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ABSTRACT: Computer architecture courses are crucial core courses in computer

engineering, electrical engineering, and computer science programs. Dramatic changes in

technology, markets, and computer applications create a quite unique and challenging

arena for computer architecture instructors and students. The goal is to provide learning

environments that will offer hands-on experience and nurture rapid learning, yet be intuitive

and interesting to students. In this paper we discuss the challenges in teaching such

courses and present a very flexible educational environment for teaching and learning of

computer architecture and organization (CAL2). The CAL2 encompasses a number of software

tools that are used both in laboratory settings and at home during self-study. The CAL2 allows

students to write and execute their own assembly language programs, ‘experience’ program

execution through graphic simulation and animation, inspect implementation details down to

the register transfer level, display timing diagrams, and test their knowledge. In addition, the

CAL2 offers a number of features that help instructors define, configure, manage, and

administer the laboratory exercises.� 2008 Wiley Periodicals, Inc. Comput Appl Eng Educ; Published

online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20141

Keywords: computer architecture; educational software; simulation; visualization and

computer graphics; computer uses in classrooms

INTRODUCTION

For barely more than a half of a century computer

systems have changed almost every aspect of human

life—the way people live, work, and communicate.

Spurred by the continual semiconductor technology

advancement, the computer systems have spread

from a few highly sophisticated research laboratories

to virtually all offices, homes, and classrooms.

Microprocessors, the brains of each computer system,

have evolved from an integrated circuit with

2,300 transistors in 1970 to the one with almost a

billion of transistors on a single chip in 2005. The

unprecedented growth in computer system perfor-

mance and their commoditization allowed computer
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applications we could not dream of or afford just a

decade ago. Recent trends toward intertwining of

computer engineering with other disciplines, such as

communications, television, transportation, sensors,

security, medicine, will lead to ‘‘smart’’ homes,

‘‘smart’’ cars, ‘‘smart’’ appliances, and ubiquitous

health monitoring systems. The computer systems

will become more diverse and application-specific,

requiring more skilled computer engineers. To meet

this challenge, higher education institutions should

develop new educational environments that provide

hands-on experience and nurture rapid learning

processes, exposing the students early to the basics

of computer engineering.

Courses in computer architecture and organiza-

tion are crucial core courses in Computer Engineer-

ing, Computer Science, and Electrical Engineering

programs. In addition, some forms of such courses

are also present in other academic programs such as

Information Management, Business Administration,

Economy, etc. Introductory courses in Computer

Archtecture usually focus on computer systems

architecture, typical of what can be found in a

present day desktop computer with three main

components: processor(s), main memory, and I/O

subsystem. A recent trend at computer science and

engineering schools has been to expose the students to

such a course early in their education, typically at the

freshmen level. The introductory courses usually

follow the organization of computer systems intro-

ducing basic principles of assembly language pro-

gramming, processor architecture and organization,

main memory, I/O subsystem, and buses. Topics in

processor architecture include the programmable

registers, data types, instruction formats, addressing

modes, instruction types and interrupt mechanism,

while the processor organization covers various

techniques for realizing the processor. Topics in

memory include memory organization, memory

hierarchies, and important metrics such as latency

and bandwidth. Topics in input/output subsystems

cover the structure of the peripheral devices’ con-

trollers, without and with direct memory access, as

well as the input/output techniques. Bus consider-

ations include bus organization, arbitration, and bus

transactions (Fig. 1).

One of the most challenging questions for

educators is how to efficiently teach computer

architecture and demystify the magic surrounding

the operation of modern computer systems and show

the students how binary instructions and simple gates

can lead to useful computation. Computer systems

contain many high-complexity integrated circuits that

communicate at very high speeds, making them one of

the most advanced human-engineered structures. To

manage extreme complexity engineers and designers

have relied on levels of abstraction separated

with well-defined interfaces. Educators use a similar

approach in teaching computer architecture uncover-

ing layers of abstractions as shown in Figure 2.

However, the problem of cognitive leap from black-

board description and computer system utilization

remains an open issue. Another problem is that

introductory courses in computer architecture usually

have large enrolments, making it impossible to

accommodate all of the students’ questions and

Figure 1 Organization of a present-day computer system.

[Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 2 Computer system architectures: A layered view

with interfaces; proposed by Glenford Myers (1982). [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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concerns, and putting additional strains to often

limited educational resources.

