
Journal of Systems Architecture 61 (2015) 601–614
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
mcfTRaptor: Toward unobtrusive on-the-fly control-flow tracing
in multicores
http://dx.doi.org/10.1016/j.sysarc.2015.07.005
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: akt0001@uah.edu (A.K. Tewar), myersar@uah.edu

(A.R. Myers), milenka@uah.edu (A. Milenković).
Amrish K. Tewar, Albert R. Myers, Aleksandar Milenković ⇑
Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 September 2014
Received in revised form 17 April 2015
Accepted 6 July 2015
Available online 14 July 2015

Keywords:
Real-time embedded systems
Multicores
Software testing and debugging
Program tracing
Software testing and debugging has become the most critical aspect of the development of modern
embedded systems, mainly driven by growing software and hardware complexity, increasing integration,
and tightening time-to-market deadlines. Software developers increasingly rely on on-chip trace and
debug infrastructure to locate software bugs faster. However, the existing infrastructure offers limited
visibility or relies on hefty on-chip buffers and wide trace ports that significantly increase system cost.
This paper introduces a new technique called mcfTRaptor for capturing and compressing functional
and time-stamped control-flow traces on-the-fly in modern multicore systems. It relies on private
on-chip predictor structures and corresponding software modules in the debugger to significantly reduce
the number of events that needs to be streamed out of the target platform. Our experimental evaluation
explores the effectiveness of mcfTRaptor as a function of the number of cores, encoding mechanisms, and
predictor configurations. When compared to the Nexus-like control-flow tracing, mcfTRaptor reduces the
trace port bandwidth in the range from 14 to 23.8 times for functional traces and 10.8–18.6 times for
time-stamped traces.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Embedded computer systems are essential in modern commu-
nication, transportation, manufacturing, medicine, entertainment,
and national security. Faster, cheaper, smaller, more sophisticated,
and more power-efficient embedded computer systems spur new
applications that require very complex software stacks. The
growing software and hardware complexity and tightening
time-to-market deadlines make software development and debug-
ging the most critical aspect of embedded system development. A
recent study found that software developers spend between 50%
and 75% of their time debugging programs [1], yet the nation still
loses approximately $20–$60 billion a year due to software bugs
and glitches. The recent shift toward multicore architectures
makes software development and debugging even more
challenging.

Ideally, software developers would like to have perfect visibility
of the system state during program execution. However, achieving
complete visibility of all internal signals in real time is not feasible
due to limited I/O bandwidth, high internal complexity, and high
operating frequencies. To address these challenges, modern
embedded processors increasingly include on-chip debug infras-
tructure to capture, filter, buffer, and emit program and data traces.
These traces, coupled with powerful software debuggers, enable a
faithful program replay that allows developers to locate and cor-
rect software bugs faster.

Fig. 1 illustrates a typical embedded multicore system-on-a-
chip (SoC) with its on-chip and off-chip trace and debug infrastruc-
ture. The multicore SoC includes various components, such as mul-
tiple processor cores (Core0–Core3), a DSP core, and a DMA core, all
connected through a system interconnect. Each component
includes its own trace and debug logic (trace modules) that cap-
tures program execution traces of interest. Individual trace mod-
ules are connected through a trace and debug interconnect to
on-chip trace buffers. On-chip buffers store program execution
traces temporarily before they are read out through a trace port
to an external trace probe. The external trace probe typically
includes large trace buffers in orders of gigabytes and interfaces
to the target platform’s trace port and to the host workstation.
The host workstation runs a software debugger that replays the
program execution off-line by reading and processing the traces
from the external probe and executing the program binary. This
way, software developers can faithfully replay the program execu-
tion on the target platform and gain insights into behavior of the
target system while it is running at full speed.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.07.005&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.07.005
mailto:akt0001@uah.edu
mailto:myersar@uah.edu
mailto:milenka@uah.edu
http://dx.doi.org/10.1016/j.sysarc.2015.07.005
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Fig. 1. Multicore SoC: debugging and tracing perspective.

602 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
Trace modules encompass logic that can support different
classes of debugging and tracing operations. The IEEE’s Nexus
5001 standard [2] defines functions and interfaces for debugging
and tracing in embedded processors for four classes of debugging
and tracing operations (Class 1–Class 4). Class 1 supports basic
debug operations for run-control debugging such as
single-stepping, setting breakpoints, and examining and modifying
processor registers and memory locations when the processor is
halted. It is traditionally supported through a JTAG interface [3].
The higher classes progressively add more sophisticated operations
at the cost of additional on-chip resources (logic, buffers, and inter-
connects) solely devoted to tracing and debugging. Thus, Class 2
adds support for nearly unobtrusive capturing and streaming out
of control-flow traces in real-time. Class 3 adds support for captur-
ing and streaming out data-flow trace (memory and I/O read and
write data values and addresses). Finally, Class 4 adds resources
to support emulated memory and I/O accesses through the trace
port.

Class 1 operations are routinely deployed in modern platforms.
However, Class 1 operations are lacking in several important
aspects as follows. First, they place burden on software developers
to perform time-consuming and demanding steps such as setting
breakpoints, single-stepping through programs and examining
visually the content of registers and memory locations.
Moreover, setting breakpoints is not practical or feasible in
cyber-physical and real-time systems. Finally, since the processor
needs to be halted, the debugging operations are obtrusive and
may perturb sequence of events on the target platform and thus
cause original bugs to disappear during debug runs. To address
these challenges many chip vendors recently introduced trace
modules with support for Class 2 and, less frequently, for Class 3
debug and trace operations. Some examples include ARM’s
CoreSight [4], MIPS’s PDTrace [5], Infineon’s MCDS [6], Freescale’s
MPC5500 Nexus implementation [7]. State-of-the-art trace mod-
ules employ filtering and encoding to reduce the number of bits
necessary to recreate program execution. Yet, trace port band-
widths are still in the range of 1–4 bits per instruction executed
per core for control-flow traces and 8–16 bits per instruction exe-
cuted per core for data-flow traces [4]. With these trace port band-
width requirements, a 1 KB on-chip buffer per processor core may
capture control-flow of program segments in order of 2000–8000
instructions or data-flow of program segments of merely 400–
800 instructions. Such short program segments are often insuffi-
cient for locating software errors in modern systems with more
sophisticated software stacks where a distance between a bug’s
origin and its manifestation may span billions of executed instruc-
tions. Increasing the size of the buffers and the number of pins for
trace ports is not an attractive alternative to chip manufacturers as
it significantly increases the system complexity and cost. This
problem is exacerbated in multicore processors where the number
of I/O pins dedicated to trace ports cannot keep pace with the
exponential growth of the number of processor cores on a single
chip. Yet, debugging and tracing support in multicores is critical
because of their increased proliferation in embedded systems
and their increased sophistication and complexity.

