
Execution Characteristics of SPEC CPU2000 Benchmarks:
Intel C++ vs. Microsoft VC++

Swathi Tanjore Gurumani Aleksandar Milenkovic
Electrical and Computer Engineering Department

University of Alabama in Huntsville
Huntsville, Alabama

{gurumas, milenka}@eng.uah.edu

ABSTRACT
Modern processors include features such as deep pipelining, multi-
level cache hierarchy, branch predictors, out of order execution
engine, and advanced floating point and multimedia units. To
successfully exploit these features, architecture-aware compilers
that can produce target-specific optimal codes for the applications
are needed. Using the knowledge about the architectural features,
the compilers can contribute to maximizing the application
performance through effective pipeline scheduling, memory
penalty minimization and path length reduction. A study of the
execution characteristics for the binaries generated by the various
compilers can provide insights about the effectiveness of the
optimization options used in the compilers. The in-built
performance monitoring hardware found in present day processors
can be used to collect the performance metrics for the study of
execution characteristics. In this paper, we compare the Intel C++
and Microsoft VC++ compilers by studying the execution
characteristics of SPEC CPU 2000 benchmarks run on a Pentium
IV processor. The benchmarks were compiled with identical
optimization switches in both compilers and the performance
metrics were collected using Intel’s VTune Performance Analyzer.
The analyses of results showed that the Intel C++ compiler
performed better than VC++ for all considered applications and
significantly better for computer visualization and graphical
applications.

General Terms
Measurement, Performance, Experimentation

Keywords
Compiler optimizations, Performance Evaluation, SPEC CPU2000
benchmarks, Event-based sampling.

1. INTRODUCTION
The effect of compilers and compiler optimizations on application
performance has been studied and analyzed for sometime now.
Performance characteristics of an application are found to be

dependent on the type of compiler options used [5]. Software
developers depend on compiler optimizations to attain the required
performance characteristics from current day applications, which
are becoming more complex and bigger in size. The present day
compilers are required to keep pace with upcoming processor
technologies to exploit newer and more efficient optimization
techniques. Compilers must be aware of computer architecture
features like deep pipelining, multi-level cache hierarchy,
instruction level parallelism, and branch prediction to provide
optimal performance [3]. Architecture aware compilers exploit the
hardware features and contribute to maximizing the application
performance. Compiler/hardware interaction leads to performance
improvements attained through path length reduction, efficient
instruction selection, pipelining scheduling and memory penalty
minimization [5].
Performance has been shown to improve by using processor
specific optimizations. Performance gain of at least 10% was
obtained by running Linpack executables compiled using Xeon
specific optimizations over executables compiled using Pentium
III processor optimizations [2]. Examples of branch optimization
by architecture-aware compilers shown by Milenkovic et.al. [3]
have proved the importance of compilers and optimizations with
regard to application performance.

The best way to evaluate the compilers strength is to study the
performance and execution characteristics of the executables
generated by the compilers. The performance evaluation of these
executables can be used to study the effectiveness of the various
optimization switches that can be used in compilers. Most current
day processors come with a built-in hardware to support
performance monitoring, and these performance-monitoring
counters can be calibrated to collect relevant event data.
Performance evaluation has already been done for Pentium Pro
processor using SPEC 2000 benchmarks [6] and Pentium II
processor using Multimedia applications [1]. Pentium III and
Pentium IV performances have been compared to emphasize
processor specific optimizations in [2]. But these performance
analyses did not include the comparison of compilers and were
used to study the underlying architecture and to characterize
workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SE’04, April 2–3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-870-9/04/04…$5.00.

In this paper, we compare the Intel C++ and Microsoft VC++
compilers. The SPEC CPU2000 benchmarks were compiled with
Intel C++ and Microsoft VC++ compilers and the execution and
performance characteristics of the binaries were studied. The
compiled benchmarks were run on a Pentium IV based system.
Intel’s VTune Analyzer was used to calibrate and collect data from
the performance counters. Analyses show that the Intel compiler,

261

by virtue of the knowledge of the processor’s architecture,
outperformed the Microsoft counterpart in most cases in
performance. This proves that the processor itself does not
determine the performance of the system. Though the system’s
processor and memory architecture contributes to the performance,
the compiler used also plays a major role in the performance. A
fair comparison of the compilers’ contribution to performance can
be obtained by running the executables generated by two different
compilers on the same system, with the same processor, memory
architecture, and operating system. Hence, the differences in the
obtained execution characteristics are directly related to compilers.

