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1.  INTRODUCTION  

Software simulations have been a vital tool in computer architecture for quantitative 

evaluations of new ideas and design prototypes.  Both industry and academia rely 

extensively on simulation because it is the easiest and least expensive way to 

characterize and explore design space [Skadron et al. 2003].  A common simulation 

technique is trace-driven simulation, where the input to the simulator is a trace of 

relevant events, collected during execution of a realistic workload.  Though execution-

driven simulators may provide faster simulation and more flexibility, they are often not 

readily available for a computer system of interest.  Building a full-scale execution-

driven simulator is often impractical and unnecessary, and certainly it is very 

expensive.  Moreover, in performance-tuning efforts for real-world server applications, 

recreating conditions and inputs on an execution-driven simulator is often impossible.  

Consequently, program execution traces for trace-driven simulation remain an 

important resource for computer engineers. 

In the last decade many research efforts have been dedicated to trace issues, such as 

trace collection, reduction, and processing [Uhlig and Mudge 1997].  Depending on its 

purpose, a trace can contain different types of information.  For example, control flow 

analysis needs only a trace of the executed basic blocks or paths.  Cache studies require 

address traces, and more detailed processor simulations also need instruction words.  

Branch predictors can be evaluated using traces with only branch-relevant information, 

such as branch and target addresses and branch outcome; ALU unit simulations require 

operand values.  For example, a Dinero trace record consists of the address of the 

memory reference and the reference type (read, write, or instruction fetch) [Edler and 



Hill 1998].  BYU traces include additional information, such as the size of the data 

transfer and processor ID [Thornock and Flanagan 2001].  ATUM traces (Address 

Tracing Using Microcode) also include the process ID, and encompass information 

about system activity, such as mapping between physical and virtual memory at each 

translation look-aside buffer miss [Agarwal, Sites and Horowitz 1986].  An IBS trace 

record contains the operation code and the user/kernel indicator [Uhlig et al. 1995].  

Traces collected using the pixie tool differentiate between records for load/store 

memory references of different size, such as byte, double, or word [Smith 1991]. 

To efficiently store, transfer, and use even a small collection of traces, the traces 

must be compressed as much as possible.  Each new generation of the industry-

recognized SPEC benchmark suite has a longer run-time, larger resource requirements, 

and a larger set of benchmarks [SPEC 2000].  The number of executed instructions in 

SPEC CPU2000 benchmarks with reference input sets ranges from 62 to 547 billion 

[Cantin and Hill 2003].  If each benchmark is executed with only one reference input 

set, the sum of the executed instructions is about 7.5 trillion. We would need almost 70 

terabytes of disk space to store these traces, assuming 10-byte trace records. 

An effective trace compression technique is lossless (i.e., it does not introduce any 

errors into the simulation), has a high compression factor, and has a small 

decompression overhead.  Although traditional compression techniques, such as the 

Ziv-Lempel algorithm [Ziv and Lempel 1977] used in the gzip utility or Burroughs-

Wheeler transformation [Burrows and Wheeler 1994] used in the bzip2 utility, offer a 

good compression ratio, even better compression is possible when the specific nature of 

redundancy in traces is taken into account.  Better compression techniques not only 



enable more representative input and faster execution of trace-driven simulation, but 

also help in other uses of traces, such as the dynamic analysis of program behavior, 

debugging, and daily system maintenance [Zhou and Smith 2000]. 

This paper introduces Stream-Based Compression (SBC), a new method for single-

pass compression of address traces and various extended trace formats.  The SBC 

algorithm relies on extracting instruction streams.  An instruction stream is defined as a 

sequential run of instructions, from the target of a taken branch to the first taken branch 

in the sequence.  A stream table created during compression encompasses all relevant 

information about streams, such as the starting address, stream length, and instruction 

types.  All instructions from a stream are replaced by its index in the stream table, 

creating a trace of instruction streams.   

SBC features an efficient on-line algorithm for compression of data address 

references.  Unlike instruction addresses, data addresses for a memory-referencing 

instruction rarely stay constant during program execution, but they can have a regular 

stride.  The SBC-compressed data address trace encompasses a data address stride and 

the number of repetitions for each memory-referencing instruction in a stream.  A 

change of the data address stride results in another record in the compressed trace.  The 

records are ordered by the corresponding stream appearances in the original trace.   

In this paper we also show how a slightly modified SBC algorithm can be used in a 

hardware resource called a trace compressor that will allow on-line trace compression 

with only modest resource usage. Such a new resource can be very useful for system 

debugging and verification, one of the most significant problems in emerging SOCs 



(Systems-On-the-Chip) where physical processor pins are not available [Fisher, 

Faraboschi and Young 2005].  

The proposed algorithm achieves a very good compression ratio and 

decompression/compression time for instruction and data address traces, yet it is 

straightforward to implement and does not require code augmentation or lengthy multi-

pass trace analysis.  Furthermore, SBC can be successfully combined with general 

compression algorithms, such as Ziv-Lempel or Burroughs-Wheeler.  

We evaluate the proposed technique’s efficiency by measuring compression ratio, 

decompression, and compression time and comparing its performance versus the best 

existing techniques for trace compression, such as PDATS [Johnson, Ha and Zaidi 

2001], TCGEN [Burtscher and Sam 2005], and LBTC [Luo and John 2004].  We also 

consider these techniques when they are combined with gzip and bzip2.  We use full 

instruction and data address traces [Edler and Hill 1998] of SPEC CPU2000 benchmark 

programs as the input.  Detailed experimental analysis shows that SBC outperforms 

other techniques, achieving a good balance between compression ratio and 

decompression time. Using the trace compression ratio of the sum of all traces as a 

metric, SBC reduces the trace size 35.9 times, versus 7.2 times reduction with PDATS, 

4.9 with TCGEN, and 7.6 with LBTC.  When compression techniques are combined 

with gzip, the compression ratio with SBC.gz is 326.6 versus 62.3 with PDATS.gz, 

271.1 with TCGEN.gz, and 84.7 with LBTC.gz.  Additional compression with bzip2 

reduces the trace size even more: the compression ratio with SBC.bz2 is 390, 84.8 with 

PDATS.bz2, 722.3 with TCGEN.bz2, and 122.8 with LBTC.bz2.  Although 

TCGEN.bz2 has a higher compression ratio than SBC.bz2 for all but five benchmarks, 



SBC.bz2 has from 2 to 7 times shorter decompression time.  In addition, we show that 

SBC-compressed traces provide the shortest simulation time with a real cache memory 

hierarchy simulator. 

