
An Efficient Single-Pass Trace Compression

Technique Utilizing Instruction Streams

ALEKSANDAR MILENKOVIĆ and MILENA MILENKOVIĆ‡

The University of Alabama in Huntsville
‡ IBM, Austin, TX
__

Trace-driven simulations have been widely used in computer architecture for quantitative evaluations of new

ideas and design prototypes. Efficient trace compression and fast decompression are crucial for

contemporary workloads, as representative benchmarks grow in size and number. This paper presents

Stream-Based Compression (SBC), a novel technique for single-pass compression of address traces. The

SBC technique compresses both instruction and data addresses by associating them with a particular

instruction stream, i.e., a block of consecutively executing instructions. The compressed instruction trace is a

trace of instruction stream identifiers. The compressed data address trace encompasses the data address stride

and the number of repetitions for each memory-referencing instruction in a stream, ordered by the

corresponding stream appearances in the trace. SBC reduces the size of SPEC CPU2000 Dinero instruction

and data address traces from 18 to 309 times, outperforming the best trace compression techniques presented

in the open literature. SBC can be successfully combined with general-purpose compression techniques. The

combined SBC-gzip compression ratio is from 80 to 35,595, and the SBC-bzip2 compression ratio is from 75

to 191,257. Moreover, SBC outperforms other trace compression techniques when both decompression time

and compression time are considered. This paper also shows how the SBC algorithm can be modified for

hardware implementation with very modest resources and only a minor loss in compression ratio.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability] Performance Analysis and Design
Aids; C.0 [General] Modeling of computer architectures; C.4 [Performance of Systems]: Modeling
techniques; Design studies; E.4 [Coding and Information Theory]: Data compaction and compression.

General Terms: Algorithms, Design, Experimentation, Measurement, and Performance

Additional Key Words and Phrases: instruction and data traces, trace compression, instruction streams.
__

Authors' addresses: A. Milenkovic, Department of Electrical and Computer Engineering, The University of
Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899.
M. Milenkovic, IBM, 11501 Burnet Rd., Austin, Texas 78758.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

© 2005 ACM 1073-0516/01/0300-0034 $5.00

1. INTRODUCTION

Software simulations have been a vital tool in computer architecture for quantitative

evaluations of new ideas and design prototypes. Both industry and academia rely

extensively on simulation because it is the easiest and least expensive way to

characterize and explore design space [Skadron et al. 2003]. A common simulation

technique is trace-driven simulation, where the input to the simulator is a trace of

relevant events, collected during execution of a realistic workload. Though execution-

driven simulators may provide faster simulation and more flexibility, they are often not

readily available for a computer system of interest. Building a full-scale execution-

driven simulator is often impractical and unnecessary, and certainly it is very

expensive. Moreover, in performance-tuning efforts for real-world server applications,

recreating conditions and inputs on an execution-driven simulator is often impossible.

Consequently, program execution traces for trace-driven simulation remain an

important resource for computer engineers.

In the last decade many research efforts have been dedicated to trace issues, such as

trace collection, reduction, and processing [Uhlig and Mudge 1997]. Depending on its

purpose, a trace can contain different types of information. For example, control flow

analysis needs only a trace of the executed basic blocks or paths. Cache studies require

address traces, and more detailed processor simulations also need instruction words.

Branch predictors can be evaluated using traces with only branch-relevant information,

such as branch and target addresses and branch outcome; ALU unit simulations require

operand values. For example, a Dinero trace record consists of the address of the

memory reference and the reference type (read, write, or instruction fetch) [Edler and

Hill 1998]. BYU traces include additional information, such as the size of the data

transfer and processor ID [Thornock and Flanagan 2001]. ATUM traces (Address

Tracing Using Microcode) also include the process ID, and encompass information

about system activity, such as mapping between physical and virtual memory at each

translation look-aside buffer miss [Agarwal, Sites and Horowitz 1986]. An IBS trace

record contains the operation code and the user/kernel indicator [Uhlig et al. 1995].

Traces collected using the pixie tool differentiate between records for load/store

memory references of different size, such as byte, double, or word [Smith 1991].

To efficiently store, transfer, and use even a small collection of traces, the traces

must be compressed as much as possible. Each new generation of the industry-

recognized SPEC benchmark suite has a longer run-time, larger resource requirements,

and a larger set of benchmarks [SPEC 2000]. The number of executed instructions in

SPEC CPU2000 benchmarks with reference input sets ranges from 62 to 547 billion

[Cantin and Hill 2003]. If each benchmark is executed with only one reference input

set, the sum of the executed instructions is about 7.5 trillion. We would need almost 70

terabytes of disk space to store these traces, assuming 10-byte trace records.

An effective trace compression technique is lossless (i.e., it does not introduce any

errors into the simulation), has a high compression factor, and has a small

decompression overhead. Although traditional compression techniques, such as the

Ziv-Lempel algorithm [Ziv and Lempel 1977] used in the gzip utility or Burroughs-

Wheeler transformation [Burrows and Wheeler 1994] used in the bzip2 utility, offer a

good compression ratio, even better compression is possible when the specific nature of

redundancy in traces is taken into account. Better compression techniques not only

enable more representative input and faster execution of trace-driven simulation, but

also help in other uses of traces, such as the dynamic analysis of program behavior,

debugging, and daily system maintenance [Zhou and Smith 2000].

This paper introduces Stream-Based Compression (SBC), a new method for single-

pass compression of address traces and various extended trace formats. The SBC

algorithm relies on extracting instruction streams. An instruction stream is defined as a

sequential run of instructions, from the target of a taken branch to the first taken branch

in the sequence. A stream table created during compression encompasses all relevant

information about streams, such as the starting address, stream length, and instruction

types. All instructions from a stream are replaced by its index in the stream table,

creating a trace of instruction streams.

SBC features an efficient on-line algorithm for compression of data address

references. Unlike instruction addresses, data addresses for a memory-referencing

instruction rarely stay constant during program execution, but they can have a regular

stride. The SBC-compressed data address trace encompasses a data address stride and

the number of repetitions for each memory-referencing instruction in a stream. A

change of the data address stride results in another record in the compressed trace. The

records are ordered by the corresponding stream appearances in the original trace.

In this paper we also show how a slightly modified SBC algorithm can be used in a

hardware resource called a trace compressor that will allow on-line trace compression

with only modest resource usage. Such a new resource can be very useful for system

debugging and verification, one of the most significant problems in emerging SOCs

(Systems-On-the-Chip) where physical processor pins are not available [Fisher,

Faraboschi and Young 2005].

The proposed algorithm achieves a very good compression ratio and

decompression/compression time for instruction and data address traces, yet it is

straightforward to implement and does not require code augmentation or lengthy multi-

pass trace analysis. Furthermore, SBC can be successfully combined with general

compression algorithms, such as Ziv-Lempel or Burroughs-Wheeler.

We evaluate the proposed technique’s efficiency by measuring compression ratio,

decompression, and compression time and comparing its performance versus the best

existing techniques for trace compression, such as PDATS [Johnson, Ha and Zaidi

2001], TCGEN [Burtscher and Sam 2005], and LBTC [Luo and John 2004]. We also

consider these techniques when they are combined with gzip and bzip2. We use full

instruction and data address traces [Edler and Hill 1998] of SPEC CPU2000 benchmark

programs as the input. Detailed experimental analysis shows that SBC outperforms

other techniques, achieving a good balance between compression ratio and

decompression time. Using the trace compression ratio of the sum of all traces as a

metric, SBC reduces the trace size 35.9 times, versus 7.2 times reduction with PDATS,

4.9 with TCGEN, and 7.6 with LBTC. When compression techniques are combined

with gzip, the compression ratio with SBC.gz is 326.6 versus 62.3 with PDATS.gz,

271.1 with TCGEN.gz, and 84.7 with LBTC.gz. Additional compression with bzip2

reduces the trace size even more: the compression ratio with SBC.bz2 is 390, 84.8 with

PDATS.bz2, 722.3 with TCGEN.bz2, and 122.8 with LBTC.bz2. Although

TCGEN.bz2 has a higher compression ratio than SBC.bz2 for all but five benchmarks,

SBC.bz2 has from 2 to 7 times shorter decompression time. In addition, we show that

SBC-compressed traces provide the shortest simulation time with a real cache memory

hierarchy simulator.

