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 Lossless compression and decompression are routinely used in mobile and 

workstation computer systems to reduce the costs of communicating and storing da-

ta. This research presents the results of a measurement-based experimental evalua-

tion of common compression and decompression utilities running on several plat-

forms of varying hardware complexity representing current mobile and workstation 

systems. The evaluation involves characterization of the compression and decom-

pression utilities in a multi-dimensional space encompassing the compression ratio, 

compression and decompression throughput, and energy efficiency. Different use 

scenarios and conditioning typical for modern mobile and workstation computing 

platforms are considered. The study observes a wide variety of energy costs associat-

ed with data compression and decompression and provides practical guidelines for 

selecting the most energy efficient configurations for each system and use scenario 

considered. 
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CHAPTER 1  

 

INTRODUCTION 

 

 An exponential growth of the Internet traffic and emergence of mobile com-

puting platforms with limited storage and energy resources make data compression 

and decompression crucial as they can reduce communication latencies and make 

effective use of the available storage. A number of compression utilities have been 

developed and routinely used in many areas of computing. In this thesis we focus on 

lossless compression and decompression, critical for all non-audio or non-video based 

digital content. Whereas common lossless compression and decompression utilities 

are well-understood as far as their performance and compression ratios are consid-

ered, little is known about their energy efficiency. The goal of this thesis is explore 

energy-efficiency of common utilities in typical use scenarios of mobile and desktop 

computing. The rest of the Introduction section gives background and motivation, 

discusses data compression, describes work done in the thesis, lists contributions of 

this thesis, and gives the outline of the rest of the thesis.  

1.1 Background and Motivation 

The total number of computing devices has been increasing substantially in 

recent years, mainly due to unprecedented proliferation of mobile computing devices. 

Mobile devices such as smartphones, tablet computers, and e-readers have steadily 

been gaining market share, dethroning laptop and desktop computers as dominant 

personal computing platforms. According to an estimate for 2011 [1], vendors 
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shipped 487.7 million smartphones (up 63% from the year before) and 67 million tab-

lets (up 274%), whereas the number of notebooks and desktop computers shipped 

was 209.6 million (up 7.5%) and 112.4 million (up 2.3%), respectively. A more recent 

estimates report a record 700 million smartphones shipped (up 43% from the year 

before) in 2012 [2], and 383 million of personal and desktop computers (notebooks 

and desktop computers combined) was estimated to be sold [3]. It is forecasting that 

the number of smartphones and tablets shipped in 2015 will reach 1.4 billion and 

326 million, respectively [1], whereas the number of personal computers shipped in 

2015 will reach 490.6 million [3]. 

The amount of data traffic initiated from mobile devices has been growing 

rapidly as well. A report from Cisco states that the global data traffic for mobile de-

vices alone grew 2.3-fold in 2011, reaching 597 petabytes per month, which is over 8 

times greater than the total Internet traffic in 2000 [4]. 

Energy efficiency is becoming an important design requirement for mobile 

and workstation platforms alike. For mobile devices, it is driven by several key fac-

tors, including (i) limited energy capacity of batteries, (ii) cost considerations favor-

ing less expensive packaging, and (iii) user convenience favoring lightweight designs 

with small form factors that operate for long periods without battery recharges. For 

workstations and servers, it is driven specifically by the desire to reduce the operat-

ing costs of data centers. However, the greener outlook on energy consumption is al-

so taken often by device manufacturers of desktop, laptop, and ultrabook computers.  

With current trends, where data traffic is increasing and large consumption 

of digital information is observed on mobile devices with limited storage and energy 

resources, minimizing storage capacity requirements and energy costs of data com-

munication is of great interest for both mobile devices and workstations in data cen-
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ters that make consumption of data available. Data compression utilities are thus 

critical in achieving energy-efficient data communication, reducing communication 

latencies and making effective use of available storage. 

1.2 Data Compression 

The general goal of data compression is to reduce the number of bits needed 

to represent information. Data can be compressed losslessly or lossily. Lossless com-

pression means that the original data can be reproduced exactly by the decompres-

sor. In contrast, lossy compression, which often results in much higher compression 

ratios, can only approximate the original data. This is typically acceptable if the da-

ta are meant for human consumption such as audio and video. However, program 

code input, medical data, email and other text do not tolerate lossy compression. 

This thesis focuses on lossless compression only for this research. 

Lossless compression is achieved by replacing frequent bit or byte strings 

with shorter sequences and infrequent bit or byte strings with longer sequences, 

which tends to reduce the overall data size. For example, in Huffman compression, 

bit strings are assigned unique, variable-length code words whose length is inversely 

proportional to the frequency of the corresponding bit strings. Huffman coding [5], or 

the slower but more sophisticated arithmetic coding [6], is often preceded by a trans-

formation stage whose purpose it is to model (or predict) the data. If the model is 

good, i.e., accurate, then the difference sequence between the predicted and the ac-

tual data primarily consists of small values that cluster around zero, which are easy 

to encode effectively. Various models are in use, including dictionaries of expected or 

recently encountered “words,” sliding windows that assume that recently seen data 

patterns will repeat, which are used in the Lempel-Ziv approach [7], as well as re-
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versibly sorting data to bring similar values close together, which is the approach 

taken by the Burrows and Wheeler transform [8]. The data compression algorithms 

used in practice combine different models and coders, thereby favoring different 

types of inputs and representing different tradeoffs between speed and compression 

ratio. Moreover, they typically allow the user to select the dictionary, window, or 

block size through a command-line argument. 

The choice of algorithm, compression level, and the quality of the implemen-

tation also affect the energy consumption. This aspect is not critical on desktop PCs 

and workstations, but it can be a decisive factor in battery-powered handheld devic-

es. In fact, it is reasonable to assume that achieving a higher compression ratio re-

quires more computation and therefore energy, but better compression reduces the 

number of bytes, thus saving energy when transmitting the data. Hence, it is benefi-

cial to take a close look at the energy-efficiency of lossless compression algorithms 

across systems of varies hardware complexity, such as state-of-the-art mobile and 

workstation platforms that communicates over the network. In particular, answers 

to whether compression is useful for reducing energy consumption, which common 

compression algorithms should be used, what configurations result in the best ener-

gy efficiency, and whether parallel execution can save energy are needed. 

1.3 What has been done? 

In this thesis, a comparative study of the most recent versions of several pop-

ular compression utilities, including gzip, lzop, bzip2, xz, pigz (a parallel implemen-

tation of gzip) and pbzip2 (a parallel implementation of bzip2) are performed on sev-

eral contemporary computing platforms. Platforms include Pandaboard, a state-of-

the-art mobile development platform, Raspberry Pi, a low-end mobile computer plat-
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form, and a Dell Precision T1600 workstation. For each utility, the effectiveness of 

all supported compression levels is analyzed to provide a complete picture. Common 

performance metrics such as compression ratio and compression and decompression 

throughputs are examined. Energy-efficiency metrics are introduced and the energy 

consumed by compression and decompression tasks is studied using our experi-

mental setup for energy measurements. To study effects of frequency scaling on 

Pandaboard and the workstation platform, the experiments are repeated for each 

frequency step. Pandaboard supports four frequency steps, 300MHz, 600MHz, 

800MHz and 1.01GHz. The workstation platform supports ten frequency steps for 

each core from 1.60GHz to 3.40GHz. 

The compression utilities evaluated in three typical use scenarios. The Local 

experiment involves compression and decompression tasks performed locally on sys-

tem under test (Pandaboard/Raspberry Pi/Workstation). The Wired and Wireless 

experiments involve compression tasks that stream data to and from a remote server 

over a secure communication channel. The Wired experiment uses an Ethernet net-

work interface, and the Wireless experiment uses a wireless LAN interface. Com-

pression utilities for Raspberry Pi and Workstation are evaluated only for the Local 

and Wired experiment for reasons of not having native wireless adapter. Only Pan-

daboard, with single-chip platform WiLink™ 6.0 provides wireless LAN natively [9]. 

 The main findings of research are as follows. 

 The effectiveness of compression utilities varies widely across different 

utilities and compression levels, often spanning two orders of magnitude.   

 For local compression and compression with upload over the wired net-

work, the fastest utility, lzop with compression levels -1 to -6, performs 
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the best in both compression throughput and energy efficiency. The next 

best utility is pigz with low compression levels.  

 For local decompression, lzop performs the best. 

 For decompression after download over the wired network, pigz, gzip, and 

lzop perform the best, regardless of the compression level that was used 

for generating the input files. 

 For compression with upload over the wireless interface, pigz and gzip 

with low compression levels (-1 to -4) perform the best. 

 For decompression after download over the wireless network, xz with the 

highest compression level achieves the best decompression throughput 

and energy efficiency. 

Whereas similar studies has been conducted almost a decade ago [10]–[12] for 

mobile platforms and a similar one for workstation and server platforms [13], our 

work complements the prior studies. Setup in thesis supports more accurate energy 

measurements (both hardware based and software based with the help of Intel on-

chip power meter), considers the most recent compression utilities including some 

with parallel implementations and uses three state-of-the-art platforms that repre-

sent modern mobile devices and workstation platforms. In addition, this study pro-

vides performance and energy efficiency data for all supported compression levels, in 

three typical use scenarios with representative modern datasets and for all frequen-

cy levels that are supported on the selected platforms. 
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1.4 Contributions 

This thesis makes the following contributions to the field of measurement-

based power profiling and to the field of compression and decompression on mobile 

and workstation platforms: 

 Providing an accurate performance and energy efficiency evaluation of 

modern compression and decompression utilities on three platforms that 

represent three distinct types of today’s computer hardware: mobile de-

vices, low-end devices, and workstations and servers.  

 Evaluating the effects of frequency scaling on performance and energy-

efficiency across all compression levels. 

 Creating experimental environment for measurement-based energy profil-

ing of the program running on mobile computing platforms. 

 Creating experimental methods for energy profiling of programs running 

on a workstation and server computers. 

1.5 Thesis Outline 

The rest of thesis is organized as follows. Chapter 2 gives background on this 

research, including compression algorithms and utilities, mobile platforms, and 

power profiling. Chapter 3 presents related work by highlighting relevant studies 

performed in similar conditions. Chapter 4 specifies the experimental goals, metrics, 

datasets, measurement setup, and experiments conducted. Chapters 5, 6 and 7 dis-

cuss the results for each selected computing device, Pandaboard, Raspberry Pi, and 

the workstation, respectively. Chapter 8 summarizes the thesis, draws conclusions 

for all three platforms together, and gives suggestions for future work in the area of 

this study. 
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CHAPTER 2  

 

BACKGROUND 

 

 This chapter covers background on several aspects of this research. Section 

2.1 gives details on selected lossless compression utilities and their algorithms to 

provide understanding on how selected lossless compression utilities work at the 

basic level. Section 2.2 discusses each of the three computer platforms selected for 

evaluation, highlighting both hardware and software specifications of each. Section 

2.3 discuses operating systems selection on both mobile and workstation computers. 

Section 2.4 discusses related work in power profiling. 

2.1  Lossless Compression Utilities  

The use of lossless compression can be found in various software distributions 

systems of Linux distributions, and Apple and Android app stores. For example, two 

most popular software package formats used in number of different Linux distribu-

tions are .deb (used in Debian based distributions) and .rpm (used in Red Hat based 

distributions). Those two packages contain application data that is retrieved from 

software repositories, and their content can be optional compressed with gzip, bzip2, 

lzma and xz. For app stores used in iOS and Android devices, .ipa and .apk file ex-

tensions are used for distribution of applications. Both file extensions are based on 

zip file format with various other extensions, such as encryption, and system specific 

(iOS or Android) structure built on top. 
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Table 2.1 lists the six lossless compression utilities that have been studied 

along with the supported range of compression levels and some commenting notes. 

The relatively fast gzip utility and the slower, but better compressing bzip2 utility 

were selected because of their widespread use in the Linux community. The lzop 

utility is included because of its exceptionally high speed. The xz utility is also gain-

ing ground in the Linux community across different distributions and is known for 

its high compression ratio, slow compression, and fast decompression. Since some 

devices, including our Pandaboard, and the workstation computer are already 

equipped with multicore CPUs, pigz and pbzip2, which are parallel versions of gzip 

and bzip2, respectively, were included. All of these utilities operate at byte granular-

ity and support a number of compression levels that allow the user to trade off speed 

for compression ratio. Lower levels favor speed, whereas higher levels result in bet-

ter compression. Subsections below will cover each utility and algorithm in detail.  

 

Table 2.1 Lossless Compression Utilities  

 

Utility Compression lev-

els (default) 

Version Notes 

gzip 1-9 (6) 1.4 DEFLATE (Ziv-Lempel, Huff-

man) 

lzop 1-9 (3) (2-6 

equivalent) 

1.0.3 LZO (Lempel-Ziv-Oberhumer) 

bzip2 1-9 (9) 1.0.6 RLE+BWT+MTF+RLE+Huffman 

(100KB-900KB) 

xz 0-9 (6) 5.1.0alpha LZMA2 

pigz 1-9 (6) 1.1.5 parallel implementation of gzip 

pbzip2 1-9 (9) 2.1.6 parallel implementation of bzip2 
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2.1.1 gzip  

gzip [14] implements the deflate algorithm, which is a variant of the LZ77 al-

gorithm [7]. It looks for repeating strings, i.e., sequences of bytes, within a 32 kB 

sliding window. The length of the string is limited to 256 bytes. gzip uses two Huff-

man trees, one to compress the distances in the sliding window and another to com-

press the lengths of the strings as well as the individual bytes that were not part of 

any matched sequence. The algorithm finds duplicated strings using a chained hash 

table that is indexed with 3-byte strings. The selected compression level determines 

the maximum length of the hash chains, and whether lazy evaluation should be 

used. The evaluated version of gzip is 1.4. 

2.1.2 lzop  

lzop [15] uses LZO block-based compression algorithm that favors speed over 

compression ratio and requires little memory to operate. It splits each block of data 

into sequences of matches (a sliding dictionary) and non-matching literals, which it 

then compresses. LZO requires no memory for decompression and requires only 

64kB for compression. The speed for lzop is IO-bound and not CPU-bound. LZO al-

gorithm provides support for a wide range of systems both legacy and new. 

The lzop utility stores original file name, ownership, mode and time stamp of 

files during compression, allowing files to be restored in their original form when 

decompressed. Compression levels are divided into three groups. The first group in-

cludes compression levels -2, -3, -4, -5 and -6 and offers fast compression. The second 

group includes compression level -1 and it can be sometimes faster than the first 

group. The last group that includes compression levels -7, -8, and -9 provide the best 

compression ratio but with slower execution. Several standard switches are used to 
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turn on different options: -f forces compression or decompression, -c redirects output 

to a specified location, -d indicates decompression, and –k keeps the original file. No 

native parallel version of lzop currently exists, however process-level parallelism can 

be used when using GNU Parallel tool with lzop. The evaluated version of lzop is 

1.0.3. 

2.1.3 bzip2  

bzip2 [16] implements a variant of the block-sorting algorithm described by 

Burrows and Wheeler (BWT) [8]. bzip2 applies a reversible transformation to a block 

of inputs, uses sorting to group bytes with similar contexts together, and then com-

presses them with a Huffman coder. The selected compression level adjusts the 

block size between 100 kB (with compression level -1) and 900 kB (with compression 

level -9). The evaluated version of bzip2 is 1.0.6. 

2.1.4 xz  

xz [17] is based on the Lempel-Ziv-Markov chain compression algorithm 

(LZMA) developed for 7-Zip [18]. It uses a large dictionary to achieve good compres-

sion ratios and employs a variant of LZ77 with special support for repeated match 

distances. The output is encoded with a range encoder, which uses a probability 

model for each bit (rather than whole bytes) to avoid mixing unrelated bits, i.e., to 

boost the compression ratio. The evaluated version of xz is v5.1.0alpha. For Panda-

board and Raspberry Pi, xz was evaluated only with compression levels -0 through -6 

as the memory requirement for levels -7 to -9 exceeds the available memory on those 

platforms. For the workstation platform, this problem does not exist, and all com-

pression levels of xz are evaluated. 
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2.1.5 pigz  

pigz [19] is a parallel version of gzip for shared memory machines which is 

based on pthreads. It breaks the input up into 128 kB chunks and concurrently com-

presses multiple chunks. The compressed data are outputted in their original order. 

Decompression operates mostly sequentially, however separate threads are created 

for reading and writing [19]. The evaluated version of pigz is v1.1.5. 

2.1.6 pbzip2  

pbzip2 [20] is a multithreaded version of bzip2 that is based on pthreads. It 

works by compressing multiple blocks of data simultaneously. The resulting blocks 

are then concatenated to form the final compressed file, which is compatible with 

bzip2. Decompression is also parallelized. The evaluated version of pbzip2 is 2.1.6. 