The rest of this paper is organized as follows.  The next section gives an overview 

and a new classification of the existing techniques for trace compression.  Section 3 

explains stream-based compression and decompression processes and discusses 

implementation of the SBC algorithm in hardware.  Section 4 evaluates the 

effectiveness of SBC versus other trace compression techniques, comparing 

compression ratio, compression time, and decompression time.  The last section gives 

concluding remarks.   

 

2.  RELATED WORK  

We can broadly classify traces in two categories. The first category encompasses traces 

that have information only about the instruction flow: traces of instruction addresses, 

basic blocks, executed branches, or procedure calls.  The traces in the second category 

also include records with highly variable values such as data addresses or operand 

values.  Consequently, trace compression techniques can also be divided into two 

groups: techniques targeting only instruction flow traces, and those targeting traces 

including both instruction and data information.  Fig. 1 shows this classification for 

lossless trace compression techniques.   
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Fig. 1.  Lossless trace compression techniques. 

 

The underlying idea for several instruction trace compression techniques is to 

replace an execution sequence with its identifier.  For example, in the whole program 

path technique (WPP), a program is instrumented to produce a trace of acyclic paths 

[Larus 1999].  Acyclic paths are then compressed using a modified Sequitur algorithm 

[Nevill-Manning and Witten 1997].  WPP yields a very good compression ratio, and it 

is convenient for certain types of analysis, such as finding the most frequently executed 

paths.  The downside is that it requires the code to be instrumented, so it is not directly 

applicable for already-recorded traces.  Time-stamped WPP [Zhang and Gupta 2001] 

enables fast access to the trace of a particular function: WPP is broken into path traces 

corresponding to individual function calls, and all path traces for one function are 

stored together as a block.  Another compression technique replaces an N-tuple of 

original trace records with its identifier from the N-Tuple record table [Milenkovic, 



Milenkovic and Kulick 2003].  The reduced trace is then compressed using gzip.  The 

redundancy in a trace is better exposed to gzip, so this technique achieves up to 30 

times better compression than with gzip alone, for traces of branch instruction records 

and N as small as 8.   

In a trace that includes instruction words, one can replace the most frequent trace 

records with their identifiers in the dictionary (PDI, [Johnson, Ha and Zaidi 2001]).  

Another option is to replace a sequence of repeating trace records by the corresponding 

repetition count.  Hamou-Lhadj and Lethbridge propose one such technique for traces 

of procedure calls [Hamou-Lhadj and Lethbridge 2002]: a trace is first preprocessed to 

replace repeating sequences of calls with a number of repetitions, and then it is 

represented as an ordered labeled tree, where nodes are procedure calls and tree levels 

correspond to nesting levels.  In a third phase the tree is transformed into a dynamic 

acyclic graph.   

QPT is a tracing and compression technique that records only information about 

significant events [Larus 1993].  A QPT trace includes only transitions between basic 

blocks where a program chooses between alternative paths, and only those transitions 

that are not part of a maximum spanning tree of a control flow graph.  The actual 

instruction addresses can be regenerated using the control flow graph and a trace of 

transitions. 

Traces including data information are often full address traces, i.e., instruction and 

data address traces.  The simplest way to reduce the size of an address trace is to 

replace an address with the offset from the last address of the same type (instruction 

reference, data read, or data write reference) [Samples 1989].  This single-pass 



algorithm is called Mache.  The packed differential address and time stamp (PDATS) 

algorithm takes the Mache approach one step further [Johnson, Ha and Zaidi 2001].  

PDATS also stores address offsets between successive references of the same type, but 

the records in the trace of offsets can have variable lengths, specified in a one-byte 

record header, and an optional repetition count.  For full address traces including 

instruction words, PDATS can be combined with a dictionary approach into PDI.  

PDATS and Mache have very small compression/decompression overhead, but they do 

not take into account the underlying structure of the executed program. 

Luo and John propose locality-based online trace compression (LBTC) that targets 

more complex trace records [Luo and John 2004].  Information about an executed 

instruction is kept in a small direct-mapped compression cache.  A compressed trace 

record consists of a record type (instruction or data), a cache hit/miss flag, and possibly 

an offset from the previous record of the same type.  Other fields of the original trace 

record, such as instruction word or virtual address, are emitted to the compressed trace 

only in the case of a cache miss.  This technique keeps only the last data address 

together with information about the corresponding memory referencing instruction.  If a 

data address is repeated, a cache-hit flag is emitted; otherwise, the compressed trace 

includes the offset from the previous data address in the trace, similar to the PDATS 

technique. 

Another approach is to link information about the data addresses with a 

corresponding loop [Elnozahy 1999].  In the first pass, loops in the trace are detected 

using a control flow analysis technique.  In the second pass, data address references 

inside each loop are classified as chaotic, constant, or loop varying, i.e., with a constant 



offset between loop iterations.  Constant and loop-varying addresses need to be 

encoded only once in the compressed trace, but all chaotic addresses must be stored 

separately.  Control flow analysis to extract loop information can be avoided if a 

program is instrumented before tracing [DeRose et al. 2002].  However, the limitation 

of this technique is that the iteration count for inner loops must be constant.   