The rest of this paper is organized as follows. The next section gives an overview

and a new classification of the existing techniques for trace compression. Section 3

explains stream-based compression and decompression processes and discusses

implementation of the SBC algorithm in hardware. Section 4 evaluates the

effectiveness of SBC versus other trace compression techniques, comparing

compression ratio, compression time, and decompression time. The last section gives

concluding remarks.

2. RELATED WORK

We can broadly classify traces in two categories. The first category encompasses traces

that have information only about the instruction flow: traces of instruction addresses,

basic blocks, executed branches, or procedure calls. The traces in the second category

also include records with highly variable values such as data addresses or operand

values. Consequently, trace compression techniques can also be divided into two

groups: techniques targeting only instruction flow traces, and those targeting traces

including both instruction and data information. Fig. 1 shows this classification for

lossless trace compression techniques.

Lossless Compression

Instructions Instructions + data

- Acyclic path
(WPP [Larus 1999],
Time Stamped WPP
[Zhang and Gupta 2001])

- N-tuple [Milenkovic,
Milenkovic and Kulick 2003]

- Instruction (PDI
[Johnson, Ha and Zaidi 2001])

Graph with number of
repetitions in nodes

Replac ing
an execution sequence
with its identifier

Control f low graph +
trace of transitions

Offset

Offset +
repetitions

Link data
addresses to
dynamic basic
block

Link data
addresses to loop

Regenerate
addresses

Abstract
execution

Value Predictor

Mache
[Samples 1989],
LBTC [Luo and
John 2004]

QPT [Larus 1993]

[Hamou-Lhadj and Lethbridge 2002]

PDATS
[Johnson, Ha
and Zaidi 2001]

[Pleszkun 1994],
SBC [Milenkovic and
Milenkovic, 2003]

[Elnozahy 1999], SIGMA
[DeRose, et al. 2002]

[Eggers, et al. 1990],
[Larus 1993]

VPC [Burtscher and
Jeeradit 2003],
TCGEN [Burtscher and Sam
2005]

Fig. 1. Lossless trace compression techniques.

The underlying idea for several instruction trace compression techniques is to

replace an execution sequence with its identifier. For example, in the whole program

path technique (WPP), a program is instrumented to produce a trace of acyclic paths

[Larus 1999]. Acyclic paths are then compressed using a modified Sequitur algorithm

[Nevill-Manning and Witten 1997]. WPP yields a very good compression ratio, and it

is convenient for certain types of analysis, such as finding the most frequently executed

paths. The downside is that it requires the code to be instrumented, so it is not directly

applicable for already-recorded traces. Time-stamped WPP [Zhang and Gupta 2001]

enables fast access to the trace of a particular function: WPP is broken into path traces

corresponding to individual function calls, and all path traces for one function are

stored together as a block. Another compression technique replaces an N-tuple of

original trace records with its identifier from the N-Tuple record table [Milenkovic,

Milenkovic and Kulick 2003]. The reduced trace is then compressed using gzip. The

redundancy in a trace is better exposed to gzip, so this technique achieves up to 30

times better compression than with gzip alone, for traces of branch instruction records

and N as small as 8.

In a trace that includes instruction words, one can replace the most frequent trace

records with their identifiers in the dictionary (PDI, [Johnson, Ha and Zaidi 2001]).

Another option is to replace a sequence of repeating trace records by the corresponding

repetition count. Hamou-Lhadj and Lethbridge propose one such technique for traces

of procedure calls [Hamou-Lhadj and Lethbridge 2002]: a trace is first preprocessed to

replace repeating sequences of calls with a number of repetitions, and then it is

represented as an ordered labeled tree, where nodes are procedure calls and tree levels

correspond to nesting levels. In a third phase the tree is transformed into a dynamic

acyclic graph.

QPT is a tracing and compression technique that records only information about

significant events [Larus 1993]. A QPT trace includes only transitions between basic

blocks where a program chooses between alternative paths, and only those transitions

that are not part of a maximum spanning tree of a control flow graph. The actual

instruction addresses can be regenerated using the control flow graph and a trace of

transitions.

Traces including data information are often full address traces, i.e., instruction and

data address traces. The simplest way to reduce the size of an address trace is to

replace an address with the offset from the last address of the same type (instruction

reference, data read, or data write reference) [Samples 1989]. This single-pass

algorithm is called Mache. The packed differential address and time stamp (PDATS)

algorithm takes the Mache approach one step further [Johnson, Ha and Zaidi 2001].

PDATS also stores address offsets between successive references of the same type, but

the records in the trace of offsets can have variable lengths, specified in a one-byte

record header, and an optional repetition count. For full address traces including

instruction words, PDATS can be combined with a dictionary approach into PDI.

PDATS and Mache have very small compression/decompression overhead, but they do

not take into account the underlying structure of the executed program.

Luo and John propose locality-based online trace compression (LBTC) that targets

more complex trace records [Luo and John 2004]. Information about an executed

instruction is kept in a small direct-mapped compression cache. A compressed trace

record consists of a record type (instruction or data), a cache hit/miss flag, and possibly

an offset from the previous record of the same type. Other fields of the original trace

record, such as instruction word or virtual address, are emitted to the compressed trace

only in the case of a cache miss. This technique keeps only the last data address

together with information about the corresponding memory referencing instruction. If a

data address is repeated, a cache-hit flag is emitted; otherwise, the compressed trace

includes the offset from the previous data address in the trace, similar to the PDATS

technique.

Another approach is to link information about the data addresses with a

corresponding loop [Elnozahy 1999]. In the first pass, loops in the trace are detected

using a control flow analysis technique. In the second pass, data address references

inside each loop are classified as chaotic, constant, or loop varying, i.e., with a constant

offset between loop iterations. Constant and loop-varying addresses need to be

encoded only once in the compressed trace, but all chaotic addresses must be stored

separately. Control flow analysis to extract loop information can be avoided if a

program is instrumented before tracing [DeRose et al. 2002]. However, the limitation

of this technique is that the iteration count for inner loops must be constant.

Information about data addresses can also be linked to an instruction block

[Pleszkun 1994]. For each memory-referencing instruction in an instruction block, the

possible data offsets and numbers of repetitions are recorded. This technique may have

very large memory requirements, since information about all possible data address

offsets for one load or store instruction is kept in a linked list. However, for data

references without a fixed offset or with a large number of different offsets, this

approach may not be feasible. Pleszkun also proposes compression for the instruction

component: an intermediate compressed trace encompasses the identifiers of successors

for each instruction block and the number of repetitions. During a second pass, static

basic blocks are fused into larger, dynamic basic blocks.

Data address traces can be regenerated by using so-called abstract execution [Larus

1993]. For each data address, a set of instructions computing that address is identified,

and these instructions are re-executed during trace regeneration. Instructions are

classified as easy, calculating a constant value; hard, computing a value that depends on

previously computed values; and impossible, with dependencies too complex to

recalculate. Instruction addresses are regenerated using the QPT technique. Abstract

execution requires access to the source code, and it generates a significant overhead

during trace decompression. A similar technique is used for tracing on a shared

memory multiprocessor [Eggers et al. 1990].

Traces can also be regenerated using value predictors (VPC [Burtscher and Jeeradit

2003], VPC3 [Burtscher 2004] [Burtscher et al. 2005], and TCGEN [Burtscher and

Sam 2005]). The latest implementation, TCGEN, automatically generates optimized

compression and decompression code, featuring a configurable set of value predictors

for each component of a trace record. During compression, each component of a trace

record is fed to a separate set of value predictors, indexed by the instruction addresses.

Each trace component is compressed into two subtraces. If one of the predictors in a

set is able to predict the component value, the identifier of that predictor is written to

the value predictor code subtrace. If the value is mispredicted by all predictors, it is

written into the mispredicted value subtrace, and a reserved code is written into the

predictor code subtrace. Each subtrace is further compressed using bzip2. This

technique has a very good compression ratio, but it requires a relatively long

decompression time.

3. STREAM-BASED COMPRESSION ALGORITHM

The Stream-Based Compression algorithm (SBC) bridges the gap between simple trace

compression algorithms and techniques requiring several passes, complex code

analysis, and vast memory resources. SBC exploits inherent characteristics of

instruction and data components in program execution traces. Instruction traces consist

of a fairly limited number of different instruction streams [Milenkovic and Milenkovic

2003a] [Milenkovic and Milenkovic 2003b], and a large number of memory references

exhibit strong spatial and/or temporal locality: for example, a load instruction having a

constant address stride across loop iterations.