2.2  Evaluated Computer Platforms 

For this research, three platforms with varying hardware complexity are se-

lected so that the gained results and insights can have a wide application across 

many current mobile and workstation platforms. Pandaboard and Raspberry Pi are 

selected to represent typical mobile devices, and the workstation computer is select-

ed to represent workstations and servers based on the state-of-the-art processors 

such as Sandy Bridge or Ivy Bridge [21]. 

2.2.1 Pandaboard 

Pandaboard (Figure 2.1) is designed by Texas Instruments to support soft-

ware development for smartphones and other mobile devices [22]. It features a Tex-

as Instruments system-on-a-chip (SoC) OMAP4430 [23] with 1 GB of low-power 

DDR2 SDRAM. The OMAP4430 SoC includes a dual-core ARM Cortex-A9 MPCore 

processor, a 3D graphics accelerator, an image signal processor, and a rich set of 
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standard peripherals (timers, communication interfaces, and a memory controller). 

A number of commercial mobile devices, such as Amazon Kindle Fire, BlackBerry 

Playbook, Motorola Droid RAZR, Samsung Galaxy Tab and Galaxy S II, are based 

on this chipset. Pandaboard also features an onboard 10/100 Ethernet port, a wire-

less interface (802.11 and Bluetooth), DVI and HDMI video interfaces, an audio in-

terface, and two USB ports.  

 

 

 

Figure 2.1  Pandaboard 

 

The platform can run various mobile open-source operating systems based on 

the Linux kernel, including Ubuntu, Android, and MeeGo/Tizen. For experiments, 

Ubuntu distribution provided by Linaro, a non-profit organization that works on 

consolidating and optimizing open-source code for the ARM architecture [24], is se-
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lected. Linaro provides both Android and Ubuntu for Pandaboard platform; however, 

the Ubuntu build is much more stable and provides more flexibility and control. One 

goal for performing highly representative measurements of compression or decom-

pression on the selected platform was to have the ability to turn off any unrelated 

tasks in the system. With Linux, it was possible to kill all potentially results affect-

ing tasks. This includes shutting down graphical desktop enlivenment, disabling 

network daemons when they are not in use (e.g, in experiments that do not involve 

network communication). Ubuntu and Linux are also gaining ground in the mobile 

systems. Canonical, a company that leads the development of Ubuntu announced 

their plans to enter the mobile market by demonstrating Ubuntu for phones, a 

standalone operating system for mobile devices. They plan to offer a full access to 

desktop operating system on smartphones, when they are docked with monitor and 

I/O devices. In addition, the Android, the most popular platform on smartphones re-

lies on the Linux kernel.  

2.2.2 Raspberry Pi 

Raspberry Pi (Figure 2.2) is a credit-card size computer which is designed by 

Raspberry Pi Foundation to be readily affordable platforms for schools [25]. Rasp-

berry Pi Model B was selected to represent low-end device for this research and fea-

tures Broadcom BCM2835 SoC, which contains an ARM1176JZFS running at 

700Mhz, a Videocore 4 GPU and 512MB of RAM. Model B also includes an onboard 

10/100 Ethernet port, GPIO pins, RCA and HDMI video interface, an audio inter-

face, two USB ports and SD card slot. Because no physical serial port is available on 

Raspberry Pi, the RX and TX pins on GPIO are used to setup a serial connection. 

Raspberry Pi has a large development community, which leads a number of projects 
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ranging from entertainment centers to dedicated computers for photography, home 

automation, medical and robotic fields. Raspberry Pi Foundation has sold close to a 

million devices [25] in less than a year since it has been introduced. 

 

 

 

Figure 2.2  Raspberry Pi 

 

Raspberry Pi supports several Linux distributions, including Debian [26], 

Arch [27] and several distributions built around XBMC (Xbox Media Center) such as 

Raspbmc and OpenELEC [28], [29]. Additionally, there are projects to provide sup-

port for Android operating system [30]. In this research, a Debian for Raspberry Pi 

is used. 
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2.2.3 Workstation platform 

For the workstation platform, a Dell Precision T1600 workstation is used. It 

features a quad-core Intel Xeon CPU E31270 processor based on Sandy Bridge ar-

chitecture. Each processor core supports 2-way multithreading; thus the total num-

ber of logical processor cores is eight. The processor chip supports ten frequency 

steps ranging from 1.60GHz to 3.40GHz. It features a three-level cache system, with 

256KB L1 data cache, 1 MB L2 cache, and 8 MB L3 cache. The system memory is 

8GB DIMM DDR3 synchronous at 1333MHz (0.8ns). The secondary storage includes 

an ATA hard disk with capacity of 1 TB. The workstation includes a gigabit network 

interface, a USB controller, audio and video interfaces, including NVIDIA Quadro 

GF106GL PCI Express graphics card. 

The selected workstation allows the use of likwid lightweight performance 

tools to perform power measurement, specifically likwid-powermeter which will be 

discussed in details in Chapter 4. The Intel Xeon E31270 processor includes -- an on-

chip resource for estimating energy and power of running tasks using events record-

ed in performance monitoring registers and their proprietary model that captures 

physical characteristics of the processor. The likwid tool interfaces the power meter 

and outputs power measurements in joules and watts. Intel researchers demon-

strated that this on-chip resource gives estimates for the energy and power that are 

within several percentages of those acquired by the actual power measurements 

[21]. 

The workstation supports any operating system built to support i386 or 

x86_64 architecture. For this research, Ubuntu 12.04 was used to be consistent with 

experimental methods on other systems under test (Pandaboard and Raspberry Pi).  
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2.3  Operating Systems 

This section gives a brief overview of operating systems for mobile and work-

station platforms, and describes reasons for selecting Linux as the primary operat-

ing system for performing experiments across all selected systems in this research. 

2.3.1 Mobile Systems 

On mobile systems, two most popular operating systems are iOS from Apple, 

and Android from Google. Android and iOS capture 92% of the global smartphone 

shipments in Q4 of 2012 as reported by Strategy Analytics [31]. Similar market 

share is observed for both operating systems on tablets. The smaller market share is 

taken by Microsoft with their Windows Mobile and Windows 8 on smartphones and 

tablets. In addition to these three, there are other mobile operating systems that are 

either in development or command a much smaller market share. One example is 

Tizen [32], funded and developed by Linux Foundation, Samsung and Intel (a previ-

ous project MeeGo [33]). WebOS was converted by HP from a failed mobile attempt 

to an open source mobile project [34]. Firefox also recently started to develop a 

HTML5 based operating system with their Firefox OS [35]. Finally, Canonical, the 

group behind Ubuntu operating system, the most popular Linux distribution on 

desktops have introduced their mobile OS for mobile phones at Consumer Electron-

ics Show (CES) of 2013 [36]. It is important to note that Ubuntu, in comparison with 

the majority of other mobile operating system, including iOS and Android, is offering 

the same operating system to be used across both mobile and computer devices, and 

proposing an idea of using powerful smartphone devices as full-desktop systems once 

they are docked to a special docking station connected to a monitor, keyboard, mouse 

and other I/O [37]. 
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The majority of above mentioned operating system, excluding iOS and Win-

dows Mobile or Windows 8, share a common feature of utilizing Linux kernel at their 

core. This indicates that anything that can work well on a basic level on Linux dis-

tribution (for example compression or decompression) will work well on the majority 

of mobile operating systems, including Android. This was one of the reasons why a 

Linux distribution (with the majority of unrelated tasks turned off) is selected to 

perform all measurement tests. This provided clean and reliable measurements and 

results that can be applied not only to Ubuntu, but easily to Android, Tizen, Firefox 

OS and other Linux based mobile operating systems. Another reason for using 

Linux, instead of Android, was better integration on development platforms and 

higher flexibility on controlling (turning off) running tasks. 

2.3.2 Workstation and Server Systems 

Linux is used on desktop, workstations and server systems across house-

holds, businesses and data centers. Linux is increasingly used in datacenters and 

server farms with w3tech reports that Linux is used in 32.8% of webservers [38]. 

Major companies such as Lenovo, Dell, IBM and HP are offering certified hardware 

[39] for various Linux distributions. New Linux-powered consumer products such as 

TV media centers [40] and gaming consoles [41] [42] are emerging. Those reasons 

were behind the choice of selecting Ubuntu Linux distribution as operating system 

for all performance and power measurement tests in this research. Similarly to mo-

bile systems, Linux was also selected due to its higher flexibility and controllability. 
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2.4  Power Measurement and Profiling 

This section discusses previous studies in the field of power measurement 

and profiling. Subsection 2.4.1 and Subsection 2.4.2 cover information for mobile and 

workstation systems, respectively. 

2.4.1 Mobile Systems 

There are a number of different studies that explore and seek for new ways of 

manage or reduce power consumption on mobile devices. This is motivated by lim-

ited battery operating time and consumers’ demand for longer single charge mobile 

use. The proposed solutions on managing mobile power consumption include 

schemes with cloud offloading [43] [44],  run-time power modeling [45] [46] [47], and 

energy estimation [48], [49]. 

Carroll and Heiser try to understand which component in today’s typical mo-

bile device are the biggest energy consumer by performing direct energy measure-

ment [48]. They measured the energy consumed by individual components including 

CPU, RAM memory, flash storage, network and GPS. They evaluate different usage 

scenarios and applications such as audio playback, video playback, text messaging, 

phone calls, emailing and web browsing. The paper concluded that the majority of 

power consumption can be attributed to network communication and display. Their 

experimental setup, similar to the setup used in this thesis, consisted of using DAQ 

from National Instruments and a sense resistors inserted at the power supply rails 

to measure voltage drops across resistor, which is used for calculation of power and 

energy. 

Bircher and John  estimate system power consumption using processor per-

formance events [49]. The complete list of performance events included cycles, halted 
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cycles, fetched micro-operations, L3 Cache misses, TLB misses, DMA accesses, pro-

cessor memory bus transactions, un-cacheable accesses and interrupts. Analysis of 

performance events offline using software tools provided models and formulas for 

accurate power estimation for CPU, memory, disk and I/O. Accuracy of their method 

was demonstrated by synchronous comparison of estimations with direct hardware 

measurements. Downside to their study is the hardware dependent models and for-

mulas, requiring adjustments and re-calibrations to provide proper power estimation 

for new systems. 

2.4.2 Desktop, Workstation and Server Systems 

Hardware modifications to support direct energy measurements are not al-

ways possible or desirable in mobile systems. This statement holds true for work-

station and server computer systems, with some cases where hardware modifica-

tions can be almost impossible to perform. This subsection discusses the Intel’s 

Sandy Bridge Power Control Unit (PCU) and how this on-chip power measurement 

infrastructure can be used to provide accurate power estimation without invasive 

hardware modifications. 

Intel’s Sandy Bridge allows for easier and more manageable ways for per-

forming energy measurement and monitoring without doing invasive modifications 

to the hardware. Intel’s PCU does not perform real energy measurements, but in-

stead collects statistic on temperature and hardware events and then calculates 

power using proprietary models. Intel demonstrates remarkably low error of power 

estimation performed by the PCU when compared to direct hardware measurements 

on one such processor [21]. Subsections, in the experimental setup, will describe the 

software package, LIKWID [50], [51], [52], used to interface the PCU. 
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CHAPTER 3  

  

RELATED WORK 

 

 This chapter covers the related work in the area of evaluation of lossless 

compression and decompression utilities on mobile (Sections 3.1) and workstation, 

and server systems (Section 3.2). 

3.1 Mobile Systems 

The most closely related work for wireless mobile devices in this research is a 

study by Barr and Asanović [10], [11], where evaluation of compression and decom-

pression utilities is conducted with motivation of reducing wireless transmission en-

ergy cost. 

Their excellent publications include details that are beyond the scope of this 

work, such as the frequency with which different types of instructions are executed, 

the branch prediction accuracy, and the performance of the memory hierarchy. Their 

experimental setup has several advantages. For example, their Skiff platform, which 

mimics an iPAQ mobile device, enabled them to separately measure the energy 

drawn by the CPU, the memory subsystem, peripherals, and the wireless interface. 

However, the test environment in this research is superior in other aspects. Some of 

them are simply a result of almost a decade of advances in technology. For instance, 

their now obsolete processor had a single core, a clock frequency of 233 MHz, and 32 

MB of DRAM. The Skiff platform was further limited to 4 MB of nonvolatile flash 

memory. Thus, the root file system had to be mounted externally via an Ethernet 

port using NFS. In comparison, OMAP4430 has two cores, runs at 1.01 GHz and has 

1 GB of DDR2 SDRAM. The OMAP SoC is one of the leading platforms for current 
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mobile devices and features an integrated communication interface and supports 

higher transmission speeds. Another advantage of our test bed is the use of DAQ 

which support sampling frequency up to 200kHz, which is about 5000 times higher 

than theirs, presumably yielding more accurate measurements. Even when 20kHz 

sample frequency is used, our hardware takes a sample every 50,000 and 35,000 

CPU clock periods for Pandaboard and Raspberry Pi respectively, whereas theirs 

sampled once per five million clocks. In this research, variation of CPU frequency is 

also evaluated, providing insight into which frequency level can be more every effi-

cient. There are also substantial software differences between Barr and Asanović’s 

study and this research. Where-as several of their compression utilities are prede-

cessors of the utilities evaluated in this thesis, they only tested a selected compres-

sion levels (while all compression levels are evaluated in this thesis), and inclusion 

of newer utilities such as xz as well as the parallel implementations pigz and pbzip2 

is done. Furthermore, their input data was limited to 1 MB of text and 1 MB of web 

data. Data covered in this thesis is composed of a wider range of relevant data types 

with files size larger by an order of magnitude. Because of their hardware’s low 

sampling rate, they were forced to run the same compression or decompression in an 

infinite loop to obtain sufficiently many samples. In this thesis however, individual 

test are run, that is, in a manner that is more representative of actual usage.  

Study, by Xu et al., focuses only on decompression on mobile systems [12]. 

Their motivation to evaluation decompression tasks only laid in their assumption 

that performing compression on a mobile device is too costly in energy consumption. 

Their work compared gzip, bzip2 and compress. Similar to Barr and Asanović, they 

have used a similar iPAQ 3650 system to represent mobile device for their tests and 

their file server was Dell Dimension 4100 with 1GHz P-III processor. They establish 
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a wireless connection between iPAQ and file server using WaveLAN PCMCIA card 

which follows IEEE 802.11b standard. Their nominal peak rate was set 11Mb/s and 

their effective data rate of WaveLAN card was measured at 5Mb/s. For a portion of 

their work, they change nominal bit rate from 11Mb/s to 2Mb/s, however the rest of 

the work is done using 11Mb/s rate. To perform power measurement for their setup, 

authors use HP 3458a low-impedance digital multi-meter with sampling of several 

hundred samples per second. In comparison with work by Barr and Anasovic, Xu et 

al. have selected much wider array of test files used in their evaluation. Files varied 

heavily by individual file size and file type. Some of the selected file types, however, 

were already pre-compressed due to being either lossy or not suited for lossless com-

pression (gif, jpg, mp3, m2v). The relevance to have such files under test is question-

able as they produce compression ratios close to one. Otherwise, this study has many 

similarities with work of Barr and Asanović. Many observations on differences be-

tween Barr and Asanovic and work in this thesis can also be easily applied to paper 

by Xu et al. Differences include usage of all compression levels, substantially higher 

sampling frequency, due to a decade of advances in technology, new and parallel 

compression utilities, evaluation of frequency scaling and several software differ-

ences. 

3.2 Workstations and Servers 

Lossless file compression was considered for evaluation on the server and 

workstation computers by Kothiyal et al. [13]. In their work, they compare energy 

and performance results of some compression and decompression utilities for two 

platforms. A rack mountable sever Dell PowerEdge SC1425 with 2 dual-core Intel 

Xeon CPU @ 2.8GHz and a workstation system with Intel Pentium CPU @ 1.7GHz 
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were selected to represent a faster server dedicated system and slower common 

desktop system respectively. The main motivator of the study laid in power and cool-

ing cost of data centers and server. Compression utilities gzip, lzop, bzip2 and com-

press, with selective compression levels were chosen for evaluation. However, even 

that evaluation included multicore system, no parallel compression utilities were 

selected for study. The Input set for compression tried to address the effect of com-

pression ratio on performance and energy consumption by having four files, each 

with increasing compression complexity (each with lower compression ratio). For 

evaluation, only local compression with raw file transfer was considered, similarly to 

how network file transfer was used during network tests in this thesis. To better 

evaluate the activity in server class computers, authors came up with the read-write 

ratio model for their experiments. Using that model, they tested performance of 

compression utilities based on an increasing number of reads by having varied read-

write ratio for each evaluation. The final report on energy consumption indicated 

that from all four compression utilities, under both systems, lzop -1 and -3 per-

formed better than the rest, outperforming each raw file transfer for all read-write 

ratios and providing energy saving on all test stages. Final conclusion of the study 

was that energy-efficiency of any compression algorithm depends on how fast it exe-

cutes. 
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CHAPTER 4  

  

EXPERIMENTAL SETUP 

 

Chapter 4 describes the experimental setup including goals, metrics, da-

tasets, measurement setup, and types of experiments. Section 4.1 states experi-

mental goals of this research. Section 4.2 covers metrics used for evaluation of com-

pression ratio, performance, and energy efficiency. Section 4.3 covers two datasets 

that are selected. Section 4.4 describes measurement setup, breaking it down into 

separate discussions on Pandaboard/Raspberry Pi platforms and the workstation 

platform. Chapter is concluded by Section 4.5 with discussion on types of experi-

ments selected for evaluation of compression and decompression utilities. 

