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Abstract. Cache misses and bus traffic are key obstacles to achieving high
performance of bus-based shared memory multiprocessors using invalidation-
based snooping caches. To overcome these problems, software-controlled tech-
niques for tolerating memory latency can be used, such as cache prefetching
and data forwarding. However, some previous studies have shown that cache
prefetching is not so effective in bus-based shared memory multiprocessors,
while data forwarding is not easy to implement in this environment. In this pa-
per, we propose a novel technique called cache injection, which combines con-
sumer and producer initiated approaches, as well as the broadcasting nature of
bus. Performance evaluation based on program-driven simulation and a set of
eight parallel benchmark programs shows that cache injection is highly effec-
tive in reducing coherence misses and bus traffic.

1 Introduction

Private caches are essential to reduce the bus traffic and the memory latency in bus-
based shared memory multiprocessors (SMPs). In such systems, snooping write-
invalidate cache coherence protocols are commonly accepted as an effective approach
to keep the data coherent [1]. However, the problem of high memory latency is still
the most critical performance issue in these systems. One way to cope with this prob-
lem is to tolerate high memory latency by overlapping memory accesses with compu-
tation. The importance of techniques for tolerating high memory latency in multiproc-
essor systems increases, due to the widening speed gap between CPU and memory,
high contention on the bus, bus traffic caused by data sharing between processors, and
the increasing physical distances between processors and memory.
Software-controlled cache prefetching is a widely accepted consumer-initiated
technique for tolerating memory latency in multiprocessors, as well as in uniproces-
sors. In software-controlled cache prefetching, a CPU executes a special prefetch
instruction that moves a data block (expected to be used by that CPU) into its cache,
before it is actually needed [2]. In the best case, the data block arrives at the cache
before it is needed, and the CPU load instruction results in a hit. However, for many
programs and sharing patterns (e.g., producer-consumer), producer-initiated data
transfers are a natural style of communication. Producer initiated primitives are known



as data forwarding, delivery, remote writes, and software-controlled updates. With
data forwarding, when a CPU produces the data, in addition to updating its cache, it
sends a copy of the data to the caches of the processors that are identified by compiler
or programmer as its future consumers [3]. Therefore, when consumer processors
access the data block, they find it in their caches.

Most of the studies [2-8] examined the effectiveness of cache prefetching and data
forwarding in CC-(N)UMA architectures, except [9], which examined the potential of
cache prefetching in bus-based SMPs. This study reported poor effectiveness of cache
prefetching, despite the assumed high memory latency. The main reasons for that are
the following. First, prefetching increases bus traffic. Since bus-based architecture is
very sensitive to changes in bus traffic, it can result in performance degradation. Sec-
ond, too early initiated prefetching can negatively affect data sharing. Last, current
prefetching algorithms are not so effective in predicting coherence misses. Actually,
coherence misses represent the biggest challenge for designers, especially as caches
become larger and they dominate the performance of parallel programs.

On the other side, complexity of implementation and compiler algorithm restricts
applicability of data forwarding in bus-based architectures. Dahlgren et al. explored
the effectiveness of the software-controlled update in bus-based SMPs, where a spe-
cial instruction initiates an update of all invalid copies of the specified cache block in
the system [10]. This approach requires less sophisticated compiler support since it
does not require identification of future consumers, and it can be implemented at low
cost. However, it is less flexible than classic data forwarding as defined in [2], be-
cause it does not allow forwarding to the processors not having the invalid copies of
the data block. In paper [11], Anderson and Baer showed that the technique called
read snarfing could be very effective in reducing the number of coherence misses and
the bus traffic in bus-based SMPs. With read snarfing, a data block that is transferred
on the bus as a read response not only updates the node that requested it, but also
updates all other caches having the block invalidated. Read snarfing is a hardware-
based technique, easy to implement. However, it is based on the heuristic that all
blocks that are invalid will be needed in the future, and its effectiveness highly de-
pends on cache size. In the system with relatively small cache size, the invalid cache
blocks will be probably displaced from the cache, so read snarfing is not applicable.

In this paper, we propose a novel software-controlled technique called cache injec-
tion, aimed to reduce coherence misses and bus traffic. Using advantages of the exist-
ing techniques and the characteristics of bus-based architectures, cache injection over-
comes some of the shortcomings of the existing techniques, such as: (a) bus and mem-
ory contention, (b) negative impact on data sharing and instruction overhead in the
case of cache prefetching, and (¢) compiler and implementation complexity in case of
data forwarding. The proposed technique can be combined with the existing ones in
order to raise performance in bus-based SMPs.

In the following section, we define cache injection and discuss its implementation
in a bus-based shared memory multiprocessor. Section 3 describes experimental
methodology. Section 4 presents results of the experiments. Section 5 summarizes
current and discusses the possible future work.