The remainder of the paper is organized as follows. Section 2
gives an overview about Intel C++ and Microsoft VC++ compiler
and about their optimization switches. Section 3 details the
performance monitoring facilities available in the Pentium IV
processor. Section 4 describes the experimental setup that was
used to collect data. Section 5 presents the results obtained and
also the observations and inferences that are made from the results.

2. COMPILERS USED
The information about the compilers is obtained directly from
MSDN library for VC++ [9] and Intel C++ compiler’s user guide
[10]. Visual C++ 6.0 is the leading C++ compiler for 32-bit
Microsoft Windows and has a number of features that aid in
producing fast programs. The Microsoft VC++ compiler can
perform all the general code optimizations with the help of
compiler switches and pragma statements. The VC++ compiler
performs copy propagation and dead store elimination, common
subexpression elimination, register allocation, function inlining,
loop optimizations, flow graph optimizations, peephole
optimizations, scheduling, and stack packing. It does not do loop
unrolling, although it does unroll loops for a few small special
cases such as block memory moves. The switches that affect code
generation are the /G options whereas switches that control
optimization are the /O options. The compiler can target Pentium
CPUs (/G5), Pentium Pro CPUs (/G6), or a "blend" of Pentium and
Pentium Pro optimization options (/GB, the default). The default
/GB switch is designed to produce good results, as it targets the
most common current processor. The three most common compiler
optimization switches are /Od, which disables all optimizations for
debugging purposes, /O1, which minimizes code size, and /O2,
which maximizes code speed. The /O2 option creates the fastest
code and is the default setting for the release builds. It is
equivalent to using the switches /Og /Oi /Ot /Oy /Ob1 /Gs /Gf /Gy.
Table 2.1 gives the compiler options invoked with /O2 switch.

The Intel C++ compiler is designed to be easily interfaced with the
Microsoft VC++ environment. The Intel C++ compiler optimizes
performance for applications running on Intel architecture-based
computers. Performance gains by using this compiler are a result
of profile-guided optimization, prefetch instruction, and support
for Streaming SIMD Extensions (SSE) and Streaming SIMD
Extensions 2 (SSE2), automatic vectorizer, data prefetching, inter-
procedural optimization and processor dispatch. The processor
dispatch takes advantage of the latest Intel architecture features
while maintaining object code compatibility with previous
generations of Intel Pentium processors. Profile-guided
Optimizations (PGO) let the compiler know which areas of an
application are most frequently executed. By knowing these areas,
the compiler is able to be more selective in optimizing the
application. PGO helps by allocating registers using the profile

information to optimize the location of spill code. Intel C++
compiler’s /O2 optimization to favor speed enables the same
switches that Visual C++ 6.0 enables with /O2.

Table 2.1 Compiler options invoked with /O2 switch

Switch Function
/Og Eliminates local and global common

subexpressions, allows automatic register
allocation, and allows loop optimization.

/Oi Replaces certain function calls with inline
function expansion.

/Ot Favors faster executable files.
/Oy Suppresses creation of frame pointers on the call

stack.
/Ob Controls inline expansion of functions
/Gs Controls stack probes
/Gf Copies identical strings into one location in the

executable file
/Gy Allows compiler to package individual functions

in the form of packaged functions

3. PERFORMANCE MONITORING
FEATURES OF PENTIUM IV PROCESSOR
The performance monitoring hardware in Pentium IV includes
event detectors and event counters and support for Precise Event-
Based Sampling (PEBS). It supports 48 event detectors and 18
event counters and this enables concurrent data collection of a
large number of events. PEBS support is a significant
performance-monitoring advantage provided by Pentium IV as
previous processors supported only Imprecise Event-Based
Sampling (IEBS). Event based sampling, whether precise or
imprecise, gives a good estimation of the number of events. Event
based sampling is an alternative to periodic or time based
sampling, where samples are collected at regular time intervals.
Events are measured only after a specified number of events have
occurred. PEBS reduces the interference experienced by the
monitoring system and allows collection of more samples for the
same level of interference. The results showing the advantage of
PEBS over IEBS, and more information about performance
monitoring features of Pentium IV can be found in [8].

