

Abstract— Trace-driven simulation has long been used in both

processor and memory studies. The large size of traces motivated
different techniques for trace reduction. These techniques often
combine standard compression algorithms with trace-specific
solutions, taking into account the tradeoff between reduction in
the trace size and simulation slowdown due to decompression.
This paper introduces SBC, a new algorithm for instruction and
data address trace compression based on instruction streams. The
proposed technique significantly reduces trace size and
simulation time, and it is orthogonal to general compression
algorithms. When combined with gzip, SBC reduces the size of
SPEC CPU2000 traces 94-71968 times.

Index Terms —simulation, instruction and address trace, trace
compression.

I. INTRODUCTION

ovel research ideas in computer architecture are
frequently evaluated using trace-driven simulation.

Traces can accurately represent a system workload, and in the
last decade there has been a lot of research effort dedicated to
trace issues, such as trace collection, reduction and processing
[7]. In order to offer a faithful representation of a specific
workload, traces are very large, encompassing billions of
memory references and/or instructions. For example, an
instruction trace with 1 billion instructions, where each trace
record takes 10 bytes, requires almost 10GB of storage space.
Yet, with a modern superscalar processor executing 1.5
instructions each clock cycle on average and running at 3
GHz, it will represent only 0.2 seconds of the simulated CPU
execution time. To efficiently store and use even a small
collection of traces, trace sizes must be reduced as much as
possible. Although traditional compression techniques such as
the Ziv-Lempel algorithm [9], used in the gzip utility, offer a
good compression ratio, even better compression is possible
when the specific nature of redundancy in traces is taken into
account. On the other hand, since the ultimate purpose of
traces is to be used in the simulation, trace compression
should not introduce a significant decompression slowdown.
Hence, ideal trace reduction would be fast, with a high
reduction factor, and loss-less, i.e., not introducing errors into
the simulation.

Depending on the simulated system, a trace can contain

Manuscript submitted: 1 August 2003. Manuscript accepted: 9 Sept. 2003.
Final manuscript received: 11 Sept. 2003.

different kinds of information. For example, for control flow
analysis we need only a trace of executed basic blocks or
paths. Cache studies require address traces, and more complex
processor simulations also need instruction words. Branch
predictors can be evaluated using traces with only branch-
relevant information, such as branch and target addresses, and
branch outcome, and ALU unit simulations need operand
values.

Various trace compression techniques have been
introduced, focusing on different trace information. One set of
compression techniques, such as whole program path (WPP)
and timestamped WPP, relies on program instrumentation and
concentrates on instruction traces only [4], [8]. In WPP, a
trace of acyclic paths is compressed using a modified Sequitur
algorithm [5]. In timestamped WPP, all path traces for one
function are stored in one block, thus enabling fast access to
function-related information.

Another set of compression techniques targets full address
traces (instruction and data). Unlike instruction address or
path traces, data address traces rarely have repeatable patterns
and hence are more difficult to compress, although one
memory referencing instruction may access addresses with a
constant stride. One approach, applied in the one-pass PDATS
algorithm, is to store address differences between successive
references of the same type (load, store, instruction fetch) [3].
In PDATS, stored address differences can have variable
length and an optional repetition count in cases when a
constant difference is present in consecutive addresses of the
same type. Another approach is to link information about the
data addresses with a corresponding loop, but this requires
previous control flow analysis to extract loop information and
cannot be done in one pass [2]. A rather original approach
regenerates original trace using a set of value predictors [1],
but it has a relatively long decompression time.

Some techniques, such as PDI, compress combined address
and instruction traces, i.e., traces consisting of instruction
addresses + instruction words, and data addresses. In PDI,
instruction words are compressed using a dictionary-based
approach – each of the 256 most frequently used instruction
words in the trace is replaced with its dictionary index while
other words are left unchanged. Addresses are compressed as
in PDATS, but without a repetition count. This algorithm can
be one pass or two pass, depending on using a generic or a
trace-specific instruction word dictionary.