We demonstrate SBC on Dinero traces, although it is applicable to any address or

extended address trace format. A Dinero trace record has two fixed-length fields: the

header field (0 – data read, 1 – data write, and 2 – instruction read) and the address

field. Fig. 2 shows a short excerpt from a Dinero trace in which stream 1 is followed by

28 executions of stream 2 and one execution of stream 3; this trace segment is used in

explaining the SBC compression and decompression.

120026a842
120026a802
120026a7c2
11ff971080
120026a782
120026a802
120026a7c2

120026a782
……

120026a802
120026a7c2

11ff970280
120026a782

11ff970300
120026a782
120026a802
120026a7c2

120026a802

11ff971000

120026a7c2
11ff970200
120026a782
120026a742
120026a702
120026a6c2
120026a682
120026a642
11ff96ff81
120026a602

AddressType

120026a842
120026a802
120026a7c2
11ff971080
120026a782
120026a802
120026a7c2

120026a782
……

120026a802
120026a7c2

11ff970280
120026a782

11ff970300
120026a782
120026a802
120026a7c2

120026a802

11ff971000

120026a7c2
11ff970200
120026a782
120026a742
120026a702
120026a6c2
120026a682
120026a642
11ff96ff81
120026a602

AddressType

Stream1
(iteration 0)

Stream2
(iteration 1)

Stream2
(iteration 2)

Stream2
(iteration 28)

Stream3
(iteration 29)

Dinero trace

for (i=0; i<30;++i)
{ …

a += c[i];
…

}
…

Fig. 2. An example of instruction streams in a Dinero trace. Clear rows represent instruction addresses

(type = 2) and shaded rows represent data addresses (type = 0 for reads and type = 1 for writes).

3.1 SBC Compression

The compression flow is illustrated in Fig. 3. The SBC input is a Dinero trace, and

the output consists of three files: stream table file (STF), stream-based instruction trace

(SBIT), and stream-based data trace (SBDT). The instruction types (IT) of a currently

processed instruction stream are buffered in the IBuffer, and the corresponding data

addresses (DA) in the DBuffer. An IT can be load (IT = 0), store (IT = 1), or non-

memory referencing (IT = 2). The starting address of the current stream is kept in the

S.SA variable, and the S.L variable keeps the current length of the stream. When the

program flow changes -- that is, when the first instruction of the following stream is

identified -- the information about current stream is processed. The SBC algorithm first

determines the index of the current instruction stream, and then it processes data

addresses from the DBuffer.

H A

H A

H A

IT

…

IT

Dinero
Trace

DA

…

DA

DA

…

DA
IBuffer DBuffer

S.SA

S.L

Compression Stream Table

SA L
SA L
… …

SA L

SA L
SA L
… …

SA L

1

2

n

AOff
AOff

AOff

AOff
AOff

AOff

Data Address FIFO Buffer

SBIT

1

…

STF

SA L T1

SBDT

AOff Stride RCntDH

IT
DA

Stride
Stride

Stride

Stride
Stride

Stride

RCnt
RCnt

RCnt

RCnt
RCnt

RCnt

Tk…

STI
STI

STI

STI
STI

STI

MID
MID

MID

MID
MID

MID

RDY
RDY

RDY

RDY
RDY

RDY

…

DFI

IT
DA

DFI

Fig. 3. SBC compression flow.

The compression stream table, residing in memory, is searched for an entry with the

matching stream starting address and length. A simple hash table can be used to speed

up the search. For each stream, this table keeps the starting address (SA), length (L),

and a linked list of ITs (Fig. 3). A node in the list that corresponds to a load or a store

instruction also has the DA and a pointer to the corresponding data address FIFO buffer

entry (DFI). If there is no match in the compression stream table, a new stream entry is

allocated, its linked list is filled with information from the IBuffer, and the

corresponding information is also written into the STF file. The stream index in the

compression stream table is written in the SBIT file, so the whole stream of instructions

is replaced by its index. Finally, S.SA is set to the current instruction address -- the

start of a new stream -- and S.L is set to 1.

The data address FIFO buffer and DA fields in the compression stream table are

updated for each load/store instruction in the currently processed stream. One entry in

the data address FIFO buffer holds information about one memory-referencing

instruction in a stream. It consists of the following fields: stream table index (STI),

memory reference index inside the stream (MID), ready flag (RDY), address offset

(AOff), data stride (Stride), and repetition count (RCnt). The STI points to the

corresponding compression stream table entry, and RDY indicates that the FIFO entry

is ready to be flushed.

The data address FIFO buffer is updated as follows. If a DFI field for a k-th

memory-referencing instruction in the stream is valid, the SBC algorithm calculates the

difference between the k-th DA field in the compression stream table (previous data

address for that instruction) and the DA in the input data address buffer DBuffer

(current data address). This value is the current stride. If the current stride is equal to

the value of the stride field in the data address FIFO entry determined by the DFI, the

RCnt is incremented. If RCnt = 0, this is the second execution of that instruction, so

the stride field is set to the current stride value. If the stride has changed and RCnt is

not 0, the RDY is set to 1 and a new entry is added to the data address FIFO buffer. A

new entry is also added if the DFI in the compression stream table entry has an invalid

value, which is always the case with instructions in a new stream.

Before adding a new data address FIFO buffer entry, the SBC algorithm first

verifies if the FIFO is full. If yes, the oldest FIFO record is written to the SBDT. If a

FIFO record with RDY = 0 has to be thrown out of the buffer, the corresponding DFI

value in the compression stream table is set to invalid. In a new data address FIFO

buffer entry, STI and MID are set to the values of the compression stream table index

and memory reference index, AOff is set to the current stride value, and the RCnt and

RDY fields are set to 0.

A record in the SBDT file contains information about address offset, stride, and

repetition count, and it can have variable length and a variable number of fields. The

data header field (DH) encodes the length and the most frequent values of other fields

(Fig. 4), thus achieving additional compression. The repetition count values 0 and 1

and the stride values 0, 1, 4, and 8 can be encoded in the data header; and the proposed

format allows the variable length of the AOff (1, 2, 4, or 8 bytes), Stride, and RCnt

fields (0, 1, 2, 4, or 8 bytes). For example, the store instruction in stream 1 needs 8

bytes for AOff, while RCnt and Stride are equal to 0 and are encoded in the data

header. The load instruction in stream 2 has the repetition count equal to 0x1b; thus it

needs one byte for the RCnt field. The stride is equal to 8, so it is encoded in the data

header. The content of SBC components for the trace in Fig. 2 is shown in Fig. 5.

DH 1B Stride
0, 1, 2, 4, or 8B

AOff
1, 2, 4, or 8B

RCnt
0, 1, 2, 4, or 8B

Bits 7-5: RCnt size Bits 4-2: Stride size Bits 0-1: AOff size

000: 0B (=0)
001: 1B
010: 2B
011: 4B
100: 8B
101: 0B (=1)
110: unused
111: unused

000: 0B (=0)
001: 1B
010: 2B
011: 4B
100: 8B
101: 0B (=1)
110: 0B (=4)
111: 0B (=8)

00: 1B
01: 2B
10: 4B
11: 8B

DH 1B Stride
0, 1, 2, 4, or 8B

AOff
1, 2, 4, or 8B

RCnt
0, 1, 2, 4, or 8B

Bits 7-5: RCnt size Bits 4-2: Stride size Bits 0-1: AOff size

000: 0B (=0)
001: 1B
010: 2B
011: 4B
100: 8B
101: 0B (=1)
110: unused
111: unused

000: 0B (=0)
001: 1B
010: 2B
011: 4B
100: 8B
101: 0B (=1)
110: 0B (=4)
111: 0B (=8)

00: 1B
01: 2B
10: 4B
11: 8B

Fig. 4. Format of the SBC data trace.

The SBC components can be further compressed using some of the general-purpose

compression algorithms. The SBC records can be piped to a general-purpose

compression process, reducing time and memory requirements needed for further

compression. One can ask why the SBC algorithm does not exploit the repetition of

instruction streams. Such patterns in SBIT are easily recognized by gzip/bzip2, without

an increase in complexity of SBC or any restrictions considering the number and nature

of nested loops.

