

ARCHITECTURES FOR RUN-TIME VERIFICATION
OF CODE INTEGRITY

by

MILENA MILENKOVIC

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
The Shared Computer Engineering Program of

The University of Alabama in Huntsville
The University of Alabama at Birmingham

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2005

 ii

In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree from The
University of Alabama in Huntsville, I agree that the Library of this University shall make it freely
available for inspection. I further agree that permission for extensive copying for scholarly purposes may
be granted by my advisor or, in his absence, by the Chair of the Department or the Dean of the School of
Graduate Studies. It is also understood that due recognition shall be given to me and to The University of
Alabama in Huntsville in any scholarly use which may be made of any material in this dissertation.

_________________________ ______________

(student signature) (date)

 iii

DISSERTATION APPROVAL FORM

Submitted by Milena Milenkovic in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Engineering and accepted on behalf of the Faculty of the School of Graduate
Studies by the dissertation committee.

We, the undersigned members of the Graduate Faculty of the University of Alabama in Huntsville and the
University of Alabama in Birmingham, certify that we have advised and/or supervised the candidate on the
work described in this dissertation. We further certify that we have reviewed the dissertation manuscript
and approve it in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Engineering.

 Committee Chair

 (Date)

Department Chair

College Dean

Graduate Dean

 iv

ABSTRACT

The School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy

College/Dept. Engineering/Electrical and Computer Engineering

Name of Candidate Milena Milenkovic

Title Architectures For Run-Time Verification of Code Integrity

With the exponential growth of the number of interconnected computing platforms, computer

security becomes a critical issue. As software continues to grow in size and complexity, so does the

number of security vulnerabilities: According to the US-CERT Coordination Center, the number of

vulnerabilities reported has grown from 171 in 1995 to 4,129 in 2002. One of the major security problems

is the execution of unauthorized and potentially malicious code. This problem can be addressed at different

levels, from more secure software and operating systems, down to solutions based on hardware support.

The majority of the existing techniques tackle the problem of security flaws at the software level, lacking

generality, often inducing prohibitive overhead in performance and cost, or generating a significant number

of false alarms. On the other hand, a further increase in the number of transistors on a single chip will

enable integrated hardware support for functions that were so far restricted to the software domain.

Hardware-supported defense techniques have the potential to be more general and more efficient than

solely software solutions. This dissertation proposes new architectural extensions to ensure trusted

program execution in both high-end and embedded computing platforms. The eight proposed techniques

have low performance overhead, low hardware complexity, and minimal or no compiler support.

Abstract Approval: Committee Chair _______________________________________

 Department Chair _______________________________________

 Graduate Dean ___

 v

ACKNOWLEDGMENTS

“I thank you for making this day necessary.”

Yogi Berra

I wish to express my deepest gratitude to many persons who made my PhD dissertation possible.

I thank my advisor, Dr. Emil Jovanov, for his constant support and guidance. I will be always

grateful to Dr. Reza Adhami, Chair of the Electrical and Computer Engineering Department, for

encouraging me to pursue PhD studies, and for providing me with financial support through the teaching

assistantship during the Spring 2002 semester. Many thanks to Dr. Jeff Kulick for inspiring talks about

malicious attacks and hardware-supported security. Thanks go out also to other members of my committee,

Dr. Gary J. Grimes, Dr. Peter Slater, Dr. B. Earl Wells, and Dr. Seong-Moo Yoo, for their invaluable

feedback. Dr. Yale Patt from the University of Texas in Austin first introduced me to the wonderful

philosophy of Yogi Berra, and has been a source of inspiration for all my research work. Last but not least,

this dissertation would not be possible without my husband, Dr. Aleksandar Milenkovic, who encouraged

me to pursue the PhD research, collaborated with me on secure architectures, and provided me an

inspirational work environment in the LaCASA laboratory.

I also thank my family in Serbia, for their unconditional love and support.

 vi

TABLE OF CONTENTS

 Page

LIST OF FIGURES..VIII

LIST OF TABLES ...X

CHAPTER

1 INTRODUCTION..1

1.1 Background and Motivation ..1

1.2 Existing Techniques for Defense Against Code Injection Attacks ..2

1.3 Architectures For Instruction Block Signature Verification ..3

1.4 Main Contributions ..4

1.5 Dissertation Outline ...4

2 SOFTWARE VULNERABILITIES AND CODE INJECTION ATTACKS ..5

2.1 Stack-Based Buffer Overflow Attacks...5

2.2 Heap-Based Buffer Overflow Attacks ...6

2.3 Format String Attacks ..7

2.4 Integer Error Attacks..8

2.5 Double free() attacks..8

2.6 A Format String Attack Example...9

3 EXISTING TECHNIQUES FOR DETECTION AND PREVENTION OF CODE INJECTION
ATTACKS ...12

3.1 Static Software-Based Techniques...12

3.2 Dynamic Software-Based Techniques ...17

3.3 Defense Techniques With Hardware Support..31

 vii

3.4 Other Related Work ...38

4 PROPOSED ARCHITECTURES FOR INSTRUCTION BLOCK VERIFICATION..........................41

4.1 Basic Mechanism of Proposed Techniques..41

4.2 Taxonomy of Proposed Techniques...44

4.3 Details of SIGCE Techniques ..50

4.4 Details of SIGCT Techniques ..57

4.5 Details of SIGB Techniques ..61

4.6 Discussion..70

5 EXPERIMENTAL METHODOLOGY ...74

5.1 Evaluation of Proposed Techniques...74

5.2 ELF Format..75

5.3 Secure Installation of Files in ELF Format ..78

5.4 SimpleScalar Simulator ...79

5.5 SimpleScalar Modifications...82

5.6 Custom-Made Trace-Driven Simulator..82

5.7 Simulator Parameters ...86

5.8 Benchmarks ...89

6 EVALUATION RESULTS..94

6.1 SIGC Evaluation ..94

6.2 SIGB Evaluation ..124

7 CONCLUSION ..134

REFERENCES..137

 viii

LIST OF FIGURES

Figure Page

2.1 An illustration of a buffer overflow attack on the stack..6

2.2 An illustration of the use of the %n format character ...7

2.3 Allocated and free memory chunk organization, GNU C library malloc()9

2.4 An example of a vulnerable program..10

2.5 Malicious input and the corresponding output for the above program, and the stack content (SP –
stack pointer)...11

4.1 Mechanism for trusted instruction execution ..42

4.2 An implementation of a 4-bit MISR ...43

4.3 Processor components...43

4.4 Taxonomy of proposed instruction block verification techniques ..45

4.5 Modification of executable code...47

4.6 Qualitative assessment of signature verification techniques in the performance overhead -
hardware complexity design space..49

4.7 SIGCED: Signature verification control flow...51

4.8 SIGCED: Instruction Block Signature Verification Unit..53

4.9 SIGCEK: Signature verification control flow...54

4.10 SIGCEK: Instruction Block Signature Verification Unit..55

4.11 SIGCEV: Signature verification control flow...56

4.12 The content of an I-cache line with the SIGCEV technique ..57

4.13 SIGCTD: Signature verification control flow...59

4.14 SIGCTK: Signature verification control flow...60

4.15 Instruction streams. ...61

4.16 SIGBEV: An example of the original and the protected code ..63

 ix

4.17 SIGBEV: Instruction Block Signature Verification Unit..64

4.18 SIGBEV Procedures ...64

4.19 SIGBTK: Instruction Block Signature Verification Unit..67

4.20 SIGBTK Procedures ...68

4.21 SigTable access using segment approach..69

5.1 Linking and execution view of an ELF file...76

5.2 The main simulator loop body in the sim-outorder simulator ...80

5.3 Pseudo-code for the trace-driven SIGB simulator ..84

5.4 Pseudo-code for the function verify_signature()...85

6.1 SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, slow core110

6.2 SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, slow core111

6.3 SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, fast core.....................112

6.4 SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, fast core.....................113

6.5 SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, slow core.....................114

6.6 SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, slow core.....................115

6.7 SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, fast core.......................116

6.8 SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, fast core.......................117

6.9 SIGC: high-end processor configuration, I-cache line 128B ..118

6.10 SIGC: high-end processor configuration n, I-cache line 64B ...119

6.11 SIGBTK: Number of S-cache misses as a function of S-cache size I-cache size: 32K.................128

6.12 SIGBTK: Number of S-cache misses as a function of S-cache associativity I-cache size: 32K...129

6.13 SIGBTK: Number of memory accesses per 1M instructions due to S-cache misses with the
segmented binary search, (128-set, 2-way) S-cache, and 32K I-cache ...130

 x

LIST OF TABLES

Table Page

3.1 Static software-based techniques ..14

3.2 Techniques that instrument code to verify run-time bounds ...18

3.3 Attack-specific techniques ..19

3.4 “Safe dialects” of C...19

3.5 Obfuscation techniques ...19

3.6 Program monitoring techniques ..20

3.7 Techniques with hardware support ...32

4.1 Pros and cons of different techniques ...49

5.1 Some common ELF file sections ..77

5.2 Descriptions of .c files used by SimpleScalar simulators..81

5.3 Simulator parameters for the embedded processor configuration ...87

5.4 Simulator parameters for the high-end processor configuration ...88

5.5 Description of benchmarks from embedded domain ..90

5.6 Benchmark code size and executed instructions for embedded systems...91

5.7 Description of SPEC CPU2000 benchmarks and the size of precompiled Alpha binaries92

5.8 The size of SPEC CPU2000 benchmarks when compiled with the ARM gcc compiler.................93

6.1 Base: I-cache misses per 1000 instructions in embedded processor configurations96

6.2 Base: CPI in embedded processor configurations, slow core, memory bus 32 bits97

6.3 Base: CPI in embedded processor configurations, slow core, memory bus 64 bits98

6.4 Base: CPI in embedded processor configurations, fast core, memory bus 32 bits99

6.5 Base: CPI in embedded processor configurations, fast core, memory bus 64 bits100

 xi

6.6 Base: I-cache misses per 1M executed instructions in high-end processor configurations...........101

6.7 Base: CPI in high-end processor configurations ...101

6.8 SIGCEV: I-cache misses per 1000 executed instructions in embedded processor configurations107

6.9 SIGCEV: I-cache misses per 1M executed instructions in high-end processor configurations108

6.10 S-cache misses per 1000 executed instructions in high-end processor configurations108

6.11 S-cache misses per 1000 executed instructions in embedded processor configurations109

6.12 Percentage of file size increase for SPEC CPU2000 benchmarks ..121

6.13 Percentage of file size increase for benchmarks from the embedded domain...............................122

6.14 Percentage of file size increase for SPEC CPU2000 benchmarks ..123

6.15 SIGBTK: Number of I-cache misses and signature verifications per 1M instructions126

6.16 SIGBTK: Number of S-cache misses per 1M instructions ...127

6.17 SIGBEV: Number of I-cache misses and signature verifications per 1M instructions131

6.18 Number of basic blocks and percentage of file size increase ..133

 1

CHAPTER 1

INTRODUCTION

“The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but on

our own readiness to receive him; not on the chance of his not attacking, but rather on

the fact that we have made our position unassailable.”

Sun Tzu, “The Art of War”

With the exponential growth of the number of interconnected computing platforms, computer

security becomes a critical issue. Today’s society now more than ever relies upon computers and networks.

Networked computing platforms make up the fabric of society’s infrastructure; in fact, ubiquitous

accessibility and interconnectivity are the driving forces in our modern economy, education, entertainment,

medicine, transportation, and the military. Unfortunately, by connecting a computer system to the Internet

or a local network, we expose its vulnerabilities to potential attackers. Failing to resist attacks can incur

significant direct costs as well as costs in lost revenues and opportunities. The utmost importance of

system security is further underscored by the increased complexity of high-end systems as well as the

expected proliferation of diverse Internet-enabled, low-end embedded systems -- ranging from home

appliances, cars, and sensor networks to personal health monitoring devices.

1.1 Background and Motivation

A very large group of malicious attacks on applications running on general-purpose processors

consists of different techniques that impair the software integrity, by injecting and then executing the

malicious code instead of regularly installed programs. The most widely known type of such attacks is so-

called stack smashing, where an attacker overflows a buffer stored on the stack with a malicious code

 2

sequence and replaces a valid return address with the malicious code address [1]. In addition, various other

examples of attacks exist, such as heap overflow [2], format string attacks [3], and attacks exploiting

integer errors [4] or dangling pointers [5]. The number of reported software vulnerabilities has grown from

171 in 1995 to 4,129 in 2002, according to the United States Computer Emergency Readiness Team

Coordination Center (US-CERT/CC) [6].

Applications targeting embedded systems may suffer from the same vulnerabilities as applications

running on general-purpose platforms. For example, one recent Cyber Security Bulletin from US-CERT

reports multiple buffer overflow vulnerabilities in a Bluetooth connectivity program for Personal Digital

Assistants (PDAs) [7]. Another US-CERT Cyber Security Bulletin indicates an emerging trend of mobile

phone viruses [8]. As the communication and computation capabilities of smart phones, PDAs, and other

embedded systems continue to grow, so will the number of malicious attacks trying to exploit code

vulnerabilities.

1.2 Existing Techniques for Defense Against Code Injection Attacks

The multitude of code injection attacks prompted development of a large number of

predominantly software-based counter-measures. Static software techniques rely on formal analysis and/or

programmers’ annotations to detect security flaws in the code, and then leave it to the programmers to

correct these flaws. However, the use of these techniques has yet to become a common programming

practice. Moreover, they fail to discover all vulnerabilities, suffer from false alarms, or put an additional

burden on programmers. On the other hand, dynamic software techniques augment the original code or

operating system to detect malicious attacks and to terminate attacked programs, or to reduce the attacker’s

chances of success. Though effective, these techniques can result in significant performance overhead and

usually require program recompilation, so they are not readily applicable to legacy software.

Current trends in both hardware and software make us believe that dedicated processor resources

should be used to ensure software integrity, consequently improving computer system security [9].

Software techniques by themselves are unlikely to counter all attacks, since more complex applications

have potentially a larger number of defects, computing systems are becoming more diverse, and time-to-

market constraints severely limit testing time. On the other hand, a further increase in the number of

 3

transistors on a single chip will enable integrated hardware support for functions that so far have been

restricted to the software domain. A form of hardware protection from buffer overflow has already found

its way into mainstream general-purpose processors, AMD’s Athlon-64 and Intel’s Itanium [10]. Several

recent research efforts propose hardware-supported techniques to prevent unauthorized changes of program

control flow. Most of these techniques focus only on stack smashing or have significant performance

overhead, or do not thoroughly explore the implications of implementation choices. We believe that there

is a need for a new hardware security layer to prevent the whole class of code injection attacks.

1.3 Architectures For Instruction Block Signature Verification

This dissertation proposes and evaluates new architectural extensions to ensure trusted program

execution in high-performance and embedded computing platforms at minimal cost, power overhead, and

performance loss. We propose several new techniques that share a common mechanism: Instruction blocks

are signed using secret hardware keys during the secure program installation process, and signatures are

stored with the code. During program execution, signatures are recalculated from instructions and

compared to the stored signatures. If the two values do not match, the program cannot be trusted and

should be terminated. The proposed techniques differ in type of protected instruction blocks, signature

placement in the address space, signature placement in the physical memory, and signature handling after

the verification.

Hardware-supported techniques have the potential to provide trusted program execution with

lower overhead in performance and overall power consumption than techniques relying solely on software.

Instead of vulnerability-specific solutions, the proposed architectures offer protection from a whole class of

vulnerabilities that allow execution of a malicious code. Moreover, since with our mechanism each

program requires a secure installation process, viruses cannot penetrate the system without explicit

permission by the user. The proposed mechanism does not require significant processor changes and can

be implemented even as a separate co-processor; it is cost-effective and requires no changes in legacy

source code; several considered techniques do not require compiler support, while others require minimal

compiler support. In addition, encrypted instruction block signatures protect the code from software

tampering, and enable fault detection in error-prone environments such as Space.

 4

1.4 Main Contributions

The main contribution of this dissertation is a proposal of a novel hardware-supported mechanism

for defense against code injection attacks. The proposed mechanism is based on run-time verification of

instruction block signatures. We give taxonomy, detailed design, and performance evaluation for eight

implementations of this mechanism.

Another contribution is an extensive survey of related work. The survey encompasses a wide

range of software and hardware solutions proposed to counter malicious code injection attacks. Finally, the

work on this dissertation resulted in a number of extensions for SimpleScalar simulator and a custom-made

trace-driven simulator.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 gives an overview of security

vulnerabilities that may be exploited by code injection attacks.

Chapter 3 gives a survey of software-based static and dynamic defense techniques, and hardware-

supported techniques. Several related fault-tolerant techniques and anti-tampering techniques are also

mentioned. The proposed mechanism for run-time instruction block verification is explained in Chapter 4.

This chapter also includes taxonomy of proposed architectural extensions, detailed descriptions of each

technique, and a discussion of implementation challenges and limitations.

Chapter 5 describes experimental methodology used in this dissertation. It gives a short

description of execution-driven simulator SimpleScalar and the modifications we made. It also describes a

custom-made trace-driven simulator. The ELF format and various benchmarks used for evaluation are also

described in this chapter, as well as metrics used for evaluation and simulator parameters fixed for all

experiments.

Chapter 6 presents evaluation results and discusses them for a wide set of benchmarks. Finally,

Chapter 7 states conclusions and indicates future research possibilities.

 5

CHAPTER 2

SOFTWARE VULNERABILITIES AND CODE INJECTION ATTACKS

“We made too many wrong mistakes.”

Yogi Berra

A successful code injection attack must achieve two goals: it must inject the malicious code

sequence, and it must change the value of a code pointer to point to the address of the injected code. The

most common software vulnerabilities that can be exploited by code injection attacks are input buffers

without boundary checks, both on the stack and on the heap; functions from printf family accepting input

arguments as format strings; and errors related to dynamic memory allocation, such as freeing an already

freed pointer. Attacks exploiting these vulnerabilities are rather complex and require deep understanding of

underlying architecture, operating system, and the application under attack. In this chapter we give a short

description of each vulnerability and the corresponding attack, and provide a detailed walk-through

example for format string vulnerability.

2.1 Stack-Based Buffer Overflow Attacks

The mechanism of stack-based buffer overflow attacks, so-called “stack smashing,” is probably

the most widely known code injection mechanism [1, 11, 12]. Figure 2.1 illustrates one such attack: a

function accepts untrustworthy values into a local buffer, which is stored on the stack. In most

architectures, the direction of the stack growth is opposite to the direction of memory address growth, so if

we overflow a buffer on the stack over its limits, we can overwrite any location on the stack in the address

 6

space after the beginning of the buffer. One such location holds the return address of the vulnerable

function. Hence, if that function does not verify whether the length of the input exceeds the buffer size, an

attacker might overflow the buffer to insert the malicious code and overwrite the return address with the

address of the malicious code.

Stack smashing is probably the most exploited code injection attack, since an attacker knows that

a return address is somewhere near the local function variables, and only needs to probe to find its exact

location.

Program
Code

Literal
Pool

Heap

Stack

Arg #n

Buf[0]
...
Buf[n-1]

Attack Code

…

...

Arg #1

Return Address
Previous FP
Local var #1
Local var #2

Arg #n

Buf[0]
...
Buf[n-1]

Attack Code

…

...

Arg #1

Return Address
Previous FP
Local var #1
Local var #2

Stack

growth

Lower
addresses

FPFP

function
arguments

local
variables

Higher
addresses

B
uf

fe
r O

ve
rfl

ow
New
pointer

Old
pointer

Figure 2.1 An illustration of a buffer overflow attack on the stack

2.2 Heap-Based Buffer Overflow Attacks

Buffer overflow vulnerabilities are not limited to buffers on the stack. Heap-based buffer

overflow attacks are another attack category that exploits buffer overflows [2]. Let us assume that a buffer

is stored on the heap in relative proximity to a code pointer, e.g., a function pointer. If that buffer accepts

input without length verification, it may overwrite the function pointer with the address of attacker’s

choice, where the same or other buffer overflow attack stored the malicious code.

 7

2.3 Format String Attacks

Format string attacks exploit the ability of functions from the printf family to actually accept an

input argument as a format string, for example by writing printf(string) instead of printf(“%s”, string) [3,

13]. The printf function interprets its first argument as a format string, and scans the format string looking

for special format characters such as %d, %x, %s, etc. These characters specify the type of arguments to be

retrieved from the stack and the corresponding output format. If an attacker can pass format strings to the

printf function, he or she can exploit the printf mechanism to read the content of any memory location.

This is a so-called read attack, which may be used to gain knowledge to mount the actual write attacks,

such as stack smashing.

Allowing user-defined format strings also enables write attacks, based on the %n format character.

If %n is encountered in the format string, the number of characters output before %n is stored at the address

passed as the next argument. Figure 2.2 shows one such example: in the first printf call, the number of

characters output before %n is 6: 4 digits of x, a comma, and a space. The value 6 is stored in the variable

pos, as shown in the memory layout. The use %n actually results in storing the number of characters that

should have been output, not the actual count of characters that were output. For example, the snprintf

function writes no more than size characters to the string str, where both str and size are arguments of

snprintf. Let us assume that the size of a string buffer buf is 20. Then the function call snprintf(buf,

sizeof(buf),"%.100d%n",x,&pos) will store 100 in the variable pos. An intelligent use of %n

enables the attacker to write any value to almost any address in the program space.

…

0xbffffad4

0xbffffad0

0xbffffacc

Address

00000006

0000056d

00004e4c

3210

…

0xbffffad4

0xbffffad0

0xbffffacc

Address

00000006

0000056d

00004e4c

3210

x

y

pos

int main(){
int pos, x=1389, y=20044;

printf("%d, %n%d\n", x, &pos, y);
printf("The offset was %d\n", pos);
}

1389, 20044
The offset was 6

Output

Figure 2.2 An illustration of the use of the %n format character

 8

2.4 Integer Error Attacks

Various integer errors that can compromise the system safety include unsigned integer overflow

and underflow, precision error, and integer comparison [4]. A code injection attack cannot be based only

on integer errors, but these errors can enable another type of attacks.

For example, overflow of an unsigned integer actually causes storing by modulo: a one-byte

unsigned char variable can hold values 0-255, so the value 256 will be stored as 0, 257 as 1, etc. Let us

assume that such a variable is used for buffer allocation and that it is overflowed. For instance, we want a

buffer of 257 bytes, but the variable that controls dynamic buffer allocation is an unsigned char. Instead of

257 bytes, the size of the buffer is 1 byte. A “safe” function that stores data in the buffer may even verify

whether the output exceeds the allowed values. However, the allowed value is 257 bytes, and the allocated

size is only 1 byte. Here is an opportunity for a heap-based buffer overflow as explained before.

2.5 Double free() attacks

To understand the principle of double free() vulnerabilities, we must first understand how dynamic

memory allocation and deallocation work. Dynamic memory management information is usually kept

together with the actual allocated memory chunk. Figure 2.3 shows the fields in allocated and free memory

chunks, when using the GNU C library [14]. An allocated chunk has prev_size, size, and data fields. The

prev_size field defines the size of the previous chunk if it is free (i.e., not allocated), or it belongs to data

field of the previous chunk. The size field defines the size of the current chunk and also includes some

status bits. The actual data is stored in the data field, and the pointer to data mem is what is returned by

malloc(). When a memory chunk is freed, it is linked to a doubly linked list of all free chunks of the

similar size, so it also has fields fd (pointer to a chunk forward in the list) and bk (pointer to a chunk

backward in the list). If one of its physical neighbors is free, these two chunks are merged into one larger

chunk. The linked list of free chunks is ordered by size, so that a chunk with the same size as some chunk

in the list is inserted before that chunk, and all relevant forward and backward fields are set accordingly.

The list is re-linked when a chunk is allocated by using a macro unlink().

 9

When a chunk C1 is freed twice, its bk and fd fields both point to itself, if there was no merging to

a larger chunk between two calls to free() [5, 15]. When a program now needs to allocate a chunk of the

same size as C1, the C1 will be unlinked from the list of free chunks and user data will be written in the

field data. However, since C1 points to itself, it will not be really unlinked, so first eight bytes of data are

actually bk and fd. Hence, an attacker might overwrite the fd and bk with addresses of his/her choice.

Next time when a chunk of C1 size is requested, unlink() will cause the content of bk field to be

written at the address stored in fd plus offset of 12 bytes. One option is to overwrite a return address with

the address of injected code in the data field. Therefore, exploiting the double free() vulnerability the

attacker may satisfy both conditions for code injection attacks – inject the code and change a code pointer.

old data
…

bk

fd

size

prev_size

old data
…

bk

fd

size

prev_sizechunk

memdata
…

size

prev_size

data
…

size

prev_sizechunk

mem

Allocated chunk Free chunk

Figure 2.3 Allocated and free memory chunk organization, GNU C library malloc()

2.6 A Format String Attack Example

Figure 2.4 illustrates the effect of format string attack on a variable named x, which is set to 1 and

not changed by any of the program instructions. The code in Figure 2.4 is slightly modified code from [3].

This attacks exploits the use of snprintf() with no specified format string. If the input argument argv[1]

does not contain format characters, it is treated as a string, and its sizeof(buf) characters are simply copied

to the string buffer buf. However, any format character will cause a value to be popped from the stack and

stored in the buf. If we know the address of the variable x, we can change the value of x by using an input

string that includes both the address of x and the %n format character. One way to do it is to store the

address of x at the beginning of the buffer buf, and to include enough format string characters so that the

argument for %n is read precisely from the buf beginning.

 10

#include <stdio.h>

int main(int argc, char **argv){
char unsigned buf[96];
int x, y;

if(argc != 2) exit(1);
x=1; y=2;
snprintf(buf, sizeof buf, argv[1]);
buf[sizeof(buf) - 1] = 0;
printf("buffer (%d): %s\n", strlen(buf), buf);
printf("x is %d/%#x (@ %p)\n", x, x, &x);
printf("y is %d/%#x (@ %p)\n", y, y, &y);
printf("buffer[3:0]: %2x%2x%2x%2x\n",

buf[3], buf[2], buf[1], buf[0]);
return 0;

}

Figure 2.4 An example of a vulnerable program

Let us assume that the x is stored at the address 0xbffff8cc (Figure 2.5). “Above” x on the

stack are stored y and some other three values, and the buf starts below x. The input string

\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n will cause the following to happen. First,

0xbffff8cc will be stored in buf[0:3]. Then, five integer values will be popped from the stack and

stored to buf, starting from the location below the stack pointer SP (this is the stack pointer when snprintf()

starts to execute). Finally, the number of stored characters as specified by the format string will be stored

to the address popped from the stack, i.e., the address of x stored at the beginning of the buf. Since the

format string specifies writing of 49 characters before %n (4+9*5), the value of x will be changed to 49, as

seen in the program output. Note that we used perl for input, since the address of x in hexadecimal form

could not be specified when program was executed interactively under RedHat 7.0 Linux.

 11

perl -e 'system
"./fmtme","\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n"'

Input

buffer (49): Ìøÿ¿.420069e8.4212a2d0.bffffaa0.00000002.00000001
x is 49/0x31 (@ 0xbffff8cc)
y is 2/0x2 (@ 0xbffff8c8)
buffer[3:0]: bffff8cc

Output

snprintf(buf,96,
"\xcc\xf8\xff\xbf.%08x.%08x.%08x.%08x.%08x%n");

…

420069e8

4212a2d0

0xbffff8d0

0xbffff8cc

0xbffff8c8

Address

bffff8cc

00000001

00000002

bffffaa0

3210

…

420069e8

4212a2d0

0xbffff8d0

0xbffff8cc

0xbffff8c8

Address

bffff8cc

00000001

00000002

bffffaa0

3210

x

y

buf

SP

(0xbffff8cc)

0x00000031

Figure 2.5 Malicious input and the corresponding output for the above program,
and the stack content (SP –stack pointer)

 12

CHAPTER 3

EXISTING TECHNIQUES FOR DETECTION AND PREVENTION
OF CODE INJECTION ATTACKS

“Don’t always follow the crowd, because nobody goes there anymore; it's too crowded.”

Yogi Berra

Techniques for countering code injection attacks can be classified in two broad categories: those

that are completely software-based and those that require some hardware support. The software techniques

can be further classified into static techniques and dynamic techniques. Static software-based techniques

try to find possible security vulnerabilities in the code, so they can be corrected before the release version

of the code. Dynamic software-based techniques augment the code so that in run-time an attack can be

detected, prevented, or made very difficult, depending on a particular technique. Younan et al. survey a

large number of software-based techniques [15], and Cowan et al. give a qualitative assessment of several

buffer-overflow defenses [16, 17]. More recent hardware-aided techniques are less often studied. The goal

of this chapter is to give an up-to-date survey of existing techniques for prevention and detection of code

injection attacks.

3.1 Static Software-Based Techniques

Static code analysis can find a significant number of security flaws and suggest where changes in

the code should be made. However, the problem of static analysis is generally undecidable [18], so it is

virtually impossible to discover all vulnerabilities in any given program by automated static analysis alone.

Completely automated tools for detection of security-related flaws must choose between precise but not

 13

scalable analysis and lightweight analysis that may produce a lot of false positives and false negatives. The

need for precise automated analysis can be alleviated if programmers manually add specially formulated

comments about program constraints, but such techniques put an additional burden on programmers.

Moreover, one can argue that adding program constraints may be as error-prone as programming. Table

3.1 lists static software-base techniques aimed to discover potential security defects, including the

possibility of code injection.