4.1 Experimental Goals 

The experimental goals of this measurement-based research are to evaluate 

performance and energy efficiency of common compression and decompression utili-

ties and to gain insights on selecting an optimal utility with minimal communication 

cost on mobile and workstation platforms. Experiments are performed in isolated 

and controlled environment to allow wide applicability of insights on other systems. 

4.2 Metrics 

Providing clear and easily applicable insights require well developed metrics 

for working with raw performance and energy data extracted from compression and 

decompression task. Metrics on evaluating compression ratio (Section 4.2.1), perfor-

mance (Section 4.2.2), and energy efficiency (Section 4.2.3) are presented and dis-

cussed. 
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4.2.1 Compression Ratio 

Compression ratio is used to evaluate the compression effectiveness of an in-

dividual utility on all levels of compression. The compression ratio CR is calculated 

as the size of the uncompressed input file (US) divided by the size of the compressed 

file (CS), CR=US/CS. Compression ratios, for each platform, are reported in Chap-

ters 6, 7 and 8 that covers results for Pandaboard, Raspberry Pi and the work-

station. 

4.2.2 Performance 

Performance of a compression or decompression task is inversely proportional 

to the time needed to complete the task. It depends on compression/decompression 

algorithms, file size, and redundancy found in the input files. 

To evaluate the performance of individual compression utilities and their 

compression levels, the time to compress the raw input file (T.C) and the time to de-

compress (T.D) a compressed file generated by that utility with the selected com-

pression level are measured using the Linux time utility that reports the elapsed 

time for a running task. Each compression or decompression task is repeated three 

times, and the average time is calculated. Instead of reporting the execution times 

directly, the compression and decompression throughput are reported, expressed in 

megabytes per second. They are calculated as the size of the uncompressed input file 

divided by the time to perform compression or decompression task (Equation (1)). 

Alternatively, the throughputs can be calculated as the number of bytes eliminated 

by compression, |US-CS|, divided by the time to perform compression or decom-

pression task (Equation (2)). 
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The throughput from Equation (1) captures the efficiency of data transfers 

from a user point of view – users produce and consume raw data and care more 

about the time it takes to transfer data than about what approach is used internally 

to make the transfer fast. In addition, this metric is suitable for evaluating net-

worked data transfers by comparing compressed and uncompressed transfers. 

Whereas the alternative throughput metric captures the compression strength of the 

individual utilities directly, it is not suitable for the evaluation of networked trans-

fers. 

4.2.3 Energy efficiency 

For each compression task with a selected compression level, the energy 

overhead for compression (ET.C(0)) using the method described in Equation (3) is 

calculated. In addition, the total energy as a function of the idle current (ET.C(Iidle), 

Iidle={0.25, 0.5, 0.75} A) is derived. Similarly, for each decompression task the total 

energy as a function of the idle current ((ET.D(Iidle)) is calculated. For each combina-

tion of a compression utility and a compression level, three measurements are con-

ducted and the average energies are calculated. Instead of reporting the energy di-

rectly in joules, the energy efficiency calculated as the size of the uncompressed in-

put file divided by the total energy to perform a compression or decompression task 
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is used. The energy efficiency calculations (measured in megabytes per joule) are 

given in Equation (3). Alternative energy efficiency metric can be calculated as the 

number of bytes eliminated by compression divided by the total energy (|US-

CS|/ET.C or |US-CS|/ET.D) (Equation (4)).  
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4.3 Datasets 

To perform effective evaluation of compression algorithms, proper datasets 

had to be compiled for each system under test. For this research, a total of two da-

tasets are used. The first dataset, compiled specifically for mobile platforms, in-

cludes a set of diverse input files representative of mobile computing. The second 

dataset, selected specifically for the workstation platform, includes a 1GB image of 

Wikipedia. 

The mobile input dataset file includes text, an executable, an image, a file 

with comma-separated values from a wearable health monitor, and source code. Ta-

ble 4.1 describes the input files, including their types, size in bytes, and a short de-

scription. The files are merged into a single archive file (totalInput.tar) that is used 

as an input for the compression utilities. 
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Table 4.1 Dataset – totalInput.tar 

 

i Name Type Raw size 

[bytes] 

Notes 

1 book text(txt) 15,711,660 Project Gutenberg Works of Mark Twain 

2 libso exec. (so) 12,452,484 An open source web content engine libweb-

kit library 

3 globe image (bmp) 16,777,270 An image of Earth from space 

4 health table (csv) 9,988,982 ~2 hours of health and physical activity da-

ta collected on a portable health monitor 

5 perl code (tar) 11,233,280 Perl 5.8.5 source code 

 

Specifically for the workstation platform, the second dataset is a dump of the 

English Wikipedia, “enwik9.xml” [53], composed of UTF-8 encoded XML which pri-

mary consist of English text from 243,426 article titles. A similar dataset, “en-

wik8.xml”, is also known for being used in Hutter Prize for compression [54], [55]. 

Table 4.2 summarizes the two datasets used for this research, including their types, 

size in bytes, and a short description.  

 

Table 4.2 Datasets Summary 

 

i Name Type Raw size 

[bytes] 

Notes 

1 totalInput.rar Archive 

(tar) 

66,478,080 Archived dataset from files in Ta-

ble 4.1 

2 enwik9.xml web image 

(xml) 

1,000,000,000 An image of Wikipedia consisting 

of English text 

 

4.4 Measurement setup 

Power and energy measurements for the mobile platforms rely on hardware 

instrumentation – a shunt resistor placed on the power supply rail is continually 
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sampled by a data acquisition system (DAQ). Power and energy measurements for 

the workstation platform rely on a software tool that interfaces the processor’s on-

chip power-measurement infrastructure, thus eliminating the need for hardware 

modifications [56]. The following subsections describe the measurement setup for 

the mobile platforms and the workstation platform. 

4.4.1 Measurement Setup for Mobile Platforms 

 Figure 4.1 illustrates the setup for measuring energy consumed during a 

program execution on Pandaboard and Raspberry Pi. The only differences are that 

Pandaboard is supplied by a power brick with voltage and current outputs of 5V and 

3.6A, whereas Raspberry Pi is supplied by a USB power adapter with voltage and 

current outputs of 5V and 2.0A. Both systems under test are connected to the power 

supply (VSUPPLY = 5 V) via a low-resistance shunt resistor (R = 0.1). The voltage 

over the shunt resistor (VSHUNT = R*I) is sampled using a data acquisition (DAQ) 

system connected to a development workstation. The current I drawn by a platform 

can be calculated from the voltage drop over the shunt resistor as I = VSHUNT/R.  
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Figure 4.1  Measurement Setup for Pandaboard and Raspberry Pi 

 

The development workstation (Dell Optiplex 745 with Windows XP) runs a 

custom mPowerProfile program that controls both system under test (via a serial 

link terminal) and the DAQ (via a USB port). mPowerProfile starts collecting volt-

age samples and, after a predefined head delay, a Linux command is issued to Pan-

daboard or Raspberry Pi. It collects samples during application execution as well as 

for a predefined tail delay after the application has completed. mPowerProfile pro-

vides utilities for configuring the head and tail delays, the scaling factor for samples, 

and the sampling frequency as shown in Figure 4.2. mPowerProfile allows for meas-

urements on several channels at the same time. 
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Figure 4.2  mPowerProfile software 

 

The accuracy of the energy estimation increases with the increasing sampling 

frequency. The DAQ that used for this research is NI DAQPad-6015. It provides 

support for 16-inputs, with each having maximum sampling frequency of 200,000 

samples per second (200 kS/s). DAQ also provides an API that mPowerProfile is us-

ing to control when and for how long to issue commands when performing measure-

ments. Using the highest possible sampling frequency for DAQ on Pandaboard and 

Raspberry Pi, means that voltage can be sampled every 5,000 and 3,500 CPU clock 

cycles respectively.  

When evaluating different sampling frequencies in the range of 10 kS/s to 

200 kS/s, the result showed that the energy calculated using 20 kS/s is within 1% of 



35 

 

the energy calculated using 200 kS/s for both systems. Thus, for all experiments a 

sampling frequency of 20 kS/s is used. Using lower sampling frequency reduces the 

sizes of individual sample files substantially and allows for quicker processing of re-

sults without large sacrifice of accuracy.  

4.4.1.1 Energy Calculation Example 

This subsection will demonstrate our methodology of performing energy 

measurement on Pandaboard or Raspberry Pi using mPowerProfile and Matlab 

(which is replaced later with Perl script to expedite the process). 

mPowerProfile controls issuing commands to be run on the system under test 

and sampling voltage from the shunt resistor over the DAQ. Once mPowerProfile is 

properly configured, commands to be run on the platform are entered into Input 

Script window. By pressing “Start Script” mPowerProfile starts capturing samples 

from the shunt resistor into a specified file. After the predefined head delay, the 

command is sent to the platform through the serial COM port. Once the execution is 

done, mPowerProfile continues taking samples for the tail delay period. The collect-

ed samples are logged in the specified file as shown in Figure 4.3. Line 1 in the file 

contains configuration data of mPowerProfile and includes information such as 

Sampling Rate, Buffer size, Scaling factor, Start, Stop Delay and Date. Line 2 tells 

how many samples are recorded in the file. The remaining lines from Line 3 to the 

end of the file contain scaled voltage readings from the shunt resistor. 
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1. Sampling Rate = 20000, Buffer size = 1000, Scalling factor = 

10000, Start Delay = 4000, Stop Delay = 4000, Date = 11/21/2011 

5:30:19 PM 

2. 1085000 

3. 942.9931640625  

4. 918.5791015625  

5. 946.044921875  

6. 952.1484375  

7. 958.251953125  

8. 942.9931640625  

9. 961.3037109375  

Figure 4.3  Sample File Example 

 

Next step is to use Matlab, or Perl script to derive current and to calculate 

the energy. Figure 4.4 shows Matlab generated plots of the measured current drawn 

by Pandaboard during compression of the totalInput.tar input file using gzip -1. The 

head and tail delays are set in this example to 4 second each, and compression takes 

about 7 seconds. Figure 4.4(a) shows the current drawn by Pandaboard during this 

period as it is used in the energy calculations (raw samples from DAQ). Figure 4.4(b) 

shows the filtered signal, provided here only to enable easier visual inspection by a 

human of the changes in the current drawn during program execution. 
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(a) 

 
(b) 

Figure 4.4  Current drawn by Pandaboard during execution on gzip utility 

 

Pandaboard with all unnecessary services turned off draws 0.565 amperes 

when idling (Iidle = 0.565 A) as shown in Figure 4.4. The start of compression is 

marked with a steep increase in the current, which remains high throughout the 

compression and goes down to the idle current once the application has completed. 
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The number of samples during the execution of a compression utility is n = T.C*SF, 

where T.C is the compression time for a given file and SF is the sampling frequency. 

The total energy consumed (ET.C) is calculated as follows: 

tVICET
n

j

jPLATFORMj 
1

,.    (5) 

where  t=1/SF, and VPLATFORM,J = VSUPPLY – IJ*R. Note that the calculation 

can be simplified by assuming VPLATFORM to be constant because the voltage drop 

over the shunt resistor is negligible. In addition to ET.C, the energy overhead of the 

compression task, ET.C(0), is calculated alone which excludes the energy needed to 

run the platform when idle. This energy overhead is calculated as:  

CTVICETCET idlePLARTFORMidle ..)0(. ,    (6) 

where VPLATFORM,idle = VSUPPLY – Iidle*R. Similarly, the total energy and the 

overhead energy for decompression tasks are calculated using the decompression 

time T.D instead of the compression time T.C. Once the energy overheads ET.C(0) 

and ET.D(0), are determined, total energies ET.C(Iidle) and ET.D(Iidle) as a function of 

the idle current using Equation (6) can be found and thus decoupling our findings 

from the system under test.  

4.4.2 Workstation 

A typical example of running likwid-powermeter on the workstation is shown 

in Figure 4.5. The first line creates a script file cmd.sh that performs a local com-

pression task using gzip with -1. To get energy estimates, the likwid-powertool is 

run with the script file as a parameter.  The likwid-powertool reports the conditions 

and the energy estimates (from line 03 to line 12). It shows the current clock fre-

quency, the processor core id (CoreID 0) on which the task is run, the execution time, 
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and the energy consumed in Joules for the entire task (306.596 Joules) and the av-

erage power consumption (21.6 Watts). 

 

 

01.~$ echo "gzip -fc -1 /dev/shm/input/enwik9.xml > /dev/null" > 

cmd.sh 

02.~$ likwid-powermeter ./cmd.sh  

03.------------------------------------------------------------- 

04.CPU name:       Intel Core SandyBridge processor  

05.CPU clock:      3.39 GHz  

06.------------------------------------------------------------- 

07.Measure on CoreId 0  

08../cmd.sh 

09.Runtime: 14.1936 s  

10.Domain: PKG  

11.Energy consumed: 306.596 Joules  

12.Power consumed: 21.6011 Watts 

Figure 4.5  likwid-powermeter gzip -1 example 

 

To conduct a systematic and an autonomous way of running tasks, a bash 

script is created which rewrite cmd.sh file, executes likwid-powermeter and parses 

output of likwid-powermeter for energy and time for each compression and decom-

pression task repeatedly. The output of bash script produces two formatted text files, 

one with energy values and another with time of execution values for compression or 

decompression tasks. 

4.5 Experiments 

To evaluate compression and decompression tasks, three typical usage sce-

narios are considered as shown in Figure 4.7. This subsection describes the Local, 

Wired and Wireless experiments performed on selected systems under test, followed 
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by description of frequency scaling (Section 4.5.1) and idle currents (Section 4.5.2) 

and commands (Section 4.5.3). 

The first experiment (Local) involves measuring the time and energy of com-

pression and decompression tasks performed locally on the system under test. To 

eliminate latencies and energy overheads caused by reading and writing files from 

the file system on the SD memory card (for Pandaboard and Raspberry Pi) or the 

ATA disk (the workstation), the input files for the compression and decompression 

tasks are read from the tmpfs, a temporary Linux file system stored in main 

memory. The output of compression and decompression tasks is re-directed into the 

Linux null device (/dev/null) – a special “file” that discards all data written to it by 

calling write_null function that only increments the count with each incoming bit 

(Figure 4.6). 

 

 

static ssize_t write_null(struct file *file, const char __user 

*buf, size_t count, loff_t *ppos) 

{ 

     return count; 

} 

Figure 4.6  write_null in Linux kernel source code for /dev/null 

 

The second and third experiments (Wired and Wireless) involve measuring 

the time and energy of compression and decompression tasks performed on the sys-

tem under test while communicating with a remote server. For the compression 

tasks, the raw input file (UF) is read from the local tmpfs, compressed on the plat-

form, and streamed to the remote server over a secure channel. The output files are 
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redirected to the null device of the remote server. For the decompression tasks, the 

compressed files (CF) are retrieved from the temporary file system of the remote 

server through a secure channel and decompressed on system under test. The output 

files are redirected to the null device of system under test. The communication be-

tween input, compression/decompression, and output operations is carried out 

through Linux pipes. The execution times include file transfer latencies as well as 

compression and decompression times. Similarly, the energies are measured for 

completing the entire tasks. These two scenarios correspond to typical file-transfer 

tasks on selected platforms: compressing and uploading files to a remote server, and 

downloading files from a remote server and decompressing them. In addition to the 

transfers that involve compression and decompression operations, the time and en-

ergy needed to upload and download the raw input file over a secure communication 

channel were evaluated. 
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Figure 4.7  Experimental data flow 

 

In the Wired experiment, system under test is connected to a local router us-

ing its Ethernet port. The remote server is also connected to the local router where 

no other nodes participate in any communication. In the Wireless experiment, sys-

tem under test (Pandaboard) uses its wireless LAN interface (802.11n) to connect to 

the local router and through it to the remote server. The remote server for Panda-

board and Raspberry Pi evaluation was the same computer used for evaluation of 

the workstation system in this thesis, while remote server for the workstation eval-

uation was a similar workstation running Fedora distribution. The local router is a 

Linksys E900 Wireless N-300 with four 10/100 Ethernet ports. 

