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Abstract—The increasing speed gap between processors and
memory makes the design of memory hierarchy one of the
critical issues in general purpose embedded systems. As memory
requirements for embedded applications grow, especially in
emerging area of handheld multimedia devices, cache memories
become crucial for providing high performance and reducing
power. This paper describes a performance evaluation of typical
cache design issues such as cache size and organization, block
size, and replacement policy. The evaluation is done using
simulation tools for architectural exploration based on ARM
instruction set and MiBench benchmark suite. Our performance
evaluation includes monitoring of dynamic cache behavior, since
embedded systems designers are interested not only in the total
number of cache misses, but also in the number of cache misses
throughout application execution.

I. INTRODUCTION

Continual advancement in semiconductor technology has
provided remarkable gains in processor performance of
approximately 1.6 times a year. This dramatic rise in
performance poses requirements for a faster and larger
memory system. Even though DRAM chips have become
denser, their speed, improving only 7% a year, has not kept
pace with the processor cycle time. In order to alleviate the
processor-memory speed gap, computer designers rely on a
cache hierarchy consisting of one or more levels of caches –
each one smaller, faster, and more expensive per byte than
the next level.

Embedded systems are the fastest growing portion of the
computer industry and have recently become a focus of
computer architecture research. In these systems,
performance requirements are accompanied with strong
requirements for reducing the cost of the system, which
further transfers in the need to minimize the size of memory.
Designers often face a real-time performance requirement
where an application or its segment has an absolute time
allowed for execution. Finally, for almost all battery-operated
systems the requirement for reducing total energy consumed
is critical.

Typical general-purpose mid- to high-end embedded
processors are equipped with on-chip instruction and data
caches interfacing larger and slower off-chip memories [1].
Cache hits usually take one or two processor clock cycles,
while cache misses take tens of processor clock cycles and
this speed gap will continue to grow. Here, caches are crucial
not only in reducing memory latency, but also in reducing
power hungry off-chip communication.

The goal of this paper is to offer a comprehensive
performance evaluation of the main cache design issues in
general purpose embedded processors, such as split versus
unified cache, cache organization and size, block size, and
replacement policy. As a performance metric, most studies
use just the number of cache misses at the end of application
execution or measurement period to evaluate cache
performance. In this paper, we went one step further and
measured the number of cache misses dynamically, per each
100K instructions. The goal of such an approach is to give us
more insight into application behavior in the particular cache
organization. The performance evaluation has been done
using the ARM version of the SimpleScalar simulator toolset
[2], executing recently developed MiBench benchmark suite
[3], which represents a wide range of embedded applications.

The rest of the paper is organized as follows. Section II
gives the problem description. Section III describes the
experimental methodology including both simulation
environment and benchmark programs used in the
performance evaluation. Section IV provides the
experimental results and Section V concludes.

II. PROBLEM DESCRIPTION

The primary parameters that determine the cache
performance are cache and block size, cache write policy,
block placement policy, and cache block replacement policy
[4]. The write policy determines whether or not data should
be forwarded to main memory on every write operation
(write-through vs. write-back, respectively), and whether or
not the cache blocks are allocated on write misses (write-
allocate vs. write-no-allocate). Placement policies vary from
direct-mapped to set-associative and fully associative. With
direct-mapped caches, each memory block is mapped to a
unique cache block, whether the cache block is empty or not.
With fully associative cache memory, a memory block can be
mapped to any of the empty cache blocks, if one exists. If
there are no empty cache blocks, a replacement policy is used
to select a cache block to be replaced. A set-associative cache
memory divides the cache into sets and allows a memory
block to be mapped to any of the empty cache blocks within
the set the memory block is mapped to. If all cache blocks
within the set are full, a replacement policy will select one of
the cache blocks for replacement.

