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Abstract—This paper introduces a novel direct digital frequency
synthesizer (DDFS) with an architecture based on the quasi-linear
interpolation method (QLIP). The QLIP method is a hybrid poly-
nomial interpolation in which the first quarter of a cosine func-
tion is approximated by two sets of linear and parabolic polyno-
mials. The section of the cosine function that is closer to its peak
is interpolated by parabolic polynomials, due to its resemblance
to a parabola. The rest of the function, which is closer to where it
approaches zero, is interpolated by linear polynomials. The paper
describes the proposed interpolation method and its VLSI imple-
mentation. The performance of the proposed implementations is
compared to several state-of-the-art DDFS designs.

Index Terms—Direct digital frequency synthesizer (DDFS),
polynomial interpolation, spurious free dynamic range.

I. INTRODUCTION

D IRECT digital frequency synthesizer is a digital system
that generates frequency controlled sinusoidal signal

for communication systems. High spectral purity and fast
frequency hopping capability are the main characteristics of a
DDFS system that make it suitable for modern and sensitive
devices such as Spread Spectrum and RADAR. The block dia-
gram of a DDFS is shown in Fig. 1. In a DDFS, the amplitude
of a sinusoidal signal is digitally generated by a phase-to-sine
mapper (PSM) whose input is fed by an accumulator. The input
of the accumulator and its wordlength determine the output
frequency and its resolution, respectively. The frequency of the
output sinusoidal signal is

(1)

where, , and are the input of the accumulator, the accu-
mulator wordlength and the clock frequency, respectively. The
PSM was originally conceived as a simple read-only memory
(ROM) that would contain the amplitude information of the
waveform but, it has gradually evolved into less complex ar-
chitectures that consume a less amount of power and occupy
a smaller area on the chip. The lower PSM complexity was
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Fig. 1. Block diagram of a DDFS system.

achieved at the expense of introducing nonidealities in the PSM.
These nonidealities distort the output sinusoid causing spectral
impurities in the form of spurious harmonics. In the past three
decades, many researchers have endeavored to achieve an effi-
cient PSM architecture with least complexity and highest spec-
tral output signal purity. The major challenge in reducing the
complexity of the PSM is maintaining the spectral purity of the
output signal above a certain level. The spectrum of the signal
generated by the PSM, which is called the signature sequence,
will be an important factor in determining the spurious free dy-
namic range (SFDR) of the output signal. The SFDR of a signal
is determined by the ratio of the fundamental harmonic ampli-
tude to the maximum spur amplitude [1].

The most important technique to reduce the complexity of the
PSM utilizes the quadrature wave symmetry of the sinusoidal
function. By employing this method, the complexity of the PSM
can be reduced by a factor of four with no effect on the SFDR
of the output [1]. Most of the methods embody the quadrature
wave symmetry, which means they generate the output sinu-
soidal from the first quadrant. There are also some exceptions
where half wave symmetry is used [2]. The other method that is
also used in all DDFS systems, is called phase truncation, which
is basically truncating the accumulator’s wordlength from to

where . This truncation causes a significant reduc-
tion in the SFDR of the output signal [4]. The SFDR of a DDFS
with truncated phase is calculated in [3] and [5] (assuming the
signature sequence is an ideal sinusoid) which is given by

(2)

Quantization of the output sinusoidal signal due to the arbi-
trary PSM nonidealities causes another set of spurs in the output
spectrum. It is shown in [3] that the spur magnitudes and loca-
tions caused by the phase truncation do not depend on the spurs
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produced by the arbitrary PSM nonidealities or simply the spec-
trum of the signature signal, thus they are in fact disjoint. There-
fore, by choosing an appropriate value for and knowing the
spectrum of the signature sequence, one can exactly calculate
the magnitude and location of the spurs at the overall DDFS
output spectrum. If the only source of nonidealities in the PSM
is the quantization error then the SNR of the output sinusoid
would be evaluated by

(3)

where is the output wordlength.
In addition to the aforementioned methods that are employed

in all DDFS systems, other methods are needed for further re-
duction in the PSM complexity. In general, the PSM complexity
reduction techniques can be classified into three major groups,
polynomial interpolation [6]–[20], angle rotation, [24]–[29] and
ROM compression methods [1], [30], [31].

