An Efficient Single-Pass Trace Compression

Technique Utilizing Instruction Streams

ALEKSANDAR MILENKOVIC and MILENA MILENKOVIC*

The University of Alabama in Huntsville
*1BM, Austin, TX

Trace-driven simulations have been widely usedimputer architecture for quantitative evaluatiohaew
ideas and design prototypes. Efficient trace cesgion and fast decompression are crucial for
contemporary workloads, as representative benchemgraw in size and number. This paper presents
Stream-Based Compression (SBC), a novel techniqusimgle-pass compression of address traces. The
SBC technigue compresses both instruction and ddthesses by associating them with a particular
instruction stream, i.e., a block of consecutiwtgcuting instructions. The compressed instrudtiace is a
trace of instruction stream identifiers. The coegsed data address trace encompasses the datssaddde

and the number of repetitions for each memory-esfeing instruction in a stream, ordered by the
corresponding stream appearances in the trace. r&{Ces the size of SPEC CPU2000 Dinero instnuctio
and data address traces from 18 to 309 times, dotpeng the best trace compression techniquespted

in the open literature. SBC can be successfultyliined with general-purpose compression techniqlibs.
combined SBC-gzip compression ratio is from 80535, and the SBC-bzip2 compression ratio is fié&m

to 191,257. Moreover, SBC outperforms other trammpression techniques when both decompression time
and compression time are considered. This papersilows how the SBC algorithm can be modified for

hardware implementation with very modest resouacebonly a minor loss in compression ratio.

Categories and Subject Descriptors: B.&&formance and Reliability] Performance Analysis and Design
Aids; C.0 [General] Modeling of computer architecture<.4 [Performance of Systems]: Modeling
techniquesDesign studiesE.4 [Coding and Information Theory]: Data compaction and compression

General Terms: Algorithms, Design, Experimentatideasurement, and Performance

Additional Key Words and Phrases: instruction aathdraces, trace compression, instruction streams.

Authors' addresses: A. Milenkovic, Department @fdiical and Computer Engineering, The Universfty o
Alabama in Huntsville, 301 Sparkman Drive, HuntgyiRlabama 35899.
M. Milenkovic, IBM, 11501 Burnet Rd., Austin, Tex@8758.

Permission to make digital or hard copies of paslioof this work for personal or classroom usgranted
without fee provided that copies are not made striduted for profit or commercial advantage arat th
copies bear this notice and the full citation om filst page. Copyrights for components of thiskvavned
by others than ACM must be honored. Abstractingnwiedit is permitted. To copy otherwise, to refsil
to post on servers or to redistribute to listsumes prior specific permission and/or a fee.

© 2005 ACM 1073-0516/01/0300-0034 $5.00

1. INTRODUCTION

Software simulations have been a vital tool in catap architecture for quantitative
evaluations of new ideas and design prototypes.th Budustry and academia rely
extensively on simulation because it is the eas@®l least expensive way to
characterize and explore design space [Skadroh @083]. A common simulation
technique is trace-driven simulation, where theutnfw the simulator is a trace of
relevant events, collected during execution ofaisgc workload. Though execution-
driven simulators may provide faster simulation amate flexibility, they are often not
readily available for a computer system of intereBuwilding a full-scale execution-
driven simulator is often impractical and unnecegsand certainly it is very
expensive. Moreover, in performance-tuning efféotsreal-world server applications,
recreating conditions and inputs on an executiovedrsimulator is often impossible.
Consequently, program execution traces for traceedr simulation remain an
important resource for computer engineers.

In the last decade many research efforts have tedicated to trace issues, such as
trace collection, reduction, and processing [Ulligi Mudge 1997]. Depending on its
purpose, a trace can contain different types afrmétion. For example, control flow
analysis needs only a trace of the executed b&sigdor paths. Cache studies require
address traces, and more detailed processor siondatlso need instruction words.
Branch predictors can be evaluated using tracds avity branch-relevant information,
such as branch and target addresses and branadmaytALU unit simulations require
operand values. For example, a Dinero trace recorgists of the address of the

memory reference and the reference type (readewit instruction fetch) [Edler and

Hill 1998]. BYU traces include additional infornwar, such as the size of the data
transfer and processor ID [Thornock and FlanagablR0 ATUM traces (Address
Tracing Using Microcode) also include the proceBs and encompass information
about system activity, such as mapping betweenigdlyand virtual memory at each
translation look-aside buffer miss [Agarwal, Sitesd Horowitz 1986]. An IBS trace
record contains the operation code and the useekéndicator [Uhlig et al. 1995].
Traces collected using the pixie tool differentidietween records for load/store
memory references of different size, such as ldgable, or word [Smith 1991].

To efficiently store, transfer, and use even a biwllection of traces, the traces
must be compressed as much as possible. Each eeeragion of the industry-
recognized SPEC benchmark suite has a longer mm-targer resource requirements,
and a larger set of benchmarks [SPEC 2000]. Timebeu of executed instructions in
SPEC CPU2000 benchmarks with reference input setges from 62 to 547 billion
[Cantin and Hill 2003]. If each benchmark is exeduwith only one reference input
set, the sum of the executed instructions is aBdutrillion. We would need almost 70
terabytes of disk space to store these tracesnasgu 0-byte trace records.

An effective trace compression technique is loss(es., it does not introduce any
errors into the simulation), has a high compressfantor, and has a small
decompression overhead. Although traditional ca®sgion techniques, such as the
Ziv-Lempel algorithm [Ziv and Lempel 1977] used thme gzip utility or Burroughs-
Wheeler transformation [Burrows and Wheeler 19%Hduin thebzip2 utility, offer a
good compression ratio, even better compressipndsible when the specific nature of

redundancy in traces is taken into account. Bettenpression techniques not only

enable more representative input and faster exatutf trace-driven simulation, but
also help in other uses of traces, such as thendignanalysis of program behavior,
debugging, and daily system maintenance [Zhou amith2000].

This paper introduces Stream-Based Compression XSBfew method for single-
pass compression of address traces and variouadextetrace formats. The SBC
algorithm relies on extracting instruction streams instruction streanis defined as a
sequential run of instructions, from the targeaaéken branch to the first taken branch
in the sequence. A stream table created duringooession encompasses all relevant
information about streams, such as the startingesdd stream length, and instruction
types. All instructions from a stream are replabgdits index in the stream table,
creating a trace of instruction streams.

SBC features an efficient on-line algorithm for quwession of data address
references. Unlike instruction addresses, dataeadds for a memory-referencing
instruction rarely stay constant during programoexien, but they can have a regular
stride. The SBC-compressed data address tracenpasses a data address stride and
the number of repetitions for each memory-refemgdnstruction in a stream. A
change of the data address stride results in anogherd in the compressed trace. The
records are ordered by the corresponding streameappces in the original trace.

In this paper we also show how a slightly modif&8iC algorithm can be used in a
hardware resource called a trace compressor thlaallew on-line trace compression
with only modest resource usage. Such a new resaag be very useful for system

debugging and verification, one of the most sigaifit problems in emerging SOCs

(Systems-On-the-Chip) where physical processor @ns not available [Fisher,
Faraboschi and Young 2005].

The proposed algorithm achieves a very good corsjmes ratio and
decompression/compression time for instruction a@atlh address traces, yet it is
straightforward to implement and does not requiréecaugmentation or lengthy multi-
pass trace analysis. Furthermore, SBC can be ssfollg combined with general
compression algorithms, such as Ziv-Lempel or Bugis-Wheeler.