To address above mentioned issues we have

developed an integrated computer architecture labo-

ratory called CAL2 that features a flexible, hierarch-

ical, graphical simulator of an educational computer

system (SimECS) and a web-based software system

for Computer Architecture Learning and Self-Testing

(CALKAS). The educational computer system (ECS)

is designed to demonstrate a broad spectrum of

topics typically taught in lower-division computer

architecture courses. The graphical simulator supports

animation of instruction execution down to the clock

cycle level and hierarchical visual presentation from a

block level down to the standard combinational and

sequential circuits. The CALKAS system serves to

help learning in computer architecture, knowledge

assessment, and laboratory exercise management.

The rest of the paper is organized as follows. The

Background and Motivation section gives a short

overview of the existing tools proposed and used in

computer architecture education and provides a

rational behind our decision to develop SimECS and

CALKAS. The Educational Computer System (ECS)

section describes architecture and organization of the

proposed educational computer system. The SimECS

Visual Simulator section describes software simulator

functionality and its user interface. The Laboratory

Exercises section presents a set of possible laboratory

exercises that demonstrate SimECS capabilities. The

Computer Architecture Laboratory Session section

describes a typical laboratory session. Finally, a

Conclusions section closes the paper.

BACKGROUND AND MOTIVATION

Computer architecture laboratories often rely on

software simulators of pedagogical computer systems.

A number of software tools targeting teaching

and learning in introductory courses in computer

architecture have been proposed and developed. They

differ greatly in scope and complexity (rudimentary,

medium, complex), type of instruction set (commer-

cial or custom), simulation presentation (text, graph-

ical), simulation granularity (program, instruction,

clock), and level of details. The representative

simulators are DLXview [1], ESCAPE [2], Rudimen-

tary Machine (RM) [3], ASF [4], HASE [5], EasyCPU

[6], SimpleScalar [7], ANT [8], RSIM [9], and

DigLC2 [10].

Educators developing an educational computer

system simulator face a number of different, often

contradictory requirements. Allowing students to ex-

perience and see intricacies of a computer system and

its inner workings can significantly improve their

learning experience and help them to grasp sometimes

difficult concepts of computer engineering. Ideally,

the simulators would satisfy the most of the following

requirements.

(1) Support practical examples for a wide range of

relevant topics.

(2) Allow students to write their own assembly

and/or high-level programming language pro-

grams and translate them.

(3) Allow students to follow program or instruc-

tion execution by means of graphical simu-

lation and visualization.

(4) Allow students to see how a certain part of the

system is actually implemented.

(5) Allow students to engage in on-line active

learning.

(6) Allow students to test their knowledge and

observe the progress in the course.

(7) Allow instructors easy preparation of labo-

ratory experiments and assignments.

(8) Allow instructors easy administering of the

laboratory experiments and monitoring of

student’s progress in the course.

Table 1 gives an overview of the existing

systems and their characteristics with the respect to

the above-mentioned requirements.

As a result of a critical analysis of the existing

simulators we found that none of them meets entirely

the above stated requirements. Some of them, like

HASE and ASF, do not show the computer system at

the level of combinational and sequential circuits,

while the others, like ESCAPE, RM, EasyCPU, and

DigLC2, do not cover all the topics lectured.

Simulators like ANT, and ASF are the non-graphic

ones and do not present the functioning of the

computer system in the form suitable to follow, and

those like RSIM and DLXview do not demonstrate the

basic but very sophisticated issues. Consequently, we

decided to venture into the development of a system

for computer-aided learning in computer architecture

laboratory (CAL2). We have developed several

generations of the CAL2 system, varying the type

and organization of the educational computer system;

type and implementation of the processor, memory

system, and I/O peripherals; functionality of visual

simulators; and user interface [11,12]. However,

the educational systems presented earlier in [11,12]

are typically tailored for more advanced courses in

Electrical and Computer Engineering programs, and
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often are not suitable for introductory courses due to

their complexity.

In this paper we describe an educational com-

puter system (ECS), graphical software simulator for

it (SimECS), and a Web-based system for learning and

knowledge assessment (CALKAS). The educational

computer system is designed to closely follow

common topics in introductory computer architecture

courses and includes a whole computer system—

processor, memory, I/O subsystem, and bus arbitrator.

For each component, a detailed register transfer level

(RTL) description is provided. Figure 3 illustrates the

computer system hierarchy, starting from the system

components, via the register transfer level description,

down to the gate-level description.