1

2

2

..

3

Stream-based Instruction Trace
(SBIT)

Stride

11ff9710803

1b11ff970283F

11ff9702003

11ff96ff803

Repetition
Count

Address
Offset

Data
Header

Stride

11ff9710803

1b11ff970283F

11ff9702003

11ff96ff803

Repetition
Count

Address
Offset

Data
Header

Stream-based Data Trace (SBDT)

…

2

…

IT4

2

IT9

4

3

9

L

0

0

1

IT1

…

…

…

2

2

2

IT3

120026a78

120026a78

120026a60

SA

…

2

…

IT4

2

IT9

4

3

9

L

0

0

1

IT1

…

…

…

2

2

2

IT3

120026a78

120026a78

120026a60

SA

Stream Table File (STF)

9 bytes

10 bytes

9 bytes

9 bytes

Size

9 bytes

10 bytes

9 bytes

9 bytes

Size

Fig. 5. An example of SBC trace components.

3.2 SBC Decompression

At the beginning of decompression, the whole STF file is loaded into the

decompression stream table (Fig. 6). Like in the compression stream table, an entry in

this table encompasses the starting address (SA) and length (L) fields, and the pointer to

the list of stream instruction types. Each node in the list that corresponds to a load or a

store instruction has the following fields: current data address, address stride, and

repetition count. These fields are initialized to zero and dynamically updated from the

SBDT file during trace decompression, whenever the repetition count of an accessed

node is zero.

Decompression proceeds as follows: a stream index is read from SBIT, e.g., a

stream index 1. Entry 1 of the decompression stream table is accessed, giving address

and type of the first instruction in the stream. This instruction is a store (type 1), so the

corresponding store address is needed. Since the repetition count for the first data

reference in this stream is 0 after initialization, the decompression algorithm reads a

record from SBDT. The current data address in the node is calculated as the previous

current address (0) plus the AOff field from SBDT; the stride is set to the value of the

Stride field, in this case 0; and the repetition count is set to the RCnt value, again 0

since this stream executes only once. The pointer to the current instruction then moves

along the stream instruction type list until all nine instructions are read. Each

instruction address is obtained by incrementing the current instruction address for the

value of the instruction length, beginning from the starting address field. The SBDT

file is accessed once more, for the seventh instruction in stream 1, a load instruction.

1

2

2

..

3

Stream-based
Instruction

Trace (SBIT)
Stream-based Data

Trace (SBDT)

412002a678

312002a678

9120026a60

Length
(L)

Start Address
(SA)

412002a678

312002a678

9120026a60

Length
(L)

Start Address
(SA)

Decompression Stream Table

1

2

3

120026a842
120026a802
120026a7c2
11ff971080
120026a782
120026a802
120026a7c2

120026a782
……

120026a802
120026a7c2

11ff970280
120026a782

11ff970300
120026a782
120026a802
120026a7c2

120026a802

11ff971000

120026a7c2
11ff970200
120026a782
120026a742
120026a702
120026a6c2
120026a682
120026a642
11ff96ff81
120026a602
AddressType

120026a842
120026a802
120026a7c2
11ff971080
120026a782
120026a802
120026a7c2

120026a782
……

120026a802
120026a7c2

11ff970280
120026a782

11ff970300
120026a782
120026a802
120026a7c2

120026a802

11ff971000

120026a7c2
11ff970200
120026a782
120026a742
120026a702
120026a6c2
120026a682
120026a642
11ff96ff81
120026a602
AddressType

11ff97028

0 2…

8

1b

Current Address

Stride

Repetition Count

Current Address

Stride

Repetition Count

Stride

11ff9710803

1b11ff970283F

11ff9702003

11ff96ff803

Repetition
Count

Address
Offset

Data
Header

Stride

11ff9710803

1b11ff970283F

11ff9702003

11ff96ff803

Repetition
Count

Address
Offset

Data
Header

Fig. 6. An example of SBC decompression.

The next stream index read from the SBIT file is 2, so entry 2 is accessed. The first

instruction is a load, so the corresponding node information is updated from SBDT; i.e.,

the current address is set to 0x11ff97028, the stride is set to 8, and the repetition count

to 27 (0x1b). When stream 2 is again encountered in the SBIT file and its load

instruction is read from the decompression stream table, there is no need to access the

SBDT file – the load address is calculated as the previous address plus the stride, and

the repetition count is decremented. The same process is repeated for all 26 remaining

executions of stream 2.

3.3 SBC Compression in Hardware

Virtually all trace compression techniques target compression in software. On the

other hand, computer systems could greatly benefit from hardware support for trace

collection and compression, especially emerging systems-on-a-chip with multiple

embedded RISC and DSP processor cores. For example, ARM already offers a module

for tracing the complete pipeline information [ARM 2004]. However, the existing

compression techniques that can be efficiently implemented in hardware have poor

compression ratio: e.g., an ARM emulator compresses ARM traces by replacing the

sequence of the same records by their repetition count [McCullough et al. 2003].

The SBC implementation described in the previous sections cannot be directly

implemented in hardware: although the SBC algorithm uses a FIFO buffer of limited

size for data address compression, it keeps information about instruction streams in an

unbounded stream table. However, the SBC algorithm can be modified to use fixed-

size resources for stream information: instead of the stream table, it can use a stream

cache resource that has a fixed number of entries. The modified SBC, SBChw,

generates three trace components: a stream cache hit component and a stream cache

miss component for instruction addresses, and a stream-based data trace for data

addresses. In the case of a stream cache hit, only the corresponding cache index is

emitted into the stream cache index trace, similar to the stream index in the basic SBC.

In the case of a stream cache miss, an instruction stream descriptor (encompassing the

stream starting address, stream length, and instruction types) is emitted into the stream

cache miss trace, and a reserved index is emitted into the stream cache index trace.

To make SBC suitable for hardware implementation, we also need to limit the

maximal stream length and the maximal number of memory-referencing instructions in

a stream. Hence, we introduce two new conditions for stream termination: in addition

to a change in control flow, an instruction stream also ends when it reaches the maximal

allowed length or the maximal number of memory-referencing instructions.

Fig. 7 shows an implementation of the stream cache and the corresponding data

address FIFO buffer. The stream cache has NWAY ways and NSET sets. A set is selected

using a simple function of S.SA and S.SL, such as bit-wise XOR of selected bits and/or

bit concatenation. The S.SA and S.L serve as tags in the stream cache. Similar to the

stream table entry, a stream cache entry also includes an IT field for each instruction in

the corresponding stream, and the data address (DA) and the data address FIFO buffer

index fields (DFI) for each memory-referencing instruction in the stream.

……

……

……

……

……

……

……

……

F(S.SA, S.SL)

iSet

Hit/Miss
*

(SA, SL, ITs) (SCI)

’00…0’

S.SA & S.L

Stream Cache

0

1

i

NSET - 1 LSA

……

……

reserved

LSA

……

……

reserved

…
0

1

NWAY - 1

=?

iWay

S.SA & S.L
Stream Cache
Index Trace

Stream Cache
Miss Trace

RCntStrideAOffRDYMIDSCI

RCntStrideAOffRDYMIDSCI

RCntStrideAOffRDYMIDSCI

MIDSCI

…

AOffRDY RCntStride

RCntStrideAOffRDYMIDSCI

RCntStrideAOffRDYMIDSCI

RCntStrideAOffRDYMIDSCI

MIDSCI

…

AOffRDY RCntStride

Data Address FIFO Buffer

Stream-based Data
Address Trace

DH & AOff & Stride & RCnt

Append Header & Field Filter

… ITMaxS…IT1 … ITMaxS…IT1

DFI…DFI

DAMaxD…DA1

DFI…DFI

DAMaxD…DA1

iWay

Fig. 7. Stream Cache and Data Address FIFO Buffer in SBC hardware implementation.

4. RESULTS

In this section we first describe our evaluation environment and determine the

feasibility of the SBC technique using stream statistics. For all evaluated techniques,

we compare the trace compression ratio, compression and decompression times, and

simulation speedup. We also evaluate the compression ratio of SBC modified for

hardware implementation. Finally, we discuss the compressibility of instruction and

data components.

