating whether data 
on the data bus are signature or instruction words, S-match – signal indicating whether the calculated and 
original signature match. 

4.3.2 SIGCEK 

 A portion of the SIGCED overhead can be avoided if signatures are not discarded after 

verification, but kept in a dedicated cache-like IBSV resource – the S-cache.  Figure 4.9 shows the flow of 

the instruction fetch process for the SIGCEK technique.  With this technique, an I-cache lookup is 

performed concurrently with the corresponding S-cache lookup.  In the case of an I-cache miss, the 

instruction block signature is fetched only if it is not found in the S-cache.  Otherwise, if the decrypted 

signature is in the S-cache, the signature latency tSigLat in Equation (4.4) is reduced to the number of cycles 

needed for address translation tTrans.  The SIGCEK technique has the potential to reduce not only the 

performance overhead of instruction signature verification, but also to reduce the power overhead due to 



  54 

  

signature decryption, since a cached signature is already decrypted.  Figure 4.10 shows a block-scheme of 

the IBSVU for the SIGCEK technique.  A decrypted signature from the S-cache or a decrypted signature 

fetched from memory is compared to the final output of the MISR logic. 
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Figure 4.9    SIGCEK: Signature verification control flow 

Legend: Dotted lines indicate parallel tasks.  Shaded blocks indicate steps needed to support instruction 
block verification. 
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Figure 4.10    SIGCEK: Instruction Block Signature Verification Unit 

4.3.3 SIGCEV 

In all three SIGCE techniques, the virtual addresses of instructions as seen by the processor are the 

same for the original code and for the protected code with embedded signatures; that is, a virtual address of 

an instruction in the protected code after address translation is equal to the virtual address of that instruction 

in the original code.  Two previously described techniques, the SIGCED and SIGCEK, use translated 

virtual addresses in the cache, so both processor and cache see only the original virtual addresses.  Another 

option is the SIGCEV technique: translated addresses are used only in the processor, and the instruction 

cache sees the non-translated virtual address space that includes the signatures and padding.  Hence, in the 

SIGCEV, the address translation must be done before each I-cache lookup.  The advantage of this 

technique is that the translation in most cases can be done in advance, together with the prediction of the 

next instruction address.  The only case when the performance overhead due to the translation cannot be 

hidden is when a branch is mispredicted.  Figure 4.11 shows the SIGCEV control flow. 
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Figure 4.11    SIGCEV: Signature verification control flow 

Legend: Dotted lines indicate parallel tasks.  Shaded blocks indicate steps needed to support instruction 
block verification. 

A simple and fast cache access mechanism requires both the cache line size and a cache line 

address to be a power of two.  Hence, in the SIGCED and SIGCEK techniques, the size of a protected 

block is the power of two.  Since instructions in the SIGCEV technique are stored in the I-cache using non-

translated virtual addresses, the sum of sizes of a protected block and its signature are a power of two.  For 

example, if an I-cache line size is 64 bytes, we can store 64 instruction bytes in one I-cache line in the 

SIGCED and SIGCEK, and 64 – SigSize bytes in the SIGCEV cache.  Figure 4.12 shows the content of an 

I-cache line with the SIGCEV technique:  The length of one instruction word W is 4 bytes, and the 

signature length is 16 bytes, i.e., 4 words.  Although the signatures are visible to the SIGCEV I-cache, they 

are never stored in the I-cache, which is indicated by an X in the signature field Sig.  Therefore, the cache 
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line size and consequently the cache size are effectively smaller than the corresponding SIGCED/SIGCEK 

values with the same cache line alignment (48 bytes instead of 64 in the example in Figure 4.12).  If we 

know in advance that a system will execute only protected code, the SIGCEV I-cache line may be 

implemented as physically smaller, too.  However, if we want to allow the unprotected mode, the I-cache 

line must have the “regular” length.  The Sig field is unused in the protected mode and treated as a part of 

the Instruction Words field in the unprotected mode. 

Another consequence of the requirement that the sum of the protected block size and signature 

size is a power of two is that the SIGCEV technique does not require page padding, thus simplifying 

address translation. 

...

...

CBi

Sigi
Sig1
Sig2
Sig3
W0
...

W11

Sig0

Memory IBSV

X

Tag Sig
Cache Line

Instruction Words  

Figure 4.12    The content of an I-cache line with the  SIGCEV technique 

4.4 Details of SIGCT Techniques 

In this section we will explain details of two SIGCT techniques, where signatures are stored in a 

separate code section.  These techniques are 

 SIGCTD – signatures are discarded after verification; 

 SIGCTK – signatures are kept in the S-cache.   
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The SIGCT techniques have both advantages and disadvantages over the SIGCE techniques.  

Since signatures are stored separately from instructions, there is no need for hardware address translation 

and padding.  On the other hand, signature fetch from memory requires a completely separate memory 

access.  If the application code is relatively large, instructions and signatures may even be located on 

separate pages, so accesses to signatures may cause page faults.  

4.4.1 SIGCTD 

The flow of the instruction fetch process for the SIGCTD technique is shown in Figure 4.13.  As 

with the SIGCE techniques, execution continues without signature verification in the case of an I-cache hit.  

The address of the corresponding signature is calculated in parallel, so the signature can be fetched first in 

the case of an I-cache miss.  Since all protected blocks are of the same size, signature address SigAddress 

can be easily calculated as in Equation (4.5).  As in previous equations, the value SigSize is the size of the 

signature, BlockSize is the size of the protected block, TextBase is the starting address of the text segment, 

and PC is the program counter.  The value SigTableStart is the starting address of the table segment 

SigTable.  The calculated SigAddress must not be greater than the SigTableEnd, the address of the last 

signature in the SigTable (block Address in Sigtable in Figure 4.13). 

 )
BlockSize

ePC-TextBas(SigSizetart SigTableSSigAddress ⋅+= . (4.5) 

The instruction fetch starts when the signature fetch is finished.  The signature is decrypted in 

parallel with the instruction fetch, so the decryption latency is partially or completely hidden by the 

instruction fetch latency, as in the SIGCE techniques.  The decryption latency hiding is the reason for the 

fetch order (signature first, then instructions). 

If the decryption latency is completely hidden, performance overhead is of the SIGCTD is due 

only to the signature fetch latency, tSigLat(SIGCTD) in Equation (4.6).  However, since the signature fetch 

requires a separate memory access, signature fetch latency is longer than for SIGCE techniques.  As before, 

MemBusWidth is the width of the data bus between memory and the I-cache in bytes, and tDbus is time 

needed for one data bus transfer.  The value of tMemAccess encompasses all components of memory access 
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latency, such as address decoding latency, word line activation latency, word line activation latency, and 

output driving latency.   

 DbusMemAccessSigLat t
hMemBusWidt

SigSizetSIGCTDt *)( ⎥⎥
⎤

⎢⎢
⎡+= . (4.6) 

The Instruction Block Verification Unit for the SIGCTD is very similar to the IBSVU for the 

SIGCED (Figure 4.8), except differences in control logic. 
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Figure 4.13    SIGCTD: Signature verification control flow 

Legend: Dotted lines indicate parallel tasks.  Shaded blocks indicate steps needed to support instruction 
block verification. 
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4.4.2 SIGCTK 

Figure 4.14 shows the control flow for signature verification with the SIGCTK technique.  If a 

signature of a block that is not in the I-cache is not found in the S-cache, signature latency is the same as 

for the SIGCTD (4.6).   However, if the signature is in the S-cache and the decryption latency is hidden as 

explained before, the SIGCTK technique has virtually no overhead.  The SIGCTK IBSVU is very similar 

to the SIGCEK IBSVU (Figure 4.10). 
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Figure 4.14    SIGCTK: Signature verification control flow 

Legend: Dotted lines indicate parallel tasks.  Shaded blocks indicate steps needed to support instruction 
block verification. 
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4.5 Details of SIGB Techniques 

In this section we explain details of three SIGB techniques, where protected instruction blocks 

correspond to basic blocks.  These techniques are 

 SIGBEV – signatures are embedded in the code; 

 SIGBTD – signatures are stored in a separate code section and discarded after verification;  

 SIGCTK – signatures are stored in a separate code section and kept in the S-cache.   

Techniques protecting basic blocks have a significant advantage of being able to avoid some 

verifications.  One approach is to verify only the last basic blocks in instruction streams.  In the rest of this 

dissertation, we focus on this approach, as it significantly reduces the number of verifications with no 

negative effects to the security (any injected code will change the original control flow).  For instance, a 

consecutive sequence of basic blocks BB1, BB2, and BB3 in Figure 4.15 makes one instruction stream if 

the branches in BB1 and BB2 are not taken and the branch in BB3 is taken.  In this case, only the BB3 

signature will be verified in the stream BB1–BB2–BB3.  Moreover, the signature needs to be verified only 

if at least one instruction in the BB3 basic block caused an I-cache miss. 

NT

BB1

BB2

BB3

NT

BB4

NT

T

T

T

NT

T

 

Figure 4.15    Instruction streams.  

Legend: BB – Basic Block, T – Taken branch, NT – Not Taken. 
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Another advantage of the SIGB techniques is that they are applicable to systems without the I-

cache memory, since they do not depend on the cache mechanism.  In such a system, all last basic blocks in 

instruction streams need to be verified.  A SIGC technique in a system without the I-cache would require 

fetching of instructions that might not be executed in order to verify the signature of the whole block.  

Moreover, signatures of all protected blocks would need to be verified, which would add a significant 

performance overhead. 

Whereas the considered SIGC techniques do not allow execution of unverified instructions, the 

SIGB techniques overlap signature verification of one basic block with execution of the following one, so 

the detection of code injection attack is delayed.  However, since memory writes are usually buffered, the 

actual verification can be safely delayed until the memory buffer is full.  Hence, the main component of 

performance overhead will be due to the signature fetch.  

However, the SIGB techniques also have several disadvantages when compared to the 

corresponding SIGC techniques.  Unlike the SIGC, they require compiler support, although a modest one.  

In addition, the number of basic blocks in the code is likely to be larger than the number of instruction 

blocks of the size of the cache line, especially for predominantly integer applications.  In that case, the code 

size increase with the SIGB is larger than with the SIGC techniques. 

4.5.1 SIGBEV 

In the SIGBEV, the signatures are embedded in the code, with each signature placed before the 

first instruction in the corresponding basic block.  Although a control flow-changing instruction can be the 

last instruction in more than one basic block, each basic block has a unique first instruction, so the basic 

block start is a better choice for the signature placement.  Moreover, if the signature is placed before 

instructions, than signature decryption may be partially overlapped with instruction execution.  The 

signature instruction words are converted to no-ops in the decode stage of the pipeline. 

An example of protected code and the corresponding original code is shown in Figure 4.16.  This 

is an excerpt of assembly code of a simple loop written in C, on a Sun SPARC system.  According to the 

definition of a basic block that we use, the original code in the example has five basic blocks, so the 

protected code has five embedded signatures.  Note that the second, third, and fourth basic block have the 
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common end, the instruction 9. ble .LL9.  Let us consider the case when the program has just jumped 

to LL3, i.e., instruction 1.  Hence, this instruction is the beginning of an instruction stream.  If we assume 

that the branches in the instructions 3 and 9 are both not taken, the last basic block in this instruction stream 

consists of the instruction 10, and only its signature needs to be verified. 

.LL3:

1. ld [%fp-24], %o0

2. cmp %o0, 0

3. ble .LL4

4. ld [%fp-24], %o0

5. st %o0, [%fp-28]

.LL5:

.LL4:

6. st %g0, [%fp-36]

.LL6:

7. ld [%fp-36], %o0

8. cmp %o0, 9

9. ble .LL9

10. b .LL7

.LL3:

signature(1.-3.)

1. ld [%fp-24], %o0

2. cmp %o0, 0

3. ble .LL4

signature(4.-9.)

4. ld [%fp-24], %o0

5. st %o0, [%fp-28]

.LL5:

.LL4:

signature(6.-9.)

• st %g0, [%fp-36]

.LL6:

signature(7.-9.)

7. ld [%fp-36], %o0

8. cmp %o0, 9

9. ble .LL9

signature(10.)

10. b .LL7

Original code Protected code
 

Figure 4.16    SIGBEV: An example of the original and the protected code 

Figure 4.17 shows the IBSVU for the SIGBEV technique, and Figure 4.18 shows a high-level 

description of the corresponding SIGBEV procedures in pseudo-code.  The IBSVU has two input control 

signals, NewBB and IBSVU_Start, and one output signal, IBSVU_Busy.  The SIGM register holds the 

signature stored in memory, i.e., embedded in the code; the Last Block Signature register (LB.S) holds the 

calculated signature for the last basic block. 
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Figure 4.17    SIGBEV: Instruction Block Signature Verification Unit 

Legend: IR – Instruction Register, SIGM – Signature stored in memory, LB.S –Last Block Signature 
register.  Dotted lines indicate signals. 

Instruction Decode Stage: 
if (signature instruction) { 
 if (IBSVU_Busy) wait; 
 // IBSVU is free, start new basic block 
 CacheMissFlag <= 0; 
 NewBB <= 1; 
} 
else 
 NewBB <= 0; 
 
 
Branch Instruction Execution Stage: 
if (BranchTaken && CacheMissFlag) { 
 if (IBSVU_Busy) wait;  
 IBSVU_Start <= 1;  
} 
else 
 IBSVU_Start <= 0; 
 
Instruction Block Verification Unit: 
if (NewBB) 
 SIGM <= IR; 
 
if (IBSVU_Start){ 
 LB.S <= MISR; // signature of the last basic block in a stream 
 StartAES;   // start decryption 
} 
 
if (AES_done) { 

IBSVU_Busy <= 0; 
if (AES(SIGM) == LB.S) SuccessfulVerification; 
else TrapOS; 

} 

Figure 4.18    SIGBEV Procedures 
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For the sake of simplicity, we assume that the signature length is one instruction word.  The 

signature instruction is detected in the instruction decode stage.  The control logic in the decoder then waits 

until the IBSVU clears the signal IBSVU_Busy.  When the IBSVU indicates it is free, the decoder asserts 

the signal NewBB.  The internal CacheMissFlag is set to 0; this flag is set to 1 on any I-cache miss. 

