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Abstract
Software-controlled cache prefetching and data
forwarding are widely used techniques for tolerating
memory latency in shared memory multiprocessors.
However, some previous studies show that cache
prefetching is not so effective on bus-based
multiprocessors, while the effectiveness of data
forwarding has not been explored in this environment,
yet. In this paper, a novel technique called cache
injection is proposed. Cache injection, tuned to the
properties of bus-based architectures, combines
advantages of both cache prefetching and data
forwarding. Some preliminary experiments show that the
proposed solution can significantly help in reducing the
overall miss ratio and bus traffic in applications where
write-shared data prevails.

1. Introduction

The problem of high memory latency is the most
critical performance issue in the cache-coherent shared
memory multiprocessors. One way to cope with this
problem is to tolerate high memory latency by
overlapping memory accesses with computation. The
importance of techniques for tolerating high memory
latency in multiprocessor systems increases due to several
reasons: (a) the widening gap in speed between CPU and
memory, (b) high contention on interconnection
networks, (c) interconnect operations, caused by data
sharing between processors, and (d) the increasing
physical distances between processors and memory.

Software-controlled cache prefetching is a widely
accepted consumer-initiated technique for tolerating
memory latency in multiprocessors, as well as in
uniprocessors. In software-controlled cache prefetching,
the CPU executes a special prefetch instruction that
moves data, expected to be used by that CPU, into its
cache, before it is actually needed. In the best case, the
data arrives at the cache before it is needed by the CPU,
and the CPU sees its load as a hit. However, prefetching
is inapplicable or insufficient for some communication
patterns such as irregular communication,

synchronization, producer-consumer sharing patterns,
etc. In addition, prefetching is not without costs and it
can negatively affect data sharing, overall cache miss
rates, and contention on interconnection network.

For many programs and sharing patterns (e.g.,
producer-consumer), producer-initiated data transfers are
a natural style of communication. In literature, producer
initiated primitives are known as data forwarding,
delivery, remote writes, and software-controlled updates.
With data forwarding, when the CPU produces the data,
in addition to updating its cache, it sends a copy of the
data to the caches of the processors that are identified by
compiler (or programmer) as its future consumers.
Therefore, when the consumer processors access the data,
they find it in their caches.

Although numerous evaluation studies showed that
prefetching and forwarding are highly effective in
CC-NUMA multiprocessors, their effectiveness on
bus-based multiprocessors is explored much less or not
enough. Some previous studies show that bus-based
multiprocessors are not very well suited for prefetching,
despite high memory latency, while the effectiveness of
data forwarding in bus-based multiprocessors has not
been explored enough, yet.

In this paper, a novel solution called cache injection is
proposed, aimed to rise the effectiveness of techniques for
tolerating memory latency on bus-based multiprocessors,
is proposed. This technique combines the good properties
of both, cache prefetching and data forwarding, and the
appropriateness of bus-based architectures. In cache
injection, a consumer predicts its future needs using a
prefetch -like instruction. However, instead to initiate
the read bus transaction, this instruction only puts the
address of the data expected to be used in the special
injection table, which is a part of the cache controller.
The producer, after the data is produced, executes a
write_back  instruction, which initiates the write-back
bus transaction; all consumers snoop the bus, and if they
find the injection table hit, they catch the data from the
bus and store it into their caches.

The rest of this paper is organized as follows. Section
2 discusses related work. Motivation for this research is
given in Section 3. Section 4 describes the proposed



solution, discusses its implementation, and demonstrates
its benefit using a simple example code. Section 5
describes the experimental methodology used for
performance evaluation and gives some preliminary
results. Section 6 gives some concluding remarks.

2. Related Work

Software-controlled cache prefetching and data
forwarding, as the most promising techniques for
tolerating high memory latency in shared memory
multiprocessors, have been studied by many researchers.
A short description of the relevant studies, given in this
section, is aimed to give the background and to better
explain the motivation for our research.

In software-controlled prefetching, the analysis of
what to prefetch and the scheduling of when to initiate
prefetches are two key steps done statically by software.
The responsibility for inserting prefetch instructions is on
compiler or programmer. Mowry developed the most
sophisticated compiler algorithm for prefetching [1].
Performance evaluation based on numerous architectural
simulations of CC-NUMA multiprocessors showed that
this loop-based algorithm is quite successful at hiding
memory latency, improving performance of some
scientific applications by as much as twofold.

