Stream-Based Trace Compression

Aleksandar Milenkowd, Milena Milenkovi
Electrical and Computer Engineering Dept., The @Ersity of Alabama in Huntsville
Email: {milenka,milenkm}@ece.uah.ed

Abstract— Trace-driven simulation has long been used in both
processor and memory studies. The large size of tas motivated
different techniques for trace reduction. These tdmiques often
combine standard compression algorithms with tracespecific
solutions, taking into account the tradeoff betweemeduction in
the trace size and simulation slowdown due to decgmession.
This paper introduces SBC, a new algorithm for ingtuction and
data address trace compression based on instructi@treams. The
proposed technique significantly reduces trace sizeand
simulation time, and it is orthogonal to general copression
algorithms. When combined with gzip, SBC reduces th size of
SPEC CPU2000 traces 94-71968 times.

Index Terms —simulation, instruction and address trace, trace
compression.

I. INTRODUCTION

ovel research ideas in computer

different kinds of information. For example, forntml flow
analysis we need only a trace of executed basickbl@r
paths. Cache studies require address traces, amdommplex
processor simulations also need instruction woRlsnch
predictors can be evaluated using traces with dngnch-
relevant information, such as branch and targetesdés, and
branch outcome, and ALU unit simulations need apegra
values.

Various trace compression techniques have been
introduced, focusing on different trace informati@me set of
compression techniques, such as whole program (W)
and timestamped WPP, relies on program instrunmientand
concentrates on instruction traces only [4], [8]. WPP, a
trace of acyclic paths is compressed using a nestifiequitur
algorithm [5]. In timestamped WPP, all path trades one
function are stored in one block, thus enabling éaxess to
function-related information.

architecture are Another set of compression techniques targetsafidiress

frequently evaluated using trace-driven simulationtraces (instruction and data). Unlike instructictid@ess or

Traces can accurately represent a system workéoatljin the
last decade there has been a lot of research dfditated to
trace issues, such as trace collection, reductidnpaocessing
[7]. In order to offer a faithful representation afspecific
workload, traces are very large, encompassingohli of

memory references and/or instructions. For example,
instruction trace with 1 billion instructions, wieeeach trace
record takes 10 bytes, requires almost 10GB ofgtspace.
Yet, with a modern superscalar processor execufirty
instructions each clock cycle on average and rgnrinh 3

GHz, it will represent only 0.2 seconds of the dated CPU
execution time. To efficiently store and use eversnaall

collection of traces, trace sizes must be redusedhiach as
possible. Although traditional compression techagsuch as
the Ziv-Lempel algorithm [9], used in the gzip iil offer a

good compression ratio, even better compressigossible
when the specific nature of redundancy in tracegaken into
account. On the other hand, since the ultimate quepof
traces is to be used in the simulation, trace cesgion

should not introduce a significant decompressi@wdbwn.

Hence, ideal trace reduction would be fast, withhigh

reduction factor, and loss-less, i.e., not intradg@rrors into
the simulation.

Depending on the simulated system, a trace canaicont

Manuscript submitted: 1 August 2003. Manuscriptegpted: 9 Sept. 2003.
Final manuscript received: 11 Sept. 2003.

path traces, data address traces rarely have adpeaatterns
and hence are more difficult to compress, althowagie
memory referencing instruction may access addresghsa
constant stride. One approach, applied in the @ss-pPDATS
algorithm, is to store address differences betwsmertessive
references of the same type (load, store, instudgtch) [3].
In PDATS, stored address differences can have bleria
length and an optional repetition count in casesenwia
constant difference is present in consecutive adeeof the
same type. Another approach is to link informataiout the
data addresses with a corresponding loop, butrdygsires
previous control flow analysis to extract loop imf@tion and
cannot be done in one pass [2]. A rather origirgireach
regenerates original trace using a set of valudigias [1],
but it has a relatively long decompression time.

Some techniques, such as PDI, compress combinedsadd
and instruction traces, i.e., traces consistinginstruction
addresses + instruction words, and data addreksd3Dl,
instruction words are compressed using a dictichased
approach — each of the 256 most frequently usdduton
words in the trace is replaced with its dictionarglex while
other words are left unchanged. Addresses are axspd as
in PDATS, but without a repetition count. This aiftfim can
be one pass or two pass, depending on using aigerea
trace-specific instruction word dictionary.