While the simple Unix utility grep can be used to find some of the known security vulnerabilities

in the code [19], it is not able to make distinction between safe and unsafe use of potentially vulnerable

functions, nor it can assign rank to security warnings. For example, if we want to find format string

vulnerabilities, the grep search for printf() function will give all printf() instances, and the majority of

instances will be safe.

Several tools are developed to be essentially a smart grep. Viega et al. developed a token-based

scanning tool called It’s The Software, Stupid! Security Scanner (ITS4) [20-22]. ITS4 breaks a source file

into tokens and then compares tokens against a vulnerability database. The analysis results can be further

refined by checking the parameters of string functions and race conditions. The report severity is reduced

for function calls with constant string parameters. On the other hand, a heuristic for race condition check

increases report severity if it discovers a related race condition. Willander developed a similar open-source

tool called Flawfinder [23]. Flawfinder checks for Unicode constant strings, which may further reduce the

number of false alarms. Another similar tool is RATS (Rough Auditing Tool for Security) [24]. DeKok

developed a tool called PScan (a limited problem scanner for C source files) [25]. PScan looks only for

format string vulnerabilities and it gives a warning if a format string is not a constant value.

 14

Table 3.1 Static software-based techniques

Technique Description

ITS4 [20-22], Flawfinder [23],
RATS [24]

Marks potential vulnerabilities by comparing parsed code
to a vulnerability database

PScan [25] Scans code for format string vulnerabilities

BOON [26, 27] Automatically detects potential string buffer overflow
vulnerabilities

Buffer Overrun Tool [28] Automatically detects buffer overflow vulnerabilities by using
linear programming

ARCHER [29] Automatically detects memory access errors

Splint [30-32] Finds potential vulnerabilities if annotated by programmers

Propagation of tainted qualifiers [33] Detects format string vulnerabilities by using a special qualifier
for untrustworthy data

CSSV [34] Detects all string manipulation errors in the code annotated by
contracts

Compiler extensions using
metacompilation [35]

Detects security errors by using programmer-written
metacompiler extensions

Eau Claire [36] Detects security errors by using error specifications and an
automatic theorem prover

UNO [37] Detects several types of errors, plus user-defined properties

Wagner et al. propose a tool for automated detection of code that might cause overflow of string

buffers and introduce a tool prototype called Buffer Overrun detectiON (BOON) [26, 27]. The problem of

string buffer overflow is formulated as an integer constraint problem: a string buffer is modeled as a pair of

integers, one for the current buffer length and another for the allocated size, so the tool needs to verify

whether the maximum length is not greater than the allocated size. The BOON’s analysis is flow-

insensitive and context-insensitive. Flow-insensitive means that the order of statements is ignored, and

context-insensitive means that calls to a same function from different places are not treated in different

way. The authors admit they sacrificed precision in order to have a scalable tool. BOON produces a

relatively high number of false positives, e.g., 40 out of 44 generated warnings for sendmail program are

false positives.

 15

Ganapathy et al. propose a similar approach to BOON, but with more precise pointer analysis and

context-sensitivity [28]. A code understanding tool is first used to generate abstract syntax trees (AST) for

program expressions and points-to information, and this data is used to generate linear constraints.

Constraints that cannot be solved by linear programming are then removed from the set of all constraints

(variables that get an infinite value and uninitialized constraint variables). The rest of constraints are

solved using two solvers based on linear programming. Finally, heuristics are used to decide whether a

particular buffer can be overflowed. This approach still lacks flow-sensitivity. The authors also note that

modeling constraints in terms of pointers to buffers instead of buffers can lead to false negatives.

Xie et al. proposed another tool for automatic detection of memory access errors, named

ARCHER (ARray CHeckER) [29]. ARCHER uses interprocedural, flow-sensitive and context-sensitive

data-flow analysis: C source code is first parsed into AST trees and transformed to a canonical

representation with reduced number of syntactic constructs. The canonical representation is then used to

generate a control-flow graph (CFG) for each function and an approximate program call graph. This call

graph is traversed bottom-up: for each function call, the corresponding CFG is traversed using randomized

depth-first search and the ARCHER solver module is called to evaluate conditional expressions and verify

whether memory accesses are unsafe. The tool gives warnings for unsafe memory accesses. Although

ARCHER can discover more errors and give less false positives when compared to BOON, it still cannot

reliably discover all memory access errors. It does not handle C string operations and does not track

function pointers.

The need for precise automated analysis can be alleviated if programmers add specially

formulated comments about constraints. Larochelle and Evans propose one such tool called Splint [30-32].

Splint is an extension of LCLint, an annotation-assisted lightweight static checking tool, developed by

Evans et al. [38]. Function preconditions and postconditions can be stated using requires and ensures

clauses. Within these clauses programmers may specify minimum and maximum buffer indices that can be

read or written to: maxSet, minSet, maxRead, and minRead.

Shankar et al. propose a tool for detection of format string vulnerabilities [33], built on the top of

cqual, an extensible type qualifying framework for language C [39]. The authors propose an additional

 16

C qualifier, tainted, for data that cannot be trusted. The tool then analyzes how tainted data propagates

through the program and gives a warning if tainted data is used as a format string.

In a recent study, Dor et al. propose a tool for detection of all string manipulation errors with very

few false positives, CCSV (C String Static Verifier) [34]. While the previous work by the same authors

discussed a similar algorithm with certain limitations [40], CCSV is able to find all such errors. It can

handle all C constructs, including multi-level pointers, multidimensional structures, and pointer arithmetic.

However, this approach requires that the potentially vulnerable functions are annotated with so-called

contracts, including pre-conditions, post-conditions, and potential side effects. CCSV reports an error

when a specified post-condition is not guaranteed to hold. The authors also propose algorithms for

automated strengthening of post- and pre-conditions, reducing the burden placed on the programmer, but at

the cost of increased imprecision.

Instead of annotating the code, a programmer can write compiler extensions that describe potential

security errors. Ashcraft and Engler propose to use the metacompilation approach to look for security

errors in the code [35]. With metacompilation a programmer can easily add a high-level checking rule to

the compiler. The authors use belief inference approach to detect incomplete rule specifications. A range

checker extension is used to demonstrate the metacompiler approach. The range checker finds errors in the

Linux kernel code where the integer data from untrustworthy sources is used without first being checked.

Chess proposes another code checker, named Eau Claire [36]. Similar to the metacompilation

approach, Eau Claire requires specifications of security vulnerabilities it is supposed to find. For each

function, the function code and security specifications are translated to a series of verification conditions,

which are then used as an input to an automatic theorem prover. A disproved theorem means that the

corresponding function violates its security specifications.

Holzmann proposes a code checker named UNO [37]. The author extends an open-source

C parser to generate control-flow graphs and check the code for the use of uninitialized variables, nil-

pointer dereferencing, and out-of-bound array indexing. UNO can also check for user-defined properties,

where property definitions consist of actions and queries.

The authors of the static code analysis techniques rarely give quantitative comparisons of their

techniques with other approaches. Wilander compared five static tools, ITS4, Flawfinder, RATS, BOON,

 17

and Splint [41]. His test cases are based on 20 vulnerable functions from the ITS4 database and consist of

21 safe and 23 unsafe function calls with possibilities of buffer overflow and string format errors. Not

surprisingly, “smart grep” techniques generated over 50% false positives and very few false negatives.

Zitser et al. compared ARCHER, Boon, Splint, UNO and a commercial tool Polyspace C Verifier [42].

Test cases are based on known buffer overflow vulnerabilities and the corresponding code patches

extracted from real applications, since the compared techniques were not able to process the complete code

of sendmail and similar vulnerable programs. Splint and Polyspace were able to find a significant number

of errors, but all tools gave a very high number of false warnings.

3.2 Dynamic Software-Based Techniques

Precise static analysis and high coverage testing techniques can reduce the number of security

vulnerabilities, but they can rarely solve all potential problems before the code is released. Dynamic

software techniques aim to prevent or detect attacks in run-time. We can distinguish several groups of

these techniques. The largest group encompasses techniques that automatically add run-time checks for

security vulnerabilities to code (Table 3.2); some of these techniques are designed only for testing

purposes, or target only one type of attack (Table 3.3). Several “safe dialects” of language C prevent code

injection attacks by restricting the use of unsafe constructs, static analysis, run-time checks, and changes in

memory management (Table 3.4). Various obfuscating techniques make vulnerability exploits more

difficult (Table 3.5). Another group consists of various monitoring techniques (Table 3.6). Finally, some

portions of the memory address space can be made non-executable with operating system support, thus

preventing the execution of injected code stored at those addresses. Most of dynamic software techniques

require program recompilation, so they are not readily applicable to legacy software. These techniques

essentially increase the number of executed instructions, so they incur a significant performance overhead.

 18

Table 3.2 Techniques that instrument code to verify run-time bounds

Technique Description

bcc [43] Extended pointers are used to checks bounds on pointer
dereferences and array accesses

RTCC [44] Similar approach as bcc

Safe-C [45] Safe pointers enable detection of both spatial and temporal
memory access errors

Guarding [46] Run-time checking is decoupled from the original computation

Backward-compatible bounds checking
[47] Unchanged pointer representation

Type-assisted run-time checks [48] Run-time checks are based on type information stored in
“mirror” memory

Type-assisted dynamic buffer overflow
detection [49], TIED+LibsafePlus [50] Target only buffer overflows

Fail-Safe ANSI-C Compiler [51] A memory-safe implementation of full ANSI-C

CRED [52] Detect buffer overflows of user-supplied string data

Optimized bounds checking using
metadata [53] Information about pointers is kept separated from the pointers

Boundless memory blocks [54] Allows program to continue after an out-of-bound write, by
storing it in a hash table

Appropriate location bits [55] “Unsafe” pointers may point only to locations designated as
appropriate in “mirror” memory

Purify [56], STOBO [57], detection of
input-related security faults [58],
SFI [59]

Testing tools

 19

Table 3.3 Attack-specific techniques

StackGuard [60], StackShield [61],
RAD [62, 63], SSP [64] Defense against stack smashing

Libsafe, Libverify [65] Defense against stack smashing implemented in libraries

HEALERS [66, 67] Detects heap-based buffer overflows

Modified dlmalloc() [68] Protects dynamic allocation information

FormatGuard [13] Detects format string attacks

Table 3.4 “Safe dialects” of C

Vault [69, 70] Enables resource management protocols in source code;
supports region-based memory management

Cyclone [71, 72] “Unsafe” C features replaced by ‘safe” extensions; supports
garbage-collection or region-based memory management

CCured [73] Additional pointer types: safe, sequence, dynamic;
garbage-collection

Control-C [74, 75] Restricts dynamic memory allocation and pointer arithmetic;
region-based memory management

Table 3.5 Obfuscation techniques

ASLR [76, 77], TRR [78] Randomizes base addresses of memory regions

Randomization of system call mappings
[79]

System call mappings are randomized in linking time or before
loading using binary rewriting

Code relocation [80] Randomizes the order of variables and routines,
and uses random stack frame padding

Code randomization [81] Scrambles each byte of code

PointGuard [17] Encrypts code pointer values

 20

Table 3.6 Program monitoring techniques

Monitoring systems calls behavior [82],
[83], [84], [85], [86]

An attack is detected when the monitored system call sequence
deviates from the expected one

Monitoring performance register values
[87]

An attack is detected when the monitored program deviates from
its performance signature

Janus [88] Untrusted applications are executed within a process-tracing
framework, which allows or denies system call execution

Reference monitor [89] Critical system calls are instrumented with access control tests

Program shepherding [90] Security policies are enforced by monitoring control flow
transfers

Bcc, a source-to-source translator for inserting boundary checks was proposed as early as 1983, by

Kendall [43]. The source code is transformed so that a checking function is called on each pointer

dereference and array access. These function calls are to a separate run-time package. Checking functions

verify whether an array access is within the array bounds, a null pointer is dereferenced or pointer access is

not properly aligned; pointer arithmetic operations are checked for overflows. Pointers are converted to

pointer structures: one such structure contains lower and upper bounds of the object that pointer is pointing

to. Bcc also adds function wrappers to vulnerable functions. The reported slowdown is about 30 times.

The run-time checking compiler (RTCC) implements bcc as a part of the compiler front-end, in

order to reduce its execution overhead [44]. It also gets rid of some bcc checks as too restrictive or unlikely

errors, e.g., pointer arithmetic overflow. Since the size of a pointer structure is three times larger than the

size of a “normal” pointer, a “fat” pointer must be reduced to its normal size before being passed to a

system call. RTCC solves this problem by encapsulating all system calls so that the boundary information

is added or removed as needed. Encapsulation wrapper also verifies that character string arguments are

terminated with a null character within bounds. C libraries are recompiled with RTCC, so there is no need

for encapsulation of library calls. RTCC-compiled code runs about 10 times slower then original code. A

similar project is called Bounded Pointers [91].

Austin et al. propose a source-to-source translator technique called Safe-C that detects not only the

spatial memory errors such as accesses outside an object’s bounds, but also the temporal errors, such as

 21

accesses outside an object’s lifetime [45]. To achieve this level of detection, Safe-C extends pointer

representation even more than bcc/RTCC: a safe pointer structure consists of pointer value, base address,

size, storage class, and capability. Storage class can be Heap, Global, or Local; it is used to detect errors in

pointer deallocation. Capability is used to detect temporal errors. When a safe pointer is allocated, it is

assigned a unique capability value, which is stored into an associative table and deleted from the table after

pointer deallocation. Global objects and invalid pointers have special capability values. Calls to malloc()

and free() are performed through function wrappers, which set/destroy capability values. Some checks can

be avoided either by compile-time or run-time optimization. Even with optimization, Safe-C can incur a

significant performance overhead (up to 6 times for considered benchmarks), so it is still not suitable for

release software.

With the guarding technique, Patil and Fischer try to reduce the performance overhead of bound

checking by decoupling run-time checking from original computation [46]. This approach creates objects

called guards with similar properties as safe pointers in Safe-C [45]. Source-to-source translation adds

guard arguments to functions with pointer arguments. The authors argue that programs with run-time

checks are mostly used to find errors, and not to perform actual computations. Hence, they propose to

reduce the code by deleting computations not relevant to guarding and to run such program before or after

the original program. If a program is running on a multiprocessor system, checking is performed by a

shadow process executing on an idle processor, thus further reducing the overhead. In this case the main

process is slowed down up to 10%, due to interprocess communication.

Jones and Kelly propose a run-time bounds checking technique that is backward compatible, i.e.,

instrumented programs can be linked with uninstrumented libraries [47]. This is achieved by not changing

the representation of pointers. Information needed for bounds checking is not kept as a pointer extension,

but in a separate objects table. Object list is stored as a splay tree, which is a binary tree where frequently

used nodes migrate towards the top. The authors report 5-6 times slowdown for most considered programs.

Loginov et al. propose a checking technique based on type information [48]. The type of each

object can be unallocated, uninitialized, integral, real, or pointer; each element of structures and arrays has

its own type tag. Type information is stored in a “mirror” of memory used by the program, so that each

 22

byte of used memory has a corresponding 4 bits in the “mirror,” describing object’s type and size. The goal

of this technique is to be used in debugging, since the reported slowdown can be more than 100 times.

Lhee and Chapin propose a technique that detects only buffer overflows, so it has lower

performance overhead than previously described techniques [49]. Automatic and static buffers are

described by an additional data structure generated by a compiler extension, and information about

dynamically allocated buffers is kept in a table. Range checking is performed by functions in a shared

library. This approach cannot detect the overflow of buffers allocated with alloca() and variable-length

automatic arrays. A similar recent solution that works with binary files is proposed by Avijit et al. [50].

The authors propose a buffer overflow defense based on the use of two tools, TIED (Type Information

Extractor and Depositor) and LibsafePlus. TIED extracts buffer information from a binary file compiled

with –g option and writes in a new ELF section; this information is used by wrapper functions provided in

LibsafePlus. Maximal reported execution slowdown is 2.4.

Oiwa et al. propose the Fail-Safe ANSI-C compiler, which fully supports ANSI C [51]. This

approach is also based on extended pointer representation. A “fat” pointer is described by the base address

of a memory region, offset in that region, and a cast flag. If a pointer has its cast flag set, it may refer to a

value of different type than the pointer’s static type. In the proposed implementation both pointers and

integers occupy two machine words, one word for base and cast flag bit and another for offset. A value of

an integer is stored in the offset field. This approach enables casting from a pointer to an integer and back

to a pointer. The reported slowdown is up to 8 times.

Ruwase and Lam propose the C Range Error Detector (CRED), which detect buffer overflows

with lower overhead than previous techniques [52]. CRED is implemented on the top of the technique

presented by Jones and Kelly [47], with several improvements. It allows program manipulations of out-of-

bounds addresses that do not result in buffer overflows, by creating an out-of-bound object (OOB) for

every out-of-bound address value in a special OOB hash table. The performance overhead is reduced by

verifying only user-supplied string data. The resulting approach detects all buffer overflows in tests

described by Wilander and Kamkar [92], with maximum overhead of 130%.

Xu et al. propose a more efficient technique for detection of both temporal and spatial memory

errors [53]. This approach does not handle customized memory management functions, cast of integers to

 23

pointers, and cast of pointers to structures to pointers of structures of unrelated type. Pointer-related

information (metadata) is kept separated from the pointer, unlike various fat pointer techniques. Metadata

is similar to information kept in Safe-C [45]. Average performance slowdown with various optimizations

is 2.21 times, with maximum slowdown 3.37 times. Optimizations include splitting metadata into header

and info structures, eliminating unnecessary operations on the stack capability store, and converting

metadata structures to individual variables.

Most defense techniques cause programs to abort execution when a buffer overflow is detected.

Rinard et al. propose an approach called boundless memory blocks, which prevents harmful effects of

buffer overflows, but allows programs to continue execution [54]. The values of out-of-bounds writes are

stored in a hash table, so they can be read by out-of-bounds reads. In order to limit the amount of memory

occupied by the out-of-bound writes, the hash table is implemented as a fixed size LRU cache. The

checking scheme is based on techniques proposed by Jones and Kelly [47] and Ruwase and Lam [52].

Reported slowdown ranges from negligible for Apache HHTP server processing requests to 8.9 times for

composing mail in Pine.

Yong and Horwitz propose a technique that keeps track of all locations that may be pointed to by

an unsafe pointer in a memory “mirror” [55]. Each memory byte has one bit mirror tag indicating whether

it belongs to appropriate or inappropriate locations. Unsafe pointers and locations they can legitimately

point to are determined by static analysis. The location tag is set to appropriate when that location is

allocated, and reset after deallocation. Write operations via unsafe pointers and free() are instrumented to

verify the appropriate tag. Maximum reported slowdown is 8.02.

High overhead of most bounds-checking techniques limits their use in release code versions, but

they can be successfully used for testing. Several techniques are designed particularly for testing purposes.

Widely used commercial testing tool Purify may detect security vulnerabilities related to memory access

errors, such as heap-based buffer overflows [56]. Haugh and Bishop propose a testing tool called STOBO

(Systematic Testing of Buffer Overflows) which detects potential buffer overflows during tests with regular

data [57]. STOBO generates one type of warnings when both the source and destination are statically

allocated, and another type when the destination is dynamically allocated; it reports an error when source is

dynamically allocated, and destination statically allocated. Larson and Austin propose a tool for detection

 24

of input-related security faults, which also does not require “unsafe” test data [58]. All external input

variables and derived variables are shadowed with a state variable: e.g., an integer is shadowed by a

variable that stores the lower and upper variable bounds, and a string shadow variable encompasses

maximum possible size of the string and null character information. Bounds are adjusted by control

decisions (e.g., loops) and arithmetic operations. The tool generates an error report if any of values within

the bounds causes can jeopardize security. Ghosh et al. propose to apply software fault injection (SFI) to

discover potential security flaws [59].

Some dynamic techniques focus on only one type of attack targets: return addresses on the stack

[60-65], format strings [13], or dynamically allocated memory [66-68]. Cowan et al. propose a compiler

extension named StackGuard which detects or prevents changes of the return address on the stack [60].

With StackGuard detection, the function prologue places a dummy value, the so-called canary, between the

return address and the rest of the stack. The canary is verified in the function epilogue before return

execution. A buffer overflow attack that overwrites the return address must also overwrite the canary, so

an attack is detected if the value of the canary has changed. The canary value may be randomized to

prevent attack strings to overwrite it with the original value; however, even randomization does not prevent

a write buffer overflow attack following a read attack. The overhead of canary mechanism is 125% for the

worst-case function call, so it is very low for complete applications. StackGuard prevention of return

address change is based on the debugging tool MemGuard, which protects values by marking the

corresponding virtual pages as read-only and then emulating writes to non-protected values on those pages.

Even with an optimization that uses Pentium debug registers to protect only last four return addresses, this

approach has a significant slowdown.

StackShield also protects from stack smashing [61]. It applies two methods, Global Ret Stack and

the Ret Range Check. In Global Ret Stack, return addresses are copied to a dedicated array in function

prologue and restored from that array in function epilogue. The number of protected nested function calls

is limited by array size. With Ret Range Check, a return address is copied to a global variable at the

beginning of data segment. Newer versions of StackShield can also detect overwriting of function pointers.

StackShield modifies assembly files, although it may be part of compiler chain.

 25

Chiueh and Hsu propose the Return Address Defender compiler patch (RAD) [62]. The RAD

technique is similar to the StackShield: return addresses are copied to the Return Address Repository

(RAR) in the data segment. To protect the RAR from being overwritten by attackers, the authors propose

two RAD implementations, MineZone RAD and Read-Only RAD. With MineZone RAD, the RAR area is

in the middle of a global array, with the array beginning and end set as read-only areas by mprotect()

system call. A buffer spilling into RAR will cause a trap, but MineZone will not prevent attacks writing

directly into the RAR. With Read-Only RAD, the whole RAR is read-only except when return addresses

are written into it. Read-Only RAD completely protects the RAR, but at the price of increased overhead

for set/remove of read-only protection. MineZone RAD increases the execution time of two considered

benchmarks 1.02 and 1.3 times, and Read-Only RAD 18 and 43 times. RAD handles the

setjmp()/longjmp() issue in the following way: if the address on the top of the RAR does not match the

return address, addresses are popped from the RAR until the correct address is found or the RAR bottom is

reached. Prasad and Chiueh propose a way to implement RAD as a binary rewriting technique [63].

Etoh and Yoda propose a stack-smashing defense compiler extension called the Stack Smashing

Protector (SSP) [64]. SSP places a pseudo-random guard value on the stack to protect a return address and

the corresponding frame pointer, similar to the canary in StackGuard. In addition, SSP reorders local

variables so that buffers are placed after pointers. It also protects pointers in function arguments by

copying them to an area preceding local buffer variables. To reduce overhead, SSP instruments only

functions that have string buffers as arguments or local variables. For three considered applications, SSP

overhead ranges from 0 to 4%, while StackGuard overhead for same applications is 0-8%. SSP cannot

prevent certain types of buffer overflows: for example, a buffer may overflow into a pointer variable if both

are part of the same structure, since the order of structure elements cannot be changed.

One limitation of StackGuard and similar techniques is that they require source or assembly code.

Baratloo et al. propose a transparent run-time defense against smashing attacks that works with

precompiled binaries [65]. The transparent defense is based on two dynamically loadable libraries, libsafe

and libverify. Libsafe implements “safe” versions of functions which can cause buffer overflows, such as

strcpy(). The size of buffers in those functions is limited by the size of the corresponding stack frame, so

they can never overflow beyond the frame pointer. Libverify protects all return address as the StackGuard

 26

does, but canary code is completely contained within the library. Both libsafe and libverify rely on preload

feature of ELF libraries to load with processes that need protection. For each function in a protected

process, the _init() function of libverify copies function code to heap, and replaces first instruction in

original function and last instruction in the copy with jumps to wrapper entry/exit routines. The entry

wrapper writes a canary value on the canary stacks and jumps to function copy, and the exit wrapper

verifies the canary. The canary value is the return address itself, as in StackShield. The canary stack is

protected by read-only regions like MineZone RAD. Libverify has slightly larger performance overhead

than StackShield.

Wilander tested StackGuard, StackShield, ProPolice (an old name for SSP), Libsafe, and Libverify

with 20 buffer overflow benchmarks [92]. Although all these techniques effectively protected return

addresses, they were not able to detect/prevent other buffer overflow attacks, such as buffer overflow on

the heap. The best technique, ProPolice, missed 9 of 20 attacks.

Fetzer and Xiao propose transparent defense against heap smashing attacks by using a

dynamically loadable C function wrapper called HEALERS [66]. HEALERS wrapper intercepts

C functions that could be used to write to the heap and performs boundary checking of function arguments.

Wrapper for malloc() records position and size of allocated memory in an internal table, and wrapper for

free() deletes the corresponding table entry. The overhead of HEALERS is up to 10% for considered

applications. The authors later extended the HEALERS toolkit to automatically discover problems in

C libraries using automated fault injection experiments and to support flexible wrapper generation [67].

Heap-based buffer overflows may target memory management information, which is stored at the

beginning of each memory chunk. Robertson et al. propose to protect this information by storing a canary

value when a chunk is allocated, and verifying it when the chink is freed [68]. The canary is the checksum

of the chunk header seeded with a global random value, initialized during process startup. The proposed

approach is implemented as a library patch for glibc library. Memory allocation functions in glibc are

implemented using dlmalloc, so the authors needed to modify only this routine. For the worst-case

microbenchmark, the execution slowdown is 28%. Performance impact for real applications is negligible.

Another tool targeting only one class of attacks is FormatGuard, proposed by Cowan et al. [13].

FormatGuard is a library patch for protection from printf() format string attacks. It counts the number of

 27

actual arguments presented to printf and compares is with the number of arguments specified in the format

string. If the format string specifies more arguments than printf() receives, FormatGuard aborts the

program. Although this technique was able to detect most format string exploits known at the time, it

cannot defend against attacks in which the number of actual arguments is not less than specified, and does

not detect calls to printf() via pointers.

Toth and Kruegel propose a completely different approach for run-time detection of code injection

attacks, for Internet services applications [93]. Any injected code must be a part of a client request, so the

authors propose abstract execution of payload in client requests before requests are serviced. Abstract

execution of a byte sequence determines its maximum executable length (MEL). If MEL for a request is

beyond a specified threshold, that request is dropped by the system.

Several researchers proposed “safe dialects” of C language. “Safe dialects” restrict the use of C

language constructs that can be sources of security vulnerabilities. In addition, the corresponding

compilers use static analysis to prove that the program is safe or to abort compilation. “Safe dialects” may

provide C extensions for programmer annotations and/or insert run-time checks. They also may replace C

dynamic memory allocation/deallocation mechanism with automated garbage collection or region-based

memory management.

DeLine and Fähndrich designed Vault programming language [69, 70]. Vault allows

programmers to describe domain-specific resource management protocols, which are then enforced by the

compiler. Hence, memory-related errors such as dangling pointers can be discovered in compile time.

Vault extends the type of a value with a type guard predicate, which specify conditions when that value can

be used. These conditions relate to so-called keys, compile-time tokens representing run-time resources.

In the simplest case, a type guard is true when the corresponding key is part of the global state. Function

types have preconditions and postconditions. Vault has primitives for region-based memory management,

where objects are individually allocated from a region (a named subset of the heap), but the region is

deallocated as a whole.

A safe C dialect named Cyclone by Jim et al. is designed to prevent safety violations [71, 72].

Cyclone compiler uses static analysis to insert run-time checks. If the compiler cannot guarantee the

program safety even with the checks, it does not perform compilation. Cyclone supports programmer

 28

annotations such as hints to static analysis or enforced bounds checking. Cyclone restricts C features that

might violate safety, but adds additional features that provide the same functionality in a safe way. For

example, pointer arithmetic is permitted only on “fat” pointer structures. Instead of using free(),

programmers may reclaim heap space either by using garbage collector, or region-base memory

management. The worst reported slowdown for Cyclone program with garbage collection and bound

checking is 2.85.

CCured technique, proposed by Necula et al., also inserts run-time checks based on static analysis

[73]. CCured introduces additional pointer types: a pointer is safe, sequence, or dynamic. Pointer type is

determined by programmer annotations or by static analysis. Different pointer types require different run-

time checks. For example, a pointer is marked as sequence if it is used for array access. Sequence pointers

require null pointer checks and bounds check when dereferenced or cast to safe pointers. Like Cyclone,

CCured ignores free(), but it implements only automatic garbage collection. The worst reported slowdown

is 2.44.

Kowshik at el. propose another “safe” C dialect named Control-C, for real-time control systems

and other embedded programs [74, 75]. The main goal of Control-C is to guarantee safety by static-

analysis only, without adding run-time checks and without programmer annotations. This goal is achieved

by restricting dynamic memory allocation and array operations, and providing type safety. Memory

allocation is region-based, restricted to a single dynamic region at a time. Type safety requires strong

typing of all variables, assignments, expressions, and functions. It also forbids casts between pointer and

other types, pointer arithmetic, and the use of uninitialized variables. Control-C implementation assumes a

low-level typed virtual instruction set and system support to trap accesses to a range of reserved addresses.

Vulnerability exploits can be made more difficult by various obfuscating techniques. For

example, the PaX kernel patch includes the feature named Address Space Layout Randomization (ASLR)

[76, 77]. At task creation time, ASLR randomizes base addresses of memory regions such as code/data

segments, heap, libraries, and stack. Chew and Song [79] propose three randomizing methods:

randomizing of system call mappings, changing library entry points, and randomizing stack placement.