A Chinese proverb says ‘‘I hear, I forget; I see, I

remember; I do, I understand.’’ In this spirit, the

SimECS simulator supports animation of instruction

execution and allows students to write their own

assembly programs, translate them, interactively

initialize processor’s registers, run the simulation,

and examine timing diagrams of selected signals,

values of registers, and memory locations. The

simulator gives graphical presentation of all parts of

the computer system, both at the level of computer

system modules (Fig. 3, left top) and at the register

transfer level (Fig. 3, top right). A simulation run

can be done at the level of a clock, an instruction, or a

complete program.

The web-based system for learning and knowl-

edge assessment—CALKAS [13] is developed due to

the following reasons. A large number of students

taking the laboratory exercises imposed the need for a

software package, which would automate the assess-

ment of students’ knowledge and keep evidence about

each laboratory exercise for each student. In addition

to that, this software package had to offer the pos-

sibility of self-learning of various topics in computer

architecture and organization as a help in the process

of preparation for the laboratory exercises and the

exam itself. Finally, the software package had to be

open for its integration with the visual simulator and

the student database maintained for the whole college.

The practical work with the educational system

takes place in the laboratory where the students carry

out a set of laboratory exercises. The students prepare

for each laboratory exercise at home by studying the

design of a particular part of the computer system

from the reference manual and online materials

(Fig. 4); using a self-testing feature of the CALKAS

system, they can test their knowledge before taking

a laboratory exercise. A typical laboratory session

starts with a laboratory test; this test is designed

to determine whether students are prepared for

the laboratory or not. In each laboratory exercise

the students are asked to solve practical problems

by following the functioning of the computer

system using the simulator and the accompanying

tools. Concurrently using CALKAS they answer the

Table 1 Assessment of the Existing Educational Computer Systems for Their Pedagogical Value

1 2 3 4 5 6 7 8System

DLXview High High High Medium Low Low High Low

ESCAPE Medium High High Medium Low Low High Low

RM Low High High High Low Low High Low

ASF Low High Low Low Low Low Low Low

HASE High Low High Medium High Low Medium Low

EasyCPU Low Low High High Low Low High Low

ANT High High Low Low Low Low High Low

SimpleScalar High High Low High Low Low Medium Low

RSIM High High Low Medium Low Low Low Low

DigLC2 Medium High High High Low Low High Low

Requirement

Figure 3 Computer system hierarchy. [Color figure can be

viewed in the online issue, which is available at www.

interscience.wiley.com.]
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questions related to their problem or submit their

solutions.

ECS: EDUCATIONAL COMPUTER SYSTEM

The educational computer system is similar to the

EDCOM described in Ref. [12], and encompasses

the following components: a processor (CPU), a

memory (MEM), an input/output subsystem (I/O) and

an asynchronous bus with an arbiter (ARB). The

processor features a CISC-like instruction set; a rich

set of programmable registers including data registers,

base, index, and address registers; and special purpose

registers, such as the program counter, the stack

pointer, the program status word, the accumulator, and

the interrupt mask register. The data types supported

are 8-bit signed and unsigned integers. The instruction

format is the one-address one with the instruction

length of 1, 2, 3, and 4 bytes. The addressing modes

are the register direct, register indirect, memory

direct, memory indirect, base, index, base index,

relative, register indirect with auto increment and auto

decrement and immediate. The instruction types

are the transfer, arithmetic, logic, shift, rotate, and

control instructions. The interrupt mechanism is the

vectored one with internal and external interrupts. The

processor organization features separate units for

each of the instruction execution phases. Thus, the

processor is made up of the instruction and operand

fetch unit (IF); two execution units for the integer

operations execution (IE) and the control operations

execution (IC); and the interrupt servicing unit (IS).

These units use the memory interface unit (MI) for the

bus arbitration and the read, write and interrupt vector

number acquisition cycles. Each of the units is made

up of the processing and control units. The control

units are realized by using the hardwired technique.

The memory capacity is 64 Kb. The input/output

subsystem contains 4 input/output units, each

consisting of a peripheral device and a controller. A

peripheral device is simulated as an array of 16

bytes that can be read from or written to with the

definable access time. The controllers are one non-

direct memory access (non-DMA), one direct memory

access (DMA) and two dummy (IO1 and IO2) ones.

The non-DMA controller is a slave interface for the

processor controlled device/memory and memory/

device data transfers. The DMA controller is a master

interface, which takes part in the bus arbitration and

organizes the device/memory, memory/device and

memory/memory single-byte or burst data transfers.

The dummy controllers take part only in the bus

arbitration and keep the bus busy for a definable

period of time, but do not perform any data transfer.

