

A FRAMEWORK FOR OPTIMIZING DATA TRANSFERS BETWEEN

EDGE DEVICES AND THE CLOUD USING COMPRESSION UTILITIES

by

ARMEN A. DZHAGARYAN

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

The Department of Electrical & Computer Engineering

to

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2016

ii

In presenting this dissertation in partial fulfillment of the requirements for a doctor

of philosophy degree from The University of Alabama in Huntsville, I agree that the

Library of this University shall make it freely available for inspection. I further

agree that permission for extensive copying for scholarly purposes may be granted

by my advisor or, in his/her absence, by the Chair of the Department or the Dean of

the School of Graduate Studies. It is also understood that due recognition shall be

given to me and to The University of Alabama in Huntsville in any scholarly use

which may be made of any material in this dissertation.

(student signature) (date)

iii

DISSERTATION APPROVAL FORM

Submitted by Armen A. Dzhagaryan in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Engineering and accepted on behalf

of the Faculty of the School of Graduate Studies by the dissertation committee.

We, the undersigned members of the Graduate Faculty of The University of Ala-

bama in Huntsville, certify that we have advised and/or supervised the candidate on

the work described in this dissertation. We further certify that we have reviewed the

dissertation manuscript and approve it in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Engineering.

 Committee Chair

(Dr. Aleksandar Milenkovic) (date)

 Committee Member

(Dr. Emil Jovanov) (date)

 Committee Member

(Dr. Gregg Vaughn) (date)

 Committee Member

(Dr. B. Earl Wells) (date)

 Committee Member

(Dr. David Coe) (date)

 Department Chair

(Dr. Ravi Gorur) (date)

 College Dean

(Dr. Shankar Mahalingam) (date)

 Graduate Dean

(Dr. David Berkowitz) (date)

iv

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering/Electrical &

 Computer Engineering

Name of Candidate Armen A. Dzhagaryan

Title A Framework for Optimizing Data Transfers between Edge Devices and

 the Cloud Using Compression Utilities

 An exponential growth of data traffic that originates on edge devices and a

shift toward cloud computing necessitate finding new approaches to optimize file

transfers. Whereas compression utilities can improve effective throughput and ener-

gy efficiency of file transfers between edge devices and the cloud, finding a best-

performing utility for a given file transfer is a challenging task. In this dissertation,

we introduce a framework for optimizing file transfers between edge devices and the

cloud using compression utilities. The proposed framework involves agents running

on edge devices and the cloud that are responsible for selecting an effective transfer

mode by considering characteristics of transferred files, network conditions, and de-

vice performance. The framework agents deployed on a smartphone and a work-

station are experimentally evaluated with transfers of varied datasets to and from a

local server and cloud instances over networks with varying levels of throughput.

The results of the experimental evaluation demonstrate that the framework im-

proves throughput and energy efficiency and reduces costs of file transfers.

Abstract Approval: Committee Chair

 (Dr. Aleksandar Milenkovic)

 Department Chair

 (Dr. Ravi Gorur)

 Graduate Dean

 (Dr. David Berkowitz)

v

To Irina and Svetlana, my dear mother and aunt,

whose love, warmth, and support made me what I am today

and helped me make my dissertation a successful journey.

vi

ACKNOWLEDGMENTS

The work presented in this dissertation would not be possible without the as-

sistance of a number of people who need to be acknowledged. Foremost, I would like

to thank my advisor, Dr. Aleksandar Milenkovic, for his continuous counsel and

support throughout the entire time. Next, I would like to thank Dr. Mladen Milose-

vic, who designed mPowerProfile, the original tool for energy profiling for mobile

platforms. This tool served as a first step in designing mLViewPowerProfile, which I

used in this research to acquire power traces from mobile devices for preliminary

performance and energy efficiency studies of several lossless compression utilities,

and for subsequent framework evaluation. I also want to thank Dr. Emil Jovanov,

Dr. Wells, and Dr. Seong-Moo Yoo for their guidance and advice during my time as a

graduate student. Their courses and projects made me a better engineer and re-

searcher. I would also like to acknowledge all other members and researchers in the

LaCASA and mHealth laboratories directed by Dr. Milenkovic and Dr. Jovanov. Fi-

nally, I would like to thank Simon Lindley, who has been the initiator of a Ph.D. tui-

tion reimbursement program while being my manager at GRA, Inc.

Most importantly I would like to thank my family, my mother Irina, my aunt

Svetlana, and my uncle-in-law Shaun, for their unconditional love and support. I am

grateful for their indispensable encouragement and motivation in pursuing my aca-

demic goals.

vii

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. xi

LIST OF TABLES ... xv

CHAPTER

TABLE OF CONTENTS ... 7

1 INTRODUCTION ... 1

 Background and Motivation .. 3

 Data Compression... 4

 What Has Been Done? .. 6

 Main Contributions .. 7

 Dissertation Outline ... 8

2 BACKGROUND ... 10

 Data Transfers between Edge Computing Systems and the Cloud 10

 Lossless Compression Utilities .. 13

 gzip.. 14

 lzop .. 15

 bzip2 ... 15

 xz ... 16

 pigz.. 17

viii

 pbzip2 ... 18

 Applications Benefiting from Optimized Data Transfers.............................. 18

 Software Repositories on Mobile and Desktop Operating Systems 19

 File Distribution and Storage Offload ... 19

 HTTP and Web Compression ... 20

 mHealth Applications ... 21

 Scientific and Big Data Offload and Distribution................................... 21

 Experimental Setup .. 22

 Target Platforms and the Cloud... 22

 Measuring Setup ... 27

 Datasets.. 39

 Metrics and Experiments ... 42

 Metrics .. 42

 Experiments ... 45

 The Cases for Intelligent File Transfers ... 48

 Compressed Transfers on the Smartphone ... 49

 Compressed Transfers on Workstations .. 65

 The Case for a Framework for Optimized Data Transfers 82

3 RELATED WORK .. 85

 Lossless Data Compression on Mobile and Cloud Systems 86

 Power Profiling and Energy Estimation ... 88

ix

 Mobile Devices ... 88

 Workstations .. 90

4 FRAMEWORK OVERVIEW AND DESIGN .. 92

 Framework Overview ... 92

 Optimized File Uploads .. 92

 Optimized File Downloads .. 95

 Framework Components .. 99

 Modeling Uncompressed File Transfers .. 99

 Modeling Compressed File Transfers .. 119

 Collecting Local Compression and Decompression Prediction Data ... 154

 Prediction Data Tables ... 156

5 FRAMEWORK IMPLEMENTATION .. 163

 Upload Agents ... 164

 Download Agents .. 169

 Re-compression and Server’s Long-term Storage .. 173

 Re-compression .. 173

 Optimization .. 173

6 EVALUATION OF FRAMEWORK IMPLEMENTATION 175

 Evaluation Methods.. 175

 Mobile Device ... 175

 Workstation ... 176

x

 Results: Mobile Device ... 177

 Throughput Optimized Transfers .. 177

 Energy Efficiency Optimized Transfers .. 186

 Results: Workstation .. 196

 Throughput Optimized Transfers .. 196

 Cost Savings... 206

7 CONCLUSIONS AND FUTURE WORK ... 213

xi

LIST OF FIGURES

Figure Page

2.1 Data transfers between mobile devices (a), workstations (b) and the cloud 12

2.2 Block diagrams of an Intel Xeon E3-1240 v2 (a) and an Intel Xeon E5-2650 v2

(b) .. 25

2.3 Hardware setup for energy profiling of mobile devices under test 29

2.4 Block diagram of the hardware setup for energy profiling of mobile device 29

2.5 Nexus 4 (a) and OnePlus One (b) prepared for energy measurements 30

2.6 mLViewPowerProfile user interface ... 32

2.7 Sample ADB Shell script launched from the workstation to execute on the

smartphone .. 33

2.8 Command script runGzip.sh for running a compression task 33

2.9 Current draw during execution of runGzip6.sh run-script 35

2.10 likwid-powermeter output for gzip -6 example .. 36

2.11 Average power traces (PKG, PP0) caputred for gzip -6 example 37

2.12 perf stat output for gzip -6 example ... 38

2.13 Data flow of the experiments on mobile devices (blue file icons refer to

uncompressed files, red file icons refer to compressed files). 46

2.14 Data flow of the experiments on workstation (blue file icons refer to

uncompressed files, red file icons refer to compressed files). 48

2.15 Upload throughput speedup for mHealth files on 0.5 MB/s WLAN connection

... 51

2.16 Upload throughput speedup for mHealth files on 5 MB/s WLAN connection . 53

xii

2.17 Upload energy efficiency improvement for mHealth files on 0.5 MB/s WLAN

connection .. 55

2.18 Upload energy efficiency improvement for mHealth files on 5 MB/s WLAN

connection .. 57

2.19 Download throughput speedup for application, source code, e-book, and map

on 0.5 MB/s WLAN connection ... 59

2.20 Download throughput speedup for application, source code, e-book, and map

on 5 MB/s WLAN connection .. 61

2.21 Download energy efficiency improvement for application, source code, e-book,

and map on 0.5 MB/s WLAN connection ... 63

2.22 Download energy efficiency improvement for application, source code, e-book,

and map on 5 MB/s WLAN connection .. 65

2.23 Upload throughput speedup for upload of wikipages, netcdf, and seqall files to

North Virginia on uncapped LAN connection ... 68

2.24 Upload throughput speedup for upload of wikipages, netcdf, and seqall files to

Tokyo on uncapped LAN connection .. 70

2.25 Upload energy efficiency improvement for upload of wikipages, netcdf, and

seqall files to North Virginia on uncapped LAN connection.. 72

2.26 Upload energy efficiency improvement for upload of wikipages, netcdf, and

seqall files to Tokyo on uncapped LAN connection .. 74

2.27 Download throughput speedup for download of wikipages, netcdf, and seqall

files from North Virginia on uncapped LAN connection .. 76

2.28 Download throughput speedup for download of wikipages, netcdf, and seqall

files from Tokyo on uncapped LAN connection ... 78

xiii

2.29 Download energy efficiency improvement for download of wikipages, netcdf,

and seqall files from North Virginia on uncapped LAN connection 80

2.30 Download energy efficiency improvement for download of wikipages, netcdf,

and seqall files from Tokyo on uncapped LAN connection .. 82

4.1 System view of optimized data file uploads ... 94

4.2 System view of optimized data file downloads .. 97

4.3 System view of optimized data file downloads with on-demand compression ... 98

4.4 Creating 1M file using input device /dev/zero ... 104

4.5 Uploads over encrypted WLAN channel (OnePlus One): measured throughputs

(a) and energy efficiencies (b) ... 107

4.6 Downloads over encrypted WLAN channel (OnePlus One): measured

throughputs (a) and energy efficiencies (b) ... 108

4.7 Downloads over unencrypted WLAN channel (OnePlus One): measured

throughputs (a) and energy efficiencies (b) ... 110

4.8 Uploads over encrypted 3G/4G channel (OnePlus One): measured throughputs

(a) and energy efficiencies (b) ... 112

4.9 Downloads over encrypted 3G/4G channel (OnePlus One): measured

throughputs (a) and energy efficiencies (b) ... 113

4.10 Uploads over encrypted LAN channel (Dell PowerEdge T110 II): measured

throughputs: North Verginia (a) and Tokyo (b) .. 115

4.11 Downloads over encrypted LAN channel (Dell PowerEdge T110 II): measured

throughputs: North Virginia (a) and Tokyo (b) ... 116

4.12 Extracting network parameters for uploads: throughput (a) and estimated

energy efficiency (b) ... 119

xiv

4.13 Throughput limits: compressed uploads for 5 MB (a), 20 MB (b), and 100 MB

(c) files .. 124

4.14 Throughput limits: compressed downloads for 5 MB (a), 20 MB (b), and 100 MB

(c) files .. 127

4.15 Throughput limits: compressed downloads with on-demand compression for 5

MB (a), 20 MB (b), and 100 MB(c) files ... 130

4.16 Energy efficiency limits: compressed uploads for 5 MB (a), 20 MB (b), 100 MB

(c) files .. 134

4.17 Energy efficiency limits: compressed downloads for 5 MB (a), 20 MB (b), 100

MB (c) files ... 137

4.18 Energy efficiency limits: compressed downloads with on-demand compression

for 5 MB (a), 20 MB (b), 100 MB (c) files ... 140

4.19 Compressed upload and download with piping: throughput estimation for 5

MB (a), 20 MB (b), and 100 MB (c) files .. 144

4.20 Compressed upload and download with piping: energy efficiency estimation for

5 MB (a), 20 MB (b), and 100 MB (c) files ... 145

4.21 Compressed download with on-demand compression and piping: throughput

for 5 MB (a), 20 MB (b), and 100 MB (c) files.. 148

4.22 Compressed download with on-demand compression and piping: energy

efficiency for 5 MB (a), 20 MB (b), and 100 MB (c) files ... 149

4.23 Current waveforms for performing local compression using pigz -6 on set of

varying file sizes – alignment to the starting (a) and ending (b) timestamp 151

4.24 CR and Th.C to change in US – compression (OnePlus One) 155

4.25 Prediction tables for edge device (a) and server/cloud (b) 158

4.26 Framwork life cycle (C – client, S – server) ... 160

xv

4.27 Prediction tables for mobile device (a) and server/cloud (b) 162

5.1 Upload of a text file from the client over 5 MB/s and 0.5 MB/s networks, with

throughput (TH) and energy efficiency (EE) modes ... 165

5.2 SQL query for uploading 1.75 MB file with optimized throughput 166

5.3 SQL query for uploading 1.75 MB file with optimized energy efficiency 168

5.4 Download of text file from the client on 5 MB/s and 0.5 MB/s network

throughput, with throughput (TH) and energy efficiency (EE) modes 171

5.5 downloadClient.sh – script for decoding of incoming file based on ID 172

6.1 Upload throughput speedup Th.FW/Th.UUP on OnePlus One 179

6.2 Upload throughput speedup Th.FW/Th.CUP(gzip -6) on OnePlus One 181

6.3 Download throughput speedup Th.FW/Th.UDW on OnePlus One 183

6.4 Download throughput speedup Th.FW/Th.CDW(gzip -6) on OnePlus One 185

6.5 Upload energy efficiency improvement EE.FW/EE.UDW on OnePlus One 188

6.6 Upload energy efficiency improvement EE.FW/EE.CUP(gzip -6) on OnePlus

One .. 190

6.7 Download energy efficiency improvement EE.FW/EE.UDW on OnePlus One 193

6.8 Download energy efficiency improvement EE.FW/EE.CDW(gzip -6) on OnePlus

One .. 195

6.9 Upload throughput speedup Th.FW/Th.UUP: North Virginia (a) and Tokyo (b)

... 198

6.10 Upload throughput speedup Th.FW/Th.CUP(gzip -6): North Virginia (a) and

Tokyo (b) ... 201

6.11 Download throughput speedup Th.FW/Th.UDW: North Virginia (a) and Tokyo

(b) .. 203

xvi

6.12 Download throughput speedup Th.FW/Th.CDW(gzip -6): North Virginia (a)

and Tokyo (b) ... 205

6.13 Upload cost savings for North Virginia and Tokyo transfers: $.FW vs. $.UUP

(a) and $.FW vs. $.CUP(gzip -6) (b) ... 209

6.14 Download cost saving for North Virginia and Tokyo transfers: $.FW vs. $.UDW

(a) and $.FW vs. $.CDW(gzip -6) (b) .. 211

xvii

LIST OF TABLES

Table Page

2.1 Lossless Compression Utilities .. 14

2.2 AWS EC2 Locations and Server Nodes ... 26

2.3 Datasets to characterize local (de)compression on mobile devices........................ 40

2.4 Datasets to characterize local (de)compression on the workstation 41

2.5 Metrics: Performance .. 43

2.6 Metrics: Energy ... 45

5.1 SQL query output sorted for throughput optimized upload @ 5 MB/s 166

5.2 SQL query output sorted for energy efficiency optimized upload @ 0.5 MB/s ... 168

6.1 Overall upload throughput speedup Th.FW/Th.UUP on OnePlus One 180

6.2 Overall upload throughput speedup Th.FW/Th.CUP(gzip -6) on OnePlus One

... 182

6.3 Overall download throughput speedup Th.FW/Th.UDW on OnePlus One 184

6.4 Overall download throughput speedup Th.FW/Th.CDW(gzip -6) on OnePlus

One .. 186

6.5 Overall upload energy efficiency improvement EE.FW/EE.UUP on OnePlus One

... 189

6.6 Overall upload energy efficiency improvement EE.FW/EE.CUP(gzip -6) on

OnePlus One .. 191

6.7 Overall download energy efficiency improvement EE.FW/EE.UDW on OnePlus

One .. 194

6.8 Overall download energy efficiency improvement EE.FW/EE.CDW(gzip -6) on

OnePlus One .. 196

xviii

6.9 Overall upload throughput speedup Th.FW/Th.UUP (North Virginia) 199

6.10 Overall upload throughput speedup Th.FW/Th.UUP (Tokyo) 199

6.11 Overall upload throughput speedup Th.FW/Th.CUP(gzip -6) (North Virginia)

... 201

6.12 Overall upload throughput Speedup Th.FW/Th.CUP(gzip -6) (Tokyo) 202

6.13 Overall download throughput speedup Th.FW/Th.UDW (North Virginia) 204

6.14 Overall download throughput speedup Th.FW/Th.UDW (Tokyo) 204

6.15 Overall download throughput speedup Th.FW/Th.CDW(gzip -6) (North

Virginia) ... 206

6.16 Overall download throughput speedup Th.FW/Th.CDW(gzip -6) (Tokyo) 206

1

CHAPTER 1

INTRODUCTION

 Cloud and mobile computing represent emerging trends in modern computing

and communication. Cloud computing refers to a computing paradigm where re-

sources such as computing nodes, storage, networks, applications, and services are

accessed over the Internet and shared by multiple users and enterprises. Mobile

computing refers to a computing paradigm where computing and communication

services are delivered via wireless enabled mobile platforms such as smartphones or

tablet computers. In this dissertation we refer to all devices that rely on the cloud

services reached through the Internet as edge devices. Edge devices broadly speak-

ing encompass mobile devices, workstations, and Internet-of-Things devices.

 Mobile and wearable platforms are typically resource-constrained systems

with limited processing power, storage capacity, energy, and communication band-

width. They thus rely on the cloud services for fast data processing and long-term

data storage. Data originating on wearable platforms (e.g., health records) and mo-

bile computing devices (e.g., videos, images, documents, and sensor data) are trans-

ferred to the cloud. Data originating on wearable platforms often have to be trans-

ferred to the paired mobile device before reaching the cloud. Similarly, data stored in

the cloud (e.g., documents, applications, movies, maps, messages, commands) are

transferred from the cloud to edge devices. It is thus critical to guarantee fast, low-

2

latency, and high-throughput communication channels between edge devices and the

cloud.

 Besides data generated on mobile and wearable platforms, a large amount of

data is produced and consumed by commercial, academic, and government institu-

tions that process and analyze big data and scientific data using cloud and distribut-

ed computing. For example, big data applications may analyze web or user’s online

activities to make predictions in areas, such as product evaluation and market char-

acterization. Next, increased collaboration and data exchange in scientific communi-

ties result in an increased communication between edge devices and the cloud.

These new data paradigms pose new challenges associated with cost, security, and

storage. Whereas the use of cloud services opens new opportunities in computing

and reduces the costs of ownership and operating hardware, the costs associated

with the use of cloud services can eventually become prohibitively high for small to

medium research and industry groups. Providers of cloud platforms charge utiliza-

tion fees for using computing resources and data transfer fees for data transfers ei-

ther to or from the cloud. The specific cloud instance configuration (disk space, ten-

ancy type, network priority, computational power) and location of the cloud instance

determine the final fees associated with each instance use and data transfers. Con-

sequently, optimizing data transfers between edge devices and the cloud is also im-

portant in the context of scientific and industrial computing.

 Lossless data compression can increase communication throughput, reduce

latency, save energy, reduce cost, and increase available storage. However, compres-

sion tasks introduce additional overhead that may exceed gains by transferring few-

er bytes. Compression utilities on mobile and workstation computing platforms dif-

fer in compression ratio, compression and decompression speeds, and energy re-

3

quirements. When transferring data we would ideally like to have an agent to de-

termine whether compressed transfers are beneficial, and if so, to select the most

beneficial compression utility. This dissertation introduces a framework for optimiz-

ing data transfers between edge (mobile and workstation) devices and the cloud by

utilizing compression and decompression utilities.

 The rest of the Introduction gives background and motivation (Section 1.1),

discusses data compression (Section 1.2), introduces the proposed framework for op-

timizing data transfers between edge devices and the cloud using compression utili-

ties (Section 1.3), presents the main contributions of the dissertation (Section 1.4),

and finally, gives the outline of the dissertation (Section 1.5).

 Background and Motivation

Mobile computing devices such as smartphones, tablets, and e-readers have

become the dominant platforms for consuming digital information. According to es-

timates for 2014 [1], [2], vendors shipped 1.2 billion smartphones, up 28.4% from the

prior year, and 216 million tablets. Annual sales of smartphones exceeded those of

feature phones for the first time in 2013 [3], totaling 1,807 million mobile devices [4].

The total number of mobile devices shipped in 2014 reached 1,839 million, with

~65% being smartphones.

Global mobile data traffic continues to grow exponentially. A report from Cis-

co states that the global mobile data traffic grew 69% in 2014 relative to 2013, reach-

ing 2.5 exabytes per month, which is over 30 times greater than the total Internet

traffic in 2000 [5]. It is forecast that the global mobile data traffic will grow nearly

10-fold from 2014 to 2019, reaching 24.3 exabytes per month. A report on global mo-

bile economy by GSMA [6] states that the number of global SIM connections and the

4

number of unique mobile users in 2014 was 7.3 billion and 3.6 billion, respectively.

The number of SIM connections and the number of unique users are expected to

reach 10 billion and 4.6 billion by 2020, respectively. The share of 3G/4G connections

accounted for approximately 40% of active connections by the end of 2014, and it is

expected that to reach 70% by 2020.

Scientific computing is the second area where an automated framework for

optimized data transfers can be beneficial. Scientific data is often transferred from

smaller compute nodes to supercomputer centers with large computational power

and speed. However, to harness a large number of distributed computing nodes, sci-

entific data is sometimes moved from centralized data centers to distributed compu-

ting nodes. Distributed computing projects such as Folding@home [7] and

SAT@home [8] use idle time of distributed computing nodes to perform computations

for solving scientific problems in various fields (e.g., science, cryptography, financial

sector). There are also several efforts of exploring distributed computing in the pre-

sent mobile era by employing mobile smartphones as computing nodes [9]. In all

cases, data has to be transmitted either from the edge devices to the central node or

from a central node to distributed devices via the Internet.

 Data Compression

Data compression is critical in data communication between edge and cloud

devices. It can help improve operating time, lower communication latencies, reduce

costs, and make more effective use of available bandwidth and storage. The general

goal of data compression is to reduce the number of bits needed to represent infor-

mation. Data can be compressed in a lossless or lossy manner. Lossless compression

means that the original data can be reproduced exactly by the decompressor. In con-

5

trast, lossy compression, which often results in much higher compression ratios, can

only approximate the original data. This is typically acceptable if the data are meant

for human consumption such as audio and video. However, program code and input,

medical data, email and other text generally do not tolerate lossy compression. We

focus on lossless compression in this dissertation.

Lossless data compression is currently being used to reduce the required

bandwidth during file downloads and to speed up web page loads in browsers.

Google’s Flywheel proxy [10], Google Chrome [11], Amazon Silk [12], as well as mo-

bile applications Onavo Extend [13] and Snappli [14], use proxy servers to provide

HTTP compression for all pages during web browsing. For file downloads, several

Google services, such as Gmail and Drive, provide zip compression [15] of files and

attachments [16]. Similarly, application stores such as Google Play and Apple’s App

Store use zip or zip-derived containers for application distribution. Several Linux

distributions are also using common compression utilities such as gzip, bzip2, and xz

for their software repositories and software packages (.deb and .rpm). The im-

portance of lossless compression in network data transfers has also been recognized

in academia. This research extends and builds on our prior work [17]–[22] and com-

plements earlier studies by Barr and Asanović [23], [24] by developing a framework

for optimized data transfers between edge devices and the cloud.

The choice of the compression algorithm, the compression level, and the qual-

ity of the implementation affect the performance and energy consumption of com-

pressed data transfers. Performance and energy efficiency of compressed data trans-

fers vary widely for different compression utilities (e.g., gzip, lzop, bzip2, xz, pigz,

and pbzip2) and for different compression levels within each utility. In addition,

network conditions (network throughput and connection), device characteristics

6

(processor speed, memory, network interfaces), data file size, and data type, all have

a significant impact when determining an optimal mode of data transfers. The de-

fault compression utility, gzip -6, is rarely the most efficient mode of compressed da-

ta transfers, as was shown in our prior work [17]–[20].

 What Has Been Done?

In this dissertation, a framework for optimizing data transfers between edge

and cloud computing platforms has been developed. The framework automatically

selects a mode of data transfer based on specific factors such as characteristics of

data to be transferred (size, type), edge device performance and energy efficiency,

and network conditions (throughput and setup time). The framework promise to im-

prove efficiency of data transfers (in throughput, energy efficiency, and cost) in sev-

eral important classes of applications and uses, such as:

 Mobile applications stores and software repositories

(e.g. Apple App Store, Google Play [25]);

 File distribution in the cloud (e.g. Dropbox [26], Google Drive [27]);

 HTTP compression (server: NGINX [28], Apache [29]; client: web-

browsers);

 Collection and transfer of mHealth data files to and from the cloud;

 Big data and scientific data offload to more computationally intensive dis-

tributed centers and cloud instances.

The framework is evaluated in the following environments: (i) a mobile de-

vice, using a WLAN network connection and a local server, and (ii) a workstation,

using a LAN network connection and the cloud instances provided by Amazon’s

AWS EC2 cloud. The experimental evaluation demonstrates that the proposed

7

framework can improve throughput, energy efficiency, and reduce costs of data

transfers. Additionally, the framework allows for optimizing transfers for the most

critical need of a particular user, human, or machine. A throughput based optimiza-

tion selects a transfer mode that maximizes effective throughput, whereas energy

efficiency based optimization selects a transfer mode that maximizes the energy effi-

ciency of the edge device. This means that edge devices, such as smartphones, will

benefit through cost reduction due to lowering data usage on cellular plans when

using the throughput mode, and will effectively extend battery life through in-

creased energy efficiency when using the energy-efficient mode. Workstations and

servers will benefit from both increased performance and reduced costs of cloud sub-

scription when using the throughput mode and will lower energy consumption, and

save energy costs when using the energy-efficient mode of optimization.

 Main Contributions

This dissertation makes the following contributions to the field of energy-

efficient computing and communication, to the field of compression and decompres-

sion on mobile, workstation and cloud platforms, and finally to the field of measure-

ment-based power profiling:

 Development of analytical models for characterization of effective

throughput and energy efficiency during uncompressed and compressed

data file transfers.

 Development of analytical models for estimating energy efficiency of un-

compressed and compressed data transfers derived from models for effec-

tive throughput and device characteristics.

8

 Development of a framework for optimizing data transfers between edge

devices and the cloud by utilizing compression and decompression utili-

ties.

 Implementation of the framework across mobile, workstation, and cloud

instances.

 Verification of proposed analytical models for characterization of

throughput and energy efficiency during uncompressed and compressed

data transfers.

 Evaluation of the framework and quantification of gains in performance

and energy efficiency when compared to the uncompressed data transfers

and the default compressed data transfers with gzip -6 on smartphone

and workstation platforms.

 In order to cover feasibility of framework implementation across several

applications, the framework evaluation is conducted with varied datasets,

representative of selected applications and specific to each platform

(ranges of file sizes and types), with several network configurations

(WLAN, LAN), and with varied server location (local server and globally

spread cloud instances using Amazon’s AWS EC2 cloud).

 Development of an experimental environment for automated measure-

ment-based energy profiling of applications running on mobile computing

platforms.

 Dissertation Outline

The rest of dissertation is organized as follows. CHAPTER 2 gives back-

ground on this research, including compression algorithms and utilities, target com-

9

puting systems and the cloud, data transfer between computing systems and the

cloud, experimental setup, and finally cases for intelligent data transfers to explains

fundamental principles of the framework. CHAPTER 3 presents related work by

highlighting relevant studies that deal with compression, performance and energy

efficiency optimization, and finally power profiling and energy estimating tech-

niques. CHAPTER 4 presents framework overview for upload and download, and

introduces framework design and components, including models for estimating

throughput and energy efficiency for uncompressed and compressed file transfers,

and prediction data tables for characterization of compression utilities. CHAPTER 5

details implementation of the framework, including implementation for upload,

download, re-compression of files and server’s long-term storage. CHAPTER 6 intro-

duces framework evaluation methods and then presents results of evaluation con-

ducted on the smartphone and workstation when using the framework with perfor-

mance-based and energy-efficient-base configuration. CHAPTER 7 summarizes the

dissertation and discusses possible future work in the area of this research.

10

CHAPTER 2

BACKGROUND

 This chapter covers background on several aspects of this research. Section

2.1 introduces ways for transferring data between edge computing systems and the

cloud. Section 2.2 gives details on selected lossless compression utilities and their

algorithms to provide understanding on how selected lossless compression utilities

work at the basic level. Section 2.3 highlights some of the relevant applications

where optimized data transfers can be beneficial for improvements in energy effi-

ciency, throughput, and reducing the costs associated with cloud platforms. Section

2.4 introduces experimental setup used for preliminary studies and framework eval-

uation, including target platforms and the cloud, measuring setup, and datasets.

Section 2.5 describes metrics and experiments. Finally, Section 2.6 makes several

cases for optimizing data transfers, including examples of compressed transfers on

mobile devices (Section 2.6.1), examples compressed transfers on workstations (Sec-

tion 2.6.2), and the final case for a framework for optimized data transfers (Section

2.6.3).

 Data Transfers between Edge Computing Systems and the Cloud

 Figure 2.1 illustrates file uploads and downloads initiated from (a) a mobile

device and from (b) a workstation. A data file can be uploaded to the cloud or down-

loaded from the cloud uncompressed or compressed. For uncompressed transfers, an

11

uncompressed file (UF) is uploaded or downloaded over a network connection direct-

ly. For compressed uploads, the uncompressed file is first compressed locally on the

device, and then a compressed file (CF) is uploaded over the network. For com-

pressed downloads, a compressed version of the requested file is downloaded from

the cloud, and then the compressed file is decompressed locally on the edge device

(mobile or workstation). In a case when compressed version of the requested file is

not available in the cloud, the on-demand compression is performed in the cloud, and

then the compressed file is downloaded and decompressed locally on the edge device.

Compressed uploads and downloads utilize common compression utilities and com-

pression levels pairs available on the local or remote systems, which can include se-

quential implementations, such as gzip, lzop, bzip2 and xz, and parallel implementa-

tions, such as pigz and pbzip2.

To evaluate the effectiveness of a networked file transfer, we need to deter-

mine the total time to complete the transfer. This time, in general, includes the fol-

lowing components: (i) edge device overhead time; (ii) network connection setup

time; (iii) file transmission time; and (iv) cloud overhead time. To measure the effec-

tiveness of data transfers, we use the effective throughput rather than the total

transfer time. This metric captures the system’s ability to perform a file transfer in

the shortest period of time regardless of a transfer mode.

12

(a)

(b)

Figure 2.1 Data transfers between mobile devices (a), workstations (b) and the cloud

Another metric of interest for networked file transfers initiated on mobile de-

vices and workstations is energy efficiency. The amount of energy consumed for

(de)compression can be a decisive factor in battery-powered mobile devices and cost-

Cloud/Server
Smartphone

Device

Router

Internet

Mobile
Provider

WLAN

3G/4G

C/D CF

Storage

Edge Device
Overhead

Connection
Time

Transmission
Time (w or w/o [de]compression)

Cloud
Overhead

Storage

UF

UF

UF D CF C

Local Workstations

Router

Internet

WLAN

LAN

C/D CF

Storage

Edge Device
Overhead

Connection
Time

Transmission
Time (w or w/o [de]compression)

Cloud
Overhead

Cloud Providers:
AWS, Azure, Rackspace

Storage

UF

UF

D CFUF C

13

saving factor for workstations transferring large amount of data to and from the

cloud. Achieving a higher compression ratio requires more computation and, there-

fore, more energy, but better compression reduces the number of bytes, thus saving

energy when transmitting the data. This metric captures the system’s ability to per-

form a file transfer while consuming the least energy.

 Lossless Compression Utilities

Table 2.1 lists the six lossless compression utilities used in this research

along with the supported range of compression levels. The relatively fast gzip utility

and the slower but better compressing bzip2 utility are selected due to their wide-

spread use. lzop is included because of its high speed. xz is gaining popularity and is

known for its high compression ratio, relatively slow compression, and fast decom-

pression. As many modern smartphones include multicore CPUs, we also consider

pigz and pbzip2, parallel versions of gzip and bzip2, respectively. All of these utili-

ties operate at the byte level granularity and support a number of compression lev-

els that allow the user to trade off speed for compression ratio. Lower levels favor

speed whereas higher levels result in better compression. Typical compression levels

are between -1 and -9, but some utilities provide compression level -0 for no com-

pression, and higher compressions (e.g., pigz -11) to provide higher compression ra-

tio at a severe cost in speed. For evaluation of the framework, we consider at least

three compression levels for each utility: L – low, M – medium, and H – high. Sub-

sections below describe each utility (gzip, lzop, bzip2, xz, pigz, and pbzip2) and file

formats generated by those utilities (.gz, .bz2, .lzo, and .xz) in detail.

14

Table 2.1 Lossless Compression Utilities

Utility
Compression levels

(default) (L, M, H)
Version Magic # Notes

gzip 1-9 (6) (1, 6, 9) 1.6 0x1f8b DEFLATE (Ziv-Lempel, Huffman)

lzop 1-9 (3) (1, 6, 9) 1.03 0x894c LZO (Lempel-Ziv-Oberhumer)

bzip2 1-9 (9) (1, 6, 9) 1.0.6 0x425a RLE+BWT+MTF+RLE+Huffman

xz 0-9 (6) (1, 6, 9) 5.1.0a 0xfd37 LZMA2

pigz 0, 1-9, 11 (6) (1, 6, 9) 2.3.1 0x1f8b parallel implementation of gzip

pbzip2 1-9 (9) (1, 6, 9) 1.1.9 0x425a parallel implementation of bzip2

 gzip

gzip [30] implements the DEFLATE algorithm, which is a variant of the LZ77

algorithm [31]. It looks for repeating strings, i.e., sequences of bytes, within a 32 KB

sliding window. The length of the strings is limited to 256 bytes. gzip uses two

Huffman coders, one to compress the distances in the sliding window and another to

compress the lengths of the strings as well as the individual bytes that were not part

of any matched sequence. The algorithm finds duplicated strings using a chained

hash table that is indexed with 3-byte strings. The selected compression level de-

termines the maximum length of the hash chains and whether a lazy evaluation

should be used. The evaluated version of gzip is 1.6.

gzip compressed files typically end with .gz file extension. The gzip file format

consists of several headers, a body, and a footer. The first header is 10-byte long and

contains a magic number (0x1f8b), used to identify a file format, a version number, a

timestamp, and an identifier of file system where compression took place. Additional

headers contain information such as original file name and are followed by the main

body containing a DEFLATE-compressed payload. Finally, the gzip file format ends

15

with an 8-byte footer, which consists of a CRC-32 checksum and the length of the

original uncompressed data.

 lzop

lzop [32] uses LZO block-based compression algorithm that favors speed over

compression ratio and requires little memory to operate. It splits each block of data

into sequences of matches (a sliding dictionary) and non-matching literals, which it

then compresses. LZO requires no memory for decompression and requires only

64 KB for compression. The lzop implementation on selected mobile device supports

only compression levels -1 to -6 while the selected workstation and server platforms

support all 9. For the current version of lzop, several fast compression levels, includ-

ing -2, -3, -4, -5, and -6, are equivalent, but open to change in the future releases.

Compression levels -7, -8, and -9 offer better compression ratio at the cost of speed.