4.1 Evaluation Environment and Stream Statistics

In order to evaluate the proposed compression mechanism, we use Dinero address

traces of 10 SPEC CPU2000 integer (INT) and 13 floating-point (FP) benchmarks

(Table I). We trace two segments for each benchmark: the first billion instructions

(F1B) and a billion instructions after skipping 50 billion (M1B), thus making sure that

the results do not overemphasize program initialization. Traces are generated using a

modified SimpleScalar environment [Burger and Austin 1997], precompiled Alpha

binaries, and SPEC CPU2000 reference inputs. Although the number of instructions in

each segment is fixed, the number of memory-referencing instructions – loads and

stores – varies greatly across benchmarks, from as low as 18.8% of all instructions for

F1B segment of 189.lucas, to over 60% for M1B segment of 176.gcc. The average

segment size of Dinero traces is about 11GB, and the sum of uncompressed traces

reaches 510GB, clearly showing the need for highly efficient compression techniques.

Since the compression and decompression stream tables are stored in memory, we

first verify that the number of unique instruction streams is indeed fairly limited. The

size of these tables depends on the number of unique streams and the number of

instructions in each stream. Trace analysis shows that all FP benchmarks have fewer

than 4,000 unique instruction streams in a segment, and all INT benchmarks except

176.gcc and 253.perlbmk have fewer than 6,000 unique streams (Table I). When

complete execution of benchmarks is considered, the average number of unique streams

is 7,686 for INT and 2,568 for FP applications, with a maximum 30,162 in 176.gcc.

The average stream length is less than 30 instructions for all INT and 5 FP benchmarks,

and it reaches the maximum for 173.applu, 449 instructions in the M2B segment, but in

that segment 173.applu has only 502 unique streams. All these results indicate that the

stream table has relatively modest memory requirements.

Table I. Stream statistics for the first billion instructions (F1B), for the billion after
skipping 50 billion (M1B), and for complete program execution (All)

 # of Streams MaxStreamLen AverageStreamLen

INT F1B M1B All F1B M1B All F1B M1B All

164.gzip 744 315 1437 100 90 229 14.1 13.7 13.6

176.gcc 25251 1518 30162 272 103 315 10.3 11.6 11.4

181.mcf 480 306 1181 88 64 88 9.4 8.2 7.4

186.crafty 4067 1802 5347 191 100 191 13.0 13.4 13.3

197.parser 3436 4176 6116 130 157 189 8.9 10.0 10.0

252.eon 3468 574 4389 169 168 169 13.8 14.1 13.7

253.perlbmk 9031 2738 11542 84 84 868 10.0 12.3 11.8

254.gap 3154 473 3530 284 75 284 25.0 10.3 11.1

255.vortex 5441 1615 8254 126 110 126 11.1 11.2 11.0

300.twolf 2235 1013 4902 163 185 185 10.7 14.5 14.4

Average 5730.7 1453 7686.0 160.7 113.6 264.4 12.6 11.9 11.8

FP

168.wupwise 1389 185 1912 131 229 229 23.9 27.1 27.4

171.swim 1581 493 1839 707 707 707 93.6 146.3 130.8

172.mgrid 1456 871 1725 1944 1944 1944 240.1 94.1 420.8

173.applu 1463 502 1752 3162 3162 3162 411.5 449.1 462.4

177.mesa 1625 583 1938 550 266 550 14.8 18.5 18.15

178.galgel 1729 30 4153 264 111 264 18.4 21.8 21.8

179.art 435 75 976 168 561 561 10.3 8.7 9.0

183.equake 517 256 1355 44 623 623 8.6 28.3 27.7

188.ammp 818 71 1810 84 395 422 12.5 36.1 38.5

189.lucas 825 78 1414 101 427 427 27.1 128.7 113.3

191.fma3d 2069 840 5007 383 1158 1158 10.7 41.5 34.3

200.sixtrack 3507 81 6515 264 580 580 20.1 192.9 170.5

301.appsi 2388 303 2989 729 729 894 34.0 47.4 50.7

Average 1523.2 336.0 2568.1 656.2 837.8 886.2 71.2 95.4 117.3

4.2 SBC Compression Ratio

We compare compression ratio for SBC, PDATS, TCGEN, and LBTC compression

techniques when these techniques are used alone, and when they are combined with

gzip (SBC.gz, PDATS.gz, TCGEN.gz, and LBTC.gz) and bzip2 (SBC.bz2,

PDATS.bz2, TCGEN.bz2, and LBTC.bz2). We also evaluate the use of gzip

(Dinero.gz) and bzip2 (Dinero.bz2) alone.

For each compression technique and each selected benchmark, the compression

ratio is calculated as the sum of the sizes of uncompressed Dinero traces in F1B and

M1B segments, divided by the sum of the sizes of compressed traces. We also consider

the total compression ratio, calculated as the sum of uncompressed traces of all

benchmarks over the sum of all compressed traces.

To have a fair comparison, we used a Dinero trace format with separate instruction

and data components. The size of a trace in this format is less than the size of a unified

trace, since the type field is not required in the data component. In addition to that, split

components can be better compressed by gzip/bzip2. PDATS and LBTC techniques are

also slightly modified to have separate instruction and data components. TCGEN code

is automatically generated by the TCgen tool [Burtscher and Sam 2005]; we modified

the code to read the split Dinero files during compression, and not to write the

decompressed files during decompression. TCGEN uses the combination of finite-

context-method and differential-context-method predictors; its detailed specification is

given in Fig. 8. The data address field exists only in load/store instructions. The FIFO

buffer size for SBC is 8,192 entries.

Fig. 9 shows compression ratio results. SBC significantly outperforms all other

techniques, with a total compression ratio of 35.9 compared to 7.2 for PDATS, 4.9 for

TCGEN, and 7.6 for LBTC. SBC compression ratio varies across applications in a

range from 18 to 308. It should be noted that SBC alone also outperforms gzip

compression (Dinero.gz) for all benchmarks.

TCgen Trace Specification;
0-Bit Header;
Instruction type
8-Bit Field 1 = {L1 = 65536, L2 = 4: FCM3[2]};
Field 1 uses 2 predictors with a combined size of 0.8MB
Instruction address
64-Bit Field 2 = {L1 = 1, L2 = 131072: FCM3[2]};
Field 2 uses 2 predictors with a combined size of 8.0MB
Data address
64-Bit Field 3 = {L1 = 65536, L2 = 131072: DFCM3[2], DFCM1[1],
FCM1[1]};
Field 3 uses 4 predictors with a combined size 11.5MB
PC = Field 2;

Fig. 8. TCGEN specification.

Even better compression can be obtained by further compressing an SBC trace by

gzip. The SBC.gz compression ratio is from 80 to 737 for INT and from 462 to 35,595

for FP. Again, the SBC.gz outperforms all other techniques: the sum of all traces is

reduced 327 times, and the total compression ratio for other techniques is 271 for

TCGEN, 85 for LBTC, and 62 for PDATS.

Using bzip2 instead of gzip can even further improve the compression ratio, but at

the price of a significant slowdown in compression/decompression time. SBC.bz2

compression ratio for the sum of all traces approaches 400. However, TCGEN.bz2

achieves an even better compression of 722.

It should be noted that Burtscher et al. find that TCGEN combined with bzip2

outperforms other compression techniques in both compression ratio and

decompression time [Burtscher et al. 2005]. These seemingly contradictory results can

be easily explained. The TCGEN authors do not use full address traces, but rather a

subset with some additional information (e.g., traces of store instructions and store

addresses, load instructions and load values, and addresses of instructions causing

cache misses). Instruction streams cannot be easily recognized in such traces, so the

authors assume that a “stream” in a trace is a sequence of trace records with increasing

addresses, such that the difference between consecutive records’ addresses is less than a

small threshold. These artificial streams are very short, so the full strength of SBC

cannot be exploited. Slower SBC decompression time observed in [Burtscher et al.

2005] is a consequence of lower compression ratio and the lack of code optimization.