Numerous techniques have been proposed to further
improve the efficiency of cache memories in both high-end
and embedded processors [5]. Some well known compiler
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optimization techniques are blocking, code placement
methods, and software-directed block replacement polices.
Blocking combines strip-mining and loop permutation, while
code placement methods take advantage of the fact that
embedded processors execute the limited set of programs.
Hardware techniques such as multilevel caches, victim
caches, write-buffers, way prediction, etc., can be employed
to further improve cache efficiency.

As cache associativity in modern processors increases
[1], it is important to revisit the effectiveness of common
cache replacement policies. Ideally, when the cache controller
must replace a cache block, it discards a cache block that will
not be needed in the near future. However, the cache
controller can only guess which cache block should be
discarded. An optimal replacement (OPT) algorithm would
replace a cache memory block whose next reference is the
farthest away in the future among all cache memory blocks
presently in the set [6]. This policy requires perfect
knowledge of all future block references, and hence its
implementation is infeasible. Instead, heuristics have to be
used to determine which block is the most suitable to be
replaced.

The state-of-the-art processors employ various policies
such as Random, LRU (Least Recently Used), FIFO, and
pLRU (pseudo LRU), indicating that there is no common
wisdom about the best cache replacement policy. All these
mechanisms, except Random, determine which cache
memory block to replace by looking only at the cache
memory past references. LRU replacement uses a heuristic
that the cache block which has been accessed most recently
will most likely be accessed again in the near future and
accordingly, the cache block accessed “least recently” should
be replaced by the cache controller. Although this technique
is relatively efficient, it requires a number of status bits to
track when each cache block is accessed –
Nways*log2(Nways) bits are used for a set, where Nways is
the number of cache blocks per set. To reduce the cost and
complexity of LRU policy, Random policy can be used, but
potentially at the expense of performance. Several researchers
and computer designers have considered these two heuristics
as too extreme in terms of implementation cost and
performance. They have proposed various pLRU heuristics to
reduce the hardware cost by approximating the LRU
mechanism.

In the tree-based pseudo LRU (pLRUt) replacement
heuristic, Nway-1 bits are used to track the accesses to the
cache blocks in a set. For example, in a 4-way set pLRUt
track bits B0, B1, B2 are used to form a decision binary tree.
The track bit B1 indicates whether two lower cache blocks
CL0 and CL1 (B1=1), or 2 higher cache blocks CL2 and CL3
(B1=0) have been used recently. The track bit B0 determines
further which one of two blocks CL0 (B0=1) or CL1 (B0=0)
have been used recently; bit B2 tracks the access between
cache lines CL2 and CL3. On a cache miss, bit B1 determines
where to look for the least recently block, and B0 or B2
determines the least recently used block.

The other implementation of pLRU is based on using the
most recently used (MRU) bits (pLRUm). In this case each
cache block is assigned an MRU bit – Nway bits per set. The
MRU bit for each cache block is set to a “1” each time a
cache hit occurs on the cache block, indicating that the cache
block has recently been used. When the cache controller is
forced to replace a cache block, it examines the MRU bit for
each cache block looking for a “0”. When a “0” is found, it
replaces that cache block and then sets it to a “1”. A problem
could occur if all MRU bits are set to a “1”. If this happens,
all blocks are unavailable for replacement causing a
deadlock. To prevent this type of deadlock, all MRU bits in
the set are cleared except the MRU bit being accessed when a
potential overflow situation is detected.

III. EXPERIMENTAL SETUP

The performance evaluation of different cache
organizations is done using sim-cache and sim-cheetah
simulators from ARM version of the SimpleScalar toolset [2].
The original simulators have been modified to support
additional pseudo-LRU replacement policies and collect
corresponding statistics. In order to allow tracking of the
dynamic behavior of caches, the sim-cache simulator has
been modified to print interval statistics per specified number
of instructions.