Tullsen and Eggers evaluated software-controlled
prefetching on bus-based multiprocessors [2]. The results
showed that bus-based architectures are not well suited
for prefetching: for several variations of the architecture,
speedups for chosen benchmarks were no greater than
39%, and the degradations were as high as 7%, when
prefetching was added to the workload. They identified
memory and bus contention, and data sharing as major
factors responsible for such behavior.

Ranganathan et al. evaluated the effectiveness of
software-controlled prefetching in shared memory
multiprocessors built of the state-of-the-art processors
which exploit instruction level parallelism (ILP) [3].
They found that software prefetching results in
significant reductions in execution times. However,
compared to previous-generation systems, software
prefetching is significantly less effective in reducing
memory stall component of execution time on an ILP-
based system.

Koufaty et al. developed a framework for a compiler
algorithm for forwarding [4]. They focused on the code
that exploits loop-level parallelism with doall constructs
and array accesses that are indexed by affine functions of
the loop indices and constants. Performance evaluation
based on trace-driven simulation of a CC-UMA
multiprocessor showed that data forwarding provides

considerable speed up for PerfectClub parallel
applications: 30-50% depending on cache size.

Abdel-Shafi et al. evaluated the performance impact
of fine-grained producer-initiated communication, both
with and without software prefetching in shared memory
multiprocessors [5]. They used simple heuristics based on
application behavior to insert prefetches and primitives
that provide producer-initiated communication
(WriteSend  and WriteThrough ). Simulation
analysis of a CC-NUMA multiprocessor showed that
these primitives provide additional benefits over
prefetching for irregular communications and
producer-consumer sharing patterns that are not suitable
for software prefetching.

Trancoso and Torellas reduced time taken by critical
sections by using software-controlled prefetching and
forwarding to minimize the number of misses inside
critical sections [6]. Skeppstedt and Stenstrom proposed
a method that shortens read-miss latency in CC-NUMA
multiprocessors with write-invalidate protocols [7]. They
developed a compiler algorithm that replaces last store
instruction to a memory block by an update instruction,
using classical dataflow analysis techniques.

3. Motivation

Comparing prefetching and forwarding, it should be
noted that prefetching can eliminate any kind of read
misses (cold, conflict, and coherence), while forwarding
can eliminate only coherence misses and the related case
of cold misses. Prefetching is not effective in the cases
when the value to be read is not produced sufficiently
early, or when the location to be accessed is not known
sufficiently early. Too early issued prefetch can degrade
performance. For the coherence misses forwarding can be
more effective than prefetching due to the following
reasons: (a) forwarding delivers data to consumers as
soon as it is produced, (b) smaller latency, and (c)
possibility to forward the same data to several consumers
with a single instruction. However, compiler support for
data forwarding must be more sophisticated than for
prefetching; consumer processor does not need to know
the identity of the producer processor, while for
forwarding the producer processor needs to know the
identity of consumers.

Majority of previously mentioned studies examined
CC-NUMA or CC-UMA multiprocessor architectures,
except [2], which examined software-controlled cache
prefetching on bus-based shared memory
multiprocessors. In addition, we are not aware of any
research evaluating producer-initiated communication
primitives on bus-based multiprocessors. The study [2]
reported poor effectiveness of software prefetching on



bus-based multiprocessors. There are three main reasons
for this behavior. First, prefetching attempts to increase
processor utilization by lowering the CPU miss rate. A
smaller CPU miss rate is usually achieved at the expense
of total miss rate, which increases memory traffic.
However, bus-based architectures are more sensitive to
changes in memory traffic, so that higher memory traffic
can result in performance degradation. Next, prefetching
can negatively affect data sharing when the future
working set for one processor is in conflict with the
current working sets of other processors. Last, current
prefetching algorithms are not so effective in predicting
invalidation misses. Sharing misses represents the
biggest challenge for designers, particularly as caches
become larger and invalidation misses dominate the
performance of parallel programs.

In this paper we propose a novel technique called
cache injection, aimed to rise the effectiveness of the
existing software-controlled techniques cache prefetching
and data forwarding on bus-based shared memory
multiprocessors. Using advantages of both cache
prefetching and data forwarding and the suitability of
bus-based architectures, cache injection should overcome
some of the shortcomings of the existing algorithms for
cache prefetching and data forwarding, such as: bus and
memory contention, negative impact on data sharing (too
early or too late issued prefetch), compiler complexity,
and instruction overhead. The proposed solution can be
combined with the existing ones in order to rise overall
effectiveness of techniques for tolerating memory latency
in bus-based multiprocessors.