The end of an instruction stream is detected in the execution stage of the pipeline, when a branch 

instruction is resolved as taken.  If a branch is taken, and any of the instructions in the corresponding basic 

block caused an I-cache miss, the signature of that basic block should be verified.  The control logic in the 

execution stage waits until the IBSVU is free and then asserts the IBSVU_Start signal. 

The IBSVU loads the encrypted embedded signature from the IR to the SIGM register, when the 

signal NewBB is asserted.  This signal also resets the MISR.  When the signal IBSVU_Start is asserted, the 

IBSVU loads the calculated signature from the MISR to the LB.S register and starts AES decryption of the 

signature in the SIGM.  When the AES block indicates that it is done with decryption (AES_Done), the 

IBSVU clears the IBSVU_Busy signal and compares the decrypted and calculated signatures.  As in the 

SIGC techniques, if the two values do not match, the trap to operating system is asserted, and the operating 

system aborts the process.  

Note that decryption of a signature does not start immediately after that signature is fetched, but 

when it is determined that the verification is needed.  This implementation choice is motivated by two 

reasons.  First, we want to avoid a more complex algorithm, where decryption of a basic block signature is 

aborted after fetch of a signature of the following basic block from the same instruction stream.  In 

addition, unnecessary decryptions would increase the power consumption.  

In the SIGBEV implementation explained above, the IBSVU cannot accept new basic block 

signatures while it is still decrypting the previous one.  This condition can be relaxed if the SIGM is 

implemented as a First In First Out buffer (FIFO).  In addition, the calculated signatures may also be 

buffered.   We may allow further instruction execution until the memory write buffer is full, or, in even 

more relaxed model, until the SIGM or the LB.S is full.   

Assuming that the decryption latency can be completely hidden, one component of performance 

overhead due to signature mechanism overhead is the signature fetch latency, tSigFetch as in Equation (4.7).  

However, since the signatures are stored in the I-cache together with instructions, they are likely to increase 
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the number of I-cache misses.  More I-cache misses mean more fetch overhead for both instructions and 

signatures.  For some applications, the additional instruction fetch overhead may be a dominant component. 

 DbusSigFetch t
hMemBusWidt

SigSizet *⎥⎥
⎤

⎢⎢
⎡= . (4.7) 

4.5.2 SIGBT 

With both SIGBT techniques, the signatures are kept in a separate code section, SigTable.  As 

explained in the Section 4.4.1, for SIGCT techniques the address of a signature can be easily calculated.  

Due to the variable size of basic blocks, mapping between basic block start addresses and the 

corresponding signatures is not a simple function, so a SigTable record in SIGBT techniques must include 

both a signature and a unique tag.  The tag does not have to be encrypted.  The simplest possible tag is the 

starting address of the basic block, relative to the beginning of the code.  The offset of the new basic block 

from the beginning of the code is calculated by deducting the value in the PC register from the value stored 

in the program Starting Address register (SA), and stored in the Current Block Starting Address register 

(CB.SA).  The SIGBTK technique stores decrypted basic block signatures and the corresponding starting 

address offsets in the S-cache; the starting address offset is used to determine the S-cache index. 

Figure 4.19 shows the IBSVU for the SIGBTK technique, and Figure 4.20 shows a high-level 

description of the corresponding SIGBTK procedures in pseudo-code.  The control logic in the decoder 

calculates the CB.SA value for each new basic block.  As with the SIGBEV technique, the control logic in 

the execution stage asserts the signal IBSVU_Start when there was an I-cache miss in the last basic block in 

an instruction stream.   

When the signal IBSVU_Start is asserted, the IBSVU loads the current value of the CB.SA into 

the LB.SA register, and loads the calculated signature from the MISR to the LB.S register.  The S-cache is 

searched for an entry with the LB.SA tag.  In the case of an S-cache hit, the signature from the S-cache is 

compared to the calculated signature in LB.S.   
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Figure 4.19    SIGBTK: Instruction Block Signature Verification Unit 

Legend: PC – Program Counter, IR – Instruction Register, SA- Starting Address, LB.S – Current Block 
Signature Register, CB.SA/LB.SA Current Block/Last Block Starting Address Offset, SIGM – Signature 
from memory.  Dotted lines indicate signals. 

An S-cache miss indicates either an infrequently executed basic block or injected code, so the 

SigTable section in memory must be searched for the record with the starting address offset equal to 

LB.SA.  If such record is found, the signature is fetched and the AES decryption started.  If there is no 

record in the SigTable with the LB.SA tag, the last executed basic block is not signed, so the IBSVU 

asserts the trap to the operating system.   

The result of the AES decryption is compared to the calculated signature in LB.S, as in the 

SIGBEV.  In addition, the IBSVU updates the S-cache with the decrypted signature and the LB.SA. 

Sequential search of the SigTable is inadmissibly slow, so we must use other search methods.  

One implementation of an improved binary search is illustrated in Figure 4.21.  The SigTable is divided 

into segments and sorted in a monotonic order by starting address offset.  The SigTable start and end 

addresses are stored in the IBSVU, as well as the values of starting address offset fields for each beginning 

of the segment.  Hence, we know exactly which segment should be searched with a given starting address 

offset.  That segment than can be searched using binary search.   
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Instruction Decode Stage: 
if (last instruction == control flow instruction)  
 NewBB <= 1; 
else 
 NewBB <= 0; 
if (NewBB)  CB.SA <= PC – SA; 
 
 
Branch Instruction Execution Stage: 
if (BranchTaken && CacheMissFlag) { 
 if (IBSVU_Busy) wait;  
 IBSVU_Start <= 1;  
} 
else 
 IBSVU_Start <= 0; 
 
Instruction Block Verification Unit: 
if (IBSVU_Start){ 
 LB.S <= MISR; // signature of the last basic block in a stream 
 LB.SA <= CB.SA;  // start address offset 
 if (S-cache_hit(LB.SA)){ // S-cache hit 
  IBSVU_Busy <= 0;   
  if (S-cache.S == LB.S) SuccessfulVerification; 
  else TrapOS; 
 } 
 else {  // fetch encrypted signature from memory and decrypt 
  if (SearchSig(LB.SA)){  // a signature found in memory 
   SIGM <= FetchedSig;   
   StartAES;   // start decryption 
  } 
  else  TrapOS; 

} 
} 
 
if (AES_done) { 

IBSVU_Busy <= 0; 
if (AES(SIGM) == LB.S){ 

  SuccessfulVerification; 
  UpdateS-cache(LB.SA, AES(SIGM));   
 } 

else TrapOS; 
} 

Figure 4.20    SIGBTK Procedures 
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Figure 4.21    SigTable access using segment approach 

Legend: LB.S – Last Block Signature Register, LB.SA – Last Block Starting Address Offset, SigTable.Start 
and SigTable.End – the addresses of the first and last records in the SigTable, Segi.0.SA – starting address 
offset value in the first record in the i-th segment in the SigTable. 

The search mechanism can be even faster.  Since the SigTable does not change for a given 

program, the secure installation process may find a near-perfect hash function for a particular application 

[129, 130], or choose the most suitable hash function from a predefined set of functions.  A perfect hash 

function is a function that maps the domain of records to the hash table one-to-one, that is, without 

collision.  The information about the chosen hash function may be kept in the program header in an 

encrypted form.   

Since the S-cache stores decrypted signatures, in the case of an S-cache hit there is no additional 

latency due to verification.  On the other hand, in the case of an S-cache miss the signature must be found 

in the SigTable, fetched, and decrypted.  Decryption can be done in parallel with execution of the following 

basic block, so the main performance overhead component is due to the SigTable access latency and the 

number of times the SigTable must be accessed to find a signature or to decide that such signature does not 

exist. 

The S-cache is the only difference between the SIGBTD and SIGBTD techniques.  With the 

SIGBTD, the SigTable access latency cannot be eliminated. 
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4.6 Discussion 

Efficient implementation of a signature verification mechanism poses quite a few challenging 

questions.  In this section we discuss various complexity, performance and security issues of the proposed 

mechanism. 

4.6.1 Reducing Memory Overhead 

An instruction block signature must have at least 128 bits to be cryptographically sound.  On the 

other hand, the code size increase is directly proportional to the average length of protected blocks and the 

signature length.  For example, if the protected block size in a SIGC technique is 128B and the signature is 

16B, the increase of code section of a binary due to signatures is 12.5%, plus the increase due to padding.  

Though this increase will not put a lot of additional strain on the memory requirements in high-end 

systems, it may be significant in embedded processors with smaller caches and consecutively smaller cache 

lines.  To address this problem, one approach would be to protect multiple cache blocks with a single 

signature.  All blocks protected with one signature must be brought to the IBSVU and may or may not be 

stored in the I-cache, so this mechanism can be combined with instruction prefetching.  The evaluation of 

this approach is out of the scope of this dissertation. 

For the SIGB techniques, the average length of protected blocks is application dependent.  For 

example, the average basic block length in SPEC CPU2000 benchmark set is 19.3 – 41.9 bytes on Alpha 

architecture [131].  One way to reduce the number of signatures would be to sign only selected basic 

blocks, applying strategies from fault-tolerant computing [113].  However, reducing the number of 

signatures must not reduce the ability of a system to detect code injection attacks. 

4.6.2 Reducing Performance Overhead 

For the SIGC techniques, in this dissertation we focus on conservative verification, where 

instructions of a signed instruction block are not allowed to execute before their signature is fetched, 

decrypted, and verified.  A more relaxed approach allows blocks to execute unverified, but unverified 

instructions are not allowed to write to memory.  An even more relaxed approach may even allow 
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execution of a certain number of unverified stores, but it then must be able to perform a rollback if a code 

injection attack is detected.  A similar relaxed approach can be applied to the SIGB techniques.   

Performance overhead for all signature verification techniques might also be reduced with 

prefetching of code and signatures as described above, or only with signature prefetching in techniques 

with the signature cache.  

4.6.3 Systems with more than one level of cache memory  

Signature verification is always related to the lowest level of cache memory, i.e., the cache that is 

the closest to memory.  For example, in a system with two levels of cache memory, a signature should be 

verified if the corresponding protected block is not in the L2 I-cache.  Performance overhead of the 

proposed techniques is insignificant in systems with more than one level of cache, since the number of 

cache misses relative to the number of executed instructions is very low in lower level caches.   

If the lowest cache level is unified, the proposed techniques exploit the dirty cache line bit.  This 

bit is set to 1 if the contents of the cache line have changed since loading it into the cache, i.e., if there were 

any stores to the cached locations.  As described in previous sections, a signature is verified if the 

corresponding instruction block is not in the lowest level of cache.  It is also verified if it is found in the 

cache, but with a dirty cache line. 

4.6.4 Dynamically Linked Libraries  

With the proposed techniques, each dynamically linked library (DLL) has its own signature 

section or embedded signatures, so all code can be safely verified.  The pointers to signature sections or the 

beginning of the code with embedded signatures can be loaded to the IBSVU when a particular library is 

dynamically linked.  The IBSVU stores a fixed number of such pointers.  When an application is 

dynamically linked with more DLLs than the IBSVU can hold, the overflow is handled by the operating 

system, and the overflow data is stored in memory. 
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4.6.5 Context switch  

In the case of a context switch or interrupt, the signature information such as the current MISR 

value is saved together with the other process data, and restored when the process resumes execution.  The 

S-cache may be flushed at each context switch, or it may include a process ID tag. 

4.6.6 Dynamically Generated Code 

In some cases, the executing code may be dynamically generated and possibly never saved in an 

executable file.  One such example is the code generated by the Java Just-In-Time compiler (JIT).  The 

dynamically generated code can be marked as non-signed and executed in the unprotected mode.  Another 

option is to let the dynamic code generator generate the signatures together with the code.  If the generator 

is trusted, its output should be trusted too.   The same argument applies to the interpreted code. 

4.6.7 Return-Into-Libc Attacks 

So-called return-into-libc attacks overwrite a code pointer to point to the regular application code, 

usually the library code.  Signature verification alone cannot detect a return-into-libc attack, since the 

library code is also signed.  However, our approach can be combined with other defense techniques to 

prevent the success of return-into-libc; these techniques may also benefit from hardware support.  One such 

technique is address layout randomization [76], and another one is denying a system call requests if they do 

not adhere to predefined rules [89]. 

4.6.8 High-Level Attacks 

We believe that the proposed mechanism is an important step toward more secure computer 

systems.  However, we do not claim that signature verification will solve all the security-related issues we 

face today.  Rather, we believe that no single technique can do that, but that a combination of hardware and 

software techniques is needed, working in concord at different levels of abstraction.  For example, our 

technique will not prevent execution of malware elevated to a trusted level by users, nor will it prevent 
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high-level attacks such as SQL injection, where malicious SQL keywords are added to an SQL database 

query.  One example of SQL injection vulnerability is a login form that requires username and password 

from the database by using SQL command WHERE, but allows any characters in the input.  Hence, an 

attacker might use the SQL keyword OR to set a condition which is always true and bypass the login 

condition [132].  