First two methods are implemented by binary rewriting in linking time or before loading. Xu et al. propose

Transparent Runtime Randomization (TRR) [78]. TRR randomly relocates stack, heap, shared libraries,

 29

and the global offset table (GOT), in load-time. Bhatkar et al. expand the idea of address obfuscation with

permutation of the order of variables/routines and generation of random padding between the objects [80].

The implemented prototype includes base address randomization of stack, heap, DLL, text, and data

segments. It also applies random stack frame padding. Performance overhead is negligible if code

relocation is performed at link-time, and up to 21% if performed dynamically at load-time. Another option

is to randomize the code: Barrantes et al. propose a randomized instruction set emulator (RISE) which

scrambles each byte of the program code in load time using pseudorandom numbers [81]. PointGuard by

Cowan et al. keeps address pointer values encrypted in memory and decrypts them only before loading into

CPU registers [17]. In the implemented prototype, pointer values are encrypted by XOR with a key.

Most dynamic software-based techniques require the access to source code, since the compiled

and linked code version does not contain enough information, unless it is compiled with a debug option.

DuVarney et al. propose SELF, a security extension for ELF binaries [94]. SELF extends the ELF format

with an extra section with information about address, size, and alignment requirements of each code and

static data item. The goal of this approach is to provide information necessary for binary transformations

such as address obfuscation, and yet to reduce the number of details present in debugging sections that may

be used for reverse engineering.

Several researchers suggest intrusion detection by monitoring the system calls of a program [82],

[83], [84], [85], [86]. If the system call sequence for a particular program deviates from a normal behavior,

an intrusion is suggested. The normal program behavior is obtained either by profiling, or by encoding the

specification of expected behavior using a special high-level specification language. If profiling is used,

false positives may be generated when a rarely used region of the code is executed. A specification-based

approach, on the other hand, is as error prone as the coding process itself. Finally, although a malicious

code is very likely to encompass a system call, an attack may be potentially devised with the same call

sequence as the vulnerable program, or may inflict some damage even without system calls. Another

profiling approach by Oppenheimer and Martonosi suggests using the values of performance monitoring

registers to verify whether the program deviates from its performance signature [87]. For example,

execution of injected code will change the memory reference profile of the attacked program.

 30

Goldberg et al. propose Janus, a secure user-level environment that restricts system calls from

untrusted applications [88]. Janus utilizes process-tracing facilities available in some operating systems.

Untrusted applications run as child processes, which are stopped at each system call that might impede

security. Policy modules specify which system calls are allowed to continue execution, and which get an

abort signal. System calls can have a fixed security policy (always allow/deny), or the policy can be

specified in a configuration file and can be dependant on system call arguments. In run-time, configurable

policies are stored in a dispatch table structure. If write() and read() system calls are always allowed,

performance overhead of Janus is negligible. However, Janus cannot be applied to applications with

system calls that may be exploited by attackers.

Similar approach is proposed by Bernaschi et al. [89]. Instead of user-level tracing, the authors

propose a kernel extension, based on the concept of operating system reference monitor. OS reference

monitor decides which system calls can be executed, according to predefined access rules. This concept is

implemented by instrumenting system calls that might be misused in a buffer overflow attack with access

control tests. The access rules are stored in the Access Control Database (ACD). For each instrumented

system call, this database specifies which processes are allowed to execute instrumented system calls and

with which arguments. The authors also implemented special system calls for ACD access. For considered

applications this approach has a negligible overhead.

Kiriansky et al. propose an approach named program shepherding, where execution of malicious

code is prevented by monitoring all branch instructions [90]. Instead of instrumenting the code, the authors

propose to use the runtime binary interpreter for runtime introspection and optimization (RIO). Program

shepherding encompasses three techniques: restricted code origins, restricted control transfers, and

uncircumventable sandboxing. All code pages are write-protected, so a basic block can be executed only if

it is copied to RIO code cache from a write-protected page. If code and data share a page, program

shepherding makes a write-protected copy of the page, and basic blocks are read from the protected copy.

Restricted control transfers means that an arbitrary policy can be applied to each type of branch

instructions, e.g., a return instruction must jump after the corresponding call, or library code can be

executed only through declared entry points. Sandboxing is used for restrictions not covered by the first

two techniques, e.g., to detect execv() system calls . Sandboxing is also used to prevent an application from

 31

changing RIO’s data. For the considered set of security policies and SPEC CPU2000 benchmarks, the

slowdown is up to 1.7 times under Windows and up to 7.6 times under Linux operating system.

Code injection attacks assume that the memory segment with injected code is executable.

Therefore, one defense technique is to make some memory portions permanently or temporarily non-

executable. PaX offers non-executable memory pages [76, 77]. However, the IA32 architecture does not

support non-executable pages, so PaX uses two techniques circumvent this issue, based on the IA32 paging

or segmentation logic. The first technique is based on the split data and instruction translation look-aside

buffer (TLB), which is implemented in all Intel CPUs since the Pentium. The pages whose execution

should be prevented are marked as requiring supervisor access, so application accesses to those pages result

in a data TLB page fault. The page fault handler then decides whether an access is an instruction fetch or a

regular data access. For data accesses, the user/supervisor bit in the corresponding page table entry is

temporarily cleared. Another technique is to divide the virtual address space in two halves. Application

code and data are mapped to one half, and instructions are mirrored in the other; instructions can be

executed only from the instruction space. The paging-based PaX approach can have significant

performance overhead, and the segment-based approach reduces the available virtual memory space. PaX

has support for stack-executable code and can be turned off for each particular application. PaX is

incorporated into several operating systems with security features, such as Adamantix and Hardened

Gentoo [95]. Non-executable heap and stack pages are also supported in RedHat [77].

3.3 Defense Techniques With Hardware Support

Some of the performance overhead of purely software-based dynamic techniques may be reduced

with hardware support. Table 3.7 lists techniques with hardware support that can be used for full or partial

defense from code injection.

A large portion of existing attacks targets return addresses on the stack, so several hardware-

supported techniques protect only from stack smashing. The first such technique was proposed by Xu et al.

[96]. The main idea is to use separate stacks for data and control information, so any overflow of a buffer

stored on the stack can overwrite only other local data, and not any return addresses.

 32

Table 3.7 Techniques with hardware support

Technique Description

Split control and data stack [96] Protects against attacks on function return addresses
by keeping separate stacks for data and addresses

Secure Return Address Stack [96], [97],
SmashGuard [98],
Reliable Return Address Stack [99]

Protects against attacks on function return addresses by keeping
a copy on the hardware return address stack

DISE [100] Protects against attacks on return addresses by keeping a copy
on the secure return address stack on the heap

SCache [101] Reduces the possibility of success of attacks on return addresses
by replicating cache lines where return addresses are stored

HSAP [102]
Protects against attacks on function return addresses by
preventing writes on stack after frame pointer; makes difficult
attacks on function pointers by encoding jump addresses

Hardware and binary modification
support for code pointer protection [103]

Protects code pointers against buffer overflow
by encoding jump addresses

HAT [104] Protects from buffer overflow by keeping track of pointer size,
allocation, deallocation, and liveness

SPEF [105] Protects code integrity by transforming code blocks according to
the encrypted transformation-invariant block value

Randomized instruction set [106] Protects code integrity by randomizing
underlying system’s instructions

Data tagging [107] Prevents control flow transfer based on data tagged as spurious

Minos [108] Prevents control flow transfer base on low integrity data

Instruction block signatures
[109], [110], [111]

Protects code integrity by verifying the signature
of executing instruction blocks

This approach can be implemented as software-only, by modifying compiler to write/read return

addresses on the control stack in prologue/epilogue of each function, allocate control stack space, and

manage the control stack pointer. For considered benchmarks the performance overhead is from 0.01 to

23.77%. This overhead is due to extra memory accesses for saving and restoring return addresses: e.g.,

saving of a return address requires a read from the “regular” stack, a write to the control stack, and two

memory operations for control stack pointer update. If this approach is implemented with hardware

 33

support, the performance overhead can be completely avoided. The required processor modifications are

relatively simple: changed implementations of call and return instructions and an additional register for the

control stack pointer. The split stack technique prevents return addresses from being overwritten with very

small additional hardware complexity and no performance overhead. However, it does not protect from

other attacks, such as heap smashing.

Most modern processors already have a hardware resource that can be used for protection of return

addresses: the Return Address Stack (RAS), used to predict a target address for return instructions in the

pipeline fetch stage. Xu et al. propose three RAS extensions under the common name Secure RAS (SRAS)

[96]. The first such extension keeps SRAS lookup in the fetch stage, so an exception to the operating

system is raised both when a return address has been overwritten by a stack smashing attack, and when it

was just mispredicted due to RAS speculative update or RAS overflow. The operating system decides why

the addresses on the “regular” stack and the SRAS do not match, by keeping the trace of stack accesses and

valid return points. This technique has a very large performance overhead: with 64-entry RAS, some

applications are slowed down for more than 100%. Another option is to move SRAS lookup to the pipeline

commit stage. In this case there are no SRAS mispredictions due to speculation, so the maximum observed

performance overhead is 4%. Finally, the third option also eliminates mispredictions due to overflow, by

keeping a part of the SRAS in a memory data structure. Just like the split stack technique, the SRAS is

relatively simple to implement and its third option has a very small performance overhead. On the other

hand, it protects only return addresses.

Similar efforts expand the idea of the SRAS [97], [98], [99]. The advantage of all these

techniques is small performance and complexity overhead, and minimal or no code changes.

Independently of Xu et al., Lee et al. propose a structure called also Secure Return Address Stack (SRAS)

[97]. This SRAS is not en extension of RAS used for return address prediction, but rather a completely

separate structure. Hence, a mismatch between an address stored on the SRAS and the “regular” stack can

be due only to a successful stack smashing attack. The hardware support for this technique includes the

SRAS and modified implementations of call and return instructions. An OS exception is raised in the case

of a SRAS overflow/underflow. An exception handler writes/reads a half of the SRAS entries to the

memory space accessible only to the OS kernel. The kernel maintains separate SRAS overflow areas for

 34

different processes. While this approach successfully protects return address from buffer overflow, it

prevents the so-called non-LIFO control flow, where a return address does not have to be located on the top

of the stack. The use of setjmp() and longjmp() functions is one example of non-LIFO control flow. This

problem can be solved with additional instructions that will push and pop addresses directly to the SRAS,

or even turn off the SRAS protection. These instructions can be inserted in the code by compiler or a

disassembling program, or even in run-time.

Ozdoganoglu et al. propose a solution called the SmashGuard [98]. The core of this technique is

also a separate hardware stack for return addresses; it differs from previous such techniques in solving the

issue of setjmp()/longjmp(). The authors propose that the longjmp() function should use an indirect jump

instead of return instruction, so its return address is not read from the stack. At each call, both return

address and “regular” stack pointer are stored on the secure stack. At return, the secure stack is searched

for the corresponding pair. This technique leaves unprotected the return address of the longjmp(), but since

both setjmp() and longjmp() are library functions, they could be protected using software methods. To

avoid problems with speculative execution, the secure stack is accessed in the commit pipeline stage. The

values of return address register and link register are saved in an additional processor resource, called RAT

(return address table). Another option is to completely or partially stall the processor and read the required

values from the register file. The implementation with complete stalling degrades performance up to 7%

for considered benchmarks executing by a 4-way superscalar processor; the worst case with partial stall is

about 2% degradation.

Another recent technique based on a secure hardware stack is called Reliable Return Address

Stack (RRAS) [99]. The authors pair the RRAS with a structure called Address Pair Table (APT), which

stores the entry and exit point of all active functions. This solution is able to handle non-LIFO control

flow. Entry repetition in the RRAS for recursive functions is avoided using 3-bit tags.

The secure stack does not have to be implemented in hardware: using a technique called Dynamic

Instruction Stream Editing (DISE), the ‘shadow” stack is kept in a protected area on the heap [100]. DISE

is a one-to-many instruction macro expander with programmable rewriting rules: to protect return addresses

from the attack, call and return instructions are dynamically rewritten in the runtime to write/verify data

from the shadow stack. When a call instruction is executed, both the current stack pointer and the return

 35

address are saved on the shadow stack. When the return address on the top of the shadow stack differs

from the top of the “regular” stack, the shadow stack is searched for the matching (stack pointer, return

address) pair. The shadow stack is protected either by XORing its entries with a random value selected at

the application start (DISE/XOR), or by testing all stores and allowing only DISE-expanded code to store

data to shadow stack memory segment (DISE/MFI). Since DISE is implemented in hardware, it does not

require code changes and does not introduce additional instruction cache misses. However, expanded

instructions can significantly degrade performance. With a 4-way superscalar processor and considered

benchmarks, the worst-case performance overhead is more than 15% for DISE/XOR and more than 30%

for DISE/MFI.

The redundancy of return addresses can be achieved not only by duplicating stack entries, but by

replicating cache lines with return addresses, as Inoue proposes in the SCache technique [101]. When a

return address store is executed, this technique writes it to one or more cache line replicas, depending on

implementation. Replicas are stored in the same cache set as the original cache line (the master line).

Cache lines have a one-bit replica flag. A buffer overflow attack can overwrite only the master line, while

values in the replicas are preserved. When a return-address load is executed, one of the replicas is

randomly selected and the value of the replicated address is compared to the corresponding master line

value. If the two values do not match, the SCache detects an attack and terminates the executing program.

If there are no replicas due to the cache replacement policy, the SCache generates an indicator of

potentially unsafe address. This technique cannot protect all return addresses, but the percentage of

protected addresses is relatively high. With SPEC CPU2000 integer benchmarks, a 16KB L1 SCache with

4 ways and 32B line protects more than 98% return addresses with up to three replicas, and more than 94%

with one replica. The worst-case performance overhead is 1.1%.

The main drawback of techniques discussed so far is that they provide protection from only one

type of attack. A successful buffer overflow attack can overwrite not only return addresses on the stack,

but any function pointer. To protect both return addresses and function pointers, Shao et al. propose the

Hardware/Software Address Protection (HSAP) technique [102]. The HSAP consists of two

complementary techniques: protection against stack smashing and protection of function pointers. The

stack smashing is prevented by denying any writes to the memory if the write address is equal to or larger

 36

than the value of the current stack frame pointer. The address check is performed in an additional pipeline

stage before the write stage, so this approach has very low performance overhead. The authors also

propose to make it difficult for potential attackers to change the values of function pointers to point to

addresses of their choice. During code compilation, each function pointer assignment instruction is

preceded by an XOR instruction, which XORs the function address with a key from a special register. This

key is randomly generated for each process. An additional instruction, secure jump (sjmp), is used when a

function is called using the value of a function pointer. The authors do not provide details about

performance overhead of function pointer protection. One disadvantage of this approach is that it requires

the change of the code. More important issue is the level of protection of this technique. Some processes

run for a very long time, so an attacker might be able to discover the value of the key used for XOR: a read

buffer overflow attack can be used to read the encrypted address value, and then a simple XOR with the

“real” address will reveal the key.

Tuck et al. propose to protect code pointers from both read and write buffer overflow attacks by

encrypting them [103], similarly to the software technique PointGuard [17]. By code pointers the authors

refer both to return addresses on the stack and function pointers. Code pointers are encrypted and

decrypted using special instructions: encrypt-store and decrypt-load. The authors propose three levels of

encryption: XOR with a secret key, XOR with a value from random permutation table, or a Feistel network.

While this technique does not prevent so-called replay attacks, the third encryption level offers very good

protection against read attacks. However, the Feistel encryption/decryption latency is 40 or 80 processor

cycles, depending on the implementation. This latency can be partially hidden for call and return

instructions. Decrypted values of function pointers are cached in the L1 cache memory and protected from

overwriting by a special cache bit. The performance overhead is up to 30%.

Other software techniques such as dynamic validity checking of augmented pointers can also be

partially implemented in hardware. An approach presented by Keen et al. [104] combines static code

analysis and instrumentation with dynamic run-time checking using a hardware structure, the Hardware

Accelerated Table (HAT). Pointer validity checking has two components, spatial and temporal. Spatial

component verifies whether the value of the pointer is within the bounds of the corresponding object, and

temporal component verifies whether the object is alive. Temporal verifications use a hash table, and hash

 37

table operations are the largest contributor to the overhead of the purely software implementation. The

authors propose to implement the hash table and the relevant hash table operations in hardware (HAT).

Hash table find, insert, and remove can be implemented as new instructions (GenHAT), or performed by a

specialized checking engine (SpecHAT). With a small set of benchmarks, the SpecHAT reduces the

overhead of the software technique for up to 3 times. The maximal observed overhead is 6% for SpecHAT

and 12% for GenHat. The main disadvantage of this method is that it relies on correct instrumentation of

source code.

Kirovski et al. propose the Secure Program Execution Framework for intrusion prevention (SPEF)

[105]. The underlying idea is that a program executable can have different representations that produce the

correct program behavior. Possible code transformations include instruction scheduling, basic block

reordering, branch-type selection, and register permutation. During installation, a transformation-invariant

(TI) hash value is calculated for each instruction block and is encrypted using a secret processor key. The

encrypted hash value defines the transformation of the instruction block. During execution, the verifier

component calculates the TI hash for every instruction block that is fetched after an instruction cache miss.

It then encrypts the hashed value, and verifies whether the obtained transformation is equal to the actual

code. If there is no match, an abort signal is sent to the processor. This solution successfully prevents

execution of injected code, but at the cost of relatively significant performance overhead, up to 25% for

MediaBench applications running in embedded systems. The overhead of encryption can be reduced with a

TI cache; maximum overhead of the SPEF technique with a TI cache with twice as many entries as the I-

cache is about 17%. Another disadvantage of the SPEF is that it must be customized for different platforms

and instruction sets.

One possible defense against code injection is to encrypt complete program code. A technique

proposed by Kc et al. “randomizes” the code of each user-level process [106]. Randomization is performed

by XOR of a memory block with a key or by bit-transposition, also based on a key. The key is stored in an

encrypted form in the program file header. This approach does not work with dynamically loaded libraries.

Instruction blocks are decrypted in the fetch-decode pipeline stage, so this technique incurs a significant

overhead.

 38

Suh at al. propose to tag all data coming from “the outside world” (e.g., I/O channels) as spurious

and to prevent execution of any control transfer instruction if the target address depends on spurious data

[107]. This approach may generate some false positives, since the target address may be input-dependant,

for example in switch constructs. Generally, input data can propagate to a target address through a series of

calculations, so this technique requires a relatively complex data dependency analysis. A similar approach,

Minos, augments every memory word and registers with an integrity low/high bit [108]. The integrity bit is

set by the kernel when that memory word is written and determines the trust the kernel has in the data. The

trust is propagated using a low-water-mark integrity policy with two rules: a subject can modify an object

of same or less integrity, and when a subject reads an object of low integrity, its integrity also becomes

lower. The low trust data cannot be used for control transfers.

The code integrity in run-time can be successfully protected if all instruction blocks are signed

with a cryptographically secure signature. In run-time the actual signature is verified against the calculated

signature. The signature mismatch means that there is change in the original code. We did preliminary

research on protection of basic blocks and cache blocks using signatures [109], [110]. Drinic et al. also

propose to sign all cache blocks and to verify signatures in run-time on a cache miss [111]. With this

approach, a 16-byte instruction block signature is obtained by encrypting the instruction block using a 128-

bit Rijndael cipher, and then XOR-ing the 16-byte sub-blocks. The overhead of Rijndael decryption

implemented in hardware can be hidden if the instructions in an instruction block can be reordered in such

a way that critical instructions such as stores are executed after decryption delay time.

3.4 Other Related Work

The problem of detection of code injection attacks can be related to the problem of detection of

control flow hardware faults using fault-tolerant techniques, and valuable lessons can also be learned from

techniques for detection of software tampering.

Mahmood and McCluskey’s study from 1988 surveys various techniques for concurrent error

detection using watchdog processors [112]. One of the discussed techniques for control flow checking is

actually based on verification of basic block signatures. However, the approach presented in this

dissertation does not require a dedicated watchdog processor, and focuses rather on seamless integration on

 39

verification mechanism into existing processor architecture. Moreover, the signatures in our mechanism

are also protected from read attacks.

Wilken and Chen propose a control flow error detection mechanism with reduced number of

embedded signatures [113]. Ohlsson and Rimen propose another signature placement technique that does

not require the knowledge of the program control flow graph [114]. In a more recent study, Kim and

Somani propose a technique for checking the integrity of instructions and their sequencing from fetch to

commit point [115]. Oh et al. propose a software-based technique for control-flow checking using assigned

signatures, by embedding in code both signatures and instructions for error detection [116].

Joseph and Avizienis propose a virus protection technique using an extended Program Flow

Monitor, which verifies basic block signatures [117]. However, the paper does not include any

implementation details or evaluation. Davida et al. discuss various possible granularity levels for blocks

protected by signatures, from whole program files to individual instructions [118].

Various techniques for tamper-resistant software aim to protect software integrity from potentially

hostile operating system and other programs running on the same processor, in order to preserve the

originally installed code and to prevent software piracy. To support copy and tamper resistant software,

Lie et al. propose an approach called XOM (eXecute Only Memory) [119, 120]. The XOM main idea is

memory in certain cases can be only executed, and not read or written, so that one program cannot read

instructions or data of another program. This goal is achieved by keeping programs encrypted in off-chip

storage, and tagging instructions and data with a program ID in on-chip storage. Each XOM processor has

a public/private key pair, with private key unknown to the user. When the user installs an application,

XOM generates a symmetric key to encrypt it and appends the symmetric key encrypted with the private

key. During execution, instructions are decrypted when stored in the cache memory.

Collberg and Thomborson survey software tools for software protection against reverse

engineering, software piracy, and tampering [121]. Reverse engineering can be made more difficult by

obfuscation, where a program is transformed to an equivalent form that is harder to understand. Software

piracy may be countered with watermarking, which embeds copyright in code. Tampering may be

countered with tamper-proofing code embedded in the original application.

 40

Horne et al. propose a software technique to improve run-time tamper resistance [122]. The

authors propose an implementation of self-checking, where a program checks itself for modification while

it is running. Embedded testers calculate hash values of large code portions and verify them against

original values. A similar approach called oblivious hashing is proposed by Chen et al. [123]. Oblivious

hashing protects the executed code only.

Software does not have to be protected only from tampering by “hostile” host machine. Mobile

applications can also be changed in transit by malicious attackers. Jochen et al. propose a framework

named StEgo-CRYpto Tamper detection (SECRYT) [124], which enables validation of mobile

applications.

The Trusted Computing Group (TCG) is an industry-standards organization, with the goal of

creating specifications of various hardware-supported security features [125]. TCG specifications describe

hardware support for various high-level security features, such as storing passwords and digital certificates

in hardware, protecting online transactions, and providing authentication between systems and networks.

Our techniques provide a low-level security, so they can be integrated into TCG models.

 41

CHAPTER 4

PROPOSED ARCHITECTURES
FOR INSTRUCTION BLOCK VERIFICATION

“Before you build a better mousetrap, make sure you have some mice out there.”

Yogi Berra

In this chapter we introduce the basic mechanism common to all proposed techniques for

instruction block verification. Next, we present the taxonomy of different techniques and discuss

techniques’ pros and cons. Finally, we describe the implementation details of each technique and discuss

various related issues.

4.1 Basic Mechanism of Proposed Techniques

All proposed techniques for instruction block verification share the same basic mechanism

(Figure 4.1) and require minimal or no compiler support. The basic mechanism encompasses two phases: a

secure program installation and program execution. During the secure installation process, signatures are

calculated for each instruction block and added to the program binary. A signature is obtained in the

following way: All instructions in the instruction block pass through a Multiple Input Signature Register

(MISR). A MISR is essentially an array of D flip-flops with linear feedback coefficients (Figure 4.2). A

new value of the i-th MISR bit is calculated as an XOR function of the i-th bit of an incoming instruction,

the (i-1)-th MISR bit, and possibly some other MISR bits. Linear feedback connections are determined by

a secret processor key hidden in hardware. The result of the final MISR calculation is then encrypted using

Advance Encryption Standard (AES) [126], also with a secret hardware key, which can be different from

 42

the MISR key. For each new protected block, the MISR is initialized to the same value, which is also

secret.

Signatures are verified in parallel with program execution using a dedicated hardware resource

called the Instruction Block Signature Verification Unit (IBSVU). The IBSVU encompasses registers for

buffering instructions and signatures, support for AES decryption, MISR, and control logic. Without loss

of generality, let us consider a processor with only the first level of instruction (L1I) and data (L1D) caches

(Figure 4.3). To simplify abbreviations, the L1I cache is denoted further as the I-cache. Since the I-cache

is a read-only resource, instruction block signatures are verified only on I-cache misses. Fetched

instructions pass through a MISR register with the linear coefficients that are equal to the linear coefficients

used during secure installation. Concurrently with MISR calculation, the AES block decrypts the signature

fetched from memory. Hence, the decryption time is partially or completely overlapped with the

instruction block fetch phase. The decrypted signature is compared to the final MISR calculation: If the

two values match, the instruction block is properly installed and can be trusted. If the values differ, the

instruction block includes injected code or it is not properly installed, so a trap to the operating system is

asserted. The operating system than aborts the process whose code integrity cannot be guaranteed and

possibly audits the event.

...
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
ld r1,(r3)
add r1,r2
jmp (r1)
mov r2, r3
...

...

&-!//+)@

inc r0

st r2,(r3)

mul r3,3

st r2,(r3)

:’-|{]*+)@

ld r1,(r3)

add r1,r2

jmp (r1)

mov r2, r3

...

Secure
Installation

Instruction
Fetch

...
&-!//+)@
inc r0
st r2,(r3)
mul r3,3
st r2,(r3)
...

=?

MISRMISR

AESAES

MISRMISR

AESAES
MISRMISR

AESAES

Figure 4.1 Mechanism for trusted instruction execution

 43

K1 K2 K3 K4

D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1
D

ld

Q

Q

S

R

0

1

I1 I2 I3 I4

Init Init Init Init

Figure 4.2 An implementation of a 4-bit MISR

A computing system might be designed to run only in the protected mode where all instruction

blocks must be signed, as described above. However, some applications do not need instruction block

protection. For example, some components of the operating system may not accept external inputs from

untrustworthy channels and thus are not in danger from code injection attacks. Such programs may be

installed without signatures and executed in the unprotected mode. The information about required

execution mode is added to the program header.

L1I

L1DMMU

Datapath

FPUs IF

Control IBSVU

Processor

Figure 4.3 Processor components

Legend: MMU – Memory Management Unit, IF – Instruction Fetch Unit, FPUs – Floating Point Unit(s),
Control – Control Unit, L1D – Level 1 Data Cache, L1I – Level1 Instruction Cache, IBSVU – Instruction
Block Signature Verification Unit.

 44

4.2 Taxonomy of Proposed Techniques

Instruction block verification techniques can be classified according to the following criteria:

 Type of protected instruction blocks,

 Signature placement,

 Signature handling after verification,

 Signature visibility to the I-cache.

The taxonomy of instruction block verification techniques is given in Figure 4.4. The name of a

verification technique starts with SIG, and the rest of the name specifies the categories to which the

technique belongs. For example, the SIGCED technique protects a code block with the size equal to the

size of an I-cache line (C), with signatures embedded in the code (E), and disposed after verification (D).

A protected block can be of variable or fixed size. With variable-size blocks, one signature

protects a logical code unit such as a basic block or an instruction stream (dynamic basic block). A basic

block is a straight-line code sequence with no branch instructions out except at the exit and no branch

instructions in except to the entry. An instruction stream or a dynamic basic block is a sequential run of

instructions from the target of a taken branch to the first taken branch in sequence. With fixed-size blocks,

one signature protects a physical code unit of the size equal to the size of one or more I-cache lines.

Verification techniques can be further classified depending on the placement of signatures in a

binary file. A signature can be embedded in the code, i.e., placed before or after the instruction block it

protects. Another option is to store all signatures in a separate table, i.e., a separate code section.

After verification, a signature can be discarded or stored in a dedicated resource called the

signature cache (S-cache). The S-cache’s number of entries and organization differ from the I-cache in

order to keep decrypted signatures fetched from memory even when the corresponding instruction blocks

are evicted from the I-cache. The S-cache may reduce the performance and energy overhead of run-time

signature verification at the price of increased hardware complexity.

 45

basic block

embedded

cache line(s)Protected block

S-Placement S-Placement

SIGBEV

keep

table

SIGBTD

dispose

SIGBTK

keep

basic block,
embedded,
keep in
I-cache

basic block,
table, verify
& dispose

basic block,
table, verify
& keep in
S-cache

S-Visibility S-Handling

embedded table

SIGCEV

visible to
I-cache

cache line,
embedded,
visible to
I-cache

S-Handling
dispose

hidden from
I-cache

keep

cache line,
embedded,
hidden,
verify &
dispose

dispose keep

cache line,
embedded,
hidden,
verify &
keep in
S-cache

cache line,
table,
verify &
dispose

cache line,
table,
verify &
keep in
S-cache

S-Handling S-Handling

SIGCED SIGCEK SIGCTD SIGCTK

Figure 4.4 Taxonomy of proposed instruction block verification techniques

Basic block protection techniques differ slightly from the basic mechanism described above: A

signature cannot be calculated in parallel with the fetch stage of the pipeline, since the end of a basic block

is not known in that stage. The calculated signature is known only after the last instruction in the

corresponding basic block has been decoded, so the signature verification for one basic block is done in

parallel with execution of the following basic block.