Additionally, whereas Secure Shell (SSH) adds the extra task of data encryp-

tion/decryption, it reflects current practice and better represents realistic upload and 

download settings. Doing additional experiments to quantify the impact of the crypto 

operations in SSH on the transfer times and the energy consumed revealed that 
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their impact is not significant when compared to the netcat and wget utilities that 

do not use secure communication. 

4.5.1 Frequency Scaling 

To scale frequency in the mobile platforms or the workstation platform, 

cpufreq-utils from linux-tools is used in this thesis. This package provides two utili-

ties, cpufreq-info and cpufreq-set. The cpufreq-info provides detailed information on 

the current state of the processor as shown in Figure 4.8. The cpufreq-set allows 

changing of the governor, or a policy rule for changing frequencies, maximum, min-

imum and current frequency steps.  

 

 

cpufrequtils 007: cpufreq-info (C) Dominik Brodowski 2004-2009 

Report errors and bugs to cpufreq@vger.kernel.org, please. 

analyzing CPU 0: 

  driver: acpi-cpufreq 

  CPUs which run at the same hardware frequency: 0 1 2 3 4 5 6 

7 

  CPUs which need to have their frequency coordinated by soft-

ware: 0 

  maximum transition latency: 10.0 us. 

  hardware limits: 1.60 GHz - 3.40 GHz 

  available frequency steps: 3.40 GHz, 3.40 GHz, 3.20 GHz, 3.00 

GHz, 2.80 GHz, 2.60 GHz, 2.40 GHz, 2.20 GHz, 2.00 GHz, 1.80 

GHz, 1.60 GHz 

  available cpufreq governors: conservative, ondemand, us-

erspace, powersave, performance 

  current policy: frequency should be within 1.60 GHz and 3.40 

GHz. 

                  The governor "ondemand" may decide which 

speed to use 

                  within this range. 

  current CPU frequency is 1.60 GHz. 

  cpufreq stats: 3.40 GHz:0.09%, 3.40 GHz:0.00%, 3.20 

GHz:0.00%, 3.00 GHz:0.00%, 2.80 GHz:0.00%, 2.60 GHz:0.00%, 2.40 

GHz:0.00%, 2.20 GHz:0.00%, 2.00 GHz:0.00%, 1.80 GHz:0.05%, 1.60 

GHz:99.85%  (18646) 

Figure 4.8  cpufreq-info output 
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4.5.2 Idle Currents 

The isolated tests are ensured by disabling any unnecessary tasks or process-

es prior to conducting any experimental runs on both mobile platforms. This in-

cludes disconnecting unused hardware (leaving only serial and power cable connect-

ed), turning off GUI interface (leaving only terminal interface), and turning off net-

work managers when no network is used. 

For the Local experiment, Pandaboard has idle current of 0.51, 0.52, 0.54 and 

0.55 mA for frequencies set to 300MHz, 600MHz, 900MHz and 1.01GHz respective-

ly. For the Wired experiment, Pandaboard has idle current of 0.56, 0.57, 0.59 and 

0.62mA for frequencies set to 300MHz, 600MHz, 900MHz and 1.01GHz respectively. 

For the Wireless experiment, Pandaboard has ide current of 0.52, 0.53, 0.54, 0.56mA 

for frequencies set to 300MHz, 600MHz, 900MHz and 1.01GHz respectively. For 

Raspberry Pi, idle currents for the Local and Wired tests are 0.36 and 0.42mA re-

spectively for 700MHz frequency. Table 4.3 summaries all idle currents presented in 

this section. 

 

Table 4.3 Idle Currents for Pandaboard and Raspberry Pi 

 

Freq. Local (mA) Wired (mA) Wireless (mA) Notes 

300MHz 0.51 0.56 0.52 Pandaboard 300MHz 

600MHz 0.52 0.57 0.53 Pandaboard 600MHz 

800MHz 0.54 0.59 0.54 Pandaboard 800MHz 

1.01GHz 0.55 0.62 0.56 Pandaboard 1.01GHz 

700MHz 0.36 0.42 - Raspberry Pi 700MHz 
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4.5.3 Commands 

To perform the evaluation of compression and decompression tasks on three 

experiments, several commands had to be generated. To perform time measurement 

of each running task, a time utility in Linux was using together with the compres-

sion or decompression command. To perform network communication, a SSH is used 

together with Linux pipes. 

For the Local experiment, commands are shown in Figure 4.9 using an ex-

ample with totalInput.tar dataset. Options –f and –c and -1 represent the force of 

compression or decompression, redirection of output and the selected compression 

level. For decompression, option for selecting compression levels is not necessary. 

Files p1_ctime_tar.txt and p2_ctime_tar.txt keep the output of the time command for 

each execution. 

 

 

Compression: 

(time gzip –fc1 /dev/shm/input/totalInput.tar > /dev/null) 2>> 

/dev/shm/p1_ctime_tar.txt 

Decompression: 

(time gunzip –fc /dev/shm/gzip.cfd/totalInput.1.tar.gz > 

/dev/null) 2>> /dev/shm/p1_ctime_tar.txt 

 

Figure 4.9  Commands for the Local experiment 

 

For the Wired and Wireless experiment, commands are shown in Figure 4.10. 

In addition to what was done for the Local commands, SSH and cat utilities are used 

together with Linux pipes to complete network transfers. Additionally, commands 

for raw transfer had to be generated for upload and download, to generate evalua-
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tion data for the network transfer which is compared to compression and decompres-

sion tasks. 

 

 

Compression: 
(time gzip -fc1 /dev/shm/input/totalInput.tar | ssh ar-

mend@xeon-server "cat > /dev/null") 

2>>/run/shm/p2_ctime_tar.txt 

Decompression 
(time ssh armend@xeon-server "cat 

/dev/shm/gzip.cfd/totalInput.1.tar.gz" |gunzip -fc > /dev/null) 

2>>/run/shm/p2_dtime_tar.txt 

Upload 
(time cat /run/shm/input/totalInput.tar | ssh armend@xeon-

server "cat 

> /dev/null") 2>>/run/shm/p2_UC_ctime_tar.txt 

Download 
(time ssh armend@xeon-server "cat 

/dev/shm/input/totalInput.tar" | cat > /dev/null) 

2>>/run/shm/p2_UC_dtime_tar.tx 

Figure 4.10  Commands for the Wired and Wireless experiments 
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CHAPTER 5  

 

PANDABOARD RESULTS 

 

This chapter presents the results of the experimental evaluation for the Pan-

daboard platform. Section 5.1 discusses the compression ratio achieved by the com-

pression utilities for all supported compression levels. Section 5.2 discusses the com-

pression and decompression throughputs. Section 5.3 discusses the energy efficiency 

of compression and decompression tasks. Section 5.4 discusses the effects of frequen-

cy scaling on processor cores. Section 5.5 summarizes findings from the Pandaboard 

experiments. 

5.1 Compression Ratio 

Figure 5.1 shows the compression ratio for the input dataset used with Pan-

daboard and Raspberry Pi platforms (totalInput.tar). pigz and pbzip2 achieve the 

same compression ratio as their sequential counterparts, gzip and bzip2, respective-

ly. In general, the compression ratio increases with an increase in the compression 

level. However, a higher compression levels usually are computationally more com-

plex, requiring more time and thus more energy. The best overall compression ratio 

is achieved by xz, ranging from 3.38 with -0 to 4.29 with -6; and by bzip2 (pbzip2) 

ranging from 3.49 with -1 to 3.91 with -9. The lowest compression ratio is achieved 

by lzop, ranging from 2.07 with -1 through -6 to 2.62 with -9. As described before, 

both Pandaboard and Raspberry Pi could not support xz with compression level 7 or 

higher due to high memory usage.  
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Figure 5.1  Pandaboard and Raspberry Pi: Compression Ration (totalInput.tar) 

 

5.2 Compression and Decompression Throughputs 

5.2.1 Local 

Figure 5.2 shows the overall compression and decompression throughputs for 

the Local experiment expressed in MB/sec. The compression throughput varies wide-

ly across different compression utilities as well as across different compression levels 

of a single compression utility. For all compression utilities, the higher compression 

levels result in lower throughputs. By far the highest compression throughput of ~25 

MB/sec is achieved by lzop -1 to -6. However, throughput of lzop drops dramatically 

to 1.37, 0.7, and 0.6 MB/sec for the highest compression levels (-7, -8 and -9 respec-

tively). The second highest compression throughput from 13.2 to 2 MB/sec is 

achieved by pigz. It fully utilizes two processor cores to achieve close to double the 

compression throughput relative to gzip (from 7.4 to 1 MB/sec). In contrast, xz and 

bzip2 achieve significantly lower compression throughputs (e.g., from 1.6 to 1.1 
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MB/sec for bzip2). As with pigz and gzip, almost linear speedup in compression 

throughput is observed in pbzip2 relative to bzip2. xz slows down dramatically with 

increasing compression level to 0.28 MB/sec with -6, which is almost two orders of 

magnitude lower than lzop with -1.  

 

 

 

Figure 5.2  Pandaboard: Local Compression/Decompression Throughput 

 

The decompression throughputs are much higher than the compression 

throughputs (from as low as ~3 times to over 112 times higher) and are only indi-

rectly dependent on the compression level. The higher compression levels typically 

result in smaller compressed files, which may increase decompression throughputs 

because less time is needed to read the input files. Notable exceptions are bzip2 and 

pbzip2, where decompression throughputs slightly decrease for higher compression 

levels, in spite of smaller input files. This can be explained by the higher computa-
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tional complexity of bzip2’s decompression when input files are generated using 

higher compression levels. The highest decompression throughput of 71.9 MB/sec is 

achieved by lzop, followed by pigz (45.3 to 49.6 MB/sec) and gzip (24.7 to 27.5 

MB/sec). xz achieves ~10 MB/sec, whereas pbzip2 ranges from 10.7 to 6.6 MB/sec 

and bzip2 from 5.8 to 3.8 MB/sec (both having lower decompression throughputs for 

higher compression levels). It should be noted that pigz and pbzip2 offer improve-

ments in decompression throughputs over their sequential counterparts. Although 

decompression itself in pigz is not parallelized (it is single threaded), three other 

threads are created for reading, writing, and checking calculations that speed up de-

compression [19]. pbzip2’s implementation includes parallelized decompression, thus 

fully benefiting from the dual-core processor in the OMAP4430 in Pandaboard. 

5.2.2 Wired 

Figure 5.3 shows the compression and decompression throughputs in the 

Wired experiment. The dashed lines represent the measured effective network 

throughput when the uncompressed input file is uploaded to the remote server 

(US/T.UUP = 5.95 MB/sec) and downloaded from the remote server (US/T.UDW = 

8.84 MB/sec). 

The compression throughput is limited by the effective network throughput 

and therefore it is always below the CR*(US/T.UUP). For example, lzop -1 (through -

6) plateaus at 11 MB/sec, which is below 2.07*5.95 = 12.3 MB/sec (the compression 

ratio for lzop -1 is 2.07). The effective compression throughput in this case is thus 

significantly below the 25 MB/sec measured in the Local experiment. However, for 

lzop with -7, -8, and -9, where the original compression throughput is lower than the 

upload network throughput (5.95 MB/sec), the compression throughputs remain un-
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changed relative to those measured in the Local experiment. Similar observations 

can be made about the other compression utilities. For gzip and pigz with -1, the 

compression throughputs are 6 and 8.3 MB/sec, respectively, well below the maxi-

mum achievable 15.8 MB/sec (2.65*5.95, where 2.65 is the compression ratio for gzip 

and pigz with -1). pigz with low compression levels offers only slightly higher com-

pression throughput relative to gzip, but it almost doubles the throughput with high 

compression levels (e.g., 1.84 MB/sec vs. 0.95 MB/sec with -9). In contrast, pbzip2 

consistently offers a higher compression throughput relative to bzip2 because they 

both have a compression throughput that is below the effective network upload 

throughput. When compared to the throughput for uploading the uncompressed da-

taset, only lzop with -1 to -6, gzip with -1, and pigz with -1 to -4 provide an increased 

effective network throughput, whereas the other combinations do not appear to be 

beneficial (i.e., it takes more time to compress and upload an input file than to just 

upload the raw input file).  
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Figure 5.3  Pandaboard: Wired Compression/Decompression Throughput 

 

The decompression throughputs are also limited by the effective network 

throughput, resulting in lower effective decompression throughputs, which are below 

CR*(US/T.UDW). For example, lzop with -9 achieves a decompression throughput of 

~20.8 MB/sec, which is very close to the maximum achievable (2.62*8.84 = 23.2 

MB/sec) but far below the 70 MB/sec measured in the Local experiment. gzip with -9 

achieves ~22.6 MB/sec and pigz with -9 achieves ~23.5 MB/sec. They outperform lzop 

because they provide higher compression ratios – their achievable maximum decom-

pression throughput is below 2.99*8.84 = 26.4 MB/sec. These three utilities effective-

ly increase the available network throughput (their throughputs are above the 

US/T.UDW line) and decrease the download time relative to the time needed to 

download uncompressed files from the remote server. pbzip2 and bzip2 suffer from 

minor decreases in their effective decompression throughput relative to the Local 

experiment (due to the network latency) because their original decompression 
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throughput falls below the available network throughput for downloads (8.84 

MB/sec). xz is on the boundary with its effective throughput ranging from 8.6 to 9.9 

MB/sec (down from 9.1 to 10.8 MB/sec in the Local experiment). 

5.2.3 Wireless 

Figure 5.4 shows the compression and decompression throughputs for the 

Wireless experiment. The dashed lines represent the measured effective upload and 

download throughput when transferring the uncompressed file wirelessly, where 

US/T.UUP = 1.64 MB/sec (13.12 Mbits/sec) and US/T.UDW = 1.52 MB/sec (12.16 

Mbits/sec), respectively. Similar to the prior experiments, the effective compression 

throughput is limited by the network upload throughput and is always below 

CR*(US/T.UUP). In the Wireless experiment, compression effectively increases the 

upload throughput for gzip with -1 to -7, lzop with -1 to -6, xz with -0, pigz with -1 to 

-9, and pbzip2 with -1 to -9, whereas bzip2 falls below 1.52 MB/sec. The lower effec-

tive network throughputs enable more compression configurations to be beneficial. 

Compression with lower compression levels is still preferred to higher levels. The 

highest compression throughput of ~5.1 MB/sec is achieved by pigz with -1. It out-

performs gzip -1 (4.1 MB/sec) and lzop -1 (3.2 MB/sec).  
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Figure 5.4  Pandaboard: Wireless Compression/Decompression Throughput 

 

With the low effective throughput for downloads offered by the wireless inter-

face, all compression utilities increase the available bandwidth (US/T.D > 

US/T.UDW) for all tested compression utilities with all compression levels. Again, 

the maximum achievable decompression throughput is limited to CR*(US/T.UDW). 

xz provides the highest decompression throughput, ranging from 4.6 with -0 to 6.3 

MB/sec with -4, followed by pigz (from 4.3 to 5.3 MB/sec), and gzip (from ~ 4 to 4.8 

MB/sec). The pigz and pbzip2 utilities offer only limited improvements in decom-

pression throughput over their sequential counterparts due to CR* US/T.UDW limit.  

In summary, the highest upload throughput, 5.1 MB/sec, is achieved by pigz -

1; it outperforms over 3 times the raw file upload throughput (1.64 MB/sec). The 

highest download throughput, 6.3 MB/sec, is achieved by xz -4; it outperforms more 

than 4 times the raw file download throughput (1.52 MB/sec).  
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5.3 Energy Efficiency 

5.3.1 Local 

Figure 5.5 and Figure 5.6 show the energy efficiency for the compression and 

decompression tasks for the Local experiment reported in MB/J (US/ET.C and 

US/ET.D) and in MB/J (|US-CS|/ET.C and |US-CS|/ET.D) as a function of the 

idle current Iidle (Iidle ={0, 0.25, 0.5, 0.75} A). In contrast to MB/J metric, MB/J is a 

function of the amount of data removed by compression |US-CS|. Thus, this metric 

captures the strength of the compression utilities and compression level. To under-

stand this better, |US-CS|/ET.C and |US-CS|/ET.D can be rewritten as (1-

1/CR)*US/ET.C and (1-1/CR)*US/ET.D. The variable (1-1/CR) increases with in-

crease in compression, thus all data points across both datasets for compression and 

decompression should be scaled by individual amount that depends on compression 

ratio. Knowing the lowest and the highest compression ratio in totalInput.tar da-

taset from Section 5.1, (1-1/CR) ranges from 0.52 to 0.76.  