4. Cache Injection

4.1. Definition and Programming Model

In the cache injection [8, 9], a consumer predicts its
future needs for write shared data using lprefetch
instruction (lazy prefetch) instead of classical prefetch. In
the case of cache miss, this instruction does not initiate
bus transactions as in classical prefetching, but only puts
the address of the requested block to the injection table.
At the producer side, after the data producing is finished,
the producer initiates bus transactions in order to update
the memory, by executing a write_back  instruction.
During the write-back bus transaction, all consumers
snoop the bus, and if they find that the current bus
address belongs to some of the opened address window in
the injection table, they catch the data from the data bus
and store it into their caches. Hence, if the sharing
pattern follows the Single-Writer-Multiple-Reader
paradigm, only one bus transaction is needed to update

all consumers, if the prediction was successful. Unlike
classical prefetching, this approach can not cause a too
early issued prefetch.

Compiler algorithm for cache injection includes
support for inserting lprefetch  and write_back
instructions. Compiler support at the consumer side is
similar to one used in the classical prefetching, except
that it should be applied only to write-shared data. At the
producer side, the compiler should only replace last store
instruction to a memory block by write_back
instruction. Hence, compiler support is less sophisticated
than in data forwarding, since there is no need for
identification of future consumers.

Hardware support for cache injection, in addition to
support needed for prefetching and forwarding, includes
the injection table with capability of snooping, and
lprefetch  instruction to fill the injection table. Cache
prefetching requires prefetch instructions, lock-up free
caches, and a buffer that keeps pending prefetches. Data
forwarding requires a forward  instruction, lock-up free
caches, a deeper write buffer for pending forwards, and
the ability for a cache to accept data that it has not
requested. Additional complexity for cache injection is
not large compared to overall complexity for both
prefetching and forwarding.

The proposed solution can evolve by extending the
function of the injection table. In the basic solution, an
entry of the injection table contains the address of the
requested cache line. If write-shared data demonstrate
strong spatial locality and producer-consumer sharing
pattern, an entry in the injection table can contain both
the first and the last address of a memory block that is
shared, defining a window in the address space. In this
case, during write-back bus transactions, each processor
checks its injection table to see if the bus address belongs
to the address range defined in some of the entries. If it is
the case, the data will be caught and stored into the
cache.

open_window Laddr, Haddr
This instruction opens an address window
in the injection table. Laddr  and Haddr  represent
the first and the last address of the window, respectively.

close_window Laddr
This instruction checks the injection table,
and if there is an open window which starts
at the address Laddr , it closes that window.

Figure 1. Proposed instructions.

Compiler algorithm, at the consumer(s) side, should
find such address windows and insert corresponding



instructions to open (open_window Laddr, Haddr )
and close (close_window Laddr ) an address
window. Figure 1 contains the description of the
proposed instructions. At the producer side, the compiler
algorithm is the same as in the basic solution. This
solution requires the injection table to be doubled in size
(each entry contains two address fields) and simple
combinational logic to compare addresses. The
organization of the injection table is shown in Figure 2.
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Figure 2. Organization of the injection table.
Description: Each entry of the injection table table
includes two address fields to define an address window
and the valid bit. The open_window  instruction defines
the address fields (Laddr, Haddr) and sets the valid bit.
The close_window  instruction resets the valid bit.

4.2. An Example

To make our approach more concrete, an example
code is considered (Figure 3). Matrix A is partitioned in
such way that each processor modifies its own row, based
on the value myVal , which is computed over the entire
matrix A. This computation is repeated over several
timesteps. Barriers are used to synchronize processors
between computing of their copy of myVal  (it depends
on MyID) and using it to modify their own row.

A simple performance analysis, aimed to represent the
advantages of the proposed solution compared with the
existing ones, is performed. The CPU read misses and
overall bus traffic are measured. Processor stall time
waiting for necessary data from memory, directly
depends on CPU read misses. To make the analysis
simpler the following assumptions are adopted: cache
line size is 16B (2 elements of matrix A), the number of
iterations needed to prefetch ahead is 6, and the cache
size is large enough to accept all elements of matrix A. A
bus-based multiprocessor with the MESI write-back
invalidation cache coherence protocol and the release
memory consistency model is assumed. The addresses are

32 bits, and the bus commands are 8 bits. During the
analysis only references to matrix A are considered. Base
code shown in Figure 3 (Base) is extended to support
cache prefetching (referred to as Pref), data forwarding
(Forw), and cache injection (Inject).