In this paper, we propose a new method for singksp
compression of combined address and instructionesta

Stream-Based Data Compression (SBC). Our appradies r
on extracting instruction streams. An instructigream is a
sequential run of instructions, from the target aoftaken
branch to the first taken branch in sequence. éastrtable
keeps relevant information about streams: startidgress,
stream length, instruction words and their
instructions from a stream are replaced by its sxniethe

stream table, creating a trace of instruction stea
Information about data addresses such as datassdsiide
and number of repetitions is attached to the cpweding

instruction stream and stored separately.

The proposed algorithm achieves a very good corsjmes
ratio and decompression time for both instructionl alata
address traces, yet it is simple to implement aodsdnot
require code augmentation nor lengthy several-gassetrol
flow analysis. Furthermore, our technique is orthwa to
general compression algorithms, such as gzip ouigeqWe

evaluated SBC on Dinero+ traces [3] of SPEC CPU2000

benchmark programs [6]. When combined with gzip,CSB
reduces the trace size 94-71968 times, dependinghen
benchmark, and outperforms mPDI-gzip, gzipped coatinn
of PDI and PDATS, 4.3-497.7 times. SBC combinedhwit
Sequitur reduces the trace size even further, tahiegprice of
considerable decompression slowdown.

The paper is organized into four sections. The rs&co
section introduces the formats of traces and explafream-
based compression. The third section shows thdtsedine
last section gives concluding remarks.

Il. STREAM-BASED COMPRESSION

SBC exploits several inherent characteristics afgpmm
execution traces. Instruction traces consist adidyflimited
number of different instruction streams while madt the
memory references exhibit strong spatial and/or ptaad
locality, for example, a load having a constantreds stride
across loop iterations. Stream-based compressiorthef
combined address and instruction traces resultisree files:
Stream Table File (STF), Stream-Based Instructioacd
(SBIT), and Stream-Based Data Trace (SBDT).

i | X St r eam ndex Addr Offset | Stride | RepCount
In this paper SBC is demonstrated on Dinero+ traces 1 iMoo o o
although it is applicable to any combined traceDiero+ P 1197020 | 0 0
trace record has fixed length fields: header fi@d— data 5 11197028 8 1b
read, 1 — data write, and 2 — instruction readdiresk field, 3 197108 | 0 0

and instruction word field for instruction read ¢&yp

First we will describe the decompression process,ttie
example in Fig. 1- a short trace of a loop, whéreasn 1 is
followed by 28 executions of stream 2, and one @ti@c of
stream 3. At the beginning of the trace decompoesshe

Table has relatively modest memory requirementesin
almost all benchmarks have fewer than 5000 differen
instruction streams, and 9 out of 23 benchmarks Hawer
than 1000 streams, while the average stream leadéwer
than 30 instructions for 18 benchmarks. In additionthe

typesll A pointer to the list of stream instruction wordsckeantry in

the Stream Table structure in memory has a poiotérne list

of stream data address references. One node gtréan data
address list has the following fields: current datédress,
address stride, and repetition count. All fields imitialized to

zero. This list is dynamically updated from the SBBuring

trace decompression, whenever the repetition cafindn

accessed node is 0.

Type Addr ess I nstrWrd
2 120026260 223e0018_|)
1 11f96ff8 -
2 120026264 b7fe0008
2 120026268 42110652
2 120026a6¢ 42411412 Stream 1
2 120026a70 23bd19a4 —
2 120026a74 46520413
2 120026a78 24330000
0 11ff97020 -
2 120026a7c 42611413
2 120026a78 24330000) Stream 2
0 11ff97028 -
2 120026a7c 42611413
2 120026280 f43ffffd
2 120026a78 24330000 Stream 2
0 11ff97030 -
2 120026a7c 42611413
2 120026a80 f43fffd
2 120026a78 24330000 Stream 2
0 11ff97100 -
2 120026a7c 42611413
2 120026280 f43ffffd)
2 120026a78 24330000
0 11ff97108 - Stream 3
2 120026a7c 42611413
2 120026280 f43ffffd
2 120026284 23defffo__|)
(Stream Table File (STF))
Start Address | Length

120026260 9 |[1]223e0018][| (2] fasffitd |

120026278 3 |[0] a4330000 |[2] 42611413 |[2] t43ffffd |

120026278 4 |[0] 24330000 |[2] 42611413 |[2]f43ffffd _ |[2] 23deff0 |

St ream Based

[I nstruction Trace (SBIT) [Stream Based Data Trace (SBDT)]

Fig. 1. Example of Stream-Based Compression.