Developing cost-effective hardware support for debugging and
tracing in multicores is thus of great importance for future embed-
ded systems. The on-chip debug and trace infrastructure should be
able to unobtrusively capture control-flow and data-flow traces
from multiple processor cores at minimal cost (which translates
into minimal on-chip trace buffers) and stream them out in
real-time through narrow trace ports.

Whereas commercially available trace modules typically
implement only rudimentary forms of hardware filtering and

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 603
compression with a relatively small compression ratio, several
recent research efforts in academia and industry propose trace
compression techniques that reach much higher compression
ratios. Some of these techniques rely on hardware implementa-
tions of general-purpose compressors, such as LZ [8] or
double-move-to-front [9]. Although they significantly reduce the
size of the trace that needs to be streamed out, they have a rela-
tively high complexity (50,000 gates and 24,600 gates, respec-
tively). A set of recently developed techniques relies on
architectural on-chip structures such as stream caches [10,11],
and branch predictors [12,13] with their software counterparts in
software debuggers, as well as effective trace encoding to signifi-
cantly reduce the size of traces that needs to be streamed out.
Thus, for control-flow traces Uzelac et al. [13] introduced TRaptor
that achieves 0.029 bits per instruction on the trace port
(�34-fold improvement over Nexus-like trace) at hardware cost
of approximately 5000 gates. ARM’s new Embedded Trace
Macrocell version four (ETMv4) proposed for ARMv7 ISA employs
branch predictor to reduce the control-flow trace port bandwidth,
reporting �0.35 bits per instruction [14]. For load value traces,
Uzelac and Milenkovic [15,16] introduced cache first-access track-
ing mechanism (c-fiat) that reduces the trace size between 5.8 and
56 times, depending on the cache size. However, these techniques
have been demonstrated for uniprocessors only. Hochberger and
Weiss propose a new approach for debugging modern SoCs in
real-time called hidICE [17]. hidICE relies on an emulator that
replicates all master cores and memories from the target platform.
It relies on the target platform to report only unexpected
control-flows (exceptions) and data reads from peripherals that
cannot be inferred by the emulator.

This paper focuses on capturing and compressing control-flow
traces in multicores. They are an important tool in hardware and
software debugging as well as in program profiling. Whereas certain
classes of software bugs (e.g., data races) require data-flow traces,
they need control-flow traces as well, e.g., to capture exceptions.
Moreover, data-flow tracing is typically done only on a limited pro-
gram segment rather than on the entire program because of the high
costs. In such cases, control-flow traces and program check-pointing
can be used to pinpoint the program segment for which a full data
trace is needed. Capturing and compression of data traces in
real-time is out of scope of this paper, but methods described by
Uzelac and Milenkovic [16] can be extended to multicores.

We first analyze requirements for real-time control-flow tracing
in multicores running a set of representative multithreaded bench-
marks as a function of the number of cores (N = 1, 2, 4, and 8)
(Section 2). We introduce a new hardware/software framework
for capturing and compressing control flow traces in multicores
called mcfTRaptor that builds on proven strengths of the existing
TRaptor method [13] (Section 3). We analyze encoding of trace
messages for both functional and time-stamped control-flow
traces and evaluate effectiveness of variable encoding (Section 4).
Section 5 describes our experimental environment. The experi-
mental evaluation (Section 6) shows that mcfTRaptor dramatically
reduces the number of trace messages thanks to high prediction
rates in predictor structures. Thus, a multicore with eight cores
streaming functional control-flow traces for a selected set of paral-
lel benchmarks requires only 0.045 bits per instruction on the trace
port with mcfTRaptor compared to 1.061 bits per instruction with
Nexus-like tracing. Similarly, mcfTRaptor requires only 0.095 bits
per instruction on the trace port compared to 1.759 bits per
instructions when streaming time-stamped control-flow traces.

The main contributions of this work are as follows:

� We characterize trace port bandwidth requirements in multi-
core processors for Nexus-like functional and time-stamped
control-flow traces. The trace port bandwidth is measured in
bits per instruction executed and bits per clock cycle when exe-
cuting a set of parallel benchmarks as a function of the number
of processor cores.
� We introduce a technique called mcfTRaptor from multicore

control-flow tracing branch predictor that exploits private
branch-predictor like structures dedicated solely to program
tracing to significantly reduce the number of trace messages.
� We evaluate a fixed and a variable encoding scheme for the

events that are captured at mcfTRaptor structures.
� We perform a detailed experimental evaluation of the trace port

bandwidth as a function of the mcfTRaptor configuration (Small,
Medium, Large), the number of processor cores (N = 1, 2, 4. and
8), and encoding schemes. Our best performing configuration
reduces the trace port bandwidth relative to the Nexus-like
trace in the range of 14–23.8 times for functional control-flow
traces and 10.7–18.6 times for time-stamped control-flow
traces.
� In addition to analyzing the average trace port bandwidth, we

analyze the trace port bandwidth dynamically during bench-
marks’ execution.

2. Control flow traces

Control-flow traces are created by recording memory addresses
of all committed instructions in a program. However, such a trace
includes a lot of redundant information that can be inferred by the
software debugger with access to the program binary. To recreate
the control-flow offline, the debugger needs only information
about changes in the program flow caused by control-flow instruc-
tions or exceptions that cannot be inferred. When a change in the
control-flow occurs, we could record the program counter (PC) and
the branch target address (BTA) in case of a control-flow instruc-
tion or the exception target address (ETA) in case of an exception.
However, such a sequence of (PC, BTA/ETA) pairs still contains
redundant information. To reduce the number of bits to encode
lengthy (PC, BTA/ETA) pairs, we can rather record the number of
sequentially executed instructions in a dynamic basic block (also
known as instruction stream) – a sequence of sequentially exe-
cuted instructions starting at the target of a taken branch and end-
ing with the first taken branch in the sequence. In addition, the
target addresses of direct taken branches do not need to be
recorded as they can be inferred by the software debugger.
Therefore, only the following changes in the control-flow result
in trace messages:

� A taken conditional direct branch generates a trace message that
contains only the number of sequentially executed instruction
in the instruction stream, also known as stream length, (SL, –);
� an indirect unconditional branch generates a trace message that

includes the stream length and the address of the indirect
branch, (SL, BTA); and
� an exception event generates a trace message that includes the

message type, the number of instructions executed since the
last reported event (iCnt), and the exception target address
(ETA).

For multicores executing multithreaded programs, control-flow
trace messages need to include information about the core on
which a particular code segment has been executed. Without loss
of generality, we assume that each thread executes on a single core
(Ti = Ci); though threads can migrate between the cores, these
migrations can be captured by system software rather than
through hardware methods and can be merged with the hardware
trace in the software debugger.