Information about data addresses can also be linked to an instruction block 

[Pleszkun 1994].  For each memory-referencing instruction in an instruction block, the 

possible data offsets and numbers of repetitions are recorded.  This technique may have 

very large memory requirements, since information about all possible data address 

offsets for one load or store instruction is kept in a linked list.  However, for data 

references without a fixed offset or with a large number of different offsets, this 

approach may not be feasible.  Pleszkun also proposes compression for the instruction 

component: an intermediate compressed trace encompasses the identifiers of successors 

for each instruction block and the number of repetitions.  During a second pass, static 

basic blocks are fused into larger, dynamic basic blocks.   

Data address traces can be regenerated by using so-called abstract execution [Larus 

1993].  For each data address, a set of instructions computing that address is identified, 

and these instructions are re-executed during trace regeneration.  Instructions are 

classified as easy, calculating a constant value; hard, computing a value that depends on 

previously computed values; and impossible, with dependencies too complex to 

recalculate.  Instruction addresses are regenerated using the QPT technique.  Abstract 

execution requires access to the source code, and it generates a significant overhead 



during trace decompression.  A similar technique is used for tracing on a shared 

memory multiprocessor [Eggers et al. 1990].   

Traces can also be regenerated using value predictors (VPC [Burtscher and Jeeradit 

2003], VPC3 [Burtscher 2004] [Burtscher et al. 2005], and TCGEN [Burtscher and 

Sam 2005]).  The latest implementation, TCGEN, automatically generates optimized 

compression and decompression code, featuring a configurable set of value predictors 

for each component of a trace record.  During compression, each component of a trace 

record is fed to a separate set of value predictors, indexed by the instruction addresses.  

Each trace component is compressed into two subtraces.  If one of the predictors in a 

set is able to predict the component value, the identifier of that predictor is written to 

the value predictor code subtrace.  If the value is mispredicted by all predictors, it is 

written into the mispredicted value subtrace, and a reserved code is written into the 

predictor code subtrace.  Each subtrace is further compressed using bzip2.  This 

technique has a very good compression ratio, but it requires a relatively long 

decompression time. 

 

3.  STREAM-BASED COMPRESSION ALGORITHM 

The Stream-Based Compression algorithm (SBC) bridges the gap between simple trace 

compression algorithms and techniques requiring several passes, complex code 

analysis, and vast memory resources.  SBC exploits inherent characteristics of 

instruction and data components in program execution traces.  Instruction traces consist 

of a fairly limited number of different instruction streams [Milenkovic and Milenkovic 



2003a] [Milenkovic and Milenkovic 2003b], and a large number of memory references 

exhibit strong spatial and/or temporal locality: for example, a load instruction having a 

constant address stride across loop iterations.   

We demonstrate SBC on Dinero traces, although it is applicable to any address or 

extended address trace format.  A Dinero trace record has two fixed-length fields: the 

header field (0 – data read, 1 – data write, and 2 – instruction read) and the address 

field.  Fig. 2 shows a short excerpt from a Dinero trace in which stream 1 is followed by 

28 executions of stream 2 and one execution of stream 3; this trace segment is used in 

explaining the SBC compression and decompression.   
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Fig. 2.  An example of instruction streams in a Dinero trace. Clear rows represent instruction addresses 

(type = 2) and shaded rows represent data addresses (type = 0 for reads and type = 1 for writes). 

 



3.1 SBC Compression 

The compression flow is illustrated in Fig. 3.  The SBC input is a Dinero trace, and 

the output consists of three files: stream table file (STF), stream-based instruction trace 

(SBIT), and stream-based data trace (SBDT).  The instruction types (IT) of a currently 

processed instruction stream are buffered in the IBuffer, and the corresponding data 

addresses (DA) in the DBuffer.  An IT can be load (IT = 0), store (IT = 1), or non-

memory referencing (IT = 2).  The starting address of the current stream is kept in the 

S.SA variable, and the S.L variable keeps the current length of the stream.  When the 

program flow changes -- that is, when the first instruction of the following stream is 

identified -- the information about current stream is processed.  The SBC algorithm first 

determines the index of the current instruction stream, and then it processes data 

addresses from the DBuffer.   
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Fig. 3.  SBC compression flow.    

 



The compression stream table, residing in memory, is searched for an entry with the 

matching stream starting address and length.  A simple hash table can be used to speed 

up the search.  For each stream, this table keeps the starting address (SA), length (L), 

and a linked list of ITs (Fig. 3).  A node in the list that corresponds to a load or a store 

instruction also has the DA and a pointer to the corresponding data address FIFO buffer 

entry (DFI).  If there is no match in the compression stream table, a new stream entry is 

allocated, its linked list is filled with information from the IBuffer, and the 

corresponding information is also written into the STF file.  The stream index in the 

compression stream table is written in the SBIT file, so the whole stream of instructions 

is replaced by its index.  Finally, S.SA is set to the current instruction address -- the 

start of a new stream -- and S.L is set to 1. 

The data address FIFO buffer and DA fields in the compression stream table are 

updated for each load/store instruction in the currently processed stream.  One entry in 

the data address FIFO buffer holds information about one memory-referencing 

instruction in a stream.  It consists of the following fields: stream table index (STI), 

memory reference index inside the stream (MID), ready flag (RDY), address offset 

(AOff), data stride (Stride), and repetition count (RCnt).  The STI points to the 

corresponding compression stream table entry, and RDY indicates that the FIFO entry 

is ready to be flushed. 

The data address FIFO buffer is updated as follows.  If a DFI field for a k-th 

memory-referencing instruction in the stream is valid, the SBC algorithm calculates the 

difference between the k-th DA field in the compression stream table (previous data 

address for that instruction) and the DA in the input data address buffer DBuffer 



(current data address).  This value is the current stride.  If the current stride is equal to 

the value of the stride field in the data address FIFO entry determined by the DFI, the 

RCnt is incremented.  If RCnt = 0, this is the second execution of that instruction, so 

the stride field is set to the current stride value.  If the stride has changed and RCnt is 

not 0, the RDY is set to 1 and a new entry is added to the data address FIFO buffer.  A 

new entry is also added if the DFI in the compression stream table entry has an invalid 

value, which is always the case with instructions in a new stream. 

