
 
 

  
Abstract— Trace-driven simulation has long been used in both 

processor and memory studies. The large size of traces motivated 
different techniques for trace reduction. These techniques often 
combine standard compression algorithms with trace-specific 
solutions, taking into account the tradeoff between reduction in 
the trace size and simulation slowdown due to decompression. 
This paper introduces SBC, a new algorithm for instruction and 
data address trace compression based on instruction streams. The 
proposed technique significantly reduces trace size and 
simulation time, and it is orthogonal to general compression 
algorithms. When combined with gzip, SBC reduces the size of 
SPEC CPU2000 traces 94-71968 times.  
 

Index Terms —simulation, instruction and address trace, trace 
compression. 
 

I. INTRODUCTION 

ovel research ideas in computer architecture are 
frequently evaluated using trace-driven simulation. 

Traces can accurately represent a system workload, and in the 
last decade there has been a lot of research effort dedicated to 
trace issues, such as trace collection, reduction and processing 
[7]. In order to offer a faithful representation of a specific 
workload, traces are very large, encompassing billions of 
memory references and/or instructions. For example, an 
instruction trace with 1 billion instructions, where each trace 
record takes 10 bytes, requires almost 10GB of storage space. 
Yet, with a modern superscalar processor executing 1.5 
instructions each clock cycle on average and running at 3 
GHz, it will represent only 0.2 seconds of the simulated CPU 
execution time. To efficiently store and use even a small 
collection of traces, trace sizes must be reduced as much as 
possible. Although traditional compression techniques such as 
the Ziv-Lempel algorithm [9], used in the gzip utility, offer a 
good compression ratio, even better compression is possible 
when the specific nature of redundancy in traces is taken into 
account. On the other hand, since the ultimate purpose of 
traces is to be used in the simulation, trace compression 
should not introduce a significant decompression slowdown. 
Hence, ideal trace reduction would be fast, with a high 
reduction factor, and loss-less, i.e., not introducing errors into 
the simulation. 

Depending on the simulated system, a trace can contain 
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different kinds of information. For example, for control flow 
analysis we need only a trace of executed basic blocks or 
paths. Cache studies require address traces, and more complex 
processor simulations also need instruction words. Branch 
predictors can be evaluated using traces with only branch-
relevant information, such as branch and target addresses, and 
branch outcome, and ALU unit simulations need operand 
values. 

Various trace compression techniques have been 
introduced, focusing on different trace information. One set of 
compression techniques, such as whole program path (WPP) 
and timestamped WPP, relies on program instrumentation and 
concentrates on instruction traces only [4], [8]. In WPP, a 
trace of acyclic paths is compressed using a modified Sequitur 
algorithm [5]. In timestamped WPP, all path traces for one 
function are stored in one block, thus enabling fast access to 
function-related information. 

Another set of compression techniques targets full address 
traces (instruction and data). Unlike instruction address or 
path traces, data address traces rarely have repeatable patterns 
and hence are more difficult to compress, although one 
memory referencing instruction may access addresses with a 
constant stride. One approach, applied in the one-pass PDATS 
algorithm, is to store address differences between successive 
references of the same type (load, store, instruction fetch) [3]. 
In PDATS, stored address differences can have variable 
length and an optional repetition count in cases when a 
constant difference is present in consecutive addresses of the 
same type. Another approach is to link information about the 
data addresses with a corresponding loop, but this requires 
previous control flow analysis to extract loop information and 
cannot be done in one pass [2]. A rather original approach 
regenerates original trace using a set of value predictors [1], 
but it has a relatively long decompression time. 

Some techniques, such as PDI, compress combined address 
and instruction traces, i.e., traces consisting of instruction 
addresses + instruction words, and data addresses. In PDI, 
instruction words are compressed using a dictionary-based 
approach – each of the 256 most frequently used instruction 
words in the trace is replaced with its dictionary index while 
other words are left unchanged. Addresses are compressed as 
in PDATS, but without a repetition count. This algorithm can 
be one pass or two pass, depending on using a generic or a 
trace-specific instruction word dictionary.  