We evaluate the proposed technique’s efficiencyrt@asuring compression ratio,
decompression, and compression time and compasngerformance versus the best
existing techniques for trace compression, suclP@ATS [Johnson, Ha and Zaidi
2001], TCGEN [Burtscher and Sam 2005], and LBTCdland John 2004]. We also
consider these techniques when they are combingdgaip andbzip2 We use full
instruction and data address traces [Edler and198B] of SPEC CPU2000 benchmark
programs as the input. Detailed experimental amlghows that SBC outperforms
other techniques, achieving a good balance betweempression ratio and
decompression time. Using the trace compressida cdtthe sum of all traces as a
metric, SBC reduces the trace size 35.9 timesugers times reduction with PDATS,
4.9 with TCGEN, and 7.6 with LBTC. When compresstechniques are combined
with gzip, the compression ratio with SBC.gz is 326.6 ve8Rs8 with PDATS.gz,
271.1 with TCGEN.gz, and 84.7 with LBTC.gz. Addital compression withzip2
reduces the trace size even more: the compressiionwith SBC.bz2 is 390, 84.8 with
PDATS.bz2, 722.3 with TCGEN.bz2, and 122.8 with 1BbHz2. Although

TCGEN.bz2 has a higher compression ratio than SBCiar all but five benchmarks,

SBC.bz2 has from 2 to 7 times shorter decompredsima In addition, we show that
SBC-compressed traces provide the shortest sironlétne with a real cache memory
hierarchy simulator.

The rest of this paper is organized as follows.e Tibxt section gives an overview
and a new classification of the existing techniqfastrace compression. Section 3
explains stream-based compression and decompregmiocesses and discusses
implementation of the SBC algorithm in hardware. ect®n 4 evaluates the
effectiveness of SBC versus other trace compresdechniques, comparing
compression ratio, compression time, and decomipresisne. The last section gives

concluding remarks.

2. RELATED WORK

We can broadly classify traces in two categoridg first category encompasses traces
that have information only about the instructioowl traces of instruction addresses,
basic blocks, executed branches, or procedure c@he traces in the second category
also include records with highly variable valueshsias data addresses or operand
values. Consequently, trace compression technigaesalso be divided into two

groups: techniques targeting only instruction fltnaces, and those targeting traces
including both instruction and data informationig.F1 shows this classification for

lossless trace compression techniques.

Lossless Compression

/ AN

Instructions Instructions + data
/ Link data
Offset addresses to
Mache dynamic basic
Replacing [Samples 1989], block
an execution sequence Sggncz%gj]a”d [Pleszkun 194],
with its identifier SBC [Milenkovic and
- Acyelic path Offset + Milenkovic, 2003]
(WPP [Larus 1999], Control flow g_rlaph + repetitions
Time Stamped WPP trace of transitions PDATS Link data
[zhang and Gupta 2001]) QPT [Larus 1993] [Johnspr?, Ha addresses to loop
- N-tuple [Milenkovic, and Zaidi 2001] [Elnozahy 1999], SIGMA
Milenkovic and Kulick 2003] Regenerate [DeRose, et al. 2002]
- Instruction (PDI
[Johnson, Ha and Zaidi 2001]) addresses
Graph with number of Abstragt Value Predictor
repetitions in nodes execution VPC [Burtscher and
. . [Eggers, etal. 1990], Jeeradit 2003],
[Hamou-Lhadjand Lethbridge 2002] [Larus 1993] TCGEN [Burtscher and Sam

2005]
Fig. 1. Lossless trace compression techniques.

The underlying idea for several instruction tragempression techniques is to
replace an execution sequence with its identifieor example, in thevhole program
path technique (WPP), a program is instrumented to ywed trace of acyclic paths
[Larus 1999]. Acyclic paths are then compressedgua modified Sequitur algorithm
[Nevill-Manning and Witten 1997]. WPP yields a yeggood compression ratio, and it
is convenient for certain types of analysis, suefirading the most frequently executed
paths. The downside is that it requires the codegetinstrumented, so it is not directly
applicable for already-recorded traces. Time-s&iny/PP [Zhang and Gupta 2001]
enables fast access to the trace of a particutatin: WPP is broken into path traces
corresponding to individual function calls, and pHth traces for one function are
stored together as a block. Another compressichnigque replaces aN-tuple of

original trace records with its identifier from tiNeTuple record table [Milenkovic,

Milenkovic and Kulick 2003]. The reduced tracehen compressed usimgip. The
redundancy in a trace is better exposedyzip, so this technique achieves up to 30
times better compression than wghip alone, for traces of branch instruction records
andN as small as 8.

In a trace that includes instruction words, one place the most frequent trace
records with their identifiers in the dictionarydR [Johnson, Ha and Zaidi 2001]).
Another option is to replace a sequence of repgatate records by the corresponding
repetition count. Hamou-Lhadj and Lethbridge psgone such technique for traces
of procedure calls [Hamou-Lhadj and Lethbridge 30@2race is first preprocessed to
replace repeating sequences of calls with a nunolberepetitions, and then it is
represented as an ordered labeled tree, where aoelggocedure calls and tree levels
correspond to nesting levels. In a third phasettbe is transformed into a dynamic
acyclic graph.

QPT is a tracing and compression technique thairdsconly information about
significant events [Larus 1993]. A QPT trace inlda only transitions between basic
blocks where a program chooses between alternpéities, and only those transitions
that are not part of a maximum spanning tree obtrol flow graph. The actual
instruction addresses can be regenerated usingothteol flow graph and a trace of
transitions.

Traces including data information are often fulbegbs traces, i.e., instruction and
data address traces. The simplest way to redesite of an address trace is to
replace an address with the offset from the ladtress of the same type (instruction

reference, data read, or data write reference) pB=m1989]. This single-pass

algorithm is called Mache. Theacked differential address and time sta(@DATS)
algorithm takes the Mache approach one step fufth@mson, Ha and Zaidi 2001].
PDATS also stores address offsets between suceasfarences of the same type, but
the records in the trace of offsets can have veriddngths, specified in a one-byte
record header, and an optional repetition countr fill address traces including
instruction words, PDATS can be combined with atidi@ary approach into PDI.
PDATS and Mache have very small compression/decessjon overhead, but they do
not take into account the underlying structureheféxecuted program.

Luo and John propodecality-based online trace compressifitBTC) that targets
more complex trace records [Luo and John 2004]forfmation about an executed
instruction is kept in a small direct-mapped corspien cache. A compressed trace
record consists of a record type (instruction daja cache hit/miss flag, and possibly
an offset from the previous record of the same .tyPeher fields of the original trace
record, such as instruction word or virtual addrass emitted to the compressed trace
only in the case of a cache miss. This technigeepg& only the last data address
together with information about the correspondirgmory referencing instruction. If a
data address is repeated, a cache-hit flag is esmititherwise, the compressed trace
includes the offset from the previous data addimedbe trace, similar to the PDATS
technique.

Another approach is to link information about thatal addresses with a
corresponding loop [Elnozahy 1999]. In the firsisp, loops in the trace are detected
using a control flow analysis technique. In theosesl pass, data address references

inside each loop are classified as chaotic, cofystahoop varying, i.e., with a constant

offset between loop iterations. Constant and leafying addresses need to be
encoded only once in the compressed trace, buthalbtic addresses must be stored
separately. Control flow analysis to extract looformation can be avoided if a
program is instrumented before tracing [DeRosd.e2G02]. However, the limitation
of this technique is that the iteration count funér loops must be constant.

Information about data addresses can also be linkedn instruction block
[Pleszkun 1994]. For each memory-referencing ura$ion in an instruction block, the
possible data offsets and numbers of repetitioasesorded. This technique may have
very large memory requirements, since informatitmowd all possible data address
offsets for one load or store instruction is keptai linked list. However, for data
references without a fixed offset or with a largember of different offsets, this
approach may not be feasible. Pleszkun also pegposmpression for the instruction
component: an intermediate compressed trace enssepehe identifiers of successors
for each instruction block and the number of rejets. During a second pass, static
basic blocks are fused into larger, dynamic bakicks.

Data address traces can be regenerated by usicejlsdabstract executiofiLarus
1993]. For each data address, a set of instrictomputing that address is identified,
and these instructions are re-executed during trageneration. Instructions are
classified as easy, calculating a constant valaed,icomputing a value that depends on
previously computed values; and impossible, wittpetelencies too complex to
recalculate. Instruction addresses are regenetsiag the QPT technique. Abstract

execution requires access to the source code,tagehérates a significant overhead

during trace decompression. A similar techniqueused for tracing on a shared
memory multiprocessor [Eggers et al. 1990].