The basic block protection technique with embedded signatures must keep signatures together

with the instructions in the I-cache, since embedded signatures cannot be extracted from the code in the

fetch stage without decoding [110]. The name of this technique in our taxonomy is SIGBEV. With the

SIGBEV technique, the instruction decoder must be able to tell the difference between a signature and a

regular instruction. This can be achieved by reserving one instruction bit for the signature flag, or by using

a special opcode that indicates to the decoder that instruction words that immediately follow the current

word represent a signature.

Basic block protection techniques with signatures stored in the separate code section work in the

following way. When the instruction decoder detects the end of a basic block that caused at least one cache

miss, the signature of that block must be fetched from the signature code section, decrypted, and compared

 46

to the calculated signature. These techniques can be classified depending on whether a decrypted signature

is kept in a dedicated S-cache after verification (SIGBTK) [109], or it is disposed of (SIGBTD).

Basic block protection techniques require compiler support, since disassembling generally cannot

extract the basic block list from the executable code with 100% accuracy [63]. However, the required

support is relatively simple: With SIGBT techniques, the program compilation process only needs to

generate a list of all basic blocks in the code and to append it to the executable (Figure 4.5). With the

SIGBEV technique, embedded signatures are converted to no-ops in the decode stage, so they are visible

only to the dedicated signature verification unit and not to the rest of the processor core. However,

instruction addresses will change due to embedded signatures, so the installation process must recalculate

all target addresses. Hence, the list of basic block must also include target addresses.

Compiler support is not necessary for techniques protecting instruction blocks of a fixed size

(Figure 4.5). Moreover, the signatures can be verified in parallel with the fetch stage, since the exact

placement of signatures and protected blocks is known in advance. Similarly to the basic block protection

techniques, embedded cache line signatures are not visible to the processor, i.e., the processor is aware only

of the executable code. This invisibility is achieved with the use of a relatively simple address translation,

so that the processor “sees” instruction addresses as if there were no embedded signatures. The address

translation can be done before or after the instructions are stored in the I-cache; that is, the signatures can

be hidden from the I-cache or visible to it (SIGCEV in our taxonomy). If signatures are hidden from the I-

cache, they can be disposed of after verification (SIGCED) or kept in the S-cache (SIGCEK). As in the

previously described techniques, cache line signatures placed in a separate code section can be discarded

after verification (SIGCTD) or kept in the S-cache (SIGCTK).

 47

Source
code

Source
code

Compilation

Binary

BB list

Installation

Sigs

Binary +
Sigs

Binary

SIGBE

SIGBT

Binary

Installation

Sigs

Binary

SIGCE

SIGCT

Binary +
Sigs

Binary +
Sigs

Figure 4.5 Modification of executable code

Table 4.1 illustrates the most important pros and cons of the proposed techniques. Relevant

parameters include the need for compiler support; hardware complexity, i.e., the estimated area on the chip

required by a particular technique; the projected performance overhead, based on delays that a technique

introduces to program execution; applicability of a technique in systems without cache memory; and the

requirement to change the instruction set architecture (ISA).

 48

As explained before, the techniques protecting the basic blocks (SIGBEV, SIGBTD, and

SIGBTK) require some compiler support, whereas the techniques protecting cache lines (SIGC) are

applicable to the already compiled code. However, the SIGCE techniques (protected cache lines with

embedded signatures) may benefit from compiler support. The branch target addresses change due to

embedded signatures, so either a compiler recalculates all target addresses, or address translation is done in

hardware. In this dissertation we evaluate the SIGCE techniques that use hardware address translation.

All proposed techniques require a relatively simple processor modification: a dedicated processor

resource for signature verification, the IBSVU (Figure 4.3). Techniques that keep signatures in the S-cache

require additional on-chip area, so they are marked as having Medium hardware complexity in Table 4.1:

SIGBTK, SIGCEKT, and SIGCTK.

The overhead of fetching a signature from the memory and its decryption is avoided if a signature

is found in the S-cache, so techniques with the S-cache have a low projected performance overhead. The

SIGBEV and SIGBTD techniques have potentially higher performance overhead than the corresponding

SIGC techniques. With the SIGBEV, embedded basic block signatures may reduce the number of cache

hits, leading to a medium performance overhead. With the SIGCTD, the access function of the signature

table in memory is relatively simple, whereas with the SIGBTD a more complex hash function must be

used to access a table of basic block signatures, thus adding additional latency. Figure 4.6 illustrates the

qualitative assessment of signature verification techniques in the performance overhead - hardware

complexity design space.

The advantage of the basic block protection techniques is that they can be used in systems without

cache memory. Another advantage is that only instructions that are executed are verified, whereas only a

portion of instructions in a cache line might be really needed. However, if protected blocks of a fixed size

correspond to the prefetch buffer size and not to the cache line, they can also be used in a cache-less

system. All techniques but one, the SIGBEV, do not require the change of the processor instruction set.

 49

Table 4.1 Pros and cons of different techniques

 Compiler
support

Hardware
complexity

Projected performance
overhead

Applicable without
cache

ISA
change

SIGBEV Yes Low Medium Yes Yes

SIGBTD Yes Low Medium Yes No

SIGBTK Yes Medium Low Yes No

SIGCEV No;
may be used Low Low to medium No No

SIGCED No;
may be used Low Low to medium No No

SIGCEK No;
may be used Medium Low No No

SIGCTD No Low Low to medium No No

SIGCTK No Medium Low No No

SIGBTKSIGCTK

SIGBEV

SIGBTD

Hardware
Complexity

Performance
Overhead

SIGCEV

SIGCED

SIGCEK

SIGCTD

Low

Low

High

High

Figure 4.6 Qualitative assessment of signature verification techniques
in the performance overhead - hardware complexity design space

 50

4.3 Details of SIGCE Techniques

In this section we explain details of three SIGCE techniques. These techniques are

 SIGCED – signatures are invisible to the I-cache and discarded after verification;

 SIGCEK – signatures are invisible to the I-cache and kept in the S-cache;

 SIGCEV – signatures are visible to the I-cache.

We assume that all three techniques do not use compiler support, i.e., the original binary is

modified during the secure installation process only by inserting signatures and necessary padding. If the

last instruction block is shorter than the cache line, it is padded by instructions that do not change the state

of the processor. If the code with embedded signatures is larger than a page size, it must be padded so that

no instruction block is split between two pages. This padding is necessary for each page but the last.

4.3.1 SIGCED

The flow of the instruction fetch process is shown in Figure 4.7. The value of the program counter

(PC) is used to access the I-cache. Note that without loss of generality we assume that the I-cache is

indexed by virtual addresses and it is virtually tagged. This is a frequent case in embedded processor

caches, for example in Intel’s Xscale processor [127], and also in some high-end processors, for example

Alpha 21264 [128]. In the case of a cache hit, the instruction is fetched from the I-cache and there is no

need for instruction verification. In the case of a cache miss, we need to calculate the address of the

instruction block to be fetched in the virtual memory. The instruction block address has changed because

of signature embedding and added padding. If the padding is not necessary, i.e., one memory page can be

completely filled with the protected instruction blocks and corresponding signatures, the true virtual

address tPCtemp can be calculated as in Equation (4.1). The value SigSize is the size of the signature,

BlockSize is the size of the protected block, and TextBase is the starting address of the text segment for a

given program.

)
BlockSize

ePC-TextBas(SigSize PCtPCtemp 1+⋅+= . (4.1)

 51

Address Translation

Go to decode
& execute

Virtual to Physical Address Translation

Trap OS

Yes

I-Cache Lookup(PC)

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

I-cache Miss?

Cache Line Fetched?

Decrypted Signature == Calculated Signature

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

Figure 4.7 SIGCED: Signature verification control flow

Legend: Dotted lines indicate parallel tasks: AES decryption and MISR calculation are done concurrently
with instruction block fetch. Shaded blocks indicate steps needed to support instruction block verification.

The size of the padding PagePad is given in Equation (4.2), with PageSize denoting the size of a

virtual memory page. The final true address tPC can be calculated as in Equation (4.3).

)(mod SigSizeBlockSizePageSizePagePad += , (4.2)

 PagePad
PagePadPageSize-

xtBasetPCtemp-TetPCtemptPC ⋅+= . (4.3)

For example, consider a case where the I-cache line is 128B, the signature size is 16B, the page

size is 4096B, the TextBase address is 131072, and the value of the PC of the instruction to be fetched as

seen by the processor is 135200. In the original code without signatures, the size of a page is equal to the

size of 32 instruction blocks. In the signed code, the size of a protected block together with its signature is

144B. Hence, 28 signed blocks can fit in one page, filling 4032 out of 4096B. Since one instruction block

 52

cannot be split between two pages, the code must be padded so that the remaining 64B in a page are

unused. All instruction blocks must have the same size, so if the last instruction block in a binary is shorter

than the I-cache block, it is padded with randomly chosen instructions that do not change the state of the

processor.

When a correct virtual address is calculated, the translation look-aside buffer (TLB) is accessed

for virtual to physical address translation. In all considered SIGCE techniques a signature is inserted into

the code just before the corresponding protected instruction block, so the signature can be fetched first.

While instructions of a protected instruction block are being fetched, the signature is decrypted using a key

hidden in the hardware. Each fetched instruction passes through the MISR register, and the final MISR

output is compared to the decrypted signature. If the calculated and the decrypted signature differ, a trap to

operating system is asserted; otherwise, the instructions proceed with execution.

If the time needed to fetch a cache line from memory is greater than or equal to the decryption

time, there is no decryption performance overhead. The MISR calculation is completely overlapped with

instruction fetch, so there is no MISR overhead either. Since in the I-cache the instruction addresses of the

protected code are equal to the corresponding instruction addresses in the original code without signatures,

the number of I-cache misses for the protected code is the same as for the original code. Hence, the

performance overhead of the SIGCED technique is due only to the additional number of processor cycles

during instruction fetch. Let tSigLat be the additional latency due to signature verification mechanism. Then

tSigLat(SIGCED) is the sum of the time needed for address translation tTrans and time needed to fetch a

signature from the memory, tSigFetch, as shown in Equation (4.4). The MemBusWidth value is the width of

the data bus between memory and the I-cache in bytes. The tDbus value is the time needed for one data bus

transfer.

 DbusTransSigFetchTransSigLat t
hMemBusWidt

SigSizetttSIGCEDt *)(⎥⎥
⎤

⎢⎢
⎡+=+= . (4.4)

The signature verification is done by the Instruction Verification Unit (IBSVU), as illustrated in

Figure 4.8. Signature bytes are stored only in the SIGM buffer and then decrypted, while instruction bytes

 53

go both to the MISR logic and to the I-cache. An internal IBSVU signal, sig, controls the path of data from

the data bus.

……

……

……

……

Data bus

SIGM

AES
Decrypt

……

……

……

……

MISR
I-Cache

sig

sig

=?

S-match

Figure 4.8 SIGCED: Instruction Block Signature Verification Unit

Legend: SIGM – buffer for storing the signature fetched from memory, sig – signal indicating whether data
on the data bus are signature or instruction words, S-match – signal indicating whether the calculated and
original signature match.

4.3.2 SIGCEK

 A portion of the SIGCED overhead can be avoided if signatures are not discarded after

verification, but kept in a dedicated cache-like IBSV resource – the S-cache. Figure 4.9 shows the flow of

the instruction fetch process for the SIGCEK technique. With this technique, an I-cache lookup is

performed concurrently with the corresponding S-cache lookup. In the case of an I-cache miss, the

instruction block signature is fetched only if it is not found in the S-cache. Otherwise, if the decrypted

signature is in the S-cache, the signature latency tSigLat in Equation (4.4) is reduced to the number of cycles

needed for address translation tTrans. The SIGCEK technique has the potential to reduce not only the

performance overhead of instruction signature verification, but also to reduce the power overhead due to

 54

signature decryption, since a cached signature is already decrypted. Figure 4.10 shows a block-scheme of

the IBSVU for the SIGCEK technique. A decrypted signature from the S-cache or a decrypted signature

fetched from memory is compared to the final output of the MISR logic.

Address Translation

Virtual to Physical Address Translation

Trap OS

Yes

I-Cache Lookup (PC)
S-Cache Lookup (PC)

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

No

Yes

Go to decode
& execute

Go to decode
& execute

I-cache Miss?

S-cache Miss?

Cache Line Fetched?

Decrypted Signature == Calculated Signature

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using
MISR and a Hidden Key

Figure 4.9 SIGCEK: Signature verification control flow

Legend: Dotted lines indicate parallel tasks. Shaded blocks indicate steps needed to support instruction
block verification.

 55

.

…… ……
…… ……

……

……

……

……

……

……

……

……

MISR

…… ……

S-Cache I-Cache

S-cache_hit

sig

sig

Data bus

=?

S-match

AES
Decrypt

SIGM

Figure 4.10 SIGCEK: Instruction Block Signature Verification Unit

4.3.3 SIGCEV

In all three SIGCE techniques, the virtual addresses of instructions as seen by the processor are the

same for the original code and for the protected code with embedded signatures; that is, a virtual address of

an instruction in the protected code after address translation is equal to the virtual address of that instruction

in the original code. Two previously described techniques, the SIGCED and SIGCEK, use translated

virtual addresses in the cache, so both processor and cache see only the original virtual addresses. Another

option is the SIGCEV technique: translated addresses are used only in the processor, and the instruction

cache sees the non-translated virtual address space that includes the signatures and padding. Hence, in the

SIGCEV, the address translation must be done before each I-cache lookup. The advantage of this

technique is that the translation in most cases can be done in advance, together with the prediction of the

next instruction address. The only case when the performance overhead due to the translation cannot be

hidden is when a branch is mispredicted. Figure 4.11 shows the SIGCEV control flow.

 56

Address Translation

Go to decode
& executeVirtual to Physical Address Translation

Trap OS

Yes

I-Cache Lookup(PC)

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

I-cache Miss?

Cache Line Fetched?

Decrypted Signature == Calculated Signature

Previous instruction execution

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

Figure 4.11 SIGCEV: Signature verification control flow

Legend: Dotted lines indicate parallel tasks. Shaded blocks indicate steps needed to support instruction
block verification.

A simple and fast cache access mechanism requires both the cache line size and a cache line

address to be a power of two. Hence, in the SIGCED and SIGCEK techniques, the size of a protected

block is the power of two. Since instructions in the SIGCEV technique are stored in the I-cache using non-

translated virtual addresses, the sum of sizes of a protected block and its signature are a power of two. For

example, if an I-cache line size is 64 bytes, we can store 64 instruction bytes in one I-cache line in the

SIGCED and SIGCEK, and 64 – SigSize bytes in the SIGCEV cache. Figure 4.12 shows the content of an

I-cache line with the SIGCEV technique: The length of one instruction word W is 4 bytes, and the

signature length is 16 bytes, i.e., 4 words. Although the signatures are visible to the SIGCEV I-cache, they

are never stored in the I-cache, which is indicated by an X in the signature field Sig. Therefore, the cache

 57

line size and consequently the cache size are effectively smaller than the corresponding SIGCED/SIGCEK

values with the same cache line alignment (48 bytes instead of 64 in the example in Figure 4.12). If we

know in advance that a system will execute only protected code, the SIGCEV I-cache line may be

implemented as physically smaller, too. However, if we want to allow the unprotected mode, the I-cache

line must have the “regular” length. The Sig field is unused in the protected mode and treated as a part of

the Instruction Words field in the unprotected mode.

Another consequence of the requirement that the sum of the protected block size and signature

size is a power of two is that the SIGCEV technique does not require page padding, thus simplifying

address translation.

...

...

CBi

Sigi
Sig1
Sig2
Sig3
W0
...

W11

Sig0

Memory IBSV

X

Tag Sig
Cache Line

Instruction Words

Figure 4.12 The content of an I-cache line with the SIGCEV technique

4.4 Details of SIGCT Techniques

In this section we will explain details of two SIGCT techniques, where signatures are stored in a

separate code section. These techniques are

 SIGCTD – signatures are discarded after verification;

 SIGCTK – signatures are kept in the S-cache.

 58

The SIGCT techniques have both advantages and disadvantages over the SIGCE techniques.

Since signatures are stored separately from instructions, there is no need for hardware address translation

and padding. On the other hand, signature fetch from memory requires a completely separate memory

access. If the application code is relatively large, instructions and signatures may even be located on

separate pages, so accesses to signatures may cause page faults.

4.4.1 SIGCTD

The flow of the instruction fetch process for the SIGCTD technique is shown in Figure 4.13. As

with the SIGCE techniques, execution continues without signature verification in the case of an I-cache hit.

The address of the corresponding signature is calculated in parallel, so the signature can be fetched first in

the case of an I-cache miss. Since all protected blocks are of the same size, signature address SigAddress

can be easily calculated as in Equation (4.5). As in previous equations, the value SigSize is the size of the

signature, BlockSize is the size of the protected block, TextBase is the starting address of the text segment,

and PC is the program counter. The value SigTableStart is the starting address of the table segment

SigTable. The calculated SigAddress must not be greater than the SigTableEnd, the address of the last

signature in the SigTable (block Address in Sigtable in Figure 4.13).

)
BlockSize

ePC-TextBas(SigSizetart SigTableSSigAddress ⋅+= . (4.5)

The instruction fetch starts when the signature fetch is finished. The signature is decrypted in

parallel with the instruction fetch, so the decryption latency is partially or completely hidden by the

instruction fetch latency, as in the SIGCE techniques. The decryption latency hiding is the reason for the

fetch order (signature first, then instructions).

If the decryption latency is completely hidden, performance overhead is of the SIGCTD is due

only to the signature fetch latency, tSigLat(SIGCTD) in Equation (4.6). However, since the signature fetch

requires a separate memory access, signature fetch latency is longer than for SIGCE techniques. As before,

MemBusWidth is the width of the data bus between memory and the I-cache in bytes, and tDbus is time

needed for one data bus transfer. The value of tMemAccess encompasses all components of memory access

 59

latency, such as address decoding latency, word line activation latency, word line activation latency, and

output driving latency.

 DbusMemAccessSigLat t
hMemBusWidt

SigSizetSIGCTDt *)(⎥⎥
⎤

⎢⎢
⎡+= . (4.6)

The Instruction Block Verification Unit for the SIGCTD is very similar to the IBSVU for the

SIGCED (Figure 4.8), except differences in control logic.

Go to decode
& execute

Virtual to Physical Address Translation
(Signature)

Trap OS

Yes

I-Cache Lookup(PC)

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

Signature Address Calculation

Virtual to Physical Address Translation
(PC)

Yes Trap OS

No

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

I-cache Miss?

Cache Line Fetched

Decrypted Signature == Calculated Signature

SigAddress ≤ SigTableEnd?

Figure 4.13 SIGCTD: Signature verification control flow

Legend: Dotted lines indicate parallel tasks. Shaded blocks indicate steps needed to support instruction
block verification.

 60

4.4.2 SIGCTK

Figure 4.14 shows the control flow for signature verification with the SIGCTK technique. If a

signature of a block that is not in the I-cache is not found in the S-cache, signature latency is the same as

for the SIGCTD (4.6). However, if the signature is in the S-cache and the decryption latency is hidden as

explained before, the SIGCTK technique has virtually no overhead. The SIGCTK IBSVU is very similar

to the SIGCEK IBSVU (Figure 4.10).

Go to decode
& execute

Virtual to Physical Address Translation
(Signature)

Decrypt Signature
from Memory

Using a Hidden Key

Calculate Instruction
Block Signature Using

MISR and a Hidden Key

Trap OS

Yes

I-Cache Lookup(PC)
S-Cache Lookup (PC)

Fetch Signature

Fetch Instructions

No

No

No

Yes

Yes

Go to decode
& execute

Signature Address Calculation

Virtual to Physical Address Translation
(PC)

Yes

No
Trap OS

No

Yes

I-cache Miss?

SigAddress ≤ SigTableEnd?

S-Cache Miss?

Cache Line Fetched

Decrypted Signature == Calculated Signature

Figure 4.14 SIGCTK: Signature verification control flow

Legend: Dotted lines indicate parallel tasks. Shaded blocks indicate steps needed to support instruction
block verification.

 61

4.5 Details of SIGB Techniques

In this section we explain details of three SIGB techniques, where protected instruction blocks

correspond to basic blocks. These techniques are

 SIGBEV – signatures are embedded in the code;

 SIGBTD – signatures are stored in a separate code section and discarded after verification;

 SIGCTK – signatures are stored in a separate code section and kept in the S-cache.

Techniques protecting basic blocks have a significant advantage of being able to avoid some

verifications. One approach is to verify only the last basic blocks in instruction streams. In the rest of this

dissertation, we focus on this approach, as it significantly reduces the number of verifications with no

negative effects to the security (any injected code will change the original control flow). For instance, a

consecutive sequence of basic blocks BB1, BB2, and BB3 in Figure 4.15 makes one instruction stream if

the branches in BB1 and BB2 are not taken and the branch in BB3 is taken. In this case, only the BB3

signature will be verified in the stream BB1–BB2–BB3. Moreover, the signature needs to be verified only

if at least one instruction in the BB3 basic block caused an I-cache miss.

NT

BB1

BB2

BB3

NT

BB4

NT

T

T

T

NT

T

Figure 4.15 Instruction streams.

Legend: BB – Basic Block, T – Taken branch, NT – Not Taken.

 62

Another advantage of the SIGB techniques is that they are applicable to systems without the I-

cache memory, since they do not depend on the cache mechanism. In such a system, all last basic blocks in

instruction streams need to be verified. A SIGC technique in a system without the I-cache would require

fetching of instructions that might not be executed in order to verify the signature of the whole block.

Moreover, signatures of all protected blocks would need to be verified, which would add a significant

performance overhead.

Whereas the considered SIGC techniques do not allow execution of unverified instructions, the

SIGB techniques overlap signature verification of one basic block with execution of the following one, so

the detection of code injection attack is delayed. However, since memory writes are usually buffered, the

actual verification can be safely delayed until the memory buffer is full. Hence, the main component of

performance overhead will be due to the signature fetch.

However, the SIGB techniques also have several disadvantages when compared to the

corresponding SIGC techniques. Unlike the SIGC, they require compiler support, although a modest one.

In addition, the number of basic blocks in the code is likely to be larger than the number of instruction

blocks of the size of the cache line, especially for predominantly integer applications. In that case, the code

size increase with the SIGB is larger than with the SIGC techniques.

4.5.1 SIGBEV

In the SIGBEV, the signatures are embedded in the code, with each signature placed before the

first instruction in the corresponding basic block. Although a control flow-changing instruction can be the

last instruction in more than one basic block, each basic block has a unique first instruction, so the basic

block start is a better choice for the signature placement. Moreover, if the signature is placed before

instructions, than signature decryption may be partially overlapped with instruction execution. The

signature instruction words are converted to no-ops in the decode stage of the pipeline.

An example of protected code and the corresponding original code is shown in Figure 4.16. This

is an excerpt of assembly code of a simple loop written in C, on a Sun SPARC system. According to the

definition of a basic block that we use, the original code in the example has five basic blocks, so the

protected code has five embedded signatures. Note that the second, third, and fourth basic block have the

 63

common end, the instruction 9. ble .LL9. Let us consider the case when the program has just jumped

to LL3, i.e., instruction 1. Hence, this instruction is the beginning of an instruction stream. If we assume

that the branches in the instructions 3 and 9 are both not taken, the last basic block in this instruction stream

consists of the instruction 10, and only its signature needs to be verified.

.LL3:

1. ld [%fp-24], %o0

2. cmp %o0, 0

3. ble .LL4

4. ld [%fp-24], %o0

5. st %o0, [%fp-28]

.LL5:

.LL4:

6. st %g0, [%fp-36]

.LL6:

7. ld [%fp-36], %o0

8. cmp %o0, 9

9. ble .LL9

10. b .LL7

.LL3:

signature(1.-3.)

1. ld [%fp-24], %o0

2. cmp %o0, 0

3. ble .LL4

signature(4.-9.)

4. ld [%fp-24], %o0

5. st %o0, [%fp-28]

.LL5:

.LL4:

signature(6.-9.)

• st %g0, [%fp-36]

.LL6:

signature(7.-9.)

7. ld [%fp-36], %o0

8. cmp %o0, 9

9. ble .LL9

signature(10.)

10. b .LL7

Original code Protected code

Figure 4.16 SIGBEV: An example of the original and the protected code

Figure 4.17 shows the IBSVU for the SIGBEV technique, and Figure 4.18 shows a high-level

description of the corresponding SIGBEV procedures in pseudo-code. The IBSVU has two input control

signals, NewBB and IBSVU_Start, and one output signal, IBSVU_Busy. The SIGM register holds the

signature stored in memory, i.e., embedded in the code; the Last Block Signature register (LB.S) holds the

calculated signature for the last basic block.

 64

IR
IBSVU

MISR

IBSVU_Start

SIGM

LB.S

AES
Decrypt

S-match

AESdone

IBSVU_Busy

=?

NewBB

Figure 4.17 SIGBEV: Instruction Block Signature Verification Unit

Legend: IR – Instruction Register, SIGM – Signature stored in memory, LB.S –Last Block Signature
register. Dotted lines indicate signals.

Instruction Decode Stage:
if (signature instruction) {
 if (IBSVU_Busy) wait;
 // IBSVU is free, start new basic block
 CacheMissFlag <= 0;
 NewBB <= 1;
}
else
 NewBB <= 0;

Branch Instruction Execution Stage:
if (BranchTaken && CacheMissFlag) {
 if (IBSVU_Busy) wait;
 IBSVU_Start <= 1;
}
else
 IBSVU_Start <= 0;

Instruction Block Verification Unit:
if (NewBB)
 SIGM <= IR;

if (IBSVU_Start){
 LB.S <= MISR; // signature of the last basic block in a stream
 StartAES; // start decryption
}

if (AES_done) {

IBSVU_Busy <= 0;
if (AES(SIGM) == LB.S) SuccessfulVerification;
else TrapOS;

}

Figure 4.18 SIGBEV Procedures

 65

For the sake of simplicity, we assume that the signature length is one instruction word. The

signature instruction is detected in the instruction decode stage. The control logic in the decoder then waits

until the IBSVU clears the signal IBSVU_Busy. When the IBSVU indicates it is free, the decoder asserts

the signal NewBB. The internal CacheMissFlag is set to 0; this flag is set to 1 on any I-cache miss.

The end of an instruction stream is detected in the execution stage of the pipeline, when a branch

instruction is resolved as taken. If a branch is taken, and any of the instructions in the corresponding basic

block caused an I-cache miss, the signature of that basic block should be verified. The control logic in the

execution stage waits until the IBSVU is free and then asserts the IBSVU_Start signal.

The IBSVU loads the encrypted embedded signature from the IR to the SIGM register, when the

signal NewBB is asserted. This signal also resets the MISR. When the signal IBSVU_Start is asserted, the

IBSVU loads the calculated signature from the MISR to the LB.S register and starts AES decryption of the

signature in the SIGM. When the AES block indicates that it is done with decryption (AES_Done), the

IBSVU clears the IBSVU_Busy signal and compares the decrypted and calculated signatures. As in the

SIGC techniques, if the two values do not match, the trap to operating system is asserted, and the operating

system aborts the process.

Note that decryption of a signature does not start immediately after that signature is fetched, but

when it is determined that the verification is needed. This implementation choice is motivated by two

reasons. First, we want to avoid a more complex algorithm, where decryption of a basic block signature is

aborted after fetch of a signature of the following basic block from the same instruction stream. In

addition, unnecessary decryptions would increase the power consumption.

In the SIGBEV implementation explained above, the IBSVU cannot accept new basic block

signatures while it is still decrypting the previous one. This condition can be relaxed if the SIGM is

implemented as a First In First Out buffer (FIFO). In addition, the calculated signatures may also be

buffered. We may allow further instruction execution until the memory write buffer is full, or, in even

more relaxed model, until the SIGM or the LB.S is full.

Assuming that the decryption latency can be completely hidden, one component of performance

overhead due to signature mechanism overhead is the signature fetch latency, tSigFetch as in Equation (4.7).

However, since the signatures are stored in the I-cache together with instructions, they are likely to increase

 66

the number of I-cache misses. More I-cache misses mean more fetch overhead for both instructions and

signatures. For some applications, the additional instruction fetch overhead may be a dominant component.

 DbusSigFetch t
hMemBusWidt

SigSizet *⎥⎥
⎤

⎢⎢
⎡= . (4.7)

4.5.2 SIGBT

With both SIGBT techniques, the signatures are kept in a separate code section, SigTable. As

explained in the Section 4.4.1, for SIGCT techniques the address of a signature can be easily calculated.

Due to the variable size of basic blocks, mapping between basic block start addresses and the

corresponding signatures is not a simple function, so a SigTable record in SIGBT techniques must include

both a signature and a unique tag. The tag does not have to be encrypted. The simplest possible tag is the

starting address of the basic block, relative to the beginning of the code. The offset of the new basic block

from the beginning of the code is calculated by deducting the value in the PC register from the value stored

in the program Starting Address register (SA), and stored in the Current Block Starting Address register

(CB.SA). The SIGBTK technique stores decrypted basic block signatures and the corresponding starting

address offsets in the S-cache; the starting address offset is used to determine the S-cache index.

Figure 4.19 shows the IBSVU for the SIGBTK technique, and Figure 4.20 shows a high-level

description of the corresponding SIGBTK procedures in pseudo-code. The control logic in the decoder

calculates the CB.SA value for each new basic block. As with the SIGBEV technique, the control logic in

the execution stage asserts the signal IBSVU_Start when there was an I-cache miss in the last basic block in

an instruction stream.