  

 74 

CHAPTER 5 
 
 
 

EXPERIMENTAL METHODOLOGY 

“If you don't know where you are going, you will wind up somewhere else.” 

Yogi Berra 

 

 

 

This chapter describes experimental methodology used to evaluate techniques for instruction block 

verification.  We first describe the experiments and metrics used to evaluate performance overhead.  To 

mimic the secure installation process, we modify files in the Executable and Linkable Format (ELF) [133].  

To simulate secure execution with the SIGC techniques, we modify the execution-driven simulator 

SimpleScalar [134] to execute modified ELF files and to measure additional latencies due to signature 

verification.  For evaluation of the SIGB techniques, we use a custom-made trace-driven simulator.  We 

measure sensitivity of performance overhead to various architectural parameters, and with benchmarks 

selected from both the embedded and high-end processor domain.  

5.1 Evaluation of Proposed Techniques  

All proposed techniques successfully detect code injection attacks, since an injected code 

sequence cannot have a valid signature.  Whereas the security is the main criteria when assessing the 

quality of a defense technique, it is far from being the only one.  A hardware-supported defense technique 

should not add significant overhead in hardware complexity, execution time, and memory requirements.   

Hardware complexity of all proposed techniques without the S-cache is very low.  The complexity of 
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techniques with the S-cache depends on the S-cache size.  We evaluate only implementations where the S-

cache is smaller than the I-cache size, so the complexity of these techniques is also moderate. 

Memory overhead is simply determined by comparing the sizes of the original code and the code 

with protected instruction blocks.  As explained in the next section, an executable file consists of different 

segments, and only segments containing instructions are protected with signatures.  To better understand 

memory overhead, we measure the ratio between the sizes of original and signed instruction sections, and 

the ratio between the sizes of original and signed executable files. 

Performance overhead for an application may be determined by comparing the execution time of 

the original code in the base system without signature verification, and the signed code in a system with 

signature verification.  Performance overhead can also be assessed by measuring the number of events that 

are a major contributor to total overhead, such as the increase in the number of I-cache misses.  The SIGC 

techniques are more readily applicable than the SIGB, so we evaluate the SIGC using a detailed execution-

driven architectural simulator.  We modified the most detailed simulator in the SimpleScalar tool set [134] 

to support the SIGCED, SIGCEK, SIGCEV, SIGCTD, and SIGCTK techniques.  The performance metric 

is the CPI, the number of processor clock cycles per instruction.  As an indirect indication of performance 

overhead, we can also use the number of S-cache misses for the SIGCEK and SIGCTK, and the increase of 

I-cache misses for the SIGCEV technique.  The metric for cache misses is the number of misses per one 

thousand instructions, or per one million instructions (1M).  

For the SIGB techniques, originally developed trace-driven simulators are used to assess 

performance overhead.  In this case, we measure the number of signature verifications per one million 

executed instructions.  In addition, we measure the increase in the I-cache misses for the SIGBEV, and the 

number of S-cache misses for the SIGBTK technique.  

5.2 ELF Format  

When instruction block signatures are added to an executable file, the resulting file must still 

conform to the executable format.  To offer a proof-of-concept of the proposed techniques, we modified 

executable files in the ELF format.  This section explains the main characteristics of this format. 
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ELF is the executable format widely used in Linux, Unix, Solaris, and other similar operating 

systems.  An ELF file may be a relocatable, executable, or shared object file.  As defined in the Tool 

Interface Standard (TIS) ELF Specification, version 1.2, a relocatable file is a file that can be linked with 

other object files to create an executable or a shared object file, and an executable file holds an executable 

program [133].  Shared object files are essentially libraries, which can be linked with other object files 

either statically or dynamically.   

Figure 5.1 illustrates the view of an ELF file as seen by the linker (linking view) or program 

loader (execution view).  Any ELF file begins with the ELF header, which describes the organization of the 

file.  For example, an ELF header specifies the file type, required architecture, the virtual address of the 

start of the program, and the position of program header table and section header table in the file. 

 

Linking view  Execution view 

ELF Header  ELF Header 

Program Header Table (optional)  Program Header Table  

Section 1  

Section 2  
Segment 1 

...  

Section n  
Segment 2 

....  ... 

Section Header Table  Section Header Table (optional) 

Figure 5.1    Linking and execution view of an ELF file 

From the linker’s point of view, an ELF file is divided into sections.  Section Header Table is an 

array of structures that specify file sections.  One such structure specifies the name, type, start address in 

the memory image of a process, position in the file, size, and the attribute flag for one section, as well as 

some other information.  For example, the attribute flag specifies whether a section contains instructions or 

data.  It is interesting to note that the section name is an index into a special section, called header string 
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table, which holds actual names in ASCII.  The ELF specification defines a number of special sections.  

Table 5.1 lists some common ELF file sections and the corresponding content. 

Table 5.1    Some common ELF file sections 

Section Content 

.bss Uninitialized program data 

.data Initialized program data 

.debug Symbolic debugging information 

.dynamic Dynamic link information 

.rodata Read-only program data 

.shstrtab Header string table 

.strtab Symbol table names 

.symtab Symbol table 

.text Program instructions  

.init Program initialization code 

.fini Program terminating code 

 

When the loader loads a program in the memory, it considers the ELF file as a group of segments, 

which in turn have one or more sections.  Segments are specified in program header table.  For each 

segment, this table specifies the type, the position in the file, the virtual and sometimes physical address of 

the first segment byte in memory, the size in the file and the size in memory, and some other information.  

For example, the segment type specifies whether a segment is loadable, i.e., mapped to memory.   
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5.3 Secure Installation of Files in ELF Format 

Since the SimpleScalar simulators can execute only statically linked code, we wrote a program 

that emulates the secure installation process for the executable ELF files.  An executable ELF file with 

embedded signatures is modified in the following way: 

 Encrypted signatures and padding are added to instruction blocks in sections containing instructions, 

i.e., init, text, and fini.  By default, these sections are mapped in memory one after another, so they can 

be treated as a single entity for the signing purpose.  

 The section length and position information are adjusted.  We change only the length of the fini 

section.  If a section is located in the file after fini in the original code, it is shifted for the total length 

of embedded signatures and padding, and its position is adjusted in the section table header. 

 Program table header should also be updated.  However, the gcc cross-compiler that comes with the 

SimpleScalar creates a section header table with information about virtual memory address for 

loadable sections, and the SimpleScalar loader considers this header only when loading a program into 

simulated memory.  Hence, we only update the section header table. 

 By default, the data sections are mapped to virtual memory after code sections, which may cause 

problems to instructions that read or write to memory.  Instead of disassembling the code and 

recalculating all load and store addresses, we chose to modify the default options of the GNU linker, so 

that data sections are mapped before the code.  

An executable ELF file with instruction block signatures in the signature table section requires the 

following modifications: 

 The signature table section, .sigt, is added as the last section in the file. 

 The entry for the signature table section is added to the section header table, and the entry for the 

corresponding segment is added to the program header file (signature table section makes one 

segment).  

 The signature virtual address is set to be larger than the last address of loadable sections, so there is no 

need to change header information for other sections. 

ELF dynamically linked library files can be modified in a similar way.  Since only already linked 

files and libraries are securely installed, signatures are never added to relocatable ELF files.  
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5.4 SimpleScalar Simulator 

The SimpleScalar [134] encompasses architectural simulators that are the most widely used tools 

in computer architecture research.  The SimpleScalar website, www.simplescalar.com, lists its use in 

papers published in top computer architecture conferences.  For example, in the year 2002 more than one 

third of all top conference papers used the SimpleScalar.  Such popularity is due to several reasons.  First, 

the SimpleScalar is an open-source free tool developed in academia (University of Wisconsin).  It includes 

simulators for Alpha, PISA (a MIPS-like portable instruction set architecture), ARM, and PowerPC 

architectures.  In addition, it can run on various host platforms, including Linux, FreeBSD, Alpha OSF1, 

SPARC SunOS, AIX Unix, and Windows NT under CygWin. 

SimpleScalar simulators are primarily execution-driven.  The input of an execution-driven 

simulator is a “regular” executable file, whereas the input of a trace-driven simulator is an instruction 

execution trace.  Trace-driven simulators do not have to decode and perform instructions, so they are 

usually less complex than the execution-driven simulators with the same functionality.  Another advantage 

is that trace-driven simulations are completely repeatable experiments, while the results of some execution-

driven simulators may differ between several runs.  However, for each application we want to simulate we 

must first collect and store its trace, while executable files are readily available and do not require a lot of 

storage space.  Moreover, traces collected with certain architecture may not be suitable for simulation of 

another system.  SimpleScalar simulators handle system calls by passing them on to the host system, so 

simulations are not absolutely repeatable.  However, some simulators in the set include an option to use 

EIO (external input output) traces, i.e., traces of interaction with the host system, thus providing complete 

repeatability. 

Any system simulator is either fast but simulating the system at a high level of abstraction, or 

more detailed, but slower.  The SimpleScalar balances these opposite requirements by including several 

simulators at various level of detail, such as sim-safe, sim-profile, sim-cache, sim-bpred, and sim-outorder.  

The sim-safe and sim-profile are functional simulators executing instructions serially, without accounting 

for execution time.  The difference between the two is that the sim-profile gives various statistics.  The sim-

cache and sim-bpred simulate details of memory hierarchy and branch prediction, respectively.   The sim-

cache can simulate up to two levels of cache memory, with unified or split data and instruction caches, 
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various cache sizes, degree of associativity, and replacement policies.  The sim-bpred simulator can 

simulate five types of predictors: always taken, always not taken, bimodal, two-level, and a combination of 

a bimodal and a two-level predictors.  It also simulates a branch target buffer with various number of 

entries and sets, and the return address predictor.  Finally, the sim-outorder simulator provides a detailed 

microarchitectural timing model of a system with possibly out-of-order execution and various available 

resources.   It reuses functionality of sim-bpred and sim-cache. 

The SimpleScalar toolset also includes precompiled libraries and applications, as well as the 

complete GNU tool chain for PISA and ARM architectures.  The source code is written in C, very well 

documented and well organized, so the simulators are relatively easy to modify.  Table 5.2 lists .c files that 

are used by various SimpleScalar simulators, and their short description.  Most of these files have 

corresponding header files with function prototypes.  Figure 5.2 shows the main simulator loop body in the 

sim-outorder simulator (some comments and “sanity checks” are removed).   

 

/* commit entries from RUU/LSQ to architected register file */ 
ruu_commit(); 
 
/* service function unit release events */ 
ruu_release_fu(); 
 
/* service result completions, also readies dependent operations */ 
ruu_writeback(); 
 
/* try to locate memory operations that are ready to execute */ 
lsq_refresh(); 
 
/* issue operations ready to execute from a previous cycle */ 
ruu_issue(); 
 
/* decode and dispatch new operations */ 
ruu_dispatch(); 
 
/* call instruction fetch unit if it is not blocked */ 
if (!ruu_fetch_issue_delay) 
     ruu_fetch(); 
else 
     ruu_fetch_issue_delay--; 

Figure 5.2    The main simulator loop body in the sim-outorder simulator 
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Table 5.2    Descriptions of .c files used by SimpleScalar simulators 

File name Functionality 

bpred.c Handles branch predictors 

cache.c Handles cache memory 

eio.c Interface to EIP traces 

eventq.c Handles ordered event queues 

loader.c Target program loading in simulated memory 

machine.c ISA definition routines 

main.c Initialization, launch 

memory.c Access to simulated memory space (large flat space) 

misc.c Support function such as fatal() and warning () 

options.c Processing options from configuration files or command line 

ptrace.c Pipeline traces 

regs.c Manages register files 

resource.c Manages functional units 

stats.c Handles statistics 

syscall.c Interface between system calls in simulator and on the host machine 

 

In order to eliminate synchronization problems, the pipeline stages are traversed in the reverse 

order.  The fetch stage is implemented in the function ruu_fetch(), which models fetch bandwidth.  The 

dispatch stage is implemented in ruu_dispatch(), which models instruction decoding and register renaming.  

The instructions are actually executed in this function, to facilitate data-dependent optimizations and early 

detection of branch mispredictions.  The scheduler, which issues instructions to different functional units, is 

implemented in ruu_issue(); the memory scheduler, which issues memory operations, is implemented in 

lsq_refresh().  The instruction execution stage of the pipeline is also implemented in ruu_issue().  Whereas 

the results of instruction execution are already known in the ruu_dispatch(), the ruu_issue() function 

models various latencies related to execution.  The writeback stage is implemented in ruu-writeback, which 
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models the writeback bandwidth and in the case of branch misprediction, initiates misprediction recovery.  

Finally, ruu_commit() implements the commit pipeline stage, and models in-order retirement of 

instructions. 

5.5 SimpleScalar Modifications 

To evaluate the proposed SIGC techniques, we modify the SimpleScalar ARM architecture.  The 

sim-outorder for ARM has the same configuration parameters as the sim-outorder for Alpha target.  Hence, 

we can simulate both embedded and high-end processor systems using the same simulator, by changing 

only configuration data.  In addition, the SimpleScalar/ARM compiler kit enables us to choose benchmarks 

at will, without being restricted to a precompiled set of applications. 

We have modified simoutorder.c, memory.c, memory.h, cache.c, and cache.h SimpleScalar files.  

The implementation of the signature verification mechanism required the following modifications: 

 Support for execution of signed ELF files.  The simulators of the SIGCE techniques require support for 

the instruction address translation, and data address translation for data located in the text segment. 

 Additional latencies due to signature verifications in ruu_fetch(): the translation latency, decryption 

latency, and signature fetch latency. 

 Support for the S-cache.  All SimpleScalar cache objects are created and accessed using common 

functions, with different functions handling cache misses.  We use the same approach for the S-cache.   