 The energy efficiency of the compression tasks varies widely for different 

utilities and for different compression levels within each utility (often by more than 

an order of magnitude), as shown in Figure 5.5. The most energy efficient compres-

sion utility by far is lzop with compression levels -1 to -6 regardless of the idle cur-

rent; it achieves ~54 MB/J (MB/joule) for Iidle = 0 A, ~14.5 MB/J for Iidle = 0.25 A, and 

8.5 MB/J for Iidle = 0.5 A. Distant second and third are gzip and pigz with -1 achiev-

ing ~14 MB/J and ~11 MB/J for Iidle = 0. Following the trends in compression 

throughputs, higher compression levels for gzip, pigz, and lzop result in a dramatic 

decrease in energy efficiency (e.g., down to 1.5 MB/J for lzop with -9). pigz and 

pbizp2 are more energy efficient than their sequential counterparts when Iidle ≠ 0 A 
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because they reduce the compression time. However, if we consider only the energy 

efficiency when Iidle = 0 A (US/ET.C(0)), the parallel implementations are slightly 

less energy efficient. pbzip2 and bzip2 exhibit low energy efficiencies as does xz, 

which is the least attractive choice with high compression levels. The alternative en-

ergy efficiency expressed in MB/J follows similar trends as the regular energy effi-

ciency.  
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(a) 

 
(b) 

Figure 5.5  Pandaboard: Local Energy Efficiency for Compression 

 

The energy efficiency of the decompression tasks varies widely for different 

utilities as shown in Figure 5.6. The energy efficiency is relatively stable for individ-

ual utilities – it increases slightly for higher compression levels for all utilities ex-

cept bzip2 and pbizp2. Thus, US/ET.D(0) is ~136 MB/J for lzop, ~50 MB/J for gzip, 
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~55 for pigz, and just below ~10 MB/J for bzip2/pbzip2. lzop emerges as the most en-

ergy-efficient choice in spite of its lower compression ratio. These observation hold 

for the alternative definition of energy efficiency defined as (US-CS)/ET.D.  

 

 

 
(a) 

 
(b) 

Figure 5.6  Pandaboard: Local Energy Efficiency for Decompression 
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5.3.2 Wired 

Figure 5.7 and Figure 5.8 show the energy efficiency for compression and de-

compression tasks for the Wired experiment reported in MB/J and in MB/J as a 

function of the idle current. In addition, Figure 5.7(a) and Figure 5.8(a) show the en-

ergy efficiency for uncompressed upload (US/ET.UUP) and uncompressed download 

(US/ET.UDW) as a function of the idle current. This way, one can easily identify 

cases when compression and decompression transfers offer higher energy efficiency 

than raw uploads (US/ET.C(Iidle) > US/UUP(Iidle)) and raw downloads (US/ET.D(Iidle) 

> US/ET.UDW(Iidle)). With MB/J metric, on other hand, energy efficiency for raw 

network transfer cannot be reported. 

The energy efficiency for compression is reported in Figure 5.7. When Iidle = 0, 

gzip, pigz, and lzop with -1 to -7 and xz with -1 to -2 provide higher energy efficiency 

than the raw network upload. However, only lzop with -1 to -6, gzip -1 to -4, and pigz 

-1 to -5 provide higher energy efficiency for all considered idle currents. The most 

energy efficient utility is again lzop with -1 to -6 achieving ~12.5 MB/J when Iidle = 0, 

~5MB/J when Iidle = 0.25 A, and ~3.25 MB/J when Iidle = 0.5 A. bzip2, pbizp2, and xz 

exhibit rather low energy efficiency for compression. These observations hold when 

the alternative energy efficiency metric is considered.  
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(a) 

 
(b) 

Figure 5.7  Pandaboard: Wired Energy Efficiency for Compression 

 

The energy efficiency of the decompression tasks using gzip, lzop, and pigz 

exceeds the energy efficiency of the uncompressed download for all considered idle 

currents, whereas xz is only slightly beneficial, and bzip2 and pbzip2 are less energy 

efficient (Figure 5.8). The energy efficiency slightly increases for higher compression 
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levels (except for bzip2/pbzip2), achieving ~23.7 MB/J for lzop, ~ 21 MB/J for pigz, 

and ~19 MB/J for gzip when Iidle = 0 A. pigz emerges as the most energy-efficient 

utility, slightly outperforming gzip and lzop when Iidle = {0.25, 0.5, 0.75} A.  

 

 

 
(a) 

 
(b) 

Figure 5.8  Pandaboard: Wired Energy Efficiency for Decompression 
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5.3.3 Wireless 

Figure 5.9 and Figure 5.10 show the energy efficiency for the compression 

and decompression tasks for the Wireless experiment reported in MB/J and in 

MB/J as a function of the idle current. Similar to the previous experiment, the 

graphs also display the energy efficiency for uncompressed upload (US/ET.UUP) and 

uncompressed download (US/ET.UDW) as a function of the idle current.  

The energy efficiency for compression is reported in Figure 5.9. The relatively 

low network throughput for upload results in all utilities having higher energy effi-

ciency than the raw upload when Iidle = 0 A (i.e., US/ET.C(0) > US/ET.UUP(0)) for all 

utilities except xz -5 and -6. pigz -1 is the most energy efficient with 2.5 MB/J, fol-

lowed closely by gzip -1  and lzop -1. pigz -1 remains the most energy-efficient com-

pression utility when Iidle = {0.25, 0.5, 0.75} A. For the MB/J metric, the distribution 

of energy efficiency is the same for all utilities except lzop. lzop is lowered by a small 

degree in comparison with pigz and gzip. 
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(a) 

 
(b) 

Figure 5.9  Pandaboard: Wireless Energy Efficiency for Compression 

 

All decompression alternatives  offer a total energy efficiency that exceeds the 

total energy efficiency of uncompressed download from the remote server, 

US/ET.UDW(0), which is 1.16 MB/J (Figure 5.10). Downloading files that were com-

pressed with higher compression levels increase the energy efficiency except for 
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bzip2 and pbzip2. The total energy efficiency when Iidle = 0 A, US/ET.D(0), is ~3.6 - 

4.3 MB/J for gzip, 2.9 - 3.7 MB/J for lzop, 4 - 4.8 MB/J for pigz, 2.9 - 3.1 MB/J for 

pbzip2, and 3.6 - 4.6 MB/J for xz. pigz and xz emerge as the most energy-efficient 

utilities when Iidle = {0.25, 0.5, 0.75} A. xz benefits from providing a superior com-

pression ratio in conditions when communication energy dominates the overall ener-

gy costs.  
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(a) 

 
(b) 

Figure 5.10  Pandaboard: Wireless Energy Efficiency for Decompression 

 

5.4 Frequency scaling 

The frequency scaling for the Pandaboard platform covers frequency steps of 

300MHz, 600MHz, 800MHz and 1.01GHz (with highest frequency used to describe 

the results from Section 5.2 and Section 5.3). To evaluate the effects of frequency 
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scaling, a complete set of tasks are repeated for each frequency step. The results on 

throughput and energy efficiency of compression and decompression tasks are dis-

cussed for the Local, Wired and Wireless experiments. 

5.4.1 Local 

5.4.1.1 Compression and Decompression Throughputs 

Figure 5.11 and Figure 5.12 show the compression and decompression 

throughputs in the Local experiment. All utilities benefit from higher frequency.  

For the compression tasks, the highest throughput across all frequencies is 

achieved by lzop -1, achieving 25.32 MB/sec on 1.01GHz and 8.20 MB/sec on 

300MHz (Figure 5.11). Following lzop, pigz and gzip come in second for having high-

er throughput for all frequency levels when compared to other utilities. 

For the decompression tasks, the highest throughput across all frequencies is 

achieved by lzop -1, achieving ~70 MB/sec on 1.01GHz and 22.32 MB/sec on 300MHz 

(Figure 5.12). Following lzop, pigz and gzip come in second for having higher 

throughput for all frequency levels when compared to other utilities. 
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Figure 5.11  Pandaboard: Local Compression Throughput under Different 

Frequencies (MB/sec) 

 

 

Figure 5.12  Pandaboard: Local Decompression Throughput under Different 

Frequencies (MB/sec) 
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Figure 5.13 shows comparison between throughput ratios and frequency rati-

os for the compression and decompression tasks in the Local experiment. The 

throughput ratio is derived by dividing the throughput achieved for highest frequen-

cy (1.01 GHz) by the throughput achieved for other frequencies (300MHz, 600MHz 

or 800MHz). This ratio is compared to the frequency ratio derived by dividing the 

highest frequency by the corresponding frequency (300MHz, 600MHz or 800MHz). 

The utilities such as gzip, lzop and pigz have almost identical throughput ratios as 

their corresponding frequency ratios, indicating linear relationship between fre-

quency scaling and throughput change. Similar observation can be made for xz dur-

ing decompression. The higher compression levels of bzip2 and pbzip2 have lower 

throughput ratios when compared with their frequencies ratios, indicating non-

linear throughput change with frequency scaling on higher compression levels. The 

same observation can be made for higher compression levels of xz during compres-

sion. 

 

 



69 

 

 

Figure 5.13  Pandaboard: Local Throughput Ratios and Frequency Ratios 

 

5.4.1.2 Energy Efficiency 

Figure 5.14 and Figure 5.15 show the compression and decompression energy 

efficiency on the Local experiment when Iidle is set to 0 and 0.25 A.  

For the compression tasks, the lowest frequency is the most energy efficient 

choice across all compression utilities when Iidle = 0 A (Figure 5.14(a)). The highest 

energy efficiency is achieved by lzop across all frequency levels, achieving ~105 

MB/Joule on 300MHz, and ~50 MB/Joule on 1.01GHz. Following lzop, pigz and gzip 

come in second for having higher energy efficiency across all frequency levels when 

compared to other utilities. 

The outlook of the results for the energy efficiency of the compression tasks is 

changing with an increase of the idle current. Figure 5.14(b) shows energy efficiency 

trends when the idle current is set to 0.25 A (the results for 0.5 A and 0.75 A are 

similar). Oppositely to the case when Iidle = 0 A, the energy efficiency of the compres-
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sion utilities increase for higher frequencies, achieving the best energy efficiency at 

the highest frequency of 1.01 GHz. 

 

 

 
(a) 

 
(b) 

Figure 5.14  Pandaboard: Local Energy Efficiency for Compression under Different 

Frequencies 
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For the decompression tasks, the lowest frequency is most energy efficient 

choice across all decompression utilities when Iidle = 0 A (Figure 5.15(a)). The highest 

energy efficiency is achieved by lzop across all frequency levels, achieving ~260 

MB/Joule on 300MHz, and ~137 MB/Joule on 1.01GHz. Following lzop, pigz and gzip 

come in second for having higher energy efficiency across all the frequency levels 

when compared to other utilities. 

The outlook of the results for energy efficiency of the decompression tasks is 

changing with an increase of the idle current. Figure 5.15(b) shows energy efficiency 

trends for the decompression tasks when the idle current is set to 0.25 A. Oppositely 

to the case when Iidle = 0 A, the energy efficiency of the decompression utilities in-

crease for the higher frequencies, achieving the best energy efficiency at the highest 

frequency of 1.01 GHz. 
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(a) 

 
(b) 

Figure 5.15  Pandaboard: Local Energy Efficiency for Decompression under Different 

Frequencies 
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5.4.2 Wired 

5.4.2.1 Compression and Decompression Throughputs 

Figure 5.16 and Figure 5.17 show the compression and decompression 

throughput in the Wired experiment. All utilities benefit from higher clock frequen-

cy. 

The highest compression throughput across all frequencies is achieved by 

lzop, achieving 11.01 MB/sec on 1.01GHz and 3.73 MB/sec on 300MHz (Figure 5.16). 

Following lzop, pigz and gzip come in second and third. The throughput of raw net-

work transfer (upload) is highest on 1.01GHz. 

 

 

 

Figure 5.16  Pandaboard: Wired Compression Throughput under Different 

Frequencies 
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The highest decompression throughput across all frequencies is achieved by 

pigz -9, achieving ~23.4 MB/sec on 1.01GHz and 8.04 MB/sec on 300MHz (Figure 

5.17). Following pigz, gzip and lzop come in second and third for having higher 

throughput for all frequency levels when compared to other utilities (gzip -9 with 

22.59 MB/sec at 1.01GHz and ~7 MB/sec on 300MHz and lzop -9 with 20.88 MB/sec 

on 1.01GHz and ~7 MB/sec at 300MHz). The throughput of raw network transfer 

(download) is highest on 1.01GHz. 

 

 

 

Figure 5.17  Pandaboard: Wired Decompression Throughput under Different 

Frequencies 

 

Figure 5.18 shows a comparison between throughput ratios and frequency ra-

tios for compression and decompression on the Wired experiment. The throughput 
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and frequency ratios are calculated in the same way as shown in Section 5.4.1.1. 

Similarly to the Local experiment, utilities such as gzip, lzop and pigz have the 

throughput ratios close to the corresponding frequency ratios but deviations are pre-

sent especially for the lowest frequency ratio (300 MHz) . The same observation is 

made for xz during decompression. The higher compression levels of bzip2 and 

pbzip2 have lower throughput ratios when compared with frequency ratios. The 

same observation can be made for xz with higher compression levels. Having a 

throughput ratio lower than the corresponding frequency ratio indicates a non-linear 

throughput change with the frequency scaling on higher compression levels. 

 

 

 

Figure 5.18  Pandaboard: Wired Throughput Ratios and Frequency ratios 
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5.4.2.2 Energy Efficiency 

Figure 5.19 and Figure 5.20 show the compression and decompression energy 

efficiency on the Wired experiment when Iidle is set to 0 and 0.25 A, respectively. 

The lowest frequency is the most energy efficient choice across all compres-

sion tasks when Iidle = 0 A (Figure 5.19(a)). The highest energy efficiency is achieved 

by lzop across all frequency levels, achieving ~45 MB/Joule on 300MHz, and ~12.3 

MB/Joule on 1.01GHz. Following lzop, pigz and gzip come in second and third for 

having higher energy efficiency for all frequency levels when compared to other utili-

ties. The energy efficiency of the raw network upload, on other hand, is highest on 

1.01GHz. 

The results for energy efficiency of compression tasks change with an in-

crease of the idle current. Figure 5.19(b) shows the energy efficiency when the idle 

current is set to 0.25 A. The energy efficiency of the compression tasks increase with 

an increase in the clock frequency, achieving the best energy efficiency at the high-

est frequency of 1.01 GHz. The energy efficiency of raw file download follows the 

same trend. 
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(a) 

 
(b) 

Figure 5.19  Pandaboard: Wired Energy Efficiency for Compression under Different 

Frequencies 

 

The lowest frequency is the most energy efficient choice across all decompres-

sion utilities when Iidle = 0 A (Figure 5.20(a)). The highest energy efficiency is 

achieved by lzop across all frequency levels, achieving from ~60 to 90 MB/Joule on 
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300MHz, and ~23.6 MB/Joule on 1.01GHz. Following lzop, pigz and gzip come in 

second and third for having higher energy efficiency across all frequency levels when 

compared to the other utilities. The energy efficiency of the raw file download is 

highest for the 300MHz clock frequency.  

The energy efficiency of the decompression tasks is changing with an increase 

of the idle current. Figure 5.20(b) shows energy efficiency trends for decompression 

when the idle current is set to 0.25 A. The energy efficiency of the decompression 

utilities increases for higher clock frequencies, achieving the best energy efficiency 

at the highest frequency of 1.01 GHz. The energy efficiency of the raw file download 

peaks at the highest clock frequency.  
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(a) 

 
(b) 

Figure 5.20  Pandaboard: Wired Energy Efficiency for Decompression under 

Different Frequencies 
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5.4.3 Wireless 

5.4.3.1 Compression and Decompression Throughputs 

Figure 5.21 and Figure 5.22 show the compression and decompression 

throughput in the Wireless experiment. All utilities benefit from higher clock fre-

quency. 

The highest compression throughput across higher frequencies (800MHz and 

1.01GHz) is achieved by pigz -1, achieving 5.1 MB/sec on 1.01 GHz (Figure 5.21). 

The highest compression throughput across lower frequencies (300MHz and 

600MHz) is achieved by lzop -1 to 6, achieving 2.8 MB/sec on 300MHz. The through-

put of raw network transfer (upload) is highest on 1.01GHz. 

 

 

 

Figure 5.21  Pandaboard: Wireless Compression Throughput under Different 

Frequencies 
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The highest decompression throughput across higher frequencies is achieved 

by xz, achieving 6.49 MB/sec on 1.01GHz (Figure 5.22). The highest decompression 

throughput on the lowest frequency is achieved by pigz, gzip and lzop. The through-

put of raw network transfer (download) is highest on 300MHz. 