The choice of compression level does not affect the speed of decompression. The

evaluated version of lzop is 1.03 with the utilized LZO library 2.08.

lzop compressed files typically ends with .lzo file extension. The lzop file for-

mat consists of several headers, a body, and a footer. The first header contains a

magic number (0x894c), a version number and a timestamp. The rest of the struc-

ture is similar to gzip file format, which contains additional headers, main body with

compressed blocks, and footer.

 bzip2

bzip2 [33] implements a variant of the block-sorting algorithm described by

Burrows and Wheeler (BWT) [34]. It applies a reversible transformation to a block of

inputs, uses sorting to group bytes with similar contexts together, and then com-

16

presses them with a Huffman coder. The selected compression level adjusts the

block size between 100 KB and 900 KB (with compression levels -1 to -9). bzip2 re-

quires between 1200 KB and 7600 KB of memory for compression, and 500 KB to

3700 KB for decompression, during compression levels 1 to 9, respectively. The eval-

uated version of bzip2 is 1.0.6.

bzip2 compressed file typically ends with .bz2 file extension. The bzip2 file

format consists of a header, a main body, and a footer. The header is 4-byte long and

contains a magic number (0x425A – ‘BZ’), a version number (‘h’ for bzip2 with Huff-

man coding), and selected compression level. The header is followed by zero blocks

plus compressed blocks containing the Huffman-compressed payload. Similar to

gzip, bzip2’s footer contains a 32-bit CRC checksum.

bzip2 has a number of implementations, including micro-bzip2, pbzip2 (Sub-

section 2.2.6), bzip2smp, smpbzip2, pyflate, lbzip2, mpibzip2, jbzip2, DotNetZip, and

several others. The independent nature of bzip2 compressed blocks allows for paral-

lel decompression since blocks do not depend on one another. Thus, parallel imple-

mentations, such as pbzip2, can decompression bzip2 generated compressed files in

parallel.

 xz

xz [35] is based on the Lempel-Ziv-Markov chain compression algorithm

(LZMA) developed for the 7-Zip utility [36]. It uses a large dictionary to achieve high

compression ratios and employs a variant of LZ77 with special support for repeated

match distances. The output is encoded with a range encoder, which uses a probabil-

istic model for each bit (rather than whole bytes) to avoid mixing unrelated bits, i.e.,

to boost the compression ratio. The memory usage of xz is substantially higher than

17

with other compression utilities, ranging from a few MB to several GB. Average

memory usage for compression ranges from 30 MB to 674 MB with compression lev-

els 0 to 9. Average memory usage for decompression needs only 5% to 20% of the

memory used by the compressor, and ranges from 1 MB to 65 MB. The evaluated

version of xz is 5.1.0alpha that utilizes the same version of liblzma library.

xz compressed files typically end with .xz file extension. The xz file format

consists of a header, a main body, and a footer. The magic number used to identify xz

generated compressed files is 0xfd37 and it is stored in the first header as with gzip

and lzop file formats.

 pigz

pigz [37] is a parallel version of gzip for shared memory machines that is

based on pthreads. It breaks the input up into 128 KB chunks and concurrently

compresses multiple chunks. The compressed data are outputted in their original

order. Decompression operates mostly sequentially (using single main thread), how-

ever, three additional threads are created for reading, writing, and checksum calcu-

lation [38], which can speed up overall decompression. By default, pigz will detect

the available number of CPU cores and threads on the system and adjust itself to

that value. However, the number of compress threads and block size can also be

changed by utilizing options –p and –b. For example, –p 1 and –dp 1 avoids the use of

additional threads entirely. The evaluated version of pigz is 2.3.1.

pigz compressed files typically end with the same .gz file extension as gzip

compressed files. The pigz file format is similar to that of gzip and consists of similar

headers and footer. The main header contains the same magic number (0x1f 8b)

used by gzip file format, a version number, and a timestamp. Additional headers and

18

the body contain the original file name and the DEFLATE-compressed payload, re-

spectively. Finally, pigz ends with 8-byte footer, which consists of a CRC-32 check-

sum and the length of the original uncompressed data. Having the same headers

and footers allows gzip to decompress pigz generated compressed files sequentially,

and vice versa, allows pigz to decompress gzip generated compressed files in parallel

(with additional threads for reading, writing and checksum calculation).

 pbzip2

pbzip2 [39] is a multithreaded version of bzip2 that is based on pthreads. It

works by compressing multiple blocks of data simultaneously. Similar to bzip2, the

selected compression level adjusts the block size between 100 KB and 900 KB (with

compression levels -1 to -9). The resulting blocks are then concatenated to form the

final compressed file, which is compatible with bzip2. Decompression is also parallel-

ized. The evaluated version of pbzip2 is 1.1.9.

pbzip2 compressed files typically end with the same .bz2 file extension as

bzip2 compressed files. The pbzip2 file format is similar to that of bzip2 and consists

of a similar header, main body, and a footer. The header contains the same magic

number (0x1f8b) used by bzip2, a version number and a timestamp.

 Applications Benefiting from Optimized Data Transfers

 There are a number of applications on mobile and workstation platforms

where optimized data transfers can yield improvements in throughput, energy effi-

ciency, as well as in the reduction of costs, associated with utilization and data

transfer fees on cloud platforms. These types of applications include (i) application

stores and software repositories (e.g., Apple Store, Google Play), (ii) file distribution

19

and storage offload (e.g., DropBox, Google Drive), (iii) HTTP compression, (iv)

mHealth data transfers between the edge devices and the cloud, and (v) computa-

tional and storage offload of scientific and big data to the cloud.

 Software Repositories on Mobile and Desktop Operating Systems

 Application stores and software repositories is an important area for mobile

devices and workstations alike. Some of the main software repositories for mobile

devices include official Google Play [25] and iOS App Store, as well as unofficial re-

positories such as F-Droid [40], which is a free and open-source alternative to Google

Play. For workstations running Linux, Debian and RPM packages make up software

repositories on a number of Debian and Fedora derived Linux distributions. Packag-

es in those software repositories are managed by package manager systems for in-

stallation, removal, and updating programs on local workstations.

 Currently, mobile software packages (.apk, .ipa) utilize gzip compression, and

Linux .deb and .rpm packages can support gzip, xz¸ or bzip2 compression (including

independent compression of internal subdirectories; e.g., control.tar.gz and da-

ta.tar.xz for Debian package). In all cases, the use of compression is static and its

download performance cannot be improved under different of network parameters,

different types of data stored in the containers, or different types of devices perform-

ing the download.

 File Distribution and Storage Offload

 The second important area for mobile and workstation platforms within the

cloud paradigm is file distribution and storage offload, where files are distributed

across multiple devices or offloaded to compensate for limited internal or local stor-

20

age. File distribution is driven by the need of having files stored and synchronized

across multiple devices, starting from individual levels, such as across multiple per-

sonal devices in a household, to various levels in enterprises, workgroups, and re-

search groups. Storage offload is driven by the limitations of internal flash storage

on mobile devices, and by the limitations of local storage with workgroups and re-

search groups generating a large amount of data. The use of cloud services is driven

by cost savings achieved by leasing computing and/or storage resources, instead of

direct purchase and maintenance of hardware resources.

Examples of file distribution services include commercial systems such as

Dropbox [26], and open source projects such as ownCloud [41], and its derivative

NextCloud [42]. Similar services are offered by a number of cloud providers. Selected

file distribution servers, such as Google Drive and Gmail client, provide zip com-

pression [15] for files and attachments [16] on downloads.

 HTTP and Web Compression

 Lossless data compression is also being used to reduce the required band-

width during file downloads and to speed up web page loads in the browsers. Cur-

rently, HTTP compression is limited to gzip implementations provided by the mod-

ules built into Apache and NGINX HTTP web-server projects [28], [29], and by sup-

port on selected web browser clients (HTTP web clients). To compensate for possible

lack of HTTP compression support on some servers, Google’s Flywheel proxy [10],

Google Chrome [11], Amazon Silk [12], as well as the mobile applications Onavo Ex-

tend [13] and Snappli [14], use proxy servers to provide HTTP compression for all

pages during web browsing.

21

 mHealth Applications

 With a continual growth of the number and type of wearable devices and

their market proliferation, the amount of data that needs to be transferred between

personal devices and the cloud is growing exponentially. mHealth data generated on

wearable devices is first retrieved by personal devices (e.g., via Bluetooth paired

connection), and then transferred to the cloud through 3G/4G or WLAN connection.

Examples of existing solutions include a number of activity trackers such as Fitbit

trackers, Garmin trackers, Microsoft Band, and Intel Basis Peak. They all perform

regular offload and synchronization of collected raw mHealth data to the cloud

through the use of paired device (e.g., smartphone). Such offload can take place ei-

ther continuously, when the personal device is within their proximity, or periodically

once the wearable device is reconnected with the personal device, for example after

activity takes place. Typically, once raw data is uploaded to the cloud, processed re-

sults are later downloaded to the mobile devices through appropriate applications or

by any devices through appropriate web-portals. Retrieved data from wearable de-

vices typically come in a proprietary binary format (such as .dat file format for

Zephyr BioHarness 3) or in text format (such as .CSV or XML file formats). The mo-

bile device and the corresponding application for the particular wearable device can

send wearable mHealth data with or without compression to the cloud.

 Scientific and Big Data Offload and Distribution

 Besides storage and data distribution, another important area for work-

station platforms within industry, workgroups and research groups includes offload

and distribution of scientific and big data for purposes of computational speedup.

Offload and distribution of such data can be done either to the cloud (using cloud

22

providers) or to computationally intensive collaborating centers. Cloud providers

such as Amazon’s AWS, Microsoft Azure, Rackspace address this need by leasing

cloud instances designed for specific computational needs.

 Experimental Setup

 For this dissertation, several computer systems with varying hardware com-

plexity are selected to support framework implementations and evaluations, repre-

senting typical mobile and workstation platforms that may benefit from optimized

data transfers. Subsection 2.4.1 describes the main characteristics of the target plat-

forms, including the mobile devices, workstations, as well as the cloud platform used

in the cloud experiments. Subsection 2.4.2 describes our measurement setup and the

way the energy consumed on mobile and workstation systems is calculated. Finally,

subsection 2.4.3 describes datasets selected to be representative of each target plat-

form for the preliminary studies and framework evaluation.

 Target Platforms and the Cloud

2.4.1.1 Mobile Devices

 For mobile devices, Google’s Nexus 4 [43] and OnePlus One [44] are used in

experimental evaluation. The Google’s Nexus 4 smartphone is powered by a Qual-

comm’s Snapdragon S4 Pro (APQ8064) SoC [45] that includes a quad-core ARM pro-

cessor running at up to 1.512 GHz clock and an Adreno 320 graphics processor [46].

Nexus 4 has 2 GB of RAM memory and 16 GB of built-in internal storage. It uses a

4.7 inch display, and includes a 1.3 megapixel front-facing camera and an 8 mega-

pixel rear-facing camera. It supports a range of connectivity options including

23

WLAN 802.11n, Bluetooth 4.0, USB, HDMI, and several cellular network protocols

such as GSM/EDGE/GPRS, 3G UMTS/HSPA+/DC-HSP+, and HSDPA+. Nexus 4

runs Android version 4.3.2 (Jelly Bean). In some cases, an upgrade to Android may

be beneficial to (i) support applications and setups not readily available on native

Android, and (ii) to further automate performance and energy measurements. Our

alternative smartphone setup requires flashing the smartphone with CyanogenMod

version 10.2 [47], an open-source operating system for smartphones and tablet com-

puters based on official releases of Android that includes third-party software.

The OnePlus One smartphone is powered by a Qualcomm Snapdragon 801

(MSM89734AC) SoC that features a quad-core ARM-based Krait 400 processor run-

ning at up to 2.5 GHz clock frequency, an Adreno 330 graphics processor, and 3 GB

of RAM memory. OnePlus One supports a range of communication protocols includ-

ing WLAN 802.11 a/b/g/n/ac, Bluetooth 4.1, USB, HDMI, and several cellular net-

work protocols such as GSM/HSPA/LTE. OnePlus One has preinstalled Cyano-

genMod version 12.1 that includes third-party software modules needed for power

and clock frequency management.

2.4.1.2 Workstations and Servers

 For the workstation and server platforms, a Dell PowerEdge T110 II with

CentOS 6.5 and Dell PowerEdge T620 with Ubuntu 15.10 are used. The T110 II ma-

chine is used for evaluation of the framework implementation for a workstation over

LAN interface while using several scientific datasets and a number of remote loca-

tions in the cloud platform. The T620 machine is used as a local server platform for

evaluation of the framework implementation on mobile devices (OnePlus One).

24

 Dell PowerEdge T110 II features a quad-core Intel Xeon E3-1240 v2 proces-

sor which consists of a single 32 nm CMOS monolithic die with four 2-way threaded

physical processor cores for a total of 8 logical processor cores, a shared 8 MB

L3/LLC cache memory, an integrated memory controller, PCI and DMI interfaces,

and a graphics processor. The processor is based on Sandy Bridge architecture and

supports 15 frequency steps ranging from 1.60 GHz to 3.40 GHz on each core. The

system memory is 8 GB DIMM DDR3 synchronous at 1333 MHz (0.8 ns). The sec-

ondary storage includes an ATA hard disk with a capacity of 2 TB. The workstation

includes a gigabit network interface, a USB controller, audio and video interfaces.

 Dell PowerEdge T620 features two Intel Xeon E5-2650 v2 processors based

on Ivy Bridge-EP architecture. Each Xeon E5-2650 v2 processor consists of a single

22nm CMOS monolithic die with eight 2-way threaded physical processor cores for a

total of 16 logical processor cores, a shared 20 MB L3/LLC cache memory, an inte-

grated memory controller, and QPI, PCI and DMI interfaces. Each processor sup-

ports 15 frequency steps ranging from 1.2 GHz to 2.6 GHz for each core, and fea-

tures Intel Turbo Boost Technology 2.0 [48] which allows boosting of all active cores

up to 3.4 GHz, if specification limits of power, current, and temperature are met.

The workstation includes 64 GB of memory, 3 TB of storage, a gigabit network inter-

face, a USB and audio/video interfaces, and NVIDIA PCI Express graphics card.

25

(a)

(b)

Figure 2.2 Block diagrams of an Intel Xeon E3-1240 v2 (a) and

an Intel Xeon E5-2650 v2 (b)

 Processors on both workstations also feature a system agent (Figure 2.2)

which encompasses a module responsible for power management called Package

Control Unit (PCU). The PCU connects to individual processor cores and other func-

tional blocks via power management agents that collect information about power

consumption and junction temperature. The PCU runs firmware that constantly

monitors power and thermal conditions and performs various power-management

functions, e.g., turns on or off a processor cores or portions of the LLC cache or dy-

Core 0

Core 1

Core 2

Core 3

LLC

LLC

LLC

LLC

Graphics

System
Agent

Integrated
Memory

Controller

PCIe, DMI

2 DDR3
Channels

16x PCIe

Core 0

Core 1

Core 2

Core 3

Core 4 QPI

Core 5

Core 6

Core 7

Shared
L3/LLC
25 MB

System
Agent

Integrated
Memory

Controller

PCIe, DMI

4 DDR3
Channels

40x PCIeDMI

2 QPI
Channels

26

namically scales voltage and frequency. This allows the use of likwid lightweight

performance tools [49], [50] to perform power and energy measurements. The likwid-

powermeter tool interfaces the power meter and outputs power measurements in

joules and watts. Intel researchers demonstrated that this on-chip resource gives

estimates for the energy and power that are within several percentages of those ac-

quired by the actual power measurements [51].

2.4.1.3 Cloud Computing Platforms

 To facilitate distributed computing nodes for this research, we use the Ama-

zon’s AWS Elastic Cloud Computing (EC2) platform. AWS EC2 provides computa-

tional and storage resources across a number of global locations. The cloud instances

in North Virginia and Tokyo are created using m4.xlarge Linux instance type – a

compute and memory optimized instance with 2.3 GHz Intel Xeon E5 (Broadwell) or

2.4 GHz Intel Xeon E5 (Haswell) processor, 64 GB of memory, and enhanced net-

work-priority in the cloud. Table 2.2 describes the cloud instances, by specifying

their instance type, the location, and the distance in miles.

Table 2.2 AWS EC2 Locations and Server Nodes

Instance type Location Distance (miles)

m4.xlarge US East (North Virginia) 600

m4.xlarge Asia Pacific (Tokyo) 7,000

The pricing model of AWS EC2 breaks into free-tier, on-demand, and re-

served instances. The AWS’s free-tier is designed for new customers who receive one

27

of the least expensive compute instances, t2.micro, additional 30 GB of block stor-

age, 15 GB of bandwidth, and 1 GB of regional data transfers each month, free of

charge for the first year. The one-demand pricing model charges instance-type spe-

cific and region-specific prices on a per-hour basis. Additionally, instance pricing al-

so depends heavily on their number of CPUs, available memory, storage, and net-

work priority and bandwidth. For example, for the North Virginia region, general

purpose t2.nano, t2.large, m4.xlarge, and m4.4xlarge instances cost $0.0065, $0.104,

$0.239, and $0.958 per hour, respectively. Other specific instances, such as compute-

optimized and GPU specific instances cost more than the general purpose instances.

Different regions have a different and sometimes higher pricing. For example, for

Tokyo region, the same general purpose instances cost $0.01, $0.16, $0.348, and

$1.391 per hour, respectively. Reserved instances pricing provides some savings to

on-demand hourly costs when a customer chooses to do partial or upfront payments

together with a 1-year or 3-year contract. Besides hourly pricing costs for the select-

ed hardware, AWS EC2 also charges region-specific, per GB, pricing for data trans-

fers going out from Amazon EC2. Transfers between AWS instances are free of

charge.

 Measuring Setup

2.4.2.1 Power Profiling of Mobile Devices

 Our setup for measuring the energy consumed on the smartphone, shown in

Figure 2.3, consists of an NI PXIe-4154 battery simulator [52], the smartphone, and

a workstation. Figure 2.4 shows a block diagram of the setup including main compo-

nents and communication channels between them. The battery simulator, a special-

28

ized programmable power supply, resides inside an NI PXIe-1073 chassis [53], which

is connected to an MXI-Express Interface card inside the workstation. The battery

simulator is used (i) to power the smartphone through probes on channel 0 by

providing 4.1 volts, thus bypassing the actual smartphone battery, and (ii) to meas-

ure the current drawn by the smartphone while running applications. The battery

simulator is optimized for powering devices under test, including cellular handsets,

smartphones, tablets, and other mobile devices. Its +6 V, ±3 A Channel 0 is de-

signed to simulate a lithium-ion battery cell’s transient speed, output resistance,

and 2-quadrant operation (source/sink). Acting as a data acquisition system (DAQ),

the battery simulator samples the current drawn on its channels in terms of samples

per second (S/s) with a configurable sampling frequency of up to 200,000 S/s and a

sensitivity of current measurements of 1 µA. This means that for the processor on

Nexus 4 running at its maximum clock frequency of 1.512 GHz, we can sample the

current every 7,560 CPU clock cycles.

To prepare the smartphones for energy profiling, their underlying plastic

shields are removed or modified to reveal connections on their motherboards and

daughter boards as shown in Figure 2.5. The smartphones’ batteries are removed,

and power connectors from the battery simulator are connected instead (for OnePlus

One, internal USB cable is rewired to battery connector). Connectors to smartphone

components such as LCD display, touchscreen, USB, and others can be easily un-

plugged during power profiling, thus enabling selective profiling that excludes ener-

gy consumed by these components.

29

Figure 2.3 Hardware setup for energy profiling of mobile devices under test

Figure 2.4 Block diagram of the hardware setup for energy profiling

of mobile device

Workstation

mLViewPowerProfile
Application Window

NI PXIe-1073 Chasis

Battery
Simulator

Nexus 4

NI PXIe-
1073 Chassis

NI PXIe-4154
Battery

Simulator

CH0

CH1 Removed
Battery

Nexus 4

Daughterboard

mLViewPowerProfile

Workstation

Internet

Mobile
Provider

Router

MXI Express

3G/4G
WLANUSB

NI Drivers

ADB client

PCIe card

ADB server

File Server

30

(a)

(b)

Figure 2.5 Nexus 4 (a) and OnePlus One (b) prepared for energy measurements

 The workstation is a Dell T7500 Precision with an Intel Xeon processor, 12

GB of system memory, running the Windows 7 Pro operating system. It runs

mLViewPowerProfile, our custom software tool for automated capturing of power

traces and evaluating energy efficiency of applications running on mobile computing

platforms. mLViewPowerProfile interfaces (i) the smartphone to manage activities

and applications on the smartphone that are being profiled and (ii) the battery simu-

lator to configure the channel and collect the current samples. The communication

with the smartphone is carried out over the Android Debug Bridge (adb) [54]. adb is

a client-server program that includes the following components: a client, which runs

on the workstation; a server, which runs as a background process on the work-

Camera

USB Module
Connector

LCD Display
Connector

Touchscreen
Connector

Power
Connectors

31

station; and a daemon, which runs on the smartphone. adb can connect to the

smartphone over a USB link or over a WLAN interface.

 Figure 2.6 shows the mLViewPowerProfile’s graphical user interface. A user

configures the channels of the battery simulator. This involves setting the voltage

and the current limits, the sampling frequency, the transient time, as well as soft-

ware driver parameters that control fetching the current samples from the battery

simulator. mLViewPowerProfile can average the maximum sampling rate from the

battery simulator by the value set in the graphical user interface. We experimented

with different sampling frequencies in the range of 10,000 S/s to 200,000 S/s and

evaluated their impact on the energy calculations. We found the energy calculated

using 20,000 S/s is within 1% of the energy calculated using the maximum sampling

rate of 200,000 S/s, so for our experiments we choose to average 10 samples, thus

recording 20,000 S/s in a user-specified file (appsSamples.txt).

32

Figure 2.6 mLViewPowerProfile user interface

 To run a compression or a decompression task on the smartphone, a sequence

of adb commands is launched from the workstation to be executed on the

smartphone as shown in Figure 2.7. The third line executes one of command scripts

which are prepared in advance and placed in a working directory of the smartphone.

A sample command script with commands for invoking gzip compression with de-

fault compression level -6 is shown in Figure 2.8. The execution of a (de)compression

task is typically preceded and trailed by a 5-second delay (head and tail delays) dur-

ing which the smartphone is in an idle state. The (de)compression task is wrapped

by commands that take time stamps corresponding to the moments when the task is

launched and completed. These times are used to determine the task execution time

33

as well as to identify the appropriate current samples logged on the workstation to

calculate the energy consumed by the task.

Figure 2.7 Sample ADB Shell script launched from the workstation to

execute on the smartphone

Figure 2.8 Command script runGzip.sh for running a compression task

 Figure 2.9 shows the measured current drawn by the Nexus 4 during the exe-

cution of the example command script from Figure 2.8. The head and tail delays are

5 seconds each and the compression task takes roughly 17 seconds. The top graph in

the figure shows the current drawn during the experiment as it is used in our energy

calculations. The bottom graph shows the filtered signal, provided here only to ena-

ble easier visual inspection of the changes in the current drawn during program exe-

cution. The Nexus 4 with all unnecessary services turned off (LCD disconnected,

GPS and WLAN interfaces turned off) draws ~11 mA (IIDLE = 11 mA). The start of

1. su # start as superuser

2. cd /data/working # move to working directory

3. nohup ./runGzip.sh & # start compression tasks

4. exit # exit superuser session

5. exit # exit adb

1. path=”data/working/datainput” # input location

2. file=”totalInput” # filename

3. filePath=”$path/$file.tar # complete file path

4. # run gzip compression task
5. sleep 5; # sleep for 5 seconds

6. cat $EPOCHTIME >> $path /timestamps.txt; # starting timestamp

7. gzip –c6 $filePath >/dev/null; # compress input file

8. cat $EPOCHTIME >> $path /timestamps.txt; # ending timestamp

9. sleep 5 # sleep for 5 seconds

34

the compression task is marked by a step increase in the current drawn of ~270 mA

to 280 mA, the current remains high during the compression, and goes back to the

idle level after the compression has terminated. The number of samples during the

execution of a compression utility is n = T.CSF, where T.C is the compression time

for a given file and SF is the sampling frequency of the battery simulator (with re-

spect to the number of recorded samples). The total energy consumed (ET.C) is cal-

culated as shown in Equation (2.1), where VBS is the supply voltage on the battery

simulator (VBS = 4.1 V) and each Ij is a current sample during compression.

 In addition to ET.C, we also calculate the overhead energy of the compression

task alone, ET.C(0), which excludes the energy needed to run the platform when

idle. This overhead is calculated as in Equation (2.2). We similarly calculate the to-

tal energy and the overhead energy for decompression tasks using the decompres-

sion time T.D instead of the compression time T.D.

 𝐸𝑇. 𝐶 = 𝑉𝐵𝑆 ∙
1

𝑆𝐹
∑ 𝐼𝑗

𝑛

𝑗=1

 (2.1)

 𝐸𝑇. 𝐶(0) = 𝐸𝑇. 𝐶 − 𝐼𝑖𝑑𝑙𝑒 ∙ 𝑉𝐵𝑆 ∙ 𝑇. 𝐶 (2.2)

35

Figure 2.9 Current draw during execution of runGzip6.sh run-script

 In addition to Linux time command, the Android logging system provides a

mechanism for collecting and viewing system debug output [55]. Custom log mes-

sages can be generated with functions declared using <android/log.h> include file

inside C++ applications compiled with Android NDK tools. The details of power pro-

filing with the utilization of Android logging system is covered in our previous stud-

ies on energy profiling of mobile platforms [56], [57].

2.4.2.2 Power Profiling of Workstations

 Since both workstations are based either on Intel’s Sandy and Ivy bridge pro-

cessor architecture with RAPL interface, likwid tools are used to perform energy

profiling of running applications. Additionally, by using Performance Application

Programming Interface [58], [59] (PAPI) and rapl_plot, RAPL energy usage can be

36

traced and plotted. To get actual performance events, perf tool from linux-tools pack-

age is used.

 The likwid lightweight performance tools are a collection of simple command

line tools for processor topology, affinity and performance profiling and benchmark-

ing. It supports Intel and AMD processors. This tool suite (version 4.1.2) consists of

several tools for reading system topology, hardware performance counters, and use

of RAPL for energy estimation on Intel processors. The tool which is used for power

profiling is likwid-powermeter. A typical example of running likwid-powermeter on

the workstation is shown in Figure 2.10. The first line creates a script file cmd.sh

that performs a local compression task using gzip -6. To get energy estimates, the

likwid-powertool is run with the script file as a parameter. The likwid-powertool re-

ports the conditions and the energy estimates (from line 3 to line 12). It shows the

current clock frequency, the processor core id (CoreId 0) on which the task is run,

the execution time, and the energy consumed in Joules for the entire task

(181.929 Joules) and the average power consumption (16.3272 Watts).

Figure 2.10 likwid-powermeter output for gzip -6 example

1. echo "gzip -fc -6 /opt/aws/Mdo.seq.all > /dev/null" > cmd.sh
2. ~$ likwid-powermeter ./cmd.sh
3. --
4. CPU name: Intel Core SandyBridge processor
5. CPU clock: 3.39 GHz
6. --
7. Measure on CoreId 0
8. ../md.sh
9. Runtime: 7.81183 s
10. Domain: PKG

11. Energy consumed: 158.194 Joules

12. Power consumed: 20.2505 Watts

37

 To obtain power tracing with RAPL interface, rapl_plot, which uses PAPI to

poll RAPL, is started in background to initiate 10Hz logging of PKG (processor

package) and PP0 (cores) energy values and gzip -6 example is repeated. Figure 2.11

shows average power traces (PKG and PP0) capture with rapl_plot tool when run-

ning gzip -6.

Figure 2.11 Average power traces (PKG, PP0) caputred for gzip -6 example

 To conduct a systematic and an autonomous way of running tasks, a bash

script is created which rewrite cmd.sh file, executes likwid-powermeter and parses

output of likwid-powermeter for energy and time for each (de)compression task using

AWK scripting repeatedly. The output of bash script produces two formatted text

files, one with energy values and another with time of execution values for

(de)compression tasks.

 To access supported performance events, perf tool [60] from linux_tools pack-

age is used. A typical example of running perf stat on the workstation is shown in

Figure 2.12. The first line creates the same script file cmd.sh to perform a local com-

5.0

10.0

15.0

20.0

25.0

5.0 10.0 15.0 20.0 25.0 30.0 35.0

A
ve

ra
ge

 P
o

w
e

r
[W

at
ts

]

Time [s]

Average Power traces (PKG, PP0) captured with rapl_plot for gzip -6 example

PKG PP0

38

pression task using gzip -6. To read default performance counters, the perf stat is

run with the script file as a parameter. The perf stat reports a number of perfor-

mance events, including task-clock, number of context-switches, number of page-

faults, number of cycles and instructions, and number of branches and branch-

misses. For example, performance counters of executed task reported 8 cpu-

migrations, 211 page-faults, 29,348,483,968 cycles, and 8,678,562,885 branches. A

complete list of pre-defined performance events supported on the current work-

station, can listed by running perf list command. Then, only desirable events can be

specified in the perf stat command with –e option.

Figure 2.12 perf stat output for gzip -6 example

1. echo "gzip -fc -6 /opt/aws/Mdo.seq.all > /dev/null" > cmd.sh
2. ~$ perf stat –x ‘ ’ ./cmd.sh
3. 7841.230460 task-clock
4. 8 context-switches
5. 8 cpu-migrations
6. 211 page-faults
7. 29348483968 cycles
8. 14723162586 stalled-cycles-frontend
9. 10875856918 stalled-cycles-backend
10. 39715515197 instructions

11. 8678562885 branches

12. 260293379 branch-misses

39

 Datasets

Mobile devices. To evaluate the behavior of compression (utility, level) pairs

during compressed uploads and downloads initiated on mobile devices a varied col-

lection of datasets that are representative of mobile computing has been compiled.

The datasets include text files, lossless images, executables of the most popular An-

droid applications, source files of Android applications, files containing data from

wearable health monitoring devices, offline maps and routing files from MAPS.ME

application [61], navigation files from OsmAnd application [62] (part of Open-

StreetMaps), and language packages for off-line translation from Google Translate

application. Selected files types represent the typical data transmissions performed

by the mobile devices to and from the cloud (including web and file servers), such as:

 Download of applications, eBooks, and emails;

 Retrieval of web-pages;

 Download and upload of health logs and raw sensor data generated locally or

from connected wearable devices or sensors (e.g., paired via Bluetooth);

 Download of maps and translation packages; and

 File system backup and upload of files to the distributed file storage.

Table 2.3 gives a complete list of datasets used, including their types, the num-

ber of files in a set, the total size and a description. Files that are compressed by de-

fault (e.g., apk) are repackaged into uncompressed archive files (tar). Files range in

size from 0.65 KB to 706.8 MB with the average and median being 10.17 MB and

25 MB, respectively.

40

Table 2.3 Datasets to characterize local (de)compression on mobile devices

Dataset Type
of

files

Total

Size
Description

apk binary (apk) 277 7.33 GB

Extracted apk files (from Google Play

[25] and F-Droid application reposito-

ries [40])

apksource code 59 1.16 GB Source files of selected apk files

Books text (txt) 1067 0.56 GB Collection of Project Gutenberg Works

DNG image (dng) 67 1.51 GB
Set of lossless DNG images taken with

OnePlus One smartphone

HealthSUM csv/dat 28 75.20 MB

Files containing periodic logs with the

average heart rate, breathing, rate,

posture, level of physical activity, skin

temperature, min/max acceleration,

ECG amplitude, ECG noise level, and

battery status; reported once every

second

HealthWAVE csv/dat 86 2.90 GB

Files containing Electrocardiogram,

Breathing, and Acceleration wave-

forms; (CSV files and binary DAT files)

Maps mwm 51 2.63 GB
Offline maps from MAPS.ME applica-

tion

Maps_routing mwm.routing 51 2.46 GB
Offline routing from MAPS.ME appli-

cation

OsmAnd srtm.obf 50 7.63 GB
Offline navigation files from OsmAnd

mapping application (OpenStreetMaps)

Translate tar 50 9.41 GB

Offline translation files for all lan-

guages from Google Translate applica-

tion

 Workstations. To evaluate the behavior of compression (utility, level) pairs

during compressed uploads and downloads initiated on workstations, a varied collec-

tion of datasets representative of data transfers to and from the cloud has been com-

piled. The datasets consist of text files containing DNA sequence data from the

UniGene [63] project, binary files containing Earth’s surface relief data stored in

41

NetCDF format collected by the National Oceanic and Atmospheric Administration

(NOAA) [64], and XML files containing web data with human-readable English text

collected from archived pages on Wikipedia [65]. Selected files represent the typical

examples in the areas of scientific and big data processing when data is transferred

between the local workstation and the cloud or distributed centers, including:

 Big data text analytics: Analysis of data from web source (tweets, emails, web

clickstream, social message);

 Use of detailed relief data in research and simulations involving area of navi-

gation, rescue, and weather predictions and analytics; and finally,

 Research and analysis in genome studies between different collaboration par-

ties with or without cloud offloading;

Table 2.4 gives a complete list of the files in three selected datasets, including

dataset name and its selected subset, their types, number of files, total size, and a

description. Files range in size from 1.61 MB to 1.87 GB with the average and medi-

an being 592.36 MB and 333.29 MB for wikipages files, 263.77 MB and 157.38 MB

for netcdf files, and 216.5 MB and 121.76 MB for seq.all files.

Table 2.4 Datasets to characterize local (de)compression on the workstation

Datasets

[subset name]
Type

of

files

Total Size

(GB)
Description

EnWiki

[wikipages]

web (xml) 58 90.3 Collection of archived pages

from Wikipedia

NOAA

[netCDF]

binary 83 21.4 Earth’s surface Relief data

stored in NetCDF format

UniGene

[seq.all]

genome (txt) 140 29.6 Collection of DNA sequence

data stored in text

42

 Metrics and Experiments

This section describes measured and derived metrics to describe performance

and energy efficiency (2.5.1), and a set of experiments conducted to quantify perfor-

mance and energy metrics (2.5.2).

 Metrics

Table 2.5 and Table 2.6 summarize the performance and energy metrics used

as well as their definitions.

Compression ratio. We use the compression ratio to evaluate the compres-

sion effectiveness of an individual utility and its levels of compression. The compres-

sion ratio 𝐶𝑅 is calculated as the size of the uncompressed input file (US) divided by

the size of the compressed file (CS), CR = US/CS.

Performance. To evaluate the performance of individual compression utili-

ties and compression levels, we measure the time to compress the uncompressed in-

put file (T.C) and the time to decompress (T.D) a compressed file generated by that

utility with the selected compression level. Instead of using the execution times di-

rectly, we use the (de)compression throughput (Th.C [Th.D]) expressed in megabytes

per second (Th.C = US/T.C [Th.D = US/T.D]).

To evaluate the performance of uncompressed data transfer, we measure the

time to perform uncompressed upload and download (T.UUP [T.UDW]). Through-

puts for uncompressed data upload and download (Th.UUP [Th.UDW]) are ex-

pressed in megabytes per second (T.UUP = US/T.UUP [T.UDW = US/T.UDW]).

The time to set up a network connection is expressed as T.SC. The time for uncom-

pressed upload and download without network connection setup time, T.UP [T.DW],

convert to the network throughput (Th.UP [Th.DW]) when expressed in megabytes

43

per second (Th.UP = US/T.UP [Th.DW = US/T.DW]). To evaluate the performance

of compressed transfer, we measure the time to perform compressed data upload and

download (T.CUP [T.CDW]). Throughputs for compressed data upload and download

(Th.CUP [Th.CDW]) are expressed in megabytes per second (Th.CUP = US/T.CUP

[Th.CDW = US/T.CDW]).

 The derived throughputs capture the efficiency of data transfers from the us-

er’s point of view – users produce and consume uncompressed data and care more

about the time it takes to transfer data than about what approach is used internally

to make the transfer fast. In addition, this metric is suitable for evaluating net-

worked data transfers and comparing compressed and uncompressed transfers.

Table 2.5 Metrics: Performance

Symbol Description Units Definition

𝑈𝑆 Uncompressed file size MB Measured

𝐶𝑆 Compressed file size MB Measured

𝐶𝑅 Compression ratio - 𝑈𝑆/𝐶𝑆

𝑇. 𝐶 [𝑇. 𝐷] Time for local [de]compress s Measured

𝑇. 𝑈𝑈𝑃 [𝑇. 𝑈𝐷𝑊]
Time for uncompressed upload

[download]
s Estimated

𝑇. 𝑆𝐶 Time to set up network connection s Estimated

𝑇. 𝑈𝑃 [𝑇. 𝐷𝑊]
Time for uncompressed upload [down-

load] w/o network connection time
s

𝑇. 𝑈𝑃 = 𝑇. 𝑈𝑈𝑃 – 𝑇. 𝑆𝐶

[𝑇. 𝐷𝑊 = 𝑇. 𝑈𝐷𝑊 – 𝑇. 𝑆𝐶]

𝑇. 𝐶𝑈𝑃 [𝑇. 𝐶𝐷𝑊] Time for compressed upload [download] s Estimated

𝑇ℎ. 𝐶 [𝑇ℎ. 𝐷] Local [De]compression throughput MB/s 𝑈𝑆/𝑇. 𝐶 [𝑈𝑆/𝑇. 𝐷]

𝑇ℎ. 𝑈𝑈𝑃 [𝑇ℎ. 𝑈𝐷𝑊]
Uncompressed upload [download]

throughput
MB/s 𝑈𝑆/𝑇. 𝑈𝑈𝑃 [𝑈𝑆/𝑇. 𝑈𝐷𝑊]

𝑇ℎ. 𝑈𝑃[𝑇ℎ. 𝐷𝑊] Network throughput MBs Estimated

𝑇ℎ. 𝐶𝑈𝑃 [𝑇ℎ. 𝐶𝐷𝑊]
Compressed upload [download]

throughput
MB/s 𝑈𝑆/𝑇. 𝐶𝑈𝑃 [𝑈𝑆/𝑇. 𝐶𝐷𝑊]

44

 Energy efficiency. For each compression task with a selected compression level,

we calculate the total energy for compression (ET.C) as well as the total energy for de-

compression (ET.D). Instead of reporting the energy directly in joules, we report the ener-

gy efficiency (EE.C [EE.D]) in megabytes per joule (EE.C = US/ET.C [EE.D =

US/ET.D]). To eliminate the effects of idle current, we also consider the overhead en-

ergies ET.C(0) and ET.D(0) and derived energy efficiency metrics EE.C(0) and

EE.D(0).