 Support for additional simulator options to specify latencies and S-cache parameters.  In the 

SimpleScalar simulators, all options are registered by type into an options database, so we add the code 

for declaring and registering options required by the modified simulators. 

5.6 Custom-Made Trace-Driven Simulator  

A trace-driven simulator may be an ideal choice for modeling particular aspects of processor 

architecture, especially when a large trace database is already available.  During prior research of efficient 

traces compression, we proposed Stream-Based Compression (SBC), a novel technique for single-pass 

compression of address traces and various extended trace formats [135, 136].  We also collected address 
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traces for SPEC CPU2000 benchmark set [137], and stored it using the SBC compression.  Traces are 

generated using a modified SimpleScalar environment, precompiled Alpha binaries, and SPEC CPU2000 

reference inputs.  We traced two segments for each benchmark: the first two billion instructions (F2B), and 

two billion instructions after skipping 50 billion (M2B). 

The SBC algorithm relies on extracting instruction streams.  A stream table created during 

compression encompasses all relevant information about streams: the starting address, stream length, 

instruction words in the stream, and their types.  All instructions from a stream are replaced by its index in 

the stream table, creating a trace of instruction streams.  SBC also features an efficient on-line algorithm for 

compression of data address references.  Unlike instruction addresses, data addresses for a memory 

referencing instruction rarely stay constant during program execution, but they can have a regular stride.  

The SBC-compressed data address trace encompasses a data address stride and the number of repetitions 

for each memory-referencing instruction in a stream.  A change of the data address stride results in another 

record in the compressed trace.  The records are ordered by the corresponding stream appearances in the 

original trace.  The SBC algorithm achieves very good compression ratio and decompression time for 

instruction and data address traces, and can be successfully combined with general compression algorithms, 

such as Ziv-Lempel algorithm used in gzip utility.  An instruction and data address in the SBC format 

encompasses three files: Stream Table File (STF), Stream-Based Instruction Trace (SBIT), and Stream-

Based Data Trace (SBDT).   

The SIGB techniques relate signature verification to the end of an instruction stream, so traces in 

the SBC format are very suitable for the SIGB simulators.  Since the SIGB techniques protect basic blocks, 

we have written a program named stream2bb to generate an additional table with information about basic 

blocks.   

The SBC Stream Table File has information only about executed instruction streams, which is 

sufficient to reconstruct the original address trace.  However, the simulation of the secure installation 

process requires information about all basic blocks in the code, in the order to generate the signed code.  

We have modified a disassembling feature of SimpleScalar to generate the table of all basic blocks.  

The secure installation process is simulated as follows.  For the SIGBEV, basic block lengths are 

increased by the signature length, and the basic block starting addresses are recalculated to take into 
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account the embedded signatures.  For the SIGBT techniques, we already have a table for all basic blocks 

in the code.  

Figure 5.3 illustrates the implementation of the SIGB simulators.  The simulator first reads input 

parameters from the command line: name of the trace, number of I-cache sets, and number of I-cache ways 

for both SIGBEV and SIGBTK, and also the number of S-cache sets and ways for the SIGBTK.  The 

simulator reads information about the number of basic blocks in each instruction stream, and the starting 

addresses and lengths for each executed basic block. 

// main program routine 
main { 
  get_input_arguments(); 
  read_sbc_table(); // read basic block and stream info 
  read_trace();      
  print_stats(); 
} 
 
// read SBC traces and simulate I-cache accesses 
read_trace() { 
 
   while (more data in stream trace) { 
      get Stream ID from stream trace; 
 
      // for all basic blocks but the last, update cache 
      for (i=1 to NumBB[StreamID] -1)  
         instruction_address = BB[StreamID][i].start_address; 
 
         for (j=1 to BB[StreamID][i]).length { 
            // check if in cache, update cache if not 
            is_cache_miss(instruction_address); 
            instruction_address += instruction_length; 
         } 
      } 
 
      // for the last basic block, call verify_signature on cache miss 
      any_BB_miss = 0; 
      instruction_address = BB[StreamID][last].start_address; 
      for (j=1 to BB[StreamID][i]) { 

         if ( is_cache_miss(instruction_address)) 

            any_BB_miss = 1; 

         instruction_address += instruction_length; 

      } 

      if (any_BB_miss) verify_signature();        

   } // end while 
} 

Figure 5.3    Pseudo-code for the trace-driven SIGB simulator 
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The SIGB simulator then reads stream identificators, StreamID, from the SBC trace file.  Note 

than we need only the Stream-Based Instruction Trace, and not the Stream-Based Data Trace.  For each 

basic block but the last, we just update the I-cache if necessary and count the cache misses.  The function 

is_cache_miss() is used both to verify the I-cache hit/miss and to update the cache.  The I-cache is 

implemented as a simple two-dimensional array, Icache[number of ways][number of sets], with the true 

LRU replacement policy.  For the last basic block in an instruction stream, the program calls the procedure 

verify_signature() if any of the instructions in that cache block caused a cache miss.  Finally, print_stats() 

prints the number of cache misses and signature verifications. 

The main difference between the SIGBEV and the SIGBTK simulators is the function 

verify_signature() (Figure 5.4).  In the SIGBEV simulator, this function just increments the number of 

signature verifications; the total number of verifications is printed in print_stats().  In the SIGBTK 

simulator, this function also verifies whether the signature of the currently executing basic block is in the S-

cache, by calling the function is_Scache_miss().  The S-cache is implemented in the same way as the I-

cache.  In the case of an S-cache miss, the simulator counts the number of memory accesses needed to find 

the signature in the signature table section in memory, by calling the function count_memory_accesses().  

In the case of a perfect hash mapping, this function always returns 1.  We also experiment with the 

segmented binary search as described in Section 4.5. 

 

// SIGBEV verify_signature procedure 
verify_signature() { 
   // count signature verifications    
   ++signature_check;  
} 
 
// SIGBTK verify_signature procedure 
verify_signature() { 
   ++signature_check; 
    
   // check if the signature is in the S-cache 
   if (is_Scache_miss()) { 
      ++signature_fetch; 
      count_memory_accesses();  
   } 
} 
 

Figure 5.4    Pseudo-code for the function verify_signature() 
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5.7 Simulator Parameters  

In order to evaluate sensitivity of the proposed techniques to different system configurations, we 

vary several simulator parameters.  In this section we specify the values of fixed simulator parameters and 

describe evaluated configurations. 

5.7.1 SIGC Simulator Parameters 

We have two sets of experiments for the SIGC techniques, one set with the simulator configured 

as an in-order embedded processor system such as XScale [127], and another set with a high-end, super-

scalar, out-of-order processor configuration.  The signature size in all experiments is 128 bits, i.e., 16 bytes.  

The D-cache (data cache) and I-cache have the same size and organization.   

For the embedded processor configuration, we vary the following simulation parameters: 

 The I-cache size (1, 2, 4, and 8KB); 

 The I-cache line size (64 and 128 bytes); 

 The width of a bus between memory and the I-cache (32 and 64 bits); 

 The speed of processor core relative to memory (fast and slow). 

The values of other simulator parameters for the embedded system configuration are shown in 

Table 5.3.  We assume that the AES decryption latency with a 128-bit key is 12 processor cycles for slow, 

and 22 cycles for fast processor core, which are the speeds that can be attainable with current optimized 

ASIC solutions [138].  Since a signature is always fetched first, signature decryption is finished before the 

protected block is fetched, so the decryption latency is completely hidden in all evaluated system 

configurations.  Translation latency is one cycle for the SIGCED and SIGCEK techniques, and one cycle 

on a mispredicted branch for the SIGCEV technique.  

For the SIGC techniques with the S-cache, the S-cache has 8 ways, random cache replacement 

policy, and twice as many entries as the corresponding I-cache.  Note that an S-cache line contains only one 

signature of 16 bytes, whereas an I-cache line contains 64 or 128 bytes.  Hence, the size of an I-cache with 

n entries is approximately two or four times larger than the size of an S-cache with 2n entries 
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(approximately because we do not take tag fields into account).  We also experiment with the S-cache with 

the same number of entries as the I-cache, full associativity, and LRU replacement policy. 

Table 5.3    Simulator parameters for the embedded processor configuration 

Simulator parameter Value 

Branch predictor type Bimodal 

Branch predictor table size 128 entries, direct-mapped 

Return address stack size 8 entries 

Instruction decode bandwidth  1 instruction/cycle 

Instruction issue bandwidth  1 instruction/cycle 

Instruction commit bandwidth  1 instruction/cycle 

Pipeline with in-order issue True 

I-cache/D-cache 4-way, FIFO replacement, first level only 

I-TLB/D-TLB 32 entries, fully associative, FIFO replacement 

Execution units 1 floating point, 1 integer 

Memory fetch latency (first chunk/other chunks) 12/3 cycles for slow core, 
24/6 cycles for fast core 

Branch misprediction latency 
2 cycles for slow core, 

3 cycles for fast core 

TLB latency 30 cycles for slow core, 
60 cycles for fast core 

Register update unit size 8 

Load/store queue (LSQ) size 4 

 

For the high-end processor configuration, we vary the following simulation parameters: 

 The I-cache size (8, 16, and 32KB); 

 The I-cache line size (64 and 128 bytes). 
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The values of other simulator parameters for the high-end configuration are shown in Table 5.4.  

In this configuration we also assume that the decryption latency is completely hidden, and translation 

address latency of the SIGCE is one processor cycle. 

Table 5.4    Simulator parameters for the high-end processor configuration 

Simulator parameter Value 

Branch predictor type Bimodal 

Branch predictor table size 512 sets, 4 way 

Return address stack size 8 entries 

Instruction decode bandwidth  4 instruction/cycle 

Instruction issue bandwidth  4 instruction/cycle 

Instruction commit bandwidth  4 instruction/cycle 

Pipeline with in-order issue False 

I-cache/D-cache 4-way, LRU replacement, first level only 

I-TLB/D-TLB 16 ways, 4 sets, LRU replacement 

D-TLB 32 ways, 4 sets, LRU replacement 

Execution units 
4 floating point and 4 integer ALU’s, 

1 floating point and 1 integer multiplier 

Memory fetch latency (first chunk/other chunks) 18/2 cycles 

The width of a bus between memory and the I-cache 64 bits 

Branch misprediction latency 3 cycles  

TLB latency 30 cycles 

Register update unit size 16 

Load/store queue (LSQ) size 8 
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5.7.2 SIGB Simulator Parameters 

For the SIGB experiments, we vary the I-cache size: 16, 32, and 64KB.  The I-cache has 4 ways, 

64B line size, and LRU replacement policy.  The S-cache in the SIGBTK technique has the same number 

of ways as the I-cache and 2 ways, i.e., the I-cache has twice as many entries as the S-cache. 

5.8 Benchmarks  

For the SIGC experiments and embedded processor configurations, we use benchmarks from 

several benchmark suites for embedded systems: MiBench [139], MediaBench [140], and Basicrypt [141].  

Table 5.5 lists the benchmarks and their short descriptions.  Since the signature verification is done only at 

an I-cache miss, the benchmarks are selected so that most of them have a relatively high number of I-cache 

misses for at least some of the simulated cache sizes.   

All benchmarks but mpeg2encode use the largest possible provided input.  The Mpeg2encode 

benchmark uses the provided test input.  Table 5.6 shows the total size of the original binary and the total 

size of the executable code sections in bytes, and the number of executed instructions.  Since only the 

executable code sections are signed, the memory overhead of signature verification techniques depends on 

the size of these sections.  All benchmarks are written in C language; all are compiled using provided 

makefiles and ARM gcc cross-compiler included in the SimpleScalar toolset with the -static option.  This 

compiler includes all library functions in the code, and not only those invoked by the actual program. 

The benchmarks blowfish_dec and blowfish_enc execute the same program, blowfish, for decoding 

and encoding.  Hence, these two benchmarks have the same code size, but different number of executed 

instructions.  Similarly, the benchmarks rijndael_dec and rijndael_enc execute the program rijndael for 

decoding and encoding.   

For the SIGC experiments and high-end processor configurations, we use selected benchmarks 

from the SPEC CPU2000 benchmark set [137].  This benchmarks set consists of CPU-intensive 

applications that focus on integer or floating point calculations.  Table 5.8 lists the SPEC CPU2000 

benchmarks used for the SIGC experiments, along with the corresponding executable file/code section size 
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when benchmarks are compiled with ARM gcc cross-compiler and makefiles provided with the source 

code.  In simulations, all benchmarks are run for the first one billion instructions. 

For the SIGB experiments, we use SPEC CPU2000 traces of the first two billion executed 

instructions in the SBC format [135, 136].  Table 5.7 lists the traced benchmarks, the language of the 

source code, short description, and the size of Alpha precompiled binaries and code sections. 