1

10

100

1000

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

to
ta

l

C
om

pr
es

si
on

 r
at

io

PDATS TCGEN LBTC SBC

1

10

100

1000

10000

100000

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

to
ta

l

C
om

pr
es

si
on

 r
at

io

Dinero.gz PDATS.gz TCGEN.gz LBTC.gz SBC.gz

1

10

100

1000

10000

100000

1000000

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

to
ta

l

C
om

pr
es

si
on

 r
at

io

Dinero.bz2 PDATS.bz2 TCGEN.bz2 LBTC.bz2 SBC.bz2

Fig. 9. Compression ratio.

4.3 SBC Decompression Time and Simulation Speedup

Decompression time is as important as compression ratio, especially when compressed

traces are used for trace-driven simulation. We first measure real elapsed

decompression time in a program that reconstructs an entire trace, with buffered reads

and inlined decompression. The gzip and bzip2 utilities run in a separate process and

pipe their results to the main procedure. This program emulates a simulator adapted to

the applied decompression technique. Total processor time needed for program

execution is measured on a Pentium 4 with hyperthreading at 3 GHz, with the RedHat

Linux operating system.

Fig. 10 shows decompression times for all considered techniques alone and when

combined with gzip and bzip2. SBC performs better than other techniques, requiring on

average 86 seconds per application; it is slightly better than PDATS, and it is almost

two times faster than LBTC and four times faster than TCGEN. SBC also outperforms

other techniques when it is combined with gzip and bzip2. For example, SBC.gz is on

average 5 times faster than Dinero.gz, 1.5 times faster than PDATS.gz, 3 times faster

than TCGEN.gz, and 1.25 times faster than LBTC.gz; SBC.bz2 decompression is

almost 20 times faster than Dinero.bz2, 4.5 times faster than PDATS.bz2, 3 times faster

than LBTC.bz2, and 2.5 times faster than TCGEN.bz21. It should be noted that

decompression time depends on both the compressed file size and time complexity of

the decompression algorithm. Though bzip2 always achieves better compression ratio

than gzip, bzip2 decompression time is longer.

1 bz2 decompression times are shown with logarithmic scale.

One could argue that a TCGEN configuration with a smaller number of predictors

should have faster decompression than the one we use, so we also evaluate a “small”

TCGEN with only one predictor for each trace record component (the first predictors

listed in Fig. 8). The smallTCGEN.gz indeed does decompress slightly faster than

TCGEN.gz, on average 1770 vs. 1801 seconds. However, raw smallTCGEN and

smallTCGEN.bz2 are slower than the corresponding TCGEN and TCGEN.bz2. A

higher number of mispredictions, because of fewer predictors, significantly deteriorates

the compression ratio: 4 vs. 5 for raw TCGEN, 209 vs. 271 for TCGEN.gz, and 495 vs.

722 for TCGEN.bz2.

SBC is also evaluated as a part of a trace input procedure for the DineroIV cache

memory simulator [Edler and Hill 1998]. In DineroIV, a trace is read in a separate

trace input procedure. The decompressed trace record is returned by value to the

next_in_trace procedure, which than returns it to the main procedure. We implemented

trace input procedures for all trace compression alternatives, with buffered read and

pipes for gzip and bzip2. Fig. 11 shows the simulation speedup relative to the DineroIV

simulator reading raw Dinero traces. SBC.gz outperforms all other techniques with an

average simulation speedup of 2.6 (compared to 2.4 for SBC.bz2, 2.4 for LBTC.gz, 2.4

for PDATS.gz, 1.8 for TCGEN.gz, and 1.7 for TCGEN.bz2). Simulation speedup for

DineroIV is lower than the decompression speedup shown in Fig. 10, because of

simulation overhead and simulator implementation.

0

100

200

300

400

500

600

700

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

D
ec

om
pr

es
si

on
 ti

m
e

[s
ec

]
PDATS TCGEN LBTC SBC

0

100

200

300

400

500

600

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

D
ec

om
pr

es
si

on
 ti

m
e

[s
ec

]

Dinero.gz PDATS.gz TCGEN.gz LBTC.gz SBC.gz

10

100

1000

10000

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

D
ec

om
pr

e
ss

io
n

tim
e

[s
ec

]

Dinero.bz2 PDATS.bz2 TCGEN.bz2 LBTC.bz2 SBC.bz2

Fig. 10. Decompression time.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16
4.

gz
ip

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

30
0.

tw
olf

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.

luc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

av
er

ag
e

S
im

ul
at

io
n

sp
ee

du
p

Dinero.gz PDATS.gz TCGEN.gz LBTC.gz SBC.gz

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16
4.

gz
ip

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

30
0.

tw
olf

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.

luc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

av
er

ag
e

S
im

ul
at

io
n

sp
ee

du
p

Dinero.bz2 PDATS.bz2 TCGEN.bz2 LBTC.bz2 SBC.bz2

Fig. 11. Simulation speedup for the DineroIV simulator, relative to raw Dinero traces.

4.4 SBC Compression Time

Compression time is a less significant factor in the choice of a trace compression

technique than is decompression time, since a trace is usually compressed only once but

is decompressed many times. Without gzip/bzip2 compression, compression time varies

little across different techniques: the arithmetic mean for SBC is 28.9 minutes versus

29.1 minutes for PDATS, 33.3 for TCGEN, and 30.1 for LBTC (Fig. 12, top). The

average total CPU time is 3 minutes for SBC, 3.77 for PDATS, 3.28 for LBTC, and

6.79 minutes for TCGEN. Similar real time can be explained as follows: a compression

program spends its execution time on three components -- reading an uncompressed

file, compressing trace records, and writing the compressed file. Hence, any

compression program is I/O bound, spending most of its time waiting for I/O. All

programs use the same input, so the time for the file read does not vary much. In this

case, this component dominates others: compressed files are about an order of

magnitude smaller than uncompressed ones, and total CPU time is also significantly

less than I/O time. SBC compression has the longest duration for gcc, an application

with many different streams.

Gzip compression alone lasts longer than any of the trace compression techniques

combined with gzip, since the gzip output files are larger. SBC.gz, PDATS.gz,

LBTC.gz, and TCGEN.gz all have an average compression time of about 29 minutes

(Fig. 12, middle). The bzip2 compression has a higher time complexity than linear, so it

is very slow for large output files. Dinero.bz2 has an average compression time of

about 708 minutes, SBC.bz2 and TCGEN.bz2 about 38 minutes, and PDATS.bz2 and

LBTC.bz2 about 88 minutes (Fig. 12, bottom)2.

2 bz2 compression times are shown with logarithmic scale.

0

500

1000

1500

2000

2500

3000

3500

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

C
om

pr
es

si
on

 ti
m

e
[s

ec
]

PDATS TCGEN LBTC SBC

0

500

1000

1500

2000

2500

3000

3500

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

C
om

pr
es

si
on

 ti
m

e
[s

ec
]

Dinero.gz PDATS.gz TCGEN.gz LBTC.gz SBC.gz

100

1000

10000

100000

164
.g

zip

176
.g

cc

181
.m

cf

186
.cr

af
ty

197
.p

ar
se

r

252
.e

on

253
.p

er
lbm

k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168
.w

up
wise

171
.sw

im

172
.m

gr
id

173
.a

pp
lu

177
.m

es
a

178
.g

alg
el

179
.a

rt

183
.e

qu
ak

e

188
.a

mm
p

189
.lu

ca
s

191
.fm

a3d

200
.si

xtr
ac

k

301
.a

ps
i

ave
ra

ge

C
om

pr
es

si
on

 ti
m

e
[s

ec
]

Dinero.bz2 PDATS.bz2 TCGEN.bz2 LBTC.bz2 SBC.bz2

Fig. 12. Compression time.

4.5 Compression Ratio of SBC Hardware Implementation

To evaluate the influence of finite-size resources on the SBC algorithm, we

compare the size of traces compressed with SBC and SBChw, without the additional

general compression stage (Fig. 13). Two SBChw configurations are considered: an

extremely small SBChw (64x4), with only 256 stream cache entries, and a relatively

large SBChw (4Kx4), with 16K stream cache entries (Table II). For the majority of

applications, SBChw (4Kx4) has almost the same compression ratio as SBC. The

slightly higher total compression ratio of SBChw (4Kx4) is due to a smaller

compressed data address trace component (SBDT) for most floating-point applications.