Before adding a new data address FIFO buffer entry, the SBC algorithm first 

verifies if the FIFO is full.  If yes, the oldest FIFO record is written to the SBDT.  If a 

FIFO record with RDY = 0 has to be thrown out of the buffer, the corresponding DFI 

value in the compression stream table is set to invalid.  In a new data address FIFO 

buffer entry, STI and MID are set to the values of the compression stream table index 

and memory reference index, AOff is set to the current stride value, and the RCnt and 

RDY fields are set to 0. 

A record in the SBDT file contains information about address offset, stride, and 

repetition count, and it can have variable length and a variable number of fields.  The 

data header field (DH) encodes the length and the most frequent values of other fields 

(Fig. 4), thus achieving additional compression.  The repetition count values 0 and 1 

and the stride values 0, 1, 4, and 8 can be encoded in the data header; and the proposed 

format allows the variable length of the AOff (1, 2, 4, or 8 bytes), Stride, and RCnt 

fields (0, 1, 2, 4, or 8 bytes).  For example, the store instruction in stream 1 needs 8 

bytes for AOff, while RCnt and Stride are equal to 0 and are encoded in the data 

header.  The load instruction in stream 2 has the repetition count equal to 0x1b; thus it 



needs one byte for the RCnt field.  The stride is equal to 8, so it is encoded in the data 

header.  The content of SBC components for the trace in Fig. 2 is shown in Fig. 5.   
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Fig. 4.  Format of the SBC data trace. 

The SBC components can be further compressed using some of the general-purpose 

compression algorithms.  The SBC records can be piped to a general-purpose 

compression process, reducing time and memory requirements needed for further 

compression.  One can ask why the SBC algorithm does not exploit the repetition of 

instruction streams.  Such patterns in SBIT are easily recognized by gzip/bzip2, without 

an increase in complexity of SBC or any restrictions considering the number and nature 

of nested loops. 
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Fig. 5. An example of SBC trace components.  



3.2 SBC Decompression 

At the beginning of decompression, the whole STF file is loaded into the 

decompression stream table (Fig. 6).  Like in the compression stream table, an entry in 

this table encompasses the starting address (SA) and length (L) fields, and the pointer to 

the list of stream instruction types.  Each node in the list that corresponds to a load or a 

store instruction has the following fields: current data address, address stride, and 

repetition count.  These fields are initialized to zero and dynamically updated from the 

SBDT file during trace decompression, whenever the repetition count of an accessed 

node is zero. 

Decompression proceeds as follows: a stream index is read from SBIT, e.g., a 

stream index 1.  Entry 1 of the decompression stream table is accessed, giving address 

and type of the first instruction in the stream.  This instruction is a store (type 1), so the 

corresponding store address is needed.  Since the repetition count for the first data 

reference in this stream is 0 after initialization, the decompression algorithm reads a 

record from SBDT.  The current data address in the node is calculated as the previous 

current address (0) plus the AOff field from SBDT; the stride is set to the value of the 

Stride field, in this case 0; and the repetition count is set to the RCnt value, again 0 

since this stream executes only once.  The pointer to the current instruction then moves 

along the stream instruction type list until all nine instructions are read.  Each 

instruction address is obtained by incrementing the current instruction address for the 

value of the instruction length, beginning from the starting address field.  The SBDT 

file is accessed once more, for the seventh instruction in stream 1, a load instruction.   
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Fig. 6.  An example of SBC decompression. 

 

The next stream index read from the SBIT file is 2, so entry 2 is accessed.  The first 

instruction is a load, so the corresponding node information is updated from SBDT; i.e., 

the current address is set to 0x11ff97028, the stride is set to 8, and the repetition count 

to 27 (0x1b).  When stream 2 is again encountered in the SBIT file and its load 

instruction is read from the decompression stream table, there is no need to access the 

SBDT file – the load address is calculated as the previous address plus the stride, and 

the repetition count is decremented.  The same process is repeated for all 26 remaining 

executions of stream 2. 



3.3 SBC Compression in Hardware 

Virtually all trace compression techniques target compression in software.  On the 

other hand, computer systems could greatly benefit from hardware support for trace 

collection and compression, especially emerging systems-on-a-chip with multiple 

embedded RISC and DSP processor cores.  For example, ARM already offers a module 

for tracing the complete pipeline information  [ARM 2004].  However, the existing 

compression techniques that can be efficiently implemented in hardware have poor 

compression ratio: e.g., an ARM emulator compresses ARM traces by replacing the 

sequence of the same records by their repetition count [McCullough et al. 2003]. 

The SBC implementation described in the previous sections cannot be directly 

implemented in hardware: although the SBC algorithm uses a FIFO buffer of limited 

size for data address compression, it keeps information about instruction streams in an 

unbounded stream table.  However, the SBC algorithm can be modified to use fixed-

size resources for stream information: instead of the stream table, it can use a stream 

cache resource that has a fixed number of entries.  The modified SBC, SBChw, 

generates three trace components: a stream cache hit component and a stream cache 

miss component for instruction addresses, and a stream-based data trace for data 

addresses.  In the case of a stream cache hit, only the corresponding cache index is 

emitted into the stream cache index trace, similar to the stream index in the basic SBC.  

In the case of a stream cache miss, an instruction stream descriptor (encompassing the 

stream starting address, stream length, and instruction types) is emitted into the stream 

cache miss trace, and a reserved index is emitted into the stream cache index trace.   



To make SBC suitable for hardware implementation, we also need to limit the 

maximal stream length and the maximal number of memory-referencing instructions in 

a stream.  Hence, we introduce two new conditions for stream termination: in addition 

to a change in control flow, an instruction stream also ends when it reaches the maximal 

allowed length or the maximal number of memory-referencing instructions.   