Decompression proceeds as follows: a stream irnslesaid
from the SBIT, i.e., stream index 1. Stream Tabitryel is
accessed, giving address, word and type of theifisgruction

whole STF is loaded into a corresponding StreamleTab in the stream. This instruction is a store (typesb) we need

structure, resident in the memory during decompras®©ne
record in STF consists of a stream start addredsaastream
length -- i.e., the number of instructions in theeam --
followed by instruction words and their types -ado(0), store
(1) or an instruction that does not access men®jry (

the corresponding store address. Since the repetitunt for
the first data reference in this stream is O aftéralization,
the decompression algorithm reads a record fronSBBT,
consisting of a DataHeader, AddrOffset, Stride, RegCount
(Figure 2). The current data address in the noaalsulated

Analysis of SPEC CPU2000 traces shows that a Streaas the current address (0) plus the AddrOffsed fistride is

set to the value of the Stride field (in this ca®e and
repetition count is set to the RepCount value, ragasince
this stream executes only once. The pointer to dimeent
instruction then moves along the stream instructiond list
until all nine instructions are read. Each instiarctaddress is
obtained by incrementing the current instructionrads for
the instruction length, starting from the StartAekl. The
SBDT is accessed once more, for the seventh intrnjic
which is a load. The next stream index in the SBIR, so
entry 2 is accessed. The first instruction is adjoso the
corresponding node in the data address list is tegdiom
SBDT,; i.e., the current address is set to Ox11f&B/0the
stride is set to 8, and the repetition count to &/hen the
stream 2 is again encountered in the SBIT and ded |
instruction is read from the Stream Table, theraoseed to
access the SBDT - the load address is calculatetheas
previous address plus the stride, and the repetitmunt is
decremented for all further 27 executions of theash 2.

As can be seen on this simple example, the SBQitdigo
handles instruction and data information separaifiétg SBIT
is obtained by replacing each instruction streanitbyndex
from the stream table. Since the stream table deduall
streams and not just the most frequent ones, ¢hasone-pass
algorithm — when an end of stream is detected énottiginal
input trace, our compression program finds theesponding
stream in the table or, if necessary, adds a ndwy ém the
table, and outputs the stream index to the SBITth@nother
hand, our algorithm exploits frequent regularity mémory
references produced by consecutive instances ofsémee
load/store instruction. Ideally, during decompressione
memory-accessing instruction should get new vali@a the
SBDT only when its offset stride changes. Howewer,want
to keep the compression algorithm one-pass, so
compression program keeps relevant values in g flRiFO
buffer. Each entry in the FIFO buffer has a reddyg that is
set at the change of the offset stride. The recaresvritten to
the SBDT when there is a sequence of ready recatrdise
front of the FIFO buffer, or when the FIFO is fulence we
need the field AddrOffset, which records the offgetm the
last occurrence of a particular memory-accessistruntion
and is equal to the memory address when such atisnu
occurs for the first time. The DataHeader field edhe
length and the most frequent values of other figidbe Data
Trace (Fig. 2), thus achieving additional comprssClearly,
the larger FIFO buffer will “catch” more data rejfien, thus
increasing the compression ratio.

| DataHeader lEI AddrOffset Stride | RepCount |
1,2,4,0r8B 0,1,2,4,0r8B| 0,1,2 4, or8B
4
Bits 7-5:RepCount size| Bits 4-2:Stride size| Bits 0-1:AddrOffset size
000: =0 - 0B 000: =0 - 0B 00: 1B
001: 1B 001: 1B 01: 2B
010: 2B 010: 2B 10: 4B
011: 4B 011: 4B 11: 8B
100: 8B 100: 8B
101: =1-0B 101:=1-0B
100: unused 100: =4 - 0B
101: unused 101:=8-0B

Fig. 2. SBC Data Trace Format.

One can ask why the SBC algorithm does not expheit
repetition of instruction streams. Such patternthnSBIT are
easily recognized by gzip or Sequitur, without acréase in
complexity of SBC or any restrictions considerihg humber
and the nature of nested loops.

Ill. RESULTS

For each SPEC CPU2000 benchmark, we traced two
segments for reference data inputs: the first tviiom
instructions (F2B), and the two billion instruct®rafter
skipping 50 billion (M2B), thus making sure thatraesults
do not overemphasize the program initialization.
compared the compression ratio of SBC with the cgesgon
obtained by gzip, and by mPDI, an improved verséi®DI
that uses the PDATS algorithm for data. In mPDlkadand
instruction references are separated into two, fileaking the
regular patterns even more recognizable by gzip.