Table 5.5    Description of benchmarks from embedded domain 

Benchmark Suite Description 

blowfish_dec MiBench Blowfish decryption 

blowfish_enc MiBench Blowfish encryption 

cjpeg MiBench JPEG compression 

djpeg MiBench JPEG decompression 

ecdhb Basicrypt Diffie-Hellman key exchange 

ecdsignb Basicrypt Digital signature generation 

ecdsverb Basicrypt Digital signature verification 

ecelgdecb Basicrypt El-Gamal encryption 

ecelgencb Basicrypt El-Gamal decryption 

ispell MiBench Spell checker 

mpeg2_enc MediaBench MPEG2 compression 

qsort MiBench Quicksort 

rijndael_dec MiBench Rijndael decryption 

rijndael_enc MiBench Rijndael encryption 

stringsearch MiBench String search 
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Table 5.6   Benchmark code size and executed instructions for embedded systems 

Benchmark Executable file size in bytes 
total (code section) Executed instructions in millions 

blowfish_dec 1,032,731 (190,900) 544.0 

blowfish_enc 1,032,731 (190,900) 544.0 

cjpeg 1,261,485 (298,916) 104.6 

djpeg 1,274,670 (311,108) 23.4 

ecdhb 1,102,298 (258,188) 122.5 

ecdsignb 1,254,373 (310,068) 131.3 

ecdsverb 1,254,519 (310,212) 171.9 

ecelgdecb 1,102,207 (258,092) 92.4 

ecelgencb 1,102,271 (258,156) 180.2 

ispell 1,238,144 (240,972) 817.7 

mpeg2_enc 1,318,326 (317,504) 127.5 

qsort 1,180,697 (252,284) 737.9 

rijndael_dec 1,045,273 (199,364) 307.9 

rijndael_enc 1,045,273 (199,364) 320.0 

stringsearch 1,025,446 (188,484) 3.7 
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Table 5.7    Description of SPEC CPU2000 benchmarks and the size of precompiled Alpha binaries 

Benchmark Language Description File size 

total (code section) 

164.gzip C Compression   376832 (212992) 

176.gcc C C Programming Language Compiler  3792896 (1990656) 

181.mcf C Combinatorial Optimization  303104 (163840) 

186.crafty C Game Playing: Chess  942080 (442368) 

197.parser C Word Processing  598016 (319488) 

252.eon C++ Computer Visualization  1187840 (794624) 

253.perlbmk C PERL Programming Language  2154496 (876544) 

254.gap C Group Theory, Interpreter  1458176 (933888) 

255.vortex C Object-oriented Database  2310144 (819200) 

In
te

ge
r 

300.twolf C Place and Route Simulator  917504 (450560) 

168.wupwise Fortran 77 Physics / Quantum Chromodynamics 1114112 (819200) 

171.swim Fortran 77 Shallow Water Modeling  1105920 (819200) 

172.mgrid Fortran 77 Multi-grid Solver: 3D Potential Field  1089536 (802816) 

177.mesa C  3-D Graphics Library  2875392 (917504) 

178.galgel Fortran 90 Computational Fluid Dynamics  1458176 (1048576) 

179.art C  Image Recognition / Neural Networks  368640 (237568) 

183.equake C  Seismic Wave Propagation Simulation  385024 (253952) 

188.ammp C  Computational Chemistry  655360 (385024) 

189.lucas Fortran 90 Number Theory / Primality Testing  1146880 (851968) 

191.fma3d Fortran 90 Finite-element Crash Simulation  4505600 (1867776) 

200.sixtrack Fortran 77 Nuclear Physics Accelerator Design 6348800 (2596864) 

Fl
oa

tin
g 

po
in

t 

301.appsi Fortran 77 Meteorology: Pollutant Distribution  1531904 (1114112) 
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Table 5.8    The size of SPEC CPU2000 benchmarks when compiled with the ARM gcc compiler 

Benchmark Executable file size 
total (code section) 

164.gzip 1285947 (294924) 

176.gcc 2825380 (1562516) 

181.mcf 1160438 (248848) 

s197.parser 1323097 (349888) 

177.mesa 1799804 (765748) 

179.art 1223820 (264688) 

183.equake 1238847 (269568) 

188.ammp 1470400 (390656) 
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CHAPTER 6 
 
 
 

EVALUATION RESULTS 

“You can observe a lot just by watching.” 

Yogi Berra 

 

In this chapter we present and discuss results of evaluation of the proposed techniques for 

instruction block verification.  We are primarily interested in performance overhead relative to the Base 

system without the signature verification mechanism.  We also evaluate memory overhead, i.e., the length 

of a signed executable file versus the length of the corresponding original executable.   

6.1 SIGC Evaluation 

We evaluate performance overhead of the SIGC techniques by comparing the number of processor 

clock cycles per instruction (CPI) with signature verification to the corresponding number with the Base 

system.  To gain insight into reasons of performance overhead, we also measure the number of S-cache 

misses for the SIGCEK and SIGCTK, and the increase of I-cache misses for the SIGCEV technique.   

6.1.1 Base System 

Table 6.1 shows the number of I-cache misses per 1000 executed instructions for the Base system, 

for benchmarks from the embedded domain.  Most of these benchmarks benefit from having larger 128B 

cache lines, especially with small I-caches.  However, for the largest considered 8K I-cache, more than half 

of benchmarks have less cache misses with 64B I-cache lines.  The ispell, qsort, rijndael_enc, rijndael_dec, 
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and stringsearch are the only benchmarks having more than 10 I-cache misses per 1000 instructions with 

caches larger than 1K.  In addition, other benchmarks have less than 1 I-cache miss per 1000 instructions 

with the 8K I-cache. 

The values of CPI for the base system are shown in Table 6.2, Table 6.3, Table 6.4, and Table 6.5, 

for slow processor core/32-bit memory bus, slow core/64-bit bus, fast core/32-bit bus, and fast core/64-bit 

bus, respectively.  A configuration with 64B I-cache lines always outperforms the corresponding 128B line 

configuration.  Note that it takes more processor cycles to fetch a 128B cache line than a 64B one.  Hence, 

even a smaller number of I-cache misses with 128B cache lines does not necessarily mean faster execution, 

i.e., a lower CPI.  The wider 64-bit memory reduces the cache miss penalty of the 32-bit bus; therefore, it 

reduces the CPI.  On the other hand, a fast processor core has to wait longer for completion of a fetch from 

memory than a slow one, which results in a higher CPI.  If both fast and slow processor systems have the 

same memory speed, the cycle time of the fast processor is shorter, so the higher CPI does not have to 

indicate a longer execution time.  Detailed analysis of relationships between common architectural 

parameters and CPI is out of the scope of this dissertation; we need evaluation results for the base system 

primarily as a reference point for signature verification techniques. 

Table 6.6 shows the number of I-cache misses per 1000 instructions for selected SPEC CPU 2000 

benchmarks and high-end processor configurations, and Table 6.7 shows the corresponding CPI.  
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Table 6.1    Base: I-cache misses per 1000 instructions in embedded processor configurations 

I-cache misses per 1000 instructions  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 22.19 5.59 0.08 0.00 13.65 3.78 0.80 0.01 

blowfish_enc 22.19 4.56 0.09 0.00 12.90 3.78 0.80 0.01 

cjpeg 6.16 1.60 0.31 0.09 6.60 1.65 0.27 0.08 

djpeg 8.43 3.99 1.10 0.24 6.17 2.94 0.97 0.24 

ecdhb 20.31 5.97 2.26 0.13 14.57 6.20 1.63 0.16 

ecdsignb 15.92 4.61 1.74 0.07 17.33 4.82 1.25 0.11 

ecdsverb 21.31 5.21 2.03 0.29 16.88 5.35 1.46 0.29 

ecelgdecb 26.16 0.34 0.03 0.01 22.44 2.50 0.04 0.01 

ecelgencb 23.41 3.21 1.15 0.06 18.71 4.37 0.84 0.10 

ispell 61.67 51.07 21.66 2.86 40.35 35.75 20.94 3.50 

mpeg2_enc 1.83 0.79 0.33 0.16 2.12 0.59 0.27 0.12 

qsort 44.23 29.44 22.19 5.45 32.76 21.09 15.27 7.41 

rijndael_dec 70.62 68.64 67.96 6.63 41.59 40.26 37.61 9.92 

rijndael_enc 73.70 70.52 67.96 8.12 42.58 39.40 38.10 11.19 

stringsearch 55.32 35.42 12.89 3.70 37.95 24.34 10.63 1.92 
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Table 6.2    Base: CPI in embedded processor configurations, slow core, memory bus 32 bits 

CPI  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 4.26 3.56 2.64 2.30 5.49 4.55 3.03 2.30 

blowfish_enc 4.26 3.53 2.64 2.30 5.42 4.55 3.03 2.30 

cjpeg 3.02 2.48 2.23 1.58 5.21 3.64 2.99 1.81 

djpeg 3.83 2.81 2.24 1.71 8.39 5.17 3.41 1.86 

ecdhb 2.75 1.93 1.72 1.61 3.28 2.28 1.77 1.62 

ecdsignb 2.58 1.94 1.77 1.68 3.36 2.21 1.81 1.70 

ecdsverb 2.76 1.96 1.78 1.69 3.37 2.26 1.83 1.71 

ecelgdecb 3.13 1.80 1.78 1.78 4.20 1.99 1.78 1.78 

ecelgencb 2.95 1.87 1.75 1.69 3.80 2.14 1.77 1.70 

ispell 6.31 5.48 3.34 2.16 9.57 7.93 5.48 2.65 

mpeg2_enc 2.38 1.93 1.60 1.49 3.39 2.42 1.75 1.52 

qsort 4.02 3.14 2.71 1.77 5.59 3.97 3.16 2.31 

rijndael_dec 8.87 7.97 6.83 2.71 15.65 12.88 9.06 4.47 

rijndael_enc 8.87 7.88 6.64 2.70 15.51 12.51 8.89 4.41 

stringsearch 5.15 3.85 2.52 1.92 7.95 5.57 3.18 2.00 
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Table 6.3    Base: CPI in embedded processor configurations, slow core, memory bus 64 bits 

CPI  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 3.37 2.98 2.47 2.30 3.98 3.47 2.67 2.30 

blowfish_enc 3.37 2.96 2.48 2.30 3.94 3.47 2.67 2.30 

cjpeg 2.34 2.03 1.89 1.52 3.46 2.62 2.28 1.64 

djpeg 2.82 2.25 1.93 1.64 5.17 3.47 2.54 1.71 

ecdhb 2.23 1.78 1.67 1.60 2.48 1.96 1.69 1.61 

ecdsignb 2.17 1.82 1.73 1.68 2.56 1.96 1.75 1.69 

ecdsverb 2.27 1.83 1.73 1.68 2.56 1.98 1.75 1.69 

ecelgdecb 2.52 1.79 1.78 1.78 3.05 1.89 1.78 1.78 

ecelgencb 2.38 1.79 1.72 1.69 2.80 1.92 1.73 1.69 

ispell 4.36 3.90 2.71 2.05 5.97 5.10 3.81 2.31 

mpeg2_enc 1.96 1.71 1.53 1.48 2.48 1.97 1.61 1.49 

qsort 2.89 2.41 2.17 1.63 3.66 2.80 2.37 1.92 

rijndael_dec 5.63 5.12 4.50 2.25 9.04 7.57 5.56 3.15 

rijndael_enc 5.66 5.10 4.41 2.26 9.00 7.40 5.49 3.14 

stringsearch 3.62 2.89 2.15 1.82 5.01 3.74 2.48 1.85 
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Table 6.4    Base: CPI in embedded processor configurations, fast core, memory bus 32 bits 

CPI  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 6.36 4.94 3.02 2.31 8.81 6.93 3.81 2.32 

blowfish_enc 6.36 4.88 3.03 2.31 8.66 6.93 3.81 2.32 

cjpeg 4.66 3.55 3.03 1.72 9.04 5.88 4.56 2.18 

djpeg 6.23 4.14 2.97 1.91 15.43 8.89 5.34 2.20 

ecdhb 4.00 2.30 1.87 1.63 5.06 3.00 1.97 1.66 

ecdsignb 3.56 2.23 1.88 1.70 4.89 2.76 1.96 1.72 

ecdsverb 3.95 2.29 1.91 1.72 4.99 2.88 2.01 1.76 

ecelgdecb 4.63 1.84 1.80 1.80 6.75 2.25 1.81 1.80 

ecelgencb 4.33 2.08 1.83 1.71 6.02 2.63 1.89 1.73 

ispell 11.00 9.29 4.87 2.46 17.54 14.19 9.23 3.46 

mpeg2_enc 3.36 2.44 1.75 1.53 5.39 3.43 2.06 1.59 

qsort 6.73 4.93 4.04 2.13 9.86 6.58 4.93 3.22 

rijndael_dec 16.58 14.74 12.39 3.84 30.13 24.52 16.74 7.39 

rijndael_enc 16.52 14.50 11.96 3.76 29.78 23.69 16.34 7.21 

stringsearch 8.82 6.17 3.44 2.21 14.46 9.59 4.76 2.35 
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Table 6.5    Base: CPI in embedded processor configurations, fast core, memory bus 64 bits 

CPI  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 4.59 3.78 2.70 2.30 5.78 4.76 3.10 2.31 

blowfish_enc 4.59 3.75 2.70 2.30 5.70 4.76 3.10 2.31 

cjpeg 3.29 2.66 2.36 1.61 5.55 3.84 3.13 1.85 

djpeg 4.22 3.02 2.36 1.75 9.00 5.49 3.58 1.89 

ecdhb 2.96 2.00 1.75 1.62 3.45 2.35 1.80 1.64 

ecdsignb 2.75 2.00 1.80 1.69 3.52 2.26 1.83 1.71 

ecdsverb 2.96 2.03 1.81 1.70 3.54 2.32 1.86 1.73 

ecelgdecb 3.39 1.82 1.80 1.80 4.45 2.04 1.81 1.80 

ecelgencb 3.18 1.92 1.78 1.71 4.01 2.20 1.80 1.72 

ispell 7.09 6.12 3.61 2.24 10.30 8.50 5.84 2.76 

mpeg2_enc 2.54 2.01 1.63 1.51 3.57 2.52 1.78 1.53 

qsort 4.48 3.46 2.96 1.86 5.99 4.23 3.35 2.43 

rijndael_dec 10.10 9.05 7.72 2.90 16.91 13.89 9.73 4.74 

rijndael_enc 10.09 8.94 7.49 2.88 16.75 13.48 9.54 4.67 

stringsearch 5.76 4.24 2.69 1.99 8.54 5.94 3.35 2.06 
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Table 6.6    Base: I-cache misses per 1M executed instructions in high-end processor configurations 