 For each uncompressed data transfer, we calculate the total upload energy

(𝐸𝑇. 𝑈𝑈𝑃) as well as the total download energy (𝐸𝑇. 𝑈𝐷𝑊). Instead of reporting the energy

directly in joules, we report the energy efficiency (𝐸𝐸. 𝑈𝑈𝑃 [𝐸𝐸. 𝑈𝐷𝑊]) in megabytes per

joule (𝐸𝐸. 𝑈𝑈𝑃 = 𝑈𝑆/𝐸𝑇. 𝑈𝑈𝑃 [𝐸𝐸. 𝑈𝐷𝑊 = 𝑈𝑆/𝐸𝑇. 𝑈𝐷𝑊]). The total energy to set up a

network connection is expressed as ET.SC. The total energy for uncompressed up-

load and download without energy for network connection setup time, ET.UP

[ET.DW], convert to network energy efficiency (EE.UP [EE.DW]) when expressed in

megabytes per second (𝐸𝐸. 𝑈𝑃 [𝐸𝐸. 𝐷𝑊]) when expressed in megabytes per second.

For compressed data transfer, we calculate the total upload energy (𝐸𝑇. 𝐶𝑈𝑃) as well

as the total download energy (𝐸𝑇. 𝐶𝐷𝑊). Instead of reporting the energy directly in joules,

we report the energy efficiencies (𝐸𝐸. 𝐶𝑈𝑃 [𝐸𝐸. 𝐶𝐷𝑊]) in megabytes per joule

(𝐸𝐸. 𝐶𝑈𝑃 = 𝑈𝑆/𝐸𝑇. 𝑈𝑈𝑃 [𝐸𝐸. 𝐶𝐷𝑊 = 𝑈𝑆/𝐸𝑇. 𝑈𝐷𝑊]).

45

Table 2.6 Metrics: Energy

Symbol Description Units Definition

𝐸𝑇. 𝐶[𝐸𝑇. 𝐷] Total energy for local [de]compression J Estimated

𝐸𝑇. 𝐶(0) [𝐸𝑇. 𝐷(0)] Overhead energy for [de]compression J
𝐸𝑇. 𝐶 – 𝐼𝑖𝑑𝑙𝑒 ∙ 𝑉𝑏𝑠 ∙ 𝑇. 𝐶

[𝐸𝑇. 𝐷 – 𝐼𝑖𝑑𝑙𝑒 ∙ 𝑉𝑏𝑠 ∙ 𝑇. 𝐷]

𝐸𝑇. 𝑆𝐶
Total energy to set up network connec-

tion
J Estimated

𝐸𝑇. 𝑈𝑈𝑃 [𝑈𝐷𝑊]
Total energy for uncompressed upload

[download]
J Estimated

𝐸𝑇. 𝑈𝑃[𝐸𝑇. 𝐷𝑊]

Total energy for uncompressed upload

[download] w/o energy for network con-

nection time

s
𝐸𝑇. 𝑈𝑃 = 𝐸𝑇. 𝑈𝑈𝑃 – 𝐸𝑇. 𝑆𝐶

[𝐸𝑇. 𝐷𝑊 = 𝐸𝑇. 𝑈𝐷𝑊 – 𝐸𝑇. 𝑆𝐶]

𝐸𝑇. 𝐶𝑈𝑃 [𝐸𝑇. 𝐶𝑈𝑃]
Total energy for compressed upload

[download]
J Estimated

𝐸𝐸. 𝐶 [𝐸𝐸. 𝐷] Local [de]compression energy efficiency MB/J 𝑈𝑆/𝐸𝑇. 𝐶 [𝑈𝑆/𝐸𝑇. 𝐷]

𝐸𝐸. 𝐶(0) [𝐸𝐸. 𝐷(0)]
Local [de]compression overhead energy

efficiency
MB/J 𝑈𝑆/𝐸𝑇. 𝐶(0) [𝑈𝑆/𝐸𝑇. 𝐷(0)]

𝐸𝐸. 𝑈𝑈𝑃 [𝐸𝐸. 𝑈𝐷𝑊]
Uncompressed upload[download] energy

efficiency
MB/J 𝑈𝑆/𝐸𝑇. 𝑈𝑈𝑃 [𝑈𝑆/𝐸𝑇. 𝑈𝐷𝑊]

𝐸𝐸. 𝑈𝑃 [𝐸𝐸. 𝐷𝑊] Network throughput energy efficiency MB/J Estimated

𝐸𝐸. 𝐶𝑈𝑃 [𝐸𝐸. 𝐶𝐷𝑊]
Compressed upload[download]

energy efficiency
MB/J 𝑈𝑆/𝐸𝑇. 𝐶𝑈𝑃 [𝑈𝑆/𝐸𝑇. 𝐶𝐷𝑊]

 Experiments

To evaluate the throughput and energy efficiency of (de)compression tasks,

we consider set of scenarios for cases when a mobile device and a workstation are

used as the target platforms.

For the case when a mobile device is used as the target platform, we consider

two typical usage scenarios as illustrated in Figure 2.13. The first experiment is per-

formed locally on the mobile device (LOCAL) involving measuring of time and ener-

gy of (de)compression tasks. To eliminate latencies and energy overheads caused by

writing files to the internal storage, the output of the (de)compression tasks is re-

46

directed to the null device (/dev/null) – a special ‘file’ that discards all data written to

it. This experiment is used for each file in the datasets to generate historical predic-

tion tables discussed in the later sections on framework design.

Figure 2.13 Data flow of the experiments on mobile devices (blue file icons refer to

uncompressed files, red file icons refer to compressed files).

The second group of experiments (WLAN and CELL) involves measuring the

time and energy of compressed uploads and downloads to/from a remote server. For

Compress Decompress Compress Decompress

ssh

Internet
Mobile

Provider

Router

3G/4G WLAN

File Server

UF

/dev/null /dev/null

UF
UF CF

ssh

Local File Transfers WLAN/3G File Transfers

UF CF

Compress

47

compressed uploads, the uncompressed input file (UF) is read from the local file sys-

tem, compressed on the mobile device, and streamed to the server over a secure

channel. The output files are redirected to the null device of the server. For com-

pressed downloads, when the compressed files (CF) are maintained on the server,

the compressed file is retrieved from the server’s file system through a secure chan-

nel and decompressed on the mobile device. When compressed files are not main-

tained on the server, the uncompressed input file is first compressed on the server

and then streamed to the mobile device over a secure channel for decompression. In

both cases, the output files are redirected to the null device of the smartphone.

Those types of experiments are be used to evaluate the effectiveness of the proposed

framework.

For the case when a workstation is used as the target platform, we consider

two typical usage scenarios as illustrated in Figure 2.14. The first experiment is per-

formed locally on the workstation (LOCAL) involving measuring of time and energy

of (de)compression tasks. Likewise, to eliminate latencies caused by writing files to

the internal storage, the output of the (de)compression tasks is re-directed to the

null device (/dev/null). This experiment is used for each file in the datasets to gener-

ate historical prediction tables discussed in the later sections on framework design.

The second group of experiments (LAN) involves measuring the time of com-

pressed uploads and downloads to/from a remote instance on the Amazon’s AWS

EC2 cloud. For compressed uploads, the uncompressed input file (UF) is read from

the local file system, compressed on the workstation, and streamed to the cloud in-

stance over a secure LAN channel. The output files are redirected to the null device

of the cloud. For compressed downloads, when the compressed files (CF) are main-

tained in the cloud, the compressed file is retrieved from the cloud’s file system

48

through a secure LAN channel and decompressed on the workstation. When com-

pressed files are not maintained in the cloud, the uncompressed input file is first

compressed on the cloud and then streamed to the workstation over a secure LAN

channel for decompression. In both cases, the output files are redirected to the null

device of the workstation. These types of experiments are used to evaluate the effec-

tiveness of the proposed framework.

Figure 2.14 Data flow of the experiments on workstation (blue file icons refer to

uncompressed files, red file icons refer to compressed files).

 The Cases for Intelligent File Transfers

 This section gives two studies and makes the case for intelligent file trans-

fers. The studies analyze both throughput and energy efficiency of uncompressed

Internet

Compress Decompress Compress Decompress

ssh

Router

LAN

UF

/dev/null /dev/null

UFUF CF

ssh

Local File Transfers LAN File Transfers to Cloud

UF CF

Compress

AWS EC2
Cloud Instance

49

and compressed transfer modes on the smartphone (Section 2.6.1) and the work-

station (Section 2.6.2).

 Compressed Transfers on the Smartphone

Smartphone users upload and download a diverse set of data. As a data up-

load examples, we consider uploading mHealth data files to the server that include

physiological information (e.g., breathing waveform or health summary log). As a

data download examples, we consider downloading applications and additional data

such as book, source code, and map file from data repository on the smartphone. Ap-

plications running on smartphones and users have several options on how they can

perform an upload or download of any particular file. Files can be transferred un-

compressed, by using the default compression utility (usually a variant of gzip -6 or

zip compression), or by selecting another compression utility and compression level.

In this case study, we show that a compression utility and a compression level that

achieves the maximum throughput and energy efficiency changes as a function of

network conditions and file parameters, such as file size and type.

2.6.1.1 Upload Examples

We consider uploading two text and two binary files from the smartphone.

The first file (BRW.csv) contains breathing data recorded by a wearable health mon-

itor - Zephyr Technologies BioHarness 3. The file contains raw samples from moni-

tor’s breathing sensor during a subject’s 6-hour sleep. The breathing sensor is sam-

pled with the frequency of 100 Hz. The second file (LOG.csv) contains a log of user’s

physiological state captured by the same monitor during activities of daily living

that include walking, driving, and office work. The log is taken every second and in-

50

cludes information about heart rate, breathing rate, and a level of physical activity.

The files BRW.dat and LOG.dat contain the same information as BRW.csv and

LOG.csv, but in binary .dat format, custom for the selected wearable health monitor.

These types of mobile health data are often uploaded to the cloud where more so-

phisticated processing can take place. For example, we can extract the subject’s type

and level of physical activity during the day, or analyze the quality of sleep during

the night. The uncompressed file sizes for the text files are 19.75 MB for BRW.csv

and 4.69 MB for LOG.csv, whereas the binary file sizes are 2.39 MB for BRW.dat

and 3.26 MB for LOG.dat. The experiment involves uncompressed and compressed

file uploads. For each transfer mode, the total time and energy spent to upload a file

are measured to determine the effective upload throughput and energy efficiency.

Upload throughput. Figure 2.15 shows the effective upload throughput

speedups for all compressed upload modes relative to the corresponding uncom-

pressed transfers (a) and the default compressed transfers with gzip -6 (b) when us-

ing the 0.5 MB/s WLAN network. The effective throughputs of uncompressed up-

loads match the network throughput for all four files. The default compressed up-

loads with gzip -6 achieve the effective throughputs of 3.31 MB/s and 4.05 MB/s for

BRW.csv and LOG.csv, and 1.14 MB/s and 3.08 MB/s for binary BRW.dat and

LOG.dat. The utilities with the highest effective upload throughputs are bzip2 and

xz because they achieve relatively high compression ratios. For BRW.csv, the best

effective throughput is achieved by xz -1, offering 10.33- and 1.64-fold improvements

in the effective throughput relative to the uncompressed upload and the default

compressed upload, respectively. For LOG.csv, the best effective throughput is

achieved by xz -0 (9.43- and 1.19-fold improvements). For BRW.dat, the best effective

51

throughput is achieved by bzip2 -1 (2.72- and 1.18-fold improvements). Finally, for

LOG.dat, the best effective throughput is achieved by xz -0 (7.12- and 1.17-fold im-

provements).

(a)

(b)

Figure 2.15 Upload throughput speedup for mHealth files on

0.5 MB/s WLAN connection

2.0

4.0

6.0

8.0

10.0

12.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.UP (0.5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.CUP(gzip6) (0.5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

52

Figure 2.16 shows the effective upload throughput speedups for all com-

pressed upload modes relative to the corresponding uncompressed transfers (a) and

the default compressed transfers with gzip -6 (b) when using the 5 MB/s WLAN

network. The uncompressed uploads achieve the effective throughputs of 4.43 MB/s

and 3.16 MB/s for the text files, and 2.52 MB/s and 3.07 MB/s for the binary files.

Please note that the effective throughput of uncompressed uploads directly depends

on the uncompressed file size – it is higher for larger files (e.g., 19.75 MB BRW.csv

file) and lower for smaller files (e.g., 2.39 MB BRW.dat file). The default compressed

upload with gzip -6 achieves the effective throughputs of 7.96 MB/s and 6.07 MB/s

for the text files, and 1.66 MB/s and 3.99 MB/s for the binary files. The utility with

the highest effective upload throughputs is pigz. For BRW.csv, the best effective

throughput is achieved by pigz -6, offering 4.07- and 2.27-fold improvements in the

effective throughput relative to the uncompressed upload and the default com-

pressed upload, respectively. For LOG.csv, the best effective throughput is achieved

by pigz -6 (3.4- and 1.77-fold improvements). For BRW.dat, the best effective

throughput is achieved by pigz -6 (1.66- and 2.52-fold improvements). Finally, for

LOG.dat, the best effective throughput is achieved by pigz -6 (2.28- and 1.76-fold

improvements).

53

(a)

(b)

Figure 2.16 Upload throughput speedup for mHealth files on

5 MB/s WLAN connection

Upload energy efficiency. Figure 2.17 shows the effective upload energy ef-

ficiency improvements for all compressed upload modes relative to the corresponding

uncompressed transfers (a) and the default compressed transfers with gzip -6 (b)

when using the 0.5 MB/s WLAN network. The uncompressed uploads achieve the

effective energy efficiencies of 0.92 MB/J and 0.88 MB/J for the text files, and

0.63 MB/J and 0.7 MB/J for the binary files. The default compressed upload with

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.UP (5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.CUP(gzip6) (5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

54

gzip -6 achieves the effective energy efficiencies of 3.16 MB/J and 3.82 MB/J for the

text files, and 1.11 MB/J and 3.34 MB/J for the binary files. The utilities with the

highest effective upload energy efficiency are pigz -1, gzip -1 and xz -0. For BRW.csv,

the best effective energy efficiency is achieved by pigz -1, offering 4.43- and 1.29-fold

improvements in energy efficiency over the uncompressed upload and the default

compressed upload, respectively. For LOG.csv, the best effective energy efficiency is

achieved by gzip -1 (5.15- and 1.17-fold improvements). For BRW.dat, the best effec-

tive energy efficiency is achieved by gzip -1 (2.35- and 1.32-fold improvements). For

LOG.dat, the best effective energy efficiency is achieved by xz -0 (5.23- and 1.09-fold

improvements).

55

(a)

(b)

Figure 2.17 Upload energy efficiency improvement for mHealth files on

0.5 MB/s WLAN connection

Figure 2.18 shows the effective upload energy efficiency improvements for all

compressed upload modes relative to the corresponding uncompressed transfers (a)

and the default compressed transfers with gzip -6 (b) when using the 5 MB/s WLAN

network. The uncompressed uploads achieve the effective energy efficiencies of

3.6 MB/J and 2.99 MB/J for the text files, and 2.09 MB/J and 2.45 MB/J for the bina-

ry files. Please note that the effective energy efficiency of the uncompressed upload

1.0

2.0

3.0

4.0

5.0

6.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.UP (0.5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.CUP(gzip6) (0.5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

56

directly depends on the uncompressed file size – it is higher for larger files (e.g.,

19.75 MB BRW.csv file) and lower for smaller files (e.g., 2.39 MB BRW.dat file). The

default compressed upload with gzip -6 achieves the effective energy efficiencies of

4.81 MB/J and 5.42 MB/J for the text files, and 1.47 MB/J and 4.28 MB/J for the bi-

nary files. The utilities with the highest effective upload throughputs are lzop -1 and

gzip -1. For BRW.csv, the best effective energy efficiency is achieved by lzop -1, 3.36-

and 2.52-fold improvements in the effective throughput relative to the uncompressed

upload and the default compressed upload, respectively. For LOG.csv, the best effec-

tive energy efficiency is achieved by lzop -1 (3.9- and 2.15-fold improvements). For

BRW.dat, the best effective energy efficiency is achieved by gzip -1 (1.67- and 2.38-

fold improvements). For LOG.dat, the best effective energy efficiency is achieved by

gzip -1 (3.21- and 1.84-fold improvements).

57

(a)

(b)

Figure 2.18 Upload energy efficiency improvement for mHealth files on

5 MB/s WLAN connection

2.6.1.2 Download Examples

To evaluate the effectiveness of compressed download on the smartphone, we

consider uncompressed and compressed downloads of an executable, a text file, a

source code, and a map data from the cloud. The first file (DBX.tar) contains an exe-

cutable for the Android Dropbox application. The second file (EBK.txt) contains an e-

book from the Project Gutenberg collection. The third file (CFM.tar) contains a

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.UP (5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.CUP(gzip6) (5 MB/s): mHealth
BRW.csv LOG.csv BRW.dat LOG.dat

58

source code of CyanogenMod File Manager. The fourth file (UTA.mwm) contains an

offline map data from Maps.me Android application. The uncompressed file sizes are

69.31 MB for the DBX.tar, 5.44 MB for the EBK.txt, and 4.58 MB and 27.43 MB for

the CFM.tar and the UTA.mwm, respectively. The experiment involves uncom-

pressed and compressed file downloads. For compressed file downloads, all com-

pressed versions of the files are made available in the cloud. For each transfer mode,

the total time and energy spent to get the uncompressed file are measured to deter-

mine the effective download throughput and energy efficiency.

Download throughput. Figure 2.19 shows the effective download through-

put speedups for all compressed download modes relative to the corresponding un-

compressed transfers (a) and the default compressed transfers with gzip -6 (b) when

using the 0.5 MB/s WLAN network. The effective throughputs of uncompressed

downloads match the network throughput for all four files. The default compressed

downloads with gzip -6 achieve the effective throughputs of 1.02 MB/s and 1.23 MB/s

for DBX.tar and EBK.txt, and 2.22 MB/s and 0.65 MB/s for CFM.tar and UTA.mwm.

The utility with the highest effective download throughputs is xz. For DBX.tar, the

best effective throughput is achieved by xz -9, offering 2.57- and 1.35-fold improve-

ments in the effective throughput relative to the uncompressed download and the

default compressed download, respectively. For EBK.txt, the best effective through-

put is achieved by xz -6 and -9 (3.07- and 1.30-fold improvements). For CFM.tar, the

best effective throughput is achieved by xz -6 (5.35- and 1.25-fold improvements).

For UTA.mwm, the best effective throughput is achieved by xz -6 (1.38- and 1.14-fold

improvements).

59

(a)

(b)

Figure 2.19 Download throughput speedup for

application, source code, e-book, and map on 0.5 MB/s WLAN connection

Figure 2.20 shows the effective download throughput speedups for all com-

pressed download modes relative to the corresponding uncompressed transfers (a)

and the default compressed transfers with gzip -6 (b) when using the 5 MB/s WLAN

network. The uncompressed downloads achieve the effective throughputs of

4.99 MB/s for DBX.tar, 3.84 MB/s for EBK.txt, 3.58 MB/s for CFM.tar, and

3.25 MB/s for UTA.mwm. The default compressed downloads with gzip -6 achieve

1.0

2.0

3.0

4.0

5.0

6.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throughput speedup - Th.CDW/Th.UDW (0.5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throughput speedup - Th.CDW/Th.CDW(gzip6) (0.5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

60

the effective throughputs of 9.27 MB/s and 6.97 MB/s for DBX.tar and EBK.txt, and

8.57 MB/s and 5.63 MB/s for CFM.tar and UTA.mwm. The utilities with the highest

effective download throughputs are xz -9 and gzip -9. For DBX.tar, the best effective

throughput is achieved by xz -9, offering 2.03- and 1.09-fod improvements in

throughputs over the uncompressed download and the default compressed download,

respectively. For EBK.txt, the highest effective throughput is achieved by gzip -9

(1.82- and 1.02-fold improvements). For CFM.tar, the best effective throughput is

achieved by gzip -9 (2.40- and 1.01-fold improvements). For UTA.mwm, the best ef-

fective throughput is achieved by gzip -9 (1.76- and 1.02-fold improvements).

61

(a)

(b)

Figure 2.20 Download throughput speedup for

application, source code, e-book, and map on 5 MB/s WLAN connection

 Download energy efficiency. Figure 2.21 shows the effective download en-

ergy efficiency improvements for all compressed download modes relative to the cor-

responding uncompressed transfers (a) and the default compressed transfers with

gzip -6 (b) when using the 0.5 MB/s WLAN network. The effective uncompressed

download energy efficiencies achieve the effective energy efficiency of 0.9 MB/J for

DBX.tar, 0.79 MB/J for EBK.txt, and 0.79 MB/J and 0.89 MB/J for CFM.tar and

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throughput speedup - Th.CDW/Th.UDW (5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

0.2

0.4

0.6

0.8

1.0

1.2

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throughput speedup - Th.CDW/Th.CDW(gzip6) (5 MB/s):
aplication, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

62

UTA.mwm. The default compressed downloads with gzip -6 achieve the effective en-

ergy efficiencies of 1.59 MB/J and 1.77 MB/J for DBX.tar and EBK.txt, and

3.23 MB/J and 1.03 MB/J for CFM.tar and UTA.mwm. The utility with the highest

effective download energy efficiencies is xz because it achieves relatively high com-

pression ratios. For DBX.tar, the best effective energy efficiency is achieved by xz -9,

which results in 2.23- and 1.26-fold improvement in energy efficiency over the un-

compressed download and the default compressed download, respectively. For

EBK.txt, the best effective energy efficiency is achieved by xz -6 (2.67- and 1.19-fold

improvements). For CFM.tar, the best effective energy efficiencies are achieved by

xz -9 (5.13- and 1.26-fold improvements). For UTA.mwm, the best effective energy

efficiencies are achieved by xz -9 (1.19- and 1.02-fold improvements).

63

(a)

(b)

Figure 2.21 Download energy efficiency improvement for

application, source code, e-book, and map on 0.5 MB/s WLAN connection

Figure 2.22 shows the effective download energy efficiency improvements for

all compressed download modes relative to the corresponding uncompressed trans-

fers (a) and the default compressed transfers with gzip -6 (b) when using the 5 MB/s

WLAN network. The uncompressed downloads achieve the effective energy efficien-

cies of 4.28 MB/J for DBX.tar, 3.67 MB/J for EBK.txt, and 3.75 MB/J and 3.26 MB/J

for CFM.tar and UTA.mwm. The default compressed downloads with gzip -6 achieve

1.0

2.0

3.0

4.0

5.0

6.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - Th.CDW/Th.UDW (0.5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - Th.CDW/Th.CDW(gzip6) (0.5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

64

the effective energy efficiencies of 6.58 MB/s and 6.77 MB/s for DBX.tar and

EBK.txt, and 9.39 MB/s and 4.14 MB/s for binary CFM.tar and UTA.mwm. The util-

ity with the highest effective download energy efficiencies is pigz. For DBX.tar, the

best effective energy efficiency is achieved by pigz -9, which improves download en-

ergy efficiency 1.69- and 1.10-fold relative to the uncompressed and the default com-

pressed downloads. For EBK.txt, the best energy efficiency is achieved by pigz -9

(2.83- and 1.15-fold improvement). For CFM.tar, the best energy efficiency is

achieved by pigz -6 (2.53- and 1.34-fold improvements). For UTA.mwm, the best en-

ergy efficiency is achieved by pigz -9 (1.34- and 1.05-fold improvements).

65

(a)

(b)

Figure 2.22 Download energy efficiency improvement for

application, source code, e-book, and map on 5 MB/s WLAN connection

 Compressed Transfers on Workstations

 Workstations used for big data and scientific data analysis can use globally

distributed cloud instances or collaborating centers for computational and storage

offload. As a data upload example, a local workstation may upload locally generated

input files for further processing in the cloud or at collaborating center with more

computational power. As a data download example, a local workstation may down-

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.UDW (5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 6 9 1 6 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.CDW(gzip6) (5 MB/s):
application, source code, e-book and map

DBX.tar EBK.txt CFM.tar UTA.mwm

66

load processed data from the cloud. As with the smartphone case study, the work-

station has several options on how to perform an upload or download of any particu-

lar file. It can be done without the utilization of any compression by transferring da-

ta in an uncompressed format, or with the use of a default compression utility (usu-

ally a variant of gzip -6 or zip compression), or by selecting another compression util-

ity and compression level to perform compressed data transfer. In this case study,

we show that a compression utility and a compression level that achieves the maxi-

mum throughput and energy efficiency changes as a function of network conditions,

dependent on the location of the cloud instance, and file parameters, such as file size

and type.

2.6.2.1 Upload Examples

We consider uploading three files (XML, binary, and text) from the work-

station to the cloud instance. The first file (wikipages) is an XML file containing

web data from archived pages on Wikipedia, the second file (netcdf) is a binary file

in NetCDF format containing Earth’s surface relief data from the north-eastern

USA, and the last file (seqall) is a text file containing DNA sequence of an apple

tree, Malus Domestica. These types of data are often uploaded to the cloud where

more sophisticated processing can take place. For example, we can upload archived

pages to extract needed information in the cloud, or to distribute the Earth’s surface

relief data or DNA sequence files for use across a network of collaborating centers.

The uncompressed file sizes for selected files range from 147.6 to 203.7 MB. For wik-

ipages, the uncompressed file size is 147.6 MB, for netcdf, the uncompressed file size

is 166.9 MB, and for seqall, it is 203.7 MB. The experiment involves uncompressed

and compressed file uploads to the cloud instances located in North Virginia and To-

67

kyo. For each transfer mode, the total time and energy spent to upload a file are

measured to determine the effective upload throughput and energy efficiency. Ener-

gy measurements are performed using likwid-powermeter from likwid-tools [49],

[50], which is used to capture energy consumed within CPU package (PKG).

 Upload throughput. Figure 2.23 shows the effective upload throughput

speedups for all compressed upload modes relative to the corresponding uncom-

pressed transfers (a) and the default compressed transfers with gzip -6 (b) to the

North Virginia instance when using the uncapped LAN network. The effective

throughputs of uncompressed uploads match the network throughput for all three

files, being ~ 17.9 M B/s. The default compressed uploads with gzip -6 achieve the

effective throughputs of 29.25 MB/s for wikipages, 10.51 MB/s for netcdf, and

17.3 MB/s for seqall. Only the default upload of wikipages outperforms its uncom-

pressed upload. The utilities with the highest effective upload throughputs are pigz

and lower levels of pbzip2 because they achieve relatively fast compression with

parallelization. For wikipages, the best effective throughput is achieved by pbzip2 -1,

offering 3.27- and 1.97-fold improvements in throughput over the uncompressed up-

load and the default compressed upload, respectively. For netcdf, the best effective

throughput is achieved by pbzip2 -1 (3.1- and 5.24-fold improvements). For seqall,

the best effective throughput is achieved by pigz -6 (4.31- and 4.46-fold improve-

ments).

68

(a)

(b)

Figure 2.23 Upload throughput speedup for upload of wikipages, netcdf, and seqall

files to North Virginia on uncapped LAN connection

 Figure 2.24 shows the effective upload throughput speedups for all com-

pressed upload modes relative to the corresponding uncompressed transfers (a) and

the default compressed transfers with gzip -6 (b) to the Tokyo instance when using

the uncapped LAN network. The uncompressed uploads achieve the effective

throughputs of 5.25 MB/s for wikipages, 4.75 MB/s for netcdf, and 5.14 MB/s for se-

qall. Please note that the effective throughput of the uncompressed upload directly

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.UUP (North Virginia)
wikipages netcdf seqall

1.0

2.0

3.0

4.0

5.0

6.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.CUP(gzip6) (North Virginia)
wikipages netcdf seqall

69

depends on the location of cloud instance – highest for North Virginia (with higher

network throughput and lower time to set up a network connection), and lowest for

Tokyo (with lower network throughput and higher time to set up a network connec-

tion). The default compressed uploads with gzip -6 achieve the effective throughputs

of 10.15 MB/s for wikipages, 8.12 MB/s for netcdf, and 11.2 MB/s for seqall. The util-

ity with the highest effective upload throughputs is pbzip2 because it achieves rela-

tively high compression ratios and fast compression with use of parallelization. For

wikipages, the best effective throughput is achieved by pbzip2 -9, offering 2.72- and

1.41-fold improvements in the effective throughput over the uncompressed upload

and the default compressed upload, respectively. For netcdf, the best effective

throughput is achieved by pbzip2 -6 (2.64- and 1.55-fold improvements). For seqall,

the best effective throughput is achieved by pbzip -9 (3.6- and 1.65-fold improve-

ments).

70

(a)

(b)

Figure 2.24 Upload throughput speedup for upload of wikipages, netcdf, and seqall

files to Tokyo on uncapped LAN connection

 Upload energy efficiency. Figure 2.25 shows the effective upload energy

efficiency improvements for all compressed upload modes relative to the correspond-

ing uncompressed transfers (a) and the default compressed transfers with gzip -6 (b)

to the North Virginia instance when using the uncapped LAN network. The uncom-

pressed uploads achieve the effective energy efficiencies ranging from 3.21 MB/J to

3.25 MB/J for all three files. The default compressed upload with gzip -6 achieves

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.UUP (Tokyo)
wikipages netcdf seqall

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Upload throuhgput speedup - Th.CUP/Th.CUP(gzip6) (Tokyo)
wikipages netcdf seqall

71

the effective energy efficiencies of 1.92 MB/J for wikipages, 0.66 MB/J for netcdf, and

1.1 MB/J for seqall, all of which are below energy efficiency of uncompressed trans-

fers. The utility with the highest effective upload energy efficiencies is lzop. For wik-

ipages, the best effective energy efficiency is achieved by lzop -6, offering 2.05- and

3.44-fold improvements in the effective energy efficiency over the uncompressed up-

load and the default compressed upload, respectively. For netcdf, the best effective

energy efficiency is achieved by lzop -6 (1.64- and 7.93-fold improvements). For se-

qall, the best effective energy efficiency is achieved by lzop -6 (2.21- and fold 6.56-

fold improvements).

72

(a)

(b)

Figure 2.25 Upload energy efficiency improvement for upload of wikipages, netcdf,

and seqall files to North Virginia on uncapped LAN connection

Figure 2.26 shows the effective upload energy efficiency improvements for all

compressed upload modes relative to the corresponding uncompressed transfers (a)

and the default compressed transfers with gzip -6 (b) to the Tokyo instance when

using the uncapped LAN network. The uncompressed uploads achieve the effective

energy efficiencies ranging from 1.02 MB/J to 1.11 MB/J for all three files. The de-

fault compressed upload with gzip -6 achieves the effective energy efficiencies of

0.5

1.0

1.5

2.0

2.5

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.UUP (North Virginia)
wikipages netcdf seqall

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.CUP(gzip6) (North Virginia)
wikipages netcdf seqall

73

1.33 MB/J for wikipages, 0.62 MB/J for netcdf, and 0.96 MB/J for seqall, all of which

but one are below energy efficiency of uncompressed transfers. The utilities with the

highest effective upload energy efficiencies are pigz and lzop. For wikipages, the best

effective energy efficiency is achieved by pigz -1, offering 1.76- and 1.46-fold im-

provements in the effective energy efficiency over the uncompressed upload and the

default compressed upload, respectively. Likewise, for netcdf, the best effective en-

ergy efficiency is achieved by pigz -1 (1.94- and 3.17-fold improvements). For seqall,

the best effective energy efficiency is achieved by lzop -6 (2.55- and fold 2.86-fold im-

provements).

74

(a)

(b)

Figure 2.26 Upload energy efficiency improvement for upload of wikipages, netcdf,

and seqall files to Tokyo on uncapped LAN connection

2.6.2.2 Download Examples

 To evaluate the effectiveness of compressed downloads on the workstation,

we consider uncompressed and compressed file downloads of the same files used for

the upload example from the cloud instances in North Virginia and Tokyo. For com-

pressed file downloads, all compressed versions of files are made available in the

cloud. For each transfer mode, the total time and energy spent to get the uncom-

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.UUP (Tokyo)
wikipages netcdf seqall

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Upload energy efficiency improvement - EE.CUP/EE.CUP(gzip6) (Tokyo)
wikipages netcdf seqall

75

pressed file are measured to determine the effective download throughput and ener-

gy efficiency.

 Download throughput. Figure 2.27 shows the effective download through-

put speedups for all compressed download modes relative to the corresponding un-

compressed transfers (a) and the default compressed transfers with gzip -6 (b) from

the North Virginia instance when using the uncapped LAN network. The uncom-

pressed downloads achieve the effective throughputs of 59.37 MB/s for wikipages,

66 MB/s for netcdf, and 70.34 MB/s for seqall. The default compressed downloads

with gzip -6 achieve the effective throughputs of 94.54 MB/s for wikipages,

93.13 MB/s for netcdf, and 124.03 MB/s for seqall. The utility with the highest effec-

tive throughputs is pigz. For wikipages, the best effective throughput is achieved by

pigz -9, offering 2.11- and 1.33-fold improvements in the effective throughput rela-

tive to the uncompressed download and the default compressed download, respec-

tively. Likewise, for netcdf, the best effective throughput is achieved by pigz -9 (1.91-

and 1.25-fold improvements). For seqall, the best effective throughput is achieved by

pigz -9 (2.5- and 1.42-fold improvements).

76

(a)

(b)

Figure 2.27 Download throughput speedup for download of wikipages, netcdf, and

seqall files from North Virginia on uncapped LAN connection

 Figure 2.28 shows the effective download throughput speedups for all com-

pressed download modes relative to the corresponding uncompressed transfers (a)

and the default compressed transfers with gzip -6 (b) from the Tokyo instance when

using the uncapped LAN network. The uncompressed downloads achieve the effec-

tive throughputs of 3.01 MB/s for wikipages, 2.69 MB/s for netcdf, and 3.07 MB/s for

seqall. The default compressed downloads with gzip -6 achieve the effective

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throuhgput speedup - Th.CDW/Th.UDW (North Virginia)
wikipages netcdf seqall

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throuhgput speedup - Th.CDW/Th.CDW(gzip6) (North Virginia)
wikipages netcdf seqall

77

throughputs of 19.76 MB/s for wikipages, 17.39 MB/s for netcdf, and 27.24 MB/s for

seqall. The utilities with the highest download throughputs are pigz, xz, and pbzip2

because they achieve fast decompression with parallelization, and in selected cases,

high compression ratios. For wikipages, the best effective throughput is achieved by

xz -6, offering 3.01- and 1.24-fold improvements in the effective throughput over the

uncompressed download and the default compressed download, respectively. For

netcdf, the best effective throughput is achieved by pbzip2 -6 (2.69- and 1.4-fold im-

provements). For seqall, the best effective throughput is achieved by pigz -9 (3.07-

and 1.02-fold improvements).

78

(a)

(b)

Figure 2.28 Download throughput speedup for download of wikipages, netcdf, and

seqall files from Tokyo on uncapped LAN connection

 Download energy efficiency. Figure 2.29 shows the effective download en-

ergy efficiency improvements for all compressed download modes relative to the cor-

responding uncompressed transfers (a) and the default compressed transfers with

gzip -6 (b) from the North Virginia instance when using the uncapped LAN network.

The uncompressed downloads achieve the effective energy efficiencies of 8.84 MB/J

for wikipages, 9.63 MB/J for netcdf, and 9.73 MB/J for seqall. The default com-

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throuhgput speedup - Th.CDW/Th.UDW (Tokyo)
wikipages netcdf seqall

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Sp
e

e
d

u
p

 [
-]

Download throuhgput speedup - Th.CDW/Th.CDW(gzip6) (Tokyo)
wikipages netcdf seqall

79

pressed downloads with gzip -6 achieve the effective energy efficiencies of 7.92 MB/J

for wikipages, 6.99 MB/J for netcdf, and 10.04 MB/J for seqall, all of which but one

are below energy efficiency of uncompressed transfers. The utility with the highest

effective download energy efficiencies is lzop -9. For wikipages, the best effective en-

ergy efficiency achieved by lzop -9 offers 1.65- and 1.84-fold improvements in the ef-

fective energy efficiency over the uncompressed download and the default com-

pressed download, respectively. For netcdf, the best effective energy efficiencies are

achieved by lzop -9 (1.58- and 2.13-fold improvements). For seqall, the best effective

energy efficiencies are achieved by lzop -9 (2.1- and 2.03-fold improvements).