To illustrate tracing of a multithreaded program let us consider
an OpenMP C program shown in Fig. 2 that sums up elements of an

604 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
integer array. An assembly code snippet in the middle shows the
instruction streams and the control-flow instructions in the inner
loop: the stream A with 15 instructions starts at the address
0x80488b3, the stream B with 14 instruction starts at the
address 0x80488b6, the stream C with 15 instructions starts at
the 0x80488b6, and the stream D with 5 instructions starts at
0x80488e9. The same code snippet is executed in two threads
(Ti = 0 and Ti = 1). The stream A is followed by two occurrences
of the stream B, and one occurrence of stream C. Finally, the stream
D ends with an indirect branch (retq instruction), so the last trace
message will also include the target address (not known in compile
time).

Fig. 2 top right shows the control-flow trace messages for both
threads for the selected code segment. This trace does not show the
ordering of the trace messages coming from different cores.
However, the ordering of trace events is often useful in debugging
parallel programs. We can assume that trace messages are
time-stamped in trace modules using a global clock. These time
stamps can then be used by a trace buffer control logic to properly
order trace messages before they are streamed out of the chip. This
way the software debugger would receive ordered control-flow
messages. We refer to this kind of trace as functional
control-flow trace – it is ordered, but it does not include time
stamps. An alternative to this approach is to embed time stamps
in trace messages and stream them out together with the core
index, the stream length, and indirect branch target address.
Fig. 2 bottom right shows the time-stamped control-flow trace
for the inner loop. Each trace message carries information about
the clock cycle in which the last instruction of a given instruction
stream is committed. Time-stamped control-flow traces offer more
insights to software developers and require simpler implementa-
tion of the trace buffer because trace messages can be streamed
out as they arrive from the individual cores. However,
time-stamped control-flow traces require higher trace port band-
width because time stamps need to be streamed out, even though
the time stamps can be differentially encoded. In this paper we will
consider trace port bandwidth requirements for both functional
and time-stamped control-flow traces.

In spite of generating trace messages only for events that cannot
be inferred by the software debugger, the number of bits that need
to be streamed out through the trace port remains relatively large.
To illustrate the tracing challenges in multicores, we consider the
minimal number of bits needed to capture control-flow traces
when running representative benchmarks. Table 1 shows main
 80488b3: mov DWORD P
 80488b6: mov eax,DWO
 80488b9: mov ecx,DWO
 80488bb: mov eax,DWO
 80488be: add eax,ecx
 80488c0: movzx eax,BYT
 80488c3: movzx ecx,al
 80488c6: mov eax,DWO
 80488c9: mov eax,DWO
 80488cc: add ecx,eax
 80488ce: mov eax,DWO
 80488d1: mov DWORD P
 80488d4: add DWORD P
 80488d8: cmp DWORD P
 80488db: jl 80488b6
 80488dd: jmp 80488e9
 80488df: mov eax,0x0
 80488e4: add ecx,0x1
 80488e7: jmp 80488a5
 80488e9: add esp,0x1
 80488ec: pop ebx
 80488ed: pop esi
 80488ee: pop ebp
 80488ef: ret

1 #include <iostream>
2 #include <omp.h>
3 int main()
4 {
5 uint8_t a[8]={1,2,3,4,5,6,7,8};
6 int sum;
7 #pragma omp parallel for
8 for (int i = 0; i < 8; i++) {
10 sum += a[i];
11 }
12 std::cout << sum;
13 return 1;
14 }

C Program

Fig. 2. Capturing control-flo
characteristics of 10 benchmarks from the Splash2 benchmark
suite compiled for the IA32 instruction set architecture (ISA)
[18,19]. The benchmarks are run for a small input set for processor
configurations with N = 1, 2, 4, and 8 processor cores. For each
combination (benchmark, N), we show the number of executed
instructions (IC – instruction count) and the number of instruc-
tions executed (committed) per clock cycle (IPC). The last row
shows totals for the entire benchmark suite. Expectedly, the num-
ber of instructions slightly increases as the number of threads
increases due to synchronization, especially for cholesky (from
1.27 with N = 1 to 2.77 billion of instructions with N = 8). The four
columns in the middle show control flow instruction statistics for
single-threaded programs, as they directly influence the frequency
and size of trace messages that need to be streamed out. The col-
umn Branch shows the total frequency of control flow instructions,
broken down to different types: conditional direct branches (C, D);
unconditional direct branches (U, D); and unconditional indirect
branches (U, I). Note: the IA32 ISA does not support conditional
indirect branches. The benchmarks exhibit diverse characteristics,
ranging from those with a relatively significant frequency of con-
trol flow instructions (e.g., water_nsq, water_sp, lu, and raytrace)
to those with relatively low frequency (e.g., radix). The total fre-
quency of control flow instructions in the instruction mix for all
benchmarks is 10.46%. This relatively low frequency is due to
Splash2 benchmark suite that includes predominantly scientific
applications and computations kernels.

The benchmark’s IPC as a function of the number of cores (N)
indicates how well its performance scales. Thus, water_nsq scales
very well because IPC (N = 8)/IPC (N = 1) = 7.55, but radix does
not, because IPC (N = 8)/IPC (N = 1) = 3.41. The benchmark execu-
tion times in clock cycles are recorded using a cycle-accurate
Multi2Sim simulator [20]. We model systems-on-a-chip with
N = 1, 2, 4, and 8 cores. Each core has its private 8 KB data and
instruction caches with hit latency of 2 clock cycles. The L2 cache
is shared among cores and has latency of 4 clock cycles. The L2
cache size is set to N�64 KB. The main memory latency is set to
200 clock cycles.

To determine the required trace port bandwidth, we first extend
Multi2Sim to capture program execution traces from multicore
processor models. The collected time-stamped control-flow traces
are post-processed to include the minimum necessary information
to replay the program offline. The trace messages are encoded sim-
ilarly to Nexus 5001 trace messages and include the fields
described in Fig. 7a: thread/core identification (Ti), the number of
TR [ebp-0xc],eax
RD PTR [ebp+0x8]
RD PTR [eax]
RD PTR [ebp-0xc]

E PTR [eax]

RD PTR [ebp+0x8]
RD PTR [eax+0x4]

RD PTR [ebp+0x8]
TR [eax+0x4],ecx
TR [ebp-0xc],0x1
TR [ebp-0xc],edx

0

Timed Trace (CC, TID, SL, BTA)

(0, 15, -)

Func�onal Trace (TID, SL, BTA)
(1, 15, -)

(0, 14, -) (1, 14, -)

(0, 14, -) (1, 14, -)

(0, 15, -) (1, 15, -)

(0, 5, BTA0) (1, 5, BTA1)

Legend:
CC Clock Cycle
TID Thread / Core ID
SL Stream Length
BTA Indirect Branch
 Target Address

(3544151, 0, 15, -) (3543577, 1, 15, -)

(3544592, 0, 14, -) (3543999, 1, 14, -)

(3544616, 0, 14, -) (3544006, 1, 14, -)

(3544639, 0, 15, -) (3544020, 1, 15, -)

(3544643, 0, 5, BTA0) (3544038, 1, 5, BTA1)

Control flow trace

A

B

B

C

D

A

B

B

C

D

w traces: an example.