As a simulation workload, we use a subset of
benchmarks taken from the freely available MiBench suite
[3], which includes embedded applications and corresponding
data sets. The MiBench applications are divided into six
suites targeting the wide range of embedded applications,
such as Automotive and Industrial Control, Consumer
Devices, Office Automation, Networking, Security, and
Telecom. MiBench provides small and large data sets. In this
study we use large data sets since they provide more realistic
application workload. TABLE I gives a list of applications
and a short description of each, as well as the total number of
instructions executed (IC) and the number of load/store
instructions executed (Refs).

TABLE I. MiBench Benchmarks.
(IC – the total number of instructions executed, Refs – the number of

load/store instructions executed.)
Benchmark Type Description IC

[×106]
Refs

[×106]
Adpcm Telecom ADPC Modulation 732.5 106.9

Blowfish Security Encription/decription 544.1 388.5
Cjpeg Office Image compression 104.6 39.8
DJpeg Office Image decompression 23.4 11.2

Dijkstra Network Shortest path problem 272.6 118.6
FFT Telecom Fast Fourier transform 301.8 130.2

Ghostscript Office Postcript interpreter 711 388.7
Lame Consumer MP3 encoder 1,151.8 631.6
Mad Consumer MPEG audio decoder 286.8 111.4

Patricia Network Routing 640.4 268.1
Qsort Auto/Ind. Sorting of strings 737.9 180.1

Rijndael Security Encription/decription 320.0 185.3
Sha Security Hashing 140.9 36.6

Susan Auto/Ind. Image recognition 29.8 9.8



We have considered two cache memory setups: with split
first level instruction and data caches (L1I + L1D), and with
unified first level cache (L1U) serving both instruction and
data requests (Fig. 1). For each memory setup we have run
simulations varying cache parameters such as:

• cache size - ranging from 0.5KB to 32KB;
• cache associativity – direct mapped (1w), 2-way

(2w), 4-way (4w), and 8-way set-associative;
• cache replacement policies – FIFO, Random, LRU,

pLRUt, pLRUm, and Optimal;
• cache block size – 32B, 64B.

ARM
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L1 Inst. (L1I)
Cache

L1 Data (L1D)
Cache

instruction
accesses

data
accesses

ARM
Core
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Cache

instruction
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Fig. 1. Memory hierarchy.

As a measure of cache performance we use the number
of misses per 1000 instructions. The relationship between this
measure and more traditional cache miss rate is shown in (1).

countnInstructio

accessesMemory
rateMissnsinstructioperMisses ××=10001000 (1)

IV. EXPERIMENTAL RESULTS

The first set of experiments concentrates on two cache
setups with split instruction and data caches and with a
unified first level cache. Fig. 2, Fig. 3, and Fig. 4 show the
number of cache misses per 1000 instructions for L1D, L1I,
and L1U caches, respectively. The data have been collected
on a direct-mapped cache memory with a block size of 32B.
MiBench benchmarks show large variations in the frequency
of memory operations (TABLE I). Some benchmarks like
GS, Lame, Rijndael contain more than 50% of memory
operations, Admpc-encode contain very few, while others
contain about 40% memory operations. The number of cache
misses varies significantly across applications, but most of
them fit into caches of 16KB and 8KB, for both instruction
and data.

TABLE II shows the average number of cache misses per
1000 instructions, when varying cache associativity (DM or
1w, 2w, 4w, 8w) and cache size (0.5KB – 32KB). For the
direct-mapped split instruction and data caches, the combined
number of misses is slightly lower compared to the number of
misses in the corresponding unified cache of equivalent size –
overall the difference is about 5% on average across all cache
sizes in the favor of split caches. This difference is significant
only for relatively small caches with 1KB combined size
(0.5KB + 0.5KB). However, set-associative unified caches
always have the lower number of cache misses – for 5% in
the case of a 2-way, and about 8-9% for 4-way and 8-way
caches. If other design constraints and requirements impose
using direct cache memory organization (e.g., in order to
achieve one clock cycle cache hit), the split organization is
better than unified.
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Fig. 2. Data cache misses per 1000 instructions.
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Fig. 3. Instruction cache misses per 1000 instructions.