 

 

 

Figure 5.22  Pandaboard: Wireless Decompression Throughput under Different 

Frequencies 

 

Figure 5.23 shows a comparison between throughput ratios and frequency ra-

tios for compression and decompression on the Wireless experiment. Derivation of 

throughput and frequency ratios follows same example made before in Section 

5.4.1.1. The distribution of ratios, however, differs on the Wireless experiment from 
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those demonstrated for the Local and Wired experiments in Section 5.4.1 and Sec-

tion 5.4.2. Now, only some compression utilities and only certain compression levels 

achieve throughput ratio that is equal to or very close to the corresponding frequen-

cy ratio. This is now only true for compression utilities such as gzip -5 to -9, lzop -7 

to -9, pigz -6 to -9, bzip2 -1 and pbzip2 -1. For compression, greatest benefit from 

downward frequency scaling can be seen in lzop -1 to -6 for 1.01 GHz to 300 MHz 

case, with T.C(1.01GHz)/T.C(300MHz) being ~1.2 while 1.01GHz/600MHz ratio is 

3.37. For decompression, the downward frequency scaling is beneficial to almost all 

utilities, with throughput ratios of all utilities, except of bzip2, being much lower 

than the corresponding frequency ratio. 

 

 

 

Figure 5.23  Pandaboard: Wireless Throughput Ratios and Frequency Ratios 
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5.4.3.2 Energy Efficiency 

Figure 5.24 and Figure 5.25 show the compression and decompression energy 

efficiency on the Wireless experiment when Iidle is set to 0 and 0.25 A.  

The lowest frequency is the most energy efficient choice across selected com-

pression utilities when Iidle = 0 A (Figure 5.24(a)). The utilities that benefit from low-

est frequency are pbzip2, bzip2 and xz. The utilities that benefit from higher fre-

quencies are pigz, gzip and lzop (with small differences between frequencies 

600MHz, 800MHz and 1.01GHz). The highest energy efficiency is achieved by lower 

levels of pigz, lzop -1 to -6, and lower levels of gzip across all frequency levels. The 

energy efficiency of raw network energy efficiency (upload) does not change with fre-

quency scaling. 

The results for energy efficiency of compression tasks change with an in-

crease of the idle current. Figure 5.24(b) shows energy the efficiency when the idle 

current is set to 0.25 A. The energy efficiency of the compression tasks increase with 

an increase in the clock frequency, achieving the best energy efficiency at the high-

est frequency of 1.01 GHz. The energy efficiency of raw network transfer (download) 

does not change with frequency scaling. 
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(a) 

 
(b) 

Figure 5.24  Pandaboard: Wireless Energy Efficiency for Compression under 

Different Frequencies 

 

The lowest frequency is most energy efficient choice only for selected decom-

pression utilities when Iidle = 0 A (Figure 5.25(a)). The highest energy efficiency is 

achieved by lzop across all frequency levels, achieving 7.34 MB/Joule on 300MHz, 
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and 4.55 MB/Joule on 1.01GHz. Following lzop, pigz and gzip come in second and 

third for having higher energy efficiency across all frequency levels when compared 

to other utilities. The energy efficiency of raw network energy efficiency (upload) 

does not change with frequency scaling. 

The energy efficiency of the decompression tasks is changing with an increase 

of the idle current. Figure 5.25(b) shows energy efficiency trends for decompression 

when the idle current is set to 0.25 A. Similarly to the case when Iidle = 0 A, the low-

est frequency is most energy efficient choice only for selected decompression utilities, 

such as pigz, gzip and lzop. However, the difference between the energy efficiency at 

the highest and the lowest frequency is much smaller. For this reason, the best 

overall energy efficiency is achieved by xz at higher frequencies (600 MHz, 800 MHz, 

1.01 GHz). The energy efficiency of raw file download does not change with frequen-

cy scaling. 
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(a) 

 
(b) 

Figure 5.25  Pandaboard: Wireless Energy Efficiency for Decompression under 

Different Frequencies 

 

5.5 Conclusions 

The experimental results for the Pandaboard platform show that compression 

is best at the lowest compression levels, and decompression is best at the highest 
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compression level (for exception of bzip2 and pbzip2) for both the throughput and 

energy efficiency. 

Table 5.1 summarizes the throughput results. lzop performs the best for com-

pression and decompression in the Local experiment and for compression in the 

Wired experiment. The best throughput for decompression in the Wired experiment 

is achieved by pigz, followed by gzip and then lzop (pigz outperforms lzop by 3.67%). 

For the Wireless experiment, pigz with -1 performs the best for compression and xz 

with -4 performs the best for decompression.  

 

Table 5.1  Throughputs on Pandaboard @ 1.01GHz  

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

  
Best Utility 

Th.C 
[MB/s] 

Th.UUP 
[MB/s] 

 
Best Utility 

Th.D 
[MB/s] 

Th.UWD 
[MB/s] 

LOCAL lzop -1 to -6 25  lzop -1 to -9 70  

WIRED lzop -1 to -6 11 5.95 pigz -6 to -9 23.5 8.84 

WIRELESS pigz -1 5.1 1.64 xz -4 6.28 1.52 

 

Table 5.2 shows the energy efficiency. lzop is the most energy-efficient for 

both the Local and Wired experiment for compression and decompression. pigz, gzip 

and xz  outperform lzop in the Wireless experiment. For compression, pigz has the 

best energy efficiency, followed by gzip and lzop. For decompression, when Iidle is 0 A, 

pigz has the best energy efficiency, followed by xz, gzip, and lzop. However, when Iidle 

is 0.25, 0.5 or 0.75, xz overtakes pigz in the energy efficiency. The results show that 

compressed network transfers are more energy efficient that raw network transfers. 

In the Wired experiment, the most energy efficient compressed upload with pigz -1 
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achieves 12.4 MB/J, which ~7.8 times more energy efficient than 1.59 MB/J achieved 

with the uncompressed upload (assuming Iidle = 0 A). The most energy-efficient de-

compressed download using lzop with -9 achieves 23.5 MB/J, which is ~2.5 times 

better than the uncompressed download that achieves 9.43 MB/J. In the Wireless 

experiment, the most energy-efficient upload using pigz with -1 achieves 2.5 MB/J, 

compared to 0.39 MB/J achieved by the uncompressed upload (> 6 times improve-

ment). Similarly, the decompressed download offers almost 4 times higher energy 

efficiency than the uncompressed download.  

 

Table 5.2  Energy Efficiency on Pandaboard @ 1.01GHz  

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

 
LOCAL 

 
Best Utility 

EE.C 
[MB/J] 

EE.UUP 
[MB/J] 

 
Best Utility 

EE.D 
[MB/J

] 

EE.UDW 
[MB/J] 

Iidle = 0 A lzop -1 to -6 55  lzop -6 to -9 137  

Iidle = 0.25 A lzop -1 to -6 14.5  lzop -6 to -9 40  

Iidle = 0.5 A lzop -1 to -6 8.5  lzop -1 to -9 23  

WIRED       

Iidle = 0 A lzop -1 to -6 12.4 1.59 lzop -7 to -9 23.5 9.43 

Iidle = 0.25 A lzop -1 to -6 5.1 1.19 pigz -6 to -9 10 4.04 

Iidle = 0.5 A lzop -1 to -6 3.2 0.95 pigz -6 to -9 6.5 2.57 

WIRELESS       

Iidle = 0 A pigz -1 2.5 0.39 pigz -4 to -7 4.6 1.16 

Iidle = 0.25 A pigz -1 1.5 0.30 xz -4 to -6 2.4 0.59 

Iidle = 0.5 A pigz -1 1.1 0.25 xz -4 to -6 1.6 0.40 

 

 

Use of parallel compression utilities such as pigz and pbzip2 offers gains in 

the throughput and the energy efficiency for the compression and decompression 
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tasks. Table 5.3 summarizes the throughput and the energy efficiency gains of pigz 

and pbzip2 when compared to the sequential counterparts for all experimental cases. 

 

Table 5.3 Performance Gains of Parallel Utilities on Pandaboard @ 1.01GHz  

 

 Iidle (A) Throughput Gain (compression/decompression) 

  Local Wired Wireless 

pigz  ~80% 38.19%/3.67% 24.0%/9.7% 

pbzip2  ~80% 77.98%/53.20% 71.2%/2.8% 

  Energy Efficiency Gain (compression/decompression) 

  Local Wired Wireless 

pigz 0.00 0%/9.9% 0%/0% 0%/11.24% 

0.25 32.86%/52.2% 13.91%/9.9% 10.5%/6.95% 

0.50 48.38%/62.78% 22.06%/9.20% 15.36%/5.94% 

0.75 56.64%/67.65% 25.56%/8.6% 17.33%/5.05% 

pbzip2 0.00 0%/0% 0%/0% 0%/0% 

0.25 27.5%/34.49% 37.5%/28.7% 27.1%/~0% 

0.50 43.5%/50.99% 58.13%/37.4% 40.0%/~1% 

0.75 54.05%/58.82% 64.51%/41.26% 44.0%/~1% 

 

The frequency scaling analysis indicates that the compression and decom-

pression throughputs suffer from lower frequency, which can be explained easily by 

the general observation that the execution time of each utility goes up with lowering 

of frequency. The energy efficiency when the idle current is 0 A increases when the 

clock frequency goes down for all utilities in the Local and the Wired experiment and 

only for the selected utilities in the Wireless (pigz, gzip and lzop). When the idle cur-

rent is set to a value greater than zero (such as 0.25 A or greater), lowering the clock 

frequency is not beneficial for all the utilities in the Local and Wired for both the 

compression and decompression tasks. In the Wireless experiment, lowering the 
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clock frequency is only beneficial to selected set of utilities in the decompression 

tasks (pigz, gzip and lzop), and to none in the compression tasks. 
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CHAPTER 6  

 

RASPBERRY PI RESULTS 

 

This chapter presents the results of the experimental evaluation for the 

Raspberry Pi platform. Section 0 discusses the compression ratio achieved by the 

compression utilities for supported compression levels. Section 6.2 discusses the 

compression and decompression throughputs. Section 6.3 discusses energy efficiency 

of compression and decompression tasks. Section 6.4 summarizes findings from the 

Raspberry Pi experiments. 

6.1 Compression ratio 

The compression ratios for the Raspberry Pi platform are the same as the ra-

tios on the Pandaboard platform reported in Figure 5.1 for reasons of using the same 

versions of compression and decompression utilities and the same dataset (to-

talInput.tar) to perform all compression and decompression tasks. 

6.2 Compression and Decompression Throughputs 

6.2.1 Local 

Figure 6.1 shows the overall compression and decompression throughputs for 

the Local experiment expressed in MB/sec. For all compression utilities, the higher 

compression levels result in lower throughputs. By far the highest compression 

throughput of ~9.5 MB/sec is achieved by lzop -1 to -6. The second highest compres-

sion throughput from 2.754 to 0.366 MB/sec is achieved by pigz. pigz outperforms 

gzip (10-16% improvement) in spite of the Raspberry Pi featuring a single core pro-

cessor because the pigz implementation overlap core compression operations with 
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input/output operations. In contrast to pigz, pbzip2 does not achieve any speedup in 

compression when compared to bzip2. The xz and bzip2 utilities achieve significantly 

lower compression throughputs (e.g., from 0.738 to 0.114 MB/sec for xz and from 

0.555 to 0.412 for bzip2).  

 

 

 

Figure 6.1  Raspberry Pi: Local Compression/Decompression Throughput  

 

The decompression throughputs are much higher than the compression 

throughputs and are only indirectly dependent on the compression level. The higher 

compression levels typically result in smaller compressed files, which may increase 

decompression throughputs because less time is needed to read the input files. Simi-

lar to the experimental results on the Pandaboard platform, notable exceptions are 

bzip2 and pbzip2, where decompression throughputs slightly decrease for higher 

compression levels, in spite of smaller input files. The highest decompression 
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throughput of 26.5 MB/sec is achieved by lzop, followed by pigz (18.5 to 20.2 MB/sec) 

and gzip (10.4 to 11.9 MB/sec). xz achieves 4.0 to 4.7 MB/sec, whereas pbzip2 and 

bzip2 range from 1.9 to 1.6 MB/sec (both having lower decompression throughputs 

for higher compression levels). It should be noted that pigz offers improvements in 

decompression throughputs over its sequential counterpart. 

6.2.2 Wired 

Figure 6.2 shows the compression and decompression throughputs in the 

Wired experiment. The dashed lines represent the measured effective network 

throughput when the uncompressed input files are uploaded to the remote server 

(US/T.UUP = 3.60 MB/sec) and downloaded from the remote server (US/T.UDW = 

4.97 MB/sec). 

 

 

 

Figure 6.2  Raspberry Pi: Wired Compression/Decompression Throughput 
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The compression throughput is limited by the effective network throughput 

and therefore it is always below the CR*(US/T.UUP). For example, lzop -1 (through -

6) plateaus at 4 MB/sec, which is below 2.07*3.60 = 7.5 MB/sec (the compression ra-

tio for lzop -1 is 2.07). The effective compression throughput in this case is thus sig-

nificantly below the 9.5 MB/sec measured in the Local experiment. However, for lzop 

with -7, -8, and -9, where the original compression throughput is lower than the up-

load network throughput (3.60 MB/sec), the compression throughputs remain un-

changed relative to those measured in the Local experiment. Similar observations 

can be made about the other compression utilities. For gzip and pigz with -1, the 

compression throughputs are 1.87 and 2.06 MB/sec, respectively, well below the 

maximum achievable 9.54 MB/sec (2.65*3.60, where 2.65 is the compression ratio for 

gzip and pigz with -1). Even with Raspberry Pi being a single-core system, pigz with 

low compression levels offers higher compression throughput relative to gzip (~10% 

on level -1). On higher compression levels, pigz and gzip achieve similar through-

puts. Similarly to the Local experiment, pbzip2 does not offer higher compression 

throughput relative to bzip2 (both achieving from ~0.53 to ~0.41 MB/sec). When 

compared to the throughput for uploading the uncompressed dataset, only lzop with 

-1 to -6 provide an increased effective network throughput, whereas the other com-

binations do not appear to be beneficial. 

The decompression throughputs are also limited by the effective network 

throughput, resulting in lower effective decompression throughputs, which are below 

CR*(US/T.UDW). For example, lzop with -9 achieves a decompression throughput of 

~8.45 MB/sec, which is 65% of the maximum achievable (2.62*4.97 = 13.02 MB/sec) 

and 32% of the 26.19 MB/sec measured in the Local experiment. gzip with -9 

achieves ~6.12 MB/sec and pigz with -9 achieves ~8.16 MB/sec. Just like in the Local 
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experiment, pigz outperforms gzip on almost all compression levels by ~35%. gzip 

and pigz do not outperform lzop, however pigz is within 3% from lzop on highest lev-

els. The three utilities (gzip, lzop and pigz) effectively increase the available network 

throughput (their throughputs are above the US/T.UDW line) and decrease the 

download time relative to the time needed to download uncompressed files from the 

remote server. pbzip2 and bzip2 (from 1.54 to 1.40 MB/sec) and xz (from 2.84 to 3.60 

MB/sec) fall far below the available network throughput for downloads (4.97 

MB/sec). 

6.3 Energy Efficiency 

6.3.1 Local 

Figure 6.3 and Figure 6.4 show the energy efficiency for the compression and 

decompression tasks for the Local experiment reported in MB/J (US/ET.C and 

US/ET.D) and in MB/J (|US-CS|/ET.C and |US-CS|/ET.D) as a function of the 

idle current Iidle (Iidle={0, 0.25, 0.5, 0.75} A).  

The energy efficiency for the compression tasks varies widely for different 

utilities and for different compression levels within each utility, as shown in Figure 

6.3. The most energy efficient compression utility by far is lzop with compression 

levels -1 to -6 regardless of the idle current; it achieves ~44.9 MB/J (MB/joule) for 

Iidle=0 A, ~6.5 MB/J for Iidle=0.25 A, and 3.5 MB/J for Iidle=0.5 A. Distant second and 

third are gzip and pigz with -1 achieving ~11.6 MB/J and ~11.2 MB/J for Iidle=0. Fol-

lowing the trends in compression throughputs, higher compression levels for gzip, 

pigz, and lzop result in a dramatic decrease in energy efficiency (e.g., down to 0.97 

MB/J for lzop with -9). pigz is more energy efficient than its sequential counterpart 

when Iidle ≠ 0 (by ~14%) because they reduce the compression time. However, if we 



96 

 

consider only the energy efficiency when Iidle = 0 A (US/ET.C(0)), the parallel imple-

mentation is slightly less energy efficient. pbzip2, bzip2 and xz exhibit low energy 

efficiencies making them least attractive choice for compression. The alternative en-

ergy efficiency expressed in MB/J follows similar trends as the regular energy effi-

ciency. 