In the polynomial interpolation method, the first quadrant of
the sinusoidal signal is generally divided into several segments
and each segment is approximated by a polynomial of a desired
order. Normally, the number of segments is an integer power
of two i.e., to simplify the architecture of the PSM,
which is built by a binary digital circuitry.

The type of the polynomial interpolation method is chosen
by the parameter to be optimized. If the optimization of the
SNR of the output signal is required, the coefficients of the
polynomials can be determined by Legendre polynomials [12]
or Moore-Penrose pseudo-inverse method [21]. For minimizing
the maximum interpolation error, Chebyshev polynomials
should be used [18], [19]. If the optimization of the SFDR is
required, the coefficients of the polynomials can be determined
by nonlinear optimization methods such as the Nelder-Mead
Nonlinear simplex method [6], genetic algorithms [10] or axial
search [12]. To find the polynomial interpolation method that
optimizes the SFDR, we should know the theoretical upper-
bound of the SFDR for the method [21]. The SFDR upperbound
can help us to reduce the number of iterations in the optimiza-
tion algorithm in order to achieve a faster convergence rate.

In this paper, the quasi-linear interpolation polynomial tech-
nique (QLIP), which is introduced by the authors in [22] and
[23] is throughly studied. In Section II, the QLIP method is in-
troduced as a combination of piecewise parabolic and linear
polynomials interpolations employed to approximate the first
quadrant of the cosine function. Moreover, the location on the
first quadrant where the interpolation should be changed from
even parabolic ( ) to linear is determined to maximize the
SFDR of the output signal. In Section III, a realization of the
DDFS utilizing the QLIP method is proposed. In Section IV,
the conclusions are drawn. This section also discusses how to
preserve the largest possible SFDR (by using optimization) in
order to compensate for small alteration in the hardware ar-
chitecture. In Section V, a VLSI implementation of the pro-
posed method is discussed and the results are compared with
the state-of-the-art designs reported in the literature. The imple-
mentation results show that the proposed design is less complex
than other methods and it is suitable for inserting pipeline levels

Fig. 2. Quasi-linear interpolation method (QLIP).

in order to increase the speed of the chip. In Section VI, the con-
clusion is drawn.

II. THE QUASI-LINEAR INTERPOLATION METHOD (QLIP)

Consider the first quadrant of the cosine function defined as

(4)

is divided into segments and each segment is approxi-
mated by a polynomial such that

(5)

where is the segment number and , and are the
polynomial’s coefficients and is the segment number where
the type of polynomial is changed from even parabolic to linear.
The reason behind this polynomial arrangement is the fact that
the cosine function (4) behaves more like a parabola where is
closer to 0 and it behaves more like a line where is closer to
1. Fig. 2 shows the interpolation configuration.

The first step in finding the values of the coefficients ,
and is to find the SFDR upperbound for different values
of and then determine the appropriate value of that is cor-
responding to the maximum SFDR upperbound. To find the
SFDR upperbound, we can use the universal method introduced
in [21]. The detailed analysis of finding the SFDR upperbound
is explained in the Appendix . Fig. 3 exhibits the the SDFR up-
perbounds of the QLIP method versus for a different number
of segments. It is obvious from Fig. 3 that the maximum SFDR
upperbound occurs when

(6)

The maximum SFDR upperbound values for a different number
of segments are given in Table I. It is worth noting that the algo-
rithm calculating the SFDR upperbounds will also provide the
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Fig. 3. SFDR upperbounds of the QLIP method versus � for a different number
of segments.

TABLE I
THE MAXIMUM SFDR UPPERBOUND VALUES

Fig. 4. SFDR comparison of different polynomial interpolation methods.

corresponding coefficients , and [21]. These coeffi-
cients can be used as an initial guess for any further optimization
algorithm.

Fig. 4 shows the SFDR upperbounds comparison between
ideal DDFS architectures based on different polynomial interpo-
lation methods: QLIP, Piecewise Even Parabolic (PEP), Linear
and Second Order (pure parabolic). According to Fig. 4, the
QLIP method offers better SFDR than linear and PEP methods.
Obviously, the second order polynomial provides us with better
SFDR values by increasing the complexity of the system.

III. REALIZATION OF THE QLIP-BASED DDFS

Now, by knowing the maximum SFDR upperbounds for the
QLIP method, we are ready to realize the DDFS. This can be
done by quantizing the polynomials (5) and then optimizing the
quantized coefficients to obtain the maximum possible SFDR.