The registers of the input/output subsystem are

memory mapped. The asynchronous bus intercon-

nects the computer system modules with the address

lines (ABUS), the data lines (DBUS) and the control

lines (RDBUS, WRBUS, and FCBUS). A master

module initiates a read cycle or a write cycle with

the active signal on the RDBUS line or the WRBUS

line, respectively. The processor can, also, initiate an

interrupt vector number acquisition cycle from either

the non-DMA controller or the DMA controller with

an active signal on either the inta1 line or the inta2

line, respectively. The slave module indicates the

completion of a bus cycle with an active signal

on the FCBUS line. A bus cycle is preceded by

the arbitration between the bus masters, which are

connected with the bus arbiter (ARB) with pairs of the

bus request (brq) and the bus grant (grant) lines.

Figure 4 Active learning in computer architecture laboratory. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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SimECS VISUAL SIMULATOR

The visual simulator features tools for simulator

initialization and simulation run. The introductory

SimECS screen allows initialization, resumption of

an earlier stopped simulation, or a new simulation

start (Fig. 5a). The initialization allows the user to

define the clock rates for the system modules and

the access times of the peripheral devices and the

memory, examine and set the values of memory

locations and registers of the processor and input/

output units, and select signals for which the timing

diagrams will be drawn. In order to allow instructors

flexibility in preparing examples, the initialization

step can be carried out in several ways: as a complete

initialization from a predefined file—for example,

by selecting one of seven exercises (Fig. 5b), as a

partial initialization from a file—separately for each

component of the ECS (Fig. 5c), or as an interactive

initialisation—by direct change of values of registers

and memory locations (Fig. 6a). There is also a

possibility to write a program in the assembly

language, translate it and load into the memory. Once

the values of either the registers in the processor or in

the input/output units or the memory locations have

been manually changed, the new simulation state

can be saved in a file and later used for the partial

initialization from files. There are also separate

screens for a manual specification of the clock rates

of the computer system modules and a selection of

signals for which the timing diagrams should be

drawn (Fig. 6b).

The simulator supports the simulation of instruc-

tion execution at the level of a clock, an instruction, or

a complete program with the visual presentation of all

components of the computer system. The simulation

screen consists of four windows (Fig. 7): The clock

signals window (left top part of the screen), the global

presentation window (left middle), the detailed

presentation window (right top and middle), and the

info and command window (bottom).

The clock signals window shows a few cycles of

the computer system modules’ clock signals, follow-

ing the last clock signal that has occurred. The red

vertical line points out to the first next clock signal

that will occur in one of the computer system

modules. On the right hand side of the red line are

shown a few clock signals of the computer system

modules in the order of their occurrence. This allows

one to locate where the next clock signals are going

to occur and examine the values of the appropriate

signals before the clock signals occur and produce the

change of their values.

The global presentation window gives either the

block structure of the computer system, if in the

detailed presentation window is shown any other

module except the processor (Fig. 7), or the block

structure of the processor, if in the detailed presenta-

tion window is shown the processor (Fig. 8). The

blocks are in both cases realized as buttons, offering

the users possibility to navigate through the modules

of the computer system. The switchover from the

block structure at the level of the computer system’s

modules (Fig. 7) to the block structure at the level

of the processors’s units (Fig. 8) can be realized by

mouse click on the CPU button. The opposite

switchover can be realized by clicking button X in

the upper left hand corner.

The detailed presentation window gives the

detailed structure of the currently active computer

system’s module: MEM, ARB, DMA, non-DMA,

IO1, and IO2 (Fig. 7); or the processors’s units, IF, MI,

IE, IC, and IS (Fig. 8). The computer system’s

modules and the processor’s units that are not active

are closed and shown as buttons with the names of the

modules or the units, respectively. If a user clicks at

Figure 5 Simulator start and initialization. (a) Main Window; (b) complete initialization; (c)

partial initialization. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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Figure 6 (a) Interactive examination and change of values of the processor’s registers and saving

in a file; (b) specification of the clock rates of the computer system’s modules. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 7 A SimECS simulation screen. The global simulation window shows the block structure at

the level of the computer system’s modules. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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one of these buttons, the detailed presentation of

the corresponding computer system’s module or the

processor’s unit opens. The detailed presentation

of any of the computer system’s module or the

processor’s unit can be closed and shown as a button

by clicking button X in the upper right hand corner.