Table 1
Splash2 benchmark suite characterization.

Benchmark Instruction count [�109] (IC) % Branches for N = 1 Instructions per cycle (IPC)

Thread N = 1 N = 2 N = 4 N = 8 Branch C, D U, D U, I N = 1 N = 2 N = 4 N = 8

barnes 2.13 2.13 2.13 2.14 10.25 6.10 2.44 1.71 0.41 0.83 1.52 2.76
cholesky 1.27 1.37 1.85 2.77 7.11 6.50 0.42 0.18 0.31 0.61 1.37 3.03
fft 0.92 0.92 0.92 0.92 8.35 6.06 1.14 1.14 0.28 0.56 1.00 1.58
fmm 2.79 2.79 2.84 2.88 7.05 6.57 0.36 0.12 0.40 0.80 1.57 2.94
lu 0.45 0.45 0.45 0.45 13.63 11.98 0.83 0.82 0.58 1.09 1.90 3.00
radiosity 2.23 2.32 2.31 2.31 11.70 6.48 3.40 1.81 0.64 1.24 2.35 4.42
radix 1.59 1.59 1.59 1.60 3.96 1.85 1.06 1.06 0.22 0.37 0.61 0.75
raytrace 2.47 2.47 2.47 2.47 12.12 7.74 2.65 1.73 0.50 1.17 2.16 3.60
water-nsq 0.74 0.74 0.74 0.75 14.12 11.56 2.16 0.41 0.70 1.46 3.04 5.29
water-sp 5.03 5.03 5.03 5.03 13.53 11.49 1.51 0.53 0.82 1.35 2.20 3.51

Total 19.61 19.81 20.33 21.31 10.46 7.82 1.69 0.95 0.45 0.87 1.56 2.57

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 605
sequentially executed instructions in a dynamic basic block (SL),
and differentially encoded target address (diffTA) for indirect
branches or exceptions. In case of time-stamped control-flow
traces, trace messages include diffCC field. This field carries infor-
mation about the number of clock cycles expired since the last
reported trace event on a given processor core. The number of bits
needed to encode the Ti field is [log2 N] (0 for N = 1, 1 for N = 2, 2 for
N = 4, and 3 for N = 8). To accommodate for variable length of the
SL, diffTA, and diffCC fields, they are broken down into a certain
number of chunks. Each chunk is followed by a so-called connect
bit, C, which indicates whether the chunk is a terminating one
(C = 0, end of the field) or not (C = 1, more chunks follow).

Table 2 shows the average trace port bandwidth for each bench-
mark for both the functional (NX_b) and the time-stamped (tNX_b)
Nexus-like control-flow traces. The bandwidth is measured in the
number of bits per instruction executed (bpi) and the number of
bits per clock cycle (bpc). The total bandwidth (shown in row
Total) in bits per instruction is calculated as the sum of trace sizes
for all benchmarks divided by the sum of the number of instruc-
tions executed for all benchmarks. Similarly, the total bandwidth
in bits per cycle is calculated as the sum of trace sizes for all bench-
marks divided by the sum of the execution times in clock cycles for
all benchmarks.

The required trace port bandwidth in bits per instruction
increases as we increase the number of cores, due to additional
information such as Ti that needs to be streamed out. The totals
for functional traces range from 0.79 bpi for N = 1 to 1.06 bpi for
N = 8. The required bandwidth varies across benchmarks and is
highly correlated with the frequency and type of control-flow
instructions. Thus, radiosity requires 1.06 when N = 1 and 1.34
when N = 8, whereas fmm requires only 0.41 when N = 1 and 0.65
when N = 8. In case of time-stamped traces the trace port
bandwidth requirements increase significantly. Thus, the total
Table 2
Trace port bandwidth for functional and time-stamped Nexus-like (NX_b/tNX_b) control-fl

Functional trace (NX_b)

Benchmark Trace port bandwidth [bpi] Trace port bandwidth [bpc]

Cores N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N

barnes 0.98 1.06 1.13 1.21 0.40 0.87 1.72 3.
cholesky 0.49 0.54 0.90 1.20 0.15 0.33 1.23 3.
fft 0.80 0.87 0.94 1.00 0.22 0.49 0.94 1.
fmm 0.41 0.46 0.55 0.65 0.17 0.37 0.87 1.
lu 1.23 1.35 1.47 1.59 0.71 1.47 2.79 4.
radiosity 1.06 1.15 1.25 1.34 0.68 1.43 2.92 6.
radix 0.55 0.59 0.63 0.67 0.12 0.22 0.38 0.
raytrace 1.05 1.13 1.21 1.30 0.53 1.32 2.63 4.
water-ns 0.75 0.83 0.91 0.99 0.53 1.21 2.76 5.
water-sp 0.78 0.86 0.93 1.01 0.64 1.15 2.05 3.

Total 0.79 0.86 0.95 1.06 0.36 0.75 1.49 2.
bandwidth is 1.42 bpi when N = 1 and 1.76 bpi when N = 8. The
individual benchmarks such as lu, barnes, and radiosity require sig-
nificantly higher bandwidths. For example, lu requires 2.67 bpi
when N = 8.

While the results for bandwidth in bpi show that the bandwidth
requirements increase with an increase in the number of cores,
they do not fully capture the pressure multiple processor cores
place on the trace port, which is a shared resource. The trace port
bandwidth in bits per clock cycle, bpc, better illustrates this pres-
sure. Thus, radiosity with 8 threads executing on 8 cores requires
6.02 bpc on average for functional and 9.49 bpc for time-stamped
control-flow traces. For N = 8 the total bandwidth for all bench-
marks in bpc is 2.76 for functional and 4.58 for time-stamped
traces. It should be noted that the bandwidth in bpc depends on
processor and memory hierarchy model. Our model with IPC of
0.45 instructions committed in each clock cycle when N = 1 is a
representative of embedded processors. More aggressive super-
scalar processor models will result in even higher trace port band-
width requirements. These results indicate that capturing
control-flow trace on the fly in multicores requires significantly
higher trace port bandwidths and in turn larger trace buffers and
wider trace ports. As shown in the next section, one alternative
is to develop hardware techniques that significantly reduce the
volume and size of trace messages that are streamed out.