Traces can also be regenerated usaige predictordVPC [Burtscher and Jeeradit
2003], VPC3 [Burtscher 2004] [Burtscher et al. Z0Gthd TCGEN [Burtscher and
Sam 2005]). The latest implementation, TCGEN, @nattically generates optimized
compression and decompression code, featuring figoosble set of value predictors
for each component of a trace record. During c@sgion, each component of a trace
record is fed to a separate set of value predichodexed by the instruction addresses.
Each trace component is compressed into two swdstratf one of the predictors in a
set is able to predict the component value, thatifier of that predictor is written to
the value predictor code subtrace. If the valumispredicted by all predictors, it is
written into the mispredicted value subtrace, angserved code is written into the
predictor code subtrace. Each subtrace is furtdmnpressed usingpzip2 This
technique has a very good compression ratio, buteduires a relatively long

decompression time.

3. STREAM-BASED COMPRESSION ALGORITHM

The Stream-Based Compression algorithm (SBC) bsidige gap between simple trace
compression algorithms and techniques requiringersdvpasses, complex code
analysis, and vast memory resources. SBC expioitgrent characteristics of
instruction and data components in program exegutices. Instruction traces consist

of a fairly limited number of different instructicstreams [Milenkovic and Milenkovic

2003a] [Milenkovic and Milenkovic 2003b], and agarnumber of memory references
exhibit strong spatial and/or temporal localityr &xample, a load instruction having a
constant address stride across loop iterations.

We demonstrate SBC on Dinero traces, althoughapfdicable to any address or
extended address trace format. A Dinero tracerdebas two fixed-length fields: the
header field (0 — data read, 1 — data write, andi@struction read) and the address
field. Fig. 2 shows a short excerpt from a Dingeaze in which stream 1 is followed by
28 executions of stream 2 and one execution o&stre; this trace segment is used in

explaining the SBC compression and decompression.

Dinero trace Type | Address
120026a60
11f961f8
120026a64
120026268
120026a6¢
120026a70
120026a74
120026a78
11ff97020
120026a7c
120026280
120026a78
11ff97028
120026a7c
120026a80
120026a78
11ff97030
120026a7c
120026280

. . . Stream1
for (i=0; i<30;++i) (iteration 0)

2
o

Stream?2
(iteration 1)

Stream2
(iteration 2)

NN OININ[INOINININOINNINN NN N)

120026a/8
11ff97100

120026a7c
120026280
120026a78
11ff97108

120026a7c
120026280
120026284

Fig. 2. An example of instruction streams in addintrace. Clear rows represent instruction addsess

Stream2
(iteration 28)

Stream3
(iteration 29)

NININOININ N O N

(type = 2) and shaded rows represent data addriggpes= O for reads and type = 1 for writes).

3.1 SBC Compression

The compression flow is illustrated in Fig. 3. T®BC input is a Dinero trace, and
the output consists of three filegream table fil{STF),stream-based instruction trace
(SBIT), andstream-based data trad&BDT). The instruction types (IT) of a currently
processed instruction stream are buffered in theféB, and the corresponding data
addresses (DA) in the DBuffer. An IT can be lo&d £ 0), store (IT = 1), or non-
memory referencing (IT = 2). The starting addresthe current stream is kept in the
S.SA variable, and the S.L variable keeps the atilength of the stream. When the
program flow changes -- that is, when the firstrinstion of the following stream is
identified -- the information about current stresprocessed. The SBC algorithm first
determines the index of the current instructioreastn, and then it processes data

addresses from the DBuffer.

H]A
Dinero H A
Trace T
T DA oA
IBuffer | ... - | DBuffer -
I DA :
Compression Stream Table U u Data Address FIFO Buffer
1 T . 7] | .

SALL A7 {sT[miD[RDY]AOf]Stride] RCnt
2|SAL L £ | #7T*sTi|miD|RDY]AOH]Stride] RNt
niSAl L o sTi[mib[RDY]Aof[Stride| Rent

TT) — TT
SBIT ll STF @ SBDT U
1 | SA | L |T1| |Tk| [oH Jaot] stride| Rt |
\/ J
/

Fig. 3. SBC compression flow.

The compression stream table, residing in memsrgearched for an entry with the
matching stream starting address and length. Alsitnash table can be used to speed
up the search. For each stream, this table kéepstarting address (SA), length (L),
and a linked list of ITs (Fig. 3). A node in thstlthat corresponds to a load or a store
instruction also has the DA and a pointer to theesponding data address FIFO buffer
entry (DFI). If there is no match in the compressstream table, a new stream entry is
allocated, its linked list is filled with informamn from the IBuffer, and the
corresponding information is also written into tB&F file. The stream index in the
compression stream table is written in the SBI&, filo the whole stream of instructions
is replaced by its index. Finally, S.SA is setttie current instruction address -- the
start of a new stream -- and S.L is set to 1.

The data address FIFO buffer and DA fields in thengression stream table are
updated for each load/store instruction in the entlty processed stream. One entry in
the data address FIFO buffer holds information &bome memory-referencing
instruction in a stream. It consists of the follogy fields: stream table indeXSTI),
memory reference indeixside the stream (MID)eady flag (RDY), address offset
(AOff), data stride (Stride), andrepetition count(RCnt). The STI points to the
corresponding compression stream table entry, ddd Rdicates that the FIFO entry
is ready to be flushed.

The data address FIFO buffer is updated as followflsa DFI field for ak-th
memory-referencing instruction in the stream isdyghe SBC algorithm calculates the
difference between thkth DA field in the compression stream table (poers data

address for that instruction) and the DA in theuingata address buffer DBuffer

(current data address). This value is the custite. If the current stride is equal to

the value of the stride field in the data addrel§€OFentry determined by the DFI, the

RCnt is incremented. If RCnt = 0, this is the setexecution of that instruction, so

the stride field is set to the current stride valdethe stride has changed and RCnt is
not 0, the RDY is set to 1 and a new entry is addetie data address FIFO buffer. A
new entry is also added if the DFI in the comp@sstream table entry has an invalid
value, which is always the case with instructiona new stream.

Before adding a new data address FIFO buffer entry, SBC algorithm first
verifies if the FIFO is full. If yes, the oldestHO record is written to the SBDT. If a
FIFO record with RDY = 0 has to be thrown out of thuffer, the corresponding DFI
value in the compression stream table is set talithv In a new data address FIFO
buffer entry, STI and MID are set to the valuesh&f compression stream table index
and memory reference index, AOff is set to the entrstride value, and the RCnt and
RDY fields are set to 0.

A record in the SBDT file contains information ab@ddress offset, stride, and
repetition count, and it can have variable lengtt a variable number of fields. The
data header field (DH) encodes the length and thst finequent values of other fields
(Fig. 4), thus achieving additional compressionhe Tepetition count values 0 and 1
and the stride values 0, 1, 4, and 8 can be endodbe data header; and the proposed
format allows the variable length of the AOff (1,42 or 8 bytes), Stride, and RCnt
fields (0, 1, 2, 4, or 8 bytes). For example, shere instruction in stream 1 needs 8
bytes for AOff, while RCnt and Stride are equal®cand are encoded in the data

header. The load instruction in stream 2 has ¢petition count equal to Ox1b; thus it

needs one byte for the RCnt field. The stridegisaéto 8, so it is encoded in the data

header. The content of SBC components for the tira€ig. 2 is shown in Fig. 5.

AOff Stride RCnt
DI/ 1 1,2, 4, or 8B 0,1,2,4,0r88 | 0,1,2, 4,0r8B
==
Bits 7-5: RCnt size Bits 4-2: Stride size Bits 0-1: AOff size
000: 0B (=0) 000: 0B (=0) 00: 1B
001: 1B 001: 1B 01: 2B
010: 2B 010: 2B 10: 4B
011: 4B 011: 4B 11: 8B
100: 8B 100: 8B
101: 0B (=1) 101: 0B (=1)
110: unused 110: 0B (=4)
111: unused 111: 0B (=8)

Fig. 4. Format of the SBC data trace.