I-cache misses per 1M instructions 

64B cache line 128B cache line Benchmarks 

8K 16K 32K 8K 16K 32K 

164.gzip 6.60 0.95 0.43 5.15 0.82 0.26 

176.gcc 36437.27 21440.29 5981.83 27171.32 18723.99 7074.12 

177.mesa 23742.87 3148.07 9.62 19754.18 4822.73 668.02 

179.art 0.26 0.25 0.25 0.17 0.15 0.15 

181.mcf 15086.39 94.25 0.48 15387.58 859.36 778.61 

183.equake 15813.20 3085.84 534.49 26766.70 3982.24 949.73 

188.ammp 7674.31 1133.98 3.35 6429.59 1144.26 4.45 

197.parser 707.16 321.44 7.34 656.77 232.69 6.13 

Table 6.7    Base: CPI in high-end processor configurations 

CPI 

64B cache line 128B cache line Benchmarks 

8K 16K 32K 8K 16K 32K 

164.gzip 1.00 0.97 0.92 1.20 1.13 1.06 

176.gcc 2.01 1.50 1.00 2.36 1.82 1.18 

177.mesa 1.37 0.76 0.67 1.60 0.92 0.70 

179.art 1.12 1.12 1.12 1.03 1.03 1.03 

181.mcf 1.10 0.66 0.65 1.38 0.74 0.69 

183.equake 1.12 0.73 0.66 1.99 0.84 0.69 

188.ammp 2.21 2.01 1.98 3.05 2.81 2.76 

197.parser 0.73 0.72 0.71 0.75 0.72 0.71 
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6.1.2 Performance Overhead 

Table 6.8 and Table 6.9 show the number of I-cache misses with the SIGCEV technique.  Since 

the SIGCEV I-cache is smaller, for most benchmarks it has more cache misses than the Base I-cache.  

Table 6.10 and Table 6.11 show the number of S-cache misses with SIGCEK and SIGCTK techniques.  Let 

us say again that the considered S-cache has the same number of sets and twice as many ways (eight) as the 

corresponding I-cache, and one S-cache line can store one instruction block signature.  The total size of the 

S-cache is approximately ¼ of the I-cache size for I-caches with 128B lines, and approximately ½ of the I-

cache size with 64B lines.  The S-cache is accessed on an I-cache miss to retrieve the signature.  Hence, the 

number of S-cache misses decreases faster than the number of I-cache misses, with the I-cache size 

increase. 

Let us first consider the performance of the SIGC techniques with 32-bit bus, slow processor core, 

and 128B I-cache lines, with benchmarks from the embedded domain (Figure 6.1).  The results indicate a 

low performance overhead of the SIGCED technique.  Even with the very small 1K I-cache, this technique 

increases CPI in the range 0.8-7.4%, with 8 out of 15 benchmarks having more than 5% increase.  With the 

4K I-cache, CPI increases for more than 5% for only 3 benchmarks, since the influence of signature 

verification overhead is reduced with I-cache miss reduction.  With the largest considered I-cache (8K), the 

maximum SIGCED CPI increase is 3.8%, and only 5 benchmarks have more than 1% increase. 

The absolute CPI increase for the SIGCED technique depends on the number of I-cache misses 

given in Table 6.1: more cache misses means more signature verifications, that is, increased performance 

overhead.  However, the ratio of CPI for SIGCED and Base does not absolutely follow the trend of the 

number of I-cache misses, since for an application with a relatively large number of I-cache misses a 

relative CPI increase may be smaller than for an application with fewer cache misses.  For example, with 

the 1K I-cache rijndael_enc has a 3% CPI increase and ecdhb has a 5.8% increase, whereas rijndae_enc 

has 42.58 I-cache misses per 1000 instructions, and ecdhb only 14.57.  This can be easily explained by the 

fact that the Base CPI for this system configuration is 15.51 for rijndael_enc and 3.28 for ecdhb (Table 

6.2), and the absolute CPI increase with the SIGCED technique is 0.19 for ecdhb and 0.47 for rijndael_enc. 
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As explained in Chapter 4, the SIGCED overhead can be reduced if signatures are kept in the S-

cache, i.e., with the SIGCEK technique.  The SIGCEK CPI increase is in the range 0.3-5% with the 1K, 

0.1-4.4% with the 2K, 0.01-2% with 4K, and 0-0.4% with the 8K I-cache.  The SIGCEK reduces the 

performance overhead of the SIGCED for 6.5-83.5%, 24.7-91.2%, and 58.3-90.8%, with the 1K, 2K, and 

4K I-cache, respectively.  With the 8K I-cache, the low number of I-cache misses enables the SIGCEK to 

virtually remove performance overhead of signature verification.  

The SIGCEV protected block size in these experiments is 112B, so the actual I-cache size is 0.875 

of the Base I-cache size.  The large SIGCEV performance overhead of 14% for mpeg2_enc with 1K I-

cache, 26% for ecelgdecb with the 2K I-cache, 33% for stringsearch with the 4K I-cache, and 24% for 

rijndael_enc is due to the significant relative increase in the number of cache misses (Table 6.9).  

However, the SIGCEV may have even a lower CPI than the Base case.  The SIGCEV I-cache has 

a different mapping function, so the number of I-cache misses may be lower.  If such a benchmark also has 

a relatively low branch misprediction rate, such that performance overhead due to the SIGCEV address 

translation is negligible, the SIGCEV might marginally outperform the Base case.  This is the case with the 

ecdsignb and ecdsverb benchmarks with the 1K I-cache, rijndael_dec with the 2K and 8K, and blowfish 

with the 4K I-cache.  

Somewhat surprisingly, the SIGCEV technique outperforms the SIGCED for 11 out of 

15 benchmarks with the 1K I-cache.  This is due to the difference in the instruction block address 

translation.  With the SIGCEV, the address translation overhead is added to the branch misprediction 

penalty, and with the SIGCED, it is added to the I-cache miss penalty.  Hence, the SIGCEV total overhead 

might be smaller, especially with small caches with more capacity misses. 

The SIGCTD technique always introduces more performance overhead than the SIGCED, since 

signatures stored in the separate code section require an additional memory access.  However, this 

difference is more significant with small caches: the ratio between the CPI for SIGCTD and Base is 1.013-

1.119 with the 1K I-cache, and 1.0001-1.066 with the 8K I-cache.  As with the SIGCED, the S-cache is 

able to significantly reduce performance overhead.  For example, with the 1K I-cache, the SIGCTK reduces 

the overhead of the SIGCTD 7.2-90.6%.  Note that the S-cache is more beneficial to the SIGCTD than to 

the SIGCED technique.  This effect is also due to the longer signature fetch latency with the SIGCTD.  
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Overall, the SIGCTK technique is a good alternative to SIGCEK, especially since the SIGCTK does not 

require the translation address mechanism on each I-cache miss. 

Let us now consider the sensitivity of SIGC techniques to the processor core speed, memory bus 

width, and size of protected instruction block, i.e., the I-cache line size (Figure 6.2, Figure 6.3, Figure 6.4, 

Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8).  The number of processor clock cycles needed for 

signature fetch will decrease with the wider data memory bus, and increase with the faster processor core, 

so we may expect similar behavior from total signature verification overhead.  Another interesting 

architectural parameter is the cache line size.  Without simulation, it is hard to predict the sensitivity of the 

SIGCE techniques to this parameter.  For example, with 64B I-cache lines, 32-bit bus and slow core, the 

signature fetch for the SIGCED technique increases the number of cycles required for an instruction block 

fetch by 21.05%; the corresponding increase with 128B cache lines is 11.43%.  On the other hand, the Base 

configuration with 64B cache has lower CPI (Table 6.2, Table 6.3, Table 6.4, and Table 6.5).   

 We may group the benchmarks in two groups, according to the number of cache misses with all 

considered cache sizes.  The influence of the bus width, the core speed, and the cache line size will be 

discussed for one benchmark from each group: ecdhb with a relatively low number of cache misses, and 

rijndael_enc which is one of the two benchmarks with the largest number of cache misses per 

1000 instructions for each cache size and line size (Table 6.1). 

The SIGCED technique has the largest impact on performance with the 64B cache line size, the 

32-bit bus, and a fast processor core.  However, even with this system configuration the SIGCED 

performance overhead is never more than 13% for both benchmarks, with relatively small variations 

between configurations with a fixed I-cache size.  For ecdhb, the largest variation is for the 1K I-cache with 

64B lines, from 6% overhead with the 64-bit bus and slow core, to 12% overhead with the 32-bit bus and 

fast core.  For rijndael_dec, the largest variation is also with 64B I-cache lines, but with the 4K I-cache: 

from 10% with the 64-bit bus and slow core, to 13% overhead with the 32-bit bus and fast core.  Overall, 

the SIGCED technique has more performance overhead with 64B I-cache lines than with 128B, as well as 

more sensitivity to the memory bus width and processor speed.  With 128B I-cache lines, the largest 

overhead variation range is 4-7% for ecdhb, and 2.3-3.5% for rijndael_enc.  Clearly, if the number of I-
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cache misses is very low, as it is for ecdhb in the 8K I-cache, the SIGCED overhead does not depend on 

system parameters, since it is always close to zero.   

It is interesting to note that the ratio of SIGCED CPI and the Base CPI decreases with larger 

caches for ecdhb and not for rijndael_enc.  The rijndael_enc benchmark has a very large number of I-cache 

capacity misses in 1, 2, and 4K caches, such that the number of I-cache misses is only slightly reduced with 

the cache size increase before the 8K size.  Hence, the absolute overhead of the SIGCED technique does 

not considerably decrease with the cache size increase.  However, for rijndael_enc even a relatively small 

reduction in the number of cache misses significantly improves the Base CPI, so the CPI ratio for the 

SIGCED actually grows, up to the 4K cache size. 

Since the S-cache eliminates a lot of signature verification overhead, the SIGCEK technique is 

much less sensitive to configuration parameters.  For ecdhb and a fixed I-cache size, the SIGCEK 

performance overhead is almost constant.  For rijndael_enc, the largest overhead variation range is 7-9%. 

The SIGCEV has more I-cache misses than the Base case for both ecdhb and rijndael_enc (Table 

6.1, Table 6.8), so it always has lower performance.  For both benchmarks the SIGCEV is more sensitive to 

configuration change than the SIGCED, since a narrower bus and a faster core increase both the cache miss 

latency and the latency due to signature fetch.  For ecdhb, the largest variation is for the 2K I-cache with 

64B lines, from 12% overhead with the 64-bit bus and slow core, to 36% overhead with the 32-bit bus and 

fast core.  For rijndael_dec, the largest variation is with 64B I-cache lines and the 8K I-cache: from 43% 

with the 64-bit bus and slow core, to 98% overhead with the 32-bit bus and fast core.  The SIGCEV with 

shorter cache lines has unacceptable performance overhead, so it is not suitable for systems with 64B cache 

lines.  We can explain this overhead by looking again at I-cache misses and CPI for the Base system:  For 

both ecdhb and rijndael_enc, the number of I-cache misses is significantly larger with 64B cache lines, 

whereas the CPI is lower.  Hence, the increase in the number of I-cache misses due to the SIGCEV is more 

detrimental to performance with 64B cache lines.    

The rijndael_enc benchmark has a very large SIGCEV performance overhead with the 8K I-cache.  

This happens because the number of I-cache misses has doubled compared to the Base case.  Moreover, 

there is a sharp drop in the Base CPI for 8K I-cache, so the relative performance overhead increase is even 

more noticeable. 
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The SIGCTD technique in configurations with 128B I-cache lines is only moderately sensitive to 

the memory bus width and core speed variation:  The largest overhead variation range is 5-9% for ecdhb, 

and 8-11% for rijndael_enc.  However, in configurations with 64B I-cache lines, the SIGCTD performance 

overhead increases significantly, up to 21% for ecdhb, and 25% for rijndael_enc.  This is also due to the 

large number of I-cache misses, and consequently, large overhead of additional memory accesses. 

The SIGCTK technique successfully eliminates a large portion of SIGCTD overhead.  However, 

due to larger penalty for signature verification, this technique is more sensitive to changes of architectural 

parameters than the SIGCEK, especially with 64B I-cache lines.  The largest overhead variation range is 

with 64B I-cache lines and 1K I-cache: 4-7% for ecdhb, and 13-17% for rijndael_enc. 

For embedded systems with 128B cache lines, we may conclude the following.  If such system has 

a low hardware budget, and all programs executing in protected mode, the SIGCEV technique has the best 

price-performance tradeoff, since in small caches it outperforms the SIGCED for most benchmarks and 

employs less hardware resources.  However, the SIGCED is better for systems with larger caches.  With 

25% larger hardware budget invested in the S-cache, the SIGCEK technique has a very low performance 

overhead across all considered system configurations.  With larger caches we may also use the techniques 

with signature stored in the separate code section. 

For systems with 64B cache lines, we recommend the use of the SIGCED or SIGCEK only, 

depending on the available hardware resources.  The increase in the number of I-cache misses becomes a 

prohibiting factor in the use of the SIGCEV and SIGCTD techniques; even the SIGCTK may have 

relatively significant performance overhead.   