3. mcfTRaptor

In this section we introduce a technique called multicore
control-flow Tracing Branch Predictor, or mcfTRaptor for short.
Fig. 3 illustrates a tracing and debug flow in multicores tailored
for mcfTRaptor. Each processor core is coupled to its trace module
through an interface that carries information about committed
control-flow instructions. The trace module includes predictor
ow traces for Splash2 benchmarks.

Time-stamped trace (tNX_b)

Trace port bandwidth [bpi] Trace port bandwidth [bpc]

= 8 N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8

35 1.67 1.74 1.82 1.90 0.68 1.44 2.76 5.28
93 0.97 1.01 1.62 2.09 0.30 0.63 2.21 6.86
59 1.44 1.50 1.56 1.62 0.40 0.84 1.56 2.57
93 0.81 0.87 1.00 1.13 0.33 0.69 1.56 3.35
77 2.32 2.44 2.56 2.67 1.34 2.65 4.85 8.01
02 1.81 1.90 2.01 2.11 1.15 2.36 4.69 9.49
50 0.95 0.99 1.10 1.19 0.21 0.37 0.67 0.89
68 1.80 1.88 1.96 2.05 0.90 2.19 4.24 7.37
21 1.44 1.52 1.59 1.67 1.01 2.21 4.83 8.84
54 1.47 1.54 1.62 1.69 1.20 2.08 3.57 5.95

76 1.42 1.49 1.61 1.76 0.64 1.29 2.52 4.58

606 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
structures in hardware, solely dedicated to capturing and filtering
control-flow traces. These structures are looked up when selected
control-flow instructions commit in the corresponding processor
core, namely conditional branches and indirect branches. For a
given control-flow instruction, the predictor structures either (a)
correctly predict its outcome or the target address; (b) incorrectly
predict the outcome or the target address, or (c) cannot make pre-
diction (e.g., due to a miss in a predictor). In all cases the predictor
structures are updated based on their update policies, similarly to
branch predictors in processor pipelines. The key insight that leads
to significant reduction in the number and size of trace messages is
that trace messages need to be generated only when rare mispre-
dictions occur in the mcfTRaptor structures on the target platform.
The messages are stored in a trace buffer, streamed out of the plat-
form, and read by the software debugger. The software debugger
has access to the program binary, instruction set simulator, and
the trace messages captured on the target platform. It maintains
software copies of all mcfTRaptor structures. These structures are
updated during program replay in the same way their hardware
counterparts are updated on the target platform.

Fig. 4 shows a block diagram of typical mcfTRaptor structures for
a single core. The processor’s trace module receives information
about committed control flow instructions (PC, direct/indirect,
taken/not taken, BTA) or exceptions (ETA) from the processor core
and looks up the mcfTRaptor structures. mcfTRaptor includes struc-
tures for predicting (a) target addresses of indirect branches, e.g.,
an indirect Branch Target Buffer (iBTB) and a Return Address
Stack (RAS) [21]; and (b) outcomes of conditional branches, such
as outcome gshare predictor [22]. In addition, mcfTRaptor includes
two counters: an instruction counter Ti.iCnt and a branch instruc-
tion counter Ti.bCnt. The Ti.iCnt is incremented upon retirement
of each executed instruction, and the Ti.bCnt is incremented only
upon retirement of control-flow instructions that could generate
trace messages (e.g., conditional direct and unconditional indirect
branches).

Fig. 5 describes operation of a trace module attached to core i
when capturing control-flow tracing using mcfTRaptor. The instruc-
tion counter is incremented for each committed instruction. The
branch counter is incremented for each control-flow instruction
capable of generating a trace message. For indirect unconditional
branches, the trace module generates a trace message only if the
predicted target address does not match the actual target address.
For direct conditional branches, the trace module generates a trace
message only if the predicted outcome does not match the actual
outcome. When a trace message is generated and placed in a trace
buffer for streaming out, the counters Ti.iCnt and Ti.bCnt are
cleared. The predictor structures are updated according to update
Mul�core
SoC

Trace & Debug Interconnect

On-chip
Trace Buffer

Trace Port
Interface

. . . CPU
Core i

Trace
Module

mcfTRaptor

CPU
Core 0

Trace
Module

mcfTRaptor

CPU
Core n-1

Trace
Module

mcfTRaptor

. . .

Fig. 3. Multicore SoC: syste
policy. In case of exceptions, a trace message is generated with
Ti.bCnt = 0 to indicate a special case, followed by the instruction
count (Ti.iCnt) and the exception address (Ti.ETA).

The software debugger replays the instructions as shown in
Fig. 6. The replay starts by reading trace messages for each thread
and initializing the counters. If a non-exception trace message is
processed, the software copy of Ti.bCnt is decremented. For indirect
unconditional branches, if the counter reaches zero, the actual tar-
get address is retrieved from the current trace message; otherwise
if (Ti.bCnt > 0), the target address is retrieved from the mcfTRaptor
structures maintained by the software debugger. For direct condi-
tional branches, if the counter reaches zero, the actual outcome is
opposite to the one provided by the mcfTRaptor structures main-
tained by the software debugger; otherwise if (Ti.bCnt > 0), the
actual outcome matches the predicted one. When Ti.bCnt reaches
zero, the next trace message for that thread is read from trace
probe. Handling of exception events is described in lines 3–8 in
Fig. 6.

4. Trace messages encoding

mcfTRaptor reduces the number of trace messages that need to
be reported, but the encoding scheme employed for these mes-
sages can also affect trace port bandwidth requirements. Trace
messages should be encoded in such a way that minimizes the
trace port bandwidth and reduces the hardware complexity of
encoding and decoding trace messages. Table 3 summarizes
mcfTRaptor events and necessary fields in trace messages for those
events. All trace messages include a Ti field that carries information
about the thread/core identification. The next mandatory field is
the branch counter; for all non-exception fields this counter is
greater than zero. Thus, the value zero is reserved to encode an
exception event. The target address misprediction events also
require the actual target address to be reported. In exception mes-
sages, the branch counter field is followed by the instruction coun-
ter (Ti.iCnt) and the exception target address (Ti.ETA). Note: these
messages are tailored for IA32 ISA, and instruction sets with condi-
tional indirect branches would require a slightly modified encod-
ing scheme. In case of time-stamped control-flow traces, a time
stamp field, Ti.CC, is included in each trace message.