This offers another possibility to navigate through

parts of the computer system. In addition to that, the

detailed presentations of the computer system’s

modules or the processor’s units are opened and

closed during the simulation in the same order as an

instruction goes through them for various phases of its

execution. The levels of details are sequential and

combinational modules presented as blocks with input

and output signals. A single signal is presented with a

thin line in blue, red, or green depending on whether

the signal on the line is inactive, active, or in the state

of high impedance. Groups of signals are presented

with thick lines in green, if they are in the state of high

impedance and in gray and hexadecimal values

otherwise. When the scheme of the computer system’s

module or processor’s unit presented in the detailed

presentation window contains too many elements

that can not be shown on the screen, the detailed

presentation window has the vertical and horizontal

scrollbars that allow users to move around the scheme.

The info and command window gives information

about the state of simulation (on the left hand side)

and makes it possible to examine the result of the

simulation and control the simulation (the right hand

side). The info window contains the sequence window

and the status buttons. The sequence window gives the

values of the control unit step counter, the control

signals generated in that step and a brief explanation

of the microoperations that are going to be executed in

that step. The status buttons PC, T and Tclk show the

current values of the program counter, the control

unit step counter and the number of processor’s clocks

elapsed, respectively. The command window contains

the simulation, miscellaneous, and start/exit com-

mand buttons. The simulation buttons Clkþ, Insþ,

and Prgþ facilitate the continuation of the simulation

for one clock or as many clocks as is needed to

execute the current instruction or the complete

program, respectively. The miscellaneous buttons

are Show, Clear and Help. The Show button opens

the window from where one can further select of one

of the windows that facilitate the interactive exami-

nation and change of values of the processor’s

registers, the input/output units’ registers (Fig. 6a)

and the memory locations and the drawing of timing

diagrams of selected signals (Fig. 9a). The Clear

button returns the simulation to the beginning. The

Help button activates the help system which gives all

information about the computer system and the visual

simulator (Fig. 9b). The Start/Exit buttons are Start

and Exit. The Start button simulates the start of the

computer system when either the power is turned on

or the system reset button pressed. The Exit button

completes the simulation with the possibility to save

Figure 8 Block structure at the level of the processor’s units. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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the current state of the simulation in a file and use the

file later to carry out the complete initialization from

that file and resume the simulation.

LABORATORY EXERCISES

The practical work with the visual simulator of the

computer system is organized through laboratory

exercises. They are made up of simple programs

carefully prepared to demonstrate the characteristics

of interest. The students execute the programs and

answer questions related to some typical situations of

the topic covered by the particular laboratory exercise.

In addition to that in some cases the students are given

problems, which they solve independently, write a

program using the software tools and test it using

the simulator. All laboratory exercises cover four

major areas in the field of computer architecture

and organization: the processor architecture and

organization, the interrupt, the bus and the input/

output. Their brief description is given in the

following.

Processor Architecture and Organization

The processor architecture is demonstrated with a

number of exercises that illustrate programmable

registers, data types, instructions formats, addressing

modes, and instruction types. The interrupts do not

appear in these exercises, since they are treated in a

separate group of exercises. The instructions are

executed at the clock level and all processor units

are involved. This allows one to follow the details of

the processor organization by going through the

sequence of control signals generated by the control

units and examining the values of all signals generated

by the combinational and sequential circuits of the

processing units. There are two groups of exercises

aimed at demonstrating all addressing modes and

algorithms of operations of all instruction types. The

exercises in the first group include the instructions

with simple algorithms of operations and all address-

ing modes available. They are the transfer instruc-

tions, the arithmetic addition, subtraction, increment,

decrement and compare instructions, the logic AND,

OR, XOR, and NOT instructions, the shift and rotate

instructions and the unconditional and conditional

jump instructions. The addressing modes included are

the short literal, register direct, register indirect,

memory direct and memory indirect, then the base,

index, base index and relative with 8- and 16-bit

displacements and the register indirect with auto

increment and auto decrement and immediate. The

exercises in the second group include the instructions

with complicated algorithms of operations and simple

addressing modes. They include the multiplication

and division with unsigned and signed integers, the

push on and the pop from the stack, and the jump to

and the return from the subroutine.