In this paper, we propose a new method for single-pass
compression of combined address and instruction traces,

Stream-Based Trace Compression

Aleksandar Milenkovi�, Milena Milenkovi�
Electrical and Computer Engineering Dept., The University of Alabama in Huntsville

Email: {milenka,milenkm}@ece.uah.edu

N

Stream-Based Data Compression (SBC). Our approach relies
on extracting instruction streams. An instruction stream is a
sequential run of instructions, from the target of a taken
branch to the first taken branch in sequence. A stream table
keeps relevant information about streams: starting address,
stream length, instruction words and their types. All
instructions from a stream are replaced by its index in the
stream table, creating a trace of instruction streams.
Information about data addresses such as data address stride
and number of repetitions is attached to the corresponding
instruction stream and stored separately.

The proposed algorithm achieves a very good compression
ratio and decompression time for both instruction and data
address traces, yet it is simple to implement and does not
require code augmentation nor lengthy several-passes control
flow analysis. Furthermore, our technique is orthogonal to
general compression algorithms, such as gzip or Sequitur. We
evaluated SBC on Dinero+ traces [3] of SPEC CPU2000
benchmark programs [6]. When combined with gzip, SBC
reduces the trace size 94-71968 times, depending on the
benchmark, and outperforms mPDI-gzip, gzipped combination
of PDI and PDATS, 4.3-497.7 times. SBC combined with
Sequitur reduces the trace size even further, but at the price of
considerable decompression slowdown.

The paper is organized into four sections. The second
section introduces the formats of traces and explains stream-
based compression. The third section shows the results. The
last section gives concluding remarks.

II. STREAM-BASED COMPRESSION

SBC exploits several inherent characteristics of program
execution traces. Instruction traces consist of a fairly limited
number of different instruction streams while most of the
memory references exhibit strong spatial and/or temporal
locality, for example, a load having a constant address stride
across loop iterations. Stream-based compression of the
combined address and instruction traces results in three files:
Stream Table File (STF), Stream-Based Instruction Trace
(SBIT), and Stream-Based Data Trace (SBDT).

In this paper SBC is demonstrated on Dinero+ traces,
although it is applicable to any combined trace. A Dinero+
trace record has fixed length fields: header field (0 – data
read, 1 – data write, and 2 – instruction read), address field,
and instruction word field for instruction read type.

First we will describe the decompression process, for the
example in Fig. 1– a short trace of a loop, where stream 1 is
followed by 28 executions of stream 2, and one execution of
stream 3. At the beginning of the trace decompression, the
whole STF is loaded into a corresponding Stream Table
structure, resident in the memory during decompression. One
record in STF consists of a stream start address and a stream
length -- i.e., the number of instructions in the stream --
followed by instruction words and their types -- load (0), store
(1) or an instruction that does not access memory (2).

Analysis of SPEC CPU2000 traces shows that a Stream

Table has relatively modest memory requirements since
almost all benchmarks have fewer than 5000 different
instruction streams, and 9 out of 23 benchmarks have fewer
than 1000 streams, while the average stream length is fewer
than 30 instructions for 18 benchmarks. In addition to the
pointer to the list of stream instruction words, each entry in
the Stream Table structure in memory has a pointer to the list
of stream data address references. One node in the stream data
address list has the following fields: current data address,
address stride, and repetition count. All fields are initialized to
zero. This list is dynamically updated from the SBDT during
trace decompression, whenever the repetition count of an
accessed node is 0.

Stream-Based
Instruction Trace (SBIT) Stream-Based Data Trace (SBDT)

StartAddress Length

120026a60 9

120026a78 3

120026a78 4

223e00181 ... f43ffffd2

a43300000 426114132 f43ffffd2

a43300000 426114132 f43ffffd2 23defff02

Stream Table File (STF)

Dinero+ Trace

Stream 1

Stream 2

Stream 2

Stream 2

Stream 3

Type Address InstrWord
2 120026a60 223e0018
1 11ff96ff8 -
2 120026a64 b7fe0008
2 120026a68 42110652
2 120026a6c 42411412
2 120026a70 23bd19a4
2 120026a74 46520413
2 120026a78 a4330000
0 11ff97020 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97028 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97030 -
2 120026a7c 42611413
2 120026a80 f43ffffd
… … …
2 120026a78 a4330000
0 11ff97100 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a78 a4330000
0 11ff97108 -
2 120026a7c 42611413
2 120026a80 f43ffffd
2 120026a84 23defff0

StreamIndex
1
2
2
…
2
3

AddrOffset

11ff96ff8

Stride

0

RepCount

0

11ff97020 0 0

11ff97028 8 1b

11ff97108 0 0
Fig. 1. Example of Stream-Based Compression.

