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ABSTRACT 
Modern processors include features such as deep pipelining, multi-
level cache hierarchy, branch predictors, out of order execution 
engine, and advanced floating point and multimedia units. To 
successfully exploit these features, architecture-aware compilers 
that can produce target-specific optimal codes for the applications 
are needed. Using the knowledge about the architectural features, 
the compilers can contribute to maximizing the application 
performance through effective pipeline scheduling, memory 
penalty minimization and path length reduction. A study of the 
execution characteristics for the binaries generated by the various 
compilers can provide insights about the effectiveness of the 
optimization options used in the compilers. The in-built 
performance monitoring hardware found in present day processors 
can be used to collect the performance metrics for the study of 
execution characteristics. In this paper, we compare the Intel C++ 
and Microsoft VC++ compilers by studying the execution 
characteristics of SPEC CPU 2000 benchmarks run on a Pentium 
IV processor. The benchmarks were compiled with identical 
optimization switches in both compilers and the performance 
metrics were collected using Intel’s VTune Performance Analyzer. 
The analyses of results showed that the Intel C++ compiler 
performed better than VC++ for all considered applications and 
significantly better for computer visualization and graphical 
applications. 
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1. INTRODUCTION 
The effect of compilers and compiler optimizations on application 
performance has been studied and analyzed for sometime now. 
Performance characteristics of an application are found to be 

dependent on the type of compiler options used [5]. Software 
developers depend on compiler optimizations to attain the required 
performance characteristics from current day applications, which 
are becoming more complex and bigger in size. The present day 
compilers are required to keep pace with upcoming processor 
technologies to exploit newer and more efficient optimization 
techniques. Compilers must be aware of computer architecture 
features like deep pipelining, multi-level cache hierarchy, 
instruction level parallelism, and branch prediction to provide 
optimal performance [3]. Architecture aware compilers exploit the 
hardware features and contribute to maximizing the application 
performance. Compiler/hardware interaction leads to performance 
improvements attained through path length reduction, efficient 
instruction selection, pipelining scheduling and memory penalty 
minimization [5].  
Performance has been shown to improve by using processor 
specific optimizations. Performance gain of at least 10% was 
obtained by running Linpack executables compiled using Xeon 
specific optimizations over executables compiled using Pentium 
III processor optimizations [2]. Examples of branch optimization 
by architecture-aware compilers shown by Milenkovic et.al. [3] 
have proved the importance of compilers and optimizations with 
regard to application performance. 

The best way to evaluate the compilers strength is to study the 
performance and execution characteristics of the executables 
generated by the compilers. The performance evaluation of these 
executables can be used to study the effectiveness of the various 
optimization switches that can be used in compilers. Most current 
day processors come with a built-in hardware to support 
performance monitoring, and these performance-monitoring 
counters can be calibrated to collect relevant event data. 
Performance evaluation has already been done for Pentium Pro 
processor using SPEC 2000 benchmarks [6] and Pentium II 
processor using Multimedia applications [1]. Pentium III and 
Pentium IV performances have been compared to emphasize 
processor specific optimizations in [2]. But these performance 
analyses did not include the comparison of compilers and were 
used to study the underlying architecture and to characterize 
workloads.  
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In this paper, we compare the Intel C++ and Microsoft VC++ 
compilers. The SPEC CPU2000 benchmarks were compiled with 
Intel C++ and Microsoft VC++ compilers and the execution and 
performance characteristics of the binaries were studied. The 
compiled benchmarks were run on a Pentium IV based system. 
Intel’s VTune Analyzer was used to calibrate and collect data from 
the performance counters. Analyses show that the Intel compiler, 
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by virtue of the knowledge of the processor’s architecture, 
outperformed the Microsoft counterpart in most cases in 
performance. This proves that the processor itself does not 
determine the performance of the system. Though the system’s 
processor and memory architecture contributes to the performance, 
the compiler used also plays a major role in the performance. A 
fair comparison of the compilers’ contribution to performance can 
be obtained by running the executables generated by two different 
compilers on the same system, with the same processor, memory 
architecture, and operating system. Hence, the differences in the 
obtained execution characteristics are directly related to compilers. 

The remainder of the paper is organized as follows. Section 2 
gives an overview about Intel C++ and Microsoft VC++ compiler 
and about their optimization switches. Section 3 details the 
performance monitoring facilities available in the Pentium IV 
processor. Section 4 describes the experimental setup that was 
used to collect data. Section 5 presents the results obtained and 
also the observations and inferences that are made from the results. 