One approach to encoding trace messages is to use fixed-length
fields for encoding the counter values (Ti.bCnt and Ti.iCnt), and the
target addresses (Ti.BTA and Ti.ETA). Whereas this approach simpli-
fies encoding and decoding, it wastes the trace port bandwidth.
The minimum number of bits to encode the counter values
depends on frequency, type, and distribution of control-flow
instructions in a traced program, as well as on prediction rates of

Trace
Port

Binaries

Mul�core Instruc�on Set Simulator

Core 0
mcfTRaptor

Structure
.

Core i
mcfTRaptor

Structure

Core n-1
mcfTRaptor

Structure

Trace Decoder and
Control So�ware Module

So�ware debugger

m view of mcfTRaptor.

Path Informa�on
Register (PIR)

iBTB

iBTB
hit

PC

iBTB target
address

Tag

 ...

Target address

0

1

 q-1

...

RAS

0

1

r-1

XOR
iBTB.tag

iBTB.index

Branch History
Register (BHR)

PC

XOR
ghare.index

...

0

1

 p-1

Gshare

way 0
way 1

RAS target
address

Predicted
Outcome

Ti.bCnt

Ti.iCnt

[PC, Type, BTA, ETA, Excep�on] from Core i

CMP
(actual BTA == predicted BTA)? Actual BTA

CMP
(actual Outcome ==

predicted Outcome)?

True/False True/False

Actual
Outcome

Fig. 4. mcfTRaptor structures for core i.

Fig. 5. mcfTRaptor operation on core i.

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 607
the mcfTRaptor structures. The prediction rates in turn depend on
the predictors’ size and organization.

An alternative approach is illustrated in Fig. 7b, called TR_b. The
branch counter field is divided into 8-bit chunks. If an 8-bit field is
sufficient to encode the counter value, the following field, called
connect bit (C), has value zero, thus indicating the terminating
chunk for Ti.bCnt. Otherwise, C = 1, and the following field carries
information about the next 8 bits of the counter value. The trace
messages for target address misprediction events carry informa-
tion about the correct target address. An alternative to reporting
the entire address (32-bit in our case) is to encode the difference
between subsequent target addresses and thus exploit locality in
programs to minimize the size of trace messages. The trace module
maintains the previous target address, that is, the target address of
the last mispredicted indirect branch (PTA). When a new target
misprediction is detected, the trace module calculates the differ-
ence target address, Ti.diffTA, Ti.diffTA = Ti.TA � Ti.PTA and the
Ti.PTA gets the value of current address Ti.TA, Ti.PTA = Ti.TA. The
absolute value of diffTA is divided into chunks of 16-bits, and the
connect bit indicates whether one or two 16-bit fields are needed
to encode the message. The sign bit of the difference is encoded
separately as shown in Fig. 7b.

The Ti.CC field can also be encoded with a fixed number of bits.
Reporting the exact clock cycle in which a trace event has been
captured is impractical because the program execution may take
billions of clock cycles. Limiting the size of the Ti.CC field and

Fig. 6. Program replay in software debugger.

Table 3
mcfTRaptor trace messages.

mcfTRaptor events Trace message fields

Outcome misprediction for direct conditional
branch

<[Ti.CC], Ti, Ti.bCnt>

Target address misprediction for indirect
unconditional branch

<[Ti.CC], Ti, Ti.bCnt,
Ti.BTA>

Exception event <[Ti.CC], Ti, 0, Ti.iCnt,
Ti.ETA>

608 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
generating a periodic synchronization messages is a better
approach, but would require periodic synchronization messages.
An alternative is to apply differential encoding of time stamps.
The trace module maintains the time stamp of the previous event
(Ti.PCC). When a new trace event is detected, the module calculates
the difference between the current and the previous time stamps,
Ti.diffCC = Ti.CC � Ti.PCC. The Ti.diffCC is divided into chucks of 8
bits, and the connect bit is used to encode the entire field as shown
in Fig. 7b. This approach for encoding time stamps is used for both
Nexus-like trace messages (NX_b) shown in Fig. 7a and mcfTRaptor
trace messages with fixed encoding (TR_b) shown in Fig. 7b.

By analyzing profiles of reported counter values (Ti.bCnt, Ti.iCnt,
Ti.diffCC) as well as diffTA values, we determined that the number
of required bits for encoding trace messages can be further mini-
mized by allowing for variable encoding. Instead of using
fixed-length chunks for Ti.bCnt, we allow for chunks of variable
size, i0, i1, i2, as shown in Fig. 7c. Similarly, we can use variable
chunk sizes of lengths, j0, j1, j2, for encoding diffTA, and h0, h1, h2,
. . . for encoding Ti.diffCC. We call this encoding approach TR_e.
The length of individual chunks is a design parameter and can be
determined empirically. In determining the length of individual
chunks, we need to balance the overhead caused by the connect
bits and the number of bits wasted in individual chunks. A detailed
analysis to find good chunk sizes is performed and selected param-
eters are used for all benchmarks. It should be noted that the vari-
able encoding offers an additional level of flexibility to adjust
encoding lengths for individual benchmarks or even inside differ-
ent phases of a single benchmark. However, dynamic adaptation
of the field lengths is left for future work.
5. Experimental environment

The goal of experimental evaluation is to determine the effec-
tiveness of the proposed mcfTRaptor technique. As a measure of
effectiveness, we use the average number of bits emitted on the
trace port per instruction executed. As the workload we use
control-flow traces of 10 benchmarks from the Splash2 benchmark
suite [18,19] collected on a Multi2Sim simulator with IA32 ISA. In
addition to evaluating the effectiveness of mcfTRaptor, the goal is to
quantitatively assess the impact of mcfTRaptor configuration on its
performance, as well as to find good chunk sizes (i0, i1, . . ., j0, j1, . . .,
h0, h1, . . .) and assess the effectiveness of variable encoding.

Fig. 8 shows the experimental flow used to create the
control-flow traces and evaluate the trace port bandwidth. We
have developed a custom extension to Multi2Sim called TmTrace.
TmTrace captures time-stamped control-flow traces. The traces
are generated for entire benchmark runs while varying the number
of threads, N = 1, N = 2, N = 4, and N = 8. As a baseline case we use
Nexus-like control-flow traces described in Section 2 with mes-
sages shown in Fig. 7a. The generated raw control-flow traces are
forwarded to mcfTRaptor tool that models behavior of the
mcfTRaptor predictor structures. The output tNX_b and tTR_b
traces are read by the analyzer tool suite that performs encoding
and analysis of statistics of interest for a selected set of encoding
parameters which are input parameters for this stage. The statistics
are maintained separately for each thread in a benchmark as well
as the totals for the entire benchmark.