Fig. 7 shows an implementation of the stream cache and the corresponding data 

address FIFO buffer.  The stream cache has NWAY ways and NSET sets.  A set is selected 

using a simple function of S.SA and S.SL, such as bit-wise XOR of selected bits and/or 

bit concatenation.  The S.SA and S.L serve as tags in the stream cache.  Similar to the 

stream table entry, a stream cache entry also includes an IT field for each instruction in 

the corresponding stream, and the data address (DA) and the data address FIFO buffer 

index fields (DFI) for each memory-referencing instruction in the stream.   
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Fig. 7.  Stream Cache and Data Address FIFO Buffer in SBC hardware implementation. 

 

4.  RESULTS 

In this section we first describe our evaluation environment and determine the 

feasibility of the SBC technique using stream statistics.  For all evaluated techniques, 

we compare the trace compression ratio, compression and decompression times, and 

simulation speedup.  We also evaluate the compression ratio of SBC modified for 

hardware implementation.  Finally, we discuss the compressibility of instruction and 

data components. 



4.1 Evaluation Environment and Stream Statistics 

In order to evaluate the proposed compression mechanism, we use Dinero address 

traces of 10 SPEC CPU2000 integer (INT) and 13 floating-point (FP) benchmarks 

(Table I).  We trace two segments for each benchmark: the first billion instructions 

(F1B) and a billion instructions after skipping 50 billion (M1B), thus making sure that 

the results do not overemphasize program initialization.  Traces are generated using a 

modified SimpleScalar environment [Burger and Austin 1997], precompiled Alpha 

binaries, and SPEC CPU2000 reference inputs.  Although the number of instructions in 

each segment is fixed, the number of memory-referencing instructions – loads and 

stores – varies greatly across benchmarks, from as low as 18.8% of all instructions for 

F1B segment of 189.lucas, to over 60% for M1B segment of 176.gcc.  The average 

segment size of Dinero traces is about 11GB, and the sum of uncompressed traces 

reaches 510GB, clearly showing the need for highly efficient compression techniques.  

Since the compression and decompression stream tables are stored in memory, we 

first verify that the number of unique instruction streams is indeed fairly limited.  The 

size of these tables depends on the number of unique streams and the number of 

instructions in each stream.  Trace analysis shows that all FP benchmarks have fewer 

than 4,000 unique instruction streams in a segment, and all INT benchmarks except 

176.gcc and 253.perlbmk have fewer than 6,000 unique streams (Table I).  When 

complete execution of benchmarks is considered, the average number of unique streams 

is 7,686 for INT and 2,568 for FP applications, with a maximum 30,162 in 176.gcc.  

The average stream length is less than 30 instructions for all INT and 5 FP benchmarks, 

and it reaches the maximum for 173.applu, 449 instructions in the M2B segment, but in 



that segment 173.applu has only 502 unique streams.  All these results indicate that the 

stream table has relatively modest memory requirements. 

Table I.  Stream statistics for the first billion instructions (F1B), for the billion after 
skipping 50 billion (M1B), and for complete program execution (All) 

 # of Streams MaxStreamLen AverageStreamLen 

INT F1B M1B All F1B M1B All F1B M1B All 

164.gzip 744 315 1437 100 90 229 14.1 13.7 13.6 

176.gcc 25251 1518 30162 272 103 315 10.3 11.6 11.4 

181.mcf 480 306 1181 88 64 88 9.4 8.2 7.4 

186.crafty 4067 1802 5347 191 100 191 13.0 13.4 13.3 

197.parser 3436 4176 6116 130 157 189 8.9 10.0 10.0 

252.eon 3468 574 4389 169 168 169 13.8 14.1 13.7 

253.perlbmk 9031 2738 11542 84 84 868 10.0 12.3 11.8 

254.gap 3154 473 3530 284 75 284 25.0 10.3 11.1 

255.vortex 5441 1615 8254 126 110 126 11.1 11.2 11.0 

300.twolf 2235 1013 4902 163 185 185 10.7 14.5 14.4 

Average 5730.7 1453 7686.0 160.7 113.6 264.4 12.6 11.9 11.8 

FP   

168.wupwise 1389 185 1912 131 229 229 23.9 27.1 27.4 

171.swim 1581 493 1839 707 707 707 93.6 146.3 130.8 

172.mgrid 1456 871 1725 1944 1944 1944 240.1 94.1 420.8 

173.applu 1463 502 1752 3162 3162 3162 411.5 449.1 462.4 

177.mesa 1625 583 1938 550 266 550 14.8 18.5 18.15 

178.galgel 1729 30 4153 264 111 264 18.4 21.8 21.8 

179.art 435 75 976 168 561 561 10.3 8.7 9.0 

183.equake 517 256 1355 44 623 623 8.6 28.3 27.7 

188.ammp 818 71 1810 84 395 422 12.5 36.1 38.5 

189.lucas 825 78 1414 101 427 427 27.1 128.7 113.3 

191.fma3d 2069 840 5007 383 1158 1158 10.7 41.5 34.3 

200.sixtrack 3507 81 6515 264 580 580 20.1 192.9 170.5 

301.appsi 2388 303 2989 729 729 894 34.0 47.4 50.7 

Average 1523.2 336.0 2568.1 656.2 837.8 886.2 71.2 95.4 117.3 

 



4.2 SBC Compression Ratio 

We compare compression ratio for SBC, PDATS, TCGEN, and LBTC compression 

techniques when these techniques are used alone, and when they are combined with 

gzip (SBC.gz, PDATS.gz, TCGEN.gz, and LBTC.gz) and bzip2 (SBC.bz2, 

PDATS.bz2, TCGEN.bz2, and LBTC.bz2).  We also evaluate the use of gzip 

(Dinero.gz) and bzip2 (Dinero.bz2) alone.   

For each compression technique and each selected benchmark, the compression 

ratio is calculated as the sum of the sizes of uncompressed Dinero traces in F1B and 

M1B segments, divided by the sum of the sizes of compressed traces.  We also consider 

the total compression ratio, calculated as the sum of uncompressed traces of all 

benchmarks over the sum of all compressed traces. 