This result can be explained as follows. With the SBC, the body of an inner loop

appears as a part of three streams, so each load/store instruction in the loop has at least

three data address FIFO entries and three trace records in the SBDT file. With the SBC

hardware implementation, very long instruction streams are split into shorter ones, so

some of the load/store instructions in a long loop body will belong to only one SBChw

stream. Consequently, load/store instructions in relatively long loops in SPEC

CPU2000 FP applications are compressed into fewer trace records with SBChw (4Kx4)

than with SBC.

Table II. Parameters of SBC hardware implementation

SBChw
Data address
FIFO entries

Stream
cache sets

Stream
cache ways

Max stream
length

Max loads&stores
per stream

(4Kx4) 8192 4096 4 256 128
(64x4) 4096 64 4 128 64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

164
.g

zip

176
.g

cc

181.m
cf

186.cr
aft

y

197.
par

se
r

252.
eon

253.p
erlb

m
k

254
.g

ap

255
.vo

rte
x

300
.tw

olf

168.w
upwise

171.sw
im

172.
m

grid

173
.a

pplu

177.m
es

a

178.g
algel

17
9.a

rt

183
.e

quake

188
.a

m
mp

189.lu
ca

s

191
.fm

a3d

20
0.si

xtr
ack

301.a
psi

to
tal

S
iz

e(
S

B
C

hw
 tr

ac
e)

/S
iz

e(
S

B
C

 tr
ac

e)
 SBChw (64x4) SBChw (4Kx4)

Fig. 13 SBChw versus SBC trace sizes.

For most applications, even SBChw (64x4) comes close to SBC, with 13 out of 23

traces being less than 1.4 times larger, and only 2 traces being more than 2.5 times

larger. Although with a very small stream cache, SBChw (64x4) can even outperform

SBC, because of the effect explained above and a shorter StreamID (one byte instead of

two bytes for stream index). The total size of SBChw traces divided by the total size of

SBC traces is 1.66 for SBChw (64x4) and 0.97 for SBChw (4Kx4).

4.6 Compressibility of Instruction and Data Trace Components

Instruction addresses are known to have more redundancy than data addresses have

[Becker and Park 1993]. Fig. 14 and Fig. 15 illustrate how successful the evaluated

trace compression techniques are in exploiting this redundancy. The SBC algorithm

compresses instruction addresses much better than data addresses, for up to two orders

of magnitude. Using again the total compression ratio as a metric, SBC instruction

address compression is 5.3 times better than data address compression. A trace of

stream identifiers has more redundancy than a trace of SBC data records, so SBC.gz

and SBC.bz2 compress the instruction trace component 40.6 and 90.8 times better than

they compress the data address component, respectively.

TCGEN replaces each trace component by a predictor identifier and possibly with

misprediction information. Hence, the size of the instruction type component is

actually expanded. As a consequence, TCGEN has a lower compression ratio for the

instruction component than for the data component. TCGEN traces are very suitable

for additional compression by gzip/bzip2, since traces of predictor identifiers have very

few unique symbols. Second stage compression with gzip/bzip2 benefits more from

instruction address redundancy, so TCGEN combined with gzip compresses the

instruction component 4.1 times better than it compresses the data component, and

about 18.4 times better when combined with bzip2.

With LBTC, both instruction and data addresses are compressed using offsets, and

only repeated data addresses benefit from the compression cache. Hence, for most

applications there is not much difference between instruction and data component

compression ratio. Instruction address offsets are better compressed with general

compression algorithms than data address offsets are, so LBTC.gz and LBTC.bz2

compress the instruction component 16.3 and 50.7 times better than they compress the

data component, respectively. PDATS is 2.9 times better for instruction than for data,

due to encoding of repeated instruction offsets.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

PDATS.I

TCGEN.I

LB
TC.I

SBC.I

Dine
ro

.I.
gz

PDATS.I.
gz

TCGEN.I.g
z

LB
TC.I.g

z

SBC.I.
gz

Dine
ro

.I.
bz

2

PDATS.I.
bz

2

TCGEN.I.b
z2

LB
TC.I.b

z2

SBC.I.
bz

2

In
st

ru
ct

io
n

co
m

po
ne

nt

co
m

pr
es

si
on

 r
at

io

Fig. 14. Compression ratio of Dinero trace instruction component.

1

10

100

1,000

10,000

100,000

1,000,000

PDATS.D

TCGEN.D

LB
TC.D

SBC.D

Dine
ro

.D
.g

z

PDATS.D
.g

z

TCGEN.D
.g

z

LB
TC.D

.g
z

SBC.D
.g

z

Dine
ro

.D
.b

z2

PDATS.D
.b

z2

TCGEN.D
.b

z2

LB
TC.D

.b
z2

SBC.D
.b

z2

D
at

a
co

m
po

ne
nt

co

m
pr

es
si

on
 r

at
io

Fig. 15. Compression ratio of Dinero trace data component.

SBC compression of the instruction trace component depends only on the average

stream length, which indicates how many instruction records in the original trace are

replaced by one stream identifier in the SBC-compressed trace (Table I). Hence, traces

with longer instruction streams are better compressed. The SBC compression ratio of

the data component is more difficult to explain, since it depends on several factors: the

regularity of data address strides; and the length of repetition, stride, and address offset

fields in a particular SBDT file. The finite size of the Data FIFO Buffer can also affect

SBC data component compression. Table III shows the ratio of the number of memory

references in the trace, NMEM_D, and the number of records in the SBDT trace, NSBDT.

The results indicate that a moderate FIFO size, such as 8,192 entries, yields a

compression ratio close to that of an infinite FIFO for most benchmarks. Fig. 16 shows

how the compression ratio of the data component depends on the FIFO size for

301.appsi, the most sensitive application, and 189.lucas, the least sensitive one. We

can emulate an infinite FIFO, but that would require two passes through the trace.

Instead, we conduct additional experiments with the 64K-entry data address FIFO

buffer. Although the compression ratio significantly improves for some applications

(e.g., 301.appsi, 191.fma3d, 173.applu), the total compression ratio does not

considerably change: 36 for raw SBC with 8K FIFO vs. 37 with 64K FIFO, 326 vs. 346

for SBC.gz, and 390 vs. 406 for SBC.bz2. These gains in compression ratio are

achieved without additional overhead in compression and decompression time.

Table III. Ratio of the number of data address trace references NMEM_D and
SBDT records NSBDT

 NMEM_D/NSBDT NMEM_D/NSBDT

INT 8192 entry FIFO Infinite FIFO FP 8192 entry FIFO Infinite FIFO

164.gzip 12.21 12.78 168.wupwise 26.77 27.72

176.gcc 20.88 24.63 171.swim 95.81 102.72

181.mcf 10.62 11.66 172.mgrid 9.92 12.48

186.crafty 5.43 7.78 173.applu 6.23 15.18

197.parser 6.00 6.33 177.mesa 13.90 19.27

252.eon 2.94 4.05 178.galgel 27.40 29.15

253.perlbmk 6.93 8.36 179.art 373.22 502.32

254.gap 5.23 5.79 183.equake 10.56 11.66

255.vortex 3.23 3.82 188.ammp 14.87 17.38

300.twolf 4.66 5.72 189.lucas 91.14 92.01

 191.fma3d 12.62 21.38

 200.sixtrack 8.55 11.70

 301.appsi 3.26 6.86

SBDT file size

0

0.2

0.4

0.6

0.8

1

1000 2000 4000 8000 16000

Number of entries in the data address FIFO buffer

301.apsi 189.lucas

Fig. 16. SBDT file size as a function of the number of entries in the data address FIFO buffer,

relative to the 1K-entry FIFO buffer.

5. CONCLUSION

The main contributions of this paper are the following:

• A single-pass trace compression technique, SBC. In the SBC algorithm an

instruction stream is replaced by its index from the stream table. Data addresses are

linked to a corresponding instruction stream and compressed using an efficient on-

line algorithm that recognizes regular strides. This technique achieves an optimal

balance between the most important compression requirements: high compression

ratio and fast decompression time. The SBC web site,

http://www.ece.uah.edu/~lacasa/sbc/sbc.html, includes SBC-compressed SPEC

CPU2000 traces and utility programs.

• A modified SBC with fixed-size resources, SBChw, suitable for hardware

implementation. The SBChw technique achieves a compression ratio comparable to

that of SBC with very modest resources, by using a finite-size stream cache instead

of an unbounded stream table, and limiting the maximal stream length and the

number of loads/stores in a stream.