Base. During the first iteration over the t loop, all
processors fetch elements of matrix A. Therefore, at the
first barrier each processor has all elements in its local
cache in Shared state. In the second phase, each
processor modifies its own row, thus initiating invalidate
operations. At the second barrier, each processor is the
exclusive owner of its own row, and all other elements
are invalid. Consequently, in the next iteration each
processor fetches all elements of matrix A, except its own
row, which is already in its cache. Number of CPU read
misses during the execution of the base program is given
below:

2/)]1()1([ MNumProcst_maxNumProcsN RMCPU ⋅−⋅−+=− .

The traffic is split into data and address+command bus
traffic. Data and address+command bus traffic per
processor are:

16⋅= −RMCPUData NTraffic , and

5)( ⋅+= − INVRMCPUAddrCmd NNTraffic , respectively; NINV

represents the number of bus invalidations,
2/t_maxMNINV ⋅= .

/* NumProcs = total numberof processors */
/* MyID = this processor’s ID number */
/* shared matrix A; each processor owns a row */

shared double A[NumProcs][M];
for(t=0; i<t_max; t++) {

local double myVal =0.0
for(p=0; p<NumProcs; p++) {

for(i=0; i<M; i++)
myVal+=foo(A[p][i], MyID];

}
barrier(B, NumProcs);
for(i=0; i<M; i++)

A[MyID][i]=goo(A[MyID][i],myVal);
barrier(B, NumProcs);

}

Figure 3. An example representing
the producer-consumer data sharing scenario (Base).

Pref. The code modified to support cache prefetching
is shown in Figure 4. Software pipelining transformation
of the innermost loop is necessary to issue prefetches
enough iterations ahead (6 iterations). In this case, we
can approximately expect that all CPU read misses will
be eliminated. However, the overall traffic is the same as
during the execution of the code in Figure 3.

Forw. Base example modified to support data
forwarding is shown in Figure 5. Each processor, after
the producing of a cache block is finished, forwards the
cache block to the future consumers (in this case, to all



other processors). In that way, all processors will find the
requested data in their caches in the next outermost loop.
It should be noted that data forwarding cannot eliminate
read misses in the first iteration over t. Number of CPU
read misses during the execution of the Forw example is

2/MNumProcsN RMCPU ⋅=− . However, this approach does

not reduce the overall bus traffic. The traffic is the same
as in the previous cases if we modify the code to skip
useless forwarding instructions in the last iteration of the
outermost loop t=t_max-1.

shared double A[NumProcs][M];

for(t=0; i<t_max; t++) {
local double myVal =0.0
for(p=0; p<NumProcs; p++) {
for(i=0; i<6; i+=2)

prefetch(&A[p][i]);
for(i=0; i<M-6; i+=2) {

prefetch(&A[p][i+6]);
myVal+=foo(A[p][i], MyID];
myVal+=foo(A[p][i+1], MyID];

}
for(i=M-6; i<M; i+=2) {

myVal+=foo(A[p][i], MyID];
myVal+=foo(A[p][i+1], MyID];

}
barrier(B, NumProcs);
for(i=0; i<M; i++)

A[MyID][i]=goo(A[MyID][i],myVal);
barrier(B, NumProcs);

}

Figure 4. Example with prefetching (Pref).

shared double A[NumProcs][M];
for(t=0; i<t_max; t++) {

local double myVal =0.0
for(p=0; p<NumProcs; p++) {

for(i=0; i<M; i++)
myVal+=foo(A[p][i], MyID];

}
barrier(B, NumProcs);
for(i=0; i<M; i+=2) {

A[MyID][i]=goo(A[MyID][i],myVal);
A[MyID][i+1]=goo(A[MyID][i+1],myVal);
for(int j=0; j<NumProcs; j++)

forward(&A[MyID][i], j);
}
barrier(B, NumProcs);

}

Figure 5. Example with data forwarding (Forw).