Table | and Table Il show the compression ratiothef
compared algorithms relative to an uncompressecerDin
trace. Due to restricted space we show the combined
compression ratio — the average between F2B and fd2B
each benchmark, and Table Il shows average vditues2B
and M2B. Full set of results can be found at
www.ece.uah.edu/~lacasa/sbc/sbe.hthe FIFO buffer size
for SBC is 4000 entries. The SBC algorithm redubestrace
size for up to 61.6 times for integer (CINT) and345times
for floating point (CFP) benchmarks, outperformiggip
compression. On average, the SBC compression fatio
CINT is 36.2, and for CFP is 110. The very high pogssion
ratio for some CFP benchmarks is due to longeruaosbn
streams and higher repetition counts for data eefsgs. When
SBC is compared to mPDI, the trace size is on a@eera

thRduced 10.7 times for CINT and 36.1 times for CFP.

Even better compression ratios can be obtainedutikiefr
compressing an SBC trace by gzip. The combined §8g-
compression ratio goes up 262.7times for CINT £54.gap)
and up t071968.1(171.swim) for CFP, with corresponding
average values of 334.1 aneb20.4 Translated back to bytes,
this means that instead of 30GB for an uncompresaed or
about 2GB for a gzip-only compressed trace, a coeti
SBC-gzip compressed trace occupies less than 20adBor

We

some benchmarks, even less than 1MB. Compared to

combined mPDI-gzip, SBC-gzip achieves on averag$ 10
times better compression for CINT and 203.6 timettelo for
CFP, sometimes outperforming mPDI-gzip for morenthao
orders of magnitude.

The SBC technique can also be combined with other
compression techniques, such as Sequitur, whickedrto be
a highly suitable technique for instruction addresses, and
consequently, for SBIT files. As it could be exmekt
Sequitur cannot be as efficient for data addresset, nor for
SBDT files. Overall, combined SBC-Sequitur has dtde
compression ratio than SBC-gzip, but at the pride o
significantly increased decompression time. Figgh8ws the
decompression speedup relative to gzipped Dinerages.

Since traces are used during simulation, we medsurénstruction address traces, it doesn't perform el en data
decompression time in a program that reconstructerdire traces, producing larger compressed files than fmipnost
trace, and uses pipes for gzip and Sequitur. Depegsaipn benchmarks. It should also be noted that for gzipf8C
speedup for SBC-gzip is proportional to the comgims traces, on average, SBIT.gz makes only 5% of total
ratio, i.e., smaller files are faster to decompré&xs average, compressed trace for CINT, and 10% for CFP. Theegfo
SBC.gz traces are decompressed 19.9 times fastar thfurther improvement in instruction trace compressigould
Dinero.gz for floating-point, and 8.9 times for @ger not significantly increase the overall compressatio.
benchmarks.

IV. CONCLUSION
TABLE |. COMBINED COMPRESSIONRATIO FORSPEC2000 INT.

CINT mPDI | SBC| Din.gZ mPDI.gz] SBC.g7| SBC.se The SBC algorithm offers a new technique for corapirey
164.9zip 41 616 415 48.9 2184 201.0 data address references in combined instructionaaidiess
176.gcc 3¢ 367 124 207 2210 2494 traces: data address information is linked to aesponding
181.mf 2.9 32.L 231 38.8 2866 3484 instruction stream. It significantly reduces thact size and
186.crafty 3.0 430 7.1 242 2484 269.4 - : 9 y ,))

197 parser 36 341 285 333 1790 3485 the time needed to rea_d the trace during simulstiand can
252.eon 35 223 6.2 28.1] 4019 786.2 be successfully combined with other general congiwas
253 perlbmk 31 37.3 209 325 5529 7299 techniques. The choice of the additional compressiaheme
254.gap 3.5 434 238 37.8 962.7 1423.1 - o
SEE vortex sh 244 o: 00 1763 3764 deper_1ds_ on the end user requwemgnts. The SBC-gzip
300.twolf 33 269 71 219 940 78.2 combmatlon_has _a very good compres_smn ratio asthcat
Average 34 362 18(30.6] 334 481. decompression time, and SBC-Sequitur compresses eve

better, but with a slower decompression. As a @ssp

TABLE Il. COMBINED COMPRESSIONRATIO FORSPEC2000 FP algorithm, SBC can be easily modified for onlinacing in

CFP mPDI| SBC[Din.ggmPDl.gz] SBC.gz | SBC.sef .))