We also evaluate the SIGCE techniques in high-end processor configurations with out-of-order 

execution (Figure 6.9 and Figure 6.10).  The SIGCED has very low performance overhead, from nearly 0 to 

9%.  With the SIGCEK, the worst-case overhead is reduced to 5%.  With 128B I-cache lines, the SIGCEV 

overhead is up to 14%; as in the embedded domain, some applications benefit from the SIGCEV cache 

mapping function and have lower CPI than with the Base system.  However, the significant increase in the 

number of I-cache misses with 64B lines (Table 6.6) results in SIGCEV overhead up to more than 70%.  

The results indicate that the SIGCTD technique is also not suitable for 64B high-end configurations, with 

the overhead of up to 35%.  With the SIGCTK, the worst-case overhead is almost halved to 18%.   
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Table 6.8    SIGCEV: I-cache misses per 1000 executed instructions in embedded processor configurations 

I-cache misses per 1000 instructions  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 29.23 16.66 0.15 0.02 14.85 9.76 0.81 0.01 

blowfish_enc 28.49 14.41 3.09 0.05 15.00 6.92 0.82 0.01 

cjpeg 10.76 3.29 0.42 0.14 8.76 2.14 0.29 0.07 

djpeg 21.52 6.95 2.59 0.32 7.02 3.53 1.48 0.24 

ecdhb 30.73 13.70 4.93 0.51 17.21 8.65 2.21 0.21 

ecdsignb 24.25 10.75 3.79 0.38 13.53 6.66 1.70 0.15 

ecdsverb 25.95 11.49 4.20 0.65 14.55 7.17 1.91 0.33 

ecelgdecb 40.53 9.13 0.23 0.02 23.71 6.95 0.07 0.01 

ecelgencb 35.76 11.50 2.59 0.26 20.48 7.82 1.15 0.11 

ispell 76.15 65.79 32.80 6.88 48.09 42.89 23.29 5.91 

mpeg2_enc 8.66 1.31 0.57 0.25 6.86 0.79 0.32 0.14 

qsort 52.37 38.86 28.97 13.51 31.67 25.09 18.01 9.72 

rijndael_dec 89.74 85.78 85.77 33.78 44.23 41.59 40.26 9.97 

rijndael_enc 88.94 87.03 86.37 45.58 47.03 43.85 41.30 22.94 

stringsearch 69.04 43.63 19.51 0.27 44.44 32.86 20.81 5.46 
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Table 6.9    SIGCEV: I-cache misses per 1M executed instructions in high-end processor configurations 

I-cache misses per 1M instructions 

64B cache line 128B cache line Benchmarks 

8K 16K 32K 8K 16K 32K 

164.gzip 13.86 1.37 0.53 5.87 0.60 0.28 

176.gcc 47021.24 30973.39 11149.76 30133.89 21066.56 7835.23 

177.mesa 34994.13 7566.03 416.88 22750.82 5407.08 1219.94 

179.art 0.35 0.32 0.31 0.18 0.16 0.16 

181.mcf 27247.82 1073.50 4.02 13878.65 2993.24 0.32 

183.equake 44478.80 10602.37 848.80 27442.49 3978.82 408.98 

188.ammp 13671.61 3982.53 139.25 7878.14 3861.29 1409.66 

197.parser 1141.27 596.88 65.03 943.63 274.62 58.13 

Table 6.10    S-cache misses per 1000 executed instructions in high-end processor configurations 

S-cache misses per 1000 instructions 

64B cache line 128B cache line Benchmarks 

8K 16K 32K 8K 16K 32K 

164.gzip 0.51 0.43 0.43 0.33 0.27 0.26 

176.gcc 18692.02 5478.01 891.82 16307.49 6019.75 961.11 

177.mesa 850.19 2.93 1.75 964.94 3.21 1.07 

179.art 0.25 0.25 0.25 0.15 0.15 0.15 

181.mcf 0.69 0.50 0.47 9.57 0.30 0.27 

183.equake 1517.90 0.49 0.41 2398.67 0.37 0.26 

188.ammp 631.48 0.62 0.54 947.07 2.12 0.33 

197.parser 166.46 5.99 2.82 152.18 4.06 1.75 
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Table 6.11    S-cache misses per 1000 executed instructions in embedded processor configurations 

S-cache misses per 1000 instructions  

64B cache line 128B cache line Benchmarks 

1K 2K 4K 8K 1K 2K 4K 8K 

blowfish_dec 4.56 0.05 0.00 0.00 4.79 0.07 0.00 0.00 

blowfish_enc 4.56 0.05 0.00 0.00 4.23 0.07 0.00 0.00 

cjpeg 1.06 0.21 0.05 0.01 1.24 0.19 0.06 0.01 

djpeg 3.70 0.81 0.16 0.05 2.90 0.78 0.16 0.03 

ecdhb 6.55 1.70 0.09 0.02 4.76 1.45 0.09 0.01 

ecdsignb 5.02 1.30 0.05 0.01 3.67 1.10 0.06 0.01 

ecdsverb 5.52 1.62 0.19 0.01 4.01 1.30 0.20 0.01 

ecelgdecb 0.24 0.02 0.01 0.01 2.21 0.02 0.01 0.01 

ecelgencb 3.43 0.87 0.04 0.01 3.56 0.74 0.05 0.01 

ispell 39.65 7.88 2.33 0.31 30.61 9.42 2.51 0.44 

mpeg2_enc 0.65 0.28 0.12 0.05 0.50 0.23 0.09 0.04 

qsort 29.65 16.06 1.43 0.00 21.48 13.26 4.03 0.00 

rijndael_dec 66.49 45.14 0.05 0.00 38.82 28.67 1.40 0.00 

rijndael_enc 68.48 47.82 2.73 0.00 39.34 29.27 3.97 0.00 

stringsearch 31.59 5.89 0.09 0.07 24.24 6.51 0.06 0.05 
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Cache line 128B, size 1K, 32-bit bus, slow core
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Figure 6.1    SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, slow core 
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Cache line 128B, size 1K, 64-bit bus, slow core
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Figure 6.2    SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, slow core 
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Cache line 128B, size 1K, 32-bit bus, fast core
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Figure 6.3    SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, fast core 
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Cache line 128B, size 1K, 64-bit bus, fast core
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Figure 6.4    SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, fast core 
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Cache line 64B, size 1K, 32-bit bus, slow core
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Figure 6.5    SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, slow core 
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Cache line 64B, size 1K, 64-bit bus, slow core
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Figure 6.6    SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, slow core 
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Cache line 64B, size 1K, 32-bit bus, fast core
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Figure 6.7    SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, fast core 
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Cache line 64B, size 1K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 2K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 4K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 8K, 32-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el 
d

rijn
da

el 
e

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

 

Figure 6.8    SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, fast core 
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Cache line 128B, size 8K
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Cache line 128B, size 16K
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Cache line 128B, size 32K
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Figure 6.9    SIGC: high-end processor configuration, I-cache line 128B 
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Cache line 64B, size 8K
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Cache line 64B, size 32K
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Figure 6.10    SIGC: high-end processor configuration n, I-cache line 64B 
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6.1.3 Memory Overhead 

Memory overhead is an inherent characteristic of all proposed techniques, since instruction block 

signatures are added to the executable code.  The increase of a code section depends mostly on the size of 

signatures and the size of protected blocks; techniques with signatures embedded in the code also may add 

some padding.  

Let the signature size be 16 bytes.  On average, the SIGCED technique then increases the size of 

the code section by 25.5% with 64B-protected blocks, and by 14.3% with 128B-protected blocks.  The 

SIGCEV technique has shorter protected blocks than the SIGCTK; on the other hand, it might have less 

padding.  With 64B I-cache lines, i.e., 48B-protected blocks, the SIGCEV increases the code section by 

33.3%, and by 14.3% with 112B-protected blocks.  The SIGCTD technique does not require padding, so 

the code section increase is 25% with 64B cache lines, and 12.5% with 128B cache lines.  The S-cache 

does not influence the code size, so memory overhead is the same for SIGCED and SIGCEK, and for 

SIGCTD and SIGCTK.  

An executable file typically encompasses more than only code section, so the SIGC techniques 

add even less memory overhead to executable files.  Table 6.13 and Table 6.14 show the percentage of 

executable file size increase, for selected benchmarks from the embedded domain and the SPEC CPU2000 

benchmark set.  For all considered benchmarks except 176.gcc and 177.mesa, the SIGC techniques have 

less than 4% memory overhead with 128B I-cache lines, and less than 9% overhead with 64B cache lines.  
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Table 6.12    Percentage of file size increase for SPEC CPU2000 benchmarks 

I-cache line 64B I-cache line 128B 
Benchmark 

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD 

164.gzip 7.65 5.85 5.73 3.28 3.29 2.87 

176.gcc 18.44 14.10 13.83 7.90 7.90 6.91 

181.mcf 7.15 5.47 5.36 3.07 3.07 2.68 

197.parser 8.82 6.74 6.61 3.78 3.78 3.31 

177.mesa 14.19 10.85 10.64 6.08 6.08 5.32 

179.art 7.21 5.51 5.41 3.10 3.09 2.70 

183.equake 7.25 5.55 5.44 3.11 3.11 2.72 

188.ammp 8.86 6.77 6.64 3.80 3.80 3.32 
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Table 6.13    Percentage of file size increase for benchmarks from the embedded domain 

I-cache line 64B I-cache line 128B 
Benchmark 

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD 

blowfish 6.17 4.71 4.62 2.65 2.65 2.31 

cjpeg 7.90 6.04 5.92 3.39 3.39 2.96 

djpeg 8.14 6.23 6.10 3.49 3.49 3.05 

ecdhb 7.81 5.98 5.86 3.35 3.36 2.93 

ecdsignb 8.24 6.30 6.18 3.54 3.54 3.09 

ecdsverb 8.24 6.31 6.18 3.54 3.54 3.09 

ecelgdecb 7.81 5.97 5.85 3.35 3.35 2.93 

ecelgencb 7.81 5.97 5.86 3.35 3.35 2.93 

ispell 6.49 4.97 4.87 2.79 2.78 2.43 

mpeg2_enc 8.03 6.14 6.02 3.44 3.44 3.01 

qsort 7.12 5.45 5.34 3.06 3.05 2.67 

rijndael 6.36 4.87 4.77 2.74 2.73 2.38 

stringsearch 6.13 4.69 4.60 2.63 2.63 2.30 

 



  123 

  

Table 6.14    Percentage of file size increase for SPEC CPU2000 benchmarks 

I-cache line 64B I-cache line 128B 
Benchmark 

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD 

164.gzip 7.65 5.85 5.73 3.28 3.29 2.87 

176.gcc 18.44 14.10 13.83 7.90 7.90 6.91 

181.mcf 7.15 5.47 5.36 3.07 3.07 2.68 

197.parser 8.82 6.74 6.61 3.78 3.78 3.31 

177.mesa 14.19 10.85 10.64 6.08 6.08 5.32 

179.art 7.21 5.51 5.41 3.10 3.09 2.70 

183.equake 7.25 5.55 5.44 3.11 3.11 2.72 

188.ammp 8.86 6.77 6.64 3.80 3.80 3.32 
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6.2 SIGB Evaluation 

Due to the ever-increasing processor-memory speed gap, the memory access overhead will be the 

predominant overhead component of the SIGB techniques.  To assess this overhead, we measure the 

number of S-cache misses for SIGBTK technique, and the number of additional I-cache misses for the 

SIGBEV.  We also measure memory overhead due to basic block signatures.  All SIGB techniques have the 

same memory overhead, since none of them requires padding.   

6.2.1 Performance Overhead 

Table 6.15 shows the number of I-cache misses and signature verifications per one million (1M) 

instructions for the SIGBTK technique and 8K, 16K, and 32K I-cache sizes.  The considered I-caches all 

have 4 ways and LRU replacement policy.  Unlike the SIGC techniques where each I-cache miss triggers 

signature verification, the SIGB techniques verify basic block signatures only for the last basic block in an 

instruction stream that caused at least one I-cache miss.  Hence, the number of signature verifications may 

be less than the number of I-cache misses.  For SPEC CPU2000 benchmarks, the number of signature 

verifications ranges from less than the quarter of the number of I-cache misses for 301.appsi and the 16K I-

cache, to only slightly less than the number of I-cache misses for 300.twolf and the 32K I-cache.  On 

average, the ratio of the number of I-cache misses to the number of verifications is 1.95. 

With the SIGBTK technique, each signature verification corresponds to an S-cache lookup.  Table 

6.16 shows the number of S-cache misses for 8K, 16K, and 32K I-cache sizes.  The S-cache can store 256 

signatures, organized in 128 sets and 2 ways.  With the 32K I-cache, which is a reasonable I-cache size for 

high-end processors, the number of S-cache misses is less than one thousand per 1M instructions for 17 out 

of 22 benchmarks, or less than once in 1000 executed instructions.  Even with the relatively small 8K I-

cache, only two benchmarks, 253.perlbmk and 186.crafty, have more than 10000 S-cache misses in 1M 

instructions. 

We also evaluate the sensitivity of the number of S-cache misses to the S-cache size and 

associativity.  Figure 6.11 shows the number of S-cache misses per 1M instructions, with the 32K I-cache 
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and various S-cache sizes.  We simulate the S-cache with two ways and 16, 32, 64, 128, and 256 sets.  Only 

three SPEC CPU2000 integer applications have over 1000 misses per 1M instructions for all simulated S-

cache sizes -- 255.vortex, 176.gcc, and 253.perlbmk -- and of the floating point applications only 191.fma3d 

has over 1000 misses, and only for the smallest simulated sizes.  The results indicate that a very small S-

cache size is enough for most considered applications.  We also evaluate the influence of S-cache 

associativity to the number of misses for an S-cache with 128 entries, and direct mapped organization, 2, 4, 

and 8 ways (Figure 6.12).  Most applications do not significantly benefit from more than two ways.  