2 Cache Injection

In cache injection, a consumer predicts its future needs for shared data by executing
an OpenWin instruction. This instruction only stores the first and the last address of
successive cache blocks, in a special local injection table. This address scope is called
address window. There are two main scenarios when cache injection could happen:
during the read bus transaction (injection on first read) or during the software-initiated
write-back bus transaction (injection on write-back).

Injection on first read is applicable when there is more than one consumer. Each
consumer initializes its injection table according to its future needs. When the first one
among consumers executes a load instruction, it sees cache miss and initiates a bus
read transaction. During this transaction, each cache controller snoops the bus and if
there is an injection hit, the processor stores the block into its cache (Fig. 1a). Hence,
in case of multiple consumers, only one read bus transaction is needed to update all
consumers, if they all have initialized their injection tables.

Injection on write-back bus transaction is applicable when shared data exhibit both
1-Producer-1-Consumer (1P-1C) and 1-Producer-Multiple-Consumers (1P-MC) pat-
terns. In these scenarios, each consumer also initializes its injection table. At the pro-
ducer side, after the data producing is finished, the producer initiates write-back bus
transactions in order to update the memory, by executing an Update instruction.
During this transaction, all consumers snoop the bus, and if they find injection hit,
they catch the data block from the data bus and store it into their caches (Fig. 1b).

The above definition of cache injection assumes a bus-based SMP where each
processor has one or more levels of cache memory and a write-back invalidate cache-
coherence protocol based on snooping. Hardware support for cache injection includes
injection table, proposed instructions (Fig 1¢), and a negligible modification of the bus
control unit. The injection table is implemented as a part of the cache controller. Each
entry includes two address fields, Laddr and Haddr, which define the first and the last
address of an address window, respectively, and a valid bit . We use the random
replacement policy.

0 P 2 OpenWin <Laddr><Haddr> - initializes an
sorea [ Openwin A [ ] e_ntry in the_mjectlon table, by setting t_he vali
—> Openwin A > bit and puttingLaddr andHaddr values in the
g corresponding entry fields. If only one cache
J load A | block should be injected,addr=Haddr.
. CloseWin <Laddr><Haddr> - checks
Time Fetch A e injection table, and if there is an open window
Shared Shared load A | ® with specified.addr andHaddr, it closes that
U U window by resetting the valid bit.
0 Execute (a) Injection on first read Update <Addr> - checks the cache and if the
[ Read Stall | Pl m specified cache block is modified, it initiates
StoreUpdate A | |Modified] v H openwmi: the write-back pus transaction andvchanges
— OpenWin A/ the block state into Shared; otherwise, it acts
— Shred ] like noop instruction [7].
l load A | Shared] o oreUpdate <Addr><value> - performs an
. ordinary store instruction; in addition, it
lme load A N . .
ndn initiates a write-back bus transaction [7].
(b) Injection on write-back - (c) Proposed instructions

Fig. 1. Cache injection mechanism.



3 Experimental Methodology

We evaluate the performance impact of cache injection using Limes [12] — a tool for
program-driven simulation of SMPs. A synchronization kernel (LTEST), three paral-
lel test applications well suited to demonstrate various data sharing patterns (PC, MM,
Jacobi), and four applications from SPLASH-2 suite (Radix, FFT, LU, Ocean) [13]
are used in the evaluation. They are all written in C using the ANL macros to express
parallelism and compiled by gcc with the optimization flag —O2. Proposed instructions
for cache injection support are hand-inserted into the applications. For each applica-
tion we compare the number of read misses and the bus traffic for the base system (B),
the system with read snarfing (S), the system with software-controlled update and read
snarfing (U), and the system with cache injection (I).

The modeled architecture is bus-based SMP containing 16 processors with the
MESI write-back invalidate cache coherence protocol. The bus supports split transac-
tions and uses round robin arbitration scheme. We assume a single-issue, in-order
processor model with blocking reads. Processors execute a single cycle per instruc-
tion. Each processor includes only first level cache memory. We assume that instruc-
tions always hit into the cache. Cache hit is solved without penalty. The relevant sys-
tem parameters are the following: cache line size is 32B, data bus width is 8B, snoop
cycle is 2pclk (pclk - processor cycle), and write-back buffer size is 32B. The read
and the read-exclusive bus transactions include the request and the response phases.
The memory read cycle defines time needed to retrieve a requested block from mem-
ory; assumed value is 20pclk. A two-word transfer via the data bus takes 2pclk; hence,
the block transfer takes 8pclk. It is assumed that the memory controller buffer has
enough capacity to accept each block during write-back bus transactions at the data
bus speed. A 128-entry injection table was used in the evaluation.