Interrupt

The interrupt is demonstrated with a number of

exercises, where simple programs are executed both at

the clock and the instruction levels. The clock level is

used to demonstrate the sequences of control signals

for the interrupt handling phase of an instruction and

the execution phase of the return from interrupt

instruction. Within the interrupt handling phase of any

instruction, the program counter and the program

status word registers are saved on the stack and the

starting address of the interrupt routine found and

loaded into the program counter. The effect is a jump

Figure 9 (a) Timing diagram of signals; (b) HELP system. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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to the interrupt routine. The return from interrupt

instruction restores the values of the program status

word register and the program counter with the values

from the stack. The effect is the return to the main

program. The instruction level is used to demonstrate

topics such as the selective and complete masking of

interrupt requests coming from the input/output units,

the servicing of multiple interrupt requests, the

nesting of interrupt requests, the mode of operation

when a jump to the interrupt routine is being made

after every instruction executed, the execution of the

interrupt instruction, etc. It is also demonstrated how

the starting address of an interrupt routine can be

found by using the approaches with the interrupt

vector table, the polling of the input/output units and

the combination of both.

Bus

The exercises in this group are organized to

demonstrate two types of operation: the bus arbitra-

tion and the bus cycles. They are carried out at the

clock level. The students are requested to follow the

relevant signals, draw their timing diagrams and

compare them with those obtained from the simulator.

The bus arbitration is demonstrated with two

exercises, where as the bus masters appear the dummy

controllers. In the first exercise a single bus master

participates in the arbitration. This makes it possible

to demonstrate how the bus master sends the bus

request, the arbiter returns the bus grand, the bus

master keeps the bus busy during the bus cycle, the

bus master abolishes the bus request and the arbiter

abolishes the bus grant. In the second exercise two bus

masters participate in the arbitration. The exchange of

signals between the bus masters and the arbiter is

very similar to the one in the previous exercise. The

difference is that one of them has to wait to obtain

the bus grant and perform the bus cycle until the other

one completes its cycle on the bus. The bus cycles

demonstrated in the exercise are the read and write

cycles between the processor as the bus master and the

memory as the bus slave and the interrupt vector

number acquisition cycle between the processor as the

bus master and the input/output unit as the bus slave.

The exercise shows how the address, data and control

signals are exchanged between a bus master and a bus

slave for each of the cycles.

Input/Output

The exercises in this group are made up of simple

programs chosen to demonstrate the internal structure

of the non-DMA and DMA controllers, the way they

are initialized, started and stopped and how the

transfers of data take place with both the non-DMA

and the DMA controllers. In the first part the students

are requested to follow the example programs. At the

beginning the programs are executed at the clock

level, which makes it possible to follow the inner

working of the controllers. Later the programs are

executed at the instruction level, which allows one to

see the specifics of transferring data using the non-

DMA and the DMA controllers, the polling and

interrupt techniques, the cycle stealing and burst

transfers etc. In the second part the students are

requested to write, test and successfully run their own

programs.

COMPUTER ARCHITECTURE
LABORATORY SESSION

A computer architecture laboratory session with the

simulator is preceded by two steps carried out with the

CALKAS system.

The first step is not compulsory since the students

use the CALKAS system in the Self Learning mode to

study the relevant topic (Fig. 10) and in the Self Test

mode to assess their knowledge. This step is repeated

a number of times until the students are satisfied

with their knowledge. In the Self Learning mode a

students specify the topic and subtopic. At the first

level a student can select one of the following

topics: Processor Architecture, Processor Organiza-

tion, Input/Output, Bus, and Hierarchical Memory

System. At the second level the student can select

one of the possible subtopics. By activating the

corresponding pointer the students get the appropriate

part of the HTML version of the book intended for

learning Computer Architecture and Organization.

The main purpose of the Self Test mode is to

provide facilities, which would allow the students

to prepare for the Lab Test and assess their own

knowledge. The steps of this mode and the facilities

offered are similar to those available in the Lab Test

mode. The student answers the questions and submits

the test using the Self Test Exercise window similar to

the one given in Figure 11. The CALKAS system

checks the correctness of the answers given and

generates a report specifying the number of correct

and incorrect answers. At any time the Explain option

can be activated which invokes the CALKAS system

to give the correct answer to the current question. In

the case when the question is a theoretical one, the

answer is given in the form of detailed explanations.

In the case when the question is related to some

specific details of the computer system, a pointer to

10 DJORDJEVIC ET AL.



the appropriate part of the HTML version of the

computer system reference manual containing the

required descriptions is given.