To have a fair comparison, we used a Dinero trace format with separate instruction 

and data components.  The size of a trace in this format is less than the size of a unified 

trace, since the type field is not required in the data component.  In addition to that, split 

components can be better compressed by gzip/bzip2.  PDATS and LBTC techniques are 

also slightly modified to have separate instruction and data components.  TCGEN code 

is automatically generated by the TCgen tool [Burtscher and Sam 2005]; we modified 

the code to read the split Dinero files during compression, and not to write the 

decompressed files during decompression.  TCGEN uses the combination of finite-

context-method and differential-context-method predictors; its detailed specification is 

given in Fig. 8.  The data address field exists only in load/store instructions.  The FIFO 

buffer size for SBC is 8,192 entries. 



Fig. 9 shows compression ratio results.  SBC significantly outperforms all other 

techniques, with a total compression ratio of 35.9 compared to 7.2 for PDATS, 4.9 for 

TCGEN, and 7.6 for LBTC.  SBC compression ratio varies across applications in a 

range from 18 to 308. It should be noted that SBC alone also outperforms gzip 

compression (Dinero.gz) for all benchmarks. 

TCgen Trace Specification; 
0-Bit Header; 
# Instruction type 
8-Bit Field 1 = {L1 = 65536, L2 = 4: FCM3[2]};  
# Field 1 uses 2 predictors with a combined size of 0.8MB  
# Instruction address 
64-Bit Field 2 = {L1 = 1, L2 = 131072: FCM3[2]};  
# Field 2 uses 2 predictors with a combined size of 8.0MB 
# Data address 
64-Bit Field 3 = {L1 = 65536, L2 = 131072: DFCM3[2], DFCM1[1], 
FCM1[1]};  
# Field 3 uses 4 predictors with a combined size 11.5MB 
PC = Field 2; 

Fig. 8.  TCGEN specification. 

 

Even better compression can be obtained by further compressing an SBC trace by 

gzip.  The SBC.gz compression ratio is from 80 to 737 for INT and from 462 to 35,595 

for FP.  Again, the SBC.gz outperforms all other techniques: the sum of all traces is 

reduced 327 times, and the total compression ratio for other techniques is 271 for 

TCGEN, 85 for LBTC, and 62 for PDATS.  

Using bzip2 instead of gzip can even further improve the compression ratio, but at 

the price of a significant slowdown in compression/decompression time. SBC.bz2 

compression ratio for the sum of all traces approaches 400. However, TCGEN.bz2 

achieves an even better compression of 722.  



It should be noted that Burtscher et al. find that TCGEN combined with bzip2 

outperforms other compression techniques in both compression ratio and 

decompression time [Burtscher et al. 2005].  These seemingly contradictory results can 

be easily explained.  The TCGEN authors do not use full address traces, but rather a 

subset with some additional information (e.g., traces of store instructions and store 

addresses, load instructions and load values, and addresses of instructions causing 

cache misses).  Instruction streams cannot be easily recognized in such traces, so the 

authors assume that a “stream” in a trace is a sequence of trace records with increasing 

addresses, such that the difference between consecutive records’ addresses is less than a 

small threshold. These artificial streams are very short, so the full strength of SBC 

cannot be exploited.  Slower SBC decompression time observed in [Burtscher et al. 

2005] is a consequence of lower compression ratio and the lack of code optimization.   
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Fig. 9.  Compression ratio. 



4.3 SBC Decompression Time and Simulation Speedup 

Decompression time is as important as compression ratio, especially when compressed 

traces are used for trace-driven simulation.  We first measure real elapsed 

decompression time in a program that reconstructs an entire trace, with buffered reads 

and inlined decompression.  The gzip and bzip2 utilities run in a separate process and 

pipe their results to the main procedure.  This program emulates a simulator adapted to 

the applied decompression technique.  Total processor time needed for program 

execution is measured on a Pentium 4 with hyperthreading at 3 GHz, with the RedHat 

Linux operating system. 

Fig. 10 shows decompression times for all considered techniques alone and when 

combined with gzip and bzip2.  SBC performs better than other techniques, requiring on 

average 86 seconds per application; it is slightly better than PDATS, and it is almost 

two times faster than LBTC and four times faster than TCGEN.  SBC also outperforms 

other techniques when it is combined with gzip and bzip2.  For example, SBC.gz is on 

average 5 times faster than Dinero.gz, 1.5 times faster than PDATS.gz, 3 times faster 

than TCGEN.gz, and 1.25 times faster than LBTC.gz; SBC.bz2 decompression is 

almost 20 times faster than Dinero.bz2, 4.5 times faster than PDATS.bz2, 3 times faster 

than LBTC.bz2, and 2.5 times faster than TCGEN.bz21. It should be noted that 

decompression time depends on both the compressed file size and time complexity of 

the decompression algorithm. Though bzip2 always achieves better compression ratio 

than gzip, bzip2 decompression time is longer.  

                                                           
1 bz2 decompression times are shown with logarithmic scale. 



One could argue that a TCGEN configuration with a smaller number of predictors 

should have faster decompression than the one we use, so we also evaluate a “small” 

TCGEN with only one predictor for each trace record component (the first predictors 

listed in Fig. 8). The smallTCGEN.gz indeed does decompress slightly faster than 

TCGEN.gz, on average 1770 vs. 1801 seconds. However, raw smallTCGEN and 

smallTCGEN.bz2 are slower than the corresponding TCGEN and TCGEN.bz2.  A 

higher number of mispredictions, because of fewer predictors, significantly deteriorates 

the compression ratio: 4 vs. 5 for raw TCGEN, 209 vs. 271 for TCGEN.gz, and 495 vs. 

722 for TCGEN.bz2.  