2.   COMPILERS USED 
The information about the compilers is obtained directly from 
MSDN library for VC++ [9] and Intel C++ compiler’s user guide 
[10]. Visual C++ 6.0 is the leading C++ compiler for 32-bit 
Microsoft Windows and has a number of features that aid in 
producing fast programs. The Microsoft VC++ compiler can 
perform all the general code optimizations with the help of 
compiler switches and pragma statements. The VC++ compiler 
performs copy propagation and dead store elimination, common 
subexpression elimination, register allocation, function inlining, 
loop optimizations, flow graph optimizations, peephole 
optimizations, scheduling, and stack packing. It does not do loop 
unrolling, although it does unroll loops for a few small special 
cases such as block memory moves. The switches that affect code 
generation are the /G options whereas switches that control 
optimization are the /O options. The compiler can target Pentium 
CPUs (/G5), Pentium Pro CPUs (/G6), or a "blend" of Pentium and 
Pentium Pro optimization options (/GB, the default). The default 
/GB switch is designed to produce good results, as it targets the 
most common current processor. The three most common compiler 
optimization switches are /Od, which disables all optimizations for 
debugging purposes, /O1, which minimizes code size, and /O2, 
which maximizes code speed. The /O2 option creates the fastest 
code and is the default setting for the release builds. It is 
equivalent to using the switches /Og /Oi /Ot /Oy /Ob1 /Gs /Gf /Gy. 
Table 2.1 gives the compiler options invoked with /O2 switch. 

The Intel C++ compiler is designed to be easily interfaced with the 
Microsoft VC++ environment. The Intel C++ compiler optimizes 
performance for applications running on Intel architecture-based 
computers. Performance gains by using this compiler are a result 
of profile-guided optimization, prefetch instruction, and support 
for Streaming SIMD Extensions (SSE) and Streaming SIMD 
Extensions 2 (SSE2), automatic vectorizer, data prefetching, inter-
procedural optimization and processor dispatch. The processor 
dispatch takes advantage of the latest Intel architecture features 
while maintaining object code compatibility with previous 
generations of Intel Pentium processors. Profile-guided 
Optimizations (PGO) let the compiler know which areas of an 
application are most frequently executed. By knowing these areas, 
the compiler is able to be more selective in optimizing the 
application. PGO helps by allocating registers using the profile 

information to optimize the location of spill code. Intel C++ 
compiler’s /O2 optimization to favor speed enables the same 
switches that Visual C++ 6.0 enables with /O2. 

Table 2.1 Compiler options invoked with /O2 switch 

Switch Function 
/Og Eliminates local and global common 

subexpressions, allows automatic register 
allocation, and allows loop optimization. 

/Oi Replaces certain function calls with inline 
function expansion. 

/Ot Favors faster executable files. 
/Oy Suppresses creation of frame pointers on the call 

stack. 
/Ob Controls inline expansion of functions 
/Gs Controls stack probes 
/Gf Copies identical strings into one location in the 

executable file 
/Gy Allows compiler to package individual functions 

in the form of packaged functions 

 

3. PERFORMANCE MONITORING 
FEATURES OF PENTIUM IV PROCESSOR 
The performance monitoring hardware in Pentium IV includes 
event detectors and event counters and support for Precise Event-
Based Sampling (PEBS). It supports 48 event detectors and 18 
event counters and this enables concurrent data collection of a 
large number of events. PEBS support is a significant 
performance-monitoring advantage provided by Pentium IV as 
previous processors supported only Imprecise Event-Based 
Sampling (IEBS). Event based sampling, whether precise or 
imprecise, gives a good estimation of the number of events. Event 
based sampling is an alternative to periodic or time based 
sampling, where samples are collected at regular time intervals. 
Events are measured only after a specified number of events have 
occurred. PEBS reduces the interference experienced by the 
monitoring system and allows collection of more samples for the 
same level of interference. The results showing the advantage of 
PEBS over IEBS, and more information about performance 
monitoring features of Pentium IV can be found in [8].  
 
4.   EXPERIMENTAL SETUP 
SPEC CPU2000 benchmark suite [11] was selected to study the 
compilers. The benchmark suite portrays a wide variety of 
applications and can exhaustively test the abilities of the compiler. 
SPEC CPU2000 benchmarks measure the performance of the 
processor, memory and compiler used on the tested system and do 
not stress on I/O devices, networking and the operating system. 
The industry standard benchmarks portray real user applications 
and are computation intensive. Benchmarks from CINT2000 
(integer benchmark suite) and CFP2000 (floating point benchmark 
suite) were used in this analysis. The reference input set provided 
by SPEC was used to provide inputs to the application. Table 4.1 
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gives the descriptions of the benchmarks used for this 
experimentation. 