To begin the process, first we should quantize the phase . The
phase quantization can be done by this relationship

(7)

where is the phase wordlength and is the new variable that
takes on integer numbers in the range . The
quarter wave symmetry is used in this design, thus the maximum
value of is . By substituting (7) into (5), scaling the
amplitude up to and choosing , we can obtain

(8)

where is the output wordlength of the DDFS.
The next step is to quantize and . To avoid the require-

ment of a digital multiplier, these coefficients can be approxi-
mated by a summation of integer powers of two, which can be
realized by logical left and right shifts [10]. The following for-
mula represents the approximation

(9)

where ,
and is a fixed number. This is the well-known Canonic Signed
Digit (CSD) representation [11]. The value of can be indefi-
nitely large, but to obtain a less complex architecture, it should
be chosen as small as possible. By substituting (9) into (8), the
final discrete polynomial will become

(10)

where means that the binary number has been shifted
to the right ( ) or to the left ( ) by bits and the
result is truncated to an integer number. The parameter can
be obtained by

(11)

where is the floor function.
According to (9), the variable can take on or .

When it is , the corresponding digital realization would be
an adder in the summation process of (10) but when it is , a
digital subtractor should be employed to perform the task. The
necessity of a subtractor makes the system more complex be-
cause a digital realization of a subtractor is actually a combina-
tion of an adder and a 2’s complementor. To avoid subtractors
in the final digital realization of the DDFS, and thus reducing
the complexity of the design, we can replace the subtractor by a
combination of a 1’s complementor and an adder. This approach
will change the architecture of the DDFS and it will be different
from the one given by (10). Nevertheless, we can still use the
architecture given by (10) because the final values of the other
coefficients, i.e., and are determined by the optimization
algorithm. Thus, the modification of the DDFS structure would
not significantly impact the SFDR.
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Fig. 5. Block diagram of the DDFS architecture based on the QLIP method.

Fig. 6. Block diagram of � blocks.

The architecture introduced in [10], which is designed to
implement the piece-wise linear interpolation method, can be
modified to accommodate the implementation of the proposed

method. The modification would be simply adding a squarer
to realize the second order polynomial section of the QLIP
method and multiplexers that select between the linear and even
parabolic interpolations based on the value of . Other
architectures could have also been employed for this design
such as the one with fixed-width multiplier introduced in [12].
However, the architecture of [10] is used because it is more
suitable for pipelining. It will be shown later that by adding
a few pipeline stages we can achieve clock frequencies up to
1 GHz. Fig. 5 illustrates the block diagram of the proposed

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on August 15,2010 at 00:35:29 UTC from IEEE Xplore.  Restrictions apply. 



ASHRAFI et al.: A DDFS BASED ON THE QLIP 867

Fig. 7. The partial product table of the truncated squarer for � � �� and
� � �.

architecture. The internal architecture of the blocks in
Fig. 5 is illustrated in Fig. 6. Basically, each block is a
conditional complementor. When the corresponding is ,
the block negates the input word and when the corresponding

is , the block acts as a simple buffer.
To implement the squarer utilized in the design, the pre-trun-

cated squarer introduced in [33] is employed. The input
wordlength of the pre-truncated squarer is , and
its output wordlength is where . In
this situation, the partial product matrix has
columns. To implement this kind of pre-truncated squarer, we
can keep the most significant columns of the squarer’s
partial product array and discard the rest of the array (the least
significant columns). Now, by using carry-save
adders, the array can be shrunk to two final numbers and using
a fast adder, such as a carry-look-ahead adder, we can obtain
the result of the operation. Fig. 7 illustrates the partial product
array of the pre-truncated squarer [33]. It is worth noting that
the truncation error will be almost compensated in evaluating
the final parameters of the proposed DDFS.

The discrete polynomial (10) (with the aforementioned mod-
ifications) would only generate the first quadrant of the cosine
signal. To generate the complete cosine signal, we should repro-
duce the other quadrants using the first one. In this case, let’s
assume is the output of the digital system that generates the
first quadrant. The following equation creates the entire cosine
signal by using

(12)

where ( is the XOR operator), and are re-
spectively the 1st and 2nd most significant bits of the phase and

is the bit extension of the logical NOT of , i.e., ,
where represents concatenation of two or more words. Fig. 8
shows the structure of this section of the design, which is shown
by the “format converter” block in Fig. 5.