When the signal IBSVU_Start is asserted, the IBSVU loads the current value of the CB.SA into

the LB.SA register, and loads the calculated signature from the MISR to the LB.S register. The S-cache is

searched for an entry with the LB.SA tag. In the case of an S-cache hit, the signature from the S-cache is

compared to the calculated signature in LB.S.

 67

…… ……
…… ……

MISR

SigSA

……

SigSA

SigSA

……

SigSA

S-Cache

S-cache_hit

From memory

=?

S-match

AES
Decrypt

SIGM

IR

LB.SLB.SA

-
newBB

SAPC

AESdone

IBSVU

IBSVU_Start

IBSVU_Busy

CB.SA

Figure 4.19 SIGBTK: Instruction Block Signature Verification Unit

Legend: PC – Program Counter, IR – Instruction Register, SA- Starting Address, LB.S – Current Block
Signature Register, CB.SA/LB.SA Current Block/Last Block Starting Address Offset, SIGM – Signature
from memory. Dotted lines indicate signals.

An S-cache miss indicates either an infrequently executed basic block or injected code, so the

SigTable section in memory must be searched for the record with the starting address offset equal to

LB.SA. If such record is found, the signature is fetched and the AES decryption started. If there is no

record in the SigTable with the LB.SA tag, the last executed basic block is not signed, so the IBSVU

asserts the trap to the operating system.

The result of the AES decryption is compared to the calculated signature in LB.S, as in the

SIGBEV. In addition, the IBSVU updates the S-cache with the decrypted signature and the LB.SA.

Sequential search of the SigTable is inadmissibly slow, so we must use other search methods.

One implementation of an improved binary search is illustrated in Figure 4.21. The SigTable is divided

into segments and sorted in a monotonic order by starting address offset. The SigTable start and end

addresses are stored in the IBSVU, as well as the values of starting address offset fields for each beginning

of the segment. Hence, we know exactly which segment should be searched with a given starting address

offset. That segment than can be searched using binary search.

 68

Instruction Decode Stage:
if (last instruction == control flow instruction)
 NewBB <= 1;
else
 NewBB <= 0;
if (NewBB) CB.SA <= PC – SA;

Branch Instruction Execution Stage:
if (BranchTaken && CacheMissFlag) {
 if (IBSVU_Busy) wait;
 IBSVU_Start <= 1;
}
else
 IBSVU_Start <= 0;

Instruction Block Verification Unit:
if (IBSVU_Start){
 LB.S <= MISR; // signature of the last basic block in a stream
 LB.SA <= CB.SA; // start address offset
 if (S-cache_hit(LB.SA)){ // S-cache hit
 IBSVU_Busy <= 0;
 if (S-cache.S == LB.S) SuccessfulVerification;
 else TrapOS;
 }
 else { // fetch encrypted signature from memory and decrypt
 if (SearchSig(LB.SA)){ // a signature found in memory
 SIGM <= FetchedSig;
 StartAES; // start decryption
 }
 else TrapOS;

}
}

if (AES_done) {

IBSVU_Busy <= 0;
if (AES(SIGM) == LB.S){

 SuccessfulVerification;
 UpdateS-cache(LB.SA, AES(SIGM));
 }

else TrapOS;
}

Figure 4.20 SIGBTK Procedures

 69

SigTable

SigTable.Start

SigTable.End

B.SB.SA

… …

Seg1

Seg2

IBSVU

Seg1.0.SA

Seg2.0.SA

Seg3.0.SA

≤?

≤?

≤?

IBSVU
Control

Unit

LB.SA

LB.S

Seg0

Seg3

… …

… …

SigTable

SigTable.Start

SigTable.End

B.SB.SA

… …… …

Seg1

Seg2

IBSVU

Seg1.0.SA

Seg2.0.SA

Seg3.0.SA

≤?

≤?

≤?

IBSVU
Control

Unit

LB.SA

LB.S

Seg0

Seg3

… …… …

… …… …

Figure 4.21 SigTable access using segment approach

Legend: LB.S – Last Block Signature Register, LB.SA – Last Block Starting Address Offset, SigTable.Start
and SigTable.End – the addresses of the first and last records in the SigTable, Segi.0.SA – starting address
offset value in the first record in the i-th segment in the SigTable.

The search mechanism can be even faster. Since the SigTable does not change for a given

program, the secure installation process may find a near-perfect hash function for a particular application

[129, 130], or choose the most suitable hash function from a predefined set of functions. A perfect hash

function is a function that maps the domain of records to the hash table one-to-one, that is, without

collision. The information about the chosen hash function may be kept in the program header in an

encrypted form.

Since the S-cache stores decrypted signatures, in the case of an S-cache hit there is no additional

latency due to verification. On the other hand, in the case of an S-cache miss the signature must be found

in the SigTable, fetched, and decrypted. Decryption can be done in parallel with execution of the following

basic block, so the main performance overhead component is due to the SigTable access latency and the

number of times the SigTable must be accessed to find a signature or to decide that such signature does not

exist.

The S-cache is the only difference between the SIGBTD and SIGBTD techniques. With the

SIGBTD, the SigTable access latency cannot be eliminated.

 70

4.6 Discussion

Efficient implementation of a signature verification mechanism poses quite a few challenging

questions. In this section we discuss various complexity, performance and security issues of the proposed

mechanism.

4.6.1 Reducing Memory Overhead

An instruction block signature must have at least 128 bits to be cryptographically sound. On the

other hand, the code size increase is directly proportional to the average length of protected blocks and the

signature length. For example, if the protected block size in a SIGC technique is 128B and the signature is

16B, the increase of code section of a binary due to signatures is 12.5%, plus the increase due to padding.

Though this increase will not put a lot of additional strain on the memory requirements in high-end

systems, it may be significant in embedded processors with smaller caches and consecutively smaller cache

lines. To address this problem, one approach would be to protect multiple cache blocks with a single

signature. All blocks protected with one signature must be brought to the IBSVU and may or may not be

stored in the I-cache, so this mechanism can be combined with instruction prefetching. The evaluation of

this approach is out of the scope of this dissertation.

For the SIGB techniques, the average length of protected blocks is application dependent. For

example, the average basic block length in SPEC CPU2000 benchmark set is 19.3 – 41.9 bytes on Alpha

architecture [131]. One way to reduce the number of signatures would be to sign only selected basic

blocks, applying strategies from fault-tolerant computing [113]. However, reducing the number of

signatures must not reduce the ability of a system to detect code injection attacks.

4.6.2 Reducing Performance Overhead

For the SIGC techniques, in this dissertation we focus on conservative verification, where

instructions of a signed instruction block are not allowed to execute before their signature is fetched,

decrypted, and verified. A more relaxed approach allows blocks to execute unverified, but unverified

instructions are not allowed to write to memory. An even more relaxed approach may even allow

 71

execution of a certain number of unverified stores, but it then must be able to perform a rollback if a code

injection attack is detected. A similar relaxed approach can be applied to the SIGB techniques.

Performance overhead for all signature verification techniques might also be reduced with

prefetching of code and signatures as described above, or only with signature prefetching in techniques

with the signature cache.

4.6.3 Systems with more than one level of cache memory

Signature verification is always related to the lowest level of cache memory, i.e., the cache that is

the closest to memory. For example, in a system with two levels of cache memory, a signature should be

verified if the corresponding protected block is not in the L2 I-cache. Performance overhead of the

proposed techniques is insignificant in systems with more than one level of cache, since the number of

cache misses relative to the number of executed instructions is very low in lower level caches.

If the lowest cache level is unified, the proposed techniques exploit the dirty cache line bit. This

bit is set to 1 if the contents of the cache line have changed since loading it into the cache, i.e., if there were

any stores to the cached locations. As described in previous sections, a signature is verified if the

corresponding instruction block is not in the lowest level of cache. It is also verified if it is found in the

cache, but with a dirty cache line.

4.6.4 Dynamically Linked Libraries

With the proposed techniques, each dynamically linked library (DLL) has its own signature

section or embedded signatures, so all code can be safely verified. The pointers to signature sections or the

beginning of the code with embedded signatures can be loaded to the IBSVU when a particular library is

dynamically linked. The IBSVU stores a fixed number of such pointers. When an application is

dynamically linked with more DLLs than the IBSVU can hold, the overflow is handled by the operating

system, and the overflow data is stored in memory.

 72

4.6.5 Context switch

In the case of a context switch or interrupt, the signature information such as the current MISR

value is saved together with the other process data, and restored when the process resumes execution. The

S-cache may be flushed at each context switch, or it may include a process ID tag.

4.6.6 Dynamically Generated Code

In some cases, the executing code may be dynamically generated and possibly never saved in an

executable file. One such example is the code generated by the Java Just-In-Time compiler (JIT). The

dynamically generated code can be marked as non-signed and executed in the unprotected mode. Another

option is to let the dynamic code generator generate the signatures together with the code. If the generator

is trusted, its output should be trusted too. The same argument applies to the interpreted code.

4.6.7 Return-Into-Libc Attacks

So-called return-into-libc attacks overwrite a code pointer to point to the regular application code,

usually the library code. Signature verification alone cannot detect a return-into-libc attack, since the

library code is also signed. However, our approach can be combined with other defense techniques to

prevent the success of return-into-libc; these techniques may also benefit from hardware support. One such

technique is address layout randomization [76], and another one is denying a system call requests if they do

not adhere to predefined rules [89].

4.6.8 High-Level Attacks

We believe that the proposed mechanism is an important step toward more secure computer

systems. However, we do not claim that signature verification will solve all the security-related issues we

face today. Rather, we believe that no single technique can do that, but that a combination of hardware and

software techniques is needed, working in concord at different levels of abstraction. For example, our

technique will not prevent execution of malware elevated to a trusted level by users, nor will it prevent

 73

high-level attacks such as SQL injection, where malicious SQL keywords are added to an SQL database

query. One example of SQL injection vulnerability is a login form that requires username and password

from the database by using SQL command WHERE, but allows any characters in the input. Hence, an

attacker might use the SQL keyword OR to set a condition which is always true and bypass the login

condition [132].

 74

CHAPTER 5

EXPERIMENTAL METHODOLOGY

“If you don't know where you are going, you will wind up somewhere else.”

Yogi Berra

This chapter describes experimental methodology used to evaluate techniques for instruction block

verification. We first describe the experiments and metrics used to evaluate performance overhead. To

mimic the secure installation process, we modify files in the Executable and Linkable Format (ELF) [133].

To simulate secure execution with the SIGC techniques, we modify the execution-driven simulator

SimpleScalar [134] to execute modified ELF files and to measure additional latencies due to signature

verification. For evaluation of the SIGB techniques, we use a custom-made trace-driven simulator. We

measure sensitivity of performance overhead to various architectural parameters, and with benchmarks

selected from both the embedded and high-end processor domain.

5.1 Evaluation of Proposed Techniques

All proposed techniques successfully detect code injection attacks, since an injected code

sequence cannot have a valid signature. Whereas the security is the main criteria when assessing the

quality of a defense technique, it is far from being the only one. A hardware-supported defense technique

should not add significant overhead in hardware complexity, execution time, and memory requirements.

Hardware complexity of all proposed techniques without the S-cache is very low. The complexity of

 75

techniques with the S-cache depends on the S-cache size. We evaluate only implementations where the S-

cache is smaller than the I-cache size, so the complexity of these techniques is also moderate.

Memory overhead is simply determined by comparing the sizes of the original code and the code

with protected instruction blocks. As explained in the next section, an executable file consists of different

segments, and only segments containing instructions are protected with signatures. To better understand

memory overhead, we measure the ratio between the sizes of original and signed instruction sections, and

the ratio between the sizes of original and signed executable files.

Performance overhead for an application may be determined by comparing the execution time of

the original code in the base system without signature verification, and the signed code in a system with

signature verification. Performance overhead can also be assessed by measuring the number of events that

are a major contributor to total overhead, such as the increase in the number of I-cache misses. The SIGC

techniques are more readily applicable than the SIGB, so we evaluate the SIGC using a detailed execution-

driven architectural simulator. We modified the most detailed simulator in the SimpleScalar tool set [134]

to support the SIGCED, SIGCEK, SIGCEV, SIGCTD, and SIGCTK techniques. The performance metric

is the CPI, the number of processor clock cycles per instruction. As an indirect indication of performance

overhead, we can also use the number of S-cache misses for the SIGCEK and SIGCTK, and the increase of

I-cache misses for the SIGCEV technique. The metric for cache misses is the number of misses per one

thousand instructions, or per one million instructions (1M).

For the SIGB techniques, originally developed trace-driven simulators are used to assess

performance overhead. In this case, we measure the number of signature verifications per one million

executed instructions. In addition, we measure the increase in the I-cache misses for the SIGBEV, and the

number of S-cache misses for the SIGBTK technique.

5.2 ELF Format

When instruction block signatures are added to an executable file, the resulting file must still

conform to the executable format. To offer a proof-of-concept of the proposed techniques, we modified

executable files in the ELF format. This section explains the main characteristics of this format.

 76

ELF is the executable format widely used in Linux, Unix, Solaris, and other similar operating

systems. An ELF file may be a relocatable, executable, or shared object file. As defined in the Tool

Interface Standard (TIS) ELF Specification, version 1.2, a relocatable file is a file that can be linked with

other object files to create an executable or a shared object file, and an executable file holds an executable

program [133]. Shared object files are essentially libraries, which can be linked with other object files

either statically or dynamically.

Figure 5.1 illustrates the view of an ELF file as seen by the linker (linking view) or program

loader (execution view). Any ELF file begins with the ELF header, which describes the organization of the

file. For example, an ELF header specifies the file type, required architecture, the virtual address of the

start of the program, and the position of program header table and section header table in the file.

Linking view Execution view

ELF Header ELF Header

Program Header Table (optional) Program Header Table

Section 1

Section 2
Segment 1

...

Section n
Segment 2

.... ...

Section Header Table Section Header Table (optional)

Figure 5.1 Linking and execution view of an ELF file

From the linker’s point of view, an ELF file is divided into sections. Section Header Table is an

array of structures that specify file sections. One such structure specifies the name, type, start address in

the memory image of a process, position in the file, size, and the attribute flag for one section, as well as

some other information. For example, the attribute flag specifies whether a section contains instructions or

data. It is interesting to note that the section name is an index into a special section, called header string

 77

table, which holds actual names in ASCII. The ELF specification defines a number of special sections.

Table 5.1 lists some common ELF file sections and the corresponding content.

Table 5.1 Some common ELF file sections

Section Content

.bss Uninitialized program data

.data Initialized program data

.debug Symbolic debugging information

.dynamic Dynamic link information

.rodata Read-only program data

.shstrtab Header string table

.strtab Symbol table names

.symtab Symbol table

.text Program instructions

.init Program initialization code

.fini Program terminating code

When the loader loads a program in the memory, it considers the ELF file as a group of segments,

which in turn have one or more sections. Segments are specified in program header table. For each

segment, this table specifies the type, the position in the file, the virtual and sometimes physical address of

the first segment byte in memory, the size in the file and the size in memory, and some other information.

For example, the segment type specifies whether a segment is loadable, i.e., mapped to memory.

 78

5.3 Secure Installation of Files in ELF Format

Since the SimpleScalar simulators can execute only statically linked code, we wrote a program

that emulates the secure installation process for the executable ELF files. An executable ELF file with

embedded signatures is modified in the following way:

 Encrypted signatures and padding are added to instruction blocks in sections containing instructions,

i.e., init, text, and fini. By default, these sections are mapped in memory one after another, so they can

be treated as a single entity for the signing purpose.

 The section length and position information are adjusted. We change only the length of the fini

section. If a section is located in the file after fini in the original code, it is shifted for the total length

of embedded signatures and padding, and its position is adjusted in the section table header.

 Program table header should also be updated. However, the gcc cross-compiler that comes with the

SimpleScalar creates a section header table with information about virtual memory address for

loadable sections, and the SimpleScalar loader considers this header only when loading a program into

simulated memory. Hence, we only update the section header table.

 By default, the data sections are mapped to virtual memory after code sections, which may cause

problems to instructions that read or write to memory. Instead of disassembling the code and

recalculating all load and store addresses, we chose to modify the default options of the GNU linker, so

that data sections are mapped before the code.

An executable ELF file with instruction block signatures in the signature table section requires the

following modifications:

 The signature table section, .sigt, is added as the last section in the file.

 The entry for the signature table section is added to the section header table, and the entry for the

corresponding segment is added to the program header file (signature table section makes one

segment).

 The signature virtual address is set to be larger than the last address of loadable sections, so there is no

need to change header information for other sections.

ELF dynamically linked library files can be modified in a similar way. Since only already linked

files and libraries are securely installed, signatures are never added to relocatable ELF files.

 79

5.4 SimpleScalar Simulator

The SimpleScalar [134] encompasses architectural simulators that are the most widely used tools

in computer architecture research. The SimpleScalar website, www.simplescalar.com, lists its use in

papers published in top computer architecture conferences. For example, in the year 2002 more than one

third of all top conference papers used the SimpleScalar. Such popularity is due to several reasons. First,

the SimpleScalar is an open-source free tool developed in academia (University of Wisconsin). It includes

simulators for Alpha, PISA (a MIPS-like portable instruction set architecture), ARM, and PowerPC

architectures. In addition, it can run on various host platforms, including Linux, FreeBSD, Alpha OSF1,

SPARC SunOS, AIX Unix, and Windows NT under CygWin.

SimpleScalar simulators are primarily execution-driven. The input of an execution-driven

simulator is a “regular” executable file, whereas the input of a trace-driven simulator is an instruction

execution trace. Trace-driven simulators do not have to decode and perform instructions, so they are

usually less complex than the execution-driven simulators with the same functionality. Another advantage

is that trace-driven simulations are completely repeatable experiments, while the results of some execution-

driven simulators may differ between several runs. However, for each application we want to simulate we

must first collect and store its trace, while executable files are readily available and do not require a lot of

storage space. Moreover, traces collected with certain architecture may not be suitable for simulation of

another system. SimpleScalar simulators handle system calls by passing them on to the host system, so

simulations are not absolutely repeatable. However, some simulators in the set include an option to use

EIO (external input output) traces, i.e., traces of interaction with the host system, thus providing complete

repeatability.

Any system simulator is either fast but simulating the system at a high level of abstraction, or

more detailed, but slower. The SimpleScalar balances these opposite requirements by including several

simulators at various level of detail, such as sim-safe, sim-profile, sim-cache, sim-bpred, and sim-outorder.

The sim-safe and sim-profile are functional simulators executing instructions serially, without accounting

for execution time. The difference between the two is that the sim-profile gives various statistics. The sim-

cache and sim-bpred simulate details of memory hierarchy and branch prediction, respectively. The sim-

cache can simulate up to two levels of cache memory, with unified or split data and instruction caches,

 80

various cache sizes, degree of associativity, and replacement policies. The sim-bpred simulator can

simulate five types of predictors: always taken, always not taken, bimodal, two-level, and a combination of

a bimodal and a two-level predictors. It also simulates a branch target buffer with various number of

entries and sets, and the return address predictor. Finally, the sim-outorder simulator provides a detailed

microarchitectural timing model of a system with possibly out-of-order execution and various available

resources. It reuses functionality of sim-bpred and sim-cache.

The SimpleScalar toolset also includes precompiled libraries and applications, as well as the

complete GNU tool chain for PISA and ARM architectures. The source code is written in C, very well

documented and well organized, so the simulators are relatively easy to modify. Table 5.2 lists .c files that

are used by various SimpleScalar simulators, and their short description. Most of these files have

corresponding header files with function prototypes. Figure 5.2 shows the main simulator loop body in the

sim-outorder simulator (some comments and “sanity checks” are removed).

/* commit entries from RUU/LSQ to architected register file */
ruu_commit();

/* service function unit release events */
ruu_release_fu();

/* service result completions, also readies dependent operations */
ruu_writeback();

/* try to locate memory operations that are ready to execute */
lsq_refresh();

/* issue operations ready to execute from a previous cycle */
ruu_issue();

/* decode and dispatch new operations */
ruu_dispatch();

/* call instruction fetch unit if it is not blocked */
if (!ruu_fetch_issue_delay)
 ruu_fetch();
else
 ruu_fetch_issue_delay--;

Figure 5.2 The main simulator loop body in the sim-outorder simulator

 81

Table 5.2 Descriptions of .c files used by SimpleScalar simulators

File name Functionality

bpred.c Handles branch predictors

cache.c Handles cache memory

eio.c Interface to EIP traces

eventq.c Handles ordered event queues

loader.c Target program loading in simulated memory

machine.c ISA definition routines

main.c Initialization, launch

memory.c Access to simulated memory space (large flat space)

misc.c Support function such as fatal() and warning ()

options.c Processing options from configuration files or command line

ptrace.c Pipeline traces

regs.c Manages register files

resource.c Manages functional units

stats.c Handles statistics

syscall.c Interface between system calls in simulator and on the host machine

In order to eliminate synchronization problems, the pipeline stages are traversed in the reverse

order. The fetch stage is implemented in the function ruu_fetch(), which models fetch bandwidth. The

dispatch stage is implemented in ruu_dispatch(), which models instruction decoding and register renaming.

The instructions are actually executed in this function, to facilitate data-dependent optimizations and early

detection of branch mispredictions. The scheduler, which issues instructions to different functional units, is

implemented in ruu_issue(); the memory scheduler, which issues memory operations, is implemented in

lsq_refresh(). The instruction execution stage of the pipeline is also implemented in ruu_issue(). Whereas

the results of instruction execution are already known in the ruu_dispatch(), the ruu_issue() function

models various latencies related to execution. The writeback stage is implemented in ruu-writeback, which

 82

models the writeback bandwidth and in the case of branch misprediction, initiates misprediction recovery.

Finally, ruu_commit() implements the commit pipeline stage, and models in-order retirement of

instructions.

5.5 SimpleScalar Modifications

To evaluate the proposed SIGC techniques, we modify the SimpleScalar ARM architecture. The

sim-outorder for ARM has the same configuration parameters as the sim-outorder for Alpha target. Hence,

we can simulate both embedded and high-end processor systems using the same simulator, by changing

only configuration data. In addition, the SimpleScalar/ARM compiler kit enables us to choose benchmarks

at will, without being restricted to a precompiled set of applications.

We have modified simoutorder.c, memory.c, memory.h, cache.c, and cache.h SimpleScalar files.

The implementation of the signature verification mechanism required the following modifications:

 Support for execution of signed ELF files. The simulators of the SIGCE techniques require support for

the instruction address translation, and data address translation for data located in the text segment.

 Additional latencies due to signature verifications in ruu_fetch(): the translation latency, decryption

latency, and signature fetch latency.

 Support for the S-cache. All SimpleScalar cache objects are created and accessed using common

functions, with different functions handling cache misses. We use the same approach for the S-cache.

 Support for additional simulator options to specify latencies and S-cache parameters. In the

SimpleScalar simulators, all options are registered by type into an options database, so we add the code

for declaring and registering options required by the modified simulators.

5.6 Custom-Made Trace-Driven Simulator

A trace-driven simulator may be an ideal choice for modeling particular aspects of processor

architecture, especially when a large trace database is already available. During prior research of efficient

traces compression, we proposed Stream-Based Compression (SBC), a novel technique for single-pass

compression of address traces and various extended trace formats [135, 136]. We also collected address

 83

traces for SPEC CPU2000 benchmark set [137], and stored it using the SBC compression. Traces are

generated using a modified SimpleScalar environment, precompiled Alpha binaries, and SPEC CPU2000

reference inputs. We traced two segments for each benchmark: the first two billion instructions (F2B), and

two billion instructions after skipping 50 billion (M2B).

The SBC algorithm relies on extracting instruction streams. A stream table created during

compression encompasses all relevant information about streams: the starting address, stream length,

instruction words in the stream, and their types. All instructions from a stream are replaced by its index in

the stream table, creating a trace of instruction streams. SBC also features an efficient on-line algorithm for

compression of data address references. Unlike instruction addresses, data addresses for a memory

referencing instruction rarely stay constant during program execution, but they can have a regular stride.

The SBC-compressed data address trace encompasses a data address stride and the number of repetitions

for each memory-referencing instruction in a stream. A change of the data address stride results in another

record in the compressed trace. The records are ordered by the corresponding stream appearances in the

original trace. The SBC algorithm achieves very good compression ratio and decompression time for

instruction and data address traces, and can be successfully combined with general compression algorithms,

such as Ziv-Lempel algorithm used in gzip utility. An instruction and data address in the SBC format

encompasses three files: Stream Table File (STF), Stream-Based Instruction Trace (SBIT), and Stream-

Based Data Trace (SBDT).

The SIGB techniques relate signature verification to the end of an instruction stream, so traces in

the SBC format are very suitable for the SIGB simulators. Since the SIGB techniques protect basic blocks,

we have written a program named stream2bb to generate an additional table with information about basic

blocks.

The SBC Stream Table File has information only about executed instruction streams, which is

sufficient to reconstruct the original address trace. However, the simulation of the secure installation

process requires information about all basic blocks in the code, in the order to generate the signed code.

We have modified a disassembling feature of SimpleScalar to generate the table of all basic blocks.

The secure installation process is simulated as follows. For the SIGBEV, basic block lengths are

increased by the signature length, and the basic block starting addresses are recalculated to take into

 84

account the embedded signatures. For the SIGBT techniques, we already have a table for all basic blocks

in the code.

Figure 5.3 illustrates the implementation of the SIGB simulators. The simulator first reads input

parameters from the command line: name of the trace, number of I-cache sets, and number of I-cache ways

for both SIGBEV and SIGBTK, and also the number of S-cache sets and ways for the SIGBTK. The

simulator reads information about the number of basic blocks in each instruction stream, and the starting

addresses and lengths for each executed basic block.

// main program routine
main {
 get_input_arguments();
 read_sbc_table(); // read basic block and stream info
 read_trace();
 print_stats();
}

// read SBC traces and simulate I-cache accesses
read_trace() {

 while (more data in stream trace) {
 get Stream ID from stream trace;

 // for all basic blocks but the last, update cache
 for (i=1 to NumBB[StreamID] -1)
 instruction_address = BB[StreamID][i].start_address;

 for (j=1 to BB[StreamID][i]).length {
 // check if in cache, update cache if not
 is_cache_miss(instruction_address);
 instruction_address += instruction_length;
 }
 }

 // for the last basic block, call verify_signature on cache miss
 any_BB_miss = 0;
 instruction_address = BB[StreamID][last].start_address;
 for (j=1 to BB[StreamID][i]) {

 if (is_cache_miss(instruction_address))

 any_BB_miss = 1;

 instruction_address += instruction_length;

 }

 if (any_BB_miss) verify_signature();

 } // end while
}

Figure 5.3 Pseudo-code for the trace-driven SIGB simulator

 85

The SIGB simulator then reads stream identificators, StreamID, from the SBC trace file. Note

than we need only the Stream-Based Instruction Trace, and not the Stream-Based Data Trace. For each

basic block but the last, we just update the I-cache if necessary and count the cache misses. The function

is_cache_miss() is used both to verify the I-cache hit/miss and to update the cache. The I-cache is

implemented as a simple two-dimensional array, Icache[number of ways][number of sets], with the true

LRU replacement policy. For the last basic block in an instruction stream, the program calls the procedure

verify_signature() if any of the instructions in that cache block caused a cache miss. Finally, print_stats()

prints the number of cache misses and signature verifications.

The main difference between the SIGBEV and the SIGBTK simulators is the function

verify_signature() (Figure 5.4). In the SIGBEV simulator, this function just increments the number of

signature verifications; the total number of verifications is printed in print_stats(). In the SIGBTK

simulator, this function also verifies whether the signature of the currently executing basic block is in the S-

cache, by calling the function is_Scache_miss(). The S-cache is implemented in the same way as the I-

cache. In the case of an S-cache miss, the simulator counts the number of memory accesses needed to find

the signature in the signature table section in memory, by calling the function count_memory_accesses().

In the case of a perfect hash mapping, this function always returns 1. We also experiment with the

segmented binary search as described in Section 4.5.

// SIGBEV verify_signature procedure
verify_signature() {
 // count signature verifications
 ++signature_check;
}

// SIGBTK verify_signature procedure
verify_signature() {
 ++signature_check;

 // check if the signature is in the S-cache
 if (is_Scache_miss()) {
 ++signature_fetch;
 count_memory_accesses();
 }
}

Figure 5.4 Pseudo-code for the function verify_signature()

 86

5.7 Simulator Parameters

In order to evaluate sensitivity of the proposed techniques to different system configurations, we

vary several simulator parameters. In this section we specify the values of fixed simulator parameters and

describe evaluated configurations.

5.7.1 SIGC Simulator Parameters

We have two sets of experiments for the SIGC techniques, one set with the simulator configured

as an in-order embedded processor system such as XScale [127], and another set with a high-end, super-

scalar, out-of-order processor configuration. The signature size in all experiments is 128 bits, i.e., 16 bytes.

The D-cache (data cache) and I-cache have the same size and organization.

For the embedded processor configuration, we vary the following simulation parameters:

 The I-cache size (1, 2, 4, and 8KB);

 The I-cache line size (64 and 128 bytes);

 The width of a bus between memory and the I-cache (32 and 64 bits);

 The speed of processor core relative to memory (fast and slow).

The values of other simulator parameters for the embedded system configuration are shown in

Table 5.3. We assume that the AES decryption latency with a 128-bit key is 12 processor cycles for slow,

and 22 cycles for fast processor core, which are the speeds that can be attainable with current optimized

ASIC solutions [138]. Since a signature is always fetched first, signature decryption is finished before the

protected block is fetched, so the decryption latency is completely hidden in all evaluated system

configurations. Translation latency is one cycle for the SIGCED and SIGCEK techniques, and one cycle

on a mispredicted branch for the SIGCEV technique.