We have used the following data sets: 1000 acquire requests per processor for
LTEST, 128x128 shared matrix and 20 iterations for PC, 128x128 matrix for MM,
256x256 matrix and 20 iterations for Jacobi, 128K keys with 8-bit digit for Radix,
256%256 matrix with 8%8 blocks, 256%256 for FFT, and 130x130 for Ocean.

The aim of our evaluation is to first determine the upper bound of performance
benefit of cache injection, before we start developing compiler support. Hence, we use
simple heuristics based on application behavior to insert instructions for cache injec-
tion by hand. Support for injection of synchronization variables is accomplished using
injection on first read, since this approach does not require any modification of syn-
chronization operations. This support is quite simple and includes the initialization of
the injection table before a synchronization event and the invalidation of the corre-
sponding entry in the injection table after the synchronization is finished. It is clear
that inserting instructions to support injection of synchronization variables can be
solved by using macros that expand synchronization operations. Hence, the true chal-
lenge is the compiler support for injection of true-shared data. If there is a 1P-MC
sharing pattern, injection on first read or injection on write-back can be used. Al-
though injection on write-back may be more efficient, we use injection on first read
because it implies no action at the producer side. However, if sharing pattern is 1P-1C,
we have to use injection on write-back.



4 Results

For synchronization kernel LTEST both read snarfing and cache injection are highly
effective: read snarfing reduces the number of read misses and the bus traffic for 90%
and 88%, respectively, while cache injection for 92% and 90%. Since the effective-
ness of these two techniques is approximately the same for synchronization operation,
we do not model synchronization requests on the bus in the experiments with the par-
allel applications. In this way, we avoid the over-estimation of the synchronization
overhead due to relatively small data sets.

Fig. 2 shows the number of read misses and the bus traffic for parallel applications,
normalized to the base system, when the caches are relatively small (left) and rela-
tively large (right). For all applications cache injection (I) outperforms read snarfing
(S) and software-controlled update with read snarfing (U). The effectiveness of solu-
tion I relative to solutions S and U is higher in the system with small caches: invalid
blocks are frequently displaced from the cache and in that case snarfing is not applica-
ble. Next, cache injection can be effective in reducing cold misses, when there are
multiple consumers of shared data, while snarfing can eliminate only coherence
misses. Last, cache injection increases the possibility of successful injection, since the
time window during which a block can be injected is software-controlled. The rest of
this section explains the data sharing patterns and injection support, and discusses
results for each application.

PC. In PC, the coherence misses dominate since each processor modifies its as-
signed sub matrix, which is read by all other processors in the next iteration (1P-MC
sharing pattern). Solutions S and U are almost as effective as cache injection, in the
system with large caches. Slight advantage of cache injection is due to elimination
some of cold misses. However, in the system with small caches, solutions S and U are
not effective at all. The main reason for this is that invalidated data, which should be
updated during the next bus read or write-back transaction, are displaced from the
cache due to cache conflicts.

MM. MM is a parallel version of matrix multiplication A=AxB, where each proc-
essor computes elements of the assigned sub matrix of matrix A. As all processors
only read elements of the shared matrix B, to support cache injection each processor
defines an address window encompassing the whole matrix B. Cache injection reduces
the number of read misses and bus traffic for 92% and 88%, respectively, in the sys-
tem with small caches, and for 91% and 77% in the system with large caches. Here
solutions S and U are not effective at all since the shared data are read only predomi-
nantly. The efficiency of cache injection does not increase as the cache size increases.
The system with small caches exploits the benefit of multiple injections of data which
are thrown out of the cache due to cache conflicts, while in the system with large
caches the elements of matrix B are injected only once during the execution.

Jacobi. Jacobi is a method for solving partial differential equations and iterates
over a two-dimensional array. In each iteration, every matrix element is updated to the
average of its four neighbors. All processors are assigned roughly equal chunks of
rows. Neighboring processors share the rows on a chunk’s boundary, so there is a
predominantly 1P-1C sharing pattern. Consequently, we have to apply the injection on
write-back. Solution S is not effective at all, while solutions U and I are equally effec-



tive and reduce the number of read misses for 47% in the system with large caches; in
the system with small caches solution I is slightly more effective.