IV. OPTIMIZATION OF THE QUANTIZED COEFFICIENTS FOR

MAXIMUM SFDR

In the final architecture, the parameters , , , , , ,
and are to be determined for the desired SFDR and output

Fig. 8. Internal structure of the format converter.

wordlength. The parameters and are determined based on
the chosen SFDR and output SNR. The number of segments
should be determined based on the desired SFDR and the SFDR
upperbound derived for each value of (Fig. 4). The parameter

is to be determined based on the desired level of complexity
of the target DDFS architecture and the maximum achievable
SFDR. The greater the value of , the more complex the final
design would become, but the higher SFDR can be achieved. At
some point, increasing would only add to the complexity of
the system and will not have any further impact on SFDR.

The parameters and can be determined by repre-
senting the ideal coefficients, and in the CSD format.
The value of directly depends on the number of segments .
For , 8, 16, the value of is 3, 3 and 4, respectively. In
choosing the parameters , we always consider that
in order to reduce the hardware complexity. The parameter
can be determined by using the Nelder-Mead nonlinear simplex
algorithm (available in MATLAB) to maximize the SFDR of
the system. The above procedure can be repeated for different
values of ’s (except for ’s which are always zero) over
a limited range of around their values obtained from CSD
representation of the ideal coefficients and . This ex-
haustive search will lead to the optimized coefficients corre-
sponding to the maximum possible SFDR. The CPU time of
this numerically intensive optimization method could be from
several minutes for the architecture with to a few hours
for the architecture with . Since the SFDR theoretical
upperbound is known, we can terminate the optimization algo-
rithm when an SFDR close enough to the SFDR theoretical up-
perbound is reached (for example, 1 dBc to 2 dBc below the up-
perbound). This can significantly reduce the CPU time. More-
over, randomly choosing the values of within their prede-
fined ranges can help us to reach the optimized SFDR faster.

The parameter is determined for the given architecture to
maximize the SFDR. Its value should be changed between 0 and

. For each value of , the parameter should be deter-
mined to find the maximum SFDR. The value of that makes
the highest SFDR will be chosen as the final value. One might
expect that the maximum SFDR can be obtained at , be-
cause it is the case where the squarer is not pre-truncated and,
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Fig. 9. Variations of the maximum SFDR (� � ��, � � �� and � � �) with
respect to the parameter � .

TABLE II
PARAMETERS OF A QLIP-BASED DDFS FOR � � �, � � ��,� � ��, � � �

AND � � �. THE PARAMETER � IS ALWAYS ��

TABLE III
THE PARAMETERS OF A QLIP-BASED DDFS FOR � � ��,� � ��,� � ��,

� � � AND � � �

thus it does not introduce any error in the squaring block. Nev-
ertheless, the maximum SFDR never happens at . The
reason for this phenomenon is perhaps the excessive trunca-
tions in the squarer that creates significant nonlinearities. How-
ever, a clear analysis that can explain this effect has not been
devised. For example, the maximum SFDR occurs at
for the case of , and . This fact is il-
lustrated in Fig. 9. Tables II and III show the parameters ob-
tained for and from the optimization procedure.
They respectively achieve the SFDRs of 63.2 dBc and 89.04
dBc, which are as close as possible to the corresponding SFDR
upperbounds given in Table I. The spectrum of the signature
sequences of the DDFS architectures, whose coefficients are
given in Tables II and III, are respectively shown in Figs. 10
and 11. The spectrums are compared with the spectrum of the
ideal cases in which the SFDR upperbounds are obtained by the

Fig. 10. Spectrum of the signature sequence of the QLIP DDFS (� � ��,
� � ��,� � �� and � � �) whose parameters are given in Table II.

Fig. 11. Spectrum of the signature sequence of the QLIP DDFS (� � ��,
� � ��,� � �� and � � �) whose parameters are given in Table III.

method given in the Appendix . The deviation of the spectrum
of the signature sequences from the ideal ones is caused by the
quantization error introduced in the digital implementations of
the systems. These deviations are minimized by optimizing the
coefficients explained above.