In this paper, we propose a new method for single-pass 
compression of combined address and instruction traces, 
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Stream-Based Data Compression (SBC). Our approach relies 
on extracting instruction streams. An instruction stream is a 
sequential run of instructions, from the target of a taken 
branch to the first taken branch in sequence. A stream table 
keeps relevant information about streams: starting address, 
stream length, instruction words and their types. All 
instructions from a stream are replaced by its index in the 
stream table, creating a trace of instruction streams. 
Information about data addresses such as data address stride 
and number of repetitions is attached to the corresponding 
instruction stream and stored separately.  

The proposed algorithm achieves a very good compression 
ratio and decompression time for both instruction and data 
address traces, yet it is simple to implement and does not 
require code augmentation nor lengthy several-passes control 
flow analysis. Furthermore, our technique is orthogonal to 
general compression algorithms, such as gzip or Sequitur. We 
evaluated SBC on Dinero+ traces [3] of SPEC CPU2000 
benchmark programs [6]. When combined with gzip, SBC 
reduces the trace size 94-71968 times, depending on the 
benchmark, and outperforms mPDI-gzip, gzipped combination 
of PDI and PDATS, 4.3-497.7 times. SBC combined with 
Sequitur reduces the trace size even further, but at the price of 
considerable decompression slowdown. 

The paper is organized into four sections. The second 
section introduces the formats of traces and explains stream-
based compression. The third section shows the results. The 
last section gives concluding remarks. 

II. STREAM-BASED COMPRESSION 

SBC exploits several inherent characteristics of program 
execution traces. Instruction traces consist of a fairly limited 
number of different instruction streams while most of the 
memory references exhibit strong spatial and/or temporal 
locality, for example, a load having a constant address stride 
across loop iterations. Stream-based compression of the 
combined address and instruction traces results in three files: 
Stream Table File (STF), Stream-Based Instruction Trace 
(SBIT), and Stream-Based Data Trace (SBDT).  

In this paper SBC is demonstrated on Dinero+ traces, 
although it is applicable to any combined trace. A Dinero+ 
trace record has fixed length fields: header field (0 – data 
read, 1 – data write, and 2 – instruction read), address field, 
and instruction word field for instruction read type.  

First we will describe the decompression process, for the 
example in Fig. 1– a short trace of a loop, where stream 1 is 
followed by 28 executions of stream 2, and one execution of 
stream 3. At the beginning of the trace decompression, the 
whole STF is loaded into a corresponding Stream Table 
structure, resident in the memory during decompression. One 
record in STF consists of a stream start address and a stream 
length -- i.e., the number of instructions in the stream -- 
followed by instruction words and their types -- load (0), store 
(1) or an instruction that does not access memory (2). 

Analysis of SPEC CPU2000 traces shows that a Stream 

Table has relatively modest memory requirements since 
almost all benchmarks have fewer than 5000 different 
instruction streams, and 9 out of 23 benchmarks have fewer 
than 1000 streams, while the average stream length is fewer 
than 30 instructions for 18 benchmarks. In addition to the 
pointer to the list of stream instruction words, each entry in 
the Stream Table structure in memory has a pointer to the list 
of stream data address references. One node in the stream data 
address list has the following fields: current data address, 
address stride, and repetition count. All fields are initialized to 
zero. This list is dynamically updated from the SBDT during 
trace decompression, whenever the repetition count of an 
accessed node is 0. 