Decompression proceeds as follows: a stream index is read

from the SBIT, i.e., stream index 1. Stream Table entry 1 is
accessed, giving address, word and type of the first instruction
in the stream. This instruction is a store (type 1), so we need
the corresponding store address. Since the repetition count for
the first data reference in this stream is 0 after initialization,
the decompression algorithm reads a record from the SBDT,
consisting of a DataHeader, AddrOffset, Stride, and RepCount
(Figure 2). The current data address in the node is calculated
as the current address (0) plus the AddrOffset field, stride is

set to the value of the Stride field (in this case 0), and
repetition count is set to the RepCount value, again 0 since
this stream executes only once. The pointer to the current
instruction then moves along the stream instruction word list
until all nine instructions are read. Each instruction address is
obtained by incrementing the current instruction address for
the instruction length, starting from the StartAddress. The
SBDT is accessed once more, for the seventh instruction,
which is a load. The next stream index in the SBIT is 2, so
entry 2 is accessed. The first instruction is a load, so the
corresponding node in the data address list is updated from
SBDT; i.e., the current address is set to 0x11ff97028, the
stride is set to 8, and the repetition count to 27. When the
stream 2 is again encountered in the SBIT and its load
instruction is read from the Stream Table, there is no need to
access the SBDT – the load address is calculated as the
previous address plus the stride, and the repetition count is
decremented for all further 27 executions of the stream 2.

As can be seen on this simple example, the SBC algorithm
handles instruction and data information separately. The SBIT
is obtained by replacing each instruction stream by its index
from the stream table. Since the stream table includes all
streams and not just the most frequent ones, this is a one-pass
algorithm – when an end of stream is detected in the original
input trace, our compression program finds the corresponding
stream in the table or, if necessary, adds a new entry to the
table, and outputs the stream index to the SBIT. On the other
hand, our algorithm exploits frequent regularity of memory
references produced by consecutive instances of the same
load/store instruction. Ideally, during decompression one
memory-accessing instruction should get new values from the
SBDT only when its offset stride changes. However, we want
to keep the compression algorithm one-pass, so the
compression program keeps relevant values in a finite FIFO
buffer. Each entry in the FIFO buffer has a ready flag that is
set at the change of the offset stride. The records are written to
the SBDT when there is a sequence of ready records at the
front of the FIFO buffer, or when the FIFO is full. Hence we
need the field AddrOffset, which records the offset from the
last occurrence of a particular memory-accessing instruction
and is equal to the memory address when such instruction
occurs for the first time. The DataHeader field codes the
length and the most frequent values of other fields in the Data
Trace (Fig. 2), thus achieving additional compression. Clearly,
the larger FIFO buffer will “catch” more data repetition, thus
increasing the compression ratio.

DataHeader 1B
Stride

0, 1, 2, 4, or 8B
AddrOffset

1, 2, 4, or 8B
RepCount

0, 1, 2, 4, or 8B

Bits 7-5:RepCount size Bits 4-2:Stride size Bits 0-1:AddrOffset size
000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: unused
101: unused

000: = 0 - 0B
001: 1B
010: 2B
011: 4B
100: 8B
101: =1 - 0B
100: =4 - 0B
101: =8 - 0B

00: 1B
01: 2B
10: 4B
11: 8B

Fig. 2. SBC Data Trace Format.

One can ask why the SBC algorithm does not exploit the
repetition of instruction streams. Such patterns in the SBIT are
easily recognized by gzip or Sequitur, without an increase in
complexity of SBC or any restrictions considering the number
and the nature of nested loops.

III. RESULTS

For each SPEC CPU2000 benchmark, we traced two
segments for reference data inputs: the first two billion
instructions (F2B), and the two billion instructions after
skipping 50 billion (M2B), thus making sure that our results
do not overemphasize the program initialization. We
compared the compression ratio of SBC with the compression
obtained by gzip, and by mPDI, an improved version of PDI
that uses the PDATS algorithm for data. In mPDI, data and
instruction references are separated into two files, making the
regular patterns even more recognizable by gzip.