Table 4.1 Benchmarks Used 

Name Description 

164.gzip (INT) Data Compression written in C 

176.gcc (INT) C Programming Language Compiler 

177.mesa (FP) 3-D Graphics Library written in C 

181.mcf (INT) Combinatorial Optimization written in C 

186.crafty (INT) Chess – Game Playing written in C 

197.parser (INT) Word Processing written in C 

252.eon (INT) Computer Visualization written in C++ 

253.perlbmk (INT) PERL Programming Language written in 
C 

254.gap (INT) Group Theory, Interpreter written in C 

255.vortex (INT) Object Oriented database written in C 

 
The source codes of the benchmark suite were first compiled using 
Microsoft Visual C++ and the Intel C++ compiler. The Visual C++ 
environment (IDE) was used to configure both compilers. The 
benchmarks were compiled with the /O2 optimization switch being 
enabled. By enabling the /O2 optimization switch, the compilers 
were used to produce a code for maximizing the speed of the 
application. As already shown, both compilers make use of the 
same options when the /O2 switch is used. The programmer was 
not allowed to interfere and fine tune the application, affecting its 
performance.  
Intel’s VTune performance analyzer v5.0 [4] was then used to 
collect the performance metrics using these compiler-generated 
executables. VTune supports simultaneous sampling of multiple 
events and real time display using counter monitors. It has a 
customizable user interface that can be configured to collect the 
required events. Though VTune supports both time based and 
event based sampling, VTune was configured to collect 
performance data using event based sampling to take advantage of 
Pentium IV’s EBS feature. Since VTune has a low intrusion, the 
samples collected provide a closer representation of application’s 
actual performance. VTune was configured to collect the following 
events: clockticks, instructions retired, loads retired, stores retired, 
branches retired, I level cache misses and mispredicted branches. 
The events were collected separately for Intel C++ and VC++ and 
later compared against each another.   

 

5. RESULTS 
Clockticks is the best measure for comparison when the /O2 
optimization switch has been used. The applications have been 
compiled to maximize speed and we would expect the application 
to run in minimum amount of time. Figure 5.1 shows the 
normalized comparison of clockticks. It is clear that the number of 
clockticks is always less in the case of Intel compiler. There is a 
drastic decrease in the number of clockticks for the application 
252.eon. It is interesting to note that 177.mesa and 252.eon are 3D 
graphics library and computer visualization applications, 
respectively and they show a clear reduction in clockticks when 

compiled with the Intel compiler. The other application, which 
shows a distinct difference, 186.crafty is the chess gaming 
program. Though the other benchmarks do not portray a very large 
difference, 186.crafty, is clear that the Intel compiler takes 
advantage of its architecture and optimizes better for graphics and 
visualization applications. 
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Figure 5.1 Comparison of Clockticks 

Though the program size is not optimized in /O2, a comparison of 
the size of binaries generated by the compilers reveal that VC++ 
produced smaller executables. Table 5.1 gives the comparison of 
the size of the binaries produced by the compilers.  

 

Table 5.1 Comparison of Binaries size 

Benchmark Code Size (in Bytes) 

 MSVC++ IC++ 

164.gzip  69,632 77,824 

176.gcc  1,089,536 1,314,816 

177.mesa 442,368 610,304 

181.mcf  49,152 53,248 

186.crafty  241,664 258,048 

197.parser 118,784 131,072 

252.eon  405,504 413,696 

253.perlbmk  516,096 651,264 

254.gap  356,352 413,696 

255.vortex  417,792 454,656 

 

It would be interesting to see the number of instructions for the 
same set of applications for which the clockticks were compared. 
Figure 5.2 shows the normalized number of instructions executed. 
The instruction counts are lower all applications, except for 
197.parser, 253.perlbmk, and 254.gap which show a negligible 
increase in the number of instructions executed (<3%).  
Benchmarks 177.mesa and 252.eon have significantly reduced the 
number of instructions executed, for 21% and 15% respectively.  
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Figure 5.2 Comparison of Instruction Count 

The general rule is that the most widely used instructions are the 
simple operations like load, store and branch. Together they 
contribute to about more than 50% of the overall instructions 
executed [7]. Hence, it was decided to study the distribution of 
these instructions in both cases. The breakdown of instructions 
was then studied to observe what kind of instructions made the 
difference in the comparison or if it was due to an overall decrease 
in all instructions. On average, there were about 35% load 
instructions, 20% stores and about 18% branch instructions in the 
considered applications. A more thorough comparison is provided 
in the following sections. Figure 5.3 compares the distribution of 
loads in the applications. 
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Figure 5.3 Comparison of Loads Retired 

The distribution of loads corresponding to their respective 
instruction count shows that the percentage of load instructions is 
about the same for most applications except 252.eon, where there 
is about a 15% difference. It is obvious that VC++ would have 
more load instructions retired for all cases when the absolute 
numbers are compared.  