Stream-Based
Instruction Trace (SBIT) Stream-Based Data Trace (SBDT)

StartAddress Length

120026a60 9

120026a78 3

120026a78 4

223e00181 ... f43ffffd2

a43300000 426114132 f43ffffd2

a43300000 426114132 f43ffffd2 23defff02

Stream Table File (STF)

Dinero+ Trace

Stream 1

Stream 2

Stream 2

Stream 2

Stream 3

Type Address InstrWord
2 120026a60 223e0018
1 11ff96ff8 -
2 120026a64 b7fe0008
2 120026a68 42110652
2 120026a6c 42411412
2 120026a70 23bd19a4
2 120026a74 46520413
2 120026a78 a4330000
0 11ff97020 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97028 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97030 -
2 120026a7c 42611413
2 120026a80 f43ffffd
… … …
2 120026a78 a4330000
0 11ff97100 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97108 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a84 23defff0

StreamIndex
1
2
2
…
2
3

AddrOffset

11ff96ff8

Stride

0

RepCount

0

11ff97020 0 0

11ff97028 8 1b

11ff97108 0 0  
Fig. 1.  Example of Stream-Based Compression. 

 
Decompression proceeds as follows: a stream index is read 

from the SBIT, i.e., stream index 1. Stream Table entry 1 is 
accessed, giving address, word and type of the first instruction 
in the stream. This instruction is a store (type 1), so we need 
the corresponding store address. Since the repetition count for 
the first data reference in this stream is 0 after initialization, 
the decompression algorithm reads a record from the SBDT, 
consisting of a DataHeader, AddrOffset, Stride, and RepCount 
(Figure 2). The current data address in the node is calculated 
as the current address (0) plus the AddrOffset field, stride is 



 
 

set to the value of the Stride field (in this case 0), and 
repetition count is set to the RepCount value, again 0 since 
this stream executes only once. The pointer to the current 
instruction then moves along the stream instruction word list 
until all nine instructions are read. Each instruction address is 
obtained by incrementing the current instruction address for 
the instruction length, starting from the StartAddress. The 
SBDT is accessed once more, for the seventh instruction, 
which is a load. The next stream index in the SBIT is 2, so 
entry 2 is accessed. The first instruction is a load, so the 
corresponding node in the data address list is updated from 
SBDT; i.e., the current address is set to 0x11ff97028, the 
stride is set to 8, and the repetition count to 27. When the 
stream 2 is again encountered in the SBIT and its load 
instruction is read from the Stream Table, there is no need to 
access the SBDT – the load address is calculated as the 
previous address plus the stride, and the repetition count is 
decremented for all further 27 executions of the stream 2. 

As can be seen on this simple example, the SBC algorithm 
handles instruction and data information separately. The SBIT 
is obtained by replacing each instruction stream by its index 
from the stream table. Since the stream table includes all 
streams and not just the most frequent ones, this is a one-pass 
algorithm – when an end of stream is detected in the original 
input trace, our compression program finds the corresponding 
stream in the table or, if necessary, adds a new entry to the 
table, and outputs the stream index to the SBIT. On the other 
hand, our algorithm exploits frequent regularity of memory 
references produced by consecutive instances of the same 
load/store instruction. Ideally, during decompression one 
memory-accessing instruction should get new values from the 
SBDT only when its offset stride changes. However, we want 
to keep the compression algorithm one-pass, so the 
compression program keeps relevant values in a finite FIFO 
buffer. Each entry in the FIFO buffer has a ready flag that is 
set at the change of the offset stride. The records are written to 
the SBDT when there is a sequence of ready records at the 
front of the FIFO buffer, or when the FIFO is full. Hence we 
need the field AddrOffset, which records the offset from the 
last occurrence of a particular memory-accessing instruction 
and is equal to the memory address when such instruction 
occurs for the first time. The DataHeader field codes the 
length and the most frequent values of other fields in the Data 
Trace (Fig. 2), thus achieving additional compression. Clearly, 
the larger FIFO buffer will “catch” more data repetition, thus 
increasing the compression ratio. 

 

DataHeader 1B
Stride

0, 1, 2, 4, or 8B
AddrOffset

1, 2, 4, or 8B
RepCount

0, 1, 2, 4, or 8B

Bits 7-5:RepCount size Bits 4-2:Stride size Bits 0-1:AddrOffset size
000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: unused
101: unused

000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: =4 - 0B
101: =8 - 0B

00: 1B
01: 2B
10: 4B
11: 8B

 
Fig. 2.  SBC Data Trace Format. 