The experiments also show that higher set-associativity is
very beneficial in reducing the number of cache misses (see
TABLE II). A 2-way set-associative cache, on average across
all applications and cache sizes, reduces the number of misses
for 27% for L1D, 27% for L1U, and 12% for L1I when
compared to a direct-mapped cache. The benefit of a 4-way
organization compared to direct-mapped is 36% for L1D,
14% for L1I, and 34% for L1U, while 8-way cache further
reduces the number of cache misses, providing improvement
of 40% for data, 14% for instruction, and 36% for unified
caches. The results suggest that increasing the set-
associativity is more useful in the case of data and unified
caches than for instruction caches. The results of this study
and the implementation complexity of highly associative
caches give little justification for having 8-way caches and
above since performance benefits are negligible.
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Fig. 4. Unified cache misses per 1000 instructions.

The absolute number of misses reduced by introducing
set-associative organization is larger for smaller caches since
conflict misses dominate, while the relative improvement is
larger for larger caches.

Although our results suggest the use of unified cache for
both data and instructions, in further evaluation we consider
separate instruction and data caches, in order to better capture
different instruction and data behavior for embedded
applications.

The experiments aimed to explore effectiveness of the
cache replacement policies suggest that pseudo LRU
techniques are very good approximations of the true LRU.
Furthermore, pLRUm outperforms LRU for most applications
across all cache sizes and organizations. Random replacement
policy performs almost consistently better than LRU and
pseudo LRU techniques for instruction caches, while LRU
replacement mostly works better than Random for data
caches (TABLE III). FIFO replacement policy shows poor
performance, although it is more costly than Random. The
overall conclusion is that the use of Random policy is
completely justifiable in instruction caches, while data caches
need some more complex technique as pLRUm.

It is interesting to note that for some applications and
some replacement techniques, the number of misses actually
grows with increased associativity, due to more conflict
misses and unoptimal replacement.

For both data and instruction cache, Optimal policy
performs significantly better than the best of considered
replacement policies, even in the two-way cache organization
(TABLE II, TABLE III). Simple yet efficient replacement
policies for embedded applications should be the matter of
further investigation, especially for caches with the low
degree of associativity.

For the two considered cache block sizes, 32B block size
outperforms 64B for instruction caches, while 64B is better
for data caches. In the unified cache organization,
performance varies across applications. Fig. 5 shows misses
for two block sizes (32B, 64B) for Gs benchmark.

Dynamic monitoring of cache behavior shows that some
applications have execution regions with very low variations
of the number of cache misses, e.g., fft and gs, while other
applications have large but repeatable miss variations, e.g.,
lame and djpeg. Finally, some regions have completely
irregular behavior, e.g., instructions in cjpeg (Fig. 6). These
results could be used for dynamic re-sizing of caches,
estimation of worst-case scenario, and power optimizations.

Due to space constraints we present only a subset of
results. The complete performance evaluation results can be
found on the following web site:
http://www.ece.uah.edu/~milenka/arch/crp.htm.

TABLE II. Average cache misses per 1000 instructions when varying cache
size and associativity. Legend: L1D – first level data cache, L1I – first level
instruction cache, L1U – first level unified cache, SA – set associative, LRU

– Least Recently Used replacement, OPT – Optimal replacement.

