
Lazy Prefetching

Aleksandar Milenkovic, Veljko Milutinovic
University of Belgrade, Serbia, Yugoslavia

email: {vm | emilenka}@etf.bg.ac.yu

Abstract
High latency of memory accesses is critical to the

performance of shared memory multiprocessors. The
technology trends indicate that this gap between proces-
sor and memory speeds is likely to increase in the future.
To cope with memory latency problem two software-
controlled techniques have been investigated: prefetch-
ing and remote write. Prefetching is a consumer-initiated
technique which moves data close to the processor be-
fore they are actually needed by explicit execution pre-
fetch instruction. Remote write, a producer-initiated
technique moves data close to the processor estimated to
be the next consumer. However these techniques can
degrade the performance in the case of misprediction of
future needs and/or consumers. The new method called
lazy prefetching which combines good properties of pre-
fetching and remote write techniques is presented in this
paper. The experimental methodology used for perform-
ance analysis is also described.

1. Introduction

The problem of the high memory latency is the most
critical performance issue in the cache-coherent shared
memory multiprocessors. There are two main techniques
to attack memory latency: (a) the first set of techniques
attempts to reduce memory latency and, (b) the second
set attempts to hide it. The most promising software-
controlled techniques for hiding the memory latency are
data prefetching and remote write.

Data prefetching is a technique that moves data ex-
pected to be used by a given processor closer to the proc-
essor before it is actually needed. Software-controlled
prefetching implies that prefetch instructions are inserted
into application code, either explicitly by the programmer
or automatically by the compiler. However, prefetching is
inapplicable or insufficient for some communication
patterns, especially for producer-consumer patterns.

In those cases producer initiated data transfers are a
natural style of communication. Under the term of remote
writes [2] we imply the producer initiated primitives
which move data close to the consumer(s) as soon as the
data becomes available, minimizing the latency at the
consumer’s read.

Lazy prefetching technique combines both prefetching
and remote write to solve the problem of misprediction of
future needs and/or consumers. This technique also
eliminates the problem of early issued prefetching.

Performance analysis is performed using SPLASH-2
application suite. Experimental methodology is based on
execution-driven simulator Limes [3] and instrumenta-
tion tool Scopa [4].

In the following section lazy prefetching strategy is
presented. Also, a possible implementation in cache-
coherent shared memory system is described. Section 3
describes experimental methodology used for perform-
ance analysis.

2. Lazy prefetching

The downside of prefetching and remote write tech-
niques may sometimes outperform the benefit, especially
in the cases of misprediction of future needs and/or con-
sumers. Also, the problem arises in the case of early is-
sued prefetch instruction when consumer asks for the
data before the data are produced. Proposed solution
called lazy prefetching (LP) combines good properties of
both prefetching and remote write: consumer itself may
know its future needs better than producer, and the mo-
ment when the data producing is finished, is the best-
known to data producer.

In the case of LP consumer anticipates its future needs
using ask instruction. The algorithm for inserting ask
instructions can be the same as the algorithm for insert-
ing prefetch instruction. Ask instruction checks the data
cache and if the data is not present in the cache a request
to memory is initiated. A memory agent accepts this mes-
sage and checks the memory. If the memory copy of re-
quested data is valid, the agent sends the requested block
to the processor.

Proceedings of the IEEE HICSS-98,
Mauna Lani, Hawaii, January 6-10, 1998.

This scenario is described in Figure 1. Programing
model and execution of the relevant threads are shown in
Figure 1a and 1b, respectively.

However, if the memory agent finds that memory does
not have a valid copy (some processor is exclusive owner
of that block) the request (block address and number of
processor) is saved in special table managed by memory
agent. After the writer finishes the data producing, it
initiates memory update operation using wb instruction.
Write back cycle forces the memory agent to deliver the
updated block to potential consumers according to the
information from special table. This scenario is described
in Figure 2. Programing model and execution of relevant
threads are shown in Figure 2a and 2b, respectively.

3. Performance analysis

The performance impact of the proposed solution will
be evaluated by comparing five systems: a base cache-
coherent shared memory system (Base) and the base sys-
tem extended with software prefetching (PF), remote
writes (RW), both prefetching and remote writes (PF +
RW) and the system which combines all prefetching,
remote writes and lazy prefetch/remote write (PF + RW +
LP).

Performance evaluation will be performed using exe-
cution-driven simulator based on Limes and Scopa tools
[4, 5].

In our experiments a set of synthetic benchmarks of
interest (synthetic analysis) and applications from
SPLASH-2 benchmark suite (realistic analysis) are used.

Several simple heuristics based on application behav-
ior will be used for inserting prefetch (pf, ask) and re-
mote write (ws, wb) instructions by hand.

Simulation and implementation analysis is performed
for SMP systems based on dance-hall and bus-based
shared memory architectures [5].

4. References

[1] Mowry, T., Tolerating Latency Through Software-controlled Data
Prefetching, Phd thesis, Stanford University, 1994.
[2] Abdel-Shafi, H., Hall, J., Adve. S, Adve, V., “An Evaluation of Fine-
Grain Producer-Initiated Communication in Cache-Coherent Multiproces-
sors,” Proceedings of the 3rd HPCA, IEEE Computer Society Press, 1997,
pp. 204-215.
[3] Magdic, D., “Limes: A Multiprocessor Simulation Environment,”
TCCA Newsletter, March 1997, pp. 68-71.
[4] Marinov, D., Magdic, D., Milenkovic, A., Protic, J., Tartalja I., Miluti-
novic, V., “Characterization of Parallel Applications for DSM Systems,”
Technical Report TI-ETF-97-040, School of Electrical Engineering, Uni-
versity of Belgrade, Serbia, Yugoslavia, September 1997.
[5] Milutinovic, V., Milenkovic, A., “Cache Injection/Cofetch Architec-
ture: Initial Performance Analysis,” Proceedings of the 5th MASCOTS,
IEEE Computer Society Press, Los Alamitos, California, January 1997.

VWRUH [

ORDG [

3
L

3
M

�

�

DVN [

�

ZE [

�

VWRUH [

DVN [

3
L

3
M

�

�

ORDG [

�

ZE [

�

(a) (b)
Figure 1. Prefetching initiated with ask instruction.

Description: Figure (a) shows producer thread (proces-
sor Pi) and consumer thread (Pj). Wb and ask instruc-
tions are inserted by programmer or compiler. Figure (b)
shows relevant execution threads. Grey arcs demonstrate
messages on the interconnection network. Since instruc-
tion ask finds that requested block is valid in memory it
initiates the data transfer to processor Pj.

VWRUH [

ORDG [

3
L

3
M

�

�

�

ZE [

� DVN [

VWRUH [

3
L

3
M

�

�

ORDG [

ZE [

�

DVN [�

(a) (b)
Figure 2. Prefetching initiated with wb instruction.

Description: Figure (a) demonstrates scenario where
consumer thread (Pj) express the needs using instruction
ask before the block x is produced by data producer
(thread Pi). Figure (b) shows execution threads. Since
instruction ask doesn’t find that requested block is valid
in memory the memory agent saves the request (block
address and processor ID) in special table. Data producer
forces memory update using wb instruction after the data
producing is finished. Simultaneously memory agent
sends the block to interested consumers according to the
information from special table.