The SBC components can be further compressed ssimg of the general-purpose
compression algorithms. The SBC records can bedpifp a general-purpose
compression process, reducing time and memory negeints needed for further
compression. One can ask why the SBC algorithns ¢ exploit the repetition of
instruction streams. Such patterns in SBIT ardyeacognized bygzipbzip2 without
an increase in complexity of SBC or any restrictieonsidering the number and nature

of nested loops.

Stream-based Instruction Trace Stream-based Data Trace (SBDT)
(SBIT)

1 Data Address Stride Repetition Size

2 Header Offset Count

) 03 | 11ffo6ff8 9 bytes
03 | 11ff97020 9 bytes

3 3F | 11ff97028 1b 10 bytes
03 | 11ff97108 9 bytes

Stream Table File (STF)

SA L|m T, | i, T,
120026260 | 9 | 1| ..| 2| .| .| 2
120026a78 | 3| O ..[2

120026a78 | 4| 0| ..| 2| 2

Fig. 5. An examplef SBC trace components.

3.2 SBC Decompression

At the beginning of decompression, the whole STIE fs loaded into the
decompression stream table (Fig. 6). Like in thegression stream table, an entry in
this table encompasses the starting address (RApagth (L) fields, and the pointer to
the list of stream instruction types. Each nodth@list that corresponds to a load or a
store instruction has the following fields: curretata address, address stride, and
repetition count. These fields are initializedzero and dynamically updated from the
SBDT file during trace decompression, wheneverrdpetition count of an accessed
node is zero.

Decompression proceeds as follows: a stream indesead from SBIT, e.g., a
stream index 1. Entry 1 of the decompression stredle is accessed, giving address
and type of the first instruction in the streamhislinstruction is a store (type 1), so the
corresponding store address is needed. Sinceeftetition count for the first data
reference in this stream is 0 after initializatidhe decompression algorithm reads a
record from SBDT. The current data address inntbde is calculated as the previous
current address (0) plus the AOff field from SBOfe stride is set to the value of the
Stride field, in this case 0; and the repetitiomrtois set to the RCnt value, again 0
since this stream executes only once. The poiatdre current instruction then moves
along the stream instruction type list until alln@iinstructions are read. Each
instruction address is obtained by incrementingdingent instruction address for the
value of the instruction length, beginning from #tarting address field. The SBDT

file is accessed once more, for the seventh insbrmuam stream 1, a load instruction.

Type Address

120026260
11ff96ff8

120026264
120026268
120026a6¢
120026a70
120026a74
120026a78
11ff97020
120026a7c
120026a80
120026a78
11ff97028
120026a7c
120026a80
120026a78
11ff97030
120026a7c
120026a80

Stream-based
Instruction Stream-based Data

Trace (SBIT) Trace (SBDT)

1 Data Address Stride | Repetition
Header Offset Count

/@D 03 | 11ffosfis
2 03 | 11ff97020
3F | 11ff97028 1b
3 03 | 11ffo7108

v

Decompression Stream Table

NN O N NN O[NNI N|OINNNININN N

Start Address Length
(SA) L

120026a60

120022678 3

3 120022678 4 11ff97028 Current Address

120026a78
11ff97100

120026a7c
120026a80
120026a78
11ff97108

120026a7c
120026a80
120026a84

8 | stride

NI NN O[NNI N OV :

g

1b Repetition Count

Fig. 6. An example of SBC decompression.

The next stream index read from the SBIT file is@gentry 2 is accessed. The first
instruction is a load, so the corresponding noftariation is updated from SBDT; i.e.,
the current address is set to 0x11ff97028, thdestd set to 8, and the repetition count
to 27 (Ox1lb). When stream 2 is again encounterethé SBIT file and its load
instruction is read from the decompression streatntet there is no need to access the
SBDT file — the load address is calculated as tieeipus address plus the stride, and
the repetition count is decremented. The sameegrois repeated for all 26 remaining

executions of stream 2.

3.3 SBC Compression in Hardware

Virtually all trace compression techniques targamnpression in software. On the
other hand, computer systems could greatly befrefih hardware support for trace
collection and compression, especially emergingtesys-on-a-chip with multiple
embedded RISC and DSP processor cores. For exafiphd already offers a module
for tracing the complete pipeline information [ARBDO4]. However, the existing
compression techniques that can be efficiently @mgnted in hardware have poor
compression ratio: e.g., an ARM emulator compregsReb traces by replacing the
sequence of the same records by their repetitiantddcCullough et al. 2003].

The SBC implementation described in the previoustiaes cannot be directly
implemented in hardware: although the SBC algoritisas a FIFO buffer of limited
size for data address compression, it keeps infimmabout instruction streams in an
unbounded stream table. However, the SBC algoritambe modified to use fixed-
size resources for stream information: insteadhefdtream table, it can use a stream
cache resource that has a fixed number of entri#se modified SBC, SBChw,
generates three trace components: a stream caclkerhponent and a stream cache
miss component for instruction addresses, and earstbased data trace for data
addresses. In the case of a stream cache hit,tbalgorresponding cache index is
emitted into the stream cache index trace, similahe stream index in the basic SBC.
In the case of a stream cache miss, an instrustiam descriptor (encompassing the
stream starting address, stream length, and itgtnutypes) is emitted into the stream

cache miss trace, and a reserved index is emittedhe stream cache index trace.

To make SBC suitable for hardware implementatior, also need to limit the
maximal stream length and the maximal number of orgmmeferencing instructions in
a stream. Hence, we introduce two new conditionsfream termination: in addition
to a change in control flow, an instruction streglso ends when it reaches the maximal
allowed length or the maximal number of memory+efeing instructions.

Fig. 7 shows an implementation of the stream cawit the corresponding data
address FIFO buffer. The stream cache hgs/,Nvays and Nt sets. A set is selected
using a simple function of S.SA and S.SL, suchiawise XOR of selected bits and/or
bit concatenation. The S.SA and S.L serve asitag®e stream cache. Similar to the
stream table entry, a stream cache entry alsodeslan IT field for each instruction in
the corresponding stream, and the data address §bd\the data address FIFO buffer

index fields (DFI) for each memory-referencing rastion in the stream.

Stream Cache

Niay -1
SSA&S.L iwWay q--- I
of I
F(S.SA, S.SL) 0 | reserved BN My
1 - / DA, DAyao
1/ DF DFI
'00...0' iway iset | i A

N L Nl

*
Hit/Miss

Data Address FIFO Buffer

MID RDY | AOff | Stride [RCnt
MID RDY | AOff | Stride | RCnt

(SA, SL, ITs) (SCI) S.SA&S.L MID | RDY | AOff | Stride | RCnt
Stream Cache Stream Cache MID | RDY [AOff | Stride | RCnt
Miss Trace Index Trace

[Append Header & Field Filter]

DH & AOff & Stride & RCnt

Stream-based Data
Address Trace

Fig. 7. Stream Cache and Data Address FIFO Buff&BC hardware implementation.

4. RESULTS

In this section we first describe our evaluatiorvienment and determine the
feasibility of the SBC technique using stream stas. For all evaluated techniques,
we compare the trace compression ratio, compressiondecompression times, and
simulation speedup. We also evaluate the commressitio of SBC modified for
hardware implementation. Finally, we discuss thengressibility of instruction and

data components.