Each S-cache miss causes additional memory accesses for the SigTable search.  Figure 6.13 shows 

the number of required memory access per 1M instructions for 176.gcc, 172.mgrid, and 164.gzip, with the 

segmented binary search.  However, a simple hash function may significantly reduce the number of 

memory accesses, and a perfect hash function may reduce it to only one access.   

Let us compare the SIGBTK technique with the SIGCTK, with the same S-cache size.  With the 

perfect hash function, the SigTable search adds approximately the same overhead as with the SIGCTK 

technique.  On the other hand, since the SIGBTK technique has a smaller number of signature verifications, 

it will have less S-cache misses than the SIGCTK technique.  Hence, with the appropriate search function 

the SIGBTK can outperform the SIGCTK. 

With the SIGBEV technique, the signatures are fetched from memory into the I-cache together 

with the regular instructions, so there are no extra memory accesses for signature verification, but the 

overall number of I-cache misses increases.  To assess the SIGBEV potential, we compare the number of I-

cache misses per one million instructions for the original code and protected code.  Table 6.17 shows the 

number of I-cache misses and signature verifications per 1M instructions for the SIGBEV.  The SIGBEV 

should not significantly influence the overall program performance for applications with relatively few I-

cache misses.  For one application, 183.equake, the number of I-cache misses in the 32K I-cache is even 

reduced, due to the better alignment of some portions of the code.  However, for some applications the 

increase in the number of I-cache misses can be considerable: for example, for 252.eon and 32K I-cache, 

this number increases from about 300 to about 7000 I-cache misses per one million instructions. 



  126 

  

Table 6.15    SIGBTK: Number of I-cache misses and signature verifications per 1M instructions  

I-cache misses per 1M 
instructions 

Signature verifications per 1M 
instructions Benchmark 

8K 16K 32K 8K 16K 32K 

164.gzip 7.67 0.25 0.24 4.79 0.13 0.12 

176.gcc 27952.10 17077.95 5596.00 14578.33 9319.48 3243.21 

181.mcf 10584.81 533.72 0.28 6292.26 215.58 0.16 

186.crafty 55757.21 20795.13 2898.48 28537.25 10964.53 1624.79 

197.parser 834.11 522.10 101.60 489.47 307.59 68.02 

252.eon 27417.56 8415.70 321.16 14483.61 5383.62 308.14 

253.perlbmk 42082.99 28221.11 11886.71 22446.80 15577.89 6606.16 

254.gap 10213.49 3009.15 367.86 6229.38 1865.26 164.88 

255.vortex 32974.83 19878.95 10427.85 16879.17 10155.27 5444.23 

In
te

ge
r 

300.twolf 17235.97 3762.88 44.35 9100.11 2339.60 43.25 

168.wupwise 414.50 1.01 0.75 269.88 0.56 0.40 

171.swim 32.00 13.41 2.76 15.77 5.61 1.26 

172.mgrid 24.00 14.18 3.96 10.53 5.88 1.61 

177.mesa 18721.89 1193.49 12.64 6923.03 754.49 7.35 

178.galgel 1.60 1.17 0.91 0.81 0.60 0.45 

179.art 2.57 0.18 0.18 1.08 0.08 0.08 

183.equake 22179.91 2842.17 1326.53 10965.51 2176.89 888.22 

188.ammp 2198.80 76.59 0.50 1334.89 62.78 0.31 

189.lucas 0.76 0.60 0.51 0.41 0.30 0.25 

191.fma3d 16946.39 10266.68 4126.92 8897.55 5905.82 2352.48 

200.sixtrack 7051.75 2686.58 871.97 3246.70 1324.99 474.79 

Fl
oa

tin
g 

po
in

t 

301.appsi 19248.16 12368.17 2217.44 5315.02 2944.37 741.99 
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Table 6.16    SIGBTK: Number of S-cache misses per 1M instructions 

S-cache misses per 1M instructions (128 sets, 2 ways) 
Benchmark 

8K 16K 32K 

164.gzip 1.54 0.12 0.12 

176.gcc 8231.29 5611.80 1951.31 

181.mcf 320.08 0.17 0.16 

186.crafty 11660.36 4082.43 480.86 

197.parser 260.34 205.41 20.61 

252.eon 5284.62 681.44 1.87 

253.perlbmk 12203.76 8150.48 2281.50 

254.gap 1792.36 479.88 5.15 

255.vortex 8926.09 6655.88 3592.60 

In
te

ge
r 

300.twolf 1668.19 64.94 0.67 

168.wupwise 0.53 0.45 0.39 

171.swim 2.95 0.91 0.59 

172.mgrid 3.12 2.06 0.53 

177.mesa 573.47 8.92 0.73 

178.galgel 0.55 0.48 0.42 

179.art 0.09 0.08 0.08 

183.equake 494.30 0.13 0.11 

188.ammp 135.34 0.47 0.24 

189.lucas 0.29 0.26 0.23 

191.fma3d 4417.81 2092.49 50.87 

200.sixtrack 1063.22 612.81 158.06 

Fl
oa

tin
g 

po
in

t 

301.appsi 608.34 182.37 1.31 
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Figure 6.11    SIGBTK: Number of S-cache misses as a function of S-cache size 
I-cache size: 32K 
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Figure 6.12    SIGBTK: Number of S-cache misses as a function of S-cache associativity 
I-cache size: 32K 
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Figure 6.13    SIGBTK: Number of memory accesses per 1M instructions due to S-cache misses 
with the segmented binary search,(128-set, 2-way) S-cache, and 32K I-cache 
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Table 6.17    SIGBEV: Number of I-cache misses and signature verifications per 1M instructions  

I-cache misses per 1M 
instructions 

Signature verifications per 1M 
instructions Benchmark 

8K 16K 32K 8K 16K 32K 

164.gzip 24.60 8.15 0.40 13.33 4.66 0.19 

176.gcc 49391.24 37419.57 19094.73 23046.80 17903.47 9611.68 

181.mcf 31315.41 3502.30 0.48 16963.19 2329.56 0.24 

186.crafty 95729.56 54278.95 14933.42 44114.61 25748.65 7904.31 

197.parser 5409.83 1246.97 716.58 2819.35 667.98 407.28 

252.eon 48810.07 28504.23 7114.48 23514.00 14684.02 4506.36 

253.perlbmk 73594.06 57448.06 31947.90 36188.91 28473.97 16707.06 

254.gap 22038.24 11897.55 1557.94 12343.94 6458.76 838.91 

255.vortex 67081.58 44479.63 25254.76 30196.85 20144.33 11539.29 

In
te

ge
r 

300.twolf 41304.43 11997.24 238.49 18854.01 6567.28 125.87 

168.wupwise 2620.05 195.90 1.35 1305.26 158.00 0.68 

171.swim 68.80 32.76 4.85 29.74 15.18 2.26 

172.mgrid 38.79 26.47 10.76 17.17 11.39 4.52 

177.mesa 43888.48 6978.36 103.67 18914.99 2956.38 64.20 

178.galgel 3.61 2.19 1.55 1.61 1.01 0.71 

179.art 18.10 1.04 0.27 7.74 0.39 0.12 

183.equake 63206.61 27839.49 676.70 30144.21 11949.41 373.13 

188.ammp 6238.59 1240.54 156.60 3221.81 649.25 96.63 

189.lucas 1.47 1.05 0.83 0.73 0.51 0.39 

191.fma3d 28979.05 23596.61 12348.08 13951.06 11924.89 7009.36 

200.sixtrack 13924.67 7399.13 2954.09 6628.74 3526.30 1496.33 

Fl
oa

tin
g 

po
in

t 

301.appsi 26646.36 17234.43 4331.44 8069.01 4847.86 1295.26 
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6.2.2 Memory Overhead 

Table 6.18 shows the increase of the code section and of the complete executable file, for 

precompiled SPEC CPU2000 Alpha binaries and 16-byte signatures.  The SIGB signatures increase the size 

of code section from 38.2% for 200.sixtrack, to 82.3% for 188.ammp, much more than with any of the 

SIGC techniques.  The increase of the executable file is also significant, from 15.6 to 52%. 
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Table 6.18    Number of basic blocks and percentage of file size increase 

Benchmark Number of basic 
blocks 

Code section increase 
[%] 

Executable file increase 
[%] 

164.gzip 8660 65.1 36.8 

176.gcc 98478 79.2 41.5 

181.mcf 7401 72.3 39.1 

186.crafty 17761 64.2 30.2 

197.parser 14663 73.4 39.2 

252.eon 24285 48.9 32.7 

253.perlbmk 43294 79.0 32.2 

254.gap 47365 81.1 52.0 

255.vortex 33336 65.1 23.1 

In
te

ge
r 

300.twolf 17931 63.7 31.3 

168.wupwise 32989 64.4 47.4 

171.swim 32759 64.0 47.4 

172.mgrid 32312 64.4 47.5 

177.mesa 33757 58.9 18.8 

178.galgel 41805 63.8 45.9 

179.art 9600 64.7 41.7 

183.equake 9436 59.5 39.2 

188.ammp 19917 82.8 48.6 

189.lucas 33246 62.4 46.4 

191.fma3d 59790 51.2 21.2 

200.sixtrack 61938 38.2 15.6 

Fl
oa

tin
g 

po
in

t 

301.appsi 35393 50.8 37.0 
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CHAPTER 7 
 
 
 

CONCLUSION 

“It's tough to make predictions, especially about the future.” 

“It's déjà vu all over again.” 

Yogi Berra 

 

Failing to resist attacks on computer systems can incur significant direct costs as well as costs in 

lost revenues and opportunities, and can even jeopardize national security.  Consequently, computer 

security is becoming a critical issue, and current trends in hardware and software will bring it even more 

into focus due to the following reasons.  First, increased complexity of high-end systems and the large-

scale deployment and diversity of low-end systems make it difficult to uncover system vulnerabilities.  In 

addition, exhaustive testing is virtually impossible as software grows in size and complexity, and time-to-

market decreases.   

One of the major security problems is execution of unauthorized and potentially malicious code.  

The existing defense techniques often fail to counter attacks, lack generality, induce significant overhead in 

performance and cost, or generate a significant number of false alarms.   

This dissertation proposes new architectural extensions to ensure trusted program execution, i.e., 

run-time code integrity, in both high-end and embedded computing platforms.  All proposed techniques 

share a common mechanism, which encompasses two phases: secure program installation and secure 

program execution.  The secure installation process determines a signature for each instruction block in a 

program, using secret keys stored in hardware.  Signatures are encrypted and stored with the code.  During 

secure execution, signatures are recalculated from fetched instructions and compared to decrypted stored 
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signatures.  If a signature calculated in run-time does not match the signature calculated during installation, 

the program cannot be trusted and it receives an abort signal by the operating system.  

We propose eight techniques: SIGCED, SIGCEK, SIGCEV, SIGCTD, SIGCTK, SIGBEV, 

SIGBTD, and SIGBTK.  For each technique, we provide a detailed architectural design, a proof-of-concept 

using functional simulation, and performance and memory overhead analysis.  The performance analysis, 

based on execution- and trace-driven simulation utilizing state-of-the-art benchmarks, proves that the 

proposed techniques incur very low performance overhead for a broad spectrum of computer platforms.    

The main contributions of this dissertation are as follows:  

 Proposed novel hardware-based mechanism for trusted program execution based on runtime 

verification of instruction block signatures.  

 Proposed a set of eight techniques that employ the common mechanism and differ in the type of 

protected instruction blocks, signature placement in the address space, signature placement in the 

physical memory, and signature handling after the verification.  

 Developed simulation environment, including architectural execution-driven and trace-driven 

simulators, and a program for modification of ELF binaries to emulate the secure installation process.  

 Evaluated performance overhead of the proposed techniques and analyzed their sensitivity to a 

common set of architectural parameters.  

 Surveyed the existing software and hardware techniques, developed to counter code injection and 

similar malicious attacks. 

 

The main findings are as follows: 

 The SIGCED and SIGCEK techniques are main candidates for implementation in future processors. 

 The SIGCED technique performs consistently well across various system configurations, with the 

worst-case overhead of 15.6% with 64B I-cache lines, and 8% with 128B I-cache lines. 

 If the hardware budget allows the S-cache, the SIGCEK successfully reduces the overhead of signature 

fetching.  
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 The evaluation of the SIGCEV technique shows the importance of not keeping the signatures in the 

cache, since for most applications it increases the number of I-cache misses and consequently the 

performance overhead.  However, the SIGCEV performs well with small caches and 128B cache lines.  

 The SIGCTD technique has more performance overhead than the SIGCED; this overhead can be 

significantly reduced with the S-cache i.e., with the SIGCTK technique.  The SIGCTK overhead is less 

than 10% for 128B cache lines. 

 The memory overhead of the SIGC techniques is less than 9% for all but two of the considered 

benchmarks. 

 With a fast search function for signatures stored in memory, the SIGBTK technique promises to have 

low performance overhead, whereas the SIGBEV technique is another example of how signatures 

embedded in the code can increase the number of I-cache misses. 

 

Although the main goal of the proposed mechanism is to prevent code injection attacks, it can be 

applied to other purposes, such as fault-tolerant execution, virus protection, and protection from software 

tampering.  

The proposed techniques open a number of challenging questions for future research, including 

but not limited to the following: 

 Evaluation of power overhead. 

 Techniques for reduction of memory overhead, e.g., protecting multiple instruction blocks with the 

same signature. 

 Techniques for reduction of power overhead, e.g., signature and/or instruction prefetching.  

 Extension of the basic mechanism to cover other classes of attacks, such as return-into-libc.  
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