80

(a)

(b)

Figure 2.29 Download energy efficiency improvement for download of wikipages,

netcdf, and seqall files from North Virginia on uncapped LAN connection

Figure 2.30 shows the effective download energy efficiency improvements for

all compressed download modes relative to the corresponding uncompressed trans-

fers (a) and the default compressed transfers with gzip -6 (b) from the Tokyo in-

stance when using the uncapped LAN network. Because of lower network through-

put and higher connection times, the uncompressed download achieves the effective

energy efficiencies of 1.72 MB/J for wikipages, 1.85 MB/J for netcdf, and 1.82 MB/J

0.5

1.0

1.5

2.0

2.5

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.UDW (North Virginia)
wikipages netcdf seqall

0.5

1.0

1.5

2.0

2.5

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.CDW(gzip6) (North Virginia)
wikipages netcdf seqall

81

for seqall. The default compressed downloads with gzip -6 achieve the effective ener-

gy efficiencies of 3.61 MB/J for wikipages, 3.12 MB/J for netcdf, and 4.78 MB/J for

seqall. The utilities with the highest effective download energy efficiencies are

lzop -9 and pigz -6. For wikipages, the best effective energy efficiency is achieved by

lzop -9, offering 2.35- and 1.11-fold improvements in energy efficiency over the un-

compressed download and the default compressed download, respectively. For

netcdf, the best effective energy efficiency is achieved by lzop -9 (1.97- and 1.17-fold

improvements). For seqall, the best effective energy efficiency is achieved by pigz -6

(2.73- and fold 1.04-fold improvements)..

82

(a)

(b)

Figure 2.30 Download energy efficiency improvement for download of wikipages,

netcdf, and seqall files from Tokyo on uncapped LAN connection

 The Case for a Framework for Optimized Data Transfers

The two studies from above demonstrated that no single utility and compres-

sion level offers the best throughputs and energy efficiencies in all conditions. The

file sizes, type of source data, edge device characteristics, and network conditions all

impact the choice of best performing utilities. In addition, the case studies showed

that the best performing combination of compression utility and compression level

0.5

1.0

1.5

2.0

2.5

3.0

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.UDW (Tokyo)
wikipages netcdf seqall

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 6 9 1 6 9 1 6 9 0 1 6 9 1 6 9 1 6 9

gzip lzop bzip2 xz pigz pbzip2

Im
p

ro
ve

m
e

n
t

[-
]

Download energy efficiency improvement - EE.CDW/EE.CDW(gzip6) (Tokyo)
wikipages netcdf seqall

83

provides a substantial increase in throughput and energy efficiency when compared

to uncompressed data transfers or compressed data transfers that rely on the de-

fault gzip -6 compression. Whereas the case studies rely on exhaustive measure-

ments in identifying the best performing combinations, the question is whether we

can design a framework that will be able to select near best performing combina-

tions in real-time, i.e., without incurring significant additional latency.

The proposed framework estimates effective throughputs and energy efficien-

cies for all available compression utilities and levels, before selecting an optimal or

near optimal mode of data transfer. The estimation of effective throughput for each

utility relies on the following:

 File information (e.g., file size, file type);

 Network parameters (maximum throughput, starting connection delay);

 Local (de)compression histories for files of given type;

 A set of models that describe uncompressed and compressed data trans-

fers.

The estimation of effective energy efficiency relies on the same set of perfor-

mance parameters, plus device characteristics and active peak currents for all (utili-

ty, level) combinations and for uncompressed transfers used in the additional set of

equations to estimate energy efficiencies from the performance metrics (through-

puts).

Once the estimations are computed, the (utility, level) pair with the highest

estimated throughput or energy efficiency will be compared to the throughput or en-

ergy efficiency of uncompressed data transfer. If the throughput or energy efficiency

of the compressed data transfer exceeds the throughput or energy efficiency of un-

84

compressed transfers, the data will be transferred to a remote location with the se-

lected utility and level. Otherwise, the uncompressed data transfer is performed.

85

CHAPTER 3

RELATED WORK

 Growing dependency of users on services delivered through cloud makes op-

timization of data transfers a top priority for mobile devices, workstations, as well as

in the cloud services dealing with data deluge. For mobile devices, optimization of

data transfers is driven by several key factors, including (i) user convenience favor-

ing of low latency of data, (ii) low network throughputs with 3G/4G connection, (iii)

limited energy capacity of batteries, and (iv) cost and data cap of mobile data plans.

For workstations, servers, and cloud infrastructure it is driven by sever factors, in-

cluding (i) network throughput limitations due to high network traffic and routing or

infrastructure limitations, (ii) increasing costs of cloud resources and transfer fees,

and (iii) increasing power and cooling costs in data centers and server farms.

 A number of different studies explore new ways for increasing performance

and overall energy efficiency for both mobile and workstation systems. The proposed

and existing solutions for managing power consumption include (i) heterogeneous

ARM big.LITTLE architecture and Heterogeneous Multi-Processing (HMP) sched-

uler on state-of-the-art mobile devices and SoCs (e.g., Samsung Exynos Octa 8860,

Qualcomm Snapdragon 820, and NVIDIA Tegra X1), (ii) optimizations using fre-

quency and voltages scaling, (iii) cloud offloading schemes [66], [67], and (iv) use of

lossless data compression for data communication. The proposed solutions for find-

ing new ways for power optimizations on mobile and workstation systems include

86

custom measurement environments for capturing power traces and logging to cap-

ture execution history [68]–[72] and run-time power modeling and energy estimation

by utilizing performance counters, call tracing, and system observers [73]–[76].

 The rest of this chapter covers the related work in the area of lossless data

(de)compression utilities used in optimization of data communication on mobile and

workstation systems (Section 3.1) and the related work in the area of power proofing

and energy estimation on mobile and workstation systems (Section 3.2).

 Lossless Data Compression on Mobile and Cloud Systems

 We are aware of several related studies that use data compression as a solu-

tion for some of the emerging problems in the mobile and cloud computing, including

data management and data transfer. Nicolae et al. [77] and Harnik et al. [78] pre-

sent methods for deciding whether to perform compression or not with a goal to in-

crease effectiveness of data transfers from the local nodes to the cloud. The present-

ed solutions only explore a selection of compression algorithms or utilities (e.g., gzip

and bzip2) based on the estimation of file entropy. The presented estimations rely

either on pre-compression of multiple samples across the entire file or on pre-

compression of the beginning of the file. Harnik et al. [78] introduce an approach to

sampling of large files, which provides a low error in estimation of compression ra-

tio, as well as different methods for smaller files, which is more prone to estimation

errors. Raskhodnikova et al. focus on mathematical estimation of compressibility of

text files for specific compression algorithms by analyzing the content of the entire

file [79].

 General compression utilities and their effectiveness in data communication

have been studied in mobile systems. A study conducted a decade ago investigates

87

data compression in the context of energy efficiency on embedded and mobile sys-

tems [23], [24]. Our preliminary studies have also focused on the comparison of per-

formance and energy efficiency of general purpose compression utilities in mobile

and mHealth applications [17]–[20]. Other papers focus on performance comparison

of general purpose, as well as domain-specific compression utilities, e.g., for ge-

nomics data files [80], [81].

 The work presented in this dissertation differs from prior works as follows.

First, a larger set of compression utilities is considered and evaluated. We have also

shown that compression ratio alone is not the deciding factor in the effective

throughput or energy efficiency of compressed uploads or downloads. Instead, our

proposed framework relies on a range of parameters to estimate effectiveness of

transfer modes, including performance of each particular compression (utility, level)

pair, input file information, network parameters, as well as device characteristics.

We derive analytical estimation models for prediction of the effective throughput

[21], energy efficiency [22], as well as modes for estimating energy efficiency from

the performance metrics for compressed uploads and downloads. In this work we

avoid the computational overhead due to performing sampling methods on part of

the file to estimate compression ratio or throughput. Such pre-compression, as pre-

sented by Nicolae et al. and Harnik et al., can be inaccurate and time and energy

consuming. Instead, we use predictability of file entropy by relying on previously ex-

tracted prediction data for local (de)compression of all available compression utilities

on the system for all considered file types.

88

 Power Profiling and Energy Estimation

 This section discusses previously conducted studies in the field of power

measurements, profiling, and energy estimation on mobile (Section 3.2.1) and work-

station (Section 3.2.2) systems.

 Mobile Devices

 Runtime power measurements on real mobile devices running common soft-

ware platforms such as Android, iOS, Tizen, or Windows Phone are important for

both researchers and mobile application developers. Measurement frameworks can

capture complex interactions between hardware and software stacks that become

more and more sophisticated with the introduction of systems-on-a-chip (SoCs) with

multiple processor cores and a number of customized hardware accelerators. Meas-

urements on real devices can help research studies that target power optimizations

or those that target developing analytical models for energy estimation based on pa-

rameters derived from real platforms. For mobile developers, adding a power per-

spective to application debugging and testing may guide optimizations that will re-

sult in more energy-efficient mobile applications.

 We are aware of several related studies that investigate energy efficiency on

mobile devices using custom measurement environments for capturing power traces

and logging to capture execution history [68]–[71], [82]. A study by Shye et al. [68]

relies on power models and extended activity logging to generate power schemes

which can provide substantial energy saving across the entire system while main-

taining user satisfaction. Their study was based on Android G1 running Android 1.0

firmware. They also used a setup based on a shunt resistor to capture power traces

and a custom logger to generate activity traces. However, their setup offered a lim-

89

ited sampling frequency of only 1 Hz. Rice and Hay [69], [70] evaluated energy effi-

ciency of Android-based G1, Magic, and Hero handsets using their custom meas-

urement setup. Their setup includes a replacement battery and a high-precision

shunt resistor placed in series on the power line and an NI data acquisition device

that samples voltage drop across the resistor. Their excellent studies focused on

measurement-based evaluation and optimization of wireless communication in mo-

bile handsets. A similar setup is used in our prior study focusing on energy-

efficiency of Pandaboard and Raspberry Pi development platforms that run Linux

operating system [71]. The setup included features to allow automated power meas-

urements for a number of profiled applications. Carroll and Heiser quantified energy

consumption of each component in a mobile device by performing rigorous tests and

then simulating a number of usage scenarios on mobile devices [82].

 However, since hardware modifications to support direct energy measure-

ments are not always possible or desirable, several other papers performed studies

focused on power profiling and power estimation by utilization of performance coun-

ters, call tracing, system observers and subsequent generation of system-specific

models for estimation of power consumption. Bircher and John used processor per-

formance counters and system-specific models to estimate consumption of CPU,

memory, disk, and I/O [73]. Pathak et al. [74], [75] and Li and John [76] used system

call tracing and known observations of the system to generate models that can per-

form run-time power estimation with fine-grained measurements.

 Whereas prior studies focused on capturing power traces on smartphones

[68]–[71], [82], they relied on manual control and post-processing for synchroniza-

tion of power traces with events in profiled programs or focused on early

smartphones and software platforms. In addition, they relied on hardware setups

90

that required inserting a shunt resistor on the power supply line, thus introducing a

slight deviation in the power supply of the device under test. The setup for automat-

ed power profiling [56], [57] used in preliminary studies and framework evaluation

on mobile devices for this dissertation offers several advantages over the setups in-

troduced in [68]–[71], [82]. For example, we utilize Android Debug Bridge (adb) to

remotely control the mobile device and launch script command files for unobtrusive

power measurements. Next, we use network time synchronization protocol to pre-

cisely capture activities on the mobile device and synchronize the current samples

collected on the workstation with these activities. Our use of the battery simulator

eliminates any voltage changes across the shunt resistor due to drainage of the bat-

tery. Additionally, mLViewPowerProfile offers flexible control and automation of ex-

periments.

 For this dissertation, energy estimation is also performed through the use of

models which estimate energy efficiency of uncompressed and compressed transfers

by utilizing prediction tables filled with performance data and several device-specific

characteristics. Whereas prior studies focused on the use of performance counters

and call tracing to generate power estimation models [73]–[76], the current state of

our models and energy estimations used in the framework does not rely on perfor-

mance counters. However, it is one of the possible future improvements that can

provide better energy estimation of uncompressed and compressed data transfers

and improvement to framework adaptation on new devices and platforms.

 Workstations

 The statement that hardware modifications to support direct energy meas-

urements are not always possible or desirable holds true for workstation and server

91

computer systems, with some cases where hardware modifications can be almost

impossible to perform. This is why several prior studies focused power estimation

and power characterization through use of performance counters and system call

tracing on Intel and AMD architecture workstations, as in study by Bircher and

John [73]. Since modern Intel microprocessors on workstations, starting with Sandy

Bridge architecture, include the RAPL interface [83], [84], energy estimates have

been validated by Intel to verify that they closely follow the actual energy used [51].

92

CHAPTER 4

FRAMEWORK OVERVIEW AND DESIGN

 This chapter gives an overview of the framework for intelligent file transfers

between edge devices and the cloud. Section 4.1 gives an overview of the proposed

framework and its main components and Section 4.2 discusses the design of the

framework components.

 Framework Overview

 This section gives an overview of the proposed framework for intelligent file

transfers between edge devices (mobile, workstation) and the cloud. The next two

sub-sections give an overview of the framework operation for three transfer methods

from the perspective of an edge device: optimized file uploads (Section 4.1.1) and op-

timized file downloads with and without on-demand compression (Section 4.1.2).

 Optimized File Uploads

Figure 4.1 illustrates a system view of optimized file uploads initiated on an

edge device. A software agent running on the device is responsible for selecting an

effective transfer mode for each file upload. The agent uses two modes of optimiza-

tion, one uses the effective throughput and another uses energy efficiency as a

measure of effectiveness. The mode of optimization can be specified by the user (hu-

man or machine) during each file upload. Additionally, the agent can be configured

to use a combined metric for additional modes of optimization, such as a product of

93

the effective throughput and the energy efficiency. To select the most effective trans-

fer mode, the agent relies on the following inputs: (i) file information (file type and

file size); (ii) network connection parameters; (iii) analytical models describing the

effective throughput for uncompressed file uploads as well as for compressed file up-

loads for all (utility, level) combinations available on the device; (iv) device charac-

teristics and active peak currents for all (utility, level) combinations and uncom-

pressed uploads used in estimating effective energy efficiency for energy-efficient

mode of optimization; and (v) history-based prediction tables that for a given un-

compressed file predict the compression ratio and the local compression throughput

for all compression utilities. The energy-efficiency is estimated from the throughput

and active peak currents for all (utility, level) combinations and uncompressed

transfers.

On an upload request, the agent performs a query on the prediction table

with the file size, type, and network connection parameters as inputs. The query

produces estimated compression ratios and local compression throughputs for each

(utility, level) pair supported on the device. These estimates are then used in the an-

alytical models to calculate estimates for either the effective compressed upload

throughputs or upload energy efficiencies for each (utility, level) pair, depending on

the operating mode. For throughput mode, the effective throughput of the best per-

forming combination of (utility, level) pair is compared to the effective throughput of

the uncompressed upload. If it offers a higher throughput, the compressed upload

with the (utility, level) pair is selected. Similarly, for energy-efficient mode, the es-

timated energy efficiency of the best performing combination of (utility, level) pair is

compared to the estimated energy efficiency of the uncompressed upload. If it offers

higher energy efficiencies, the (utility, level) pair is selected. The agent then simul-

94

taneously initiates the selected compressed upload. Otherwise, the file is transferred

uncompressed.

Figure 4.1 System view of optimized data file uploads

The expected savings due to compressed file uploads should exceed by far the

time or energy the agent spends in the selection process. The agent maintains the

parameters that characterize the network connection: the network throughput,

Th.UP, and the time to set up a network connection, T.SC. To avoid imposing an ad-

ditional overhead to the current file upload, we assume that these parameters are

acquired prior to upload – e.g., an agent can periodically probe the network connec-

tion of interest. Once the transfer has been completed, the agent determines the

compression ratio and the local compression throughput and creates a new entry in

the prediction tables to inform future queries. Additionally, after a certain period of

Agent
(Select Upload Mode)

(Size, Type)

Network
Parameters

Analytical
Models

Prediction Tables

Upload
Request

UF

Local Edge
Device

Storage
Management

Update

Th.SC

Th.UP

EE.SC

EE.UP

Th.UUP

Th.CUP

EE.UUP

EE.CUP

Compress?

Upload

(Utility,
Level)U/CU

exclusionType

FileType

historyComp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Client’s Historical and System Tables

compUtil

PK FileId

CompUtil

CompLevel

EEThRatio_C

EEThRatio_D

historyDecomp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Internet

(Utility, Level, CR, Th.C)

Server/
Cloud

95

time or the number of file transfers, the agent reduces the number of entries in the

prediction tables by averaging similar entries to simplify and speed up future que-

ries.

 Optimized File Downloads

 Figure 4.2 and Figure 4.3 illustrate a system view of optimized file downloads

initiated from an edge device. A software agent running on the device initiates a

download request by sending the device id, file name, and current network parame-

ters to the server. The software agent running on the server is then responsible for

selecting an effective transfer mode for the edge device for each file download. The

server agent either sends already compressed file (Figure 4.2) or performs an on-

demand compression of uncompressed file (Figure 4.3). In both cases, the agents use

one of the two modes of optimization, for throughput or for energy efficiency. As in

uploads, the mode of optimization can be specified by the user (human or machine)

for each file download. Similarly, the agents can be configured to use combined met-

ric for additional modes of optimization, such as a product of the effective through-

put and the energy-efficiency.

To select the most effective transfer mode, the agent on the server relies on

the following inputs: (i) device id sent by the edge device to make device specific se-

lection; (ii) network connection parameters sent by the edge device; (iii) file infor-

mation (file type and file size); (iv) analytical models describing the effective

throughput for uncompressed file downloads as well as for compressed file down-

loads (with or without on-demand compression) for all (utility, level) combinations;

(v) device characteristics and active peak currents for all (utility, level) combinations

and uncompressed downloads; and (vi) history-based prediction tables that predict

96

the compression ratio and the local decompression throughput for a given com-

pressed file.

 Once the edge device sends the request to the server, the server agent per-

forms a query on the prediction table with the edge device id, the uncompressed file

information (size and type), and edge device network connection parameters as in-

puts. If the server maintains compressed versions of the requested file, the actual

compression ratios are known and do not have to be predicted (to lower the over-

head, the server agent stores compression ratios for all managed files). Thus, the

query retrieves actual compression ratios and estimated local decompression

throughputs for each (utility, level) pair supported on the requesting device. In case

of on-demand compression, compression ratios have to be estimated from the predic-

tion table. Thus, the query produces estimated compression ratios, the local decom-

pression throughputs for each (utility, level) pair supported on the requesting device,

and the local compression throughputs for each (utility, level) pair supported on the

server in the cloud. These estimates are then used in the analytical models to calcu-

late either the estimated effective compressed download throughputs or energy effi-

ciencies for each (utility, level) pair. The server agent then compares the estimated

metrics for the best performing compressed downloads to the uncompressed down-

loads and selects an appropriate transfer mode that minimizes the metric of inter-

est.

The expected savings due to compressed file downloads should exceed by far

the time the server agent spends in the selection and possible compression tasks.

The mobile device agent maintains the parameters that characterize the network

connection: the network throughput, Th.DW, and the time to set up a network con-

nection, T.SC. To avoid imposing an additional overhead to the current file down-

97

load, we assume that these parameters are acquired prior to download – e.g., an

agent can periodically probe the network. Furthermore, instead of sending network

parameters on each download request, a mobile device can instead establish a cookie

for the server to access for an extended period of time (e.g., web session, application

session). Once the transfer has been completed, the edge device agent determines

the compression ratio and the local decompression throughput and creates a new

entry in the prediction tables to inform future downloads. Additionally, after a cer-

tain period of time or the number of file transfers, the edge device agent reduces the

number of entries in the prediction tables by averaging similar entries to simplify

and speed up future queries.

Agent
(Select Download Mode)

(DeviceID,
FileName,

Th.DW,
T.SC)

Network
Parameters

Analytical
Models

Server/
Cloud

Th.SC

Th.DW

EE.SC

EE.DW

Th.UDW

Th.CDW

EE.UDW

EE.CDW

Send to
Client

(Utility,
Level)U/CU

UF/CF

Agent
(decompression)

Download
Request

Prediction Tables

exclusionType

FileType

historyComp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Client’s Historical and System Tables

compUtil

PK FileId

CompUtil

CompLevel

EEThRatio_C

EEThRatio_D

historyDecomp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Update
 Tables

(Utility, Level, CR, ThLocal)

Local Edge Device

exclusionType

FileType

historyComp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Client’s Historical and System Tables

compUtil

PK FileId

CompUtil

CompLevel

EEThRatio_C

EEThRatio_D

historyDecomp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Prediction Tables

(DeviceID, Utility, Level, CR, ThLocal)

Internet

Setup
Initial
Tables

Update
Server’s
Tables

Figure 4.2 System view of optimized data file downloads

98

Agent
(Select Download Mode)

(DeviceID,
FileName,

Th.DW,
T.SC)

Network
Parameters

Analytical
Models

Server/
Cloud

Th.SC

Th.DW

EE.SC

EE.DW

Th.UDW

Th.CDW

EE.UDW

EE.CDW

Send to
Client

Agent
(decompression)

Download
Request

Prediction Tables

exclusionType

FileType

historyComp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Client’s Historical and System Tables

compUtil

PK FileId

CompUtil

CompLevel

EEThRatio_C

EEThRatio_D

historyDecomp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Update
 Tables

(Utility, Level, CR, ThLocal)

Local Edge Device

exclusionType

FileType

historyComp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Client’s Historical and System Tables

compUtil

PK FileId

CompUtil

CompLevel

EEThRatio_C

EEThRatio_D

historyDecomp

PK Id

ThLocal

CR

I1 FileSize

I1 FileType

I1 CompUtil

I1 CompLevel

Prediction Tables

(DeviceID, Utility, Level, CR, ThLocal)

Internet

Setup
Initial
Tables

Update
Server’s
Tables

Update

(Size, Type)

UF Compress?

(Utility,
Level)U/CU

Figure 4.3 System view of optimized data file downloads

with on-demand compression

99

 Framework Components

The first step in creating a framework for optimal data transfers is the devel-

opment of analytical models by which metrics characterizing compressed and un-

compressed data transfers can be estimated. Analytical models should be able to

accurately estimate the effective throughput and energy efficiency for different

modes of data transfers.

 The rest of this section discusses the design of the framework for optimal da-

ta transfers. Section 4.2.1 introduces modeling of uncompressed file transfers, in-

cluding analytical models for performance, energy metrics and estimated energy

metrics from performance (Section 4.2.1.1), experimental verification of proposed

models over a number of communication channels (Section 4.2.1.2), and method for

deriving network parameters (Section 4.2.1.3). Section 4.2.2 introduces modeling of

compressed file transfers, including performance limits (Section 4.2.2.1), energy lim-

its (Section 4.2.2.2), a piping model for compressed file transfers (Section 4.2.2.3),

and a method for estimation of energy metrics from performance metrics and device

characteristics (Section 4.2.2.4). Section 4.2.3 discusses the acquisition of historical

prediction data to describe the performance of local (de)compression tasks. Section

4.2.4 presents the basic data table structure (Section 4.2.4.1), which includes predic-

tion and other tables. Section 4.2.4.2 describes the life cycles of data tables during

different stages of the framework operation. Finally, a number of database optimiza-

tions are presented in Section 4.2.4.3.

 Modeling Uncompressed File Transfers

Section 4.2.1.1 describes the analytical models for effective throughput and

energy efficiency of uncompressed file transfers. Section 4.2.1.2 presents experi-

100

mental verification of the proposed analytical models on a mobile device and work-

station over the selection of communication channels (LAN, WLAN, and 3G/4G),

network throughputs, and transfers to both local and cloud servers. Section 4.2.1.3

describes the derivation of network parameters to characterize the communication

channel using the proposed framework and a limited number of measurements.

4.2.1.1 Analytical Models for Uncompressed File Transfers

Execution time and throughput. The total time to perform a file transfer

includes edge device overhead time, network connection setup time, file transmis-

sion time, and cloud overhead time. In case of uncompressed file uploads, the edge

device and cloud overheads can be ignored. Thus, the total time of an uncompressed

file upload, T.UUP, includes the time to set up a network connection, T.SC, and the

file transmission time, T.UP, as shown in Equation (4.1). If we know the network

upload throughput, Th.UP, the file transmission time for upload can be calculated as

the ratio between the file size and the network upload throughput,

T.UP=US/Th.UP. Similarly, the total time of an uncompressed file download,

T.UDW, includes T.SC and the file transmission time, T.DW, as shown in Equation

(4.2). The file transmission time for download can be calculated as

Th.DW=US/Th.DW, where Th.DW is the network download throughput.

The effective upload throughput is calculated as the uncompressed file size in

megabytes, US, divided by the total time to upload the file, Th.UUP=US/T.UUP.

The effective download throughput, Th.UDW, is calculated as the uncompressed file

size, US, divided by the total time to download the file, Th.UDW=US/T.UDW.

Equations (4.3) and (4.4) show the expressions for the effective upload and download

throughputs, respectively. The effective throughputs depend on the file size, the

101

time to set up the network connection, and the network upload and download

throughputs. The effective throughputs, Th.UUP [Th.UDW], reach the network

throughputs, Th.UP [Th.DW], when transferring large files. In case of smaller files,

the time to set up the network connection limits the effective throughput.

𝑇. 𝑈𝑈𝑃 = 𝑇. 𝑆𝐶 + 𝑇. 𝑈𝑃 = 𝑇. 𝑆𝐶 + 𝑈𝑆/𝑇ℎ. 𝑈𝑃

(4.1)

𝑇. 𝑈𝐷𝑊 = 𝑇. 𝑆𝐶 + 𝑇. 𝐷𝑊 = 𝑇. 𝑆𝐶 + 𝑈𝑆/𝑇ℎ. 𝐷𝑊

(4.2)

𝑇ℎ. 𝑈𝑈𝑃 =

𝑇ℎ. 𝑈𝑃

1 + 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆

(4.3)

𝑇ℎ. 𝑈𝐷𝑊 =

𝑇ℎ. 𝐷𝑊

1 + 𝑇ℎ. 𝐷𝑊 ∙ 𝑇. 𝑆𝐶/𝑈𝑆

(4.4)

Total energy and energy efficiency. The total energy at the edge device

needed to perform a file transfer includes edge device energy overhead, the energy to

set up a network connection, and the energy to perform the file transmission. In a

case of uncompressed file uploads, the edge device overhead can be ignored. Thus,

the total energy cost of an uncompressed data file upload, ET.UUP, includes the en-

ergy to set up a network connection, ET.SC, and the energy to perform file transmis-

sion, ET.UP, as shown in Equation (4.5). If we know the network upload energy effi-

ciency, EE.UP, the file transmission energy can be calculated by dividing the file

size with the network upload energy efficiency, ET.UP=US/EE.UP. Similarly, the

total energy of an uncompressed data file download, ET.UDW, includes ET.SC and

the energy of file transmission, ET.DW, as shown in Equation (4.6). The file trans-

mission energy can be calculated as ET.DW=US/EE.DW, where EE.DW is the net-

work download energy efficiency.

102

The effective upload energy efficiency is calculated as the uncompressed file

size divided by the total energy to upload the file, EE.UUP=US/ET.UUP. The effec-

tive download energy efficiency is calculated as the uncompressed file size divided by

the energy to download the file, EE.UDW=US/ET.UDW. Equations (4.7) and (4.8)

show the expressions for the effective upload and download energy efficiencies, re-

spectively, as the functions of the file size, the energy to set up the network connec-

tion, and the network upload and download energy efficiencies. The effective energy

efficiencies, EE.UUP [EE.UDW], reach the network energy efficiencies, EE.UP

[EE.DW], when transferring very large files. In case of smaller files, the energy to

set up the network connection limits the effective energy efficiency.

𝐸𝑇. 𝑈𝑈𝑃 = 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝑈𝑃 = 𝐸𝑇. 𝑆𝐶 + 𝑈𝑆/𝐸𝐸. 𝑈𝑃

(4.5)

𝐸𝑇. 𝑈𝐷𝑊 = 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐷𝑊 = 𝐸𝑇. 𝑆𝐶 + 𝑈𝑆/𝐸𝐸. 𝐷𝑊

(4.6)

𝐸𝐸. 𝑈𝑈𝑃 =

𝐸𝐸. 𝑈𝑃

1 + 𝐸𝐸. 𝑈𝑃 ∙ 𝐸𝑇. 𝑆𝐶/𝑈𝑆

(4.7)

𝐸𝐸. 𝑈𝐷𝑊 =

𝐸𝐸. 𝐷𝑊

1 + 𝐸𝐸. 𝐷𝑊 ∙ 𝐸𝑇. 𝑆𝐶/𝑈𝑆

(4.8)

Estimated energy efficiency. Since the energy consumed and energy effi-

ciency cannot be measured as easily as the execution time and throughput, an alter-

native way is to estimate the energy consumed from the existing throughput models.

To do that, device characteristics such as device battery voltage, 𝑉𝐵𝑆, device idle cur-

rent, 𝐼𝑖𝑑𝑙𝑒, and maximum active peak currents, 𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎 [𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎], for data file up-

load and download have to be known. Thus we would like to estimate energy-based

network parameters, EE.UP [EE.DW] and ET.SC, from the existing performance

parameters, Th.UP [Th.DW] and T.SC. Those parameters can be extracted ahead of

103

time for each device, or per class of devices that share similar hardware characteris-

tics (e.g., low-end and high-end mobile devices, low-end and high end workstations).

The total energy to perform a file transfer is the sum of idle energy calculated

as the product of device battery voltage, 𝑉𝐵𝑆, the idle current, 𝐼𝑖𝑑𝑙𝑒, and the total time

to perform the file transfer, T.UUP [T.UDW]), and the energy overhead, calculated

as the product of the device battery voltage, the maximum active peak current,

𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎[𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎], and the total time to perform the file transfer. The final expres-

sions are shown in Equation (4.9) and (4.10). The estimated network energy efficien-

cy for upload, EE.UP, is calculated as the uncompressed file size, US, divided by to-

tal energy consumed in Equation (4.9). The final expression for estimated network

energy efficiency for upload is shown in Equation (4.11), as a function of the effective

upload throughput, the device battery voltage, and of idle and maximum active peak

currents. The estimated network energy efficiency for download is calculated simi-

larly and shown in Equation (4.12). The estimated energy to set up a network con-

nection, ET.SC, is calculated as shown in Equation (4.13). This expression is due to

the observation that the current gradually rises up to the active current during the

network setup, which can be calculated as the area of the right-angled triangle.

𝐸𝑇. 𝑈𝑈𝑃 = 𝑉𝑏𝑠 ∙ 𝑇. 𝑈𝑈𝑃 ∙ 𝐼𝑖𝑑𝑙𝑒 + 𝑉𝑏𝑠 ∙ 𝑇. 𝑈𝑈𝑃 ∙ 𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎

(4.9)

𝐸𝑇. 𝑈𝐷𝑊 = 𝑉𝑏𝑠 ∙ 𝑇. 𝑈𝐷𝑊 ∙ 𝐼𝑖𝑑𝑙𝑒 + 𝑉𝑏𝑠 ∙ 𝑇. 𝑈𝐷𝑊 ∙ 𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎

(4.10)

𝐸𝐸. 𝑈𝑃 =

𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝑈𝑈𝑃 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝑈𝑃

𝑉𝐵𝑆 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎)

(4.11)

𝐸𝐸. 𝐷𝑊 =

𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝑈𝐷𝑊 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝐷𝑊

𝑉𝐵𝑆 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎)

(4.12)

𝐸𝑇. 𝑆𝐶 = 𝑉𝐵𝑆 ∙ 𝑇. 𝑆𝐶 ∙ (𝐼𝑖𝑑𝑙𝑒 +

1

2
∙ 𝐼. 𝑈𝑃𝑑𝑒𝑙𝑡𝑎[𝐼. 𝐷𝑊𝑑𝑒𝑙𝑡𝑎])

(4.13)

104

4.2.1.2 Experimental Verification of Analytical Models

To verify the models described by the equations from above, we perform a set

of measurement-based experiments on a mobile device and a workstation as follows.

For the mobile device, the OnePlus One smartphone is used to initiate a series of file

uploads to a local server and a series of file downloads from a local server. For each

file transfer, the execution time and the energy consumed are measured using a

measurement setup for edge devices that involves a battery simulator described in

Section 2.4.2 [19], [56], [57]. During first two experiments, the smartphone is con-

nected to the Internet over its WLAN interface, and file transfers are conducted us-

ing an encrypted network channel (ssh) and non-encrypted network channel

(wget/FTP). The file sizes are set to vary from 1 KB to 100 MB. Note: the files are

created using the Linux dd command as shown in Figure 4.4. The command utilizes

the Linux input device /dev/zero, a special 'file' that provides nulls (0x00) for all da-

ta read from it. The upload and download experiments are repeated for four network

throughputs set to Th.UP = Th.DW = 0.5 MB/s, 2 MB/s, 3.5 MB/s, and 5 MB/s. Dur-

ing the third experiment, the smartphone is connected to the Internet over its 3G/4G

network interface, and file transfers are repeated using an encrypted network chan-

nel (ssh) with uncapped network throughput.

dd if=/dev/zero of=output.dat bs=1M count=24

Figure 4.4 Creating 1M file using input device /dev/zero

 For the workstation, the Dell PowerEdge T110 II is used to initiate a series of

file uploads to a local server and to the cloud instances in North Virginia and Tokyo

105

and a series of file downloads from a local server and from the cloud instances in

North Virginia and Tokyo. For each file transfer, the execution time is measured us-

ing Linux’s time and date utility with nanosecond precision. For transfers to and

from the local server, the same set of generated files, used by OnePlus One (1 KB to

100 MB), is used to perform the first set of experiments with a local server. The up-

load and download experiments are repeated for four network throughputs set to

Th.UP = Th.DW = 0.5 MB/s, 2 MB/s, 3.5 MB/s, and 5 MB/s. For the second set of ex-

periments with transfers to and from the cloud, subsets of files are selected from

three datasets introduced in Table 2.4 (20 files from each dataset). The upload and

download experiments are repeated using three network throughputs set to

Th.UP=Th.DW= uncapped, 5 MB/s and 2 MB/s.

The rest of this subsection will present results of conducted experiments on

the OnePlus One, with WLAN and 3G/4G network connection, and results of con-

ducted experiments on the workstation, while transferring files to and from the local

server with LAN network connection, and while transferring files to and from the

cloud instances with LAN network connection. The experiments will demonstrate

how network parameters depend on the type of connection (encrypted or non-

encrypted), available network throughput, and finally, the location of a server or a

cloud instance relative to the edge device requesting file transfers.

Mobile device (WLAN). Figure 4.5 (a) shows the measured effective

throughputs for uncompressed uploads over the encrypted WLAN channel as a func-

tion of the file size, US, and the network connection throughput for uploads, Th.UP.

The plots show that the effective throughput saturates for the larger files, reaching

the network connection throughput, i.e., Th.UUP=Th.UP. By using a curve fitting,

we derive an equation that models the effective throughput. The dashed lines in

106

Figure 4.5 (a) illustrate the derived equation for different network upload through-

puts. The derived equation matches the Equation (4.3) from the proposed analytical

model. The constant that corresponds to the time to set up the connection for our

setup, T.SC, is 0.36 seconds.

Figure 4.5 (b) shows the effective energy efficiencies for uncompressed up-

loads over the encrypted WLAN channel as a function of the file size and the net-

work connection energy efficiency, EE.UP. The plots show that the effective energy

efficiency saturates for the larger files, reaching the network connection energy effi-

ciency, i.e., EE.UUP=EE.UP. By using a curve fitting, we derive an equation that

models the effective energy efficiency. The dashed lines in Figure 4.5 (b) illustrate

the derived equations for different network upload throughputs. The derived equa-

tions match the Equation (4.4) from the proposed analytical model with two con-

stants corresponding to ET.SC and EE.UP. For the setup used in our experiment

ET.SC is 0.17 Joules.

107

(a)

(b)

Figure 4.5 Uploads over encrypted WLAN channel (OnePlus One):

measured throughputs (a) and energy efficiencies (b)

Figure 4.6 (a) and Figure 4.6 (b) show the measured effective throughputs

and energy efficiencies for uncompressed file downloads over the encrypted WLAN

channel for different network throughputs, respectively, as a function of the file size.