For the SIGC techniques with the S-cache, the S-cache has 8 ways, random cache replacement

policy, and twice as many entries as the corresponding I-cache. Note that an S-cache line contains only one

signature of 16 bytes, whereas an I-cache line contains 64 or 128 bytes. Hence, the size of an I-cache with

n entries is approximately two or four times larger than the size of an S-cache with 2n entries

 87

(approximately because we do not take tag fields into account). We also experiment with the S-cache with

the same number of entries as the I-cache, full associativity, and LRU replacement policy.

Table 5.3 Simulator parameters for the embedded processor configuration

Simulator parameter Value

Branch predictor type Bimodal

Branch predictor table size 128 entries, direct-mapped

Return address stack size 8 entries

Instruction decode bandwidth 1 instruction/cycle

Instruction issue bandwidth 1 instruction/cycle

Instruction commit bandwidth 1 instruction/cycle

Pipeline with in-order issue True

I-cache/D-cache 4-way, FIFO replacement, first level only

I-TLB/D-TLB 32 entries, fully associative, FIFO replacement

Execution units 1 floating point, 1 integer

Memory fetch latency (first chunk/other chunks) 12/3 cycles for slow core,
24/6 cycles for fast core

Branch misprediction latency
2 cycles for slow core,

3 cycles for fast core

TLB latency 30 cycles for slow core,
60 cycles for fast core

Register update unit size 8

Load/store queue (LSQ) size 4

For the high-end processor configuration, we vary the following simulation parameters:

 The I-cache size (8, 16, and 32KB);

 The I-cache line size (64 and 128 bytes).

 88

The values of other simulator parameters for the high-end configuration are shown in Table 5.4.

In this configuration we also assume that the decryption latency is completely hidden, and translation

address latency of the SIGCE is one processor cycle.

Table 5.4 Simulator parameters for the high-end processor configuration

Simulator parameter Value

Branch predictor type Bimodal

Branch predictor table size 512 sets, 4 way

Return address stack size 8 entries

Instruction decode bandwidth 4 instruction/cycle

Instruction issue bandwidth 4 instruction/cycle

Instruction commit bandwidth 4 instruction/cycle

Pipeline with in-order issue False

I-cache/D-cache 4-way, LRU replacement, first level only

I-TLB/D-TLB 16 ways, 4 sets, LRU replacement

D-TLB 32 ways, 4 sets, LRU replacement

Execution units
4 floating point and 4 integer ALU’s,

1 floating point and 1 integer multiplier

Memory fetch latency (first chunk/other chunks) 18/2 cycles

The width of a bus between memory and the I-cache 64 bits

Branch misprediction latency 3 cycles

TLB latency 30 cycles

Register update unit size 16

Load/store queue (LSQ) size 8

 89

5.7.2 SIGB Simulator Parameters

For the SIGB experiments, we vary the I-cache size: 16, 32, and 64KB. The I-cache has 4 ways,

64B line size, and LRU replacement policy. The S-cache in the SIGBTK technique has the same number

of ways as the I-cache and 2 ways, i.e., the I-cache has twice as many entries as the S-cache.

5.8 Benchmarks

For the SIGC experiments and embedded processor configurations, we use benchmarks from

several benchmark suites for embedded systems: MiBench [139], MediaBench [140], and Basicrypt [141].

Table 5.5 lists the benchmarks and their short descriptions. Since the signature verification is done only at

an I-cache miss, the benchmarks are selected so that most of them have a relatively high number of I-cache

misses for at least some of the simulated cache sizes.

All benchmarks but mpeg2encode use the largest possible provided input. The Mpeg2encode

benchmark uses the provided test input. Table 5.6 shows the total size of the original binary and the total

size of the executable code sections in bytes, and the number of executed instructions. Since only the

executable code sections are signed, the memory overhead of signature verification techniques depends on

the size of these sections. All benchmarks are written in C language; all are compiled using provided

makefiles and ARM gcc cross-compiler included in the SimpleScalar toolset with the -static option. This

compiler includes all library functions in the code, and not only those invoked by the actual program.

The benchmarks blowfish_dec and blowfish_enc execute the same program, blowfish, for decoding

and encoding. Hence, these two benchmarks have the same code size, but different number of executed

instructions. Similarly, the benchmarks rijndael_dec and rijndael_enc execute the program rijndael for

decoding and encoding.

For the SIGC experiments and high-end processor configurations, we use selected benchmarks

from the SPEC CPU2000 benchmark set [137]. This benchmarks set consists of CPU-intensive

applications that focus on integer or floating point calculations. Table 5.8 lists the SPEC CPU2000

benchmarks used for the SIGC experiments, along with the corresponding executable file/code section size

 90

when benchmarks are compiled with ARM gcc cross-compiler and makefiles provided with the source

code. In simulations, all benchmarks are run for the first one billion instructions.

For the SIGB experiments, we use SPEC CPU2000 traces of the first two billion executed

instructions in the SBC format [135, 136]. Table 5.7 lists the traced benchmarks, the language of the

source code, short description, and the size of Alpha precompiled binaries and code sections.

Table 5.5 Description of benchmarks from embedded domain

Benchmark Suite Description

blowfish_dec MiBench Blowfish decryption

blowfish_enc MiBench Blowfish encryption

cjpeg MiBench JPEG compression

djpeg MiBench JPEG decompression

ecdhb Basicrypt Diffie-Hellman key exchange

ecdsignb Basicrypt Digital signature generation

ecdsverb Basicrypt Digital signature verification

ecelgdecb Basicrypt El-Gamal encryption

ecelgencb Basicrypt El-Gamal decryption

ispell MiBench Spell checker

mpeg2_enc MediaBench MPEG2 compression

qsort MiBench Quicksort

rijndael_dec MiBench Rijndael decryption

rijndael_enc MiBench Rijndael encryption

stringsearch MiBench String search

 91

Table 5.6 Benchmark code size and executed instructions for embedded systems

Benchmark Executable file size in bytes
total (code section) Executed instructions in millions

blowfish_dec 1,032,731 (190,900) 544.0

blowfish_enc 1,032,731 (190,900) 544.0

cjpeg 1,261,485 (298,916) 104.6

djpeg 1,274,670 (311,108) 23.4

ecdhb 1,102,298 (258,188) 122.5

ecdsignb 1,254,373 (310,068) 131.3

ecdsverb 1,254,519 (310,212) 171.9

ecelgdecb 1,102,207 (258,092) 92.4

ecelgencb 1,102,271 (258,156) 180.2

ispell 1,238,144 (240,972) 817.7

mpeg2_enc 1,318,326 (317,504) 127.5

qsort 1,180,697 (252,284) 737.9

rijndael_dec 1,045,273 (199,364) 307.9

rijndael_enc 1,045,273 (199,364) 320.0

stringsearch 1,025,446 (188,484) 3.7

 92

Table 5.7 Description of SPEC CPU2000 benchmarks and the size of precompiled Alpha binaries

Benchmark Language Description File size

total (code section)

164.gzip C Compression 376832 (212992)

176.gcc C C Programming Language Compiler 3792896 (1990656)

181.mcf C Combinatorial Optimization 303104 (163840)

186.crafty C Game Playing: Chess 942080 (442368)

197.parser C Word Processing 598016 (319488)

252.eon C++ Computer Visualization 1187840 (794624)

253.perlbmk C PERL Programming Language 2154496 (876544)

254.gap C Group Theory, Interpreter 1458176 (933888)

255.vortex C Object-oriented Database 2310144 (819200)

In
te

ge
r

300.twolf C Place and Route Simulator 917504 (450560)

168.wupwise Fortran 77 Physics / Quantum Chromodynamics 1114112 (819200)

171.swim Fortran 77 Shallow Water Modeling 1105920 (819200)

172.mgrid Fortran 77 Multi-grid Solver: 3D Potential Field 1089536 (802816)

177.mesa C 3-D Graphics Library 2875392 (917504)

178.galgel Fortran 90 Computational Fluid Dynamics 1458176 (1048576)

179.art C Image Recognition / Neural Networks 368640 (237568)

183.equake C Seismic Wave Propagation Simulation 385024 (253952)

188.ammp C Computational Chemistry 655360 (385024)

189.lucas Fortran 90 Number Theory / Primality Testing 1146880 (851968)

191.fma3d Fortran 90 Finite-element Crash Simulation 4505600 (1867776)

200.sixtrack Fortran 77 Nuclear Physics Accelerator Design 6348800 (2596864)

Fl
oa

tin
g

po
in

t

301.appsi Fortran 77 Meteorology: Pollutant Distribution 1531904 (1114112)

 93

Table 5.8 The size of SPEC CPU2000 benchmarks when compiled with the ARM gcc compiler

Benchmark Executable file size
total (code section)

164.gzip 1285947 (294924)

176.gcc 2825380 (1562516)

181.mcf 1160438 (248848)

s197.parser 1323097 (349888)

177.mesa 1799804 (765748)

179.art 1223820 (264688)

183.equake 1238847 (269568)

188.ammp 1470400 (390656)

 94

CHAPTER 6

EVALUATION RESULTS

“You can observe a lot just by watching.”

Yogi Berra

In this chapter we present and discuss results of evaluation of the proposed techniques for

instruction block verification. We are primarily interested in performance overhead relative to the Base

system without the signature verification mechanism. We also evaluate memory overhead, i.e., the length

of a signed executable file versus the length of the corresponding original executable.

6.1 SIGC Evaluation

We evaluate performance overhead of the SIGC techniques by comparing the number of processor

clock cycles per instruction (CPI) with signature verification to the corresponding number with the Base

system. To gain insight into reasons of performance overhead, we also measure the number of S-cache

misses for the SIGCEK and SIGCTK, and the increase of I-cache misses for the SIGCEV technique.

6.1.1 Base System

Table 6.1 shows the number of I-cache misses per 1000 executed instructions for the Base system,

for benchmarks from the embedded domain. Most of these benchmarks benefit from having larger 128B

cache lines, especially with small I-caches. However, for the largest considered 8K I-cache, more than half

of benchmarks have less cache misses with 64B I-cache lines. The ispell, qsort, rijndael_enc, rijndael_dec,

 95

and stringsearch are the only benchmarks having more than 10 I-cache misses per 1000 instructions with

caches larger than 1K. In addition, other benchmarks have less than 1 I-cache miss per 1000 instructions

with the 8K I-cache.

The values of CPI for the base system are shown in Table 6.2, Table 6.3, Table 6.4, and Table 6.5,

for slow processor core/32-bit memory bus, slow core/64-bit bus, fast core/32-bit bus, and fast core/64-bit

bus, respectively. A configuration with 64B I-cache lines always outperforms the corresponding 128B line

configuration. Note that it takes more processor cycles to fetch a 128B cache line than a 64B one. Hence,

even a smaller number of I-cache misses with 128B cache lines does not necessarily mean faster execution,

i.e., a lower CPI. The wider 64-bit memory reduces the cache miss penalty of the 32-bit bus; therefore, it

reduces the CPI. On the other hand, a fast processor core has to wait longer for completion of a fetch from

memory than a slow one, which results in a higher CPI. If both fast and slow processor systems have the

same memory speed, the cycle time of the fast processor is shorter, so the higher CPI does not have to

indicate a longer execution time. Detailed analysis of relationships between common architectural

parameters and CPI is out of the scope of this dissertation; we need evaluation results for the base system

primarily as a reference point for signature verification techniques.

Table 6.6 shows the number of I-cache misses per 1000 instructions for selected SPEC CPU 2000

benchmarks and high-end processor configurations, and Table 6.7 shows the corresponding CPI.

 96

Table 6.1 Base: I-cache misses per 1000 instructions in embedded processor configurations

I-cache misses per 1000 instructions

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 22.19 5.59 0.08 0.00 13.65 3.78 0.80 0.01

blowfish_enc 22.19 4.56 0.09 0.00 12.90 3.78 0.80 0.01

cjpeg 6.16 1.60 0.31 0.09 6.60 1.65 0.27 0.08

djpeg 8.43 3.99 1.10 0.24 6.17 2.94 0.97 0.24

ecdhb 20.31 5.97 2.26 0.13 14.57 6.20 1.63 0.16

ecdsignb 15.92 4.61 1.74 0.07 17.33 4.82 1.25 0.11

ecdsverb 21.31 5.21 2.03 0.29 16.88 5.35 1.46 0.29

ecelgdecb 26.16 0.34 0.03 0.01 22.44 2.50 0.04 0.01

ecelgencb 23.41 3.21 1.15 0.06 18.71 4.37 0.84 0.10

ispell 61.67 51.07 21.66 2.86 40.35 35.75 20.94 3.50

mpeg2_enc 1.83 0.79 0.33 0.16 2.12 0.59 0.27 0.12

qsort 44.23 29.44 22.19 5.45 32.76 21.09 15.27 7.41

rijndael_dec 70.62 68.64 67.96 6.63 41.59 40.26 37.61 9.92

rijndael_enc 73.70 70.52 67.96 8.12 42.58 39.40 38.10 11.19

stringsearch 55.32 35.42 12.89 3.70 37.95 24.34 10.63 1.92

 97

Table 6.2 Base: CPI in embedded processor configurations, slow core, memory bus 32 bits

CPI

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 4.26 3.56 2.64 2.30 5.49 4.55 3.03 2.30

blowfish_enc 4.26 3.53 2.64 2.30 5.42 4.55 3.03 2.30

cjpeg 3.02 2.48 2.23 1.58 5.21 3.64 2.99 1.81

djpeg 3.83 2.81 2.24 1.71 8.39 5.17 3.41 1.86

ecdhb 2.75 1.93 1.72 1.61 3.28 2.28 1.77 1.62

ecdsignb 2.58 1.94 1.77 1.68 3.36 2.21 1.81 1.70

ecdsverb 2.76 1.96 1.78 1.69 3.37 2.26 1.83 1.71

ecelgdecb 3.13 1.80 1.78 1.78 4.20 1.99 1.78 1.78

ecelgencb 2.95 1.87 1.75 1.69 3.80 2.14 1.77 1.70

ispell 6.31 5.48 3.34 2.16 9.57 7.93 5.48 2.65

mpeg2_enc 2.38 1.93 1.60 1.49 3.39 2.42 1.75 1.52

qsort 4.02 3.14 2.71 1.77 5.59 3.97 3.16 2.31

rijndael_dec 8.87 7.97 6.83 2.71 15.65 12.88 9.06 4.47

rijndael_enc 8.87 7.88 6.64 2.70 15.51 12.51 8.89 4.41

stringsearch 5.15 3.85 2.52 1.92 7.95 5.57 3.18 2.00

 98

Table 6.3 Base: CPI in embedded processor configurations, slow core, memory bus 64 bits

CPI

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 3.37 2.98 2.47 2.30 3.98 3.47 2.67 2.30

blowfish_enc 3.37 2.96 2.48 2.30 3.94 3.47 2.67 2.30

cjpeg 2.34 2.03 1.89 1.52 3.46 2.62 2.28 1.64

djpeg 2.82 2.25 1.93 1.64 5.17 3.47 2.54 1.71

ecdhb 2.23 1.78 1.67 1.60 2.48 1.96 1.69 1.61

ecdsignb 2.17 1.82 1.73 1.68 2.56 1.96 1.75 1.69

ecdsverb 2.27 1.83 1.73 1.68 2.56 1.98 1.75 1.69

ecelgdecb 2.52 1.79 1.78 1.78 3.05 1.89 1.78 1.78

ecelgencb 2.38 1.79 1.72 1.69 2.80 1.92 1.73 1.69

ispell 4.36 3.90 2.71 2.05 5.97 5.10 3.81 2.31

mpeg2_enc 1.96 1.71 1.53 1.48 2.48 1.97 1.61 1.49

qsort 2.89 2.41 2.17 1.63 3.66 2.80 2.37 1.92

rijndael_dec 5.63 5.12 4.50 2.25 9.04 7.57 5.56 3.15

rijndael_enc 5.66 5.10 4.41 2.26 9.00 7.40 5.49 3.14

stringsearch 3.62 2.89 2.15 1.82 5.01 3.74 2.48 1.85

 99

Table 6.4 Base: CPI in embedded processor configurations, fast core, memory bus 32 bits

CPI

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 6.36 4.94 3.02 2.31 8.81 6.93 3.81 2.32

blowfish_enc 6.36 4.88 3.03 2.31 8.66 6.93 3.81 2.32

cjpeg 4.66 3.55 3.03 1.72 9.04 5.88 4.56 2.18

djpeg 6.23 4.14 2.97 1.91 15.43 8.89 5.34 2.20

ecdhb 4.00 2.30 1.87 1.63 5.06 3.00 1.97 1.66

ecdsignb 3.56 2.23 1.88 1.70 4.89 2.76 1.96 1.72

ecdsverb 3.95 2.29 1.91 1.72 4.99 2.88 2.01 1.76

ecelgdecb 4.63 1.84 1.80 1.80 6.75 2.25 1.81 1.80

ecelgencb 4.33 2.08 1.83 1.71 6.02 2.63 1.89 1.73

ispell 11.00 9.29 4.87 2.46 17.54 14.19 9.23 3.46

mpeg2_enc 3.36 2.44 1.75 1.53 5.39 3.43 2.06 1.59

qsort 6.73 4.93 4.04 2.13 9.86 6.58 4.93 3.22

rijndael_dec 16.58 14.74 12.39 3.84 30.13 24.52 16.74 7.39

rijndael_enc 16.52 14.50 11.96 3.76 29.78 23.69 16.34 7.21

stringsearch 8.82 6.17 3.44 2.21 14.46 9.59 4.76 2.35

 100

Table 6.5 Base: CPI in embedded processor configurations, fast core, memory bus 64 bits

CPI

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 4.59 3.78 2.70 2.30 5.78 4.76 3.10 2.31

blowfish_enc 4.59 3.75 2.70 2.30 5.70 4.76 3.10 2.31

cjpeg 3.29 2.66 2.36 1.61 5.55 3.84 3.13 1.85

djpeg 4.22 3.02 2.36 1.75 9.00 5.49 3.58 1.89

ecdhb 2.96 2.00 1.75 1.62 3.45 2.35 1.80 1.64

ecdsignb 2.75 2.00 1.80 1.69 3.52 2.26 1.83 1.71

ecdsverb 2.96 2.03 1.81 1.70 3.54 2.32 1.86 1.73

ecelgdecb 3.39 1.82 1.80 1.80 4.45 2.04 1.81 1.80

ecelgencb 3.18 1.92 1.78 1.71 4.01 2.20 1.80 1.72

ispell 7.09 6.12 3.61 2.24 10.30 8.50 5.84 2.76

mpeg2_enc 2.54 2.01 1.63 1.51 3.57 2.52 1.78 1.53

qsort 4.48 3.46 2.96 1.86 5.99 4.23 3.35 2.43

rijndael_dec 10.10 9.05 7.72 2.90 16.91 13.89 9.73 4.74

rijndael_enc 10.09 8.94 7.49 2.88 16.75 13.48 9.54 4.67

stringsearch 5.76 4.24 2.69 1.99 8.54 5.94 3.35 2.06

 101

Table 6.6 Base: I-cache misses per 1M executed instructions in high-end processor configurations

I-cache misses per 1M instructions

64B cache line 128B cache line Benchmarks

8K 16K 32K 8K 16K 32K

164.gzip 6.60 0.95 0.43 5.15 0.82 0.26

176.gcc 36437.27 21440.29 5981.83 27171.32 18723.99 7074.12

177.mesa 23742.87 3148.07 9.62 19754.18 4822.73 668.02

179.art 0.26 0.25 0.25 0.17 0.15 0.15

181.mcf 15086.39 94.25 0.48 15387.58 859.36 778.61

183.equake 15813.20 3085.84 534.49 26766.70 3982.24 949.73

188.ammp 7674.31 1133.98 3.35 6429.59 1144.26 4.45

197.parser 707.16 321.44 7.34 656.77 232.69 6.13

Table 6.7 Base: CPI in high-end processor configurations

CPI

64B cache line 128B cache line Benchmarks

8K 16K 32K 8K 16K 32K

164.gzip 1.00 0.97 0.92 1.20 1.13 1.06

176.gcc 2.01 1.50 1.00 2.36 1.82 1.18

177.mesa 1.37 0.76 0.67 1.60 0.92 0.70

179.art 1.12 1.12 1.12 1.03 1.03 1.03

181.mcf 1.10 0.66 0.65 1.38 0.74 0.69

183.equake 1.12 0.73 0.66 1.99 0.84 0.69

188.ammp 2.21 2.01 1.98 3.05 2.81 2.76

197.parser 0.73 0.72 0.71 0.75 0.72 0.71

 102

6.1.2 Performance Overhead

Table 6.8 and Table 6.9 show the number of I-cache misses with the SIGCEV technique. Since

the SIGCEV I-cache is smaller, for most benchmarks it has more cache misses than the Base I-cache.

Table 6.10 and Table 6.11 show the number of S-cache misses with SIGCEK and SIGCTK techniques. Let

us say again that the considered S-cache has the same number of sets and twice as many ways (eight) as the

corresponding I-cache, and one S-cache line can store one instruction block signature. The total size of the

S-cache is approximately ¼ of the I-cache size for I-caches with 128B lines, and approximately ½ of the I-

cache size with 64B lines. The S-cache is accessed on an I-cache miss to retrieve the signature. Hence, the

number of S-cache misses decreases faster than the number of I-cache misses, with the I-cache size

increase.

Let us first consider the performance of the SIGC techniques with 32-bit bus, slow processor core,

and 128B I-cache lines, with benchmarks from the embedded domain (Figure 6.1). The results indicate a

low performance overhead of the SIGCED technique. Even with the very small 1K I-cache, this technique

increases CPI in the range 0.8-7.4%, with 8 out of 15 benchmarks having more than 5% increase. With the

4K I-cache, CPI increases for more than 5% for only 3 benchmarks, since the influence of signature

verification overhead is reduced with I-cache miss reduction. With the largest considered I-cache (8K), the

maximum SIGCED CPI increase is 3.8%, and only 5 benchmarks have more than 1% increase.

The absolute CPI increase for the SIGCED technique depends on the number of I-cache misses

given in Table 6.1: more cache misses means more signature verifications, that is, increased performance

overhead. However, the ratio of CPI for SIGCED and Base does not absolutely follow the trend of the

number of I-cache misses, since for an application with a relatively large number of I-cache misses a

relative CPI increase may be smaller than for an application with fewer cache misses. For example, with

the 1K I-cache rijndael_enc has a 3% CPI increase and ecdhb has a 5.8% increase, whereas rijndae_enc

has 42.58 I-cache misses per 1000 instructions, and ecdhb only 14.57. This can be easily explained by the

fact that the Base CPI for this system configuration is 15.51 for rijndael_enc and 3.28 for ecdhb (Table

6.2), and the absolute CPI increase with the SIGCED technique is 0.19 for ecdhb and 0.47 for rijndael_enc.

 103

As explained in Chapter 4, the SIGCED overhead can be reduced if signatures are kept in the S-

cache, i.e., with the SIGCEK technique. The SIGCEK CPI increase is in the range 0.3-5% with the 1K,

0.1-4.4% with the 2K, 0.01-2% with 4K, and 0-0.4% with the 8K I-cache. The SIGCEK reduces the

performance overhead of the SIGCED for 6.5-83.5%, 24.7-91.2%, and 58.3-90.8%, with the 1K, 2K, and

4K I-cache, respectively. With the 8K I-cache, the low number of I-cache misses enables the SIGCEK to

virtually remove performance overhead of signature verification.

The SIGCEV protected block size in these experiments is 112B, so the actual I-cache size is 0.875

of the Base I-cache size. The large SIGCEV performance overhead of 14% for mpeg2_enc with 1K I-

cache, 26% for ecelgdecb with the 2K I-cache, 33% for stringsearch with the 4K I-cache, and 24% for

rijndael_enc is due to the significant relative increase in the number of cache misses (Table 6.9).

However, the SIGCEV may have even a lower CPI than the Base case. The SIGCEV I-cache has

a different mapping function, so the number of I-cache misses may be lower. If such a benchmark also has

a relatively low branch misprediction rate, such that performance overhead due to the SIGCEV address

translation is negligible, the SIGCEV might marginally outperform the Base case. This is the case with the

ecdsignb and ecdsverb benchmarks with the 1K I-cache, rijndael_dec with the 2K and 8K, and blowfish

with the 4K I-cache.

Somewhat surprisingly, the SIGCEV technique outperforms the SIGCED for 11 out of

15 benchmarks with the 1K I-cache. This is due to the difference in the instruction block address

translation. With the SIGCEV, the address translation overhead is added to the branch misprediction

penalty, and with the SIGCED, it is added to the I-cache miss penalty. Hence, the SIGCEV total overhead

might be smaller, especially with small caches with more capacity misses.

The SIGCTD technique always introduces more performance overhead than the SIGCED, since

signatures stored in the separate code section require an additional memory access. However, this

difference is more significant with small caches: the ratio between the CPI for SIGCTD and Base is 1.013-

1.119 with the 1K I-cache, and 1.0001-1.066 with the 8K I-cache. As with the SIGCED, the S-cache is

able to significantly reduce performance overhead. For example, with the 1K I-cache, the SIGCTK reduces

the overhead of the SIGCTD 7.2-90.6%. Note that the S-cache is more beneficial to the SIGCTD than to

the SIGCED technique. This effect is also due to the longer signature fetch latency with the SIGCTD.

 104

Overall, the SIGCTK technique is a good alternative to SIGCEK, especially since the SIGCTK does not

require the translation address mechanism on each I-cache miss.

Let us now consider the sensitivity of SIGC techniques to the processor core speed, memory bus

width, and size of protected instruction block, i.e., the I-cache line size (Figure 6.2, Figure 6.3, Figure 6.4,

Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8). The number of processor clock cycles needed for

signature fetch will decrease with the wider data memory bus, and increase with the faster processor core,

so we may expect similar behavior from total signature verification overhead. Another interesting

architectural parameter is the cache line size. Without simulation, it is hard to predict the sensitivity of the

SIGCE techniques to this parameter. For example, with 64B I-cache lines, 32-bit bus and slow core, the

signature fetch for the SIGCED technique increases the number of cycles required for an instruction block

fetch by 21.05%; the corresponding increase with 128B cache lines is 11.43%. On the other hand, the Base

configuration with 64B cache has lower CPI (Table 6.2, Table 6.3, Table 6.4, and Table 6.5).

 We may group the benchmarks in two groups, according to the number of cache misses with all

considered cache sizes. The influence of the bus width, the core speed, and the cache line size will be

discussed for one benchmark from each group: ecdhb with a relatively low number of cache misses, and

rijndael_enc which is one of the two benchmarks with the largest number of cache misses per

1000 instructions for each cache size and line size (Table 6.1).

The SIGCED technique has the largest impact on performance with the 64B cache line size, the

32-bit bus, and a fast processor core. However, even with this system configuration the SIGCED

performance overhead is never more than 13% for both benchmarks, with relatively small variations

between configurations with a fixed I-cache size. For ecdhb, the largest variation is for the 1K I-cache with

64B lines, from 6% overhead with the 64-bit bus and slow core, to 12% overhead with the 32-bit bus and

fast core. For rijndael_dec, the largest variation is also with 64B I-cache lines, but with the 4K I-cache:

from 10% with the 64-bit bus and slow core, to 13% overhead with the 32-bit bus and fast core. Overall,

the SIGCED technique has more performance overhead with 64B I-cache lines than with 128B, as well as

more sensitivity to the memory bus width and processor speed. With 128B I-cache lines, the largest

overhead variation range is 4-7% for ecdhb, and 2.3-3.5% for rijndael_enc. Clearly, if the number of I-

 105

cache misses is very low, as it is for ecdhb in the 8K I-cache, the SIGCED overhead does not depend on

system parameters, since it is always close to zero.

It is interesting to note that the ratio of SIGCED CPI and the Base CPI decreases with larger

caches for ecdhb and not for rijndael_enc. The rijndael_enc benchmark has a very large number of I-cache

capacity misses in 1, 2, and 4K caches, such that the number of I-cache misses is only slightly reduced with

the cache size increase before the 8K size. Hence, the absolute overhead of the SIGCED technique does

not considerably decrease with the cache size increase. However, for rijndael_enc even a relatively small

reduction in the number of cache misses significantly improves the Base CPI, so the CPI ratio for the

SIGCED actually grows, up to the 4K cache size.

Since the S-cache eliminates a lot of signature verification overhead, the SIGCEK technique is

much less sensitive to configuration parameters. For ecdhb and a fixed I-cache size, the SIGCEK

performance overhead is almost constant. For rijndael_enc, the largest overhead variation range is 7-9%.

The SIGCEV has more I-cache misses than the Base case for both ecdhb and rijndael_enc (Table

6.1, Table 6.8), so it always has lower performance. For both benchmarks the SIGCEV is more sensitive to

configuration change than the SIGCED, since a narrower bus and a faster core increase both the cache miss

latency and the latency due to signature fetch. For ecdhb, the largest variation is for the 2K I-cache with

64B lines, from 12% overhead with the 64-bit bus and slow core, to 36% overhead with the 32-bit bus and

fast core. For rijndael_dec, the largest variation is with 64B I-cache lines and the 8K I-cache: from 43%

with the 64-bit bus and slow core, to 98% overhead with the 32-bit bus and fast core. The SIGCEV with

shorter cache lines has unacceptable performance overhead, so it is not suitable for systems with 64B cache

lines. We can explain this overhead by looking again at I-cache misses and CPI for the Base system: For

both ecdhb and rijndael_enc, the number of I-cache misses is significantly larger with 64B cache lines,

whereas the CPI is lower. Hence, the increase in the number of I-cache misses due to the SIGCEV is more

detrimental to performance with 64B cache lines.