The distribution of stores is shown in Figure 5.4. Apart from 
252.eon, the percentage of distribution is identical for both 
compilers. It is clear that the Intel compiler has considerably 
reduced the number of memory accesses for the computer 
visualization application. Applications like 253.perlbmk and 

254.gap, which had the instruction count on the higher side for the 
Intel compiler, also show a decrease in the percentage of loads and 
stores. It can be understood that the Intel compiler targets to 
decrease the number of memory accesses for all applications, 
decreasing the number of load and store instructions.  
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Figure 5.4 Comparison of Stores Retired 

There is no visible difference between the two compilers in the 
distribution of branch instructions. Figure 5.5 shows the 
comparison. The Intel C++ compiler should be aware of the type 
of branch predictors used in the architecture. Hence the number of 
mispredicted branches was compared to check if this prior 
knowledge translates into fewer mispredictions. 
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Figure 5.5 Comparison of Branches Retired 

Figure 5.6 shows the comparison of mispredicted branches with 
respect to the overall branch instructions for each of the compilers. 
The ratio of mispredcited branches is less than 10% in both cases 
and there is not much of a difference between the two compilers. 

Since the distribution of load, stores and branches were similar for 
most applications, a comparison was made of the other instructions 
that make up the total count. It is clear from Figure 5.7 that the 
other instructions contribute to about 35% of the total instructions. 
Also, 252.eon has a reasonably higher percentage of such 
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instructions for the Intel compiler, making up for the reduction in 
loads and stores. These other instructions could be multimedia 
specific instructions that the Intel compiler has taken advantage of 
and maximized the performance. 
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Figure 5.6 Comparison of Mispredicted Branches Retired 

The same can be said about 177.mesa, though the difference in 
percentages of other instructions is not very pronounced. The I-
level cache misses were also compared to study the effect of 
compilers on the memory characteristics of the applications. The 
comparisons of cache misses are given in Figure 5.8. Intel 
executables consistently had a fewer cache misses for the 
applications, as the number of references were also less. But there 
is no difference in the percentage of the cache misses in both 
cases. 181.mcf, which shows a high percentage of misses, is a 
large-scale minimum cost flow problem that is solved with a 
network simplex algorithm. 
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Figure 5.7 Comparison of other instructions 

 

6. CONCLUSION 
The execution characteristics of selected SPEC CPU2000 
benchmarks were presented for the Microsoft VC++ and Intel C++ 
compilers. The comparison of clockticks showed that IC++ 
performed better than VC++ for all considered applications, 

though the degree of improvement was different for specific 
applications. 
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Figure 5.8 Comparison of I-level Cache Load Misses 

The Intel C++ compiler performed considerably better than the 
Microsoft counterpart for applications that involved graphics 
libraries and computer visualization. Though the study of the 
instruction count reveals that VC++ generated fewer instructions 
for certain applications compared to IC++, it should be borne in 
mind that the applications were optimized for maximum speed. 
The distribution of load, store and branch instructions were almost 
similar for both compilers, though there is a difference in the 
absolute numbers. The number of loads and stores was reduced 
greatly in the Intel compiler for the computer visualization 
application. There was no distinct performance gain in branch 
prediction due to knowledge of branch predictors by IC++. The 
number of memory references was also reduced by IC++. The 
performance gain in the visualization and graphics library can be 
attributed to the effective exploitation of multimedia instructions 
by the Intel compiler. Collecting events related to this instruction 
set can testify this fact and give a better understanding of the 
breakdown of other instructions. 

Study of the execution characteristics of applications, by 
compiling them with different compilers, gives an insight into their 
strength and weakness and also about the various compiler options 
that can be used with them. Repeating such analyses with different 
optimization switches can also be helpful in determining the 
effectiveness of compilers. Results from such analyses can also be 
used to design architecture-aware compilers and compilers 
targeting specific applications. 

Microbenchmarks can be used in place of standard benchmarks, so 
that the user can have more control to test for different 
performance metrics. Use of microbenchmarks also gives better 
control to the programmer to test the compiler optimization 
switches. 

This effort can be extended to study a variety of compilers and 
their optimization switches. Intel C++ compiler can be used to 
generate executables to be run on Pentium II and Pentium IV and 
this study can give better insight into processor-specific 
optimizations.  
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