Radix. Radix sorts integer keys using the three-phase iterative radix-sorting
method. The injection of the global histogram rank is applied in the first phase of
iteration. Each processor initializes the injection table to accept the elements of rank
array currently being updated by the next processor, which should insert an Update
instruction after the last write in the cache block. In the second phase, each processor
computes its rank ff, using the global histogram rank and local histograms rank _me
of all processors with lower ID. As there are multiple consumers, we use the injection
on first read. In the last phase, there is an irregular all-to-all communication, so we did
not use the injection in this phase. In the system with small caches, solutions S, U, and
I reduce the number of read misses for 7%, 8%, and 21%, and the bus traffic for 4%,
3%, and 9%, respectively. In the system with large caches, they reduce the number of
read misses for 18%, 21%, and 26%, and the bus traffic for 10%, 10%, and 12%,
respectively.

FFT. FFT executes the 1-D version of the six-step FFT algorithm. The data set
consists of the » complex data points to be transformed, and » complex data points
referred as the roots of unity, both organized as vn x/n matrices, which are parti-
tioned among processors in contiguous chunks of rows. In the algorithm steps 2, 3,
and 5, each processor modifies only its assigned chunk of rows. In the steps 1, 4, and
6, the matrix is transposed: the processor communication is all-to-all, and the data-
sharing pattern is 1P-1C. A producer inserts Update instructions before the trans-
posing step, while a consumer initializes the injection table to inject the corresponding
data. Solution S is not effective since there is predominantly 1P-1C sharing pattern. In
the system with small caches, the effectiveness of solutions U and I is limited by con-
flicts in caches; the number of read misses is reduced for 3% and 8%, respectively,
while the bus traffic is increased for 11%, and 7%, respectively. In the system with
large caches, solution I is highly effective and reduces 46% of read misses, and 12%
of bus traffic, while solution U reduces 30% of read misses and 1% of bus traffic.

LU. LU factors a dense matrix into the product of lower triangular and upper trian-
gular matrices. The matrix is divided into blocks; a block ownership is assigned using
2D-scatter decomposition, with blocks being updated by the processor that owns them.
Outer loop iterates over the diagonal blocks. In the second phase of the iteration %, the
processors that own the perimeter blocks update those blocks, using the diagonal
block Ak, modified in the previous phase. As there are more consumers, each proces-
sor inserts instructions to support the injection of the diagonal block. In the third
phase, the processors modify the interior blocks, using the corresponding perimeter
blocks. In this phase, there are also more consumers, so at the beginning of the phase
each processor inserts the instructions to support the injection of the corresponding
perimeter blocks. Solution 1 outperforms solutions S and U; it reduces the number of
read misses and bus traffic for 30% and 22%, respectively, in the system with small
caches, and for 38% and 31% in the system with large caches.

Ocean. Ocean simulates large-scale ocean movements. Data set consists of the uni-
form two-dimensional grids with #xn non-border points, partitioned among processors
in square-like sub grids. Most of time, the application solves partial differential equa-
tions using the red-black Gauss-Seidell equation solver. The injection of true-shared



data is implemented predominantly in the phase of the solving of partial differential
equations. Generally, a processor communicates with four neighbor processors (Top,
Bottom, Left, Right); the data-sharing pattern is 1P-1C. A producer initiates update of
the consumer cache with data to be used in the next iteration. A consumer initializes
the injection table to accept the last row of the sub grid assigned to the processor Top,
first row of the Bottom, left column of the Right and right column of the Left. In the
system with small caches, solutions S, U, and I reduce the number of read misses for
14%, 17%, and 25%, and the bus traffic for 19%, 16%, and 28%, respectively. In the
system with large caches, solutions S, U, and I reduce the number of read misses for
28%, 35%, and 48%, and the bus traffic for 34%, 30%, and 44%, respectively.

Additional experiments not presented in this paper, which varied architectural pa-
rameters, show that the efficiency of cache injection increases with the number of
processors in the system, cache memory size, and memory read cycle time. When the
number of processors increases, the percentage of shared data increases, as well as the
number of sharers, hence the benefit of injection increases due to lowering the overall
miss rate and reducing the bus traffic. Larger caches reduce probability of collision of
the injected data and the current working set. If the memory read cycle time is longer,
there is more to gain by reducing the read stall time.
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5 Conclusion

This paper presents a novel software-controlled technique for tolerating memory la-
tency in bus-based SMPs. This technique, called cache injection, has been developed
in order to overcome some of the shortcomings of the existing techniques, cache pre-



fetching, software-controlled update, and read snarfing, combining advantages of
these techniques and inherent characteristics of bus-based architectures.

Experimental analysis, based on execution driven simulation, showed highly effec-
tiveness of cache injection in reduction of the number of read misses and the bus traf-
fic, compared to the base system. In addition, it provides further improvements com-
pared to the systems with read snarfing and software-controlled update.

Possible future research includes developing and implementation of a compiler al-
gorithm for inserting instructions to support injection of shared data. Another direc-
tion is to implement some kind of cache injection in scalable cache coherent shared
memory multiprocessors.
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