4. EXPERIMENTAL SETUP
SPEC CPU2000 benchmark suite [11] was selected to study the
compilers. The benchmark suite portrays a wide variety of
applications and can exhaustively test the abilities of the compiler.
SPEC CPU2000 benchmarks measure the performance of the
processor, memory and compiler used on the tested system and do
not stress on I/O devices, networking and the operating system.
The industry standard benchmarks portray real user applications
and are computation intensive. Benchmarks from CINT2000
(integer benchmark suite) and CFP2000 (floating point benchmark
suite) were used in this analysis. The reference input set provided
by SPEC was used to provide inputs to the application. Table 4.1

262

gives the descriptions of the benchmarks used for this
experimentation.

Table 4.1 Benchmarks Used

Name Description

164.gzip (INT) Data Compression written in C

176.gcc (INT) C Programming Language Compiler

177.mesa (FP) 3-D Graphics Library written in C

181.mcf (INT) Combinatorial Optimization written in C

186.crafty (INT) Chess – Game Playing written in C

197.parser (INT) Word Processing written in C

252.eon (INT) Computer Visualization written in C++

253.perlbmk (INT) PERL Programming Language written in
C

254.gap (INT) Group Theory, Interpreter written in C

255.vortex (INT) Object Oriented database written in C

The source codes of the benchmark suite were first compiled using
Microsoft Visual C++ and the Intel C++ compiler. The Visual C++
environment (IDE) was used to configure both compilers. The
benchmarks were compiled with the /O2 optimization switch being
enabled. By enabling the /O2 optimization switch, the compilers
were used to produce a code for maximizing the speed of the
application. As already shown, both compilers make use of the
same options when the /O2 switch is used. The programmer was
not allowed to interfere and fine tune the application, affecting its
performance.
Intel’s VTune performance analyzer v5.0 [4] was then used to
collect the performance metrics using these compiler-generated
executables. VTune supports simultaneous sampling of multiple
events and real time display using counter monitors. It has a
customizable user interface that can be configured to collect the
required events. Though VTune supports both time based and
event based sampling, VTune was configured to collect
performance data using event based sampling to take advantage of
Pentium IV’s EBS feature. Since VTune has a low intrusion, the
samples collected provide a closer representation of application’s
actual performance. VTune was configured to collect the following
events: clockticks, instructions retired, loads retired, stores retired,
branches retired, I level cache misses and mispredicted branches.
The events were collected separately for Intel C++ and VC++ and
later compared against each another.

5. RESULTS
Clockticks is the best measure for comparison when the /O2
optimization switch has been used. The applications have been
compiled to maximize speed and we would expect the application
to run in minimum amount of time. Figure 5.1 shows the
normalized comparison of clockticks. It is clear that the number of
clockticks is always less in the case of Intel compiler. There is a
drastic decrease in the number of clockticks for the application
252.eon. It is interesting to note that 177.mesa and 252.eon are 3D
graphics library and computer visualization applications,
respectively and they show a clear reduction in clockticks when

compiled with the Intel compiler. The other application, which
shows a distinct difference, 186.crafty is the chess gaming
program. Though the other benchmarks do not portray a very large
difference, 186.crafty, is clear that the Intel compiler takes
advantage of its architecture and optimizes better for graphics and
visualization applications.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255

Applications

C
lo

ck
tic

ks
 R

at
io

MSVC++
IC++

Figure 5.1 Comparison of Clockticks

Though the program size is not optimized in /O2, a comparison of
the size of binaries generated by the compilers reveal that VC++
produced smaller executables. Table 5.1 gives the comparison of
the size of the binaries produced by the compilers.