One can ask why the SBC algorithm does not exploit the 
repetition of instruction streams. Such patterns in the SBIT are 
easily recognized by gzip or Sequitur, without an increase in 
complexity of SBC or any restrictions considering the number 
and the nature of nested loops.   

III. RESULTS 

For each SPEC CPU2000 benchmark, we traced two 
segments for reference data inputs: the first two billion 
instructions (F2B), and the two billion instructions after 
skipping 50 billion (M2B), thus making sure that our results 
do not overemphasize the program initialization. We 
compared the compression ratio of SBC with the compression 
obtained by gzip, and by mPDI, an improved version of PDI 
that uses the PDATS algorithm for data. In mPDI, data and 
instruction references are separated into two files, making the 
regular patterns even more recognizable by gzip. 

Table I and Table II show the compression ratio of the 
compared algorithms relative to an uncompressed Dinero+ 
trace. Due to restricted space we show the combined 
compression ratio – the average between F2B and M2B for 
each benchmark, and Table III shows average values for F2B 
and M2B. Full set of results can be found at 
www.ece.uah.edu/~lacasa/sbc/sbc.htm. The FIFO buffer size 
for SBC is 4000 entries. The SBC algorithm reduces the trace 
size for up to 61.6 times for integer (CINT) and 458.2 times 
for floating point (CFP) benchmarks, outperforming gzip 
compression. On average, the SBC compression ratio for 
CINT is 36.2, and for CFP is 110. The very high compression 
ratio for some CFP benchmarks is due to longer instruction 
streams and higher repetition counts for data references. When 
SBC is compared to mPDI, the trace size is on average 
reduced 10.7 times for CINT and 36.1 times for CFP.  

Even better compression ratios can be obtained by further 
compressing an SBC trace by gzip. The combined SBC-gzip 
compression ratio goes up to 962.7 times for CINT (254.gap) 
and up to 71968.1 (171.swim) for CFP, with corresponding 
average values of 334.1 and 12520.4. Translated back to bytes, 
this means that instead of 30GB for an uncompressed trace or 
about 2GB for a gzip-only compressed trace, a combined 
SBC-gzip compressed trace occupies less than 200MB and for 
some benchmarks, even less than 1MB. Compared to 
combined mPDI-gzip, SBC-gzip achieves on average 10.8 
times better compression for CINT and 203.6 times better for 
CFP, sometimes outperforming mPDI-gzip for more than two 
orders of magnitude.  

The SBC technique can also be combined with other 
compression techniques, such as Sequitur, which proved to be 
a highly suitable technique for instruction address traces, and 
consequently, for SBIT files. As it could be expected, 
Sequitur cannot be as efficient for data address traces, nor for 
SBDT files. Overall, combined SBC-Sequitur has a better 
compression ratio than SBC-gzip, but at the price of 
significantly increased decompression time. Fig. 3 shows the 
decompression speedup relative to gzipped Dinero+ traces. 



 
 

Since traces are used during simulation, we measured 
decompression time in a program that reconstructs an entire 
trace, and uses pipes for gzip and Sequitur. Decompression 
speedup for SBC-gzip is proportional to the compression 
ratio, i.e., smaller files are faster to decompress. On average, 
SBC.gz traces are decompressed 19.9 times faster than 
Dinero.gz for floating-point, and 8.9 times for integer 
benchmarks. 

 
TABLE I. COMBINED COMPRESSION RATIO FOR SPEC2000 INT.  