4.1 Evaluation Environment and Stream Statistics
In order to evaluate the proposed compression nmézrha we use Dinero address
traces of 10 SPEC CPU2000 integer (INT) and 13tifiggpoint (FP) benchmarks
(Table I). We trace two segments for each benckntae first billion instructions
(F1B) and a billion instructions after skipping Billion (M1B), thus making sure that
modified SimpleScalar environment [Burger and Auwsti997], precompiled Alpha
binaries, and SPEC CPU2000 reference inputs. Aghdhe number of instructions in
each segment is fixed, the number of memory-ret@ngninstructions — loads and
stores — varies greatly across benchmarks, frolnvags 18.8% of all instructions for
F1B segment of89.lucas to over 60% for M1B segment 4f76.gcc The average
segment size of Dinero traces is about 11GB, aedstim of uncompressed traces
reaches 510GB, clearly showing the need for higlffigient compression techniques.
Since the compression and decompression streaestabd stored in memory, we
first verify that the number of unique instructistreams is indeed fairly limited. The
size of these tables depends on the number of enéqueams and the number of
instructions in each stream. Trace analysis shbafsall FP benchmarks have fewer
than 4,000 unique instruction streams in a segnam, all INT benchmarks except
176.gccand 253.perlomkhave fewer than 6,000 unique streams (Table [)heiwV
complete execution of benchmarks is consideredatieeage number of unique streams
is 7,686 for INT and 2,568 for FP applications, hw# maximum 30,162 id76.gcc
The average stream length is less than 30 insbngfor all INT and 5 FP benchmarks,

and it reaches the maximum fbr3.apply 449 instructions in the M2B segment, but in

that segment73.appluhas only 502 unique streams. All these resutigate that the

stream table has relatively modest memory requinésne

Table I. Stream statistics for the first billiamstructions (F1B), for the billion after
skipping 50 billion (M1B), and for complete prograecution (All)

of Streams MaxStreamLen| AverageStream|en
INT F1B | M1B| All F1B |M1B| All |F1B |M1B| All
164.gzip 744 315| 1437 100 90| 229| 14.1| 13.7| 13.6
176.gcc 25251 1518| 30162 272| 103| 315/ 10.3| 11.6| 11.4
181.mcf 480 306 1181 88 64 88| 9.4| 82| 7.4

186.crafty 4067 1802 5347| 191| 100| 191| 13.0f 13.4| 13.3
197.parser 34364176| 6116 130, 157| 189 8.9| 10.0] 10.0

252.eon 3468 574| 4389 169| 168| 169| 13.8| 14.1] 13.7
253.perlbomk| 9031 2738| 11542 84| 84| 868| 10.0| 12.3| 11.8
254.gap 3154 473| 3530[284| 75| 284| 25.0| 10.3] 11.1

255.vortex 5441 1615 8254| 126/ 110 126 11.1| 11.2| 11.0
300.twolf 2235 1013] 4902 163| 185| 185| 10.7| 14.5 14.4
Average 5730.7| 1453|7686.0 160.7| 113.6|264.4| 12.6| 11.9| 11.8

FP
168.wupwis¢ 1389| 185 1912| 131| 229| 229| 23.9| 27.1| 27.4
171.swim 1581 493| 1839 707| 707| 707| 93.6/146.3130.8

172.mgrid 1456 871 1725| 1944| 1944| 1944/ 240.1] 94.1|420.8
173.applu 1468 502| 1752| 3162 3162| 3162|411.5/449.1| 462.4

177.mesa 1626 583| 1938 550/ 266| 550| 14.8| 18.5|18.15
178.galgel 1729 30| 4153| 264| 111| 264| 18.4| 21.8| 21.8
179.art 433 75| 976| 168| 561| 561 10.3] 8.7 9.0
183.equake 517 256 1355/ 44| 623| 623| 8.6| 28.3| 27.7
188.ammp 818 71| 1810 84| 395| 422| 12.5| 36.1] 385
189.lucas 825 78| 1414| 101| 427| 427| 27.1/128.7/113.3

b
191.fma3d 2069 840 5007 383| 1158| 1158 10.7| 41.5| 34.3
200.sixtrack| 3507 81| 6515/ 264| 580| 580(20.1/192.9/170.5
301.appsi 2388 303| 2989| 729| 729| 894| 34.0| 47.4| 50.7
Average 1523.2/ 336.0| 2568.1) 656.2| 837.8/ 886.2| 71.2| 95.4{117.3

4.2 SBC Compression Ratio

We compare compression ratio for SBC, PDATS, TCGEN] LBTC compression
techniques when these techniques are used alodewlagn they are combined with
gzip (SBC.gz, PDATS.gz, TCGEN.gz, and LBTC.gz) arxip2 (SBC.bz2,
PDATS.bz2, TCGEN.bz2, and LBTC.bz2). We also eatuthe use ofgzip
(Dinero.gz) andzip2(Dinero.bz2) alone.

For each compression technique and each selectachinark, the compression
ratio is calculated as the sum of the sizes of mmessed Dinero traces in F1B and
M1B segments, divided by the sum of the sizes affr@ssed traces. We also consider
the total compression ratio, calculated as the sinuncompressed traces of all
benchmarks over the sum of all compressed traces.

To have a fair comparison, we used a Dinero tracedt with separate instruction
and data components. The size of a trace in ¢hidt is less than the size of a unified
trace, since the type field is not required indaga component. In addition to that, split
components can be better compressedZiy/bzip2 PDATS and LBTC techniques are
also slightly modified to have separate instructimal data components. TCGEN code
is automatically generated by the TCgen tool [Bires and Sam 2005]; we modified
the code to read the split Dinero files during coesgion, and not to write the
decompressed files during decompression. TCGEN tls® combination of finite-
context-method and differential-context-method prieds; its detailed specification is
given in Fig. 8. The data address field existy amlload/store instructions. The FIFO

buffer size for SBC is 8,192 entries.

Fig. 9 shows compression ratio results. SBC diganitly outperforms all other
techniques, with a total compression ratio of 3@fpared to 7.2 for PDATS, 4.9 for
TCGEN, and 7.6 for LBTC. SBC compression ratioiesracross applications in a
range from 18 to 308. It should be noted that SB@he also outperformgzip

compression (Dinero.gz) for all benchmarks.

TCgen Trace Specification;

0-Bit Header;

Instruction type

8-Bit Field 1 = {L1 = 65536, L2 = 4: FCM3[2]};

Field 1 uses 2 predictors with a combined size of 0.8MB
Instruction address

64-Bit Field 2 = {L1 = 1, L2 = 131072: FCM3[2]};

Field 2 uses 2 predictors with a combined size of 8.0MB
Data address

64-Bit Field 3 = {L1 = 65536, L2 = 131072: DFCM3|[2], DFCM1[1],
FCM1[1]};

Field 3 uses 4 predictors with a combined size 11.5MB
PC = Field 2;

Fig. 8. TCGEN specification.

Even better compression can be obtained by fudbempressing an SBC trace by
gzip. The SBC.gz compression ratio is from 80 to 7@7INT and from 462 to 35,595
for FP. Again, the SBC.gz outperforms all otheshtdques: the sum of all traces is
reduced 327 times, and the total compression faticother techniques is 271 for
TCGEN, 85 for LBTC, and 62 for PDATS.

Using bzip2instead ofgzip can even further improve the compression ratio,abu
the price of a significant slowdown in compressiwompression time. SBC.bz2
compression ratio for the sum of all traces appgieac400. However, TCGEN.bz2

achieves an even better compression of 722.

It should be noted that Burtscher et al. find th&GEN combined with bzip2
outperforms other compression techniques in bothmpeession ratio and
decompression time [Burtscher et al. 2005]. Thsessmingly contradictory results can
be easily explained. The TCGEN authors do notfubeaddress traces, but rather a
subset with some additional information (e.g., ésof store instructions and store
addresses, load instructions and load values, dddesses of instructions causing
cache misses). Instruction streams cannot beye&sibgnized in such traces, so the
authors assume that a “stream” in a trace is aesmguof trace records with increasing
addresses, such that the difference between cdhsececords’ addresses is less than a
small threshold. These artificial streams are vamgrt, so the full strength of SBC
cannot be exploited. Slower SBC decompression timeerved in [Burtscher et al.

2005] is a consequence of lower compression ratidtlae lack of code optimization.

Compression ratio

‘ @ PDATS 7 TCGEN BLBTC asBC

1000

100

10 ~

Compression ratio

100000

ODinero.gz M@WPDATS.gz HBTCGEN.gz ®LBTC.gz 0OSBC.Jgz

10000

Compression ratio

1000000

100000

10000

1000

100 +
10

Fig. 9. Compression ratio.