Table 5.1 Comparison of Binaries size

Benchmark Code Size (in Bytes)

 MSVC++ IC++

164.gzip 69,632 77,824

176.gcc 1,089,536 1,314,816

177.mesa 442,368 610,304

181.mcf 49,152 53,248

186.crafty 241,664 258,048

197.parser 118,784 131,072

252.eon 405,504 413,696

253.perlbmk 516,096 651,264

254.gap 356,352 413,696

255.vortex 417,792 454,656

It would be interesting to see the number of instructions for the
same set of applications for which the clockticks were compared.
Figure 5.2 shows the normalized number of instructions executed.
The instruction counts are lower all applications, except for
197.parser, 253.perlbmk, and 254.gap which show a negligible
increase in the number of instructions executed (<3%).
Benchmarks 177.mesa and 252.eon have significantly reduced the
number of instructions executed, for 21% and 15% respectively.

263

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255

Applications

In
st

ru
ct

io
n

C
ou

nt

MSVC++

IC++

Figure 5.2 Comparison of Instruction Count

The general rule is that the most widely used instructions are the
simple operations like load, store and branch. Together they
contribute to about more than 50% of the overall instructions
executed [7]. Hence, it was decided to study the distribution of
these instructions in both cases. The breakdown of instructions
was then studied to observe what kind of instructions made the
difference in the comparison or if it was due to an overall decrease
in all instructions. On average, there were about 35% load
instructions, 20% stores and about 18% branch instructions in the
considered applications. A more thorough comparison is provided
in the following sections. Figure 5.3 compares the distribution of
loads in the applications.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255
Applications

D
is

tr
ib

ut
io

n
of

 L
oa

ds

Icount
MSVC++
IC++

Figure 5.3 Comparison of Loads Retired

The distribution of loads corresponding to their respective
instruction count shows that the percentage of load instructions is
about the same for most applications except 252.eon, where there
is about a 15% difference. It is obvious that VC++ would have
more load instructions retired for all cases when the absolute
numbers are compared.

The distribution of stores is shown in Figure 5.4. Apart from
252.eon, the percentage of distribution is identical for both
compilers. It is clear that the Intel compiler has considerably
reduced the number of memory accesses for the computer
visualization application. Applications like 253.perlbmk and

254.gap, which had the instruction count on the higher side for the
Intel compiler, also show a decrease in the percentage of loads and
stores. It can be understood that the Intel compiler targets to
decrease the number of memory accesses for all applications,
decreasing the number of load and store instructions.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255

Applications

D
is

tr
ib

ut
io

n
of

 S
to

re
s

Icount
MSVC++
IC++

Figure 5.4 Comparison of Stores Retired

There is no visible difference between the two compilers in the
distribution of branch instructions. Figure 5.5 shows the
comparison. The Intel C++ compiler should be aware of the type
of branch predictors used in the architecture. Hence the number of
mispredicted branches was compared to check if this prior
knowledge translates into fewer mispredictions.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255

Applications

D
is

tr
ib

ut
io

n
of

 B
ra

nc
he

s

Icount
MSVC++
IC++

Figure 5.5 Comparison of Branches Retired

Figure 5.6 shows the comparison of mispredicted branches with
respect to the overall branch instructions for each of the compilers.
The ratio of mispredcited branches is less than 10% in both cases
and there is not much of a difference between the two compilers.

Since the distribution of load, stores and branches were similar for
most applications, a comparison was made of the other instructions
that make up the total count. It is clear from Figure 5.7 that the
other instructions contribute to about 35% of the total instructions.
Also, 252.eon has a reasonably higher percentage of such

264

instructions for the Intel compiler, making up for the reduction in
loads and stores. These other instructions could be multimedia
specific instructions that the Intel compiler has taken advantage of
and maximized the performance.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255
Applications

M
is

pr
ed

ic
te

d
B

ra
nc

he
s

R
at

io

Branches

MSVC++

IC++

Figure 5.6 Comparison of Mispredicted Branches Retired

The same can be said about 177.mesa, though the difference in
percentages of other instructions is not very pronounced. The I-
level cache misses were also compared to study the effect of
compilers on the memory characteristics of the applications. The
comparisons of cache misses are given in Figure 5.8. Intel
executables consistently had a fewer cache misses for the
applications, as the number of references were also less. But there
is no difference in the percentage of the cache misses in both
cases. 181.mcf, which shows a high percentage of misses, is a
large-scale minimum cost flow problem that is solved with a
network simplex algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255
Applications

D
is

tr
ib

ut
io

n
of

 O
th

er
 In

st
ru

ct
io

ns

Icount
MSVC++
IC++

Figure 5.7 Comparison of other instructions

6. CONCLUSION
The execution characteristics of selected SPEC CPU2000
benchmarks were presented for the Microsoft VC++ and Intel C++
compilers. The comparison of clockticks showed that IC++
performed better than VC++ for all considered applications,

though the degree of improvement was different for specific
applications.