SBC is also evaluated as a part of a trace input procedure for the DineroIV cache 

memory simulator [Edler and Hill 1998].  In DineroIV, a trace is read in a separate 

trace input procedure.  The decompressed trace record is returned by value to the 

next_in_trace procedure, which than returns it to the main procedure.  We implemented 

trace input procedures for all trace compression alternatives, with buffered read and 

pipes for gzip and bzip2.  Fig. 11 shows the simulation speedup relative to the DineroIV 

simulator reading raw Dinero traces.  SBC.gz outperforms all other techniques with an 

average simulation speedup of 2.6 (compared to 2.4 for SBC.bz2, 2.4 for LBTC.gz, 2.4 

for PDATS.gz, 1.8 for TCGEN.gz, and 1.7 for TCGEN.bz2).  Simulation speedup for 

DineroIV is lower than the decompression speedup shown in Fig. 10, because of 

simulation overhead and simulator implementation.   
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Fig. 10.  Decompression time. 
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Fig. 11.  Simulation speedup for the DineroIV simulator, relative to raw Dinero traces. 

 

4.4 SBC Compression Time 

Compression time is a less significant factor in the choice of a trace compression 

technique than is decompression time, since a trace is usually compressed only once but 

is decompressed many times. Without gzip/bzip2 compression, compression time varies 

little across different techniques: the arithmetic mean for SBC is 28.9 minutes versus 

29.1 minutes for PDATS, 33.3 for TCGEN, and 30.1 for LBTC (Fig. 12, top).  The 

average total CPU time is 3 minutes for SBC, 3.77 for PDATS, 3.28 for LBTC, and 



6.79 minutes for TCGEN.  Similar real time can be explained as follows: a compression 

program spends its execution time on three components -- reading an uncompressed 

file, compressing trace records, and writing the compressed file.  Hence, any 

compression program is I/O bound, spending most of its time waiting for I/O.  All 

programs use the same input, so the time for the file read does not vary much.  In this 

case, this component dominates others: compressed files are about an order of 

magnitude smaller than uncompressed ones, and total CPU time is also significantly 

less than I/O time.  SBC compression has the longest duration for gcc, an application 

with many different streams. 

Gzip compression alone lasts longer than any of the trace compression techniques 

combined with gzip, since the gzip output files are larger.  SBC.gz, PDATS.gz, 

LBTC.gz, and TCGEN.gz all have an average compression time of about 29 minutes 

(Fig. 12, middle). The bzip2 compression has a higher time complexity than linear, so it 

is very slow for large output files.  Dinero.bz2 has an average compression time of 

about 708 minutes, SBC.bz2 and TCGEN.bz2 about 38 minutes, and PDATS.bz2 and 

LBTC.bz2 about 88 minutes (Fig. 12, bottom)2.  

                                                           
2 bz2 compression times are shown with logarithmic scale. 
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Fig. 12.  Compression time. 



4.5 Compression Ratio of SBC Hardware Implementation 

To evaluate the influence of finite-size resources on the SBC algorithm, we 

compare the size of traces compressed with SBC and SBChw, without the additional 

general compression stage (Fig. 13).  Two SBChw configurations are considered: an 

extremely small SBChw (64x4), with only 256 stream cache entries, and a relatively 

large SBChw (4Kx4), with 16K stream cache entries (Table II).  For the majority of 

applications, SBChw (4Kx4) has almost the same compression ratio as SBC.  The 

slightly higher total compression ratio of SBChw (4Kx4) is due to a smaller 

compressed data address trace component (SBDT) for most floating-point applications.  

This result can be explained as follows.  With the SBC, the body of an inner loop 

appears as a part of three streams, so each load/store instruction in the loop has at least 

three data address FIFO entries and three trace records in the SBDT file.  With the SBC 

hardware implementation, very long instruction streams are split into shorter ones, so 

some of the load/store instructions in a long loop body will belong to only one SBChw 

stream.  Consequently, load/store instructions in relatively long loops in SPEC 

CPU2000 FP applications are compressed into fewer trace records with SBChw (4Kx4) 

than with SBC. 

Table II. Parameters of SBC hardware implementation 

SBChw 
Data address 
FIFO entries 

Stream 
cache sets 

Stream 
cache ways 

Max stream 
length 

Max loads&stores 
per stream 

(4Kx4) 8192 4096 4 256 128 
(64x4) 4096 64 4 128 64 
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Fig. 13  SBChw versus SBC trace sizes. 

 

For most applications, even SBChw (64x4) comes close to SBC, with 13 out of 23 

traces being less than 1.4 times larger, and only 2 traces being more than 2.5 times 

larger.  Although with a very small stream cache, SBChw (64x4) can even outperform 

SBC, because of the effect explained above and a shorter StreamID (one byte instead of 

two bytes for stream index).  The total size of SBChw traces divided by the total size of 

SBC traces is 1.66 for SBChw (64x4) and 0.97 for SBChw (4Kx4).  

 

4.6 Compressibility of Instruction and Data Trace Components 

Instruction addresses are known to have more redundancy than data addresses have 

[Becker and Park 1993].  Fig. 14 and Fig. 15 illustrate how successful the evaluated 

trace compression techniques are in exploiting this redundancy.  The SBC algorithm 

compresses instruction addresses much better than data addresses, for up to two orders 

of magnitude.  Using again the total compression ratio as a metric, SBC instruction 

address compression is 5.3 times better than data address compression.  A trace of 



stream identifiers has more redundancy than a trace of SBC data records, so SBC.gz 

and SBC.bz2 compress the instruction trace component 40.6 and 90.8 times better than 

they compress the data address component, respectively.   

TCGEN replaces each trace component by a predictor identifier and possibly with 

misprediction information.  Hence, the size of the instruction type component is 

actually expanded.  As a consequence, TCGEN has a lower compression ratio for the 

instruction component than for the data component.  TCGEN traces are very suitable 

for additional compression by gzip/bzip2, since traces of predictor identifiers have very 

few unique symbols.  Second stage compression with gzip/bzip2 benefits more from 

instruction address redundancy, so TCGEN combined with gzip compresses the 

instruction component 4.1 times better than it compresses the data component, and 

about 18.4 times better when combined with bzip2.   