The trace port bandwidth depends on the following parameters:
(a) benchmark characteristics – namely the type, frequency, and
distribution of control-flow instructions, (b) the prediction rates
of mcfTRaptor structures which in turn depend on their size and
organization, and (c) the encoding parameters. To evaluate the
impact of the mcfTRaptor predictors’ size and organization, we con-
sider three configurations called Small, Medium, and Large. Fig. 4
shows the mcfTRaptor predictor structures, including gshare out-
come predictor (p entries), RAS (r entries), and iBTB (2-way with
q sets). The index function for the outcome predictor is
gshare.index = BHR[log2(p):0] xor PC[4 + log2(p):4], where the BHR
register holds the outcome history of the last log2(p) conditional

(a) Nexus-like (NX_b/tNX_b)

SL[0:7]
8 b

SL[8:15]
8 b

C
1 b

C
1 b

...

TidiffCC SL diffTA

|diffTA[0:15]|
16 b

Sign
1 b

|diffTA[16:31]|
16 b

C
1 b

(b) mcfTRaptor base (TR_b/tTR_b)

bCnt[0:7]
8 b

bCnt[8:15]
 8 b

...
C

1 b
C

1 b

(c) mcfTRaptor variable encoding (TR_e/tTR_e)

|diffTA[0:15]|
16 b

|diffTA[16:31]|
16 b

Sign
1 b

C
1 b

bCnt diffTATidiffCC

diffCC
[0:7] 8 b

diffCC
[8:15] 8 b

C
1 b

C
1 b

...

diffCC
[0:h0-1] h0 b

C
1 b

diffCC
[h0:h0+h1-1] h1 b

C
1 b

...

|diffTA[0:j0-1]|
j0 b

C
1 b

|diffTA[j0:j0+j1-1]|
j1 b

C
1 b

Sign
1 b

...

bCnt[0:i0-1]
 i0 b

C
1 b

bCnt[i0:i0+i1-1]
i1 b

C
1 b

...

bCnt diffTATidiffCC
Legend:
diffCC difference clock cycle
Ti thread ID
bCnt branch counter
diffTA absolute difference

target address
b bits
h0, h1,.. chunk sizes for

diffCC
i0,i1,… chunk sizes for bCnt
j0, j1,… chunk sizes for

diffTA

diffCC
[0:7] 8 b

diffCC
[8:15] 8 b

C
1 b

C
1 b

...

Fig. 7. Trace message encodings: (a) baseline Nexus-like (NX_b), (b) mcfTRaptor base (TR_b), and (c) mcfTRaptor variable encoding (TR_e).

TmTrace: So�ware Timed Trace Generator

32 bit
Target

Applica�on

Applica�on
Input

Number
Of Threads

Applica�on
Output

Mul�2Sim
configura�on

files

TmTrace
Flags

Mul�2Sim TmTrace

Performance
Sta�s�cs

tmcfTrace

mcf-
TRaptor

Flags

mcfTRaptor
Trace

Trace
Filtering

Fixed
Encoding

NX_b/tNX_b

Hardware
traces

Trace
Filtering

Fixed
Encoding

TR_b/tTR_b

Variable
Encoding

TR_e/tTR_e

Trace Filtering, Encoding,
and Analysis

Trace Sta�s�cs

Fig. 8. Experimental flow.

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 609
branches. The iBTB holds target addresses that are tagged with an
8-bit tag. Both the iBTB tag and iBTB index are calculated based on
the information maintained in the path information register (PIR)
that is updated by control-flow instructions [23] [13]. For example,
a BTB with 32 sets requires a 13-bit PIR that is updated as follows:
PIR[12:0] = ((PIR[12:0]� 2) xor PC[16:4])|Outcome, where Outcome
is the outcome bit of conditional branches. The iBTB tag and index
are calculated as follows: iBTB.tag = PIR[7:0] xor PC[17:10], and
iBTB.index = PIR[12:8] xor PC[8:4]. The Small configuration includes
a 512-entry gshare outcome predictor and an 8-entry RAS. The
Medium configuration includes a 1024-entry gshare outcome pre-
dictor, a 16-entry RAS, and a 16-entry iBTB (2 � 8). The Large con-
figuration includes a 4096-entry outcome predictor, a 32-entry
RAS, and a 64-entry iBTB (2 � 32).

To evaluate the impact of encoding, we analyze trace port band-
width for both encoding approaches TR_b and TR_e. To select good
encoding parameters (i0, i1, j0, j1, . . .), we profiled the Splash2
benchmarks to determine the minimum required bit length of
the Ti.bCnt, Ti.|diffTA|, and Ti.diffCC fields. Fig. 9 shows the cumula-
tive distribution function (CDF) for the minimum number of bits
needed to encode Ti.bCnt, Ti.|diffTA|, and Ti.diffCC for the raytrace
benchmark with N = 2 threads. This benchmark is selected because
it has a relatively high frequency of control-flow instructions. The
number of bits needed to encode the value of Ti.bCnt counters
depends on benchmark characteristics as well as on misprediction
rates of the mcfTRaptor predictors, which makes the selection of
good parameters a challenging task. However, we can see that
�60% of possible Ti.bCnt values encountered during tracing ray-
trace can be encoded with 3 bits, and very few trace messages
would require more than 8 bits. Similarly, over 70% of Ti.|diffTA|
values encountered in the trace require less than 16 bits to encode.
Whereas each (benchmark, mcfTRaptor configuration, N) triplet

Table 4
Outcome and target address misprediction rates.

Configuration Outcome misprediction rate
[%]

Target address misprediction
rate [%]

N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8

Small 7.86 7.83 7.20 6.23 8.47 8.59 8.58 8.55
Medium 6.69 6.67 6.14 5.31 2.05 2.12 2.08 2.05
Large 5.27 5.26 4.84 4.20 0.57 0.58 0.57 0.57

610 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
may yield an optimal combination of the encoding parameters, we
search for a combination that would perform well across all bench-
marks and all configurations. We limit the design space by requir-
ing that i1 = i2 = . . .ik, and j1 = j2 = . . . = jl, where {i0, i1} = {1–6} and
{j0, j1} = {1–12}. We have found that the following values perform
well for all configurations: (i0, i1) = (3, 2), (j0, j1) = (3, 4), and (h0,
h1) = (4, 2).

6. Results

The effectiveness of mcfTRaptor in reducing the trace port band-
width directly depends on prediction rates as the trace messages
are generated only on rare misprediction events. Table 4 shows
the total misprediction rates collected on the entire benchmark
suite for the Small, Medium, and Large predictor configurations,
when the number of cores is varied between N = 1 and N = 8. The
outcome misprediction rates decrease as we increase the size of
the gshare predictor. For example, it is 7.86% for the Small configu-
ration and 5.27% for the Large configuration when N = 1. It
decreases with an increase in the number of processor cores as
fewer branches compete for the same resources. Thus, the outcome
misprediction rate is 6.23% for the Small configuration and 4.20%
for the Large configuration when N = 8. The target address mispre-
diction rates are also low because the RAS is correctly predicting
targets of return instructions. The Small configuration does not
include the iBTB predictor, resulting in misprediction rates
�8.5%. The Medium and Large configurations have only �2% and
�0.6% target address mispredictions, respectively. These results
demonstrate a strong potential of mcfTRaptor to reduce the trace
port bandwidth requirements.