 

 



97 

 

 
(a) 

 
(b) 

Figure 6.3  Raspberry Pi: Local Energy Efficiency for Compression 

 

The energy efficiency of the decompression tasks varies widely for different 

utilities as shown in Figure 6.4. The energy efficiency is relatively stable for individ-

ual utilities – it increases slightly for higher compression levels for all utilities ex-

cept bzip2 and pbizp2. Thus, US/ET.D(0) is ~90.5 MB/J for lzop, ~55.4 MB/J for gzip, 
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~86.5 for pigz, and just below ~8 MB/J for bzip2/pbzip2. lzop emerges as the most 

energy-efficient choice in spite of its lower compression ratio. These observation hold 

for the alternative definition of energy efficiency defined as (US-CS)/ET.D. 

 

 

 
(a) 

 
(b) 

Figure 6.4  Raspberry Pi: Local Energy Efficiency for Decompression 
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6.3.2 Wired 

Figure 6.5 and Figure 6.6 show the energy efficiency for compression and de-

compression tasks for the Wired experiment reported in MB/J and in MB/J as a 

function of the idle current. In addition, Figure 6.5(a) and Figure 6.6(a) show the en-

ergy efficiency for the uncompressed upload (US/ET.UUP) and uncompressed down-

load (US/ET.UDW) as a function of the idle current. This way, one can easily identi-

fy cases when compression and decompression transfers offer higher energy efficien-

cy than raw uploads (US/ET.C(Iidle) > US/UUP(Iidle)) and raw downloads 

(US/ET.D(Iidle) > US/ET.UDW(Iidle)). With MB/J metric, on other hand, energy effi-

ciency for raw network transfer cannot be reported. 

The energy efficiency for compression is reported in Figure 6.5. When Iidle=0, 

gzip, pigz, and lzop with -1 to -6 and xz with -1 to -2 provide higher energy efficiency 

than the raw network upload. However, only lzop with -1 to -6 provides higher ener-

gy efficiency for all considered idle currents. The most energy efficiency utility is 

lzop with -1 to -6 achieving ~15.7 MB/J when Iidle = 0, ~ 2.7MB/J when Iidle = 0.25 A, 

and ~ 1.52 MB/J when Iidle= 0.5 A. bzip2, pbizp2, and xz exhibit rather low energy 

efficiency for compression. These observations hold when the alternative energy effi-

ciency metric is considered. 
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(a) 

 
(b) 

Figure 6.5  Raspberry Pi: Wired Energy Efficiency for Compression 

 

The energy efficiency of decompression tasks using gzip, lzop, and pigz ex-

ceeds the energy efficiency of the uncompressed download for all considered idle cur-

rents, whereas bzip2, pbzip2, and xz are less energy efficient (Figure 6.6). The ener-

gy efficiency increases for higher compression levels (except for bzip2/pbzip2), 
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achieving ~29.6 MB/J for lzop, ~ 30.6 MB/J for pigz, and ~23.3 MB/J for gzip when 

Iidle = 0 A. Similarly to how it was noted before, on single-core Raspberry Pi, pigz 

outperforms its sequential counterpart (by ~33%). Both pigz and lzop emerge as the 

most energy-efficient utilities, outperforming gzip when Iidle = {0.25, 0.5, 0.75} A. 
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(a) 

 
(b) 

Figure 6.6  Raspberry Pi: Wired Energy Efficiency for Decompression 

 

6.4 Conclusions 

The experimental results for the Raspberry Pi platform show that the com-

pression tasks should utilize the lowest compression levels, and that the decompres-
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sion tasks should utilize the highest compression level (for exception of bzip2 and 

pbzip2) for both the throughput and energy efficiency. 

Table 6.1 summarizes the throughput results. lzop performs the best for com-

pression and decompression in the Local experiment and for compression in the 

Wired experiment. The best throughput for decompression in the Wired experiment 

is achieved by pigz, followed by lzop and gzip (pigz outperforms lzop by 3.9%). How-

ever, lzop is the only utility that effectively increases the network throughput for 

uploads in the Wired experiment. 

 

Table 6.1  Throughputs on Raspberry Pi @ 700MHz  

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

  
Best Utility 

Th.C 
[MB/s] 

Th.UUP 
[MB/s] 

 
Best Utility 

Th.D 
[MB/s] 

Th.UDW 
[MB/s] 

LOCAL lzop -1 to -6 9.5  lzop -1 to -9 26.4  

WIRED lzop -1 to -6 4 3.6 pigz -8 to -9 8.45 4.97 

 

Table 6.2 shows the energy efficiency. lzop is the most energy-efficient for 

both the Local and Wired experiment for compression and decompression (when Iidle 

≠ 0 A), while pigz is the most energy-efficient for the Wired experiment for decom-

pression when Iidle = 0 A. In the Wired experiment, the most energy efficient com-

pressed upload with lzop -1 achieves 15.7 MB/J, which ~10.26 times more energy-

efficient than 1.53 MB/J achieved with the uncompressed upload (assuming Iidle = 0 

A). The most energy-efficient decompressed download using pigz with -9 achieves 
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30.5 MB/J, which is ~2.25 times better than the uncompressed download that 

achieves 13.55 MB/J.  

 

Table 6.2  Energy Efficiency on Raspberry Pi @ 700MHz  

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

 
LOCAL 

 
Best Utility 

EE.C 
[MB/J] 

EE.UUP 
[MB/J] 

 
Best Utility 

EE.D 
[MB/J] 

EE.UDW 
[MB/J] 

Iidle = 0 A lzop -1 to -6 45  lzop -6 to -9 90  

Iidle = 0.25 A lzop -1 to -6 6.5  lzop -6 to -9 17  

Iidle = 0.5 A lzop -1 to -6 3.5  lzop -1 to -9 9.5  

WIRED       

Iidle = 0 A lzop -1 to -6 15.7 1.53 pigz -6 to -9 30.5 13.55 

Iidle = 0.25 A lzop -1 to -6 2.7 1.00 lzop -7 to -9 5.5 3.07 

Iidle = 0.5 A lzop -1 to -6 1.5 0.74 lzop -7 to -9 3 1.73 

 

Use of parallel compression utility such as pigz, even on a single core system, 

offers gains in the throughput and the energy efficiency for the compression and de-

compression tasks. Table 6.3 summarizes the throughput and the energy efficiency 

gains of pigz and pbzip2 when compared to the sequential counterparts for all exper-

imental cases. 
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Table 6.3 Performance Gain of Parallel Utilities on Raspberry Pi @ 700MHz  

 

 Iidle (A) Throughput Gain (compression/decompression) 

  Local Wired 

pigz  16.4%/69.5% 10.16%/33.5% 

pbzip2  0%/0% 0%/0% 

  Energy Efficiency Gain (compression/decompression) 

  Local Wired 

pigz 0.00 0%/53% 1.340%/31.52% 

0.25 13.25%/67.34% 7.936%/33.08% 

0.50 14.7%/68.03% 10.29%/33.48% 

0.75 15.0%/68.66% 8.51%/33.5% 

pbzip2 0.00 0%/0% 0%/0% 

0.25 0%/0% 0%/0% 

0.50 0%/0% 0%/0% 

0.75 0%/0% 0%/0% 
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CHAPTER 7  

 

WORKSTATION RESULTS 

 

This chapter presents the results of the experimental evaluation for the 

workstation platform. Section 0 describes the compression ratio achieved by the 

compression utilities for all compression levels. Section 7.2 discusses the compres-

sion and decompression throughputs. Section 7.3 discusses energy efficiency of com-

pression and decompression tasks. Section 7.4 discusses the effects of frequency scal-

ing on processor cores. Section 7.5 summarizes findings from the workstation exper-

iments. 

7.1 Compression ratio 

Figure 7.1 shows the compression ratio for the input dataset used on the 

workstation platform (totalInput.tar and enwik9.xml). It can be observed that com-

pression values for totalInput.tar are identical to those for Pandaboard and Rasp-

berry Pi shown in Figure 5.1 for the reason of using the same versions of compres-

sion and decompression utilities. The compression ratios between two dataset are 

almost identical for exception of xz -9 which reaches compression ratio of 4.68 for 

enwik9.xml dataset and 4.31 for totalInput.tar dataset. This exception can be ex-

plained by substantially larger size of enwik9.xml, which allows xz at highest levels 

to work with full compression potential. Because of insignificant differences in com-

pression ratios between two datasets, enwik9.xml is used for the rest of this chapter 

for presenting the results.  
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Figure 7.1  Workstation: Compression Ratio 

 

7.2 Compression and Decompression Throughputs 

7.2.1 Local 

Figure 7.2 shows the overall compression and decompression throughput for 

the Local experiment on the workstation platform using enwik9.xml dataset. As 

seen in Chapters 5 and 6, the compression throughput in the Local experiment var-

ies widely across different compression utilities as well as across different compres-

sion levels of a single compression utility. The higher compression levels result in 

slightly higher decompression throughputs, whereas lower compression levels result 

in higher compression throughputs. 
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Figure 7.2  Workstation: Local Compression/Decompression Throughput (MB/sec) 

(enwik9.xml) 

 

For compression, the highest throughput of 321.82 MB/sec is achieved by pigz 

-1 and followed by pigz -2 with 295.5 MB/sec. The higher compression levels of pigz 

drop to 160.5, 123.3, 112.2, 102.5 and 101.7 MB/sec. The third highest compression 

throughput of ~280 MB/sec (after pigz -1, -2) is achieved by lzop -1 to -6. However, 

the compression throughput for lzop drops dramatically for the highest compression 

levels (to 12.62, 8.62, and 8.61 MB/sec for -7, -8 and -9 respectively). Additionally, 

both pigz and pbzip2 outperform their sequential counterparts by a factor of ~5.35 

for all compression levels. The pbzip2 utility has compression throughput ranging 

from 61.19 to 47.5 MB/sec, and the gzip utility has compression throughput ranging 

from 60.23 to 19.02 MB/sec. xz and bzip2 achieve significantly lower compression 

throughputs (e.g., from 14.66 to 1.13 MB/sec for xz and from 11.39 to 10.74 for 
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bzip2). xz slows down dramatically with increasing compression level to smallest 

compression throughput of 1.13 MB/sec with -9. 

The decompression throughputs are much closer to the compression through-

puts on the workstation platform than on Pandaboard or Raspberry Pi. As noted be-

fore, higher compression levels usually result in an increase of the decompression 

throughput due to typically smaller compressed files that require less time for input 

operations. bzip2 and pbzip2 are exceptions, since increased computational complex-

ity of decompression outweighs the benefits of increased compression ratios. The 

highest decompression throughput of 358.97 MB/sec is achieved by lzop, followed by 

pigz (245.16 to 258.92 MB/sec) and gzip (119.11 to 135.02 MB/sec). The pigz and 

pbzip2 utilities offer improvements in decompression throughputs over their sequen-

tial counterparts. 

7.2.2 Wired 

Figure 7.3 shows the compression and decompression throughputs in the 

Wired experiment on the workstation platform for enwik9.xml dataset. The dashed 

lines represent the measured effective network throughput when the uncompressed 

input files are uploaded to the remote server US/T.UUP (10.71 MB/sec) and down-

loaded from the remote server US/T.UDW (10.72 MB/sec) over the wired Ethernet 

interface. 
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Figure 7.3  Workstation: Wired Compression/Decompression Throughput (en-

wik9.xml) 

 

Similarly to results for the Wired experiment on Pandaboard and Raspberry 

Pi, the compression throughput is limited by the effective network throughput. 

Therefore, the compression throughput is always below the CR*(US/T.UUP). For ex-

ample, in enwik9.xml, the compression throughput of gzip -1 to -4 goes up to ~30 to 

33 MB/sec, which is very close to CR*10.71 MB/sec for each compression level (28.27 

to 31.70 MB/sec). lzop -1 to -6 levels off at 21.84 MB/sec, which is slightly below 

2.07*10.71 = 22.17 MB/sec (the compression ratio for lzop -1 is 2.07). The effective 

compression throughput is significantly lower for lzop (by a factor of ~13), pigz (by a 

factor of ~9) and gzip (by a factor of 2) in the Wired experiment than in the Local ex-

periment. 

The highest compression throughput of 43.72 and 37.07 MB/sec is achieved 

by pbzip2 -9 for enwik9.xml and totalInput.tar datasets respectively. Second highest 
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compression throughput is achieved by pigz (29.58 to 34.63 MB/sec). Third largest 

compression throughput is taken by gzip on the lower compression levels. In compar-

ison with results from Pandaboard and Raspberry Pi, lzop comes in fourth for both 

dataset cases. The least effective compressions in throughput are bzip2 and xz. 

The same limit of the effective network throughput is imposed on the decom-

pression tasks. Thus, the decompression throughput should be below 

CR*(US/T.UDW) for all utilities, which can be observed across all decompression 

utilities. Additionally, the effective decompression throughput is significantly lower 

for lzop (by a factor of ~14), pigz (by a factor of ~10) and gzip (by a factor of ~5.4) in 

the Wired experiment than in the Local experiment. The highest decompression 

throughput of 51.93 MB/sec is achieved by xz -9. The second highest decompression 

throughput is achieved by pbzip2 (37.80 to 43.72 MB/sec). The third largest com-

pression throughput is taken by pigz and gzip with decompression throughput of 

~29.5 to ~34.5 MB/sec. 

7.3 Energy Efficiency 

7.3.1 Local 

Figure 7.4 and Figure 7.5 show the energy efficiency for compression and de-

compression tasks in the Local experiment reported in MB/J (US/EO.C and 

US/EO.D) and MB/J (|US-CS|/EO.C and |US-CS|/EO.D). Because of differences 

in the experimental setup on the workstation, no idle current was used to report en-

ergy efficiency; instead the energy overhead reported by the likwid-powermeter tool 

is used to derive energy efficiency, which is equivalent to ET.C(0) and ET.D(0) met-

rics from Chapters 5 and 6. 
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The energy efficiency of compression tasks varies widely for different utilities 

and different compression levels as shown in Figure 7.4. The most energy efficient 

compression utility by far is lzop -1 to -6 with the energy efficiency of 16.8 MB/J. Af-

ter lzop, pigz and gzip are following closely with the energy efficiencies ranging from 

5.54 to 1.85 MB/J for pigz and from 3.51 to 1.13 MB/J for gzip. The pigz and pbzip2 

have higher energy efficiency than their sequential counterparts. The least energy-

efficient choices from six are pbzip2, bzip2 and xz. 
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(a) 

 
(b) 

Figure 7.4  Workstation: Local Energy Efficiency for Compression (enwik9.xml) 

 

The energy efficiencies of the decompression tasks vary widely for different 

utilities (Figure 7.5). The energy efficiency increases for higher compression levels 

for all utilities except bzip2 and pbizp2. The lzop utility, despite lower compression 

ratio, has the highest energy efficiency of 21.5 MB/J. Following lzop, pigz and gzip 
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come second and third having energy efficiency of 9.8 and 8.14 MB/J. Similarly to 

the compression results, the parallel utilities have better energy efficiency than 

their sequential counterparts on almost all compression levels. The least energy-

efficient choices from six utilities are bzip2, pbzip2 and xz. 
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(a) 

 
(b) 

Figure 7.5  Workstation: Local Energy Efficiency for Decompression (enwik9.xml) 

 

7.3.2 Wired 

Figure 7.6 and Figure 7.7 show the energy efficiency for compression and de-

compression tasks for the Wired experiment reported in MB/J (US/EO.C and 

US/EO.D) and MB/J (|US-CS|/EO.C and |US-CS|/EO.D). Figure 7.6(a) and Fig-
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ure 7.7(a) show the energy efficiency of the compression and decompression utilities, 

respectively, as well as the energy efficiency of the uncompressed upload 

(US/EO.UUP) and the uncompressed download (US/EO.UDW) transfer with a 

dashed line.  