The rijndael_enc benchmark has a very large SIGCEV performance overhead with the 8K I-cache.

This happens because the number of I-cache misses has doubled compared to the Base case. Moreover,

there is a sharp drop in the Base CPI for 8K I-cache, so the relative performance overhead increase is even

more noticeable.

 106

The SIGCTD technique in configurations with 128B I-cache lines is only moderately sensitive to

the memory bus width and core speed variation: The largest overhead variation range is 5-9% for ecdhb,

and 8-11% for rijndael_enc. However, in configurations with 64B I-cache lines, the SIGCTD performance

overhead increases significantly, up to 21% for ecdhb, and 25% for rijndael_enc. This is also due to the

large number of I-cache misses, and consequently, large overhead of additional memory accesses.

The SIGCTK technique successfully eliminates a large portion of SIGCTD overhead. However,

due to larger penalty for signature verification, this technique is more sensitive to changes of architectural

parameters than the SIGCEK, especially with 64B I-cache lines. The largest overhead variation range is

with 64B I-cache lines and 1K I-cache: 4-7% for ecdhb, and 13-17% for rijndael_enc.

For embedded systems with 128B cache lines, we may conclude the following. If such system has

a low hardware budget, and all programs executing in protected mode, the SIGCEV technique has the best

price-performance tradeoff, since in small caches it outperforms the SIGCED for most benchmarks and

employs less hardware resources. However, the SIGCED is better for systems with larger caches. With

25% larger hardware budget invested in the S-cache, the SIGCEK technique has a very low performance

overhead across all considered system configurations. With larger caches we may also use the techniques

with signature stored in the separate code section.

For systems with 64B cache lines, we recommend the use of the SIGCED or SIGCEK only,

depending on the available hardware resources. The increase in the number of I-cache misses becomes a

prohibiting factor in the use of the SIGCEV and SIGCTD techniques; even the SIGCTK may have

relatively significant performance overhead.

We also evaluate the SIGCE techniques in high-end processor configurations with out-of-order

execution (Figure 6.9 and Figure 6.10). The SIGCED has very low performance overhead, from nearly 0 to

9%. With the SIGCEK, the worst-case overhead is reduced to 5%. With 128B I-cache lines, the SIGCEV

overhead is up to 14%; as in the embedded domain, some applications benefit from the SIGCEV cache

mapping function and have lower CPI than with the Base system. However, the significant increase in the

number of I-cache misses with 64B lines (Table 6.6) results in SIGCEV overhead up to more than 70%.

The results indicate that the SIGCTD technique is also not suitable for 64B high-end configurations, with

the overhead of up to 35%. With the SIGCTK, the worst-case overhead is almost halved to 18%.

 107

Table 6.8 SIGCEV: I-cache misses per 1000 executed instructions in embedded processor configurations

I-cache misses per 1000 instructions

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 29.23 16.66 0.15 0.02 14.85 9.76 0.81 0.01

blowfish_enc 28.49 14.41 3.09 0.05 15.00 6.92 0.82 0.01

cjpeg 10.76 3.29 0.42 0.14 8.76 2.14 0.29 0.07

djpeg 21.52 6.95 2.59 0.32 7.02 3.53 1.48 0.24

ecdhb 30.73 13.70 4.93 0.51 17.21 8.65 2.21 0.21

ecdsignb 24.25 10.75 3.79 0.38 13.53 6.66 1.70 0.15

ecdsverb 25.95 11.49 4.20 0.65 14.55 7.17 1.91 0.33

ecelgdecb 40.53 9.13 0.23 0.02 23.71 6.95 0.07 0.01

ecelgencb 35.76 11.50 2.59 0.26 20.48 7.82 1.15 0.11

ispell 76.15 65.79 32.80 6.88 48.09 42.89 23.29 5.91

mpeg2_enc 8.66 1.31 0.57 0.25 6.86 0.79 0.32 0.14

qsort 52.37 38.86 28.97 13.51 31.67 25.09 18.01 9.72

rijndael_dec 89.74 85.78 85.77 33.78 44.23 41.59 40.26 9.97

rijndael_enc 88.94 87.03 86.37 45.58 47.03 43.85 41.30 22.94

stringsearch 69.04 43.63 19.51 0.27 44.44 32.86 20.81 5.46

 108

Table 6.9 SIGCEV: I-cache misses per 1M executed instructions in high-end processor configurations

I-cache misses per 1M instructions

64B cache line 128B cache line Benchmarks

8K 16K 32K 8K 16K 32K

164.gzip 13.86 1.37 0.53 5.87 0.60 0.28

176.gcc 47021.24 30973.39 11149.76 30133.89 21066.56 7835.23

177.mesa 34994.13 7566.03 416.88 22750.82 5407.08 1219.94

179.art 0.35 0.32 0.31 0.18 0.16 0.16

181.mcf 27247.82 1073.50 4.02 13878.65 2993.24 0.32

183.equake 44478.80 10602.37 848.80 27442.49 3978.82 408.98

188.ammp 13671.61 3982.53 139.25 7878.14 3861.29 1409.66

197.parser 1141.27 596.88 65.03 943.63 274.62 58.13

Table 6.10 S-cache misses per 1000 executed instructions in high-end processor configurations

S-cache misses per 1000 instructions

64B cache line 128B cache line Benchmarks

8K 16K 32K 8K 16K 32K

164.gzip 0.51 0.43 0.43 0.33 0.27 0.26

176.gcc 18692.02 5478.01 891.82 16307.49 6019.75 961.11

177.mesa 850.19 2.93 1.75 964.94 3.21 1.07

179.art 0.25 0.25 0.25 0.15 0.15 0.15

181.mcf 0.69 0.50 0.47 9.57 0.30 0.27

183.equake 1517.90 0.49 0.41 2398.67 0.37 0.26

188.ammp 631.48 0.62 0.54 947.07 2.12 0.33

197.parser 166.46 5.99 2.82 152.18 4.06 1.75

 109

Table 6.11 S-cache misses per 1000 executed instructions in embedded processor configurations

S-cache misses per 1000 instructions

64B cache line 128B cache line Benchmarks

1K 2K 4K 8K 1K 2K 4K 8K

blowfish_dec 4.56 0.05 0.00 0.00 4.79 0.07 0.00 0.00

blowfish_enc 4.56 0.05 0.00 0.00 4.23 0.07 0.00 0.00

cjpeg 1.06 0.21 0.05 0.01 1.24 0.19 0.06 0.01

djpeg 3.70 0.81 0.16 0.05 2.90 0.78 0.16 0.03

ecdhb 6.55 1.70 0.09 0.02 4.76 1.45 0.09 0.01

ecdsignb 5.02 1.30 0.05 0.01 3.67 1.10 0.06 0.01

ecdsverb 5.52 1.62 0.19 0.01 4.01 1.30 0.20 0.01

ecelgdecb 0.24 0.02 0.01 0.01 2.21 0.02 0.01 0.01

ecelgencb 3.43 0.87 0.04 0.01 3.56 0.74 0.05 0.01

ispell 39.65 7.88 2.33 0.31 30.61 9.42 2.51 0.44

mpeg2_enc 0.65 0.28 0.12 0.05 0.50 0.23 0.09 0.04

qsort 29.65 16.06 1.43 0.00 21.48 13.26 4.03 0.00

rijndael_dec 66.49 45.14 0.05 0.00 38.82 28.67 1.40 0.00

rijndael_enc 68.48 47.82 2.73 0.00 39.34 29.27 3.97 0.00

stringsearch 31.59 5.89 0.09 0.07 24.24 6.51 0.06 0.05

 110

Cache line 128B, size 1K, 32-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 2K, 32-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
P

I (
S

IG
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 4K, 32-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 8K, 32-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.1 SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, slow core

 111

Cache line 128B, size 1K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 2K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 4K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 8K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.2 SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, slow core

 112

Cache line 128B, size 1K, 32-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 2K, 32-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 4K, 32-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 8K, 32-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.3 SIGC: embedded processor configuration, I-cache line 128B, 32-bit bus, fast core

 113

Cache line 128B, size 1K, 64-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 2K, 64-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 4K, 64-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 8K, 32-bit bus, fast core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.4 SIGC: embedded processor configuration, I-cache line 128B, 64-bit bus, fast core

 114

Cache line 64B, size 1K, 32-bit bus, slow core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 2K, 32-bit bus, slow core

0.9
1.0
1.1
1.2

1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
P

I(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 4K, 32-bit bus, slow core

0.9
1.0

1.1
1.2
1.3
1.4

1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 8K, 32-bit bus, slow core

0.9
1.0

1.1
1.2
1.3
1.4

1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.5 SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, slow core

 115

Cache line 64B, size 1K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 2K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 4K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 8K, 64-bit bus, slow core

0.9

1.0

1.1

1.2

1.3

1.4

1.5

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.6 SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, slow core

 116

Cache line 64B, size 1K, 32-bit bus, fast core

0.8

1.0

1.2

1.4

1.6

1.8

2.0

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 2K, 32-bit bus, fast core

0.8

1.0

1.2

1.4

1.6

1.8

2.0

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 4K, 32-bit bus, fast core

0.8

1.0

1.2

1.4

1.6

1.8

2.0

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 8K, 32-bit bus, fast core

0.8

1.0

1.2

1.4

1.6

1.8

2.0

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
P

I (
SI

G
C

) /
 C

PI
(B

as
e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.7 SIGC: embedded processor configuration, I-cache line 64B, 32-bit bus, fast core

 117

Cache line 64B, size 1K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 2K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 4K, 64-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el_
de

c

rijn
da

el_
en

c

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 8K, 32-bit bus, fast core

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

blo
wfis

h_
dec

blo
wfis

h_
enc

cjp
eg

djp
eg

ec
dh

b

ec
ds

ign
b

ec
ds

ve
rb

ec
elg

de
cb

ec
elg

en
cb

isp
ell

mpe
g2

 e
qs

ort

rijn
da

el
d

rijn
da

el
e

str
ing

se
arch

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.8 SIGC: embedded processor configuration, I-cache line 64B, 64-bit bus, fast core

 118

Cache line 128B, size 8K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 16K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
P

I(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 128B, size 32K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.9 SIGC: high-end processor configuration, I-cache line 128B

 119

Cache line 64B, size 8K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 16K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
P

I(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Cache line 64B, size 32K

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

188.ammp 179.art 183.equake 176.gcc 164.gzip 181.mcf 177.mesa 197.parser

C
PI

 (S
IG

C
) /

 C
PI

(B
as

e)

SIGCED
SIGCEV
SIGCEK
SIGCTD
SIGCTK

Figure 6.10 SIGC: high-end processor configuration n, I-cache line 64B

 120

6.1.3 Memory Overhead

Memory overhead is an inherent characteristic of all proposed techniques, since instruction block

signatures are added to the executable code. The increase of a code section depends mostly on the size of

signatures and the size of protected blocks; techniques with signatures embedded in the code also may add

some padding.

Let the signature size be 16 bytes. On average, the SIGCED technique then increases the size of

the code section by 25.5% with 64B-protected blocks, and by 14.3% with 128B-protected blocks. The

SIGCEV technique has shorter protected blocks than the SIGCTK; on the other hand, it might have less

padding. With 64B I-cache lines, i.e., 48B-protected blocks, the SIGCEV increases the code section by

33.3%, and by 14.3% with 112B-protected blocks. The SIGCTD technique does not require padding, so

the code section increase is 25% with 64B cache lines, and 12.5% with 128B cache lines. The S-cache

does not influence the code size, so memory overhead is the same for SIGCED and SIGCEK, and for

SIGCTD and SIGCTK.

An executable file typically encompasses more than only code section, so the SIGC techniques

add even less memory overhead to executable files. Table 6.13 and Table 6.14 show the percentage of

executable file size increase, for selected benchmarks from the embedded domain and the SPEC CPU2000

benchmark set. For all considered benchmarks except 176.gcc and 177.mesa, the SIGC techniques have

less than 4% memory overhead with 128B I-cache lines, and less than 9% overhead with 64B cache lines.

 121

Table 6.12 Percentage of file size increase for SPEC CPU2000 benchmarks

I-cache line 64B I-cache line 128B
Benchmark

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD

164.gzip 7.65 5.85 5.73 3.28 3.29 2.87

176.gcc 18.44 14.10 13.83 7.90 7.90 6.91

181.mcf 7.15 5.47 5.36 3.07 3.07 2.68

197.parser 8.82 6.74 6.61 3.78 3.78 3.31

177.mesa 14.19 10.85 10.64 6.08 6.08 5.32

179.art 7.21 5.51 5.41 3.10 3.09 2.70

183.equake 7.25 5.55 5.44 3.11 3.11 2.72

188.ammp 8.86 6.77 6.64 3.80 3.80 3.32

 122

Table 6.13 Percentage of file size increase for benchmarks from the embedded domain

I-cache line 64B I-cache line 128B
Benchmark

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD

blowfish 6.17 4.71 4.62 2.65 2.65 2.31

cjpeg 7.90 6.04 5.92 3.39 3.39 2.96

djpeg 8.14 6.23 6.10 3.49 3.49 3.05

ecdhb 7.81 5.98 5.86 3.35 3.36 2.93

ecdsignb 8.24 6.30 6.18 3.54 3.54 3.09

ecdsverb 8.24 6.31 6.18 3.54 3.54 3.09

ecelgdecb 7.81 5.97 5.85 3.35 3.35 2.93

ecelgencb 7.81 5.97 5.86 3.35 3.35 2.93

ispell 6.49 4.97 4.87 2.79 2.78 2.43

mpeg2_enc 8.03 6.14 6.02 3.44 3.44 3.01

qsort 7.12 5.45 5.34 3.06 3.05 2.67

rijndael 6.36 4.87 4.77 2.74 2.73 2.38

stringsearch 6.13 4.69 4.60 2.63 2.63 2.30

 123

Table 6.14 Percentage of file size increase for SPEC CPU2000 benchmarks

I-cache line 64B I-cache line 128B
Benchmark

SIGCEV SIGCED SIGCTD SIGCEV SIGCED SIGCTD

164.gzip 7.65 5.85 5.73 3.28 3.29 2.87

176.gcc 18.44 14.10 13.83 7.90 7.90 6.91

181.mcf 7.15 5.47 5.36 3.07 3.07 2.68

197.parser 8.82 6.74 6.61 3.78 3.78 3.31

177.mesa 14.19 10.85 10.64 6.08 6.08 5.32

179.art 7.21 5.51 5.41 3.10 3.09 2.70

183.equake 7.25 5.55 5.44 3.11 3.11 2.72

188.ammp 8.86 6.77 6.64 3.80 3.80 3.32

 124

6.2 SIGB Evaluation

Due to the ever-increasing processor-memory speed gap, the memory access overhead will be the

predominant overhead component of the SIGB techniques. To assess this overhead, we measure the

number of S-cache misses for SIGBTK technique, and the number of additional I-cache misses for the

SIGBEV. We also measure memory overhead due to basic block signatures. All SIGB techniques have the

same memory overhead, since none of them requires padding.

6.2.1 Performance Overhead

Table 6.15 shows the number of I-cache misses and signature verifications per one million (1M)

instructions for the SIGBTK technique and 8K, 16K, and 32K I-cache sizes. The considered I-caches all

have 4 ways and LRU replacement policy. Unlike the SIGC techniques where each I-cache miss triggers

signature verification, the SIGB techniques verify basic block signatures only for the last basic block in an

instruction stream that caused at least one I-cache miss. Hence, the number of signature verifications may

be less than the number of I-cache misses. For SPEC CPU2000 benchmarks, the number of signature

verifications ranges from less than the quarter of the number of I-cache misses for 301.appsi and the 16K I-

cache, to only slightly less than the number of I-cache misses for 300.twolf and the 32K I-cache. On

average, the ratio of the number of I-cache misses to the number of verifications is 1.95.

With the SIGBTK technique, each signature verification corresponds to an S-cache lookup. Table

6.16 shows the number of S-cache misses for 8K, 16K, and 32K I-cache sizes. The S-cache can store 256

signatures, organized in 128 sets and 2 ways. With the 32K I-cache, which is a reasonable I-cache size for

high-end processors, the number of S-cache misses is less than one thousand per 1M instructions for 17 out

of 22 benchmarks, or less than once in 1000 executed instructions. Even with the relatively small 8K I-

cache, only two benchmarks, 253.perlbmk and 186.crafty, have more than 10000 S-cache misses in 1M

instructions.

We also evaluate the sensitivity of the number of S-cache misses to the S-cache size and

associativity. Figure 6.11 shows the number of S-cache misses per 1M instructions, with the 32K I-cache

 125

and various S-cache sizes. We simulate the S-cache with two ways and 16, 32, 64, 128, and 256 sets. Only

three SPEC CPU2000 integer applications have over 1000 misses per 1M instructions for all simulated S-

cache sizes -- 255.vortex, 176.gcc, and 253.perlbmk -- and of the floating point applications only 191.fma3d

has over 1000 misses, and only for the smallest simulated sizes. The results indicate that a very small S-

cache size is enough for most considered applications. We also evaluate the influence of S-cache

associativity to the number of misses for an S-cache with 128 entries, and direct mapped organization, 2, 4,

and 8 ways (Figure 6.12). Most applications do not significantly benefit from more than two ways.

Each S-cache miss causes additional memory accesses for the SigTable search. Figure 6.13 shows

the number of required memory access per 1M instructions for 176.gcc, 172.mgrid, and 164.gzip, with the

segmented binary search. However, a simple hash function may significantly reduce the number of

memory accesses, and a perfect hash function may reduce it to only one access.

Let us compare the SIGBTK technique with the SIGCTK, with the same S-cache size. With the

perfect hash function, the SigTable search adds approximately the same overhead as with the SIGCTK

technique. On the other hand, since the SIGBTK technique has a smaller number of signature verifications,

it will have less S-cache misses than the SIGCTK technique. Hence, with the appropriate search function

the SIGBTK can outperform the SIGCTK.

With the SIGBEV technique, the signatures are fetched from memory into the I-cache together

with the regular instructions, so there are no extra memory accesses for signature verification, but the

overall number of I-cache misses increases. To assess the SIGBEV potential, we compare the number of I-

cache misses per one million instructions for the original code and protected code. Table 6.17 shows the

number of I-cache misses and signature verifications per 1M instructions for the SIGBEV. The SIGBEV

should not significantly influence the overall program performance for applications with relatively few I-

cache misses. For one application, 183.equake, the number of I-cache misses in the 32K I-cache is even

reduced, due to the better alignment of some portions of the code. However, for some applications the

increase in the number of I-cache misses can be considerable: for example, for 252.eon and 32K I-cache,

this number increases from about 300 to about 7000 I-cache misses per one million instructions.

 126

Table 6.15 SIGBTK: Number of I-cache misses and signature verifications per 1M instructions

I-cache misses per 1M
instructions

Signature verifications per 1M
instructions Benchmark

8K 16K 32K 8K 16K 32K

164.gzip 7.67 0.25 0.24 4.79 0.13 0.12

176.gcc 27952.10 17077.95 5596.00 14578.33 9319.48 3243.21

181.mcf 10584.81 533.72 0.28 6292.26 215.58 0.16

186.crafty 55757.21 20795.13 2898.48 28537.25 10964.53 1624.79

197.parser 834.11 522.10 101.60 489.47 307.59 68.02

252.eon 27417.56 8415.70 321.16 14483.61 5383.62 308.14

253.perlbmk 42082.99 28221.11 11886.71 22446.80 15577.89 6606.16

254.gap 10213.49 3009.15 367.86 6229.38 1865.26 164.88

255.vortex 32974.83 19878.95 10427.85 16879.17 10155.27 5444.23

In
te

ge
r

300.twolf 17235.97 3762.88 44.35 9100.11 2339.60 43.25

168.wupwise 414.50 1.01 0.75 269.88 0.56 0.40

171.swim 32.00 13.41 2.76 15.77 5.61 1.26

172.mgrid 24.00 14.18 3.96 10.53 5.88 1.61

177.mesa 18721.89 1193.49 12.64 6923.03 754.49 7.35

178.galgel 1.60 1.17 0.91 0.81 0.60 0.45

179.art 2.57 0.18 0.18 1.08 0.08 0.08

183.equake 22179.91 2842.17 1326.53 10965.51 2176.89 888.22

188.ammp 2198.80 76.59 0.50 1334.89 62.78 0.31

189.lucas 0.76 0.60 0.51 0.41 0.30 0.25

191.fma3d 16946.39 10266.68 4126.92 8897.55 5905.82 2352.48

200.sixtrack 7051.75 2686.58 871.97 3246.70 1324.99 474.79

Fl
oa

tin
g

po
in

t

301.appsi 19248.16 12368.17 2217.44 5315.02 2944.37 741.99

 127

Table 6.16 SIGBTK: Number of S-cache misses per 1M instructions

S-cache misses per 1M instructions (128 sets, 2 ways)
Benchmark

8K 16K 32K

164.gzip 1.54 0.12 0.12

176.gcc 8231.29 5611.80 1951.31

181.mcf 320.08 0.17 0.16

186.crafty 11660.36 4082.43 480.86

197.parser 260.34 205.41 20.61

252.eon 5284.62 681.44 1.87

253.perlbmk 12203.76 8150.48 2281.50

254.gap 1792.36 479.88 5.15

255.vortex 8926.09 6655.88 3592.60

In
te

ge
r

300.twolf 1668.19 64.94 0.67

168.wupwise 0.53 0.45 0.39

171.swim 2.95 0.91 0.59

172.mgrid 3.12 2.06 0.53

177.mesa 573.47 8.92 0.73

178.galgel 0.55 0.48 0.42

179.art 0.09 0.08 0.08

183.equake 494.30 0.13 0.11

188.ammp 135.34 0.47 0.24

189.lucas 0.29 0.26 0.23

191.fma3d 4417.81 2092.49 50.87

200.sixtrack 1063.22 612.81 158.06

Fl
oa

tin
g

po
in

t

301.appsi 608.34 182.37 1.31

 128

SPEC CPU2000 Integer

0.1

1

10

100

1000

10000

16x2 32x2 64x2 128x2 256x2
Sets x Ways

M
is

se
s

pe
r 1

M

164.gzip
176.gcc
181.mcf
186.crafty
197.parser
252.eon

253.perlbmk
254.gap
255.vortex
300.twolf

SPEC CPU2000 Floating Point

0.01

0.1

1

10

100

1000

10000

16x2 32x2 64x2 128x2 256x2
Sets x Ways

M
is

se
s

pe
r 1

M

168.wupwise
171.swim
172.mgrid
177.mesa
178.galgel
179.art
183.equake
188.ammp
189.lucas
191.fma3d
200.sixtrack
301.appsi

Figure 6.11 SIGBTK: Number of S-cache misses as a function of S-cache size
I-cache size: 32K

 129

SPEC CPU2000 Integer

0.1

1

10

100

1000

10000

100000

128x1 64x2 32x4 16x8
Sets x Ways

M
is

se
s

pe
r 1

M

164.gzip

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

300.twolf

SPEC CPU2000 Floating Point

0.01

0.1

1

10

100

1000

10000

128x1 64x2 32x4 16x8
Sets x Ways

M
is

se
s

pe
r 1

M

168.wupwise

171.swim

172.mgrid

177.mesa

178.galgel

179.art

183.equake

188.ammp

189.lucas

191.fma3d

200.sixtrack

301.appsi

Figure 6.12 SIGBTK: Number of S-cache misses as a function of S-cache associativity
I-cache size: 32K

 130

0.1

1

10

100

1000

10000

100000

0 1 3 7 15 31 63 127

Number of Segment Registers

M
em

or
y

ac
ce

ss
es

 p
er

 1
M

176.gcc
172.mgrid
164.gzip

Figure 6.13 SIGBTK: Number of memory accesses per 1M instructions due to S-cache misses
with the segmented binary search,(128-set, 2-way) S-cache, and 32K I-cache

 131

Table 6.17 SIGBEV: Number of I-cache misses and signature verifications per 1M instructions

I-cache misses per 1M
instructions

Signature verifications per 1M
instructions Benchmark

8K 16K 32K 8K 16K 32K

164.gzip 24.60 8.15 0.40 13.33 4.66 0.19

176.gcc 49391.24 37419.57 19094.73 23046.80 17903.47 9611.68

181.mcf 31315.41 3502.30 0.48 16963.19 2329.56 0.24

186.crafty 95729.56 54278.95 14933.42 44114.61 25748.65 7904.31

197.parser 5409.83 1246.97 716.58 2819.35 667.98 407.28

252.eon 48810.07 28504.23 7114.48 23514.00 14684.02 4506.36

253.perlbmk 73594.06 57448.06 31947.90 36188.91 28473.97 16707.06

254.gap 22038.24 11897.55 1557.94 12343.94 6458.76 838.91

255.vortex 67081.58 44479.63 25254.76 30196.85 20144.33 11539.29

In
te

ge
r

300.twolf 41304.43 11997.24 238.49 18854.01 6567.28 125.87

168.wupwise 2620.05 195.90 1.35 1305.26 158.00 0.68

171.swim 68.80 32.76 4.85 29.74 15.18 2.26

172.mgrid 38.79 26.47 10.76 17.17 11.39 4.52

177.mesa 43888.48 6978.36 103.67 18914.99 2956.38 64.20

178.galgel 3.61 2.19 1.55 1.61 1.01 0.71

179.art 18.10 1.04 0.27 7.74 0.39 0.12

183.equake 63206.61 27839.49 676.70 30144.21 11949.41 373.13

188.ammp 6238.59 1240.54 156.60 3221.81 649.25 96.63

189.lucas 1.47 1.05 0.83 0.73 0.51 0.39

191.fma3d 28979.05 23596.61 12348.08 13951.06 11924.89 7009.36

200.sixtrack 13924.67 7399.13 2954.09 6628.74 3526.30 1496.33

Fl
oa

tin
g

po
in

t

301.appsi 26646.36 17234.43 4331.44 8069.01 4847.86 1295.26

 132

6.2.2 Memory Overhead

Table 6.18 shows the increase of the code section and of the complete executable file, for

precompiled SPEC CPU2000 Alpha binaries and 16-byte signatures. The SIGB signatures increase the size

of code section from 38.2% for 200.sixtrack, to 82.3% for 188.ammp, much more than with any of the

SIGC techniques. The increase of the executable file is also significant, from 15.6 to 52%.

 133

Table 6.18 Number of basic blocks and percentage of file size increase

Benchmark Number of basic
blocks

Code section increase
[%]

Executable file increase
[%]

164.gzip 8660 65.1 36.8

176.gcc 98478 79.2 41.5

181.mcf 7401 72.3 39.1

186.crafty 17761 64.2 30.2

197.parser 14663 73.4 39.2

252.eon 24285 48.9 32.7

253.perlbmk 43294 79.0 32.2

254.gap 47365 81.1 52.0

255.vortex 33336 65.1 23.1

In
te

ge
r

300.twolf 17931 63.7 31.3

168.wupwise 32989 64.4 47.4

171.swim 32759 64.0 47.4

172.mgrid 32312 64.4 47.5

177.mesa 33757 58.9 18.8

178.galgel 41805 63.8 45.9

179.art 9600 64.7 41.7

183.equake 9436 59.5 39.2

188.ammp 19917 82.8 48.6

189.lucas 33246 62.4 46.4

191.fma3d 59790 51.2 21.2

200.sixtrack 61938 38.2 15.6

Fl
oa

tin
g

po
in

t

301.appsi 35393 50.8 37.0

 134

CHAPTER 7

CONCLUSION

“It's tough to make predictions, especially about the future.”

“It's déjà vu all over again.”

Yogi Berra

Failing to resist attacks on computer systems can incur significant direct costs as well as costs in

lost revenues and opportunities, and can even jeopardize national security. Consequently, computer

security is becoming a critical issue, and current trends in hardware and software will bring it even more

into focus due to the following reasons. First, increased complexity of high-end systems and the large-

scale deployment and diversity of low-end systems make it difficult to uncover system vulnerabilities. In

addition, exhaustive testing is virtually impossible as software grows in size and complexity, and time-to-

market decreases.

One of the major security problems is execution of unauthorized and potentially malicious code.

The existing defense techniques often fail to counter attacks, lack generality, induce significant overhead in

performance and cost, or generate a significant number of false alarms.

This dissertation proposes new architectural extensions to ensure trusted program execution, i.e.,

run-time code integrity, in both high-end and embedded computing platforms. All proposed techniques

share a common mechanism, which encompasses two phases: secure program installation and secure

program execution. The secure installation process determines a signature for each instruction block in a

program, using secret keys stored in hardware. Signatures are encrypted and stored with the code. During

secure execution, signatures are recalculated from fetched instructions and compared to decrypted stored

 135

signatures. If a signature calculated in run-time does not match the signature calculated during installation,

the program cannot be trusted and it receives an abort signal by the operating system.

We propose eight techniques: SIGCED, SIGCEK, SIGCEV, SIGCTD, SIGCTK, SIGBEV,

SIGBTD, and SIGBTK. For each technique, we provide a detailed architectural design, a proof-of-concept

using functional simulation, and performance and memory overhead analysis. The performance analysis,

based on execution- and trace-driven simulation utilizing state-of-the-art benchmarks, proves that the

proposed techniques incur very low performance overhead for a broad spectrum of computer platforms.