L1D DM SA, LRU repl. SA, OPT repl.
Size 2w 4w 8w 2w 4w 8w

0.5K 72.0 57.6 51.3 47.4 41.9 35.8 32.5

1K 53.0 39.7 34.6 32.0 28.8 23.9 21.1

2K 37.1 28.6 23.9 21.8 19.8 15.2 13.4

4K 19.6 14.3 14.0 13.2 9.3 7.6 6.3

8K 11.3 5.0 3.9 3.6 3.5 2.5 2.2

16K 5.8 2.3 1.7 1.6 1.7 1.2 1.1

32K 4.1 1.2 1.0 0.9 1.0 0.7 0.7

L1I DM SA, LRU repl. SA, OPT repl.
Size 2w 4w 8w 2w 4w 8w

0.5K 64.5 62.1 61.4 62.3 51.7 47.3 45.9

1K 51.9 47.9 48.4 49.1 38.3 34.5 33.2

2K 41.4 36.0 33.5 33.5 26.9 21.9 19.9

4K 23.5 21.3 21.3 20.5 13.9 10.6 9.2

8K 11.6 6.3 5.8 5.8 4.6 3.5 3.2

16K 7.6 3.2 3.1 3.3 2.3 1.6 1.3

32K 2.4 1.4 0.9 0.5 0.9 0.4 0.1

L1U DM SA, LRU repl. SA, OPT repl.
Size 2w 4w 8w 2w 4w 8w

0.5K 228.6 177.7 163.0 160.5 136.7 117.3 108.1

1K 168.8 123.0 110.8 107.5 97.4 81.5 75.2

2K 112.3 87.6 78.3 77.0 68.4 55.3 50.2

4K 72.0 56.6 52.5 49.9 41.9 33.2 28.8

8K 42.8 27.1 26.3 27.6 18.2 14.2 12.5

16K 27.8 11.4 7.8 7.5 7.6 4.6 4.0

32K 19.0 5.1 2.9 2.3 3.6 1.6 1.2

V. CONCLUSIONS

Cache memories have become widespread in general-
purpose embedded processors. This paper presents the
experimental results of the performance evaluation aimed to
explore key cache design issues such as cache size and
organization, block size, and replacement policy in general-
purpose embedded processors.



The results suggest that for relatively small direct
mapped caches, split instruction and data caches show better
performance than equivalent unified cache. For set-
associative caches, the unified cache almost always
outperforms the split caches. Increasing cache associativity
reduces the number of cache misses but the results show little
justification for 8-way associative caches and above. Higher
associativity brings more benefit to data and unified caches
than to instruction caches. Pseudo-LRU techniques perform
as well as true LRU. However, for instruction caches Random
policy performs the best, while for data caches pLRUm
shows the best performance. Relatively large difference
between Optimal policy and the best unoptimal replacement
policy suggest a need for further investigation in an attempt to
close the gap.

TABLE III. Average cache misses per 1000 instructions
varying replacement policy.

Instr. cache Data cache

1K 2w 4w 8w 2w 4w 8w

fifo 58.2 58.6 59.2 47.9 43.7 41.0

random 56.8 56.4 56.7 48.3 44.0 41.0

lru 57.9 58.1 58.8 45.6 39.8 36.8

pLRUt 57.9 57.6 58.3 45.6 40.1 37.2

pLRUm 57.9 56.2 56.3 45.6 39.3 35.8

opt 46.7 42.1 40.5 32.6 27.2 24.1

2K 2w 4w 8w 2w 4w 8w

fifo 45.9 42.8 43.1 34.6 29.4 27.1

random 43.1 39.2 37.8 34.5 29.2 27.4

lru 45.5 42.1 42.2 33.3 27.8 25.4

pLRUt 45.5 41.7 40.8 33.3 27.9 26.0

pLRUm 45.5 40.2 38.5 33.3 27.3 25.1

opt 34.1 27.6 25.1 22.6 17.5 15.4

4K 2w 4w 8w 2w 4w 8w

fifo 27.6 27.6 26.2 17.5 17.1 16.2

random 23.5 20.6 18.9 16.9 16.0 14.8

lru 27.1 27.3 25.9 16.7 16.4 15.5

pLRUt 27.1 27.0 25.3 16.7 16.3 15.0

pLRUm 27.1 22.5 22.3 16.7 15.5 14.4

opt 17.7 13.7 11.9 10.5 8.7 7.2
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Fig. 6. Dynamic cache behavior for 1K, 32B, direct-mapped cache.
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