V. VLSI IMPLEMENTATION AND SIMULATION RESULTS

The proposed designs are implemented using
TSMC-0.13 m, 1.2 V supply standard cell library.
The design is modeled by Verilog RTL and then synthesized
by Cadence PKS tool. The place and route procedure as well
as power analysis are also performed by Cadence Encounter
SOCE tool. The performance of the proposed method is
compared with some of the state-of-the-art designs in Table IV.
Due to different implementation methods, SFDR choices,
standard cell libraries, fabrication processes, accumulator
wordlengths and so on, a fair comparison between the
performances of different DDFS designs is not easy. To
overcome this problem, the normalized area is introduced,
which is defined as the total silicon area of the chip divided
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TABLE IV
COMPARISON BETWEEN THE PROPOSED METHOD AND SOME RECENT DESIGNS

by the feature size squared ( in our case).
Other parameter that can be used for a fair comparison is the
approximate number of MOS transistors, which is obtained by
the method introduced in [10] (The area of the chip divided by
the area of a four input NAND gate times the number of MOS
transistors in a NAND gate, which is four).

For the DDFS design with the SFDR in 60 dBc range, the
normalized area of the proposed design is 52% smaller than that
of the design in [7] and it is 20% smaller than that of the design
in [12]. Moreover, the percentage of the silicon area occupied
by the interpolator is 20% of the total area of the chip, which
is 10% less than that of the design introduced in [12] for the
same SFDR range. These comparisons can also be confirmed by
using the number of MOS transistors given in the last column of
Table IV. In addition, the proposed method is used when
where the QLIP interpolation becomes the linear interpolation.
The normalized area of the corresponding chip is very close to
that of the design given in [12]. This shows the effectiveness
of the QLIP method in reducing the silicon area for the SFDR
range of 60 dB.

For the DDFS designs with the SFDR in 80 dBc range,
the normalized area of the proposed design (with SFDR of
89.04 dBc) is 20% larger than that of the design in [12] but, it
should be noted that its SFDR is 6 dB greater and the output
wordlength is two bits larger. To have a fair comparison, we
have reduced the phase wordlength by one bit ( ) and
designed the DDFS whose SFDR is 82.7 dB. The normalized
area of this new design is 25% less than that of the original
design and it is 6.7% less than that of the design given in
[12]. Obviously a reduced accumulator size contributes to a
smaller silicon area but, this reduction occurs while the SFDR
is not changed dramatically. This shows that the QLIP design
is very effective in obtaining the optimum architecture for the
maximum possible SFDR. The linear interpolation method
using the same architecture (when ) is also designed. The
results show that the normalized chip area of the design with

is larger than those of the QLIP method and the method
given in [12]. This also exhibits the inherent optimized nature
of the QLIP method.

The maximum clock frequencies and the power consump-
tions of the designed chips are also given in Table IV. The max-
imum clock frequencies of the proposed designs are higher than
those of the previous designs. This improvement is partly due to
using a better technology and partly due the QLIP architecture.
However, the contribution of each of the aforementioned rea-
sons cannot be accurately determined due to different param-
eters of the employed technologies (feature size, standard cell
libraries, etc.) and different synthesis tools employed in the de-
signs. The same argument is valid for the lower power consump-
tions but, due to the less number of MOS transistors in the QLIP
designs, the contribution of the new architecture to the lower
power consumption is more significant than the contribution of
the small MOS size.

By inserting three pipeline registers in the QLIP design with
SFDR of 63.2 dBc, we increased the speed of the DDFS to
1 GHz [23]. The chip area of the proposed pipelined DDFS is
2.6 times more than that of the original design while its power
consupmtion is only 1.6 times more than that of the original
design. This shows that the proposed design has a perfect archi-
tecture for pipelining, which makes it the best choice for high
speed DDFS architectures.