Table I and Table II show the compression ratio of the
compared algorithms relative to an uncompressed Dinero+
trace. Due to restricted space we show the combined
compression ratio – the average between F2B and M2B for
each benchmark, and Table III shows average values for F2B
and M2B. Full set of results can be found at
www.ece.uah.edu/~lacasa/sbc/sbc.htm. The FIFO buffer size
for SBC is 4000 entries. The SBC algorithm reduces the trace
size for up to 61.6 times for integer (CINT) and 458.2 times
for floating point (CFP) benchmarks, outperforming gzip
compression. On average, the SBC compression ratio for
CINT is 36.2, and for CFP is 110. The very high compression
ratio for some CFP benchmarks is due to longer instruction
streams and higher repetition counts for data references. When
SBC is compared to mPDI, the trace size is on average
reduced 10.7 times for CINT and 36.1 times for CFP.

Even better compression ratios can be obtained by further
compressing an SBC trace by gzip. The combined SBC-gzip
compression ratio goes up to 962.7 times for CINT (254.gap)
and up to 71968.1 (171.swim) for CFP, with corresponding
average values of 334.1 and 12520.4. Translated back to bytes,
this means that instead of 30GB for an uncompressed trace or
about 2GB for a gzip-only compressed trace, a combined
SBC-gzip compressed trace occupies less than 200MB and for
some benchmarks, even less than 1MB. Compared to
combined mPDI-gzip, SBC-gzip achieves on average 10.8
times better compression for CINT and 203.6 times better for
CFP, sometimes outperforming mPDI-gzip for more than two
orders of magnitude.

The SBC technique can also be combined with other
compression techniques, such as Sequitur, which proved to be
a highly suitable technique for instruction address traces, and
consequently, for SBIT files. As it could be expected,
Sequitur cannot be as efficient for data address traces, nor for
SBDT files. Overall, combined SBC-Sequitur has a better
compression ratio than SBC-gzip, but at the price of
significantly increased decompression time. Fig. 3 shows the
decompression speedup relative to gzipped Dinero+ traces.

Since traces are used during simulation, we measured
decompression time in a program that reconstructs an entire
trace, and uses pipes for gzip and Sequitur. Decompression
speedup for SBC-gzip is proportional to the compression
ratio, i.e., smaller files are faster to decompress. On average,
SBC.gz traces are decompressed 19.9 times faster than
Dinero.gz for floating-point, and 8.9 times for integer
benchmarks.

TABLE I. COMBINED COMPRESSION RATIO FOR SPEC2000 INT.

CINT mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq
164.gzip 4.1 61.6 41.5 48.6 218.4 201.0
176.gcc 3.2 36.7 12.4 20.7 221.0 249.4
181.mcf 2.9 32.1 23.1 38.8 286.6 348.6
186.crafty 3.0 43.0 7.1 24.2 248.4 269.4
197.parser 3.6 34.1 28.5 33.3 179.0 348.5
252.eon 3.5 22.3 6.2 28.1 401.9 786.2
253.perlbmk 3.1 37.3 20.9 32.5 552.5 729.9
254.gap 3.5 43.4 23.8 37.8 962.7 1423.1
255.vortex 3.4 24.4 9.5 20.0 176.2 376.4
300.twolf 3.3 26.9 7.1 21.9 94.0 78.2
Average 3.4 36.2 18.0 30.6 334.1 481.1

TABLE II. COMBINED COMPRESSION RATIO FOR SPEC2000 FP

CFP mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq
168.wupwise 3.4 61.0 26.1 68.8 2463.2 4276.5
171.swim 2.9 458.2 22.7 167.6 71968.1 116512.0
172.mgrid 2.9 75.9 12.4 38.4 9279.4 16927.4
173.applu 2.9 72.0 13.6 24.0 3116.1 38446.8
177.mesa 2.9 79.1 10.5 53.9 1160.1 1641.8
178.galgel 3.0 77.9 24.5 33.8 10625.6 60477.7
179.art 3.5 74.7 25.2 33.7 16751.1 59764.1
183.equake 3.1 44.6 28.9 90.1 1152.1 1895.0
188.ammp 3.5 60.7 23.8 38.9 1534.9 2007.3
189.lucas 3.1 211.1 53.8 129.7 30257.0 68074.3
191.fma3d 3.5 79.8 8.8 16.7 7802.6 25912.7
200.sixtrack 2.9 99.6 16.8 41.6 4362.6 8758.6
301.appsi 3.0 35.0 8.3 19.3 2293.0 12421.9
Average 3.1 110.0 21.2 58.2 12520.4 32085.9