The results of the download experiments confirm the correctness of the proposed an-

alytical models for the effective throughput and energy efficiency for uncompressed

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Uploads over encrypted WLAN channel: Throughput (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

EE
.U

U
P

 [
M

B
/J

]

US [MB]

Uploads over encrypted WLAN channel: Energy Efficiency (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

108

file downloads. Derived constants for T.SC and ET.SC match those derived from the

upload experiments.

(a)

(b)

Figure 4.6 Downloads over encrypted WLAN channel (OnePlus One):

measured throughputs (a) and energy efficiencies (b)

Figure 4.7 (a) and Figure 4.7 (b) show the measured effective throughputs

and energy efficiencies for a set of download experiments carried over the unen-

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over encrypted WLAN channel: Throughput (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

EE
.U

D
W

 [
M

B
/J

]

US [MB]

Downloads over encrypted WLAN channel: Energy Efficiency (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

109

crypted WLAN channel. The derived constants for T.SC and ET.SC are smaller than

those for data transfers over the encrypted WLAN channel. T.SC is 0.12 seconds and

ET.SC ranges from 0.03 Joules (for high network throughput) to 0.06 Joules (for low

network throughput), respectively. As a result, the effective throughputs and energy

efficiencies reach the saturation for smaller file sizes than for downloads over the

encrypted WLAN channel. For the 5 MB/s network, the effective throughputs reach-

es 90% of network throughput at 6 MB on the unencrypted WLAN channel, and at

20 MB on the encrypted WLAN channel. The dashed lines in Figure 4.7 (a) and Fig-

ure 4.7 (b) illustrate the derived equations for different network upload and down-

load throughputs.

110

(a)

(b)

Figure 4.7 Downloads over unencrypted WLAN channel (OnePlus One):

measured throughputs (a) and energy efficiencies (b)

Mobile device (3G/4G). Figure 4.8 (a) and Figure 4.9 (a) show the measured

effective throughputs for uncompressed uploads and downloads over the encrypted

3G/4G channel. The plots show that the achievable network throughputs are much

smaller compared to WLAN transfers, reaching only 0.08 MB/s for upload and

0.5 MB/s for download. The derived constants for T.SC are significantly larger than

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over unencrypted WLAN channel: Throughput (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

EE
.U

D
W

 [
M

B
/J

]

US [MB]

Downloads over unencrypted WLAN channel: Energy Efficiency (OnePlus One)

0.5MB/s 2.0MB/s 3.5MB/s 5.0MB/s

111

ones for data transfers over the encrypted and unencrypted WLAN channel and are

3 to 3.5 seconds for both upload and download.

Figure 4.8 (b) and Figure 4.9 (b) show the measured effective energy efficien-

cy for uncompressed uploads and downloads over the encrypted 3G/4G channel. The

plots show that the achievable network energy efficiency are much smaller com-

pared to WLAN transfers, reaching only 0.04 MB/J for upload and 0.4 MB/J for

download. The derived constants for ET.SC are also significantly larger than ones

for data transfers over the encrypted and unencrypted WLAN channel and are 4 to 5

Joules for both upload and download. The dashed lines in Figure 4.8 and Figure 4.9

illustrate the derived equations for different network upload and download through-

puts and energy efficiencies.

112

(a)

(b)

Figure 4.8 Uploads over encrypted 3G/4G channel (OnePlus One):

measured throughputs (a) and energy efficiencies (b)

0.001

0.010

0.100

1.000

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Uploads over encrypted 3G/4G channel: Throughput (OnePlus One)

3G/4G

0.0

0.0

0.0

0.1

1.0

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Uploads over encrypted 3G/4G channel: Energy Efficiency (OnePlus One)

3G/4G

113

(a)

(b)

Figure 4.9 Downloads over encrypted 3G/4G channel (OnePlus One):

measured throughputs (a) and energy efficiencies (b)

Workstation and the local server (LAN). The same set of experiments is

repeated using the Dell PowerEdge T110 II workstation as an edge device. Due to

faster processor and LAN network interface, the parameters T.SC and ET.SC are

smaller than in the experiments conducted on OnePlus One. T.SC and ET.SC are

0.21 seconds and 0.11 Joules for the encrypted channel, and 0.015 seconds and

0.011 Joules for the unencrypted channel.

0.001

0.010

0.100

1.000

0.01 0.10 1.00 10.00 100.00

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over 3G/4G channel: Throughput (OnePlus One)

3G/4G

0.00

0.00

0.01

0.10

1.00

0.01 0.10 1.00 10.00 100.00

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over unencrypted 3G/4G channel: Energy Efficiency (OnePlus One)

3G/4G

114

Workstation and the Cloud (LAN). Performing experiments with transfers

to and from the cloud, instead of the local server, adds additional variable that af-

fects network parameters. The distance to the cloud instance increases the time and

energy to set up the connection, T.SC [ET.SC], and lowers the network throughput

and energy efficiency, Th.UP [EE.UP] and Th.DW [EE.DW].

Figure 4.10 shows the measured effective throughputs for uncompressed up-

loads to the North Virginia and Tokyo cloud instances over the encrypted LAN

channel. For uploads to the North Virginia instance, the network throughput for the

uncapped network is 18.40 MB/s. The derived time to set up a network connection

ranges from 0.68 seconds (on the uncapped network) to 0.58 seconds (on the 2 MB/s

network). For uncompressed uploads to Tokyo instance, the network throughput for

the uncapped network is 8.38 MB/s. The derived time to set up a network connection

has increased due to increased distance from the requesting client and range from

4.9 seconds (on the uncapped network) to 3.75 (on the 2 MB/s network). Increased

time to set up a network connection results in much slower saturation of the effec-

tive throughput, which reaches 90% of network throughput on the uncapped net-

work at 367 MB, instead of 120 MB as with uploads to North Virginia.

Figure 4.11 shows the measured effective throughputs for uncompressed

downloads to North Virginia and Tokyo cloud instances over encrypted LAN chan-

nel. For downloads from North Virginia instance, the effective throughput for the

uncapped network is 80.61 MB/s. The derived time to set up a network connection

ranges from 0.65 seconds (on the uncapped network) to 0.56 seconds (on the 2 MB/s

network). For downloads from Tokyo instance, the effective throughput for uncapped

download is smaller than for North Virginia instance, reaching 10.45 MB/s. The de-

rived time to set up a network connection has increased due to increased distance,

115

and ranges from 4.4 seconds (on the uncapped network) to 3.5 (on the 2 MB/s net-

work). The effective throughput saturates much slower, reaching 90% of network

throughput on the uncapped network at 400 MB, instead of 250 MB as with uploads

to North Virginia.

(a)

(b)

Figure 4.10 Uploads over encrypted LAN channel (Dell PowerEdge T110 II):

measured throughputs: North Verginia (a) and Tokyo (b)

0.5

5.0

50.0

2 20 200 2000

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Uploads over encrypted LAN channel (AWS EC2, N. Virginia)
Th.UUP(UC) Th.UUP(5MB/s) Th.UUP(2MB/s)

0.5

5.0

50.0

2 20 200 2000

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Uploads over encrypted LAN channel (AWS EC2, Tokyo)
Th.UUP(UC) Th.UUP(5MB/s) Th.UUP(2MB/s)

116

(a)

(b)

Figure 4.11 Downloads over encrypted LAN channel (Dell PowerEdge T110 II):

measured throughputs: North Virginia (a) and Tokyo (b)

4.2.1.3 Network Connection Characterization

The experimental verification of the models for the effective throughput and

energy efficiency requires a series of uploads and downloads of data files of different

sizes. However, such an approach is not practical in real conditions because it takes

1.0

10.0

100.0

2 20 200 2000

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over encrypted LAN channel (AWS EC2, N. Virginia)

Th.UDW(UC) Th.UDW(5MB/s) Th.UDW(2MB/s)

0.5

5.0

50.0

2 20 200 2000

Th
.U

D
W

 [
M

B
/s

]

US [MB]

Downloads over encrypted LAN channel: Throughput (AWS EC2, Tokyo)

Th.UDW(UC) Th.UDW(5MB/s) Th.UDW(2MB/s)

117

considerable time and requires instrumentation of smartphone for performing ener-

gy measurements. Here we describe a practical approach for deriving unknown per-

formance and energy network parameters using the verified analytical model and a

limited number of experiments. Specifically, we describe practical experiments that

derive the following parameters:

 The upload and download network throughputs, Th.UP [Th.DW],

 The network upload and download energy efficiencies,

EE.UP [EE.DW],

 The time and energy spent to set up the network connection,

T.SC [ET.SC]

 The proposed method for deriving the network parameters involves perform-

ing a two file upload or download test. Two files of different sizes are selected to be

uploaded or downloaded over a network connection with unknown parameters. The

total transfer time is measured and used to calculate the effective throughput. These

measured quantities are then used within the models to derive the unknown per-

formance parameters, Th.UP [Th.DW] and T.SC. The derived performance network

parameters are then used to estimate energy network parameters, EE.UP [EE.DW]

and ET.SC, using known device characteristics (device battery voltage, device idle

current, and the maximum active peak currents of data file transfers) and Equations

(4.11), (4.12) and (4.13).

 To demonstrate the derivation of performance and energy network parame-

ters, we consider file uploads over an ssh network connection that utilizes the

smartphone’s WLAN interface. The goal is to determine the Th.UP and T.SC and

then estimate EE.UP and ET.SC. We select two test files with sizes US(s)=0.14 MB

118

and US(l)=1.24 MB. The measured effective throughputs are Th.UUP(s)=0.36 MB/s

for the 0.14 MB file and Th.UUP(l)=2.06 MB/s for the 1.24 MB file. Next, by replac-

ing the file sizes and the measured effective throughputs in Equation (4.14) we get

two equations with two unknowns, T.SC and Th.UP. By solving the system of linear

equations, shown in Equation (4.15), we derive values of 5.167 MB/s and

0.362 seconds for Th.UP and T.SC, respectively. Using Equations (4.11) and (4.13),

energy parameters (EE.UP and ET.SC) are estimated to be 5.868 MB/J and

0.16 Joules, respectively.

𝑇ℎ. 𝑈𝑃 =

𝑇ℎ. 𝑈𝑈𝑃

1 − 𝑇ℎ. 𝑈𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆

(4.14)

𝑇ℎ. 𝑈𝑃 − 2.57 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 0.36

𝑇ℎ. 𝑈𝑃 − 1.66 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶 = 2.06
(4.15)

 Figure 4.12 (a) and (b) illustrates the proposed method for characterizing

network connection with performance and energy-based metrics. The measured up-

load throughputs and the estimated energy efficiencies for two selected files are

marked with a blue and a red diamond in both figures respectively. By deriving

Th.UP and T.SC, and estimating EE.UP and ET.SC, the models from Equation (4.3)

and (4.7) are plotted using a black dashed-dot curve. The actual measurements of

the effective upload throughputs (a) and effective upload energy efficiencies (b) per-

formed during the verification phase are shown as blue circles. A visual inspection

shows that the model with parameters extracted (performance) and estimated (ener-

gy) by just two measurements matches the actual measurements of throughputs and

energy efficiencies performed during the verification phases.

119

(a)

(b)

Figure 4.12 Extracting network parameters for uploads: throughput (a) and

estimated energy efficiency (b)

 Modeling Compressed File Transfers

 A compressed upload of a data file to the cloud and a compressed download

from the cloud can be performed in two ways, sequentially or with the use of piping.

In case of a sequential upload, the data file is first compressed locally on the edge

device and then compressed file is transferred to the cloud, with no overlap between

these two tasks. Similarly, in case of a sequential download, the compressed data file

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

Th
.U

U
P

 [
M

B
/s

]

US [MB]

Extracting network parameters for upload (Th.UP, T.SC)
Th.UUP (Actual Measurements) 0.14 MB 1.24 MB Th.UP Th.UUP

0.01

0.10

1.00

10.00

0.01 0.10 1.00 10.00 100.00

EE
.U

U
P

 [
M

B
/J

]

US [MB]

Extracting network parameters for upload (EE.UUP, ET.SC)
EE.UUP (Actual Measurements) 0.14 MB 1.24 MB EE.UP EE.UUP

120

is first downloaded on the edge device and then decompressed. In case of piped file

transfers, the file (de)compression times are partially or completely hidden by the

time to set up the network connection and the file transmission time. When the

server does not have the requested compressed file, the uncompressed data file is

first compressed on the server, and then the compressed file is downloaded on the

edge device sequentially or with piping.

 This section is organized as follows. Subsections 4.2.2.1 and 4.2.2.2 introduce

upper and lower limits for the throughput and energy efficiency. The final analytical

models for the effective throughput and energy efficiency for piped file transfers are

introduced in Subsection 4.2.2.3. Subsection 4.2.2.4 presents a practical way of esti-

mating energy efficiency from the performance predication data. Finally, Subsection

4.2.2.5 describes how the framework utilizes the models when performing optimized

uploads and downloads.

4.2.2.1 Throughput Limits for Compressed File Transfers

 Compressed uploads. The maximum compressed upload time shown in

Equation (4.16), T.CUP.max, includes the time to perform the local compression of

the file on the edge device, the time to set up a network connection, T.SC, and the

time to transfer the compressed file, T.CUP'. The time to transfer the compressed

file can be calculated as the compressed file size, which is US/CR, where CR is the

compression ratio, divided by the network connection upload throughput Th.UP. In-

stead of using the time to perform local compression on the edge device, T.C, we can

use the local compression throughput, Th.C, defined as the uncompressed file size,

US, divided by the time to perform a local compression, T.C. This “higher is better”

metric captures ability of the edge device to perform local compression fast. The min-

121

imum compressed upload time shown in Equation (4.17), T.CUP.min, includes the

time to set up the network connection, T.SC, and the time to transfer the com-

pressed file, T.CUP'.

𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥 = 𝑇. 𝐶 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′
(4.16)

𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝑈𝑃′
(4.17)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛
=

𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃 ∙ (
1

𝑇ℎ. 𝐶
+

𝑇. 𝑆𝐶
𝑈𝑆

)

(4.18)

𝑇ℎ. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥
=

𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃 ∙ 𝑇. 𝑆𝐶/𝑈𝑆

(4.19)

 The minimum effective compressed upload throughput, Th.CUP.min, is cal-

culated as the uncompressed file size in megabytes, US, divided by the maximum

time to perform compressed upload, T.CUP.max. The maximum effective com-

pressed upload throughput, Th.CUP.max, is calculated as the uncompressed file size

in megabytes, US, divided by the minimum time to perform compressed upload

T.CUP.min. The final expressions in Equations (4.18) and (4.19) show the bounda-

ries for the compressed upload throughputs as a function of the network parameters,

Th.UP and T.SC, the file size, US, the compression ratio, CR, and the local compres-

sion throughput, Th.C. From these expressions, we can analytically estimate the

impact of changes in these parameters to the effective throughputs. For example,

the highest compressed upload throughput that can be achieved approaches the

product of the compression ratio and the network connection upload throughput,

which is possible in devices where local compression throughputs exceeds the net-

122

work upload throughput and when the size of a transferred file is sufficiently large

so that transfer time dwarfs the network connection setup time.

 Figure 4.13 illustrates the estimated minimum and maximum throughputs,

Th.CUP.min and Th.CUP.max, respectively, as well as the measured compressed

upload throughput, Th.CUP, for different modes of compressed upload for three files

with file sizes of 5 MB (a), 20 MB (b), and 100 MB (c). The three files are selected

from the dataset containing Zephyr Technologies BioHarness 3 chest belt raw sam-

ples in CSV format, including acceleration, breathing, and ECG data recorded dur-

ing various activities of a subject. The 5 MB file contains ECG samples recorded dur-

ing a 7-minute scientific workout [85], whereas 20 MB and 100 MB files contain

breathing and acceleration data from a subject's 6-hour sleep, respectively. The

measurements are performed on the OnePlus One smartphone with a 5 MB/s WLAN

network. The measured compressed upload throughput is between the predicted

minimum and maximum throughputs. For example, the estimated lower and upper

limits for the compression throughput of gzip with -1 are 6.15 MB/s and 10 MB/s for

the 5 MB file, 8.42 MB/s and 18.126 MB/s for the 20 MB file, and 11.79 MB/s and

31.09 MB/s for the 100 MB file, while the measured compression throughputs are

7.35, 11.62 and 16.18 MB/s, respectively. In contrast, the estimated bounds for bzip2

with -1 are 1.92 MB/s and 60.57 MB/s for the 5 MB file, 2.04 MB/s and 26.43 MB/s

for the 20 MB file, and 1.92 MB/s and 12.11 MB/s for the 100 MB file, while the

measured compression throughputs are 2.21, 2.18 and 1.95 MB/s, respectively. In

cases when the local compression throughput falls below the network connection up-

load throughput, Th.C << Th.UP, the effective compressed upload throughput is

closer to the minimum throughput (e.g., for xz). In cases when Th.C >> Th.UP, the

123

effective compressed upload throughput is closer to the expected maximum through-

put (e.g, for lzop).

124

(a)

(b)

(c)

Figure 4.13 Throughput limits: compressed uploads for 5 MB (a), 20 MB (b), and

100 MB (c) files

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Upload (5 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.min Th.CUP.max

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Upload (20 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.min Th.CUP.max

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Upload (100 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.min Th.CUP.max

125

 Compressed downloads. Assuming the compressed file is available on the

server, the maximum compressed download time shown in Equation (4.20),

T.CDW.max, includes the time to set up the network connection, T.SC, the time to

transfer the compressed file, T.CDW', and the time to perform the decompression of

the received file on the edge device. The time to transfer the compressed file can be

calculated as the compressed file size, US/CR, divided by the network connection

download throughput Th.DW. The time to perform decompression on the edge de-

vice, T.D, can be used to determine the local decompression throughput, Th.D, which

is defined as the uncompressed file size, US, divided by the time to perform decom-

pression. This metric thus captures the edge device’s ability to effectively perform

decompression. The minimum download time shown in Equation (4.21), T.CDW.min,

includes the time to set up the network connection, T.SC, and the time to transfer

the compressed file, T.CDW'.

𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥 = 𝑇. 𝐷 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′
(4.20)

𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛 = 𝑇. 𝑆𝐶 + 𝑇. 𝐶𝐷𝑊′
(4.21)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛
=

𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
1

𝑇ℎ. 𝐷
+

𝑇. 𝑆𝐶
𝑈𝑆

)

(4.22)

𝑇ℎ. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥
=

𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ 𝑇. 𝑆𝐶/𝑈𝑆

(4.23)

 The minimum effective compressed download throughput, Th.CDW.min, is

calculated as the uncompressed file size in megabytes, US, divided by the maximum

time to perform compressed upload, T.CDW.max. The maximum effective com-

pressed download throughput, Th.CDW.max, is calculated as the uncompressed file

126

size in megabytes, US, divided by the minimum time to perform the compressed

download, T.CDW.min. The final expressions in Equations (4.22) and (4.23) show the

boundaries for the compressed download throughputs as a function of the network

parameters, the file size, the compression ratio, and the local decompression

throughput.

 Figure 4.14 illustrates the estimated throughput boundaries and the meas-

ured compressed download throughput for different modes of compressed download

for three files with file sizes of 5 MB (a), 20 MB (b), and 100 MB (c). The three files

are selected from the dataset containing the most popular Android applications,

which were repackaged into uncompressed archive files (tar). The 5 MB file is a dic-

tionary application, the 20 MB file is an application for online mobile photo-sharing

service, and the 100 MB file is one of the popular Android games. The measurements

are performed on the OnePlus One smartphone with a 5 MB/s WLAN network. The

measured compressed download throughput is between the predicted minimum and

maximum throughputs. For example, the estimated lower and upper boundaries for

the decompression throughput of gzip with -9 are 5.34 MB/s and 7.02 MB/s for the 5

MB file, 7.88 MB/s and 11.32 MB/s for the 20 MB file, and 7.42 MB/s and 11.02 MB/s

for the 100 MB file, while the measured compression throughputs are 6.89, 11.0 and

10.84 MB/s. The utilities with high local decompression throughputs achieve the ef-

fective download throughputs close to the upper boundaries when downloading large

files (e.g., gzip, lzop and pigz for all compression levels).

127

(a)

(b)

(c)

Figure 4.14 Throughput limits: compressed downloads for 5 MB (a), 20 MB (b), and

100 MB (c) files

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Download (5 MB, 5 MB/s)

Th.UDW Th.CDW Th.CDW.min Th.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Download (20 MB, 5 MB/s)

Th.UDW Th.CDW Th.CDW.min Th.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Download (100 MB, 5 MB/s)

Th.UDW Th.CDW Th.CDW.min Th.CDW.max

128

 Compressed downloads with on-demand compression. When the com-

pressed file is not available on the server, the maximum compressed download time

shown in Equation (4.24), T.CDW.max(s), includes the time to set up the network

connection, T.SC, the time to compress the file on the server, T.C(s), the time to

transfer the compressed file, T.CDW', and the time to perform the decompression of

the received file on the edge device, T.D. The time to perform compression on the

server, T.C(s), can be used to determine the server’s compression throughput,

Th.C(s), which is defined as the uncompressed file size, US, divided by the time to

perform compression. The minimum download time, T.CDW.min, and maximum

download throughput, Th.CDW.max, remain the same as defined in Equations (4.21)

and (4.23), respectively.

𝑇. 𝐶𝐷𝑊. max(𝑠) = 𝑇. 𝐷 + 𝑇. 𝑆𝐶 + 𝑇. 𝐶(𝑠) + 𝑇. 𝐶𝐷𝑊′
(4.24)

𝑇ℎ. 𝐶𝐷𝑊. min (𝑠) =
𝑈𝑆

𝑇. 𝐶𝐷𝑊. max(𝑠)
=

𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
1

𝑇ℎ. 𝐷
+

1
𝑇ℎ. 𝐶(𝑠)

+
𝑇. 𝑆𝐶

𝑈𝑆
)

(4.25)

 The minimum effective compressed download throughput, Th.CDW.min(s), is

calculated as the uncompressed file size in megabytes, US, divided by the maximum

time to perform compressed upload, T.CDW.max(s). The final expressions in Equa-

tions (4.25) and (4.23) show the boundaries for the compressed download through-

puts as a function of the network parameters, the file size, the compression ratio, the

local compression throughput on the server, and the local decompression throughput

on the edge device.

 Figure 4.15 illustrates the estimated throughput boundaries and the meas-

ured compressed download throughput for different modes of compressed download

129

with on-demand compression for three files with file sizes of 5 MB (a), 20 MB (b),

and 100 MB (c). The measurements are performed on the OnePlus One smartphone

with a 5 MB/s WLAN network. The measured compressed download throughput is

between the predicted minimum and maximum throughputs. For example, the esti-

mated lower and upper boundaries for the decompression throughput of gzip with -9

are 3.52 MB/s and 7.02 MB/s for the 5 MB file, 4.09 MB/s and 11.32 MB/s for the 20

MB file, and 4.32 MB/s and 11.02 MB/s for the 100 MB file, while the measured

compression throughputs are 5.13, 7.34 and 9.23 MB/s, respectively. The utilities

with high local decompression throughputs and high remote compression through-

puts achieve the effective download throughputs close to the upper boundaries when

downloading large files (e.g., gzip, lzop and pigz for all compression levels). Addi-

tionally, due to the server-side compression overhead, the minimum throughputs

and actual measured throughputs are lower than before, especially for smaller files.

For example, the measured throughputs with on-demand compression are lower by

25.5%, 16.1%, and 14.9% for the 5 MB, 20 MB, and 100 MB files, respectively, than

the download throughputs with pre-compressed files.

130

(a)

(b)

(c)

Figure 4.15 Throughput limits: compressed downloads with

on-demand compression for 5 MB (a), 20 MB (b), and 100 MB(c) files

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: Compressed Download (5 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.min Th.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: On-Demand Compressed Download (20 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.min Th.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Limits: On-Demand Compressed Download (100 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.min Th.CDW.max

131

4.2.2.2 Energy Efficiency Limits for Compressed File Transfers

 Compressed uploads. The maximum compressed upload energy shown in

Equation (4.26), ET.CUP.max, includes the energy to perform the local compression

of the file on the edge device, the energy to set up the network connection, ET.SC,

and the energy to transfer the compressed file, ET.CUP'. The energy to transfer the

compressed file can be calculated as the compressed file size, US/CR, divided by the

network connection for upload energy efficiency, EE.UP. Instead of using the energy

to perform local compression on the edge device, ET.C, we can be used the local com-

pression energy efficiency, EE.C, defined as the uncompressed file size, US, divided

by the energy to perform a local compression, ET.C. This metric captures the edge

device’s ability to perform compression with the least amount of energy. The mini-

mum compressed upload energy shown in Equation (4.27), ET.CUP.min, includes

the energy overhead to perform the local compression of the file on the edge device,

ET.C(0), the energy to set up the network connection, ET.SC, and the energy to

transfer the compressed file of size, ET.CUP'. The energy overhead, ET.C(0), ex-

cludes the energy needed to run the platform when idle.

𝐸𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥 = 𝐸𝑇. 𝐶 + 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐶𝑈𝑃′

(4.26)

𝐸𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛 = 𝐸𝑇. 𝐶(0) + 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐶𝑈𝑃′

(4.27)

𝐸𝐸. 𝐶𝑈𝑃. 𝑚𝑖𝑛 =

𝑈𝑆

𝐸𝑇. 𝐶𝑈𝑃. 𝑚𝑎𝑥
=

𝐶𝑅 ∙ 𝐸𝐸. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝑈𝑃 ∙ (
1

𝐸𝐸. 𝐶
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.28)

𝐸𝐸. 𝐶𝑈𝑃. 𝑚𝑎𝑥 =
𝑈𝑆

𝐸𝑇. 𝐶𝑈𝑃. 𝑚𝑖𝑛
=

𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝑈𝑃 ∙ (
1

𝐸𝐸. 𝐶(0)
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.29)

132

 The minimum effective compressed upload energy efficiency, EE.CUP.min, is

calculated as the uncompressed file size in megabytes, US, divided by the maximum

energy to perform compressed upload, ET.CUP.max. The maximum effective com-

pressed upload energy efficiency, EE.CUP.max, is calculated as the uncompressed

file size in megabytes, US, divided by the minimum energy to perform compressed

upload, ET.CUP.min. The final expressions in Equations (4.28) and (4.29) show the

boundaries for the compressed upload energy efficiencies as a function of the net-

work parameters, EE.UP, ET.SC, the file size, US, the compression ratio, CR, and

the local compression energy efficiency, EE.C.

 Figure 4.16 illustrate the estimated minimum and maximum energy efficien-

cies, EE.CUP.min and EE.CUP.max, respectively, as well as the measured com-

pressed upload energy efficiency, EE.CUP, for different modes of compressed upload

for three files with file sizes of 5 MB (a), 20 MB (b), and 100 MB (c). The three files

correspond to selected files for characterization of upload in Section 4.2.2.1. The

measurements are performed on the OnePlus One smartphone with a 5 MB/s WLAN

network. The measured compressed upload energy efficiency is between the predict-

ed minimum and maximum energy efficiencies. For example, the estimated lower

and upper limits for the compression energy efficiency of gzip -1 are 6.4 MB/J and

7.16 MB/J for the 5 MB file, 7.2 MB/J and 9.5 MB/J for the 20 MB file, and

9.45 MB/J and 12.7 MB/J for the 100 MB file, while the measured compression ener-

gy efficiencies are 5.85, 8.51 and 9.96 MB/J, respectively. In contrast, the estimated

bounds for bzip2 with -1 are 1.8 MB/J and 2.29 MB/s for the 5 MB file, 2 MB/s and

3.18 MB/s for the 20 MB file, and 1.73 MB/s and 2..6 MB/s for the 100 MB file, while

the measured compression throughputs are 1.7, 1.71 and 1.69 MB/s, respectively. In

133

cases when the local compression energy efficiency falls below the network connec-

tion upload energy efficiency, EE.C << EE.UP, the effective compressed upload en-

ergy efficiency is closer to the minimum energy efficiency (e.g., for xz). In cases when

EE.C >> EE.UP, the effective compressed upload energy efficiency is closer to the

expected maximum energy efficiency (e.g., for lzop).

134

(a)

(b)

(c)

Figure 4.16 Energy efficiency limits: compressed uploads for 5 MB (a), 20 MB (b),

100 MB (c) files

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Upload (5 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.min EE.CUP.max

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Upload (20 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.min EE.CUP.max

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Upload (100 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.min EE.CUP.max

135

 Compressed downloads. Assuming the compressed file is available on the

server, the maximum compressed download energy shown in Equation (4.30),

ET.CDW.max, includes the energy to set up the network connection, ET.SC, the en-

ergy to transfer the compressed file, ET.CDW', and the energy to perform the de-

compression of the received file on the edge device. The energy to transfer the com-

pressed file can be calculated as the compressed file size, US/CR, divided by the

network connection download energy efficiency EE.DW. The energy to perform de-

compression on the edge device, ET.D, can be used to determine the local decom-

pression energy efficiency, EE.D, which is defined as the uncompressed file size, US,

divided by the energy to perform decompression. This metric thus captures the edge

device’s ability to effectively perform decompression. The minimum download energy

shown in Equation (4.31), ET.CDW.min, includes the energy to set up the network

connection, ET.SC, the energy to transfer the compressed file, ET.CDW', and the

overhead energy to perform decompression, ET.D(0).

𝐸𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥 = 𝐸𝑇. 𝐷 + 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐶𝐷𝑊′

(4.30)

𝐸𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛 = 𝐸𝑇. 𝐷(0) + 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐶𝐷𝑊′

(4.31)

𝐸𝐸. 𝐶𝐷𝑊. 𝑚𝑖𝑛 =

𝑈𝑆

𝐸𝑇. 𝐶𝐷𝑊. 𝑚𝑎𝑥
=

𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊 ∙ (
1

𝐸𝐸. 𝐷
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.32)

𝐸𝐸. 𝐶𝐷𝑊. 𝑚𝑎𝑥 =
𝑈𝑆

𝐸𝑇. 𝐶𝐷𝑊. 𝑚𝑖𝑛
=

𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊 ∙ (
1

𝐸𝐸. 𝐷(0)
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.33)

 The minimum effective compressed download energy efficiency,

EE.CDW.min, is calculated as the uncompressed file size in megabytes, US, divided

by the maximum energy to perform the compressed download, ET.CDW.max. The

136

maximum effective compressed download energy efficiency, EE.CDW.max, is calcu-

lated as the uncompressed file size in megabytes, US, divided by the minimum ener-

gy to perform the compressed download, ET.CDW.min. The final expressions in

Equations (4.32) and (4.33) show the boundaries for the compressed download ener-

gy efficiencies as a function of the network parameters, the file size, the compression

ratio, and the local decompression energy efficiency.

 Figure 4.17 illustrates the estimated energy efficiency boundaries and the

measured compressed download energy efficiency for different modes of compressed

download for three files with file sizes of 5 MB (a), 20 MB (b), and 100 MB (c). The

three files correspond to selected files for characterization of download in Section

4.2.2.1. The measurements are performed on the OnePlus One smartphone with a

5 MB/s WLAN network. The measured compressed download energy efficiency is be-

tween the predicted minimum and maximum energy efficiencies. For example, the

estimated lower and upper boundaries for the decompression energy efficiency of

gzip -9 are 4.95 MB/J and 5.5 MB/J for the 5 MB file, 6.53 MB/J and 7.36 MB/J for

the 20 MB file, and 6.05 MB/J and 6.74 MB/J for the 100 MB file, while the meas-

ured compression energy efficiencies are 5.97, 7.78 and 6.89 MB/J. The utilities with

high local decompression energy efficiencies achieve the effective download energy

efficiencies close to the upper boundaries when downloading large files (e.g., gzip, xz,

pigz, and pbzip2 for all compression levels).

137

(a)

(b)

(c)

Figure 4.17 Energy efficiency limits: compressed downloads

for 5 MB (a), 20 MB (b), 100 MB (c) files

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Download (5 MB, 5 MB/s)

EE.UDW EE.CDW EE.CDW.min EE.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Download (20 MB, 5 MB/s)

EE.UDW EE.CDW EE.CDW.min EE.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: Compressed Download (100 MB, 5 MB/s)

EE.UDW EE.CDW EE.CDW.min EE.CDW.max

138

 Compressed downloads (with on-demand compression). When the com-

pressed file is not available on the server, the maximum compressed download ener-

gy shown in Equation (4.34), ET.CDW.max(s), includes the energy to set up the net-

work connection, ET.SC, the edge device idle energy while waiting for compression

of the file on the on the server, 𝐼𝑖𝑑𝑙𝑒 ∙ 𝑉𝐵𝑆 ∙ 𝑇. 𝐶(𝑠), the energy to transfer the com-

pressed file, ET.CDW', and the energy to perform the decompression of the received

file on the edge device, ET.D. The energy to perform compression on the server,

ET.C(s), can be used to determine the server’s compression energy efficiency,

EE.C(s), which is defined as the uncompressed file size, US, divided by the time to

perform compression. The minimum download energy, ET.CDW.min, and maximum

download energy efficiency, EE.CDW.max, remain the same as defined in Equations

(4.31) and (4.33), respectively.

𝐸𝑇. 𝐶𝐷𝑊. max(𝑠) = 𝐸𝑇. 𝐷 + 𝐸𝑇. 𝑆𝐶 + 𝐸𝑇. 𝐶𝐷𝑊′ + 𝑉𝐵𝑆 ∙ 𝐼𝑖𝑑𝑙𝑒 ∙ 𝑇. 𝐶(𝑠)

(4.34)

𝐸𝐸. 𝐶𝐷𝑊. min(𝑠) =
𝑈𝑆

𝐸𝑇. 𝐶𝐷𝑊. max(𝑠)

=
𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊 ∙ (
1

𝐸𝐸. 𝐷
+

1
𝑇ℎ. 𝐶(𝑠)
𝑉𝐵𝑆 ∙ 𝐼𝑖𝑑𝑙𝑒

 +
𝐸𝑇. 𝑆𝐶

𝑈𝑆
)
 (4.35)

 The minimum effective compressed download energy efficiency,

EE.CDW.min(s), is calculated as the uncompressed file size in megabytes, US, divid-

ed by the maximum energy to perform the compressed download, ET.CDW.max(s).

The final expressions in Equations (4.35) and (4.33) show the boundaries for the

compressed download energy efficiencies as a function of the network parameters,

139

the file size, the compression ratio, the idle energy efficiency due to compression on

the server, and the local decompression energy efficiency on the edge device.

140

(a)

(b)

(c)

Figure 4.18 Energy efficiency limits: compressed downloads with

on-demand compression for 5 MB (a), 20 MB (b), 100 MB (c) files

1.0

10.0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: On-Demand Compressed Download (5 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.min EE.CDW.max

0.2

2.0

20.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: On-Demand Compressed Download (20 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.min EE.CDW.max

1.0

10.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Limits: On-Demand Compressed Download (100 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.min EE.CDW.max

141

4.2.2.3 Piping Model

 Whereas we experimentally verified that we can estimate the minimum and

maximum compressed transfer throughputs and energy efficiencies, the distance be-

tween these boundaries for a particular compression mode is often too wide, render-

ing them insufficient for estimation of effective throughputs or energy efficiencies.

Ideally, we would like to be able to devise models for accurate estimation of effective

upload and download throughputs and energy efficiencies.

 Compressed uploads and downloads. The use of piping when transferring

data file is beneficial as it increases the effective throughput and energy efficiency.

It allows for overlapping local (de)compression tasks with the file transfer tasks on

edge devices. In a case of compressed upload, a degree of this overlap depends on the

ratio between the network upload throughput or energy efficiency, Th.UP [EE.UP],

and the local compression throughput or energy efficiency, Th.C [EE.C]. When the

local compression throughput or energy efficiency exceeds by far the corresponding

network upload throughput, the bottleneck is the network. When the local compres-

sion throughput or energy efficiency falls below the corresponding network through-

put, the compressed upload is not beneficial. In a case of compressed downloads,

when the compressed file is available on the server, a degree of overlap depends on

the ratio between the network download throughput or energy efficiency,

Th.DW [EE.DW], and the local decompression parameter, Th.D [EE.D].

𝑘. 𝑡ℎ. 𝑐 = {

𝑇ℎ. 𝑈𝑃

𝑇ℎ. 𝐶
, 𝑇ℎ. 𝐶 > 𝑇ℎ. 𝑈𝑃

1, 𝑇ℎ. 𝐶 < 𝑇ℎ. 𝑈𝑃

(4.36)

𝑇ℎ. 𝐶𝑈𝑃. 𝑝𝑖𝑝𝑒 ≈

𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃 ∙ (
𝑘. 𝑡ℎ. 𝑐
𝑇ℎ. 𝐶

+
𝑇. 𝑆𝐶

𝑈𝑆
)

(4.37)

142

𝑘. 𝑡ℎ. 𝑑 = {

𝑇ℎ. 𝐷𝑊

𝑇ℎ. 𝐷
 , 𝑇ℎ. 𝐷 > 𝑇ℎ. 𝐷𝑊

1, 𝑇ℎ. 𝐷 < 𝑇ℎ. 𝐷𝑊

(4.38)

𝑇ℎ. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈

𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
𝑘. 𝑡ℎ. 𝑑
𝑇ℎ. 𝐷

+
𝑇. 𝑆𝐶

𝑈𝑆
)

(4.39)

 To derive the piping model for upload throughput, the compression term from

the lower throughput limit is restricted using a corrective factor, described in Equa-

tion (4.36). This factor lowers the impact of the local compression term when the lo-

cal compression throughput exceeds the network connection upload throughput. The

final model for the compressed upload throughput with the use of piping is ex-

pressed in Equation (4.38). To derive the piping model for download throughput, the

decompression term from the lower throughput limit is restricted using a corrective

factor, described in Equation (4.37). The final model for compressed download

throughput is shown in Equation (4.39).