The main contributions of this dissertation are as follows:

 Proposed novel hardware-based mechanism for trusted program execution based on runtime

verification of instruction block signatures.

 Proposed a set of eight techniques that employ the common mechanism and differ in the type of

protected instruction blocks, signature placement in the address space, signature placement in the

physical memory, and signature handling after the verification.

 Developed simulation environment, including architectural execution-driven and trace-driven

simulators, and a program for modification of ELF binaries to emulate the secure installation process.

 Evaluated performance overhead of the proposed techniques and analyzed their sensitivity to a

common set of architectural parameters.

 Surveyed the existing software and hardware techniques, developed to counter code injection and

similar malicious attacks.

The main findings are as follows:

 The SIGCED and SIGCEK techniques are main candidates for implementation in future processors.

 The SIGCED technique performs consistently well across various system configurations, with the

worst-case overhead of 15.6% with 64B I-cache lines, and 8% with 128B I-cache lines.

 If the hardware budget allows the S-cache, the SIGCEK successfully reduces the overhead of signature

fetching.

 136

 The evaluation of the SIGCEV technique shows the importance of not keeping the signatures in the

cache, since for most applications it increases the number of I-cache misses and consequently the

performance overhead. However, the SIGCEV performs well with small caches and 128B cache lines.

 The SIGCTD technique has more performance overhead than the SIGCED; this overhead can be

significantly reduced with the S-cache i.e., with the SIGCTK technique. The SIGCTK overhead is less

than 10% for 128B cache lines.

 The memory overhead of the SIGC techniques is less than 9% for all but two of the considered

benchmarks.

 With a fast search function for signatures stored in memory, the SIGBTK technique promises to have

low performance overhead, whereas the SIGBEV technique is another example of how signatures

embedded in the code can increase the number of I-cache misses.

Although the main goal of the proposed mechanism is to prevent code injection attacks, it can be

applied to other purposes, such as fault-tolerant execution, virus protection, and protection from software

tampering.

The proposed techniques open a number of challenging questions for future research, including

but not limited to the following:

 Evaluation of power overhead.

 Techniques for reduction of memory overhead, e.g., protecting multiple instruction blocks with the

same signature.

 Techniques for reduction of power overhead, e.g., signature and/or instruction prefetching.

 Extension of the basic mechanism to cover other classes of attacks, such as return-into-libc.

 137

REFERENCES

[1] A. One, "Smashing The Stack For Fun And Profit," Phrack Magazine, Vol. 7, November 1996.

[2] M. Conover, "w00w00 on Heap Overflows," <http://www.w00w00.org/files/articles/heaptut.txt>
(Available January 2005).

[3] T. Newsham, "Format String Attacks," September 2000,
<http://www.securityfocus.com/guest/3342> (Available January 2004).

[4] D. Ahmad, "The Rising Threat of Vulnerabilities Due to Integer Errors," IEEE Security &
Privacy, Vol. 1, July-August 2003, pp. 77-82.

[5] I. Dobrovitski, "Exploit for CVS Double free() for Linux pserver,"
<http://seclists.org/lists/bugtraq/2003/Feb/0042.html> (Available January 2005).

[6] US-CERT/CC, "CERT/CC Statistics," <http://www.cert.org/stats/> (Available December 2004).

[7] US-CERT, "Cyber Security Bulletin SB04-231,"
<http://www.us-cert.gov/cas/bulletins/SB04-231.html> (Available November 2004).

[8] US-CERT, "Cyber Security Bulletin SB04-175,"
<http://www.us-cert.gov/cas/body/bulletins/SB04-175_H.html> (Available November 2004).

[9] S. Smith, "Magic Boxes and Boots: Security in Hardware," IEEE Computer, Vol. 37,
October 2004, pp. 106-109.

[10] L. Garber, "New Chips Stop Buffer Overflow Attacks," IEEE Computer, Vol. 37, October 2004,
pp. 28.

[11] O. Gay, "Exploitation Avancée de Buffer Overflows," Security and Cryptography Laboratory
(LASEC), Département d'Informatique de L'Ecole Polytechnique Fédérale de Lausanne,
Switzerland, June 2002.

[12] J. Pincus and B. Baker, "Beyond Stack Smashing: Recent Advances in Exploiting Buffer
Overruns," IEEE Security and Privacy, Vol. 2, July-August 2004, pp. 20-27.

[13] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and J. Lokier,
"FormatGuard: Automatic Protection From printf Format String Vulnerabilities," in 10th USENIX
Security Symposium, Washington, DC, USA, 2001, pp. 191-200.

 138

[14] Anonymous, "Once Upon a free()," Phrack Magazine, Vol. 11, 2001.

[15] Y. Younan, W. Joosen, and F. Piessens, "Code Injection in C and C++: A Survey of
Vulnerabilities and Countermeasures," Katholieke Universiteit Leuven, Belgium, Technical
Report CW386, July 2004.

[16] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, "Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade," in DARPA Information Survivability Conference and
Exposition, Hilton Head, SC, USA, 2000, pp. 119-129.

[17] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, "PointGuard™: Protecting Pointers From Buffer
Overflow Vulnerabilities," in 12th USENIX Security Symposium, Washington, DC, USA, 2003,
pp. 91-104.

[18] W. Landi, "Undecidability of Static Analysis," ACM Letters on Programming Languages and
Systems (LOPLAS), Vol. 1, December 1992, pp. 323-337.

[19] B. Chess and G. McGraw, "Static Analysis for Security," IEEE Security & Privacy Magazine,
Vol. 2, November-December 2004, pp. 76-79.

[20] "ITS4: Software Security Tool," <http://www.cigital.com/its4/> (Available January 2005).

[21] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, "Token-Based Scanning of Source Code for
Security Problems," ACM Transactions on Information and System Security (TISSEC), Vol. 5,
August 2002, pp. 238-261.

[22] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, "ITS4: A Static Vulnerability Scanner for C and
C++ Code," in Annual Computer Security Applications Conference, New Orleans, LA, USA,
2000.

[23] D. Wheeler, "Flawfinder," <http://www.dwheeler.com/flawfinder/> (Available January 2005).

[24] "Free Software Security Tools," <http://www.securesw.com/resources/tools.html> (Available
January 2005).

[25] A. DeKok, "PScan: A Limited Problem Scanner for C Source Files," July 2000,
<http://www.striker.ottawa.on.ca/~aland/pscan/> (Available January 2005).

[26] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, "A First Step Towards Automated Detection
of Buffer Overrun Vulnerabilities," in Network and Distributed System Security Symposium
(NDCS), San Diego, CA, USA, 2000.

[27] D. Wagner, "BOON: Buffer Overrun Detection," <http://www.cs.berkeley.edu/~daw/boon/>
(Available January 2005).

[28] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek, "Buffer Overrun Detection Using
Linear Programming and Static Analysis," in 10th ACM Conference on Computer and
Communications Security, Washington, DC, 2003, pp. 345-354.

 139

[29] Y. Xie, A. Chou, and D. Engler, "ARCHER: Using Symbolic, Path-Sensitive Analysis to Detect
Memory Access Errors," in 9th European Software Engineering Conference (ESEC) held jointly
with 11th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),
Helsinki, Finland, 2003, pp. 327-336.

[30] "Splint," <http://splint.org/> (Available January 2005).

[31] D. Larochelle and D. Evans, "Statically Detecting Likely Buffer Overflow Vulnerabilities," in
10th USENIX Security Symposium, Washington, DC, USA, 2001, pp. 177-189.

[32] D. Evans and D. Larochelle, "Improving Security Using Extensible Lightweight Static Analysis,"
IEEE Software, Vol. 19, January/February 2002, pp. 42-51.

[33] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, "Automated Detection of Format-String
Vulnerabilities Using Type Qualifiers," in 10th USENIX Security Symposium, Washington, DC,
USA, 2001.

[34] N. Dor, M. Rodeh, and M. Sagiv, "CSSV: Towards a Realistic Tool for Statically Detecting All
Buffer Overflows in C," in ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, San Diego, CA, USA, 2003, pp. 155-167.

[35] K. Ashcraft and D. Engler, "Using Programmer-Written Compiler Extensions to Catch Security
Holes," in IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 2002, pp. 131–147.

[36] B. Chess, "Improving Computer Security Using Extended Static Checking," in IEEE Symposium
on Security and Privacy, Berkeley, CA, USA, 2002, pp. 160-173.

[37] G. J. Holzmann, "Static Source Code Checking For User-Defined Properties," in 6th World
Conference on Integrated Design and Process Technology, Pasadena, CA, USA, 2002.

[38] D. Evans, J. Guttag, J. Horning, and Y. M. Tan, "LCLint: A Tool for Using Specifications to
Check Code," in 2nd ACM SIGSOFT Symposium on the Foundations of Software Engineering,
New Orleans, LA, USA, 1994, pp. 87-96.

[39] J. S. Foster, M. Fähndrich, and A. Aiken, "A Theory of Type Qualifiers," in ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’99), Atlanta, GA,
USA, 1999, pp. 192-203.

[40] N. Dor, M. Rodeh, and M. Sagiv, "Cleanness Checking of String Manipulations in C Programs via
Integer Analysis," in 8th International Symposium on Static Analysis, Paris, France, 2001,
pp. 194-212.

[41] J. Wilander and M. Kamkar, "A Comparison of Publicly Available Tools for Static Intrusion
Prevention," in 7th Nordic Workshop on Secure IT Systems, Karlstad, Sweden, 2002.

[42] M. Zitser, R. Lippmann, and T. Leek, "Testing Static Analysis Tools Using Exploitable Buffer
Overflows From Open Source Code," in 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach, CA, USA, 2004, pp. 97-106.

 140

[43] S. C. Kendall, "Bcc: Runtime Checking for C Programs," in USENIX Summer 1983 Conference,
Toronto, ON, Canada, 1983, pp. 5-16.

[44] J. L. Steffen, "Adding Run-Time Checking to the Portable C Compiler," Software—Practice &
Experience, Vol. 22, April 1992, pp. 305-316.

[45] T. M. Austin, S. E. Breach, and G. S. Sohi, "Efficient Detection of All Pointer and Array Access
Errors," in Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design
and Implementation, Orlando, FL, USA, 1994, pp. 290-301.

[46] H. Patil and C. Fischer, "Low-Cost, Concurrent Checking of Pointer and Array Accesses in
C programs," Software - Practice and Experience, Vol. 27, January 1997, pp. 87-110.

[47] R. W. M. Jones and P. H. J. Kelly, "Backwards-Compatible Bounds Checking for Arrays and
Pointers in C Programs," in AADEBUG'97 - Proceedings of the 3rd International Workshop on
Automated and Algorithmic Debugging, Linköping, Sweden, 1997, pp. 13-26.

[48] A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps, "Debugging via Run-Time Type Checking,"
in 4th International Conference on Fundamental Approaches to Software Engineering, Genova,
Italy, 2001, pp. 217-232.

[49] K. Lhee and S. J. Chapin, "Type-Assisted Dynamic Buffer Overflow Detection," in 11th USENIX
Security Symposium, San Francisco, CA, USA, 2002, pp. 81-88.

[50] K. Avijit, P. Gupta, and D. Gupta, "TIED, LibsafePlus: Tools for Runtime Buffer Overflow
Protection," in 13th Usenix Security Symposium, San Diego, CA, USA, 2004.

[51] Y. Oiwa, T. Sekiguchi, E. Sumii, and A. Yonezawa, "Fail-Safe ANSI-C Compiler: An Approach
to Making C Programs Secure," in International Symposium on Software Security 2002, Tokyo,
Japan, 2002, pp. 133-153.

[52] O. Ruwase and M. S. Lam, "A Practical Dynamic Buffer Overflow Detector," in 11th Annual
Network and Distributed System Security Symposium, San Diego, CA, USA, 2004, pp. 159-169.

[53] W. Xu, D. C. DuVarney, and R. Sekar, "An Efficient and Backwards Compatible Transformation
to Ensure Memory Safety of C Programs," in 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach, CA, USA, 2004, pp. 117-126.

[54] M. Rinard, C. Cadar, D. Roy, D. Dumitran, and T. Leu, "A Dynamic Technique for Eliminating
Buffer Overflow Vulnerabilities (and Other Memory Errors)," in 20th Annual Computer Security
Applications Conference (ACSAC 2004), Tucson, AZ, USA, 2004.

[55] S. H. Yong and S. Horwitz, "Protecting C Programs from Attacks via Invalid Pointer
Dereferences," in 9th European Software Engineering Conference held jointly with 10th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, Helsinki, Finland,
2003, pp. 307-316.

[56] R. Hastings and B. Joyce, "Purify: Fast Detection of Memory Leaks and Access Errors," in
Proceedings of the Winter ’92 USENIX conference, San Francisco, CA, USA, 1992, pp. 125-136.

 141

[57] E. Haugh and M. Bishop, "Testing C Programs for Buffer Overflow Vulnerabilities," in
10th Network and Distributed System Security Symposium (NDSS’03), San Diego, CA, USA, 2003.

[58] E. Larson and T. Austin, "High Coverage Detection of Input-Related Security Faults," in
12th USENIX Security Symposium, Washington, D.C., USA, 2003, pp. 121-136.

[59] A. K. Ghosh, T. O’Connor, and G. McGraw, "An Automated Approach for Identifying Potential
Vulnerabilities in Software," in IEEE Symposium on Security and Privacy, Oakland, CA, USA,
1998, pp. 104-114.

[60] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and H.
Hinton, "StackGuard: Automatic Adaptive Detection and Prevention of Buffer Overflow Attacks,"
in 7th USENIX Security Conference, San Antonio, TX, USA, 1998, pp. 63-78.

[61] Vendicator, "Stack Shield," 08 January 2000, <http://www.angelfire.com/sk/stackshield/>
(Available January 2005).

[62] T. Chiueh and F. Hsu, "RAD: A Compile-Time Solution to Buffer Overflow Attacks," in
21st International Conference on Distributed Computing Systems, Phoenix, AZ, USA, 2001,
pp. 409-420.

[63] M. Prasad and T. Chiueh, "A Binary Rewriting Defense Against Stack-based Buffer Overflow
Attacks," in Usenix Annual Technical Conference, San Antonio, TX, USA, 2003, pp. 211-224.

[64] H. Etoh and K. Yoda, "Protecting from Stack-smashing Attacks," June 2000,
<http://www.trl.ibm.com/projects/security/ssp/main.html> (Available January 2005).

[65] A. Baratloo, N. Singh, and T. Tsai, "Transparent Run-Time Defense Against Stack Smashing
Attacks," in USENIX 2000 Annual Technical Conference Proceedings, San Diego, CA, USA,
2000, pp. 251-262.

[66] C. Fetzer and Z. Xiao, "Detecting Heap Smashing Attacks Through Fault Containment Wrappers,"
in 20th IEEE Symposium on Reliable Distributed Systems, New Orleans, LA, USA, 2001,
pp. 80-89.

[67] C. Fetzer and Z. Xiao, "HEALERS: A Toolkit for Enhancing the Robustness and Security of
Existing Applications," in International Conference on Dependable Systems and Networks
(Practical Experience and Demonstrations), San Francisco, CA, USA, 2003, pp. 317-322.

[68] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur, "Run-time Detection of Heap-based
Overflows," in 17th Large Installation Systems Administrators Conference, San Diego, CA, USA,
2003, pp. 51-60.

[69] R. DeLine and M. Fähndrich, "Enforcing High-Level Protocols in Low-Level Software," in
2001 ACM SIGPLAN Conference on Programming Language Design and Implementation,
Snowbird, UT, USA, 2001, pp. 59-69.

[70] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fähndrich, J. Pincus, S. K. Rajamani, and
R. Venkatapathy, "Righting Software," IEEE Software, Vol. 21, May-June 2004, pp. 92-100.

 142

[71] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang, "Cyclone: A Safe Dialect
of C," in USENIX Annual Technical Conference, Monterey, CA, USA, 2002, pp. 275-288.

[72] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney, "Region-based Memory
Management in Cyclone," in ACM Conference on Programming Language Design and
Implementation, Berlin, Germany, 2002, pp. 282-293.

[73] G. C. Necula, S. McPeak, and W. Weimer, "CCured: Type-safe Retrofitting of Legacy Code," in
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland,
OR, USA, 2002, pp. 128-139.

[74] S. Kowshik, D. Dhurjati, and V. Adve, "Ensuring Code Safety Without Runtime Checks for Real-
time Control Systems," in International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, Grenoble, France, 2002, pp. 288-297.

[75] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, "Memory Safety Without Runtime Checks or
Garbage Collection," in 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool
Support for Embedded Systems, San Diego, CA, USA, 2003, pp. 69-80.

[76] P. Busser, "Memory Protection with PaX and the Stack Smashing Protector: Breaking out Peace,"
Linux Magazine March 2004, pp. 36-39.

[77] "Homepage of The PaX Team," <http://pax.grsecurity.net/> (Available December 2004).

[78] J. Xu, Z. Kalbarczyk, and R. K. Iyer, "Transparent Runtime Randomization for Security," in
22nd International Symposium on Reliable Distributed Systems (SRDS’03), Florence, Italy, 2003,
pp. 260-269.

[79] M. Chew and D. Song, "Mitigating Buffer Overflows by Operating System Randomization,"
Carnegie Mellon University, Technical Report CMU-CS-02-197, December 2002.

[80] S. Bhatkar, D. C. DuVarney, and R. Sekar, "Address Obfuscation: An Approach to Combat Buffer
Overflows, Format-String Attacks, and More," in 12th USENIX Security Symposium, Washington,
DC, USA, 2003, pp. 105-120.

[81] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi, "Randomized
Instruction Set Emulation to Disrupt Binary Code Injection Attacks," in 10th ACM Conference on
Computer and Communication Security, Washington, DC, USA, 2003, pp. 281-289.

[82] R. Sekar, T. Bowen, and M. Segal, "On Preventing Intrusions by Process Behavior Monitoring,"
in 8th USENIX Security Symposium, Washington, DC, USA, 1999, pp. 29-40.

[83] C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting Intrusions Using System Calls:
Alternative Data Models," in IEEE Symposium on Security and Privacy, Oakland, CA, USA,
1999, pp. 133-145.

[84] I. Sato, Y. Okazaki, and S. Goto, "An Improved Intrusion Detection Method Based on Process
Profiling," IPSJ Journal, Vol. 43, November 2002, pp. 3316-3326.

 143

[85] S. A. Hofmeyr, S. Forrest, and A. Somayaji, "Intrusion Detection Using Sequences of System
Calls," Journal of Computer Security, Vol. 6, 1998, pp. 151-180.

[86] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, "A Fast Automaton-Based Method for
Detecting Anomalous Program Behaviors," in IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 2001, pp. 144-155.

[87] D. L. Oppenheimer and M. R. Martonosi, "Performance Signatures: A Mechanism for Intrusion
Detection," in 1997 IEEE Information Survivability Workshop, San Diego, CA, USA, 1997.

[88] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, "A Secure Environment for Untrusted
Helper Applications," in 6th USENIX Security Symposium, San Jose, CA, USA, 1996, pp. 1-13.

[89] M. Bernaschi, E. Gabrielli, and L. V. Mancini, "Operating System Enhancements to Prevent the
Misuse of System Calls," in Conference on Computer and Communications Security, Athens,
Greece, 2000, pp. 174-183.

[90] V. Kiriansky, D. Bruening, and S. Amarasinghe, "Secure Execution Via Program Shepherding," in
11th Annual Usenix Security Symposium, San Francisco, CA, USA, 2002, pp. 191-206.

[91] G. McGary, "Bounds Checking Project,"
<http://gnu.mirror.widexs.nl/software/gcc/projects/bp/main.html> (Available January 2005).

[92] J. Wilander and M. Kamkar, "A Comparison of Publicly Available Tools for Dynamic Buffer
Overflow Prevention," in 10th Network and Distributed System Security Symposium, San Diego,
CA, 2003, pp. 149-162.

[93] T. Toth and C. Kruegel, "Accurate Buffer Overflow Detection via Abstract Payload Execution," in
5th Symposium on Recent Advances in Intrusion Detection (RAID), Zurich, Switzerland, 2002,
pp. 274-291.

[94] D. C. DuVarney, V. N. Venkatakrishnan, and S. Bhatkar, "SELF: A Transparent Security
Extension for ELF Binaries," in 2003 Workshop on New Security Paradigms, Ascona,
Switzerland, 2003, pp. 29-38.

[95] "Hardened Gentoo," <http://www.gentoo.org/proj/en/hardened/> (Available February 2004).

[96] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, "Architecture Support for Defending Against Buffer
Overflow Attacks," in Workshop on Evaluating and Architecting System dependability (EASY),
San Jose, CA, USA, 2002.

[97] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, "Enlisting Hardware Architecture to Thwart
Malicious Code Injection," in Security in Pervasive Computing, Boppard, Germany, 2003,
pp. 237-252.

[98] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A. Kuperman, and A. Jalote, "SmashGuard:
A Hardware Solution to Prevent Security Attacks on the Function Return Address," Purdue
University, Technical Report TR-ECE 03-13, November 22, 2003.

 144

[99] D. Ye and D. Kaeli, "A Reliable Return Address Stack: Microarchitectural Features to Defeat
Stack Smashing," in Workshop on Architectural Support for Security and Anti-Virus (WASSA),
Boston, MA, USA, 2004, pp. 69-76.

[100] M. Corliss, E. C. Lewis, and A. Roth, "Using DISE to Protect Return Addresses from Attack," in
Workshop on Architectural Support for Security and Anti-Virus (WASSA), Boston, MA, USA,
2004, pp. 61-68.

[101] K. Inoue, "Energy-Security Tradeoff in a Secure Cache Architecture Against Buffer Overflow
Attacks," in Workshop on Architectural Support for Security and Anti-Virus (WASSA), Boston,
MA, USA, 2004, pp. 77-85.

[102] Z. Shao, Q. Zhuge, Y. He, and E. H.-M. Sha, "Defending Embedded Systems Against Buffer
Overflow via Hardware/Software," in 19th Annual Computer Security Applications Conference
(ACSAC 2003), Las Vegas, NV, USA, 2003, pp. 352-363.

[103] N. Tuck, B. Calder, and G. Varghese, "Hardware and Binary Modification Support for Code
Pointer Protection from Buffer Overflow," in 37th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), Portland, OR, USA, 2004, pp. 209-220.

[104] D. Keen, F. Lim, F. T. Chong, P. Devanbu, Matthew Farrens, P. Sultana, C. Zhuang, and R. Rao,
"Hardware Support for Pointer Safety in Commodity Microprocessors," UC Davis, Technical
Report CSE-2002-1, 2002.

[105] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling Trusted Software Integrity," in
10th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), San Jose, CA, USA, 2002, pp. 108-120.

[106] G. S. Kc, A. D. Keromytis, and V. Prevelakis, "Countering Code-Injection Attacks with
Instruction-set Randomization," in 10th ACM Conference on Computer and Communication
Security, Washington, DC, USA, 2003, pp. 272-280.

[107] G. E. Suh, J. W. Lee, and S. Devadas, "Secure Program Execution via Dynamic Information Flow
Tracking," in 11th Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA, USA, 2004, pp. 85-96.

[108] J. R. Crandall and F. T. Chong, "Minos: Control Data Attack Prevention Orthogonal to Memory
Model," in 37th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Portlant, OR, USA, 2004, pp. 221-232.

[109] M. Milenkovic, A. Milenkovic, and E. Jovanov, "A Framework For Trusted Instruction Execution
Via Basic Block Signature Verification," in 42nd Annual ACM Southeast Conference, Huntsville,
AL, USA, 2004, pp. 191-196.

[110] M. Milenkovic, A. Milenkovic, and E. Jovanov, "Using Instruction Block Signatures to Counter
Code Injection Attacks," in Workshop on Architectural Support for Security and Anti-Virus
(WASSA), Boston, MA, USA, 2004, pp. 104-113.

 145

[111] M. Drinic and D. Kirovski, "A Hardware-Software Platform for Intrusion Prevention," in
37th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), Portland, OR,
USA, 2004, pp. 233-242.

[112] A. Mahmood and E. J. McCluskey, "Concurrent Error Detection Using Watchdog Processors -
A Survey," IEEE Transactions on Computers, Vol. 37, February 1988, pp. 160-174.

[113] K. Wilken and J. P. Shen, "Continuous Signature Monitoring: Low-cost Concurrent Detection of
Processor Control Errors," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 9, June 1990, pp. 629-641.

[114] J. Ohlsson and M. Rimen, "Implicit Signature Checking," in 25th International Symposium on
Fault-Tolerant Computing, Pasadena, CA, USA, 1995, pp. 218-227.

[115] S. Kim and A. K. Somani, "On-Line Integrity Monitoring of Microprocessor Control Logic,"
Microelectronics Journal, Vol. 32, December 2001, pp. 999-1007.

[116] N. Oh, P. P. Shirvani, and E. J. McCluskey, "Control Flow Checking by Software Signatures,"
IEEE Transactions on Reliability, Vol. 51, March 2002, pp. 111-122.

[117] M. K. Joseph and A. Avizienis, "A Fault Tolerance Approach to Computer Viruses," in
IEEE Symposium on Security and Privacy, Oakland, CA, USA, 1988, pp. 52-58.

[118] G. I. Davida, Y. G. Desmedt, and B. J. Matt, "Defending Systems Against Viruses Through
Cryptographic Authentication," in IEEE Symposium on Security and Privacy, Oakland, CA, USA,
1989, pp. 312 -318.

[119] D. Lie, C. Thekkath, M. Mitchell, P. Lincolny, D. Boneh, J. Mitchell, and M. Horowitz,
"Architectural Support for Copy and Tamper Resistant Software," in 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA,
USA, 2000, pp. 168-177.

[120] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz, "Specifying and Verifying Hardware for
Tamper-Resistant Software," in IEEE Conference on Security and Privacy, Berkeley, CA, USA,
2003, pp. 166-177.

[121] C. Collberg and C. Thomborson, "Watermarking, Tamper-Proofing, and Obfuscation-Tools for
Software Protection," IEEE Transactions on Software Engineering, Vol. 28, August 2002,
pp. 735-746.

[122] B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan, "Dynamic Self-checking Techniques for
Improved Tamper Resistance," in Digital Rights Management Workshop, Philadelphia, PA, USA,
2001, pp. 141-159.

[123] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski, "Oblivious Hashing:
A Stealthy Software Integrity Verification Primitive," in Information Hiding: 5th International
Workshop, Noordwijkerhout, Netherlands, 2002, pp. 400 - 414.

 146

[124] M. Jochen, L. Marvel, and L. L. Pollock, "A Framework for Tamper Detection Marking of Mobile
Applications," in 14th International Symposium on Software Reliability Engineering (ISSRE),
Denver, CO, USA, 2003, pp. 143-153.

[125] TCG, "TCG Specification: Architecture Overview," <https://www.trustedcomputinggroup.org/>
(Available January 2005).

[126] NIST, "FIPS PUB 197: Advanced Encryption Standard (AES)," 2001.

[127] "Intel XScale® Core Developer’s Manual," <http://www.intel.com/design/intelxscale/>
(Available December 2004).

[128] L. Gwennap, "Digital 21264 Sets New Standard," Microprocessor Report October 1996,
pp. 11-16.

[129] R. Sprugnoli, "Perfect Hashing Functions: A Single Probe Retrieving Method for Static Sets,"
Communications of the ACM, Vol. 20, November 1977, pp. 841-850.

[130] E. A. Fox, Q. F. Chen, and L. S. Heath, "A Faster Algorithm for Constructing Minimal Perfect
Hash Functions," in 15th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Copenhagen, Denmark, 1992, pp. 266-273.

[131] A. Milenkovic, M. Milenkovic, and J. Kulick, "A Compression of Branch Instruction Traces and
Basic Block Length Analysis for SPEC CPU2000," LaCASA Lab, University of Alabama in
Huntsville, Technical Report, 2002.

[132] "SQL Injection," <http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf>
(Available January 2005).

[133] TIS, "Executable and Linking Format (ELF) Specification,"
<http://x86.ddj.com/ftp/manuals/tools/elf.pdf> (Available January 2005).

[134] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: An Infrastructure for Computer System
Modeling," IEEE Computer, Vol. 35, February 2002, pp. 59-67.

[135] A. Milenkovic and M. Milenkovic, "Exploiting Streams in Instruction and Data Address Trace
Compression," in IEEE 6th Annual Workshop on Workload Characterization, Austin, TX, 2003,
pp. 99-107.

[136] A. Milenkovic and M. Milenkovic, "Stream-Based Trace Compression," Computer Architecture
Letters, Vol. 2, September 2003.

[137] SPEC, "SPEC 2000 CPU Benchmark Suite," February 2004, <http://www.spec.org>
(Available February 2004).

[138] "Enhanced AES (Rijndael) IP Core," <http://www.asics.ws> (Available December 2004).

 147

[139] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, "MiBench:
A Free, Commercially Representative Embedded Benchmark Suite," in IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX, USA, 2001.

[140] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems," IEEE Micro, Vol. 30, December 1997,
pp. 330-335.

[141] I. Branovic, R. Giorgi, and E. Martinelli, "A Workload Characterization of Elliptic Curve
Cryptography Methods in Embedded Environments," ACM SIGARCH Computer Architecture
News, Vol. 32, June 2004, pp. 27-34.