The results for compression tasks show that only a subset of utilities effec-

tively improves energy efficiency over the uncompressed upload transfers (Figure 

7.6): gzip with -1 to -5, pigz with -1 to -5, and lzop with -1 to -6. The most energy effi-

cient utility is lzop with -1 to -6 with ~2.32MB/J, gzip -1 follows with ~1.9 MB/J. For 

parallel compression utilities, pigz does not offer any energy efficiency benefit when 

compared to gzip, but pbzip2 is almost twice more energy efficient than bzip2. None-

theless, bzip2, pbzip2 and xz exhibit low energy efficiency for all compression levels 

and effectively increase energy use over the uncompressed file upload. 
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(a) 

 
(b) 

Figure 7.6  Workstation: Wired Energy Efficiency for Compression (enwik9.xml) 

 

The energy efficiency of the decompression tasks exceeds the energy efficien-

cy of the raw download for all utilities (Figure 7.7). The highest energy efficiency for 

decompression is achieved by lzop (2.86 MB/J). The second place is taken by xz with 

the highest compression levels (2.69 MB/J). The pigz and gzip utilities come in third 
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with decompression efficiency ranging from 2.17 to 2.51 MB/J for pigz and from 2.30 

to 2.65 MB/J for gzip. Just as in compression, pigz does not have any benefit in ener-

gy efficiency over its sequential counterpart. The least energy efficient are pbzip2 

and bzip2, but parallel utility outperforms its sequential counterpart by 20% on low 

compression levels (with 1.69 to 1.45 MB/J for pbzip2 and 1.40 to 1.39 MB/J for 

bzip2). Similarly to compression, MB/J metric does not change relative distribution 

of the decompression results. 
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(a) 

 
(b) 

Figure 7.7  Workstation: Wired Energy Efficiency for Decompression (MB/Joule) 

(enwik9.xml) 

 

7.4 Frequency scaling 

The frequency scaling for the workstation platform covers frequency steps 

from 1.60GHz to 3.40GHz with 0.20GHz iteration step (highest of which is used to 
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describe and report results for Section 7.2 and Section 7.3). Similarly to Pandaboard, 

a complete set of all tasks is repeated from those sections above for each frequency 

step. Section 7.4.1 and Section 7.4.2 describe the effect of frequency scaling based on 

throughput and energy efficiency metrics for the Local and Wired experiments. 

7.4.1 Local 

7.4.1.1 Compression and Decompression Throughputs 

Figure 7.8 and Figure 7.9 show the compression and decompression through-

put on the Local experiment. The results confirm expectations that a higher clock 

frequency means a higher compression and decompression throughput.  

The highest compression throughput across all frequencies is achieved by 

pigz -1, achieving 321.82 MB/sec on 3.40GHz and 151.37 MB/sec on 1.60GHz (Figure 

7.8). Following pigz, lzop and pbzip2 come in second and third.  

The highest decompression throughput across all frequencies is achieved by 

lzop -7 to -9, achieving ~350 MB/sec on 3.40GHz and ~168 MB/sec on 1.60GHz 

(Figure 7.9). Following lzop, pigz and pbzip2 come in second and third.  
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Figure 7.8  Workstation: Local Compression Throughput under Different Frequen-

cies (MB/sec) (enwik9.xml) 

 

 

Figure 7.9  Workstation: Local Decompression Throughput under Different Fre-

quencies (MB/sec) (enwik9.xml) 
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Figure 7.10 and Figure 7.11 show a comparison between the throughput rati-

os and the frequency ratios for compression and decompression in the Local experi-

ment. The throughput ratio is derived by dividing the throughput of the highest fre-

quency by the throughput of the current clock frequency (1.60GHz to 3.20GHz). The 

frequency ratio is derived by dividing the highest frequency by the corresponding 

current frequency (1.60GHz to 3.20GHz). 

For compression, Figure 7.10, the gzip, lzop, bzip2 and pigz utilities have 

nearly identical the throughput ratios as their corresponding frequency ratios, indi-

cating linear relationship between the frequency and the throughput. The only ex-

ceptions are xz and pbzip2 that have lower throughput ratios than corresponding 

frequency ratios for higher compression levels (highest with 3.40GHz/1.60GHz case), 

indicating a non-linear throughput change with frequency scaling on higher com-

pression levels. For example, the compression throughput of xz with -9 when run-

ning at 1.6 GHz drops less than 1.5 times relative its throughput when running at 

3.4 GHz, whereas the frequency ratio drops for more than 2.1 times. 
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Figure 7.10  Workstation: Local Compression Throughput Ratios vs. Frequency Ra-

tios (enwik9.xml) 

 

Similar observations can be made for the decompression utilities as shown in 

Figure 7.11. The utilities such as gzip, lzop, bzip2, xz and pigz have the same or al-

most identical throughput ratio as their corresponding frequency ratios, indicating 

linear relationship between the frequency and throughput. An exception is pbzip2 

that has lower throughput ratio than the corresponding frequency ratio for higher 

compression levels (highest with 3.40GHz/1.60GHz case). 
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Figure 7.11  Workstation: Local Decompression Throughput Ratios vs. Frequency 

Ratios (enwik9.xml) 

 

7.4.1.2 Energy Efficiency 

Figure 7.12 and Figure 7.13 show the compression and decompression energy 

efficiency on the Local experiment. 

The results shown in Figure 7.12 indicate that frequency scaling does not 

provide significant changes in the energy efficiency of compression tasks for the ma-

jority of utilities. The highest energy efficiency is achieved by lzop -1 across all fre-

quencies, achieving ~17 MB/Joule. 
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Figure 7.12  Workstation: Local Energy Efficiency for Compression under Different 

Frequencies (MB/Joule) (enwik9.xml) 

 

The results shown in Figure 7.13 indicate that frequency scaling does not 

provide significant change in the energy efficiency of decompression tasks for the 

majority of utilities except for pigz and pbzip2. However, the highest energy efficien-

cy is achieved by lzop -1 across all frequencies, achieving ~20 MB/Joule. 
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Figure 7.13  Workstation: Local Energy Efficiency for Decompression under 

Different Frequencies (MB/Joule) (enwik9.xml) 

 

7.4.2 Wired 

7.4.2.1 Compression and Decompression Throughputs 

Figure 7.14 and Figure 7.15 show the compression and decompression 

throughput in the Wired experiment while varying the processor clock frequency.  

The highest compression throughput is achieved by pbzip2 with -9, 43.73 

MB/sec at the highest clock frequency of 3.40GHz (Figure 7.14). The highest 

throughput when processor is running at the lowest frequency of 1.6 GHz is 

achieved by gzip -1, 27.70 MB/sec. The compression utilities that do not see a sub-

stantial change in the compression throughput with a change in frequency are lzop -

1 to -6 and pigz. The throughput of raw file upload benefits insignificantly with an 

increase in the processor clock frequency.  
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Figure 7.14  Workstation: Wired Compression Throughput under Different 

Frequencies (MB/sec) (enwik9.xml) 

 

Figure 7.15 shows the decompression throughput while varying the processor 

clock frequency. The results indicate that the majority of decompression utilities 

(gzip, lzop, pigz, and pbzip2) do not see a substantial change in the throughput with 

a change in the processor clock frequency. Notable exceptions are xz and bzip2 that 

benefit from higher clock frequencies due to their high computational complexity. 

The throughput of the uncompressed file transfer benefits insignificantly from an 

increase in the clock frequency. The maximum decompression throughput is 

achieved by xz -9, 51.93 MB/sec at 3.40GHz. The highest throughput at the lowest 

frequency is achieved by pbzip2 -9, ~42 MB/sec at 1.60GHz.  
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Figure 7.15  Workstation: Wired Decompression Throughput under Different 

Frequencies (MB/sec) (enwik9.xml) 

 

Figure 7.16 and Figure 7.17 show the correlation between the throughput ra-

tios and the frequency ratios for the compression and decompression tasks in the 

Wired experiment. 

 Unlike in the Local experiment, in the Wired experiment the throughput ra-

tio versus the frequency ratio distribution changes widely as illustrated in Figure 

7.16. Now only bzip2 and to a certain extent xz exhibit scalable behavior – the 

throughput ratios correspond to the frequency ratios. For the remaining utilities on-

ly highest compression levels show scalability. This can be explained as follows.  The 

compression throughput even with a low processor clock frequency is higher than 

the achievable network throughput. This way, even if the processor is running at a 
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lower clock frequency, the network bandwidth is still going to be a limiting factor 

rather than the computational time. bzip2 and xz with high computational complexi-

ty have the compression throughput that is below the achievable network through-

put, so they benefit from higher processor clock frequencies.   

 

 

 

Figure 7.16  Workstation: Wired Compression Throughput Ratios vs. Frequencies 

Ratios (enwik9.xml) 

 

Similar observations can be made for the decompression tasks as shown in 

Figure 7.17. For the majority of decompression tasks, the decompression throughput 

is far greater than the network throughput during uncompressed file downloads, re-

gardless of the processor clock frequency. Consequently, by lowering the processor 
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clock frequency the effective decompression throughput remains unchanged. Excep-

tions are bzip2 and xz due to their high computational complexity.  

 

 

 

Figure 7.17  Workstation: Wired Decompression Throughput Ratios vs. Frequency 

Ratios (enwik9.xml) 

 

7.4.2.2 Energy Efficiency 

Figure 7.18 and Figure 7.19 show the compression and decompression energy 

efficiency in the Wired experiment. 

The results in Figure 7.18 indicate that the energy-efficiency of the compres-

sion tasks increases as the clock frequency decreases. Thus, the lowest frequency 1.6 

GHz is the most energy efficient choice across all compression utilities. The highest 
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energy efficiency is achieved by lzop across all frequency levels, ranging from ~2.9 

MB/Joule at 1.60GHz to ~2.3 MB/Joule on 3.40GHz. The energy efficiency of the un-

compressed file upload is highest at the clock frequency of 1.60 GHz. 

 

 

 

Figure 7.18  Workstation: Wired Energy Efficiency for Compression under Different 

Frequencies (MB/Joule) (enwik9.xml) 

 

The results in Figure 7.19 indicate that the decompression energy efficiency 

increases as the clock frequency decreases for all decompression utilities. The high-

est decompression energy efficiency is achieved by lzop across all frequency levels, 

ranging from 3.97 MB/Joule at 1.60 GHz to 2.87 MB/Joule at 3.40 GHz. The energy 
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efficiency of the uncompressed file download also peaks for the lowest processor 

clock frequency.  

 

 

 

Figure 7.19  Workstation: Wired Energy Efficiency for Decompression under 

Different Frequencies (MB/Joule) (enwik9.xml) 

 

7.5 Conclusions 

The experimental results for the workstation platform show that compression 

tasks should utilize the lowest compression level to maximize throughput and ener-

gy efficiency, whereas decompression tasks should utilize the highest levels. A nota-

ble exceptions are bzip2 and pbzip2 where the computational complexity outweighs 

the benefits of increased compression ratios.  
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Table 7.1 summarizes the compression and decompression throughput re-

sults. pigz and lzop perform the best for compression and decompression in the Local 

experiment respectively. The best throughputs in the Wired experiment are 

achieved by pbzip2 and xz for compression and decompression respectively. 

 

 

Table 7.1  Throughputs on Workstation @ 3.40GHz  

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

  
Best Utility 

Th.C 
[MB/s] 

Th.UUP 
[MB/s] 

 
Best Utility 

Th.D 
[MB/s] 

Th.UDW 
[MB/s] 

LOCAL pigz -1 321.82  lzop -7 358.97  

WIRED pbzip2 -9 43.73 10.71 xz -9 51.93 10.72 

 

Table 7.2 summarizes the compression and decompression energy efficiency. 

The results indicate that compressed transfers could reduce the energy consumed 

relative to the uncompressed transfers. lzop is the most energy-efficient for both the 

Local and Wired experiment for compression and decompression. In the Wired ex-

periment, the most energy efficient compressed upload with lzop -1 achieves 2.3 

MB/J, which ~1.84 times more energy-efficient than 1.25 MB/J achieved with the 

uncompressed upload. The most energy-efficient decompressed download using lzop 

with -9 achieves 2.86 MB/J, which is ~2.72 times better than the uncompressed 

download that achieves 1.05 MB/J.  
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Table 7.2  Energy Efficiency on Workstation @ 3.40GHz 

 

Experiment Compression Raw 

(UUP) 

Decompression Raw 

(UDW) 

 
LOCAL 

 
Best Utili-
ty 

EE.C 
[MB/J] 

EE.UUP 
[MB/J] 

 
Best Utility 

EE.D 
[MB/J] 

EE.UDW 
[MB/J] 

Iidle = 0 A lzop -1 to -6 8.6  lzop -7 to -9 13.4  

WIRED       

Iidle = 0 A lzop -1 to -6 2.3 1.25 lzop -7 to -9 2.86 1.05 

 

The use of parallel compression utilities such as pigz and pbzip2 offers gains 

in the throughput and the energy efficiency for the compression and decompression 

tasks relative to their sequential counterparts. Table 7.3 summarizes the through-

put and the energy efficiency gains of pigz and pbzip2 when compared to the sequen-

tial counterparts for all experimental cases.  

 

Table 7.3 Performance Gains of Parallel Utilities on Workstation @ 3.40GHz 

 

 Iidle (A) Throughput Gain (compression/decompression) 

  Local Wired 

pigz  ~80% 38.19%/3.67% 

pbzip2  ~80% 77.98%/53.20% 

  Energy Efficiency Gain (compression/decompression) 

  Local Wired 

pigz 0.00 0%/9.9% 0%/0% 

0.25 32.86%/52.2% 13.91%/9.9% 

0.50 48.38%/62.78% 22.06%/9.20% 

0.75 56.64%/67.65% 25.56%/8.6% 

pbzip2 0.00 0%/0% 0%/0% 

0.25 27.5%/34.49% 37.5%/28.7% 

0.50 43.5%/50.99% 58.13%/37.4% 

0.75 54.05%/58.82% 64.51%/41.26% 
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The frequency scaling analysis indicates that the compression and decom-

pression throughputs suffer from lower frequency, which can be explained easily by 

the general observation that the execution time of each utility goes up with lowering 

of frequency. The energy efficiency increases when the clock frequency goes down for 

the selected utilities in the Local (factor of ~1.1 for pigz and pbzip2) and the Wired 

experiment (by factor of ~1.4 for all except pbzip2). 
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CHAPTER 8  

 

CONCLUSIONS 

 

This thesis describes an experimental evaluation of recent implementations 

of common compression utilities on three selected platforms, Pandaboard, a state-of-

the-art mobile development platform, Raspberry Pi, a low-end mobile computer plat-

form, and a workstation computer platform. The evaluation includes measurements 

of compression and decompression times and the total and overhead energies con-

sumed by compression and decompression tasks. Metrics, such as compression ratio, 

compression/decompression throughput, and compression/decompression energy effi-

ciency, are reported for all compression levels and platforms. Based on the results of 

this thesis, practical guidelines for selecting the most energy-efficient utilities are 

provided depending on the usage scenario. Across all systems and experiments, a 

single utility that always performs above network transfer for both throughput and 

energy efficiency is lzop. The lzop utility outperforms network transfer even on 

Raspberry Pi were all other compression utilities fail. Additionally, lzop outperforms 

network transfer for both throughput and energy efficiency when considering all Iidle 

currents for both Pandaboard and Raspberry Pi. Even that utilities such as pigz, 

gzip or xz outperform lzop, specifically for decompression on the slowest network 

throughput (on the Wireless experiment), they often fail to outperform network 

transfer in either throughput or energy efficiency in selected cases. Thus, if there is 

a need for one uniform utility that can perform well for both throughput and energy 

efficiency across different platforms and different network speeds, lzop provides this 
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by demonstrating that it can work well and never fail any of the experiments con-

ducted across all evaluation hardware platforms of diverse hardware complexity and 

performance. Additional observations, from all experiments conducted in this thesis, 

indicate that it is always better to use the lowest compression level for compression 

tasks and the highest compression level for decompression tasks. Performing de-

compression is also always more energy efficient for both mobile platforms and the 

workstation platform. When comparing performance of three evaluation platforms, 

Pandaboard provides higher energy efficiency over Raspberry Pi and the work-

station for the Local, Wired and Wireless experiments. 

Several general observations are made across three systems: 

 The lzop utility is the only utility which outperforms network transfer 

across all systems and all experiments for both throughput and energy ef-

ficiency. 

 The utilities such as xz, pigz and gzip, while exceeding lzop on selected 

network experiments (the decompression in particular), often fail to out-

perform network throughput for compression or energy efficiency (either 

in another experiment or on another platform). 

 For throughput and energy efficiency, it is always best to select the lowest 

compression level for compression and the highest compression level for 

decompression. 

 The gain of using parallel utilities instead of sequential counterparts in 

networked experiments is limited by the compression ratio and the net-

work upload and download throughputs, i.e., CR*T.UUP and CR*T.UDW. 

 Scaling frequency down always reduces throughput. 
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 Scaling frequency down, when Iidle of 0 A, always produces higher energy 

efficiency. 

 Scaling frequency down, when Iidle of 0.25 A or greater, always produces 

lower energy efficiency. 

The findings can be used to direct energy optimizations of data transfers in 

mobile and workstation applications by encouraging development of data transfer 

frameworks that are conscientious of the mobile device’s energy status. For example, 

a server could easily store multiple copies of the same file, compressed with different 

utilities and compression levels, to allow the mobile device to choose, based on its 

capabilities, currently available network bandwidth, energy status, and user prefer-

ences, which version of a file to download. Compression utility, such as lzop, can be 

integrated as a basic compression and decompression choice for software reposito-

ries, so that devices downloading files can automatically download the compressed 

file and decompress them on their systems. However, if proper condition such as 

slow network speed, is met, mobile device can instead download file compressed us-

ing the xz utility. Additionally, mobile devices, could decide which frequency level to 

use during download or upload of files. 
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