With LBTC, both instruction and data addresses are compressed using offsets, and 

only repeated data addresses benefit from the compression cache.  Hence, for most 

applications there is not much difference between instruction and data component 

compression ratio.  Instruction address offsets are better compressed with general 

compression algorithms than data address offsets are, so LBTC.gz and LBTC.bz2 

compress the instruction component 16.3 and 50.7 times better than they compress the 

data component, respectively.  PDATS is 2.9 times better for instruction than for data, 

due to encoding of repeated instruction offsets.   
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Fig. 14.  Compression ratio of Dinero trace instruction component.   
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Fig. 15.  Compression ratio of Dinero trace data component.   

SBC compression of the instruction trace component depends only on the average 

stream length, which indicates how many instruction records in the original trace are 

replaced by one stream identifier in the SBC-compressed trace (Table I).  Hence, traces 

with longer instruction streams are better compressed.  The SBC compression ratio of 

the data component is more difficult to explain, since it depends on several factors: the 

regularity of data address strides; and the length of repetition, stride, and address offset 

fields in a particular SBDT file.  The finite size of the Data FIFO Buffer can also affect 

SBC data component compression.  Table III shows the ratio of the number of memory 



references in the trace, NMEM_D, and the number of records in the SBDT trace, NSBDT.  

The results indicate that a moderate FIFO size, such as 8,192 entries, yields a 

compression ratio close to that of an infinite FIFO for most benchmarks.  Fig. 16 shows 

how the compression ratio of the data component depends on the FIFO size for 

301.appsi, the most sensitive application, and 189.lucas, the least sensitive one.  We 

can emulate an infinite FIFO, but that would require two passes through the trace.  

Instead, we conduct additional experiments with the 64K-entry data address FIFO 

buffer.  Although the compression ratio significantly improves for some applications 

(e.g., 301.appsi, 191.fma3d, 173.applu), the total compression ratio does not 

considerably change: 36 for raw SBC with 8K FIFO vs. 37 with 64K FIFO, 326 vs. 346 

for SBC.gz, and 390 vs. 406 for SBC.bz2. These gains in compression ratio are 

achieved without additional overhead in compression and decompression time.  

Table III.  Ratio of the number of data address trace references NMEM_D and  
SBDT records NSBDT 

 NMEM_D/NSBDT   NMEM_D/NSBDT 

INT 8192 entry FIFO Infinite FIFO  FP 8192 entry FIFO Infinite FIFO 

164.gzip 12.21 12.78  168.wupwise 26.77 27.72 

176.gcc 20.88 24.63  171.swim 95.81 102.72 

181.mcf 10.62 11.66  172.mgrid 9.92 12.48 

186.crafty 5.43 7.78  173.applu 6.23 15.18 

197.parser 6.00 6.33  177.mesa 13.90 19.27 

252.eon 2.94 4.05  178.galgel 27.40 29.15 

253.perlbmk 6.93 8.36  179.art 373.22 502.32 

254.gap 5.23 5.79  183.equake 10.56 11.66 

255.vortex 3.23 3.82  188.ammp 14.87 17.38 

300.twolf 4.66 5.72  189.lucas 91.14 92.01 

    191.fma3d 12.62 21.38 

    200.sixtrack 8.55 11.70 

    301.appsi 3.26 6.86 
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Fig. 16.  SBDT file size as a function of the number of entries in the data address FIFO buffer,  

relative to the 1K-entry FIFO buffer.  

5.  CONCLUSION 

The main contributions of this paper are the following: 

• A single-pass trace compression technique, SBC.  In the SBC algorithm an 

instruction stream is replaced by its index from the stream table.  Data addresses are 

linked to a corresponding instruction stream and compressed using an efficient on-

line algorithm that recognizes regular strides.  This technique achieves an optimal 

balance between the most important compression requirements: high compression 

ratio and fast decompression time.  The SBC web site, 

http://www.ece.uah.edu/~lacasa/sbc/sbc.html, includes SBC-compressed SPEC 

CPU2000 traces and utility programs. 

• A modified SBC with fixed-size resources, SBChw, suitable for hardware 

implementation.  The SBChw technique achieves a compression ratio comparable to 

that of SBC with very modest resources, by using a finite-size stream cache instead 



of an unbounded stream table, and limiting the maximal stream length and the 

number of loads/stores in a stream. 

• Evaluation of SBC versus the best existing single-pass lossless compression 

techniques, PDATS, LBTC, and TCGEN.  SBC outperforms all other techniques 

when compression ratio, decompression time, and compression time are all taken 

into consideration.  Without additional compression by gzip or bzip2, SBC 

compresses better than all other techniques, outperforming the next best technique, 

LBTC, 4.8 times.  SBC also has the highest compression ratio when combined with 

gzip, for all but two considered applications.  When combined with bzip2, it 

achieves a compression ratio comparable to that of TCGEN.bz2.  Though 

TCGEN.bz2 has the best overall compression ratio, it has a significant 

decompression overhead.  Evaluation of decompression time in two settings, with an 

optimized decompression program and a real simulator, shows that SBC traces 

decompress much faster than TCGEN traces.  With the custom decompression 

program, SBC.gz and SBC.bz2 are 4.5 and 3 times faster than TCEN.bz2, 

respectively.  Simulation with the DineroIV cache memory simulator finishes 1.56 

times faster with SBC.gz than with TCGEN.bz2, and 1.35 times faster with 

SBC.bz2. 

• Analysis of compressibility of instruction and data trace components for all 

evaluated techniques, as well as sensitivity of the SBC compression ratio to the data 

address FIFO buffer size. 

• A novel classification of lossless trace compression techniques, based on the 

method used for compression of data and instruction components.   



As our analysis indicates, future compression techniques should concentrate on the 

data trace component, since it makes up over 80% of the SBC compressed traces.  

Another avenue to be explored is the extension of the SBC trace format for other types 

of traces.  An additional benefit of the SBC technique is the separation of the stream 

trace file from the rest of the compressed data.  Hence, various statistics such as the 

number of executed instructions of a particular type, number of streams, and dynamic 

distribution of streams can be obtained by processing only the stream table file instead 

of the whole trace.  The stream table file can also include information about basic 

blocks in a stream and a stream frequency field. 
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