The second step is compulsory since the students

use the CALKAS system in the Lab Test mode as an

entry check to find out whether they are familiar with

the topic of a particular laboratory exercise to such

an extent that the work with the simulator can be

allowed. After successful login, the CALKAS

system randomly generates the predefined number

of questions with offered answers from the database

with questions and begins to count down the time

remaining for giving the answers. The student answers

the questions by activating the appropriate check

boxes in front of the answers deemed to be correct

(Fig. 11a). The students can view all the questions

generated, give answers, modify the answers already

given and review the answers given. The CALKAS

system checks the correctness of the answers given

and based on the predefined knowledge threshold

generates a message whether the test has been carried

out successfully or unsuccessfully. The information

concerning the knowledge assessment completed,

such as the student’s identification number, the

date, the time, the laboratory exercise identification

number, the questions generated, the answers given

etc. are saved in the appropriate database tables. This

makes it possible to obtain at any time during the

course of laboratory exercises all relevant information

concerning all knowledge assessments taken by any

student. When a student has completed the Lab Test

he can get the Lab Test Report (Fig. 11b). This report

contains the score and the table with all questions

from the test, the answers offered for each question,

the answer given by the student marked with the

asterisk and the correct answer colored in red.

Finally, the work with the simulator begins with

the starting screen (Fig. 7a), which is used to choose

the complete initialization. The next step is the

selection of one of the predefined exercises from

the complete initialization from a file screen (Fig. 5b).

The simulation itself starts with the block structure

at the level of the processor’s units screen (Fig. 8).

The typical use of the simulator in the laboratory

is given in more detail for one part of one of the

laboratory exercises in which one follows the

execution of the SUB (subtraction) instruction

realized in three phases in the processor’s units IF,

IE, and IS.

The execution of the SUB instruction begins in

the IF unit where the instruction is fetched and loaded

in the instruction register, the address of the operand is

formed and the operand is read. The instruction is then

transferred from the IF unit into the IE unit. In the IE

unit the operand is subtracted from the contents of the

accumulator, the result is loaded into the accumulator

and the program status word flags are set according to

the result obtained. Finally, the instruction is trans-

ferred from the IE unit into the IS unit. In the IS unit a

check whether there is an interrupt is carried out.

Since the result of the check shows that there is not an

interrupt, there is no need to do anything in the IS unit

and the IF unit is activated again. Each instruction

goes through the steps described in a similar way.

During the execution of an instruction the IF, IE, and

IS units activate the MI unit when there is a need to

either read from or write into the main memory. In

order to do that the MI unit sends the bus request to the

Figure 10 Self Learning: Start Window. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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arbiter and performs the memory read or write

operation when it receives the bus grant.

The instruction fetch begins when the contents of

the IF unit’s PCIF counter (1,000 h) is sent on the

parallel inputs of the MI unit’s MAR register and

signals ldMAR and incPC are generated (Fig. 8).

Therefore, the windows of the IF and MI units are

opened in the detailed presentation window, and the

block structure of the processor at the level of units is

given in the global presentation window. On the next

clock value 1,000 h is loaded into the MAR register

and the contents of the PCIF counter incremented.

Then signal readf is generated initiating in the MI unit

the reading of the first byte of the SUB instruction.

The MI unit sends to the arbiter bus request signal

brq_cpu and, since there is no other bus requests,

receives bus grant signal grant_cpu (Fig. 12). There-

fore, the windows of the MI unit and the ARB module

are opened in the detailed presentation window, and

the block structure of the computer system at the level

of modules is given in the global presentation window.

Then the contents of the MI unit’s MAR register

(1,000 h) is sent on the ABUS bus address lines and

the RDBUS bus control signal generated causing the

start of the read operation in the memory module

(Fig. 9). Therefore, the windows of the IF unit and the

MEM module are opened in the detailed presentation

window, and the block structure of the computer

system at the level of modules is given in the global

presentation window. When the memory module

completes the read operation, the data read (31 h)

are sent on the DBUS bus data lines and loaded into

Figure 11 Lab Test Exercise Window (a) and Lab Test Report Window (b). [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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the MI unit’s MDR register. From this register

the data are transferred into the IF unit’s IRIF

instruction register. These steps provide the first

byte of the SUB instruction. In order to complete the

fetching of this instruction, the length of which is

three bytes, these steps are repeated for the second and

third bytes.

The following steps provide the calculation of the

address of the operand and the reading of the operand.

The contents of the specified base register BR0 (0001

h) and the displacement from the IRIF instruction

register (02 h) are led to the inputs of the ADD adder.