4.3 SBC Decompression Time and Simulation Speedup

Decompression time is as important as compressitim, lespecially when compressed
traces are used for trace-driven simulation. West fimeasure real elapsed
decompression time in a program that reconstruttsrdire trace, with buffered reads
and inlined decompression. Theip andbzip2 utilities run in a separate process and
pipe their results to the main procedure. Thigmm emulates a simulator adapted to
the applied decompression technique. Total protetime needed for program
execution is measured on a Pentium 4 with hypeatling at 3 GHz, with the RedHat
Linux operating system.

Fig. 10 shows decompression times for all consitléeehniques alone and when
combined withgzipandbzip2 SBC performs better than other techniques, reguon
average 86 seconds per application; it is sligh#tter than PDATS, and it is almost
two times faster than LBTC and four times fastemtif CGEN. SBC also outperforms
other techniques when it is combined wgttip andbzip2 For example, SBC.gz is on
average 5 times faster than Dinero.gz, 1.5 timetefahan PDATS.gz, 3 times faster
than TCGEN.gz, and 1.25 times faster than LBTC$BC.bz2 decompression is
almost 20 times faster than Dinero.bz2, 4.5 tinasselr than PDATS.bz2, 3 times faster
than LBTC.bz2, and 2.5 times faster than TCGEN.b2 should be noted that
decompression time depends on both the compressesize and time complexity of
the decompression algorithm. Thoulghip2 always achieves better compression ratio

thangzip, bzip2decompression time is longer.

! bz2 decompression times are shown with logarittsoide.

One could argue that a TCGEN configuration withhealser number of predictors
should have faster decompression than the one ejesoswe also evaluate a “small”
TCGEN with only one predictor for each trace recooinponent (the first predictors
listed in Fig. 8). The smallTCGEN.gz indeed doesodepress slightly faster than
TCGEN.gz, on average 1770 vs. 1801 seconds. Howeaar smallTCGEN and
smallTCGEN.bz2 are slower than the correspondingsER and TCGEN.bz2. A
higher number of mispredictions, because of fewedigtors, significantly deteriorates
the compression ratio: 4 vs. 5 for raw TCGEN, 289271 for TCGEN.gz, and 495 vs.
722 for TCGEN.bz2.

SBC is also evaluated as a part of a trace inpatguture for the DinerolV cache
memory simulator [Edler and Hill 1998]. In DineX¥gla trace is read in a separate
trace input procedure. The decompressed traceddsoreturned by value to the
next_in_traceprocedure, which than returns it to the main pdoce. We implemented
trace input procedures for all trace compressiderdtives, with buffered read and
pipes forgzipandbzip2 Fig. 11 shows the simulation speedup relativéa¢oDinerolV
simulator reading raw Dinero traces. SBC.gz otigpers all other techniques with an
average simulation speedup of 2.6 (compared téo2.8BC.bz2, 2.4 for LBTC.gz, 2.4
for PDATS.gz, 1.8 for TCGEN.gz, and 1.7 for TCGEXRph Simulation speedup for
DinerolV is lower than the decompression speedupwshin Fig. 10, because of

simulation overhead and simulator implementation.

@EPDATS BATCGEN ELBTC oSsBC

700
'S 600
L,
g 500
= 400 4
S
‘» 300
2 l
S 200
£ 100
o
8 o
Rl & & RS @ WS @ L 2ad o &
bgg\bi\,é\ é{s\Q'&i%?P*o&b‘&@\\Z@O K s \i&\\'b& &Q'e *%q%&%@&\"%&%‘&» 3 e}(bq
O NNV OARP T 67T A A TR D (S R
) r]f;b‘ 7 % [NAMENAEN, <’\ ,\/‘b{b N3 N\’%%QQ
O Dinero.gz B PDATS.gz B TCGEN.gz B LBTC.gz OSBC.gz
600
o
g -
2,
[
£
c
2
%]
%]
<
Q.
£
o
(8]
[}
[a]

NI
&\Q

IR SN
NS S0
SIS

Decompression time [sec]

ODinero.bz2 BEPDATSbz2 BTCGEN.bz2 ®LBTC.bz2 OSBC.hz2

10000

1000 +

100 ~

Fig. 10. Decompression time.

‘ 0O Dinero.gz @ PDATS.gz TCGEN.gz OLBTC.gz ® SBC.gz‘

Simulation speedup

Simulation speedup

Fig. 11. Simulation speedup for the DinerolV siatat, relative to raw Dinero traces.

4.4 SBC Compression Time

Compression time is a less significant factor ie tthoice of a trace compression
technique than is decompression time, since a tsaggually compressed only once but
is decompressed many times. Withgaip'bzip2 compression, compression time varies
little across different techniques: the arithmetiean for SBC is 28.9 minutes versus
29.1 minutes for PDATS, 33.3 for TCGEN, and 30.0 f8TC (Fig. 12, top). The

average total CPU time is 3 minutes for SBC, 347HDATS, 3.28 for LBTC, and

6.79 minutes for TCGEN. Similar real time can kplained as follows: a compression
program spends its execution time on three compgenerreading an uncompressed
file, compressing trace records, and writing thempressed file. Hence, any
compression program is 1/O bound, spending mostsofime waiting for 1/0. All
programs use the same input, so the time for taadad does not vary much. In this
case, this component dominates others: comprestesl dre about an order of
magnitude smaller than uncompressed ones, and @&tal time is also significantly
less than I/O time. SBC compression has the land@stion forgcg an application
with many different streams.

Gzip compression alone lasts longer than any of theetmmpression techniques
combined withgzip, since thegzip output files are larger. SBC.gz, PDATS.gz,
LBTC.gz, and TCGEN.gz all have an average comprastine of about 29 minutes
(Fig. 12, middle). Thézip2compression hastagher time complexity than linear, so it
is very slow for large output files. Dinero.bz2shan average compression time of
about 708 minutes, SBC.bz2 and TCGEN.bz2 about i88tes, and PDATS.bz2 and

LBTC.bz2 about 88 minutes (Fig. 12, bottém)

2 bz2 compression times are shown with logarithroades

B PDATS B TCGEN BLBTC asBC

O Dinero.gz B PDATS gz TCGEN.gz B LBTC.gz OosBC.gz

Compression time [sec]

100000

10000

1000

Compression time [sec]

Fig. 12. Compression time.

4.5 Compression Ratio of SBC Hardware Implementation

To evaluate the influence of finite-size resources the SBC algorithm, we
compare the size of traces compressed with SBCS&@hw, without the additional
general compression stage (Fig. 13). Two SBChwigorations are considered: an
extremely small SBChw (64x4), with only 256 streaathe entries, and a relatively
large SBChw (4Kx4), with 16K stream cache entri€able 1l). For the majority of
applications, SBChw (4Kx4) has almost the same cesgion ratio as SBC. The
slightly higher total compression ratio of SBChwKg) is due to a smaller
compressed data address trace component (SBDMmdsr floating-point applications.
This result can be explained as follows. With 8®RC, the body of an inner loop
appears as a part of three streams, so each lwa&difsstruction in the loop has at least
three data address FIFO entries and three traoedem the SBDT file. With the SBC
hardware implementation, very long instruction atns are split into shorter ones, so
some of the load/store instructions in a long lbopy will belong to only one SBChw
stream. Consequently, load/store instructions efatively long loops in SPEC
CPU2000 FP applications are compressed into fenaee trecords with SBChw (4Kx4)

than with SBC.

Table II. Parameters of SBC hardware implementation

Data address Stream Stream Max stream| Max loads&stores
SBChw .

FIFO entries | cache sets| cache ways length per stream
(4Kx4) 8192 4096 4 256 128
(64x4) 4096 64 4 124 64

B SBChw (64x4) B SBChw (4Kx4)

Y 40 -

g 35

O 3.0

m

w25

N 20

L 151

S 10

o

; 0.5

£ 0.0

O

m QO & CQ & + & 2.Q O N 2@ S ad & O >
LR Q& N . N N AR Q o @

2 oSS E NI FNIRET TS TEEF S

3 \?’ ';\ &%C:)'/\Qfﬁ’) QQ' ,ﬁ)og),(bQQ~ $\>Q/\\'/\q/ /\q,»/\/\~/\%9 \,%90%6@%%~\:‘\ é\‘q’Q

» VR @Y \?;b"' MR EN YRS

Fig. 13 SBChw versus SBC trace sizes.