Inject . Example code with cache injection is
presented in Figure 6. Each processor, as a consumer,
opens an address window between &A[0][0]  and
&A[NumProcs-1][M-1]  by executing open_window
instruction. After the data producing is finished, each
processor initiate a write-back bus cycle by executing
write_back  instruction. During the write-back bus
transaction, each processor inspects its injection table to
see if the current bus address belongs to one of the
defined address windows. If it is the case, the processor

catches the data from the data bus and puts it into its
cache. In this way, all potential consumers fetch the data
during the same write-back bus transaction. After the
execution of the outermost loop is over, each processor
closes the address window by executing
close_window  instruction. Number of CPU read
misses during the execution of the Inject example is

2/MNumProcsN RMCPU ⋅=− . The number of CPU read

misses can be further reduced by using the following
mechanism. A barrier is inserted after open_window
instruction to force synchronization of all processors;
also, the injection mechanism is allowed during the read
bus transactions. Under this assumptions, all
(NumProcs-1) processors can fetch a cache block during
the read bus transaction caused by read miss seen by a
processor, the first reader of that cache block. In that
way, each processor sees 2/MN RMCPU =−  CPU read

misses, on average. However, unlike previous examples,
this approach reduces the overall bus traffic. Data and
address+command bus traffic per processor are:

16)( ⋅+= − WBRMCPUData NNTraffic , and

5)( ⋅++= − WBINVRMCPUAddrCmd NNNTraffic , respectively;

2/t_maxMNWB ⋅=  represents the number of the

write-back bus transactions; 2/t_maxMNINV ⋅= . The

number of write-back bus transactions can be also
reduced if we skip useless write_back  instructions in
the last iteration over t loop, 2/)1( −⋅= t_maxMNWB .

shared double A[NumProcs][M];

open_window(&A[0][0], &A[NumProcs-1][M-1]);
for(t=0; i<t_max; t++) {

local double myVal =0.0
for(p=0; p<NumProcs; p++) {

for(i=0; i<M; i++)
myVal+=foo(A[p][i], MyID];

}
barrier(B, NumProcs);
for(i=0; i<M; i+=2) {

A[MyID][i]=goo(A[MyID][i],myVal);
A[MyID][i+1]=goo(A[MyID][i+1],myVal);
write_back(&A[MyID][i]);

}
barrier(B, NumProcs);

}
close_window(&A[0][0], &A[NumProcs-1][M-1]);

Figure 6. Example with cache injection (Inject).

Table 1 shows the number of CPU read misses, the
data and address+command bus traffic per a processor
during the execution of all presented examples. We
assume that NumProcs=16, t_max=10, and M=100. This
small example shows that the cache injection
significantly reduces bus traffic for applications with
producer-consumer sharing pattern.



This approach is also very effective for
synchronization variables such as locks, barriers, etc. For
each synchronization variable each processor should
open the window in the injection table, and force the
write-back bus transaction by executing a write_back
instruction, after the last modification of the variable.

Table 1. Comparison of performance for
Base, Pref, Forw, and Inject.

Base Pref Forw Inject
NCPU-RM 7550 ≈0 800 50
TrafficData

[x103B]
120 120 120 8

TrafficAddrCmd

[x103B]
40 40 40 5

Compiler support needed for cache injection can be
even simpler compared to prefetching and forwarding.
This approach, also, results in lower instruction
overhead.

5. Experimental Methodology

We evaluate the performance of cache injection
comparing the base system with the MESI write-back
invalidation protocol, and the base systems extended with
prefetching and cache injection, referred to as Base, Pref,
and Inject, respectively.

The simulation is done using Limes tool [10] - a tool
for execution-driven simulation of shared memory
multiprocessors. In our experiments, we use several
kernels well suited to demonstrate various data sharing
patterns, and parallel applications from the SPLASH-2
application suite. Simple heuristics based on application
behavior are used to insert classical prefetch and newly
proposed instructions.

The initial performance evaluation, aimed to explore
the potential of cache injection, shows that cache
injection could significantly improve the performance
relative to the base system, both with and without
prefetching. These performance benefits are
accomplished with lower bus traffic and reduced miss
rate, especially for write-shared data. Performance
improvements for some kernel benchmarks which exhibit
producer-consumer sharing pattern are quite significant
(speedups of over 60%).

6. Conclusions

This paper presents a novel software-controlled
technique for tolerating memory latency in bus-based
shared memory multiprocessors. This technique, called

cache injection, is developed to overcome some of the
shortcomings of the existing software-controlled
techniques cache prefetching and data forwarding,
combining advantages of these two techniques, in
conditions typical of bus-based architectures.

Preliminary performance evaluation shows that cache
injection provides significant improvements in tolerating
the memory latency for irregular communication,
synchronization, and producer-consumer sharing
patterns. Detailed in-progress simulation-based
performance evaluation concentrates on the impact of
cache injection on execution time in state-of-the-art bus-
based multiprocessors, both when applied alone and in
combination with cache prefetching and data forwarding.
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