CINT mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 
164.gzip 4.1 61.6 41.5 48.6 218.4 201.0 
176.gcc 3.2 36.7 12.4 20.7 221.0 249.4 
181.mcf 2.9 32.1 23.1 38.8 286.6 348.6 
186.crafty 3.0 43.0 7.1 24.2 248.4 269.4 
197.parser 3.6 34.1 28.5 33.3 179.0 348.5 
252.eon 3.5 22.3 6.2 28.1 401.9 786.2 
253.perlbmk 3.1 37.3 20.9 32.5 552.5 729.9 
254.gap 3.5 43.4 23.8 37.8 962.7 1423.1 
255.vortex 3.4 24.4 9.5 20.0 176.2 376.4 
300.twolf 3.3 26.9 7.1 21.9 94.0 78.2 
Average 3.4 36.2 18.0 30.6 334.1 481.1 

 
TABLE II. COMBINED COMPRESSION RATIO FOR SPEC2000 FP 

CFP mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 
168.wupwise 3.4 61.0 26.1 68.8 2463.2 4276.5 
171.swim 2.9 458.2 22.7 167.6 71968.1 116512.0 
172.mgrid 2.9 75.9 12.4 38.4 9279.4 16927.4 
173.applu 2.9 72.0 13.6 24.0 3116.1 38446.8 
177.mesa 2.9 79.1 10.5 53.9 1160.1 1641.8 
178.galgel 3.0 77.9 24.5 33.8 10625.6 60477.7 
179.art 3.5 74.7 25.2 33.7 16751.1 59764.1 
183.equake 3.1 44.6 28.9 90.1 1152.1 1895.0 
188.ammp 3.5 60.7 23.8 38.9 1534.9 2007.3 
189.lucas 3.1 211.1 53.8 129.7 30257.0 68074.3 
191.fma3d 3.5 79.8 8.8 16.7 7802.6 25912.7 
200.sixtrack 2.9 99.6 16.8 41.6 4362.6 8758.6 
301.appsi 3.0 35.0 8.3 19.3 2293.0 12421.9 
Average 3.1 110.0 21.2 58.2 12520.4 32085.9 

 
TABLE III. A VERAGE COMPRESSION RATIO FOR FIRST TWO BILLION (F2B) AND 

TWO BILLION AFTER SKIPPING 50 BILLION INSTRUCTIONS (M2B) 
 mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq 
CINT F2B 3.5 37.1 15.1 30.0 309.0 406.3 
CINT M2B 3.2 35.2 21.0 31.2 359.2 555.9 
CFP F2B 3.5 101.8 23.5 72.0 9778.9 21745.1 
CFP M2B 2.7 118.1 18.8 44.4 15261.9 42426.7 
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Fig. 3.  Decompression Speedup relative to gzipped Dinero+ traces. 

 
The results presented do not include traces compressed with 

Sequitur only. While Sequitur on its own is very efficient for 

instruction address traces, it doesn't perform as well on data 
traces, producing larger compressed files than gzip for most 
benchmarks. It should also be noted that for gzipped SBC 
traces, on average, SBIT.gz makes only 5% of total 
compressed trace for CINT, and 10% for CFP. Therefore, 
further improvement in instruction trace compression would 
not significantly increase the overall compression ratio.  

IV. CONCLUSION 

The SBC algorithm offers a new technique for compressing 
data address references in combined instruction and address 
traces: data address information is linked to a corresponding 
instruction stream. It significantly reduces the trace size and 
the time needed to read the trace during simulations, and can 
be successfully combined with other general compression 
techniques. The choice of the additional compression scheme 
depends on the end user requirements. The SBC-gzip 
combination has a very good compression ratio and a short 
decompression time, and SBC-Sequitur compresses even 
better, but with a slower decompression. As a one-pass 
algorithm, SBC can be easily modified for online tracing in 
real-time, and implemented in hardware. 

We are currently investigating possible extensions of the 
SBC algorithm, such as further refining the algorithm and its 
applicability to another trace information such as the value of 
operands. For example, a two-level scheme can reduce the 
size of the Stream Table: instead of instructions, each entry in 
the Stream Table keeps the indexes of the basic blocks from 
the Basic Block Table.  
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