• Evaluation of SBC versus the best existing single-pass lossless compression

techniques, PDATS, LBTC, and TCGEN. SBC outperforms all other techniques

when compression ratio, decompression time, and compression time are all taken

into consideration. Without additional compression by gzip or bzip2, SBC

compresses better than all other techniques, outperforming the next best technique,

LBTC, 4.8 times. SBC also has the highest compression ratio when combined with

gzip, for all but two considered applications. When combined with bzip2, it

achieves a compression ratio comparable to that of TCGEN.bz2. Though

TCGEN.bz2 has the best overall compression ratio, it has a significant

decompression overhead. Evaluation of decompression time in two settings, with an

optimized decompression program and a real simulator, shows that SBC traces

decompress much faster than TCGEN traces. With the custom decompression

program, SBC.gz and SBC.bz2 are 4.5 and 3 times faster than TCEN.bz2,

respectively. Simulation with the DineroIV cache memory simulator finishes 1.56

times faster with SBC.gz than with TCGEN.bz2, and 1.35 times faster with

SBC.bz2.

• Analysis of compressibility of instruction and data trace components for all

evaluated techniques, as well as sensitivity of the SBC compression ratio to the data

address FIFO buffer size.

• A novel classification of lossless trace compression techniques, based on the

method used for compression of data and instruction components.

As our analysis indicates, future compression techniques should concentrate on the

data trace component, since it makes up over 80% of the SBC compressed traces.

Another avenue to be explored is the extension of the SBC trace format for other types

of traces. An additional benefit of the SBC technique is the separation of the stream

trace file from the rest of the compressed data. Hence, various statistics such as the

number of executed instructions of a particular type, number of streams, and dynamic

distribution of streams can be obtained by processing only the stream table file instead

of the whole trace. The stream table file can also include information about basic

blocks in a stream and a stream frequency field.

REFERENCES

AGARWAL, A., SITES, R. L. and HOROWITZ, M. 1986. ATUM: A New Technique for Capturing Address
Traces Using Microcode. In Proceedings of the 13th Annual Symposium on Computer
Architecture, Tokyo, Japan, June 1986, 119-127.

ARM. 2004. CoreSight On-chip Debug and Trace Technology.
<http://www.arm.com/products/solutions/CoreSight.html> (July 2004).

BECKER, J. C. and PARK, A. 1993. An analysis of the information content of address and data reference
streams. In Proceedings of the 1993 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, Santa Clara, CA, May 10 - 14, 1993, 262 - 263.

BURGER, D. and AUSTIN, T. 1997. The SimpleScalar Tool Set Version 2.0. CS-TR-97-1342, University of
Wisconsin, WI, USA.

BURROWS, M. and WHEELER, D. J. 1994. A Block-sorting Lossless Data Compression Algorithm. Report
124, Digital SRC.

BURTSCHER, M. 2004. VPC3: A Fast and Effective Trace-Compression Algorithm. In Joint International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’04), New York,
NY, USA, June 2004, 167-176.

BURTSCHER, M., et al. 2005. The VPC Trace-Compression Algorithms. IEEE Transactions on Computers 54,
11 (November 2005), 1329-1344.

BURTSCHER, M. and JEERADIT, M. 2003. Compressing Extended Program Traces Using Value Predictors. In
Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques, New Orleans, LA, September 2003, 159-168.

BURTSCHER, M. and SAM , N. B. 2005. Automatic Generation of High-Performance Trace Compressors. In
2005 International Symposium on Code Generation and Optimization (CGO’05), San Jose, CA,
USA, March 2005, pp. 229-240.

CANTIN , J. F. and HILL , M. D. 2003. Cache Performance for SPEC CPU2000 Benchmarks.
<http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/> (April 2004).

DEROSE, L., et al. 2002. SIGMA: A Simulator Infrastructure to Guide Memory Analysis. In Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, Baltimore, Maryland, 1-13.

EDLER, J. and HILL , M. D. 1998. Dinero IV Trace-Driven Uniprocessor Cache Simulator.
<http://www.cs.wisc.edu/~markhill/DineroIV/> (August 2003).

EGGERS, S. J., et al. 1990. Techniques for efficient inline tracing on a shared-memory multiprocessor. In
Proceedings of the 1990 ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, USA, 37 - 47.

ELNOZAHY , E. N. 1999. Address Trace Compression Through Loop Detection and Reduction. ACM
SIGMETRICS Performance Evaluation Review 27, 1 (June), 214-215.

FISHER, J. A., FARABOSCHI, P. and YOUNG, C. 2005. Embedded Computing: A VLIW Approach in
Architecture, Compilers, and Tools. Morgan Kaufmann, San Francisco, CA, USA.

HAMOU-LHADJ, A. and LETHBRIDGE, T. C. 2002. Compression techniques to simplify the analysis of large
execution traces. In Proceedings of the 10th International Workshop on Program Comprehension,
Paris, France, 27-29 June 2002, 159 -168.

JOHNSON, E. E., HA, J. and ZAIDI , M. B. 2001. Lossless Trace Compression. IEEE Transactions on
Computers 50, 2 (February), 158-173.

LARUS, J. R. 1993. Efficient program tracing. IEEE Computer 26, 5 (May 1993), 52-61.
LARUS, J. R. 1999. Whole program paths. In Proceedings of the ACM SIGPLAN 1999 Conference on

Programming language design and implementation, Atlanta, GA, 259-269.
LUO, Y. and JOHN, L. K. 2004. Locality-Based Online Trace Compression. IEEE Transaction on Computers

53, 6 (June 2004), 723-731.
MCCULLOUGH, et al. 2003. Trace reporting method and system. United States Patent 6,615,371.
MILENKOVIC , A. and MILENKOVIC , M. 2003a. Exploiting Streams in Instruction and Data Address Trace

Compression. In Proceedings of IEEE 6th Annual Workshop on Workload Characterization,
Austin, TX, USA, October 27, 2003, 99-107.

MILENKOVIC , A. and MILENKOVIC , M. 2003b. Stream-Based Trace Compression. Computer Architecture
Letters 2, (September 2003),

MILENKOVIC , A., MILENKOVIC , M. and KULICK , J. 2003. N-Tuple Compression: A Novel Method for
Compression of Branch Instruction Traces. In Proceedings of the 16th International Conference
on Parallel and Distributed Computing Systems (PDCS-2003), Reno, NV, USA, August 13-15,
2003, 49-55.

NEVILL -MANNING, C. G. and WITTEN, I. H. 1997. Linear-Time, Incremental Hierarchy Interference for
Compression. In Proceedings of the IEEE Data Compression Conference, Snowbird, UT, 3-11.

PLESZKUN, A. R. 1994. Techniques for compressing program address traces. In Proceedings of the 27th
Annual International Symposium on Microarchitecture, San Jose, CA, USA, November 30 -
December 02, 1994, 32-39.

SAMPLES, A. D. 1989. Mache: no-loss trace compaction. In Proceedings of the 1989 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, Oakland, CA,
USA, May 23 - 26, 89 - 97.

SKADRON, K., et al. 2003. Challenges in Computer Architecture Evaluation. IEEE Computer 36, 8 (August
2003), 30 - 36.

SMITH , M. D. 1991. Tracing with Pixie. Technical Report CSL-TR-91-497, Computer Systems Laboratory,
Stanford University.

SPEC. 2000. SPEC 2000 CPU Benchmark Suite. <http://www.spec.org> (February 2004).
THORNOCK, N. C. and FLANAGAN , J. K. 2001. A national trace collection and distribution resource. ACM

SIGARCH Computer Architecture News 29, 3 (June 2001), 6-10.
UHLIG, R., et al. 1995. Instruction fetching: coping with code bloat. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, S. Margherita Ligure, Italy, 345 - 356.
UHLIG, R. A. and MUDGE, T. N. 1997. Trace-driven memory simulation: a survey. ACM Computing Survey

29, 2 (June), 128-170.
ZHANG, Y. and GUPTA, R. 2001. Timestamped whole program path representation and its applications. In

Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, Snowbird, UT, USA, 180-190.

ZHOU, M. and SMITH , A. J. 2000. Tracing Windows95. Microprocessors and Microsystems 24, 333–347.
ZIV , J. and LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Transaction on

Information Theory 23, 3 (May 1977), 337-343.

