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Abstract
One of the major problems in a number of SM (Shared

Memory) and DSM (Distributed Shared Memory) appli-
cations is the overall cost of read misses in conditions
when: (a) system latencies are relatively large, and (b) a
shared data item is read relatively few times by each of
the processors in the system; modern SM and DSM sys-
tems are typically based on off-the-shelf microprocessors
which do not include any support for the described
problem. Consequently, the major goal of our research is
to come up with a new concept to be incorporated into
the next generation microprocessors, so they can become
more efficient in the sense described above. Existing 64-
bit processors support only data prefetching (PF) as a
method to fight against negative effects of the described
problem. Our research introduces a new concept re-
ferred to as cache injection (CI), as well as the related
cache injection/cofetch architecture (CICA). Initial per-
formance evaluation is performed using a simulation
methodology based on the set of synthetic benchmarks of
interest for the research sponsor.

1. Introduction

The CICA approach has been defined as a method to
minimize the probability and the negative effects of the
read miss, in SM and DSM systems. This paper com-
pares existing solutions (which can be synthesized from
features supported by the present day microprocessors)
and variations of the proposed solution (which can be
synthesized only with the newly proposed cache injection
mechanism). This general idea was first introduced in
[1]; however, it has been considerably improved through
the research presented here [2].

2. Cache injection/cofetch strategies

The proposed cache injection/cofetch architecture in-
cludes three scenarios, in the context when one processor
node is a data producer and one or more processor nodes
are potential data consumers: (a) one or more consumers
express a potential need for certain data (by executing
appropriate code generated at compile time), and injec-
tion is initiated by producer (on write-back); (b) one or
more consumers express a potential need for certain data,
and injection is initiated by a consumer (on first con-
sumer read); (c) no consumer is responsible to express
the need for certain data; however, a producer (based on
its code generated at compile time) forcefully injects the
potentially needed data into the cache memory of one or
more potential consumers. The term cofetch stresses the
fact that the above described injections can be done con-
currently at various processor nodes in the system. In this
paper, the first two scenarios have been further elabo-
rated; the third one is the subject of a follow-up work.

Figure 1. includes all necessary descriptions and ex-
planations for the existing solutions: (a) classical (proc-
essors do not include data prefetching), and (b) pre-
fetching (PF). Figure 2. includes all necessary descrip-
tions and explanations for the cases: (a) cache injection
on producer write-back, and (b) cache injection on first
consumer read. In the first case, the data producer initi-
ates the write-back command to force the block back into
the memory; at the same moment, all processors that
have estimated that the related block will be needed, will
inject the block into their respective caches (the IAT ta-
ble contains the addresses of data estimated to be
needed). In theory, estimation can be done either by the
compiler or the programmer. If the injection destination
is the cache - there may be implementational problems.
Consequently, an intermediate buffer is needed. Later,
data can be automatically transferred from this buffer
into the cache, if the estimation was proved to be correct
and the data are really needed. In the second case, the
first of the consumers will not find the needed data in its
own cache; however, other consumers will, due to the
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above described action of the first consumer. An impor-
tant issue here is the state of the arriving block (it must
arrive as a read-only block). This is of relevance for the
first case, as well. If more consumers are involved with a
right to write, only one is to obtain some type of exclu-
sive rights, which is the subject of a follow-up research
(others have to stop injecting in that case, in a predefined
way).

3. Initial performance evaluation

Initial performance evaluation is performed using
synthetic address traces for a bus based multiprocessor.
The major goal of the simulation analysis is to compare
performance of the existing (Classical, PF) and proposed
(CI, CI+PF) solutions. Execution time and bus traffic are

used as performance measures. Application of interest is
described through a set of workload parameters. Details
of workload, software, system architecture, conditions,
assumptions, and related references for each solution are
given in [2].

The results of simulation show that each suggested
solution can contribute to performance, but the right
combination of prefetch and injection mechanism is the
winning solution for a number of different applications of
interest. The performance benefit for the solution which
combines prefetch and injection approaches is between
5% and 15%, depending on application type.
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a) injection on write-back
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b) injection on first consumer read
Figure 2: Proposed solutions. Legend: IAT - Injection

Anticipated Table. Description: Instead of a prefetch instruc-
tion, P2 and P3 issue the Piat instruction, which puts the ad-
dress of the data that is expected to be used in the IAT. Ex-
planation: (a) When processor P1 issues a write-back in-
struction, processors P2 and P3 catch the data, and put it into
their caches; (b) In this case, processor P1 (producer) does not
issue the write back instruction. When processor P2 (first
consumer) reads data, processor P3 (second consumer) will
catch the data, if the address of that data is in the IAT of the
processor P3. Implication:  (a) P1_wait_time=TWM,
P2_wait_time=TRH, P3_wait_time=TRH; Bus operations:
bus_read_exclusive + bus_write; (b) P1_wait_time=TWM,
P2_wait_time=TRM, P3_wait_time=TRH; Bus operations:
bus_read_exclusive + bus_read.
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a) classical solution
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b) prefetch solution
Figure 1: Existing solutions. Legend: I-Invalid, V-Valid,

D-Dirty, S-Shared, TWM - Write Miss Time, TRM - Read Miss
Time, TRH - Read Hit Time. Description: A sequence of in-
structions is shown to demonstrate a producer-consumer rela-
tionship: first P1 writes to location X; second P2 reads location
X, and third P3 reads location X. Explanation: (a) The P1
store instruction causes a read-exclusive bus operation, to re-
trieve the exclusive copy of the cache line. The P2 load in-
struction initiates a read bus operation, P1 snoops the line and
sees that it has the block dirty, and P1 flags this using the dirty
line on the bus, which disables the memory and enables it to
drive the data; P1 then transitions to a shared state along with
P2, which reads data. The memory controller also triggers a
memory write in order to update main memory. The P3 load
instruction is translated into a read bus operation. Processors
P1 and P2 perform snoop, but they have no dirty copy of data;
they do not interact with this read; (b) The sequence of in-
structions which is considered above has been extended with
prefetch instructions; P2 and P3 insert prefetch instructions to
prefetch data which is expected to be used. Implication:  (a)
P1_wait_time=TWM, P2_wait_time=TRM, P3_wait_time=TRM;
Bus cycles: bus_read_exclusive + 2*(bus_read); (b)
P1_wait_time=TWM, P2_wait_time=TRH, P3_wait_time=TRH;
Bus operations: bus_read_exclusive + 2*(bus_read).