TABLE III. A VERAGE COMPRESSION RATIO FOR FIRST TWO BILLION (F2B) AND

TWO BILLION AFTER SKIPPING 50 BILLION INSTRUCTIONS (M2B)
 mPDI SBC Din.gz mPDI.gz SBC.gz SBC.seq
CINT F2B 3.5 37.1 15.1 30.0 309.0 406.3
CINT M2B 3.2 35.2 21.0 31.2 359.2 555.9
CFP F2B 3.5 101.8 23.5 72.0 9778.9 21745.1
CFP M2B 2.7 118.1 18.8 44.4 15261.9 42426.7

Decompression Speedup

0.1

1

10

100

16
4.g

zip

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

30
0.t

wol
f

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mm
p

18
9.l

uca
s

19
1.f

m
a3

d

20
0.s

ixt
ra

ck

30
1.a

pp
si

mPDI.gz

SBC.gz

SBC.seq

Fig. 3. Decompression Speedup relative to gzipped Dinero+ traces.

The results presented do not include traces compressed with

Sequitur only. While Sequitur on its own is very efficient for

instruction address traces, it doesn't perform as well on data
traces, producing larger compressed files than gzip for most
benchmarks. It should also be noted that for gzipped SBC
traces, on average, SBIT.gz makes only 5% of total
compressed trace for CINT, and 10% for CFP. Therefore,
further improvement in instruction trace compression would
not significantly increase the overall compression ratio.

IV. CONCLUSION

The SBC algorithm offers a new technique for compressing
data address references in combined instruction and address
traces: data address information is linked to a corresponding
instruction stream. It significantly reduces the trace size and
the time needed to read the trace during simulations, and can
be successfully combined with other general compression
techniques. The choice of the additional compression scheme
depends on the end user requirements. The SBC-gzip
combination has a very good compression ratio and a short
decompression time, and SBC-Sequitur compresses even
better, but with a slower decompression. As a one-pass
algorithm, SBC can be easily modified for online tracing in
real-time, and implemented in hardware.

We are currently investigating possible extensions of the
SBC algorithm, such as further refining the algorithm and its
applicability to another trace information such as the value of
operands. For example, a two-level scheme can reduce the
size of the Stream Table: instead of instructions, each entry in
the Stream Table keeps the indexes of the basic blocks from
the Basic Block Table.

ACKNOWLEDGMENT

The authors are grateful to the editors and anonymous referees for
their insights and suggestions for strengthening this paper.

REFERENCES

[1] M. Burtscher, M. Jeeradit, “Compressing Extended Program Traces
Using Value Predictors,” in Proc. Int. Conf. on Parallel Architectures
and Compilation Techniques (PACT), New Orleans, LA, 2003.

[2] E. N. Elnozahy, “Address Trace Compression Through Loop Detection
and Reduction,” ACM SIGMETRICS Performance Evaluation Review,
v.27 n.1, p.214-215, June 1999.

[3] E. E. Johnson, J. Ha, M. B. Zaidi, “Lossless Trace Compression,” IEEE
Transactions on Computers, Vol. 50, No. 2, February 2001.

[4] J. Larus, “Whole Program Paths,” in Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, Atlanta, GA,
1999, pp. 259-269.

[5] C. G. Nevill-Manning, I. H. Witten, “Linear-Time, Incremental
Hierarchy Interference for Compression,” in Proc. IEEE Data
Compression Conference, 1997, pp. 3-11.

[6] SPEC 2000 Benchmark Suite, http://www.spec.org.
[7] R. Uhlig, T. Mudge, “Trace-driven memory simulation,” ACM

Computing Surveys, Vol. 29, No. 2, June 1997.
[8] Y. Zhang, R. Gupta, “Timestamped Whole Program Path

Representation and Its Applications,” in Proc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation, Snowbird,
Utah, 2001, pp. 180-190.

[9] L. Ziv, A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transaction on Information Theory, Vol. 23, No
3., 1977.