Based on the simulation results shown in Table IV, the QLIP
method can reduce the complexity of the DDFS architecture due
to two effects. The first effect is the reduction of the number of
segments required for a target SFDR. With a lower number of
segments, the multiplier (the MUX sections in Fig. 5) becomes
less complex at the cost of an additional squarer. By using a pre-
truncated squarer, its impact on complexity can be mitigated.
The other effect is that the structure of the design is kept similar
to the linear interpolation method. The combination of these two
effects make an efficient architecture. In fact, the name “quasi
linear” has been adopted due to this combination.
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VI. CONCLUSION

We have proposed the Quasi-Linear Interpolation method to
design DDFS architecture. In this method, we used a combi-
nation of a linear and even parabolic polynomial interpolation
techniques to approximate the first quarter of a cosine signal.
The SFDR upperbounds of the proposed method are evaluated
for different numbers of segments per quarter cosine signal and
their corresponding polynomial coefficients are evaluated to be
used in the final optimization algorithm that generates the final
quantized coefficients. The results show the effectiveness of the
employed optimization algorithm to obtain the closest possible
SFDRs to the SFDR upperbounds.

It has also shown that the VLSI architectures of the proposed
designs demonstrate better performance compared to some of
the state-of-the-art designs reported in the literature in terms of
power consumption, chip area and speed. The architecture of the
proposed design is proved to be suitable for pipelining. A DDFS
design with the SFDR of 63.2 dBc and 1 GHz clock frequency is
designed to show the effectiveness of pipelining in the proposed
architecture.

APPENDIX

To obtain the SFDR upperbound of the QLIP method, we
should find the Fourier series of the approximate cosine function
whose first quadrant is defined by (5)

(13)

where and are the interpolating function and the coef-
ficients of the Fourier series, respectively. The coefficients
can be determined by

(14)

where counts the odd harmonics. Considering the segmenta-
tion of the first quadrant, (14) can be transformed to

(15)

where is the number of segments, is the polynomial
that approximates the segment and

is the starting point of the segment. Based on (5),
the interpolating polynomials have two different degrees, thus
(15) can be written as

(16)

where . We can simplify (16) to

(17)

where

(18)

One can easily find the harmonic coefficients by trans-
forming (17) to the following matrix form

(19)

where ,

(20)

(21)

and is the number of odd harmonics chosen for the optimiza-
tion. By using (20) and (21), one can rewrite (19) as a matrix
multiplication

(22)

where , , ,

(23)

(24)

and is a vector containing the harmonic values of the output
signal.

Now we can treat (22) as an equation in which the coefficients
of the polynomials i.e., the vector is to be found when the
spectrum of the output sinusoid is ideal. In the ideal spectrum
of a sinusoid, the first harmonic has the unit magnitude and the
other harmonics have zero magnitudes. This situation can be
represented by

(25)

By solving the matrix equation

(26)

one can find the coefficients of the polynomials.
It is shown in [21] that the number of odd harmonics in-

volved in the calculations is always greater than where is
the number of coefficients in the interpolating polynomials i.e.,

. Therefore, the matrix (26) is an inconsistent overdeter-
mined equation and it has no solution. However, we can find an
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approximate solution to (26) that minimizes the infinity norm of
the error vector i.e.,

(27)

This approximate solution is called the Chebyshev minimax so-
lution to (26). It is shown in [21] that this approximate solution
gives us the coefficients of the polynomial interpolation corre-
sponding to the SFDR upperbound.

To find the Chebyshev minimax solution to (26), we can de-
fine the positive real parameter as the upperbound of the error
vector , such that

(28)

The Chebyshev minimax solution of (26) is the vector that
minimizes the parameter . This is equivalent to the following
linear programming problem

(29)

where

(30)

The linear programming problem (29) can be solved numeri-
cally by computer packages such as MATLAB. The solution of
(29) will be a vector where is the Chebyshev
minimax solution to (26) and is its corresponding minimax
value (the minimum value of the infinity norm (27)). Then the
SFDR upperbound can be found by

(31)

To find a suitable value for we can use Theorem 1 of [21].
We can start finding the SFDR upperbound by choosing

, solve (29) and find whether the error vector
has equal minimax error values or not. If number
of minimax values do not occur, must be increased by one
and the entire process must be repeated until the error vector
has equal minimax error values. The obtained solution
would be the Chebyshev minimax solution, which determines
the SFDR upperbound. It is worth noting that since the matrix

is not a Haar matrix (the definition of a Haar matrix is given
in [21]), the Chebyshev minimax solution is not unique and the
solution obtained by the linear programming method would be
the solution that generates the sinusoid with the worst SNR.
However, the final sinusoid will be obtained by the quantized
coefficients that are determined by optimization and it will have
a better SNR than the ideal case discussed above (see Figs. 10
and 11).
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