168 wupwise 3l 610 26.1 68.8 24634 42764 real-time, and implemented in hardware.

171.swim 2.9 4580 2271 167.d 71968.1116512. We are currently investigating possible extensiohghe
172.mgrid 29 759 124 38.4 9279.4 16927.4 SBC algorithm, such as further refining the aldoritand its
173.applu 29 720 136 240 311614 384464 gnpjicability to another trace information suchtlas value of
177.mesa 2)9 79.1] 105 53.9 1160.1 1641.8

178.galgel 30 779 245 33.8 106256 604777 operands. For example, a two-leve! schen_1e can eetm_e
179.art 3% 747 25.2 33.7] 16751.1 59764.1 size of the Stream Table: instead of instructi@agh entry in
183.equake 3|1 446 289 90. 11521 1895.0 the Stream Table keeps the indexes of the basakblfstom
188.ammp 35 60.7 238 389 1534.94 2007.3 the Basic Block Table.

189.lucas 3l 2111 53.8 129.7 30257.0 68074.3

191.fma3d 35 798 8§ 16.7 7802.6 25912.7

200.sixtrack 29 996 16.8 41.6 4362.§ 8758.6 ACKNOWLEDGMENT

301.appsi 3D 350 8.3 193 2293.0 12421¢ The authors are grateful to the editors and anoogmeferees for
Average 3.1] 1104 21. 8.4 12520.] 32085. their insights and suggestions for strengthenifgghper.

TABLE lll. AVERAGE COMPRESSION RATIO FOR FIRST TWO BILLIO{F2B) AND

TWO BILLION AFTER SKIPPING50 BILLION INSTRUCTIONS (M2B) REFERENCES
mPDI | SBC| Din.g2 mPDI.gz| SBC.gz| SBC.seg [1] M. Burtscher, M. Jeeradit, “Compressing Extethderogram Traces
CINT F2B 3.5 373 15.J 30.0 309.0 406.3 Using Value Predictors,” ifProc. Int. Conf. on Parallel Architectures
CINT M2B 32 352 210 312 359.7 5559 and Compilation Techniques (PACT), New Orleans, LA, 2003.
CFP F2B 351018 235 72.00 9778.9 21745.] [21 E. N. Elnozahy, “Address Trace Compression Tigio Loop Detection
CFP M2B 2.7118.1] 18.8 44.4 15261.9 42426.7 and Reduction,ACM SIGMETRICS Performance Evaluation Review,
v.27 n.1, p.214-215, June 1999.
beco _ = mPDL.gz [3] E.E.Johnson, J. Ha, M. B. Zaidi, “Losslesade& Compression/EEE
mpression Speedup .
100 u SBC.gz Transactions on Computers, Vol. 50, No. 2, February 2001.
0 SBCseq [4] J. Larus, “Whole Program Paths,” Rroc. ACM SIGPLAN Conf. on
! Programming Language Design and Implementation, Atlanta, GA,
1 1999, pp. 259-269.

[5] C. G. Nevill-Manning, I. H. Witten, “Linear-Tim, Incremental
" I Hierarchy Interference for Compression,” iRroc. |IEEE Data
Compression Conference, 1997, pp. 3-11.
H [6] SPEC 2000 Benchmark Suite, http://www.spec.org
[71 R. Uhlig, T. Mudge, “Trace-driven memory simtiém,” ACM
&

RE DS SFLES PP SIS PSP Computing Surveys, Vol. 29, No. 2, June 1997.
@"’%»*’Q@”@w“;«@ P WS e 0;,9@&;$?%@*"®¢:&\¢;»?’Q [8] Y. Zhang, R. Gupta, “Timestamped Whole Prografath
v i Representation and Its Applications,” itoc. ACM SIGPLAN Conf.
Fig. 3. Decompression Speedup relative to gziipiedro+ traces. on Programming Language Design and Implementation, Snowbird,

Utah, 2001, pp. 180-190.

. . [91 L. Ziv, A. Lempel, “A universal algorithm for eguential data
The results presented do not include traces corsgiesith compression,1EEE Transaction on Information Theory, Vol. 23, No
Sequitur only. While Sequitur on its own is verfi@ént for 3., 1977.

