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Abstract 

 
The increasing gap between design productivity and 

chip complexity, and emerging systems-on-a-chip (SoC) 
have led to the wide utilization of reusable intellectual 
property (IP) cores. Educators’ responsibility is to 
provide future generations of SoC architects with 
knowledge necessary for successful design and use of IP 
cores, and to offer them a system perspective including 
both hardware and software. One way to accomplish this 
goal  is through projects focused on soft CPU cores 
development. In this paper, we show the design flow and 
give the details of one such project aimed to develop a 
Microchip’s PIC18 microcontroller core and implement it 
on an FPGA. 
 
1. Introduction 

The traditional integrated circuits design flow based on 
the schematic capture has been replaced by the design 
flow based on hardware description languages (HDL) 
such as VHDL, Verilog, or SystemC, and tools for logic 
synthesis. The HDL-based design flow offers portability, 
reduction of the design cycle, independence of 
technology, and automatic synthesis and logic 
optimization. In spite of its great benefits, this design flow 
cannot successfully bridge the ever-increasing gap 
between available chip complexity and design 
productivity - since 1980, the number of transistors on a 
chip increases 58% a year, while design productivity 
increases merely 21% a year [1].  

According to the SIA Technology Roadmap, by the 
end of this decade the semiconductor industry will 
manufacture chips with four billion transistors, thousands 
of pins, and clock speeds of 10GHz. In order to increase 
design productivity, a new design flow has recently 
emerged, based on the reuse of portable IP cores. An IP 
core is a block of logic or data that is used in making a 
field programmable gate array (FPGA) or an application-
specific integrated circuit (ASIC).  

The future generations of designers must know both 
how to design an IP core, and how to build a system-on-a-
chip using IP core libraries. In this paper we describe a 
project-based approach in teaching senior students of 
Electrical and Computer Engineering how to develop a 
soft IP core, and implement it on an FPGA. The proposed 

approach can be incorporated into senior level courses 
teaching hardware description languages, advanced digital 
design, rapid prototyping, or VLSI. The prerequisites 
include basic digital design and computer architecture 
courses.  

In the choice of an IP core suitable for a student 
project, we used the following rationale. Having in mind 
that future designers will design systems rather than 
components, most project specifications ask students to 
design a CPU or its derivative. Students develop a 
synthesizable VHDL or Verilog model of the CPU, fully 
verify it, implement that model on an FPGA, and 
demonstrate its functioning. Project task should be 
manageable in size so that a small group of students can 
successfully complete it during the course (roughly 100-
200K gates).  

Expected benefits of this approach are the following. In 
addition to the skills in VHDL structural modeling, 
verification, and synthesis, students also get the real-world 
experience working with state-of-the-art CPUs that have 
available C compiler or assembler. Proposed projects 
include both software and hardware components, and 
offer students a unique opportunity to understand and 
explore various design tradeoffs in complexity, 
performance, and power. The developed soft IP cores 
form a publicly available library, which can be used in 
design of more complex systems or in research. Also, they 
can be used for demonstration purposes in junior level 
courses. Last but not least, all projects require efficient 
teamwork. 

The proposed approach is illustrated using a successful 
project aimed to implement a Microchip’s high-end PIC18 
microcontroller [2].  

 
2. Soft IP Core Development 

The project design flow encompasses both hardware 
and software tracks, as illustrated in Figure 1. In the first 
step called instruction set analysis, students study the 
Reference Manual of PIC18 microcontrollers [3], in order 
to become familiar with the instruction set, formats of 
instructions, and PIC18 architecture and organization. 
This step provides knowledge necessary both for the CPU 
design and test programs development.  

The next step is to come up with the register transfer 
level (RTL) design using standard logic blocks such as 



registers, ALUs, adders, subtractors, multipliers, register 
files, etc. The PIC18 employs Harvard architecture with 
separate 8-bit data and 16-bit program spaces. The 
program space permits access of up to 2Mbytes of non-
volatile memory for instruction and constant data storage.  
The data address space includes up to 4Kbytes (16 banks, 
each 256 bytes). An accumulator provides temporary 
storage for multiple instruction operations, and serves as 
the second operand for multi-operand instructions. A 
sixteen-bit instruction latch permits current instruction 
decoding and execution in tandem with the next sequential 
instruction fetch cycle, thus providing two-stage pipeline 
organization. In order to conserve silicon area, Microchip 
chose to implement a single internal 8-bit databus for both 
read and write operations resulting in a 4-clock cycle 
instruction execution. Students have been guided to make 
the design simpler by incorporating separate read and 
write busses. While this implementation requires more 
silicon area, it permits single cycle operation of non-
branch instructions, making the design four times faster 
than the conventional PIC18 operating at the same clock 
frequency. The third step in the hardware track is VHDL 
structural modeling. The VHDL hierarchy is shown in 
Figure 2.  

In the software track, a set of testbenches is prepared 
using Microchip’s MPLAB free assembler integrated 
development environment to verify each of 77 PIC18 
instructions. A hex file for each test program is generated, 
and a utility program hex2rom is used to fill 
corresponding ROM VHDL module, linked with other 
modules to create a full system model. Verification is 
done using ModelSim.  

After successful model verification, the Xilinx free 
WebPack tool is used to synthesize and implement the 
design into the Spartan II 100K gate FPGA. The final 
design occupies 78% of the 100K gate device. The critical 
timing path of 54ns (18.450MH) is determined by the 
Multiplier module implemented as an array multiplier. 
Introducing a pipelined implementation of the array 
multiplier results in shortening of the critical path to 44ns. 
Program execution is demonstrated by synthesizing the 
design on a Spartan II Development Kit interfaced 
through the parallel ports to a 4-line by 20-character LCD 
display. A simple assembly language program is written 
to display “Hello world” on the display (Figure 1).  

 
3. Conclusions  

The proposed project-based approach encompasses 
whole engineering cycle, starting from specification, 
through design, modeling, simulation and verification, 
implementation, to performance measurement, and 
closing the cycle with the design improvements in order to 
maximize performance at minimal cost. Students have an 
opportunity to apply their theoretical knowledge of 

hardware description languages, digital design and 
computer architecture, and to gain real-world experience 
in developing IP cores. The work in small teams follows a 
real industry pattern, with one student designated as team 
leader, and instructor conducting design reviews every 
week. We feel that such projects are essential to educate 
future architects of complex systems -on-a-chip. 
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Figure 1. Design Flow. 
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Figure 2. VHDL Hierarchy. 

 
REFERENCES 
 
[1] C. Rowen, “Reducing SoC Simulation and Development Time,” 
IEEE Computer, vol. 35, no. 12, December 2002, pp. 29-35.  
[2] PIC18 Soft Core:  
http://www.ece.uah.edu/~milenka/pic18/pic.htm  
[3] PIC18C MCU Family Reference Manual, 
http://www.microchip.com/1010/suppdoc/refernce/golden/index.htm

 