0

0.2

0.4

0.6

0.8

1

1.2

164 176 177 181 186 197 252 253 254 255
Applications

I-L
ev

el
 C

ac
he

 M
is

se
s

R
at

io

References

MSVC++

IC++

Figure 5.8 Comparison of I-level Cache Load Misses

The Intel C++ compiler performed considerably better than the
Microsoft counterpart for applications that involved graphics
libraries and computer visualization. Though the study of the
instruction count reveals that VC++ generated fewer instructions
for certain applications compared to IC++, it should be borne in
mind that the applications were optimized for maximum speed.
The distribution of load, store and branch instructions were almost
similar for both compilers, though there is a difference in the
absolute numbers. The number of loads and stores was reduced
greatly in the Intel compiler for the computer visualization
application. There was no distinct performance gain in branch
prediction due to knowledge of branch predictors by IC++. The
number of memory references was also reduced by IC++. The
performance gain in the visualization and graphics library can be
attributed to the effective exploitation of multimedia instructions
by the Intel compiler. Collecting events related to this instruction
set can testify this fact and give a better understanding of the
breakdown of other instructions.

Study of the execution characteristics of applications, by
compiling them with different compilers, gives an insight into their
strength and weakness and also about the various compiler options
that can be used with them. Repeating such analyses with different
optimization switches can also be helpful in determining the
effectiveness of compilers. Results from such analyses can also be
used to design architecture-aware compilers and compilers
targeting specific applications.

Microbenchmarks can be used in place of standard benchmarks, so
that the user can have more control to test for different
performance metrics. Use of microbenchmarks also gives better
control to the programmer to test the compiler optimization
switches.

This effort can be extended to study a variety of compilers and
their optimization switches. Intel C++ compiler can be used to
generate executables to be run on Pentium II and Pentium IV and
this study can give better insight into processor-specific
optimizations.

265

7. REFERENCES
[1] Talla, D., and John, L.K. Execution Characteristics of

Multimedia Applications on a Pentium II Processor. In
Proceedings of the IEEE International Conference on
Performance, Computing and Communications, (IPCC ‘00),
(February 20-22, 2000), 516-524.

[2] Mehis, A., Ali, R., and Radhakrishnan, R. Using Processor-
Specific Optimizations to Maximize Performance on Dell
Servers, Technical Article on PowerSolutions, August 2002.
www.dell.com/powersolutions

[3] Milenkovic, M., Milenkovic, A., and Kulick, J.
Microbenchmarks For Determining Branch Predictor
Organization. To appear in Software Practice and Experience,
Vol. 34, 2004.

[4] Intel VTune Performance Analyzer,
www.intel.com/software/products/vtune/

[5] Stewart, K. E., and White, S.W. The Effects of Compiler
Options on Application Performance. In Proceedings of IEEE
International Conference on Computer Design: VLSI in
Computers and Processors, (ICCD ’94), (Oct 10-12, 1994),
340-343.

[6] Bhandarkar, D., and Ding, J. Performance Characterization of
the Pentium Pro Processor. In Proceedings of the IEEE Third
International Symposium on High Performance Computer
Architecture, (Feb 1-5, 1997), 288-297.

[7] Hennessy, J., and Paterson, D. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, San
Mateo, CA, 2003.

[8] Sprunt, B. Pentium 4 Performance-Monitoring Features. In
Proceedings of IEEE Micro, Vol: 22, Issue: 4, (July – August
2002), 72-82.

[9] MSDN Help for Microsoft VC++ Compiler
[10] Intel C++ Compiler User Guide,

www.intel.com/software/products/compilers/techtopics/ccug.
htm

[11] SPEC CPU2000 Benchmark suite,
http://www.spec.org/cpu2000/

266