The effective address of the operand (0003 h), which

appears at the outputs of the ADD adder, is led to the

parallel inputs of the MI unit’s MAR address register

(Fig. 13). The loading of value 0003 h into the MAR

register, the arbitration in the arbiter module and

the reading of the one byte operand in the memory

Figure 12 Bus arbitration. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 13 Base addressing with 8-bit displacement. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

COMPUTER AIDED LEARNING 13



module are realized in a similar way as the reading of

bytes from the memory during the instruction fetch.

The final steps in the IF unit provide the transfer

of the SUB instruction from the IF unit into the IE

unit. Therefore in the Global presentation window are

at the same time opened relevant parts of both units

(Fig. 14). In one of these steps the contents from the IF

unit’s IR0IF and IR1IF registers (3,150 h) is brought at

the inputs of the IE unit’s IRIE instruction register and

signal ldIRIE generated. Therefore, on the next clock

value 3,150 h, which among other things contains the

operation code, is loaded into the IRIE register. In the

same way all other information needed for further

execution of the instruction in the IE or IS units, such

as the operand read, the program counter, the program

status word etc., are transferred from the IF unit into

the IE unit.

In the IE unit, where the instruction execution

phase is performed, the operand from the BL register

is subtracted from the AL register, the result obtained

loaded into the AL register and flags V (overflow),

C (carry), Z (zero) and N (negative) of the PSW

program status register set in accordance with the

result obtained (Fig. 15). Therefore, the contents of

the AL register (E7 h) is led to the A inputs of the

ADD adder, the first complement (44 h) of the

contents of the BL register (BBh) to the B inputs of

the ADD adder and value 1 to the C0 input. The result

(4 Ah), formed at the outputs of the ADD adder, is led

to the inputs of the AL register. At the same time the

values of the overflow, which is VSUB¼ 0, and the

borrow, which is the complement of C8¼ 0, formed

according to the result obtained (4 Ah), are led to the

inputs of the V and C flags, respectively. Since in the

same step are generated active values of signals ldAL,

ldV and ldC, on the next clock values 4 Ah is loaded

into the AL register and values 0 and 1 into the V and

C flags, respectively. In the next step, based on

value 4 Ah of the AL register, are formed values

ALZ¼ 0 and AL7¼ 0 to set the Z and N flags,

respectively. Since in the same step are generated

active values of signals ldZ and ldN, on the next clock

value 0 is loaded into the V and C flags.

The final steps in the IE unit provide the transfer

of the SUB instruction from the IE unit into the IS

unit. This is done in the way similar to the one when

the instruction was transferred from the IF unit

into the IE unit (Fig. 14). In the IS unit a check

whether there is an interrupt is carried out (Fig. 16).

Since signal int is inactive, which is the indication

that there is not an interrupt, there is no need for the

interrupt handling in the IS unit. Therefore, the final

steps in the IS unit provide the transfer of data needed

to start the execution of the next instruction from the

IS unit into the IF unit. This is done in the way similar

to the one when the instruction was transferred from

the IF unit into the IE unit (Fig. 14). In this way the

execution of the SUB instruction is completed and the

execution of the next instruction begins.

In a similar way the execution of the remaining

instructions of the exercise is followed. At the com-

pletion of the exercise the students submit written

reports containing answers to questions related to

some typical situations being demonstrated.

Figure 14 Transfer of the SUB instruction from the IF unit into the IE unit. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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CONCLUSIONS

Dramatic changes in technology, markets, and com-

puter applications create a quite unique and challeng-

ing arena for computer architecture instructors and

students. The goal is to provide learning environments

that will provide hands-on experience and nurture

rapid learning, yet be intuitive and interesting to

students. This paper presents one educational environ-

ment for learning and teaching of introductory

computer courses in computer architecture, a core

course in electrical and computer engineering, and

computer science programs. The environment in-

cludes an educational computer system, a graphical

Figure 15 Subtraction and setting of flags in PSW. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 16 IS unit. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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simulator of an educational computer system

(SimECS) and a web-based software system for

Computer Architecture Learning and Self-Testing

(CALKAS).

The computer architecture and organization

laboratory described in the paper has been used with

success for a few years at the College of Electrical

Engineering, Belgrade, the College of Economics,

Valjevo, and the College of Business, Blace, Serbia.

This laboratory engaged students in active learning

and allowed them to ‘experience’ inner workings of

computer systems though graphical representation

and animation. In addition to the laboratory, the

majority of students used the SimECS for self-study

at home. We found that CALKAS system had been

a crucial in providing a feedback to both the students

(through self-testing) and instructors (analyzing

results for potential subjects that are more difficult

for students).
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