For most applications, even SBChw (64x4) comesectosSBC, with 13 out of 23
traces being less than 1.4 times larger, and onisa@s being more than 2.5 times
larger. Although with a very small stream cachBC8w (64x4) can even outperform
SBC, because of the effect explained above andrestStreamID (one byte instead of
two bytes for stream index). The total size of 8BQraces divided by the total size of

SBC traces is 1.66 for SBChw (64x4) and 0.97 foCB® (4Kx4).

4.6 Compressibility of Instruction and Data Trace Components

Instruction addresses are known to have more rethaydthan data addresses have
[Becker and Park 1993]. Fig. 14 and Fig. 15 iHatt how successful the evaluated
trace compression techniques are in exploiting tbisindancy. The SBC algorithm
compresses instruction addresses much better ttaraddresses, for up to two orders
of magnitude. Using again the total compressidio ras a metric, SBC instruction

address compression is 5.3 times better than dideess compression. A trace of

stream identifiers has more redundancy than a wa&BC data records, so SBC.gz
and SBC.bz2 compress the instruction trace compgatief and 90.8 times better than
they compress the data address component, resglgctiv

TCGEN replaces each trace component by a predibtotifier and possibly with
misprediction information. Hence, the size of timstruction type component is
actually expanded. As a consequence, TCGEN hawer lcompression ratio for the
instruction component than for the data componéef©@GEN traces are very suitable
for additional compression lyzipbzip2 since traces of predictor identifiers have very
few unique symbols. Second stage compression gaifibzip2 benefits more from
instruction address redundancy, so TCGEN combinétth @zip compresses the
instruction component 4.1 times better than it carepes the data component, and
about 18.4 times better when combined wbitip2

With LBTC, both instruction and data addressescamapressed using offsets, and
only repeated data addresses benefit from the ewsjon cache. Hence, for most
applications there is not much difference betwesstriction and data component
compression ratio. Instruction address offsets tstter compressed with general
compression algorithms than data address offsets sar LBTC.gz and LBTC.bz2
compress the instruction component 16.3 and 5thé&stibetter than they compress the
data component, respectively. PDATS is 2.9 timetseb for instruction than for data,

due to encoding of repeated instruction offsets.

10,000,000
1,000,000
100,000
[
8§ 10,000
c
g.Q 1,000 (T I T F 1 —
o g (
c
2 05)_ 100 T |
o g 1]
2o
@ © 10 T - -
- | m
NI NS ‘ ‘
NN R N N A S R VR
AP A SRS SN SRS I N
&N SRS 2R O 4 & LS L
XV K F & 2
Fig. 14. Compression ratio of Dinero trace inginrccomponent.
1,000,000
100,000
8
] 10,000
g
o c
e |
IS 1,000
o 0
5 & [I I
T Q
T € 100 T I T
[aN=}
(5]
" 1 Jr [|
a i
1 T T T T T T T T T T
V v 42 12
& (&0 /\.0 Q)O.O o o o 8 & 0?0 G o
X & 2 O &7 T O7 O IR TN
oY & F S F S & F £ & K
EAEEEN L WY

Fig. 15. Compression ratio of Dinero trace datagonent.

SBC compression of the instruction trace compordepends only on the average
stream length, which indicates how many instructiecords in the original trace are
replaced by one stream identifier in the SBC-cosged trace (Table 1). Hence, traces
with longer instruction streams are better comme@ssThe SBC compression ratio of
the data component is more difficult to explaimcs! it depends on several factors: the
regularity of data address strides; and the len§tiepetition, stride, and address offset
fields in a particular SBDT file. The finite sipé the Data FIFO Buffer can also affect

SBC data component compression. Table Il shoesdhio of the number of memory

references in the traclyem p, and the number of records in the SBDT tradgspr

The results indicate that a moderate FIFO sizeh sag 8,192 entries, yields a
compression ratio close to that of an infinite Fll@®most benchmarks. Fig. 16 shows
how the compression ratio of the data componenewi@p on the FIFO size for
301.appsithe most sensitive application, ah@9.lucas the least sensitive one. We
can emulate an infinite FIFO, but that would requiwo passes through the trace.
Instead, we conduct additional experiments with @d&-entry data address FIFO
buffer. Although the compression ratio signifidgnimproves for some applications
(e.g., 30l1.appsi, 191.fma3d, 173.applu), the tatampression ratio does not
considerably change: 36 for raw SBC with 8K FIFO38 with 64K FIFO, 326 vs. 346
for SBC.gz, and 390 vs. 406 for SBC.bz2. These gy@in compression ratio are

achieved without additional overhead in compresaiath decompression time.

Table lll. Ratio of the number of data addresséneferenceslyem p and
SBDT record$Nsgpr

Nwvem o/ Nseor Nuvem ofNseor

INT 8192 entry FIFQInfinite FIFO| | FP 8192 entry FIFQInfinite FIFO
164.gzip 12.21 12.78| | 168.wupwise 26.77 27.72
176.gcc 20.88 24.63| |171.swim 95.81 102.72
181.mcf 10.62 11.66| |172.mgrid 9.97 12.48
186.crafty 5.43 7.78| |173.applu 6.23 15.18
197.parser 6.00 6.33| |177.mesa 13.90 19.27
252.eon 2.94 4.05| |178.galgel 27.40 29.15
253.perlbmk 6.93 8.36| |179.art 373.22 502.32
254.gap 5.23 5.79| | 183.equake 10.56 11.66
255.vortex 3.2] 3.82| | 188.ammp 14.87 17.38
300.twolf 4.66 5.72| |189.lucas 91.14 92.01
191.fma3d 12.62 21.38

200.sixtrack 8.55 11.70

301.appsi 3.26 6.86

SBDT file size ‘ —=—30l.apsi —e—189.lucas ‘

0.6 _

0.4

0.2

1000 2000 4000 8000 16000

Number of entries in the data address FIFO buffer

Fig. 16. SBDT file size as a function of the numbkentries in the data address FIFO buffer,

relative to the 1K-entry FIFO buffer.

5. CONCLUSION

The main contributions of this paper are the foltoyy
¢ A single-pass trace compression technique, SBC.thénSBC algorithm an
instruction stream is replaced by its index from sftream table. Data addresses are
linked to a corresponding instruction stream anthm@ssed using an efficient on-
line algorithm that recognizes regular strides.isTtechnique achieves an optimal
balance between the most important compressioniresgents: high compression
ratio and fast decompression time. The SBC web e, sit

http://www.ece.uah.edu/~lacasa/sbc/sbc.htnmicludes SBC-compressed SPEC

CPU2000 traces and utility programs.
*« A modified SBC with fixed-size resources, SBChwijtahle for hardware
implementation. The SBChw technique achieves gocession ratio comparable to

that of SBC with very modest resources, by usifiigite-size stream cache instead

of an unbounded stream table, and limiting the makistream length and the
number of loads/stores in a stream.

e Evaluation of SBC versus the best existing singlesplossless compression
techniques, PDATS, LBTC, and TCGEN. SBC outperfomi other techniques
when compression ratio, decompression time, andpogsgion time are all taken
into consideration. Without additional compressibg gzip or bzip2 SBC
compresses better than all other techniques, dotpging the next best technique,
LBTC, 4.8 times. SBC also has the highest compresatio when combined with
gzip, for all but two considered applications. Whemmbined with bzip2 it
achieves a compression ratio comparable to thatTGGEN.bz2. Though
TCGEN.bz2 has the best overall compression ratio,has a significant
decompression overhead. Evaluation of decompmesisie in two settings, with an
optimized decompression program and a real sinmlatoows that SBC traces
decompress much faster than TCGEN traces. Withctistom decompression
program, SBC.gz and SBC.bz2 are 4.5 and 3 timeterfaban TCEN.bz2,
respectively. Simulation with the DinerolV cachemory simulator finishes 1.56
times faster with SBC.gz than with TCGEN.bz2, an851times faster with
SBC.bz2.