 To derive the piping model for upload energy efficiency, the compression term

from the lower energy efficiency limit is restricted using a corrective factor, de-

scribed in Equation (4.40). To derive the piping model for the download energy effi-

ciency, the decompression term from the lower energy efficiency limit is restricted

using a corrective factor, as described in Equation (4.42). Effectively, the corrective

factors restrict the energy component of the local (de)compression that includes the

energy needed to run the platform, which is ET.C−ET.C(0) for compression and

[ET.D−ET.D(0)] for decompression. The final models for the compressed upload and

download energy efficiencies with piping are expressed in Equations (4.41) and

(4.43), respectively.

143

𝑘. 𝑒𝑒. 𝑐 = {

𝐸𝐸. 𝑈𝑃

𝐸𝐸. 𝐶
, 𝐸𝐸. 𝐶 > 𝐸𝐸. 𝑈𝑃

1, 𝐸𝐸. 𝐶 < 𝐸𝐸. 𝑈𝑃

(4.40)

𝐸𝐸. 𝐶𝑈𝑃. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝐸𝐸. 𝑈𝑃

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝑈𝑃 ∙ (
𝑘. 𝑒𝑒. 𝑐
𝐸𝐸. 𝐶

+
1 − 𝑘. 𝑒𝑒. 𝑐
𝐸𝐸. 𝐶(0)

+
𝐸𝑇. 𝑆𝐶

𝑈𝑆
)

(4.41)

𝑘. 𝑒𝑒. 𝑑 = {

𝐸𝐸. 𝐷𝑊

𝐸𝐸. 𝐷
, 𝐸𝐸. 𝐷 > 𝐸𝐸. 𝐷𝑊

1, 𝐸𝐸. 𝐷 < 𝐸𝐸. 𝐷𝑊

(4.42)

𝐸𝐸. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊 ∙ (
𝑘. 𝑒𝑒. 𝑑
𝐸𝐸. 𝐷

+
1 − 𝑘. 𝑒𝑒. 𝑑

𝐸𝐸. 𝐷(0)
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.43)

 Figure 4.20 (a) shows the estimated compressed upload (green dots) and

download (green circles) throughput and the measured compressed upload (red

squares) and download (blue triangles) throughput for all considered compression

modes. Figure 4.20 (b) shows the estimated compressed upload and download energy

efficiency and the measured compressed upload and download energy efficiencies for

all considered compression modes. The plots suggest a very high accuracy of the pro-

posed models for all compression utilities and compression levels. This expression

implies that if we know the parameters of the network connection (Th.UP [Th.DW]

and T.SC or EE.UP [EE.DW] and ET.SC), and if for a given uncompressed file of

size US we can predict the compression ratio, CR, and local (de)compression

throughput or energy efficiency for a given (utility, level) pair (Th.C [Th.D] or

EE.C [EE.D]) on a particular edge device, we can fairly accurately estimate the ex-

pected compressed upload or download throughput and energy efficiency.

144

(a)

(b)

(c)

Figure 4.19 Compressed upload and download with piping:

throughput estimation for 5 MB (a), 20 MB (b), and 100 MB (c) files

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Estimation: Compressed Transfers with Piping (5 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.pipe Th.UDW Th.CDW Th.CDW.pipe

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Estimation: Compressed Transfers with Piping (20 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.pipe Th.UDW Th.CDW Th.CDW.pipe

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput Estimation: Compressed Transfers with Piping (100 MB, 5 MB/s)

Th.UUP Th.CUP Th.CUP.pipe Th.UDW Th.CDW Th.CDW.pipe

145

(a)

(b)

(c)

Figure 4.20 Compressed upload and download with piping:

energy efficiency estimation for 5 MB (a), 20 MB (b), and 100 MB (c) files

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Estimation: Compressed Transfers with Piping (5 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.pipe EE.UDW EE.CDW EE.CDW.pipe

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Estimation: Compressed Transfers with Piping (20 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.pipe EE.UDW EE.CDW EE.CDW.pipe

0.1

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency Estimation: Compressed Transfers with Piping (100 MB, 5 MB/s)

EE.UUP EE.CUP EE.CUP.pipe EE.UDW EE.CDW EE.CDW.pipe

146

 Compressed downloads (with on-demand compression). When the com-

pressed file is not available on the server, the use of piping when downloading a file

depends on the overlap between the compression tasks on the server, local decom-

pression on the edge device, and file transfer tasks on the edge device. A degree of

overlap depends on two ratios. The first overlap is between the network upload

throughput (relative to the server), Th.UP(s), and the server compression parameter,

Th.C(s). The second overlap is between the network download throughput or energy

efficiency, Th.DW [EE.DW], and the edge device’s decompression parameter, Th.D

[EE.D].

𝑘. 𝑡ℎ. 𝑐(𝑠) = {

𝑇ℎ. 𝑈𝑃

𝑇ℎ. 𝐶(𝑠)
, 𝑇ℎ. 𝐶(𝑠) > 𝑇ℎ. 𝑈𝑃

1, 𝑇ℎ. 𝐶(𝑠) < 𝑇ℎ. 𝑈𝑃

(4.44)

𝑘. 𝑡ℎ. 𝑑 = {

𝑇ℎ. 𝐷𝑊

𝑇ℎ. 𝐷
, 𝑇ℎ. 𝐷 > 𝑇ℎ. 𝐷𝑊

1, 𝑇ℎ. 𝐷 < 𝑇ℎ. 𝐷𝑊

(4.45)

𝑇ℎ. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊 ∙ (
𝑘. 𝑡ℎ. 𝑐(𝑠)
𝑇ℎ. 𝐶(𝑠)

+
𝑘. 𝑡ℎ. 𝑑
𝑇ℎ. 𝐷

+
𝑇. 𝑆𝐶

𝑈𝑆
)

(4.46)

 To derive the piping model for download throughput, the server’s compres-

sion term and the edge device’s decompression term from the lower throughput limit

are restricted using corrective factors, described in Equations (4.44) and (4.45). The

factor from Equation (4.44) lowers the impact of the server’s local compression when

the server’s local compression throughput exceeds the network connection transfer

throughput, Th.C(s) >> Th.UP. The factor from Equation (4.45) lowers the impact of

the edge device’s local decompression term when the local decompression throughput

147

exceeds the network connection download throughput, Th.D >> Th.DW. The final

model for compressed download throughput is shown in Equation (4.46).

 To derive the piping model for download energy efficiency, the server’s com-

pression term and the edge device’s decompression term from the lower energy effi-

ciency limit are restricted using corrective factors, described in Equations (4.47) and

(4.48). The factor from Equation (4.47) lowers the impact of idle energy efficiency

from the server’s local compression when the server’s local compression energy effi-

ciency exceeds the energy efficiency of the network connection transfer,

EE.C >> EE.UP. The factor from Equation (4.48) effectively restricts the energy

component of the edge device’s local decompression that includes the energy needed

to run the platform for decompression, ET.D−ET.D(0), when the local decompression

energy efficiency exceeds the network connection download energy efficiency,

EE.D >> EE.DW. The final model for compressed download energy efficiency with

piping is shown in Equation (4.49).

𝑘. 𝑒𝑒. 𝑐(𝑠) = {

𝐸𝐸. 𝑈𝑃(𝑠)

𝐸𝐸. 𝐶(𝑠)
, 𝐸𝐸. 𝐶 > 𝐸𝐸. 𝑈𝑃

1, 𝐸𝐸. 𝐶 < 𝐸𝐸. 𝑈𝑃

(4.47)

𝑘. 𝑒𝑒. 𝑑 = {
𝐸𝐸. 𝐷𝑊

𝐸𝐸. 𝐷
, 𝐸𝐸. 𝐷 > 𝐸𝐸. 𝐷𝑊

1, 𝐸𝐸. 𝐷 < 𝐸𝐸. 𝐷𝑊

(4.48)

𝐸𝐸. 𝐶𝐷𝑊. 𝑝𝑖𝑝𝑒 ≈
𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊

1 + 𝐶𝑅 ∙ 𝐸𝐸. 𝐷𝑊 ∙ (
𝑘. 𝑒𝑒. 𝑐(𝑠)
𝑇ℎ. 𝐶(𝑠)
𝑉𝐵𝑆 ∙ 𝐼𝑖𝑑𝑙𝑒

+
𝑘. 𝑒𝑒. 𝑑
𝐸𝐸. 𝐷

+
1 − 𝑘. 𝑒𝑒. 𝑑

𝐸𝐸. 𝐷(0)
+

𝐸𝑇. 𝑆𝐶
𝑈𝑆

)

(4.49)

148

(a)

(b)

(c)

Figure 4.21 Compressed download with on-demand compression and piping:

throughput for 5 MB (a), 20 MB (b), and 100 MB (c) files

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput: On-Demand Compressed Transfers with Piping (5 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.pipe

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput: On-Demand Compressed Download with Piping (20 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.pipe

1.0

10.0

100.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/s
]

Throughput: On-Demand Compressed Download with Piping (100 MB, 5 MB/s)

Th.UDW Th.CDW.ondemand Th.CDW.pipe

149

(a)

(b)

(c)

Figure 4.22 Compressed download with on-demand compression and piping:

energy efficiency for 5 MB (a), 20 MB (b), and 100 MB (c) files

1.0

10.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency: On-Demand Compressed Download with Piping (5 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.pipe

1.0

10.0

0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency: On-Demand Compressed Download with Piping (20 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.pipe

1.0

10.0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B

/J
]

Energy Efficiency: On-Demand Compressed Download with Piping (100 MB, 5 MB/s)

EE.UDW EE.CDW.ondemand EE.CDW.pipe

150

4.2.2.4 Energy Estimation using Performance and Device Characteristics

 To select the most energy efficient mode of compressed transfer, without reli-

ance on energy instrumentation, the energy models have to be estimated from the

prediction data (Th.C, US) and set of device specific characteristics: (a) the device

battery voltage, 𝑉𝐵𝑆, (b) the idle current, 𝐼𝑖𝑑𝑙𝑒, and (c) the active peak currents for

each local (de)compression utility level pair, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥
 [𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

]). Similar to the

estimation of network energy efficiency, the final expressions for estimated energy

efficiency for local (de)compression, EE.C [EE.D] are shown in Equation (4.50) and

(4.52) as a function of the effective local (de)compression throughput, the device bat-

tery voltage, and of idle and active peak currents. The final expressions for estimat-

ed energy overhead of local (de)compression, EE.C(0) [EE.D(0)], are shown in (4.51)

and (4.53). as a function of the effective local (de)compression throughput, the device

battery voltage, and of active peak current. The difference from the estimation of

network energy efficiency is the finite execution time of local (de)compression tasks.

Thus, the active current may not always reach its maximum peak value due to the

rise and fall of current. To accurately estimate energy efficiencies and energy effi-

ciency overheads, the average active peak current has to be calculated, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎.

𝐸𝐸. 𝐶 =
𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝐶 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝐶

𝑉𝐵𝑆 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎)

(4.50)

𝐸𝐸. 𝐶(0) =
𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝐶 ∙ (𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝐶

𝑉𝐵𝑆 ∙ (𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎)

(4.51)

𝐸𝐸. 𝐷 =
𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝐷 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝐷

𝑉𝐵𝑆 ∙ (𝐼𝑖𝑑𝑙𝑒 + 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎)

(4.52)

𝐸𝐸. 𝐷(0) =
𝑈𝑆

𝑉𝐵𝑆 ∙ 𝑇. 𝐷 ∙ (𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎)
=

𝑇ℎ. 𝐷

𝑉𝐵𝑆 ∙ (𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎)

(4.53)

151

(a)

(b)

Figure 4.23 Current waveforms for performing local compression using pigz -6 on

set of varying file sizes – alignment to the starting (a) and ending (b) timestamp

 To estimate average active peak current, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎, a set of measurement-based

experiments have been conducted to record current waveforms for local

(de)compression of files ranging in sizes from 0.1 MB to 45.15 MB. Figure 4.23 (a)

and (b) show the recorded current waveforms for local pigz -6 compressions, with

each waveform is color coded for the selected file size - e.g., orange line represents

0.1 MB file and purple line represents 45.16 MB file. To visually compare current

152

waveforms, Figure 4.23 (a) places current waveforms at the starting timestamp,

while Figure 4.23 (b) places current waveforms at the ending timestamp. In both

cases, we can see that all files have a similar rise and fall of current. Larger files

achieve the maximum active peak current (red, blue and purple lines) and stay there

for the duration of execution until a sudden drop to idle level. Extended measure-

ment-based study has shown that the maximum active peak currents stay consistent

for each (utility, level) pair and do not change with the changes in the input file type.

 To calculate the energy overhead for local (de)compression, from which we

can derive average active peak current, we have to either calculate an area of a

trapezoid or an area of a triangle. To calculate energy overhead when the active

peak current of executed task equals to its maximum active peak current, the equa-

tion is set to 𝐴 =
1

2
𝐻𝑏 ∙ 𝑏1 (2 −

𝐻𝑏(cot(𝛼)+cot(𝛽))

𝑏1
) – with height, 𝐻𝑏, being the active peak

current for the selected (utility, level) pair times the device battery voltage, 𝑉𝐵𝑆,

base, 𝑏1, being the execution time, T.C [T.D], and angles, 𝛼 and 𝛽, corresponding to

the inner angles of the rise and fall of current. To calculate energy overhead when

the maximum active peak current is not reached by the executed task, the equation

is set to 𝐴 =
1

2
𝐻𝑏 ∙ 𝑏1 – with height, 𝐻𝑏, being the active peak current times the device

battery voltage, 𝑉𝐵𝑆, and the base, 𝑏1, being the execution time, T.C [T.D]).

 The final expressions for averaged active peak current, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎 [𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎], are

shown in Equations (4.54) and (4.55), respectively. The lower limit in Equation

(4.54), 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝐴
, is calculated as a function of execution time, T.C, and the summa-

tion of cotangents of angle 𝛼 and 𝛽, cot(𝛼) and cot(𝛽), when it is less than the maxi-

mum active peak current. The upper limit Equation (4.54) is calculated as a function

of execution time, T.C, the maximum active peak current, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥
, and the sum-

153

mation of cotangents of angle 𝛼 and 𝛽, cot(𝛼) and cot(𝛽), when the 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝐴
 is equal

to or greater than the maximum active peak current, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥
. The lower and up-

per limits are express similarly for local decompression in Equation (4.55).

𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎 =
1

2
{

𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝐴
=

𝑇.𝐶

cot(𝛼)+cot (𝛽)
, 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝐴

< 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥
(2 −

𝐼.𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

𝑇.𝐶
(cot(𝛼) + cot(𝛽))), 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝐴

≥ 𝐼. 𝐶𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

(4.54)

𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎 =
1

2
{

𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝐴
=

𝑇.𝐷

cot(𝛼)+cot (𝛽)
, 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝐴

< 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥
(2 −

𝐼.𝐷𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

𝑇.𝐷
(cot(𝛼) + cot(𝛽))), 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝐴

≥ 𝐼. 𝐷𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

(4.55)

 With the estimated average active peak current, the total energy and the en-

ergy overhead of local (de)compression tasks can be calculated. The energy efficiency

models for compressed transfers are then used with estimated local energy efficien-

cy, EE.C [EE.D], estimated local energy efficiency overhead, EE.C(0) [EE.D(0)], and

the estimated energy network parameters.

4.2.2.5 Framework Utilization

 During the framework utilization of models for compressed file transfers, be-

sides the network parameters which are derived in Section 4.2.1.3, the only remain-

ing unknowns in the models are the compression ratio, 𝐶𝑅, the local (de)compression

throughput, 𝑇ℎ. 𝐶 [𝑇ℎ. 𝐷] for compression (utility, level) pair, the set of device specific

characteristics (voltage, 𝑉𝑏𝑠, idle current, 𝐼𝑖𝑑𝑙𝑒), and the maximum active peak cur-

rents for local compression (utility, level) pairs and network transfers. Those un-

known values will be estimated through a table look up quires, which will be dis-

cussed in the next two sections.

154

 Collecting Local Compression and Decompression Prediction Data

 The analytical models for estimating throughput and energy efficiency of

compressed uploads and downloads require estimation of the compression ratio, CR,

and local (de)compression throughputs, Th.C [Th.D] through use of prediction tables

containing historical logs of local (de)compression tasks performed on a number of

edge devices and server platforms. The prediction tables with historical logs are

generated through the measurement-based experiments to determine compression

ratios, and local throughputs for local (de)compression of all data files from the se-

lected datasets for mobile and workstation platforms introduced in Section 3.3. His-

torical logs from server platforms are generated to address models for on-demand

compressed downloads, with the server-side compression. For framework utilization,

we consider two edge devices, the OnePlus One smartphone and the Dell PowerEdge

T110 II workstation, as well as local server, Dell PowerEdge T620, and the cloud in-

stances in North Virginia and Tokyo. Each log entry keeps the following parameters:

the compression utility and compression level used during (de)compression, the un-

compressed file size (𝑈𝑆), the compression ratio (𝐶𝑅), and the (de)compression

throughputs (𝑇ℎ. 𝐶 [𝑇ℎ. 𝐷]).

 Figure 4.24 (a) illustrates the relationship between the uncompressed file

size, 𝑈𝑆, and the compression ratio, 𝐶𝑅, and Figure 4.24 (b) shows the relationship

between the uncompressed file size, 𝑈𝑆, and local compression throughput, 𝑇ℎ. 𝐶,

when compressing various input files using the gzip with -1 utility on the OnePlus

One smartphone. The results indicate that both the compression ratio, 𝐶𝑅, and the

local compression throughput , 𝑇ℎ. 𝐶, can be predicted due to a linear or a curved

clustering of the collected data points for each distinct file type and compression

155

(utility, level) pair. The input file size and file type are used as input parameters for

the prediction table lookup queries. The estimated CR, Th.C, and Th.D values from

the table look up are then used in the previously described analytical models to de-

rive actual throughputs or to estimate energy efficiencies for compressed uploads or

downloads with all available compression (utility, level) pairs.

(a)

(b)

Figure 4.24 CR and Th.C to change in US – compression (OnePlus One)

1.00

10.00

0.000 0.001 0.010 0.100 1.000 10.000 100.000 1000.000

C
R

 [
 -

]

US [MB]

Compression Ratio (CR) - gzip 1 - OnePlus One
APKtar.gz1 APKsource.gz1 Books.gz1 DNG.gz1
HealthBBRR_csv.gz1 HealthBBRR_dat.gz1 HealthSUM_csv.gz1 HealthSUM_dat.gz1
HealthWAVE_csv.gz1 HealthWAVE_dat.gz1 Maps.gz1 Maps_Routing.gz1

0.01

0.10

1.00

10.00

100.00

0.000 0.001 0.010 0.100 1.000 10.000 100.000 1000.000

Th
.C

LO
C

A
L

[M
B

/s
]

US [MB]

Compression Throughput (Th.C) - gzip 1 - OnePlus One
APKtar.gz1 APKsource.gz1 Books.gz1 DNG.gz1
HealthBBRR_csv.gz1 HealthBBRR_dat.gz1 HealthSUM_csv.gz1 HealthSUM_dat.gz1
HealthWAVE_csv.gz1 HealthWAVE_dat.gz1 Maps.gz1 Maps_Routing.gz1

156

 Prediction Data Tables

 The edge device and cloud agents maintain a set of data tables to perform a

set of functions for selection of optimal data transfers. Sub-section 4.2.4.1 describes

data table structures used by the agents on edge device and the cloud. Sub-section

4.2.4.2 explains life cycle of data tables during framework utilization. Sub-section

4.2.4.3 covers several database optimization techniques used for speeding up query

executions.

4.2.4.1 Table Structure

 The data tables maintained by the edge device agent are historyComp, histo-

ryDecomp, compUtil, and exclusionType tables. The historyComp table contains his-

torical logs used for predictions of local compressions and includes the following

fields: US and Type to describe the uncompressed file size and type, C_Util and

C_Level to describe the corresponding compression (utility, level) pair (e.g.,

“gzip”, “1”), and Th_C and CR to describe the local compression throughput and

compression ratio. The historyDecomp table similarly maintains history logs used for

predictions of local decompressions and includes the following fields: US and Type to

describe the uncompressed file size and type, D_Util and D_Level to describe the

corresponding decompression (utility, level) pair, and Th_D and CR to describe the

local decompression throughput and compression ratio. The historyDecomp table is

update with each successful compressed download, and will be used for periodic up-

date of the server’s decompression records in a corresponding table. The compUtil

table maintains a list of all compression (utility, level) pairs available on the device,

as well as corresponding maximum active peak currents, I_delta_Max, and rise and

fall angles of the current waveforms, Angle_Aand Angle_B. The compUtilExt table

157

maintains files extensions of all compression utilities (e.g., .gz, .bz2, .lzo, .xz). Final-

ly, the exclusionType table maintains a list of uncompressible file types which are

ignored by the framework and instead transferred uncompressed.

 The server’s agent maintains a similar set of tables to the tables on the edge

device. The distinction is that the server’s agent maintains history logs for each ser-

viceable edge devices, as well as for itself, and requires additional tables to perform

long-term file storage and initialization of edge devices. The complete table structure

including historyComp, historyDecomp, historyCompServ, exclutionType, deviceType,

and fileStroage tables. The historyComp and historyDecomp tables contain historical

logs used for predictions of local compressions and decompressions on the servicea-

ble edge devices, and contain the same fields as on the corresponding edge device

tables, but with an addition of Device_ID field, which stores a unique identifier of

each serviceable edge device. The historyCompServ table contains historical logs

used for predictions of local compressions on the server used with the on-demand

download model. The table contains the same fields as on the corresponding edge

device table. The compUtil table maintains a list of all compression (utility, level)

pairs available on the serviceable edge devices, as well as corresponding maximum

active peak currents, I_delta_Max, and rise and fall angles of the current waveforms,

Angle_A and Angle_B. To track different edge devices, the compUtil tables include

an additional Device_ID field. The compUtilExt table maintains files extensions of

all compression utilities (e.g., .gz, .bz2, .lzo, .xz). The exclusionType table maintains a

list of uncompressible file types which are ignored by the framework and instead

transferred uncompressed. To maintain information about serviceable edge devices

by the server, the deviceType table includes a list of all supported devices (joined

158

with other tables via Device_ID field). The table also includes additional fields such

as device type and model. Finally, the fileStorage table maintains physical locations

of available files on the server. The table include the following fields: fileName and

Type to specify file names and types, VersionNumber to specify versions of the files

that are currently available on the server (including uncompressed and compressed

versions of the file), and LocalPath to specific file location on the server. The

fileStorage table will be updated on each upload to the server and during the set of

operations performed by the server such as re-compression and optimization of

maintained storage.

Edge Device

historyComp

Th_C

CR

US

Type

C_Util

C_Level

historyDecomp

Th_D

CR

US

Type

C_Util

C_Level

compUtil

C_Util

C_Level

I_delta_Max

Angle_A

Angle_B

exclusionType

File_Type

(a)

Server/Cloud

historyComp

Th_C

CR

US

Type

C_Util

C_Level

Device_ID

historyDecomp

Th_D

CR

US

Type

C_Util

C_Level

Device_ID

compUtil

C_Util

C_Level

I_delta_Max

Angle_A

Angle_B

Device_ID

exclusionType

File_Type

deviceType

Device_ID

Type

fileStorage

File_ID

File_Name

File_Type

Version_Type

Location

historyCompServ

Th_C

CR

US

Type

C_Util

C_Level

(b)

Figure 4.25 Prediction tables for edge device (a) and server/cloud (b)

159

 The initial contents of historyComp and historyDecomp tables are generated

from number of edge devices under-test with a collection of test input data for gen-

eration of initial prediction data for the edge devices. The information about used

edge devices under-test will populate the deviceType table. Similarly, the initial con-

tent of historyCompServ table is generated from local server with the same collection

of test input data for generation of server’s prediction data for compression. The test

input data would depend on type of application where framework will be utilized

and implemented. The additional task of the server, besides satisfying download re-

quest and processing file storage on upload, includes the initial provisioning of histo-

ryComp and historyDecomp tables on the client-side agents running the edge devices

with the same Device_ID or type. For this, the server’s historyComp and historyDe-

comp tables will be used for initial provisioning, filtered to the specific deviceID or

type of the provisioning device.

4.2.4.2 Database Life Cycles

 To be able to provide optimal decision making for particular device, user, or

application, data tables are continually updated and refined on both the client and

the server. Figure 4.26 shows the life cycle of the framework’s data tables and the

ways how the data tables are updated and refined with each new upload, download,

or other processes executed on the client or server-side of the framework.

 (S1) On first initialization of the framework on the client, the server popu-

lates the client’s data tables with default data. (C1) When the upload is performed

from the client, historyComp table is updated with a new entry containing execution

time of local compression (𝑇ℎ. 𝐶), compression ratio (𝐶𝑅), and uncompressed size of

160

the uploaded file (𝑈𝑆) together with compression utility and a level that was select-

ed. (S2) When a download is requested by the client, the server selects an optimally

compressed file by performing a query on historyDecomp table and sends it to the

requester. (C2) The client follows by receiving the files and updating its local histo-

ryDecomp table with estimated throughput of local decompression (𝑇ℎ. 𝐷), compres-

sion ratio (𝐶𝑅), and the size of the uncompressed file (𝑈𝑆), together with the com-

pression utility and compression level that was used on the server.

exclusionType

Client / Mobile Server / Cloud

historyComphistoryComp

historyDecomp

exclusionType

deviceType

historyDecomp

Upload: Updates historyComp table
(new entry w/ CR, US, ThCLocal, Util, Level)
On successful compressed upload

Copies from historyComp with
device type of the mobile client

Service download request using
known device type and class; Picks
the optimal compressed file for the
client to decompress at the highest
throughput or energy efficiency

C1)

compUtil compUtil

fileStorage

Table is updated on recompression,
and storage maintenance (removal,
addition of files and file versions)

Periodical updates of server’s tables:
historyComp & historyDecomp

Download: Updates historyDecomp table
(new entry w/ CR, US, ThCLocal, Util, Level)
on successful download with compression.

C2)

S1)

C3)

S2)

S3)Reducation of historyComp
and historyDecomp tables

C4)

Reducation of historyComp
and historyDecomp tables

S4)

Figure 4.26 Framwork life cycle (C – client, S – server)

(C3) When a client is inactive, it will periodically update server’s historyComp and

historyDecomp tables with new values, which are generated from n number of previ-

ously completed uploads and downloads. Additionally, (C4 and S4), both the client

and the server will perform periodic optimizations of their tables (specifically for his-

toryComp and historyDecomp tables) by performing reduction and averaging of their

values. This optimization will try to keep a number of records small for fast queries

while striving to maintain granularity specifically for upload and download of small-

161

er files (under 1 MB in size). Finally, the server will update fileStorage table during

file maintenance and recompression (S3).

4.2.4.3 Database Optimization

 To speed up the execution of SQL queries, the number of entries in the tables

is periodically reduced on both the mobile device and the server. The reduction is

done over a logarithmically spaced array of file sizes, with an aim of providing high

granularity for smaller files and lower granularity for larger files. Figure 4.27 shows

the reduced and the original entries collected on OnePlus One smartphone for a

‘text’ dataset and gzip -1 compression. We show the relationship between the un-

compressed file size, US, and the compression ratio, CR, and to the local compres-

sion throughput, Th.C. A continuous reduction will improve estimation of the re-

quested parameters while allowing for fast queries. The agents also utilize a data-

base index, I1, to speedup SQL queries by indexing all filtered fields during queries,

including US, Type, C_Util, C_Level, and Device_ID.

162

(a)

(b)

Figure 4.27 Prediction tables for mobile device (a) and server/cloud (b)

0.01

0.10

1.00

10.00

100.00

0.01 0.10 1.00 10.00

Th
.C

 [
M

B
/s

]

US [MB]

Filtered and measured prediction data: Throughput ('text', 'gzip -1')

Th.C(Measured) Th.C(Filtered)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.01 0.10 1.00 10.00

C
R

 [
-]

US [MB]

Filtered and measured prediction data: Compression Ratio ('text', 'gzip -1')

CR(Measured) CR(Filtered)

163

CHAPTER 5

FRAMEWORK IMPLEMENTATION

 To perform an evaluation of the framework during uploads and downloads,

the framework’s edge device and cloud agents have been implemented in C++ using

SQLite and MySQL databases for table structures. For mobile devices, the client-

side agent is compiled with Android NDK toolset to allow its native execution on

Android, and SQLite database is selected due to its portability, speed, and default

availability on Android. For workstations, the client-side agent can be implemented

using any SQL engine as there are no constraints in development tools and envi-

ronments. However, SQLite has been used to have a consistent implementation

across all edge devices. The C++ implementation of the cloud agent is compiled with

gcc and MySQL to allow concurrent request from the numerous devices. The data-

base prediction tables are created for both the edge device and the cloud portions of

the framework, containing the data tables described in the previous section (Section

4.2.4.1). The following subsections describe details of the framework implementation

for uploads (Section 5.1) and downloads (Section 5.2). Section 5.3 describes methods

for server’s long-term storage of the servisable files, including re-compression of files

done on the server.

164

 Upload Agents

 The framework’s optimization of uploads involves two agents, the agent re-

siding on the edge device (client), and the agent residing on the server or the cloud.

During uploads, the agent on the edge device performs all the decision making to

select the most effective mode of file upload. The server’s agent is responsible for

storage management, receiving and processing incoming uploads, and finally, per-

forming re-compression tasks to make new compressed versions of files available to

clients. The primary examples of file uploads performed from the edge devices can be

file distribution, mHealth data upload, or general file uploads.

 To perform optimized upload, the first step for the client is to determine the

current network parameters, including network throughput, Th.UP, and connection

setup time, T.SC. To avoid imposing an additional latency to the current file upload,

these parameters are typically acquired prior to upload – e.g., an agent can periodi-

cally probe network conditions using the method discussed in Section 4.2.1.3. Once

the throughput-based network parameters are calculated, energy efficiency network

parameters are estimated using estimation models from Section 4.2.1.1.

 Figure 5.1 (line 2) shows command arguments for invoking the framework

agent for the throughput optimized upload of a text file over a WLAN interface with

the network throughput set to 5 MB/s and the connection time of 0.362 seconds. Fig-

ure 5.1 (line 4) shows command arguments for invoking the framework agent for en-

ergy efficiency optimized upload of a text file over a WLAN interface with the net-

work throughput set to 0.5 MB/s and the connection time of 0.362 seconds. In both

cases, the network parameters are determined in advance by the network probing.

The file information (file size and type) is retrieved from the file system of the edge

165

device when invoking the upload agent. These inputs are then used in an SQL query

to estimate compression ratios, CR, and local compression throughputs, Th.C, for all

available compression utilities and levels on the mobile device. If the framework is

using throughput mode, the framework estimates the throughput of compressed up-

loads using the analytical model for Th.CUP. If the framework is using energy-

efficient mode, the framework estimates energy efficiency of compressed uploads us-

ing the analytical model for estimated energy efficiency, EE.CUP.

Figure 5.1 Upload of a text file from the client over 5 MB/s and 0.5 MB/s networks,

with throughput (TH) and energy efficiency (EE) modes

 Figure 5.2 shows a SQL query which is executed inside the framework agent

on throughput optimized upload of a text file from the command argument in Figure

5.1 (line 2). The results of the SQL query (Table 5.1) are sorted in the descending

order, with a limit applied to the first row, which has the highest compressed upload

throughput, Th.CUP. If the highest compressed upload throughput exceeds the un-

compressed upload throughput, Th.UUP, the selected utility and level are used dur-

ing compressed upload; otherwise, the uncompressed file is uploaded.

For the throughput mode, the SQL query execution with a 30,000 entry table is

27.4 milliseconds on the OnePlus smartphone, and between 2 and 3.5 milliseconds

on the workstation.

1. // Throughput based upload @ 5 MB/s network throughput
2. frameworkRUN –upload –TH ‘fileName.txt’ ‘text’0.362 5.11
3. // Energy efficiency based upload @ 0.5 MB/s network throughput
4. frameworkRUN -upload –EE ‘fileName.txt’ ‘text’0.362 0.5113

166

Figure 5.2 SQL query for uploading 1.75 MB file with optimized throughput

Table 5.1 SQL query output sorted for throughput optimized upload @ 5 MB/s

i Utility Level Th.C Th.CUP

1 lzop 1 18.513 3.021

2 lzop 6 15.437 2.955

3 pigz 1 9.340 2.877

4 gzip 1 8.636 2.799

5 pigz 6 5.128 2.150

6 pigz 9 4.641 1.975

7 xz 0 3.449 1.431

8 gzip 6 3.010 1.215

9 bzip2 1 2.442 0.913

10 xz 1 2.159 0.749

1. // inUS=1.77; inType='text'; inThUP=5.0; inTSC=0.362;
2. SELECT T.C_Util,T.C_Level,Ext,CR,Th_C FROM (
3. SELECT C_Util,C_Level,(SELECT CR FROM (SELECT CR, diff FROM (
4. SELECT CR, abs(US - inUS) AS diff FROM historyComp AS T2
5. WHERE Type = inType and T2.C_Util = Tools.C_Util and
6. T2.C_Level = Tools.C_Level and US <= inUS
7. ORDER BY US DESC LIMIT 1)UNION ALL
8. SELECT CR, diff FROM (
9. SELECT CR, abs(US - inUS) AS diff FROM historyComp AS T2
10. WHERE US= inType and T2.C_Util = Tools.C_Util and
11. T2.C_Level = Tools.C_Level and US > inUS ORDER BY US DESC LIMIT 1)
12. ORDER BY diff LIMIT 1)
13.) AS CR,(SELECT Th_C FROM (SELECT Th_C, diff FROM (
14. SELECT Th_C, abs(US - inUS) AS diff FROM historyComp AS T3
15. WHERE Type = inType and T3.C_Util = Tools.C_Util and
16. T3.C_level = Tools.C_Level and US <= inUS
17. ORDER BY US DESC LIMIT 1) UNION ALL
18. SELECT Th_C, diff FROM (
19. SELECT Th_C, abs(US - inUS) AS diff FROM historyComp AS T3
20. WHERE Type = inType and T3.C_Util = Tools.C_Util and
21. T3.C_Level = Tools.C_Level and US > inUS ORDER BY US DESC LIMIT 1)
22. ORDER BY diff LIMIT 1)) AS Th_C FROM compUtil AS Tools) AS T
23. LEFT JOIN compUtilExt ON (compUtilExt.C_Util = T.C_Util)
24. ORDER BY (1/(inTSC/US+inThUP/(Th_C*Th_C)+1/(CR*inThUP)) DESC LIMIT 1

167

 Figure 5.3 shows a SQL query which is executed inside the framework agent

on energy efficiency optimized upload of a text file from the command argument in

Figure 5.1 (line 4). The results of the SQL query (Table 5.2) are sorted in the de-

scending order, with a limit applied to the first row, which has the highest com-

pressed upload energy efficiency, EE.CUP. If the highest compressed upload energy

efficiency exceeds the uncompressed upload energy efficiency, EE.UUP, the selected

utility and level are used during compressed upload; otherwise, the uncompressed

file is uploaded. The SQL query execution with an 30,000 entry table on the OnePlus

One for energy efficiency optimized transfers is 63.24 ms. The extra overhead comes

from the additional SQL CASE statement used for calculation of EE_C. Execution of

the same query on the workstation is between 3.0 ms and 6.5 ms.