¢ Analysis of compressibility of instruction and ddtace components for all
evaluated techniques, as well as sensitivity ofSBE€ compression ratio to the data
address FIFO buffer size.

* A novel classification of lossless trace comprasgiEchniques, based on the

method used for compression of data and instructionponents.

As our analysis indicates, future compression teghles should concentrate on the
data trace component, since it makes up over 80%hefSBC compressed traces.
Another avenue to be explored is the extensiom@f3BC trace format for other types
of traces. An additional benefit of the SBC tecjuai is the separation of the stream
trace file from the rest of the compressed datandd, various statistics such as the
number of executed instructions of a particularetypumber of streams, and dynamic
distribution of streams can be obtained by proogsenly the stream table file instead
of the whole trace. The stream table file can atsbude information about basic

blocks in a stream and a stream frequency field.

REFERENCES

AGARWAL, A., STES, R. L. and HborowITZ, M. 1986. ATUM: A New Technique for Capturing Addses
Traces Using Microcode. Rroceedings of the 13th Annual Symposium on Compute
Architecture Tokyo, Japan, June 1986, 119-127.

ARM. 2004. CoreSight On-chip Debug and Trace Tetdgo
<http://www.arm.com/products/solutions/CoreSight.birfduly 2004).

BECKER, J.C. and RRK, A. 1993. An analysis of the information contentdfiress and data reference
streams. IProceedings of the 1993 ACM SIGMETRICS conferenddeasurement and
modeling of computer systen&anta Clara, CA, May 10 - 14, 1993, 262 - 263.

BURGER D. and AUSTIN, T. 1997. The SimpleScalar Tool Set Version 2.0.T&897-1342, University of
Wisconsin, WI, USA.

BURROWS M. and WHEELER, D. J. 1994. A Block-sorting Lossless Data Compressigorithm. Report
124, Digital SRC.

BURTSCHER M. 2004. VPC3: A Fast and Effective Trace-Comp@sgilgorithm. InJoint International
Conference on Measurement and Modeling of Comi8ytstems (SIGMETRICS'QHew York,
NY, USA, June 2004, 167-176.

BURTSCHER M., et al. 2005. The VPC Trace-Compression AlgonghlEEE Transactions on Computes4,
11 (November 2005), 1329-1344.

BURTSCHER M. and EERADIT, M. 2003. Compressing Extended Program Traces Usithge Predictors. In
Proceedings of the 12th International Conferencéarellel Architectures and Compilation
TechniquesNew Orleans, LA, September 2003, 159-168.

BURTSCHER M. and 3w, N. B. 2005. Automatic Generation of High-Performancacé Compressors. In
2005 International Symposium on Code Generation@ptiimization (CGO’05)San Jose, CA,
USA, March 2005, pp. 229-240.

CANTIN, J.F. and HLL, M. D. 2003. Cache Performance for SPEC CPU2000 Beniisma
<http://www.cs.wisc.edu/multifacet/misc/spec2000&adata® (April 2004).

DEROSE, L., et al. 2002. SIGMA: A Simulator Infrastructui@Guide Memory Analysis. IRroceedings of
the 2002 ACM/IEEE conference on Supercompuadtimore, Maryland, 1-13.

EDLER, J. and HLL, M. D. 1998. Dinero IV Trace-Driven Uniprocessor Ca8imulator.
<http://www.cs.wisc.edu/~markhill/Dinerol%¥/(August 2003).

EGGERS S.J., et al. 1990. Techniques for efficient inlingcing on a shared-memory multiprocessor. In
Proceedings of the 1990 ACM SIGMETRICS Joint latéonal Conference on Measurement and
Modeling of Computer Systent&oulder, CO, USA, 37 - 47.

ELNOZzAHY, E.N. 1999. Address Trace Compression Through Looedein and ReductioMCM
SIGMETRICS Performance Evaluation Rev&sy1 (June), 214-215.

FISHER, J.A., FARABOSCH], P. and YouNg, C. 2005 Embedded Computing: A VLIW Approach in
Architecture, Compilers, and Toolglorgan Kaufmann, San Francisco, CA, USA.

HAMOU-LHADJ, A. and LETHBRIDGE, T. C. 2002. Compression techniques to simplify theyaigof large
execution traces. IRroceedings of the 10th International Workshop eogPam Comprehension
Paris, France, 27-29 June 2002, 159 -168.

JOHNSON E.E., Ha, J. and ZAiDI, M. B. 2001. Lossless Trace Compressi®EE Transactions on
Computer$0, 2 (February), 158-173.

LARuUs, J.R. 1993. Efficient program tracintEEE Computef6, 5 (May 1993), 52-61.

LARUS, J.R. 1999. Whole program paths.Pnoceedings of the ACM SIGPLAN 1999 Conference on
Programming language design and implementatitfanta, GA, 259-269.

Luo, Y. and dHN, L. K. 2004. Locality-Based Online Trace Compressi&EE Transaction on Computers
53, 6 (June 2004), 723-731.

McCULLOUGH, et al. 2003. Trace reporting method and systemited States Patent 6,615,371.

MILENKOVIC, A. and MLENKoVIC, M. 2003a. Exploiting Streams in Instruction anddAtidress Trace
Compression. IfProceedings of IEEE 6th Annual Workshop on WorkliBhdracterization
Austin, TX, USA, October 27, 2003, 99-107.

MILENKOVIC, A. and MLENKOVIC, M. 2003b. Stream-Based Trace CompressBwmputer Architecture
Letters2, (September 2003),

MILENKoVIC, A., MILENKOVIC, M. and KuLICK, J. 2003. N-Tuple Compression: A Novel Method for
Compression of Branch Instruction TracesPhoceedings of the 16th International Conference
on Parallel and Distributed Computing Systems (PEXD83) Reno, NV, USA, August 13-15,
2003, 49-55.

NEVILL-MANNING, C.G. and WITEN, |. H. 1997. Linear-Time, Incremental Hierarchy Integfece for
Compression. IfProceedings of the IEEE Data Compression ConfereBigewbird, UT, 3-11.

PLESZKUN, A. R. 1994. Techniques for compressing program addir@sss. IiProceedings of the 27th
Annual International Symposium on Microarchitectusan Jose, CA, USA, November 30 -
December 02, 1994, 32-39.

SAMPLES, A. D. 1989. Mache: no-loss trace compactiorPitnceedings of the 1989 ACM SIGMETRICS
International Conference on Measurement and ModadinComputer System@akland, CA,
USA, May 23 - 26, 89 - 97.

SKADRON, K., et al. 2003. Challenges in Computer ArchiteetbvaluationlEEE ComputeB6, 8 (August
2003), 30 - 36.

SMITH, M. D. 1991. Tracing with Pixie. Technical Report CSR-891-497, Computer Systems Laboratory,
Stanford University.

SPEC. 2000. SPEC 2000 CPU Benchmark Suitgps/www.spec.org (February 2004).

THORNOCK, N. C. and [EANAGAN, J.K. 2001. A national trace collection and distrilomtiresourceACM
SIGARCH Computer Architecture Nef8& 3 (June 2001), 6-10.

UHLIG, R., et al. 1995. Instruction fetching: coping witbde bloat. IrProceedings of the 22nd Annual
International Symposium on Computer Architect@eMargherita Ligure, Italy, 345 - 356.

UHLIG, R.A. and MUDGE, T. N. 1997. Trace-driven memory simulation: a sun&gM Computing Survey
29, 2 (June), 128-170.

ZHANG, Y. and GQUPTA, R. 2001. Timestamped whole program path representand its applications. In
Proceedings of the ACM SIGPLAN 2001 ConferencerogrBmming Language Design and
ImplementationSnowbird, UT, USA, 180-190.

ZHou, M. and $aITH, A. J. 2000. Tracing Windows9®licroprocessors and Microsysterds, 333-347.

Z1v,J. and [EMPEL, A. 1977. A universal algorithm for sequential detenpressionlEEE Transaction on
Information Theorn23, 3 (May 1977), 337-343.