168

Figure 5.3 SQL query for uploading 1.75 MB file with optimized energy efficiency

Table 5.2 SQL query output sorted for energy efficiency optimized upload @ 0.5 MB/s

i Utility Level EE.C EE.CUP

1 pigz 1 9.770 1.610

2 gzip 1 9.431 1.599

3 lzop 1 29.977 1.463

4 lzop 6 22.495 1.429

5 pigz 6 3.482 1.352

6 pigz 9 2.995 1.271

7 xz 0 3.136 1.241

8 gzip 6 2.865 1.236

9 bzip2 1 2.212 1.154

10 gzip 9 2.026 1.029

1. // inUS=1.77; inType='text'; inThUP=0.50; inTSC=0.362;
2. // Vbs=4.10; I_idle=0.067; estimated: inEEUP=0.96
3. SELECT T.C_Util,T.C_Level,Ext,CR,Th_C,
4. CASE WHEN (inUS/Th_C)/0.577 < T.Delta_I THEN
5. Th_C/(Vbs*(I_idle + 0.5*(inUS/Th_C)/0.577))
6. ELSE
7. Th_C/(Vbs*(I_idle + 0.5*(T.Delta_I*(2-T.Delta_I/(inUS/Th_C)*0.577))))
8. END AS EE_C FROM (SELECT C_Util,C_Level,Delta_I,
9. (SELECT CR FROM (SELECT CR, diff FROM (
10. SELECT CR, abs(US - inUS) AS diff FROM historyComp AS T2
11. WHERE Type = inType and T2.C_Util = Tools.C_Util and
12. T2.C_Level = Tools.C_Level and US <= inUS
13. ORDER BY US DESC LIMIT 1) UNION ALL
14. SELECT CR, diff FROM (
15. SELECT CR, abs(US - inUS) AS diff FROM historyComp AS T2
16. WHERE Type = inType and T2.C_Util = Tools.C_Util and
17. T2.C_Level = Tools.C_Level and US > inUS
18. ORDER BY US DESC LIMIT 1) ORDER BY diff LIMIT 1)) AS CR,
19. (SELECT Th_C FROM (SELECT Th_C, diff FROM (
20. SELECT Th_C, abs(US - inUS) AS diff FROM historyComp AS T3
21. WHERE Type = inType and T3.C_Util= Tools.C_Util and
22. T3.C_Level = Tools.C_Level and US <= inUS
23. ORDER BY US DESC LIMIT 1) UNION ALL
24. SELECT Th_C, diff FROM (
25. SELECT Th_C, abs(US - inUS) AS diff FROM historyComp AS T3
26. WHERE Type = inType and T3.C_Util = Tools.C_Util and
27. T3.C_Level = Tools.C_Level and US > inUS ORDER BY US DESC LIMIT 1)
28. ORDER BY diff LIMIT 1)) AS Th_C FROM compUtil AS Tools) AS T
29. LEFT JOIN compUtilExt ON (compUtilExt.C_Util = T.C_Util)
30. ORDER BY (1/(1/(CR*inEEUP)+1/EE_C+(inEEUP/EE_C-1)

*(Vbs*I_idle)/Th_C+inTSC/inUS)) DESC LIMIT 1

169

 In both cases, if a compressed upload is selected, the compressed size, CS,

and total execution time, T.CUP, are returned at the end of the upload process. The

agent will then calculate compression ratio, CR, from the compressed file size, and

estimate local compression throughput, 𝑇ℎ. 𝐶, by using the model for compressed up-

load with piping shown in Equation (5.1). Finally, the uncompressed size, compres-

sion ratio, and local compression throughput together with corresponding compres-

sion utility and level are inserted as a new entry in the historyComp table. This will

refine historical data table with each compressed upload transaction.

𝑇ℎ. 𝐶 = √

𝑇ℎ. 𝑈𝑃

1
𝑇ℎ. 𝐶𝑈𝑃

−
𝑇. 𝑆𝐶

𝑈𝑆
−

1
𝐶𝑅 ∙ 𝑇ℎ. 𝑈𝑃

(5.1)

 Download Agents

 The framework’s optimization of downloads involves two agents, the agent

residing on the edge device (client), and the agent residing on the server or the

cloud. During downloads, the agent on the server performs all the decision making

to select the most effective mode of file download. The cloud agent can also perform

on-demand compression, if the compressed versions of the requested files are not

available in the fileStorage table. The agent on the edge device initiates the down-

load request, and performs automatic decompression of the incoming file when need-

ed. The primary examples of file downloads performed from the edge devices are

downloads of applications and other executables from software repositories,

downloads of processed mHealth data, and downloads of text and HTTP data.

170

 To perform optimized download, the first step for the client is to determine

the current network parameters, including network throughput, Th.DW, and the

time to set up a network connection, T.SC. As in uploads, we assume that the client

maintains the network parameters through periodic probing to avoid imposing an

additional latency to the current file download. Similarly, both throughput and en-

ergy efficiency network parameters are estimated.

 Figure 5.4 (line 2) shows command arguments for invoking the framework

agent with throughput optimized download of a text file over a WLAN interface with

the network throughput set to 5 MB/s and the connection time of 0.362 seconds. Fig-

ure 5.4 (line 4) shows command arguments for invoking the framework agent with

energy efficiency optimized download of a text file over a WLAN interface with the

network throughput set to 0.5 MB/s and the connection time of 0.362 seconds. In

both cases, the network parameters are determined in advance by the network prob-

ing. The file information (file size and type) and device ID (e.g., A0001 for OnePlus

One) are retrieved from the file system and operating system running on the edge

device. Two additional inputs tell the framework agent to either perform download

with optimized throughput (line 2) or download with optimized energy efficiency

(line 4). When server receives the download request with client’s information, it exe-

cutes an SQLite query on historyDecomp table to decide which file (compressed or

uncompressed) is the best in terms of performance or energy efficiency specifically

for device type of the requesting client. If the download request favors the through-

put optimized mode, the framework estimates the throughput of compressed down-

loads using the analytical model for Th.CDW. If the download request favors the en-

ergy efficiency optimized mode, the framework estimates energy efficiency of com-

pressed downloads using the analytical model for estimated energy efficiency,

171

EE.CDW. When the compressed files of requested file download are not available the

fileStorage table, the server agent will instead estimate the throughput or energy

efficiency of compression downloads with on-demand compression.

 Once the client agent starts receiving the file, it will decode the first few in-

coming bytes (magic number from Table 2.1) to decide which decompression, if any,

should it use to complete the transaction. Figure 5.5 shows a part of the script used

by the client for decoding incoming data. The framework can also be configured to

use custom IDs for deciding which compression utility and compression level is

needed for performing decompression.

Figure 5.4 Download of text file from the client on 5 MB/s and 0.5 MB/s network

throughput, with throughput (TH) and energy efficiency (EE) modes

1. // Throughput based download @ 5 MB/s network throughput
2. frameworkRUN –download –TH ‘fileName.txt’ ‘text’ ‘mako’ 0.362 5.11
3. // Energy efficiency based upload @ 0.5 MB/s network throughput
4. frameworkRUN -download –EE ‘fileName.txt’ ‘text’ ‘mako’ 0.362 0.5113

172

Figure 5.5 downloadClient.sh – script for decoding of incoming file based on ID

 Once the download with decompression is completed, the client inserts a new

entry into the historyDecomp table to describe most recent decompression transac-

tion. The client will calculate compression ratio, 𝐶𝑅, and local decompression

throughput, 𝑇ℎ. 𝐷, by reversing the model for compressed download with piping

(Equation (4.28)). Finally, the uncompressed size (𝑈𝑆), compression ratio (𝐶𝑅), and

local decompression throughput (𝑇ℎ. 𝐷), together with corresponding compression

utility name (e.g., xz) and level (e.g., 9) used for creating the compressed file will be

1. !/bin/sh

2. trap "rm -f /tmp/$$; exit 1" 1 2 3 15

3. # grab the 1st 4 bytes off the input stream, store them in a file,

4. # convert to ascii, and store in variable:

5. HEADER=$(

6. dd bs=1 count=2 2>/dev/null |

7. tee /tmp/$$ |

8. od -t x1 |

9. sed '

10. s/^00* //

11. s/ //g

12. q

13. '

14.)

15. case "$HEADER" in

16. 1f8b)

17. UNCOMPRESS='gzip -d -fc';;

18. 425a)

19. UNCOMPRESS='bzip2 -d -fc';;

20. 894c)

21. UNCOMPRESS='lzop -d -fc';;

22. fd37)

23. UNCOMPRESS='xz -d -fc';;

24. *)

25. UNCOMPRESS='cat';;

26. esac

27. #echo >&2 "$0: File header is '$HEADER' using '$UNCOMPRESS'

 on stream."

28. cat /tmp/$$ - | $UNCOMPRESS > /dev/null

29. rm /tmp/$$

173

written back and inserted as a new record in the historyDecomp data table on the

client. This will refine historical data table with each compressed download transac-

tion, used periodically to update server’s historyDecomp table for the specific device

(e.g., OnePlus One).

𝑇ℎ. 𝐷 = √

𝑇ℎ. 𝐷𝑊

1
𝑇ℎ. 𝐶𝐷𝑊

−
𝑇. 𝑆𝐶

𝑈𝑆
−

1
𝐶𝑅 ∙ 𝑇ℎ. 𝐷𝑊

(5.2)

 Re-compression and Server’s Long-term Storage

 Re-compression

 To fulfill future download requests from the edge devices, the cloud will have

to perform re-compression of incoming files (uploads from the edge devices), and

maintain several compressed versions of files in addition to uncompressed files, for

cases when downloading the uncompressed file will be more beneficial either with

throughput or energy-efficient mode. The information on available versions of each

file is kept in the fileStorage table. This table is maintained and updated by the

server agent with each new upload periodic re-compression, addition, or removal of

files.

 Optimization

 One possible optimization of this feature is to maintain a number of versions

of a file based on a parameter such as frequency of usage, download rate or count, or

“popularity”. This can be specifically appropriate for applications such as application

174

and software repositories (e.g., Apple Store, Google Play) and distributed storage

(e.g., Dropbox).

 Taking application repository as an example, for “popular” or “featured” ap-

plications that are more likely to be downloaded by a wide variety of users, with a

more diverse set of network characteristics, it will be beneficial to maintain multiple

compressed files. On the other hand, an application that is not “featured” and not

frequently downloaded, can instead maintain 2 or 3 versions of the file that satisfy

users with low and high network throughputs (e.g., 3G and WLAN). This way, the

framework will able to provide an good throughput and energy efficiency for typical

users, while reducing the strain on the server or the cloud, and thus saving the stor-

age space for more frequently downloaded applications instead.

175

CHAPTER 6

EVALUATION OF FRAMEWORK IMPLEMENTATION

 This section covers evaluation of the framework implementations on a

smartphone and workstation. Section 6.1 describes the evaluation methods and con-

figurations on the smartphone, workstation, as well as the local and remote cloud

instances during framework evaluation. The evaluation results are presented based

on the throughput and energy-efficient modes of optimization on the smartphone

(Section 6.2), and based on throughput mode of optimization and achieved cost sav-

ings of cloud cost on the workstation (Section 6.3).

 Evaluation Methods

 Mobile Device

 Experimental evaluation of the framework installed on the smartphone in-

volves running upload and download agents on the mobile device and the local serv-

er. Each transfer mode selected by the proposed framework is augmented to meas-

ure the effective upload and download throughputs and energy efficiencies. To

measure effectiveness of the proposed framework with throughput optimized mode,

the effective throughputs achieved by the framework agents, Th.FW, are compared

to the effective throughputs of uncompressed transfers, Th.UUP [Th.UDW], and the

default compressed transfers with gzip -6, Th.CUP(gzip -6) [Th.CDW(gzip -6)]. To

measure effectiveness of the proposed framework with energy efficiency optimized

176

mode, the effective energy efficiencies achieved by the framework agents, EE.FW,

are compared to the effective energy efficiencies of uncompressed transfers, EE.UUP

[EE.UDW], and the default compressed transfers, EE.CUP(gzip -6)

[EE.CDW(gzip -6)]. The experiments are repeated for WLAN network throughputs

set to 0.5, 2, 3.5 and 5 MB/s. The network throughput is set using the Linux tc (traf-

fic control) utility. OnePlus One is used as the target device for this evaluation.

 Using datasets representative of mobile devices, introduced in Section 2.4.3

(Table 2.3), prediction tables are generated both on the mobile device and copied to

the server for all supported compression utilities and levels. This is done by saving

compression ratio (CR), local throughput (Th.C), and uncompressed file size (US) for

each executed task into the table. Finally, the number of entries in the prediction

tables is reduced and averaged to a certain file size granularity.

 Workstation

 Experimental evaluation of the framework installed on the workstation in-

volves running upload and download agents on the workstation and the cloud in-

stances in North Virginia and Tokyo. Each transfer mode selected by the proposed

framework is augmented to measure the effective upload and download throughputs.

To measure effectiveness of the proposed framework, the effective throughputs

achieved by the framework agents, Th.FW, are compared to the effective through-

puts of uncompressed transfers, Th.UUP [Th.UDW], and the default compressed

transfers with gzip -6, Th.CUP(gzip -6) [Th.CDW(gzip -6)].

 In addition to throughput optimization, the effectiveness of the proposed

framework is evaluated by the amount of cost savings associated with upload and

download to and from the cloud. The total costs for transferring the data with the

177

framework, $.FW, are compared to the total costs with the uncompressed transfers,

$.UUP [$.UDW], and the total costs with the default compressed transfers,

$.CUP(gzip -6) [$.CDW(gzip -6)].

 In preliminary characterization of cloud instances, the high network

throughputs are achieved when the user has high bandwidth availability and net-

work priority. However, the network throughput can be capped by the cloud com-

modity provider (such as AWS) due to high network traffic and low network priority.

For this reason, in addition to conducting experiments on the uncapped network, the

experiments for uploads and downloads are repeated on two controlled network

throughputs. The network throughput is controlled using the Linux tc (traffic con-

trol) utility to provide controlled network throughputs of 5 MB/s and 2 MB/s locally

and on the cloud.

 Using datasets representative of workstations, introduced in Section 2.4.3

(Table 2.4), a subset of 20 files is selected from each dataset for conducting experi-

ments. The rest of the files are used to create prediction tables on the workstation

and copied to cloud instances for all supported compression utilities and levels. Fi-

nally, the number of entries in the prediction tables is reduced and averaged to a

certain file size granularity.

 Results: Mobile Device

 Throughput Optimized Transfers

 This section describes the results of the framework evaluation with through-

put optimized file transfers. The experiments are conducted on the OnePlus One

smartphone with the 0.5 MB/s, 2 MB/s, 3.5 MB/s, and 5 MB/s WLAN network con-

178

nections to the local server (Dell PowerEdge T620). Throughput speedups are re-

ported for uploads (Section 6.2.1.1) and downloads (Section 6.2.1.2).

6.2.1.1 Throughput Speedup for Uploads

 Th.FW/Th.UUP. The effective upload throughput speedup is calculated as

the throughput achieved by the framework divided by the throughput of the corre-

sponding uncompressed upload, Th.FW/Th.UUP. Figure 6.1 shows the effective

throughput speedups for file transfers when using the 0.5 MB/s (Figure 6.1, a) and

the 5 MB/s (Figure 6.1, b) WLAN network. Markers represent speedups for file

transfers of a certain type - e.g., red diamonds are apk files and blue squares are

book files.

 The throughput speedup depends on the file type, the file size, and the net-

work parameters. The optimized file uploads are highly beneficial for the majority of

files. Exceptions are relatively small book files. The maximum throughput speedups

range from 1.28 for the Maps_routing files to 16.27 for the mHealth waveform files

on the 0.5 MB/s network, and from 2.13 for the mHealth binary actively log files to

6.73 for the mHealth waveform files on the 5 MB/s network.

 To determine the total throughput speedup achieved by the framework for

certain file classes, we divide the sum of total uncompressed transfer times for all

files in the group with the sum of total compressed transfer times when using the

framework. Table 6.1 shows the total throughput speedups for each file class and for

all classes combined (row Total) when transferring files with all selected WLAN

network connections. The total throughput speedup for all files ranges from 1.55 (on

the 2 MB/s network) to 2.29 (on the 5 MB/s network), being more effective at the

higher network throughput. It should be noted that the optimized uploads are most

179

beneficial for files that are most likely to be uploaded to the cloud, including

mHealth files and uncompressed DNG images. The optimized transfers perform well

for all network conditions.

(a)

(b)

Figure 6.1 Upload throughput speedup Th.FW/Th.UUP on OnePlus One

0.5

5.0

50.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.UUP (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.2

2.0

20.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.UUP (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

180

Table 6.1 Overall upload throughput speedup Th.FW/Th.UUP on OnePlus One

Th.FW/Th.UUP 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 2.18 2.12 2.07 1.36

apk.source 3.24 2.43 2.75 3.15

Books 1.89 1.30 1.03 1.15

DNG 2.46 1.84 1.73 2.76

HealthSUM.csv 7.24 3.42 2.17 2.17

HealthSUM.dat 5.42 2.76 1.72 1.86

HealthWAVE.csv 13.25 5.81 6.37 5.29

HealthWAVE.dat 3.83 2.53 2.00 2.51

Maps 1.26 1.24 1.23 2.23

Maps.routing 1.14 1.12 1.13 2.03

OsmAnd 1.35 1.33 1.34 2.64

Translate 1.28 1.27 1.28 2.52

Total 1.55 1.49 1.44 2.29

 Th.FW/Th.CUP(gzip -6). The effective upload throughput speedup is calcu-

lated as the throughput achieved by the framework divided by the throughput of the

corresponding default compressed upload, Th.FW/Th.CUP(gzip -6). Figure 6.2

shows the effective upload throughput speedups for file transfers using the 0.5 MB/s

(Figure 6.2, a) and the 5 MB/s (Figure 6.2, b) WLAN network.

 On the 0.5 MB/s network, the optimized file uploads offer limited speedup for

selected files (e.g., DNG, HealthWAVE.dat, and HealthWAVE.csv). Other files have

achieved speedup close to 1 or below it, where the framework selects the default

compression as its transfer mode. However, even in these conditions, files that are

most likely to be uploaded to the cloud benefit from the framework optimizations.

The optimized file uploads provide significant improvements over the default com-

pressed transfers on the 5 MB/s network. The maximum throughput speedups range

from 2.03 for mHealth waveform text files (on the 0.5 MB/s network) to 12.11 for

DNG lossless images (on the 5 MB/s network).

181

 Table 6.2 shows the total throughput speedups for each file class and for all

classes combined (row Total) when transferring files with all selected WLAN net-

work connections. The total throughput speedup for all files ranges from 1.01 (on a

0.5 MB/s network) to 2.85 (on a 5 MB/s network).

(a)

(b)

Figure 6.2 Upload throughput speedup Th.FW/Th.CUP(gzip -6) on OnePlus One

0.3

3.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.CUP(gzip -6) (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.2

2.0

20.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.CUP(gzip -6) (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

182

Table 6.2 Overall upload throughput speedup Th.FW/Th.CUP(gzip -6)

 on OnePlus One

Th.FW/Th.CUP(gzip -6) 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 1.00 1.38 1.29 1.99

apk.source 1.03 1.04 1.62 2.45

Books 0.97 1.11 1.14 1.19

DNG 1.31 2.91 4.50 7.00

HealthSUM.csv 1.16 1.43 1.51 1.80

HealthSUM.dat 1.15 1.57 1.33 1.46

HealthWAVE.csv 1.70 2.65 4.73 5.77

HealthWAVE.dat 1.16 2.31 3.30 3.69

Maps 1.00 1.07 1.61 2.41

Maps.routing 1.00 1.25 1.92 2.71

OsmAnd 1.00 1.24 2.14 3.24

Translate 1.00 1.26 1.84 2.80

Total 1.01 1.31 2.01 2.85

6.2.1.2 Throughput Speedup for Downloads

 Th.FW/Th.UDW. The effective download throughput speedup is calculated

as the throughput achieved by the framework divided by the throughput of the cor-

responding uncompressed download, Th.FW/Th.UDW. Figure 6.3 shows the effec-

tive throughput speedups for file transfers when using the 0.5 MB/s (Figure 6.3, a)

and the 5 MB/s (Figure 6.3, b) WLAN network.

 The optimized file downloads are highly beneficial for the majority of files

considered, except for a small group of book files transferred over a high-throughput

connection. The maximum throughput speedups range from 1.37 for Maps.routing

files to 32.49 for mHealth waveform text files on the 0.5 MB/s network, and from

2.77 for Maps.routing files to 18.28 for mHealth waveform text files on the 5 MB/s

network. For transfers on the 0.5 MB/s network, the framework selects utilities with

183

a high compression ratio, thus increasing the speedup for files larger than 0.1 MB.

For transfers on the 5 MB/s network, utilities with higher compression ratio in-

crease speedup for files larger than 1 MB.

(a)

(b)

Figure 6.3 Download throughput speedup Th.FW/Th.UDW on OnePlus One

 Table 6.3 shows the total throughput speedups for each file class and for all

classes combined (row Total) when transferring files with all selected WLAN net-

0.5

5.0

50.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.UDW (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.3

3.0

30.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.UDW (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

184

work connections. The total throughput speedup for all files ranges from 1.78 (on a

0.5 MB/s network) to 2.52 (on a 5 MB/s network), being more effective at the higher

network throughput.

Table 6.3 Overall download throughput speedup Th.FW/Th.UDW

on OnePlus One

Th.FW/Th.UDW 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 2.73 2.87 2.44 1.97

apk.source 2.88 2.69 2.16 2.18

Books 1.92 1.20 1.03 1.01

DNG 2.78 2.12 1.28 2.35

HealthSUM.csv 7.11 3.62 2.28 2.05

HealthSUM.dat 5.72 2.84 1.92 1.83

HealthWAVE.csv 22.18 15.68 9.16 7.94

HealthWAVE.dat 4.58 3.00 2.29 2.68

Maps 1.45 1.44 1.25 2.27

Maps.routing 1.21 1.15 1.15 2.02

OsmAnd 1.63 1.60 1.36 2.51

Translate 1.55 1.53 1.29 2.55

Total 1.78 1.72 1.44 2.52

 Th.FW/Th.CDW(gzip -6). The effective download throughput speedup is cal-

culated as the throughput achieved by the framework divided by the throughput of

the corresponding default compressed download, Th.FW/Th.CDW(gzip -6). Figure

6.4 shows the effective throughput speedups for file transfers when using the

0.5 MB/s (Figure 6.4, a) and the 5 MB/s (Figure 6.4, b) WLAN network.

 On the 0.5 MB/s network, the optimized file downloads are beneficial except

for small book files, where the framework selects the default compressed file from

the server during its transfer. The optimized file downloads for high network

185

throughput (5 MB/s), offers limited speedup, with many file transfers achieving a

speedup of 1 or below it. The maximum throughput speedups range from 1.08 for

Maps.routing files to 3.90 for mHealth waveform text files on the 0.5 MB/s network.

(a)

(b)

Figure 6.4 Download throughput speedup Th.FW/Th.CDW(gzip -6) on

OnePlus One

0.5

5.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.CDW(gzip -6) (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.3

3.0

0.01 0.10 1.00 10.00 100.00 1000.00

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.CDW(gzip -6) (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

186

 Table 6.4 shows the total throughput speedups for each file class and for all

classes combined (row Total) when transferring files with all selected WLAN net-

work connections. The total throughput speedup for all files ranges from 1 (on the

5 MB/s network) to 1.2 (on the 0.5 MB/s network), being more effective at the lower

network throughput. The results show that optimized downloads outperform the de-

fault compressed downloads at lower network throughputs, but offer no significant

advantages at the higher network throughputs.

Table 6.4 Overall download throughput speedup Th.FW/Th.CDW(gzip -6)

on OnePlus One

Th.FW/Th.CDW(gzip -6) 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 1.24 1.22 1.15 0.96

apk.source 1.25 1.22 1.11 1.02

Books 1.17 1.24 0.96 1.12

DNG 1.47 1.27 1.15 0.85

HealthSUM.csv 1.21 1.08 1.08 0.92

HealthSUM.dat 1.29 1.13 0.97 1.02

HealthWAVE.csv 2.84 2.13 1.32 0.84

HealthWAVE.dat 1.40 1.10 0.96 0.90

Maps 1.15 1.15 0.99 1.01

Maps.routing 1.06 1.01 1.00 0.96

OsmAnd 1.20 1.18 1.00 0.98

Translate 1.20 1.19 1.00 1.04

Total 1.20 1.18 1.01 1.00

 Energy Efficiency Optimized Transfers

 This section describes the results of the framework evaluation with energy

efficiency optimized file transfers. The experiments are conducted on the OnePlus

187

One smartphone with the 0.5 MB/s, 2 MB/s, 3.5 MB/s, and 5 MB/s WLAN network

connections to the local server (Dell PowerEdge T620). Improvements in energy effi-

ciency are reported for uploads (Section 6.2.2.1) and downloads (Section 6.2.2.1).

6.2.2.1 Energy Efficiency Improvement for Uploads

 EE.FW/EE.UUP. The effective upload energy efficiency improvement is cal-

culated as the energy efficiency achieved by the framework divided by the energy

efficiency of the corresponding uncompressed upload, EE.FW/EE.UUP. Figure 6.5

shows the effective energy efficiency improvements for file transfers when using the

0.5 MB/s (Figure 6.5, a) and the 5 MB/s (Figure 6.5, b) WLAN network.

 The energy efficiency improvement depends on the file type, the file size, and

the network parameters. On the 0.5 MB/s network, the optimized file uploads offer

good optimization for the majority of selected files. However, on the 5 MB/s network,

files that are less than 1 MB in size and low compressible files, have achieved energy

efficiency improvement close to 1 or below it, where the framework selects the un-

compressed transfer mode. Energy efficiency is improved for the majority of larger

files with higher compression ratio.

 To determine the total energy efficiency improvement achieved by the

framework for certain file classes, we divide the sum of total energy of uncompressed

transfer for all files in the group with the sum of total energy when using the

framework. Table 6.5 shows the total energy efficiency improvements for each file

class and for all classes combined (row Total) when transferring files with all select-

ed WLAN network connections. The total energy efficiency improvement for all files

ranges from 1.09 (on the 0.5 MB/s network) to 1.16 (on the 5 MB/s network). It

should be noted that the optimized uploads are most beneficial for files that are most

188

likely to be uploaded to the cloud, including mHealth files and uncompressed DNG

images.

(a)

(b)

Figure 6.5 Upload energy efficiency improvement EE.FW/EE.UDW

on OnePlus One

0.5

5.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Upload Energy Efficiency Improvement: EE.FW/EE.UUP (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.3

3.0

30.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Upload Energy Efficiency Improvement: EE.FW/EE.UUP (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

189

Table 6.5 Overall upload energy efficiency improvement EE.FW/EE.UUP

on OnePlus One

EE.FW/EE.UUP 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 1.42 1.62 1.60 1.44

apk.source 1.14 2.02 2.12 2.03

Books 1.17 0.94 0.93 0.97

DNG 1.25 1.32 1.38 1.29

HealthSUM.csv 3.42 2.54 2.60 2.25

HealthSUM.dat 2.37 2.32 2.15 1.93

HealthWAVE.csv 4.76 4.24 4.40 3.97

HealthWAVE.dat 1.84 1.93 1.93 1.75

Maps 0.89 0.96 1.02 1.03

Maps.routing 0.86 0.95 1.02 1.03

OsmAnd 1.04 1.04 1.06 1.03

Translate 0.91 0.98 1.06 1.03

Total 1.09 1.16 1.20 1.16

 EE.FW/EE.CUP(gzip -6). The effective upload energy efficiency improve-

ment is calculated as the energy efficiency achieved by the framework divided by the

energy efficiency of the corresponding default compressed upload,

EE.FW/EE.CUP(gzip -6). Figure 6.6 shows the effective energy efficiency improve-

ment for file transfers when using the 0.5 MB/s (Figure 6.6, a) and the 5 MB/s

(Figure 6.6, b) WLAN network.

 On the 0.5 MB/s network, the optimized file uploads offer limited improve-

ment for selected files (e.g., DNG, HealthSUM.csv, HealthWAVE.csv, and

HealthWAVE.dat). Other files, including files that are less than 1 MB in size, have

achieved energy efficiency improvement close to 1 or below it, where the framework

selects the default compression as its transfer mode. The optimized file uploads pro-

vide significant improvements over the default compressed transfers on the 5 MB/s

190

network. Overall, files that are most likely to be uploaded to the cloud benefit from

the framework optimizations.

(a)

(b)

Figure 6.6 Upload energy efficiency improvement EE.FW/EE.CUP(gzip -6) on

OnePlus One

 Table 6.6 shows the total energy efficiency improvements for each file class

and for all classes combined (row Total) when transferring files with all selected

0.1

1.0

10.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Upload Energy Efficiency Improvement: EE.FW/EE.CUP(gzip -6) (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.3

3.0

30.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Upload Energy Efficiency Improvement: EE.FW/EE.CUP(gzip -6) (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

191

WLAN network connections. The total energy efficiency improvement for all files

ranges from 1.09 (on the 0.5 MB/s network) to 2.13 (on the 5 MB/s network), being

more effective at the higher network throughput.

Table 6.6 Overall upload energy efficiency improvement EE.FW/EE.CUP(gzip -6)

 on OnePlus One

EE.FW/EE.CUP(gzip -6) 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 0.96 1.50 1.75 1.84

apk.source 0.78 1.28 1.57 1.74

Books 0.86 0.94 1.08 1.20

DNG 1.66 2.82 3.62 4.02

HealthSUM.csv 1.10 1.32 1.71 1.81

HealthSUM.dat 0.90 1.39 1.61 1.75

HealthWAVE.csv 1.46 2.11 2.77 3.08

HealthWAVE.dat 1.37 2.38 2.95 3.15

Maps 0.97 1.36 1.65 1.91

Maps.routing 1.01 1.53 1.90 2.18

OsmAnd 1.15 1.61 1.94 2.15

Translate 1.02 1.50 1.90 2.11

Total 1.09 1.58 1.93 2.13

6.2.2.2 Energy Efficiency Improvement for Downloads

 EE.FW/EE.UDW. The effective download energy efficiency improvement is

calculated as the energy efficiency achieved by the framework divided by the energy

efficiency of the corresponding uncompressed download, EE.FW/EE.UDW. Figure

6.7 shows the effective energy efficiency improvements for file transfers when using

the 0.5 MB/s (Figure 6.7, a) and the 5 MB/s (Figure 6.7, b) WLAN network.

192

 The optimized file downloads are highly beneficial for the majority of files

considered. On the 0.5 MB/s network, the optimized file downloads offer good opti-

mization for the majority of selected files. On the 5 MB/s network, the optimizations

offer a limited improvement in energy efficiency for the majority of files smaller than

1 MB (e.g., Books). Energy efficiency is improved for the majority of larger files with

higher compression ratio.

 Table 6.7 shows the total energy efficiency improvements for each file class

and for all classes combined (row Total) when downloading files with all selected

WLAN network connections. The total energy efficiency improvement for all files

ranges from 1.45 (on the 0.5 MB/s network) to 1.24 (on the 5 MB/s network), being

more effective at the lower network throughput. It should be noted that the opti-

mized transfers of files with medium to high compression ratios (e.g., apk, ap-

ksource, and Books) are most beneficial with all network connections, while the op-

timized transfers of files with low compression ratios (e.g, Maps, Maps.routing, Os-

mAnd, and Translate) are beneficial with the low network connections.

193

(a)

(b)

Figure 6.7 Download energy efficiency improvement EE.FW/EE.UDW

on OnePlus One

0.2

2.0

20.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Download Energy Efficiency Improvement: EE.FW/EE.UDW (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.5

5.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Download Energy Efficiency Improvement: EE.FW/EE.UDW (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

194

Table 6.7 Overall download energy efficiency improvement EE.FW/EE.UDW

on OnePlus One

EE.FW/EE.UDW 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 2.00 1.84 1.61 1.80

apk.source 1.68 1.66 1.47 2.50

Books 1.71 1.53 1.32 1.10

DNG 1.93 2.40 2.26 2.30

HealthSUM.csv 5.88 4.08 2.98 2.64

HealthSUM.dat 5.27 3.08 2.41 2.32

HealthWAVE.csv 10.77 11.20 10.20 3.51

HealthWAVE.dat 3.58 2.71 2.13 2.16

Maps 1.25 1.12 1.01 0.99

Maps.routing 1.10 1.01 1.00 0.99

OsmAnd 1.47 1.25 1.12 1.12

Translate 1.35 1.12 1.01 1.00

Total 1.51 1.37 1.24 1.24

 EE.FW/EE.CDW(gzip -6). The effective download energy efficiency im-

provement is calculated as the energy efficiency achieved by the framework divided

by the energy efficiency of the corresponding default compressed download,

EE.FW/EE.CDW(gzip -6). Figure 6.8 shows the effective energy efficiency improve-

ment for file transfers when using the 0.5 MB/s (Figure 6.8, a) and the 5 MB/s

(Figure 6.8, b) WLAN network.

 On the 0.5 MB/s network, the optimizations offer a limited improvement in

energy efficiency for the majority of files with low compressibility (e.g., Maps,

Maps.routing). On the 5 MB/s network, the optimized file downloads are highly ben-

eficial for the majority of files in the dataset.

 Table 6.8 shows the total energy efficiency improvements for each file class

and for all classes combined (row Total) when downloading files with all selected

WLAN network connections. The total energy efficiency improvement for all files

195

ranges from 1.12 (on the 0.5 MB/s network) to 1.17 (on the 5 MB/s network), being

more effective at the higher network throughput.

(a)

(b)

Figure 6.8 Download energy efficiency improvement EE.FW/EE.CDW(gzip -6) on

OnePlus One

0.5

5.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Download Energy Efficiency Improvement: EE.FW/EE.CDW(gzip -6) (0.5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

0.5

5.0

0.01 0.10 1.00 10.00 100.00 1000.00

Im
p

ro
ve

m
e

n
t

[-
]

US [MB]

Download Energy Efficiency Improvement: EE.FW/EE.CDW(gzip -6) (5 MB/s)
apk apk.source Books DNG HealthSUM.csv HealthSUM.dat
HealthWAVE.csv HealthWAVE.dat Maps Maps.routing OsmAnd Translate

196

Table 6.8 Overall download energy efficiency improvement EE.FW/EE.CDW(gzip -6)

 on OnePlus One

EE.FW/EE.CUP(gzip -6) 0.5 MB/s 2 MB/s 3.5 MB/s 5 MB/s

apk 1.04 1.03 1.04 1.21

apk.source 1.05 1.19 1.27 1.44

Books 1.04 1.15 1.20 1.13

DNG 1.06 1.52 1.65 1.84

HealthSUM.csv 1.29 1.28 1.34 1.42

HealthSUM.dat 1.51 1.31 1.37 1.56

HealthWAVE.csv 1.84 2.36 2.90 1.17

HealthWAVE.dat 1.29 1.18 1.18 1.33

Maps 1.05 1.03 1.04 1.06

Maps.routing 1.01 1.01 1.12 1.13

OsmAnd 1.18 1.02 1.04 1.22

Translate 1.09 1.00 1.03 1.06

Total 1.12 1.04 1.09 1.17

 Results: Workstation

 Throughput Optimized Transfers

 This section describes the results of the framework evaluation with through-

put optimized file transfers. The experiments are conducted on the Dell PowerEdge

T110 II machine with the uncapped, 5 MB/s and 2 MB/s LAN network connections to

the cloud instances in North Virginia and Tokyo. Throughput speedups are reported

for uploads (Section 6.3.1.1) and downloads (Section 6.3.1.2).

6.3.1.1 Throughput Speedup for Uploads

 Th.FW/Th.UUP. The effective upload throughput speedup is calculated as

the throughput achieved by the framework divided by the throughput of the corre-

197

sponding uncompressed upload, Th.FW/Th.UUP. Figure 6.9 shows the effective

throughput speedups for transfers to the North Virginia (Figure 6.9, a) and the To-

kyo (Figure 6.9, b) cloud instances. Markers represent speedups for file transfers

over the uncapped network (diamond), the 5 MB/s LAN (triangle), and 2 MB/s LAN

(circle). Marker colors represent three types of the selected datasets –the red mark-

ers are used for wikipages files, the blue for netcdf files, and green for seqall files.

 The throughput speedup depends on the file type, the file size, and the net-

work parameters. The optimized file uploads are highly beneficial for all files. For

transfers to the North Virginia instance, the throughput speedups range from 1.20

to 6.25 with the uncapped network, 1.80 to 7.58 with the 5 MB/s network, and 2.62

to 9.19 with the 2 MB/s network. For transfers to the Tokyo instance, the through-

put speedups range from 1.08 to 6.15 with the uncapped network, 1.24 to 7.48 with

the 5 MB/s network, and 1.45 to 8.74 with the 2 MB/s network.

198

(a)

(b)

Figure 6.9 Upload throughput speedup Th.FW/Th.UUP:

North Virginia (a) and Tokyo (b)

 To determine the total throughput speedup achieved by the framework for

certain file classes, we divide the sum of the total uncompressed transfer times for

all files in the dataset with the sum of the total compressed transfer times when us-

ing the framework. Table 6.9 and Table 6.10 show the total throughput speedups for

each file class and for all classes combined (row Total) when transferring files to the

North Virginia and Tokyo clouds, respectively. The total throughput speedups for all

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.UUP (North Virginia)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.UUP (Tokyo)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

199

files range from 3.51 (on the uncapped network) to 4.76 (on the 2 MB/s network) for

the North Virginia cloud, and from 3.43 to 4.54 for the Tokyo cloud. In both cases,

speedups are greater on the lower network throughput.

Table 6.9 Overall upload throughput speedup Th.FW/Th.UUP (North Virginia)

Th.FW/Th.UUP Uncapped 5 MB/s 2 MB/s

wikipages 2.86 3.78 3.83

netcdf 3.52 4.64 4.74

seqall 4.78 6.28 6.74

Total 3.51 4.62 4.76

Table 6.10 Overall upload throughput speedup Th.FW/Th.UUP (Tokyo)

Th.FW/Th.UUP Uncapped 5 MB/s 2 MB/s

wikipages 3.05 3.41 3.67

netcdf 3.43 4.00 4.61

seqall 4.02 5.09 6.18

Total 3.43 4.01 4.54

 Th.FW/Th.CUP(gzip -6). The effective upload throughput speedup is calcu-

lated as the throughput achieved by the framework divided by the throughput of the

corresponding default compressed upload with gzip -6, Th.FW/Th.CUP(gzip -6).

Figure 6.10 shows the effective throughput speedups for transfers to the North Vir-

ginia (Figure 6.10, a) and the Tokyo (Figure 6.10, b) cloud instances.

 The optimized file uploads are highly beneficial for all files, except when

transferring seqall dataset on the 2 MB/s network connection, which achieve

speedups close to one. In this case, the framework selects the default compression or

similarly performing compression (utility, level) pair to perform the upload. For

200

transfers to the North Virginia instance, the throughput speedups range from 0.94

to 9.04 with the uncapped network, 1.0 to 2.71 with the 5 MB/s network, and 1.09 to

2.10 with the 2 MB/s network. For transfers to the Tokyo instance, the throughput

speedups range from 1.01 to 4.11 with the uncapped network, 0.98 to 2.61 with the

5 MB/s network, and 1.01 to 2.08 with the 2 MB/s network.

 Table 6.11 and Table 6.12 show the total throughput speedups for each file

class and for all classes combined (row Total) when transferring files to the North

Virginia and Tokyo clouds, respectively. The total throughput speedup for all files

used in the evaluation ranges from 4.36 (on the uncapped network) to 1.48 (on the

2 MB/s network) for the North Virginia cloud, and from 2.10 to 1.44 for the Tokyo

cloud. In both cases, speedups are greater at the higher network throughput.

201

(a)

(b)

Figure 6.10 Upload throughput speedup Th.FW/Th.CUP(gzip -6):

North Virginia (a) and Tokyo (b)

Table 6.11 Overall upload throughput speedup Th.FW/Th.CUP(gzip -6)

(North Virginia)

Th.FW/Th.CUP(gzip -6) Uncapped 5 MB/s 2 MB/s

wikipages 2.12 1.24 1.24

netcdf 7.25 2.63 2.07

seqall 4.63 1.67 1.07

Total 4.36 1.79 1.48

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.CUP(gzip -6) (North Virginia)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Upload throughput speedup: Th.FW/Th.CUP(gzip -6) (Tokyo)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

202

Table 6.12 Overall upload throughput Speedup Th.FW/Th.CUP(gzip -6) (Tokyo)

Th.FW/Th.CUP(gzip -6) Uncapped 5 MB/s 2 MB/s

wikipages 1.22 1.21 1.22

netcdf 3.32 2.32 2.00

seqall 1.97 1.48 1.07

Total 2.10 1.64 1.44

6.3.1.2 Throughput Speedup for Downloads

 Th.FW/Th.UDW. The effective download throughput speedup is calculated

as the throughput achieved by the framework divided by the throughput of the cor-

responding uncompressed download, Th.FW/Th.UDW. Figure 6.11 shows the effec-

tive throughput speedups for transfers from the North Virginia (Figure 6.11, a) and

the Tokyo (Figure 6.11, b) cloud instances.

 The optimized file downloads are highly beneficial for all files, except for

smaller files on the uncapped network, which achieve speedups close to one. In this

case, the framework selects uncompressed transfer to perform the download. For

transfers from the North Virginia instance, the throughput speedups range from

1.09 to 4.63 with the uncapped network, 1.97 to 15.80 with the 5 MB/s network, and

1.7 to 14.07 with the 2 MB/s network. For transfers from the Tokyo instance, the

throughput speedups range from 3.59 to 8.76 with the uncapped network, 1.2 to

11.72 with the 5 MB/s network, and 1.57 to 13.20 with the 2 MB/s network.

 Table 6.13 and Table 6.14 show the total throughput speedups for each file

class and for all classes combined (row Total) when transferring files from the North

Virginia and Tokyo clouds, respectively. The total throughput speedups range from

203

2.3 (on the uncapped network) to 5.64 (on the 2 MB/s network) for the North Virgin-

ia cloud, and from 3.52 to 5.32 for the Tokyo cloud. In both cases, speedups are

greater on connections with lower network throughput.

(a)

(b)

Figure 6.11 Download throughput speedup Th.FW/Th.UDW:

North Virginia (a) and Tokyo (b)

0.2

2.0

20.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.UDW (North Virginia)
(UC) wikipedia (5MB/s) wikipedia (2MB/s) wikipedia
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

0.2

2.0

20.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.UDW (Tokyo)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB) netcdf (2MB) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

204

Table 6.13 Overall download throughput speedup Th.FW/Th.UDW (North Virginia)

Th.FW/Th.UDW Uncapped 5 MB/s 2 MB/s

wikipages 2.49 4.72 4.73

netcdf 1.76 4.57 4.72

seqall 3.03 10.00 10.09

Total 2.30 5.56 5.64

Table 6.14 Overall download throughput speedup Th.FW/Th.UDW (Tokyo)

Th.FW/Th.UDW Uncapped 5 MB/s 2 MB/s

wikipages 3.22 3.69 4.52

netcdf 3.01 3.88 4.53

seqall 4.95 6.97 9.08

Total 3.52 4.40 5.35

 Th.FW/Th.CDW(gzip -6). The effective download throughput speedup is cal-

culated as the throughput achieved by the framework divided by the throughput of

the corresponding default compressed download, Th.FW/Th.CDW(gzip -6). Figure

6.12 shows the effective throughput speedups for transfers from the North Virginia

(Figure 6.12, a) and the Tokyo (Figure 6.12, b) cloud instances.

 The optimized file downloads are highly beneficial for all files, except when

transferring netcdf files and small files on the uncapped network connection, which

achieve speedups close to one. In this case, the framework selects the default com-

pression or similarly performing compression (utility, level) pair to perform the

download. For transfers from the North Virginia cloud, the throughput speedups

range from 1.0 to 1.89 with the uncapped network, 1.1 to 2.08 with the 5 MB/s net-

work, and 1.21 to 2.10 with the 2 MB/s network. For transfers from the Tokyo in-

stance, the throughput speedups range from 1.01 to 1.95 with the uncapped net-

205

work, 0.95 to 2.10 with the 5 MB/s network, and 1.17 to 2.05 with the 2 MB/s net-

work.

(a)

(b)

Figure 6.12 Download throughput speedup Th.FW/Th.CDW(gzip -6):

North Virginia (a) and Tokyo (b)

 Table 6.15 and Table 6.16 show the total throughput speedups for each file

class and for all classes combined (row Total) when transferring files from the North

Virginia and Tokyo clouds, respectively. The total throughput speedups for all files

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.CDW(gzip -6) (North Virginia)
(UC) wikipedia (5MB/s) wikipedia (2MB/s) wikipedia
(UC) netcdf (5MB/s) netcdf (2MB/s) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

0.5

5.0

2 20 200 2000

Sp
e

e
d

u
p

 [
-]

US [MB]

Download throughput speedup: Th.FW/Th.CDW(gzip -6) (Tokyo)
(UC) wikipages (5MB/s) wikipages (2MB/s) wikipages
(UC) netcdf (5MB) netcdf (2MB) netcdf
(UC) seqall (5MB/s) seqall (2MB/s) seqall

206

range from 1.29 (on the uncapped network) to 1.75 (on the 2 MB/s network) for the

North Virginia cloud, and from 1.36 to 1.70 for the Tokyo cloud. In both cases,

speedups are greater at the lower network throughput.

Table 6.15 Overall download throughput speedup Th.FW/Th.CDW(gzip -6)

(North Virginia)

Th.FW/Th.CDW(gzip -6) Uncapped 5 MB/s 2 MB/s

wikipages 1.46 1.52 1.53

netcdf 1.02 2.01 2.06

seqall 1.52 1.60 1.61

Total 1.29 1.73 1.75

Table 6.16 Overall download throughput speedup Th.FW/Th.CDW(gzip -6) (Tokyo)

Th.FW/Th.CDW(gzip -6) Uncapped 5 MB/s 2 MB/s

wikipages 1.28 1.30 1.51

netcdf 1.50 1.80 1.98

seqall 1.27 1.38 1.56

Total 1.36 1.50 1.70

 Cost Savings

 The optimized file transfers can also result in a reduction of costs associated

with the cloud platforms such as Amazon’s AWS EC2. For example, the m4.xlarge

cloud instance type used in the North Virginia and Tokyo clouds has the on-demand

utilization cost of $0.239 and $0.348 per hour, respectively. Additionally, the on-

demand pricing includes the cost for transferring data out from the cloud. For the

North Virginia cloud, it is priced at $0.09 per GB (for the first 10 TB per month). For

the Tokyo cloud, it is priced at $0.14 per GB. Transfers to and between cloud in-

207

stances in the same region are free; however, the on-demand utilization fees apply.

To optimize utilization of the cloud for computational offload, a typical usage scenar-

io would include following steps: (i) start a cloud instance (initiating the on-demand

charge), (ii) transfer of the files needed for completion of a certain task, (iii) execute

the task, (iv) download of the results, and finally (v) shut down the instance (ending

the on-demand charge).

 To calculate the cost savings, first, the total costs of transferring data are cal-

culated using Equations (6.1), (6.2), and (6.3). The total cost of uploading a file to the

cloud using uncompressed, default compressed, and framework compressed transfer

mode depends on the utilization fee, 𝑈𝑡𝑖𝑙𝐹𝐸𝐸, and the execution time of the upload

(converted to hours from seconds), as shown in Equation (6.1). The optimal cost is

achieved by a transfer mode with the highest upload throughput. The total cost of

downloading an uncompressed file depends on the utilization fee, the execution time

of download (converted to hours from seconds), the transfer out fee, 𝐷𝑜𝑢𝑡𝐹𝐸𝐸, and the

uncompressed file size (converted to GB from MB), as shown in Equation (6.2). For

the default compressed and the framework compressed transfer mode, the download

out portion of the total cost is lower due to transferring the compressed file, as

shown in Equation (6.3). The optimal download cost depends on the balance between

highest throughput and highest compression ratio.

$. 𝑈𝑈𝑃[$. 𝐶𝑈𝑃][$. 𝐹𝑊] =
𝑈𝑡𝑖𝑙𝐹𝐸𝐸 ∙ 𝑇. 𝑈𝑈𝑃[𝑇. 𝐶𝑈𝑃][𝑇. 𝐹𝑊]

3600

(6.1)

$. 𝑈𝐷𝑊 =
𝑈𝑡𝑖𝑙𝐹𝐸𝐸 ∙ 𝑇. 𝑈𝐷𝑊

3600
+

𝐷𝑜𝑢𝑡𝐹𝐸𝐸 ∙ 𝑈𝑆

1024

(6.2)

$. 𝐶𝐷𝑊[$. 𝐹𝑊] =
𝑈𝑡𝑖𝑙𝐹𝐸𝐸 ∙ 𝑇. 𝐶𝐷𝑊[𝑇. 𝐹𝑊]

3600
+

𝐷𝑜𝑢𝑡𝐹𝐸𝐸 ∙
𝑈𝑆
𝐶𝑅

1024
 (6.3)

208

 The overall cost savings achieved by the framework relative to the uncom-

pressed transfers are calculated as the percentage of the cost saved from the total

cost of the uncompressed transfers, ($.UUP-$.FW)/$.UUP [($.UDW-$.FW)/$.UDW].

The overall cost savings achieved by the framework relative to the default com-

pressed transfers are calculated as the percentage of the cost saved from the total

cost of the default compressed transfers, ($.CUP(gzip -6)-$.FW)/$.CUP(gzip -6)

[($.CDW(gzip -6)-$.FW)/$.CDW(gzip -6)].

6.3.2.1 Cost Savings for Uploads

 ($.UUP-$.FW)/$.UUP. Figure 6.13 (a) shows the overall cost savings

achieved by the framework relative to the uncompressed file uploads. Each bar rep-

resents the overall cost savings of transferring the subset of 20 files from each da-

taset to the North Virginia and Tokyo cloud instances. The dark red bars represent

cost savings for uploads to the North Virginia instance, and they range from 65.1%

to 79.1% with the uncapped network, and up to 73.9% and 85.2% for the 2 MB/s

network. The light red bars represent cost savings for uploads to the Tokyo instance

and are similar to those observed for the North Virginia instance.

209

(a)

(b)

Figure 6.13 Upload cost savings for North Virginia and Tokyo transfers:

$.FW vs. $.UUP (a) and $.FW vs. $.CUP(gzip -6) (b)

 ($.CUP(gzip -6)-$.FW)/$.CUP(gzip -6). Figure 6.13 (b) shows the overall

cost savings achieved by the framework relative to the default compressed file up-

loads. The dark red bars represent cost savings for uploads to the North Virginia in-

stance, and they range from 52.8% to 86.2% with the uncapped network, from 40.1%

to 62.0% with the 5 MB/s network, and from 6.8% to 51.8% with the 2 MB/s network.

The light red bars represent cost savings for uploads to the Tokyo instance, and they

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

UC 5 MB/s 2 MB/s UC 5MB/s 2MB/s UC 5MB/s 2MB/s

wikipages netcdf seqall

C
o

st
 s

av
in

g
[%

]

Upload cost saving - $.FW vs. $.UUP
North Virginia Tokyo

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UC 5 MB/s 2 MB/s UC 5MB/s 2MB/s UC 5MB/s 2MB/s

wikipages netcdf seqall

C
o

st
 s

av
in

g
[%

]

Upload cost saving - $.FW vs. $.CUP(gzip -6)

North Virginia Tokyo

210

range from 18.10% to 69.84% with the uncapped network, from 17.09% to 56.87%

with the 5 MB/s network, and from 6.69% to 50.06% with the 2 MB/s network. The

cost saving depends on the input file (e.g., they are higher for the netcdf dataset),

and the network throughput (highest for the North Virginia cloud with the uncapped

network).

6.3.2.2 Cost Saving for Downloads

 ($.UDW-$.FW)/$.UDW. Figure 6.13 (a) shows the overall cost savings

achieved by the framework relative to the uncompressed file downloads. Each bar

represents the overall cost savings of transferring the subset of 20 files from each

dataset from the North Virginia and Tokyo cloud instances. The dark blue bars rep-

resent cost savings for downloads from the North Virginia instance, and they range

from 58.2% to 78.2% with the uncapped network, and from 78% to 90.1% for the

capped network at 5MB/s and 2 MB/s. The light blue bars represent cost savings for

downloads from the Tokyo instance. The cost savings are close to the cost savings

achieved with downloads from the North Virginia instance.

211

(a)

(b)

Figure 6.14 Download cost saving for North Virginia and Tokyo transfers:

$.FW vs. $.UDW (a) and $.FW vs. $.CDW(gzip -6) (b)

 ($.CDW(gzip -6)-$.FW)/$.CDW(gzip -6). Figure 6.13 (b) shows cost savings

achieved by the framework relative to the default compressed file. The dark blue

bars represent cost savings for downloads from the North Virginia instance, and

they range from 17.8% to 27.1% with the uncapped network, from 34.3% to 50.3%

with the 5 MB/s network, and from 34.8% to 51.5% with the 2 MB/s network. The

light blue bars represent cost savings for downloads from the Tokyo instance and are

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UC 5 MB/s 2 MB/s UC 5MB/s 2MB/s UC 5MB/s 2MB/s

wikipages netcdf seqall

C
o

st
 s

av
in

g
[%

]

Download cost saving - $.FW vs. $.UDW

North Virginia Tokyo

0%

10%

20%

30%

40%

50%

60%

UC 5 MB/s 2 MB/s UC 5MB/s 2MB/s UC 5MB/s 2MB/s

wikipages netcdf seqall

C
o

st
 s

av
in

g
[%

]

Download cost saving - $.FW vs. $.CDW(gzip -6)

 North Virginia Tokyo

212

slightly less than those observed for the North Virginia instance. The cost saving

depends on the input file (e.g., higher for netcdf), and the network throughput (high-

est on the 2 MB/s).

213

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

 This dissertation describes the design, an implementation, and an experi-

mental evaluation of the framework for optimal data transfers between edge devices

and the cloud using compression utilities. The framework seamlessly selects a file

transfer mode that maximizes either effective throughput or energy-efficiency – the

file can be transferred uncompressed or using any compression (utility, level) pair

from a set of available options. The framework relies on the following to select an

effective transfer mode: (i) parameters describing an input file; (ii) parameters de-

scribing the network connection; (iii) analytical models describing effective through-

puts and energy-efficiency; and (iv) parameters describing the device that initiates

the transfer. Software agents running on edge devices and the cloud utilize analyti-

cal models, history-based tables, relevant parameters for a given transfer, and opti-

mization mode to select an effective transfer mode. The framework implementations

are deployed on Android mobile devices and Linux-based workstations.

The effectiveness of the proposed framework is experimentally evaluated on

mobile devices and workstations while performing upload and download file trans-

fers for a range of input files and network types and conditions. The performance of

the framework is compared to the performance of uncompressed transfers and the

default compressed file transfers that use gzip with -6 compression level. For the

mobile device used in this study, the framework with the throughput optimization

214

mode improves effective upload throughputs from 1.50 (on the 0.5 MB/s WLAN) to

2.54 (on the 5 MB/s WLAN) times relative to the uncompressed uploads and from

1.01 to 2.89 times relative to the default compressed uploads. It improves effective

download throughputs from 1.78 to 2.52 times relative to the uncompressed down-

loads and up to 1.2 times relative to the default compressed downloads. The frame-

work with the energy efficiency optimization mode improves the effective upload en-

ergy efficiencies from 1.09 to 1.16 times relative to the uncompressed uploads and

from 1.09 to 2.13 times relative to the default compressed uploads. It improves the

effective download energy efficiencies from 1.45 to 1.24 times relative to the uncom-

pressed downloads and from 1.05 to 1.17 times relative to the default compressed

downloads. For the workstation with transfers to and from the cloud instance in

North Virginia, the framework with the throughput optimization mode improves the

effective upload throughputs from 3.51 (on the uncapped network) to 4.76 (on the

2 MB/s network) times relative to the uncompressed uploads and from 4.36 to 1.48

times relative to the default compressed uploads. It improves the effective download

throughputs from 2.30 to 5.64 times relative to the uncompressed downloads and

from 1.29 to 1.75 times relative to the default compressed downloads. Similar im-

provements to throughputs are achieved with transfers to and from the cloud in-

stance in Tokyo. In addition to throughput improvements, the framework provides a

reduction of costs associated with file transfers to and from the cloud, which includes

the costs of using cloud resources and the costs of transferring files out of the cloud.

With transfers to and from the cloud instance in North Virginia, the framework re-

duces the total costs by 60% (uncapped) to 90% (2 MB/s) relative to the uncom-

pressed uploads and by 70% to 30% relative to the default compressed uploads. It

215

reduces the total costs by 60% to 90% relative to the uncompressed downloads and

by 20% to 50% relative to the default compressed downloads.

 The use of this framework is not limited to six lossless utilities introduced in

Section 2.1, and can be expanded to any number of utilities, as long as prediction

data for characterization of new compression (utility, level) pairs (e.g., local

throughput, energy efficiency, and compression ratio) is made available to the ana-

lytical models described in Chapter 4. For example, the framework can be expanded

to contain other compression utilities such as LZ4 [86], lbzip2 [87], Google’s Snappy

[88] and zopfli [89]. LZ4 and Snappy could offer faster decompressions, expected to

be useful in networks with higher network throughputs, while lbzip2 could offer bet-

ter performance relative to utilities such xz and bzip2. This flexibility will allow for

the use of the framework on any future platforms and compression utilities. Intro-

ducing new utilities, especially file, application, or platform-specific, will increase

the overall effectiveness of the framework on speedup in throughput, energy effi-

ciency, and increase in the overall cost savings.

 The future improvements to the framework design should optimize currently

required pre-processing steps of generating system and device specific history-based

prediction data for selected compression (utility, level) pairs. These steps can be

simplified with a deeper analysis of compression utilities or with the use of machine

learning techniques. The analytical models for estimating energy efficiency of un-

compressed and compressed data transfers should be improved by relying on the

performance counters. Finally, the SQL query execution times, a limiting factor for

uploads from the mobile devices, and for transfers of smaller files in general, should

be optimized through GPU and FPGA acceleration on edge devices and the cloud.

216

Both mobile devices and workstations can exploit hardware accelerators by utilizing

OpenCL or CUDA.

217

REFERENCES

[1] Gartner, Inc., “Gartner Says Smartphone Sales Surpassed One Billion Units in

2014,” 2014. [Online]. Available: http://www.gartner.com/newsroom/id/2996817.

[Accessed: 16-Feb-2015].

[2] Gartner, Inc., “Gartner Says Tablet Sales Continue to Be Slow in 2015,” 2014.

[Online]. Available: http://www.gartner.com/newsroom/id/2954317. [Accessed:

26-Jan-2015].

[3] Gartner, Inc., “Market Share Analysis: Mobile Phones, Worldwide, 4Q13 and

2013,” 2014. [Online]. Available: http://www.gartner.com/newsroom/id/2665715.

[Accessed: 16-Jan-2015].

[4] Gartner, Inc., “Forecast: PCs, Ultramobiles, and Mobile Phones, Worldwide,

2011-2018, 1Q14 Update,” 2014. [Online]. Available:

http://www.gartner.com/newsroom/id/2692318. [Accessed: 26-Jan-2015].

[5] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update 2014–2019 White Paper.” 03-Feb-2015.

[6] “GSMA Mobile Economy 2015.” GSMA, 2015.

[7] “Folding@home,” Folding@home. [Online]. Available:

http://folding.stanford.edu. [Accessed: 09-Dec-2015].

[8] “SAT@home.” [Online]. Available: http://sat.isa.ru/pdsat/. [Accessed: 09-Dec-

2015].

[9] B. R. Badrinath, A. Acharya, and T. Imielinski, “Designing distributed algo-

rithms for mobile computing networks,” Computer Communications, vol. 19, no.

4, pp. 309–320, Apr. 1996.

218

[10] V. Agababov et al., “Flywheel: Google’s Data Compression Proxy for the Mobile

Web,” in Proceedings of the 12th USENIX Conference on Networked Systems

Design and Implementation, Berkeley, CA, USA, 2015, pp. 367–380.

[11] Google, “Data Server - Google Chrome,” 2014. [Online]. Available:

https://developer.chrome.com/multidevice/data-compression. [Accessed: 30-Oct-

2015].

[12] Amazon, “What Is Amazon Silk? - Amazon Silk,” 2015. [Online]. Available:

http://docs.aws.amazon.com/silk/latest/developerguide/. [Accessed: 06-Dec-

2015].

[13] Onavo, “Onavo,” Onavo, 2015. [Online]. Available: http://www.onavo.com. [Ac-

cessed: 01-Dec-2015].

[14] Snappli, “Snappli,” 2014. [Online]. Available: http://snappli.com/. [Accessed: 01-

Dec-2015].

[15] zlib, “zlib Home Site,” 2015. [Online]. Available: http://www.zlib.net/. [Accessed:

16-Dec-2015].

[16] Google, “About Attachment Manager,” 2014. [Online]. Available:

http://www.google.com/support/enterprise/static/postini/docs/admin/en/admin_

msd/attach_overview.html. [Accessed: 31-Oct-2015].

[17] A. Dzhagaryan, A. Milenkovic, and M. Burtscher, “Energy efficiency of lossless

data compression on a mobile device: An experimental evaluation,” in Perfor-

mance Analysis of Systems and Software (ISPASS), 2013 IEEE International

Symposium on, Austin, TX, 2013, pp. 126–127.

[18] A. Milenkovic, A. Dzhagaryan, and M. Burtscher, “Performance and Energy

Consumption of Lossless Compression/Decompression Utilities on Mobile Com-

puting Platforms,” in 2013 IEEE 21st International Symposium on Modeling,

219

Analysis Simulation of Computer and Telecommunication Systems (MAS-

COTS), San Francisco, CA, 2013, pp. 254–263.

[19] A. Dzhagaryan, A. Milenkovic, and M. Burtscher, “Quantifying Benefits of

Lossless Compression Utilities on Modern Smartphones,” in 2015 24th Interna-

tional Conference on Computer Communication and Networks (ICCCN), Las

Vegas, NV, 2015, pp. 1–9.

[20] A. Dzhagaryan and A. Milenkovic, “On Effectiveness of Lossless Compression

in Transferring mHealth Data Files,” in 2015 IEEE 17th International Confer-

ence on e-Health Networking, Applications and Services (Healthcom), Boston,

MA, 2015.

[21] A. Dzhagaryan and A. Milenković, “Analytical Models for Evaluating Effective-

ness of Compressed File Transfers in Mobile Computing,” in Proceedings of the

6th International Joint Conference on Pervasive and Embedded Computing and

Communication Systems - Volume 1: PEC, 2016, pp. 40–51.

[22] A. Dzhagaryan and A. Milenkovic, “Models for Evaluating Effective Through-

puts for File Transfers in Mobile Computing,” in 2016 25th International Con-

ference on Computer Communication and Networks (ICCCN), Waikoloa, HI,

2016.

[23] K. Barr and K. Asanović, “Energy aware lossless data compression,” in Proceed-

ings of the 1st International Conference on Mobile Systems, Applications and

Services (MobiSys’03), 2003, pp. 231–244.

[24] K. C. Barr and K. Asanović, “Energy-aware lossless data compression,” ACM

Transactions on Computer Systems, vol. 24, no. 3, pp. 250–291, Aug. 2006.

220

[25] Google, “Google Play,” 2015. [Online]. Available: https://play.google.com. [Ac-

cessed: 13-Dec-2015].

[26] “Dropbox.” [Online]. Available: https://www.dropbox.com/. [Accessed: 13-Dec-

2015].

[27] Google, “Google Drive - Cloud Storage & File Backup for Photos, Docs & More,”

2015. [Online]. Available: https://www.google.com/drive/. [Accessed: 13-Dec-

2015].

[28] “NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy,”

NGINX. [Online]. Available: https://www.nginx.com/. [Accessed: 02-Oct-2015].

[29] “Welcome to The Apache Software Foundation!” [Online]. Available:

http://www.apache.org/. [Accessed: 02-Oct-2015].

[30] “The gzip home page.” [Online]. Available: http://www.gzip.org/. [Accessed: 25-

May-2012].

[31] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”

IEEE Transaction on Information Theory, vol. 23, pp. 337–343, 1977.

[32] M. Oberhumer, “lzop file compressor (oberhumer.com OpenSource).” [Online].

Available: http://www.lzop.org/. [Accessed: 25-May-2012].

[33] “bzip2 : Home.” [Online]. Available: http://www.bzip.org/. [Accessed: 25-Sep-

2015].

[34] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data Compression

Algorithm,” Digital SRC, Report 124, May 1994.

[35] “XZ Utils.” [Online]. Available: http://tukaani.org/xz/. [Accessed: 25-May-2012].

[36] I. Pavlov, “7-Zip.” [Online]. Available: http://www.7-zip.org/. [Accessed: 25-May-

2012].

221

[37] “pigz - Parallel gzip.” [Online]. Available: http://zlib.net/pigz/. [Accessed: 25-

May-2012].

[38] “pigz - Parallel gzip,” 2015. [Online]. Available: http://zlib.net/pigz/. [Accessed:

25-Aug-2015].

[39] J. Gilchrist, “Parallel BZIP2 (PBZIP2).” [Online]. Available:

http://compression.ca/pbzip2/. [Accessed: 25-May-2015].

[40] “F-Droid | Free and Open Source Android App Repository.” .

[41] “ownCloud.org.” [Online]. Available: https://owncloud.org/. [Accessed: 01-Oct-

2015].

[42] “Nextcloud.” [Online]. Available: https://nextcloud.com/. [Accessed: 25-Sep-

2016].

[43] “Nexus.” [Online]. Available: http://www.google.com/nexus/. [Accessed: 26-Nov-

2015].

[44] OnePlus, “OnePlus One,” 2015. [Online]. Available: https://oneplus.net/one.

[Accessed: 12-Jul-2015].

[45] Qualcomm, “SnapdragonTM Mobile Processors - Qualcomm Developer Network,”

2014. [Online]. Available: https://developer.qualcomm.com/discover/chipsets-

and-modems/snapdragon. [Accessed: 20-Jun-2014].

[46] Qualcomm, “Adreno,” Qualcomm Developer Network, 2015. [Online]. Available:

https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu. [Accessed: 14-

Jun-2015].

[47] CyanogenMod, “CyanogenMod | Android Community Operating System,” 2014.

[Online]. Available: http://www.cyanogenmod.org/. [Accessed: 14-Jun-2014].

222

[48] “Intel® Turbo Boost Technology 2.0,” Intel. [Online]. Available:

http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-

boost/turbo-boost-technology.html. [Accessed: 20-Aug-2016].

[49] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight Performance-

Oriented Tool Suite for x86 Multicore Environments,” in 2010 39th Interna-

tional Conference on Parallel Processing Workshops (ICPPW), 2010, pp. 207–

216.

[50] J. Treibig, G. Hager, and G. Wellein, “LIKWID: Lightweight Performance

Tools,” arXiv:1104.4874 [cs], pp. 207–216, Sep. 2010.

[51] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan,

“Power-Management Architecture of the Intel Microarchitecture Code-Named

Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27, Mar. 2012.

[52] NI, “NI PXIe-4154 - National Instruments,” 2014. [Online]. Available:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/209090. [Accessed: 20-Jun-2014].

[53] NI, “NI PXIe-1073 - National Instruments,” 2014. [Online]. Available:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/207401. [Accessed: 20-Jun-2014].

[54] “Android Debug Bridge | Android Developers,” 2015. [Online]. Available:

http://developer.android.com/tools/help/adb.html. [Accessed: 14-Jun-2015].

[55] Google, “Log | Android Developers,” 2014. [Online]. Available:

http://developer.android.com/reference/android/util/Log.html. [Accessed: 03-

Aug-2014].

[56] A. Dzhagaryan, A. Milenković, M. Milosevic, and E. Jovanov, “An environment

for automated measurement of energy consumed by mobile and embedded com-

puting devices,” Measurement, vol. 94, pp. 103–118, Dec. 2016.

223

[57] A. Dzhagaryan, A. Milenkovic, M. Milosevic, and E. Jovanov, “An Environment

for Automated Measuring of Energy Consumed by Android Mobile Devices,” in

6th International Conference on Pervasive and Embedded Computing and

Communication Systems (PECCS), Lisbon, Portugal, 2016.

[58] “PAPI.” [Online]. Available: http://icl.cs.utk.edu/papi/index.html. [Accessed: 20-

Dec-2013].

[59] V. M. Weaver et al., “Measuring Energy and Power with PAPI,” in 2012 41st

International Conference on Parallel Processing Workshops (ICPPW), 2012, pp.

262–268.

[60] “Perf Wiki.” [Online]. Available:

https://perf.wiki.kernel.org/index.php/Main_Page. [Accessed: 07-Dec-2013].

[61] “MAPS.ME (MapsWithMe), detailed offline maps of the World for iPhone, iPad,

iPod, Android, Amazon Kindle Fire and BlackBerry,” 2015. [Online]. Available:

http://maps.me. [Accessed: 01-Oct-2015].

[62] OsmAnd, “OsmAnd - Offline Mobile Maps and Navigation,” 2015. [Online].

Available: http://osmand.net/. [Accessed: 01-Oct-2015].

[63] “Home - UniGene - NCBI.” [Online]. Available:

http://www.ncbi.nlm.nih.gov/unigene. [Accessed: 29-May-2016].

[64] Amante, C. and B. W. Eakins, “ETOPO1 1 Arc-Minute Global Relief Model:

Procedures, Data Sources and Analysis.” National Geophysical Data Center,

NOAA, 2009.

[65] “enwiki dump.” [Online]. Available:

https://dumps.wikimedia.org/enwiki/20160407/. [Accessed: 30-May-2016].

[66] “IEEE Xplore - Cloud Computing for Mobile Users: Can Offloading Computa-

tion Save Energy?” [Online]. Available:

224

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5445167. [Accessed: 02-

Nov-2012].

[67] N. K. Nithi and A. J. de Lind van Wijngaarden, “Smart power management for

mobile handsets,” Bell Lab. Tech. J., vol. 15, no. 4, pp. 149–168, Mar. 2011.

[68] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying real user activi-

ty patterns to guide power optimizations for mobile architectures,” in 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture, 2009. MI-

CRO-42, 2009, pp. 168–178.

[69] A. Rice and S. Hay, “Decomposing power measurements for mobile devices,” in

2010 IEEE International Conference on Pervasive Computing and Communica-

tions (PerCom), 2010, pp. 70–78.

[70] A. Rice and S. Hay, “Measuring mobile phone energy consumption for 802.11

wireless networking,” Pervasive and Mobile Computing, vol. 6, no. 6, pp. 593–

606, Dec. 2010.

[71] M. Milosevic, A. Dzhagaryan, E. Jovanov, and A. Milenković, “An Environment

for Automated Power Measurements on Mobile Computing Platforms,” in Pro-

ceedings of the 51st ACM Southeast Conference, New York, NY, USA, 2013, p. 6.

[72] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a

Smartphone,” in Proceedings of the 2010 USENIX Conference on USENIX An-

nual Technical Conference, Berkeley, CA, USA, 2010, pp. 21–21.

[73] W. L. Bircher and L. K. John, “Complete System Power Estimation Using Pro-

cessor Performance Events,” IEEE Transactions on Computers, vol. 61, no. 4,

pp. 563–577, Apr. 2012.

225

[74] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained power

modeling for smartphones using system call tracing,” in Proceedings of the sixth

conference on Computer systems, New York, NY, USA, 2011, pp. 153–168.

[75] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?:

fine grained energy accounting on smartphones with Eprof,” in Proceedings of

the 7th ACM european conference on Computer Systems, New York, NY, USA,

2012, pp. 29–42.

[76] T. Li and L. K. John, “Run-time modeling and estimation of operating system

power consumption,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 160–

171, Jun. 2003.

[77] B. Nicolae, “High Throughput Data-Compression for Cloud Storage,” in Data

Management in Grid and Peer-to-Peer Systems, A. Hameurlain, F. Morvan, and

A. M. Tjoa, Eds. Springer Berlin Heidelberg, 2010, pp. 1–12.

[78] D. Harnik, R. Kat, O. Margalit, D. Sotnikov, and A. Traeger, “To Zip or Not to

Zip: Effective Resource Usage for Real-time Compression,” in Proceedings of the

11th USENIX Conference on File and Storage Technologies, Berkeley, CA, USA,

2013, pp. 229–242.

[79] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith, “Sublinear Algorithms

for Approximating String Compressibility,” Algorithmica, vol. 65, no. 3, pp.

685–709, Feb. 2012.

[80] J. K. Bonfield and M. V. Mahoney, “Compression of FASTQ and SAM Format

Sequencing Data,” PLoS ONE, vol. 8, no. 3, pp. 1–10, 2013.

226

[81] A. Guerra, J. Lotero, and S. Isaza, “Performance comparison of sequential and

parallel compression applications for DNA raw data,” J Supercomput, pp. 1–22,

Jun. 2016.

[82] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,”

in Proceedings of the 2010 USENIX conference on USENIX annual technical

conference, Berkeley, CA, USA, 2010, pp. 21–21.

[83] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:

Memory power estimation and capping,” in 2010 ACM/IEEE International

Symposium on Low-Power Electronics and Design (ISLPED), 2010, pp. 189–

194.

[84] “Reading RAPL energy measurements from Linux.” [Online]. Available:

http://web.eece.maine.edu/~vweaver/projects/rapl/. [Accessed: 09-Oct-2016].

[85] B. Klika and C. Jordan, “High-intensity circuit training using body weight:

Maximum results with minimal investment,” ACSM’s Health & Fitness Jour-

nal, vol. 17, no. 3, pp. 8–13, 2013.

[86] “LZ4 - Extremely fast compression,” 03-Sep-2016. [Online]. Available:

http://cyan4973.github.io/lz4/. [Accessed: 03-Sep-2016].

[87] “lbzip2 - parallel bzip2 compression utility,” 03-Sep-2016. [Online]. Available:

http://lbzip2.org/. [Accessed: 03-Sep-2016].

[88] “Snappy by google.” [Online]. Available: https://google.github.io/snappy/. [Ac-

cessed: 03-Sep-2016].

[89] “google/zopfli,” GitHub. [Online]. Available: https://github.com/google/zopfli.

[Accessed: 03-Sep-2016].