To quantify the effectiveness of mcfTRaptor, we first analyze the
total trace port bandwidth for functional control-flow traces
(Section 6.1) considering both bpi and bpc metrics. Next, we analyze
the total trace port bandwidth for time-stamped control-flow
traces (Section 6.2). Whereas the average trace port bandwidth
allows us to quantify the effectiveness of the proposed techniques
for filtering and encoding of trace messages, it does not fully cap-
ture the peak rates that occur in individual benchmarks during their
execution. In Section 6.3 we look at the trace port bandwidth as a
function of time during benchmark execution. In Section 6.4 we
estimate hardware complexity of the proposed trace modules.

6.1. Trace port bandwidth analysis for functional traces

Fig. 10 shows the total average trace port bandwidth with the
min–max ranges for the Nexus-like control flow traces (NX_b)
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
length (field) [bits]

CDF for bCnt, |diffTA|, & diffCC: raytrace, N=2

diffCC bCnt DiffTA

Fig. 9. Cumulative distribution function of the minimum length for bCnt, |diffTA|,
and diffCC fields.
described in Section 2, the mcfTRaptor with base encoding (TR_b),
and the mcfTRaptor with variable encoding (TR_e). For TR_b and
TR_e we consider all three mcfTRaptor configurations (Small,
Medium, and Large).

Table 5 shows the average trace port bandwidth in bpi for each
benchmark separately when using the Large configuration for TR_b
and TR_e. The results show that both TR_b and TR_e dramatically
reduce the required total average trace port bandwidth relative
to NX_b. The NX_b requires 0.79 bpi when N = 1 (ranging from
0.41 for fmm to 1.23 for lu) and 1.06 bpi when N = 8 (ranging from
0.65 for fmm to 1.59 for lu). TR_b is reducing the total average trace
port bandwidth relative to NX_b in the range of 8.8 times (N = 1
with the Small configuration) to 18.6 times (N = 8 with the Large
configuration). TR_e requires even lower trace port bandwidths.
It reduces the total trace port bandwidth relative to NX_b in the
range of 14.9 times (N = 1 with the Small configuration) to 23.8
times (N = 8 with the Large configuration). TR_e reduces the trace
port bandwidth relative to TR_b in the range between 70% (N = 1)
to 47% (N = 8) for the Small configuration, and 40% (N = 1) to 28%
(N = 8) for the Large configuration. The benefits from variable
encoding are higher in smaller configurations where higher mis-
prediction rates lead to more frequent trace messages.

To further illustrate the strength of the proposed techniques,
Fig. 11 shows the total average trace port bandwidth in bits per
clock cycles for NX_b, TR_b, and TR_e. The experiments are run
using processor models described in Section 2 resulting in IPCs
shown in Table 1. The results show that NX_b requires 0.36 bpc
(ranging from 0.12 for radix to 0.71 for lu) when N = 1 and 2.76
bpc (ranging from 0.5 for radix to 6.02 for radiosity) when N = 8.
TR_e with the Large configuration requires only 0.015 bpc
(ranging from �10�6 for radix to 0.036 for water-sp) when N = 1
and 0.116 bpc (ranging from �10�5 for radix to 0.352 for
water-ns) when N = 8. TR_e requires on average less than 0.2 bpc
in systems with N = 8 cores regardless of the number cores and
the predictor configuration. More importantly, the critical bench-
marks such as radiosity and water-ns, executing on a multicore
with N = 8 cores with the Large configuration, still require less than
0.4 bits per clock cycle on the trace port (0.301 and 0.352 bpc,
respectively).
6.2. Trace port bandwidth analysis for time-stamped traces

Fig. 12 shows the total trace port bandwidth in bpi for
time-stamped control-flow trace tNX_b, tTR_b, and tTR_e as a func-
tion of the number of processor cores and predictor configurations.
The total trace port bandwidth is broken down into individual
fields of trace messages (DiffTA, bCnt, Ti, and diffCC). Expectedly,
time-stamped control-flow traces increase the port bandwidth
requirements. Table 6 shows the trace port bandwidth for all
benchmarks for the Large configuration. For example, tNX_b
requires 1.42 bpi when N = 1 (ranging from 0.81 for fmm to 2.32
for lu) and 1.76 bpi when N = 8 (ranging from 1.13 for fmm and
2.67 for lu). Both tTR_b and tTR_e significantly reduce the required
trace port bandwidth. With the Large configuration TR_b requires
0.104 bpi when N = 1 (13.6 times improvement over tNX_b) and

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

NX_b

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Large Medium Small Large Medium Small

TR_b TR_e

Trace port bandwidth (bpi)

N=1 N=2 N=4 N=8

Fig. 10. Trace port bandwidth in bpi for functional control-flow traces.

Table 5
Trace port bandwidth analysis [bpi] for NX_b, TR_b (Large), and TR_e (Large).

Threads/cores (N) N = 1 N = 2 N = 4 N = 8

Mechanism NX_b TR_b TR_e NX_b TR_b TR_e NX_b TR_b TR_e NX_b TR_b TR_e

barnes 0.981 0.041 0.028 1.056 0.045 0.033 1.133 0.050 0.037 1.210 0.054 0.042
cholesky 0.491 0.013 0.011 0.538 0.014 0.012 0.897 0.014 0.011 1.200 0.010 0.009
fft 0.803 0.007 0.007 0.869 0.008 0.008 0.935 0.009 0.008 1.002 0.010 0.009
fmm 0.413 0.021 0.018 0.463 0.023 0.020 0.554 0.025 0.022 0.650 0.027 0.024
lu 1.230 0.061 0.046 1.350 0.067 0.053 1.471 0.074 0.059 1.592 0.081 0.066
radiosity 1.064 0.069 0.045 1.151 0.078 0.054 1.250 0.087 0.062 1.336 0.090 0.066
radix 0.546 0.000 0.000 0.586 0.000 0.000 0.627 0.000 0.000 0.668 0.000 0.000
raytrace 1.052 0.083 0.057 1.134 0.092 0.066 1.214 0.100 0.074 1.299 0.110 0.083
water-ns 0.755 0.063 0.046 0.831 0.070 0.053 0.907 0.077 0.060 0.985 0.084 0.067
water-sp 0.781 0.063 0.044 0.857 0.070 0.051 0.933 0.077 0.058 1.008 0.084 0.065

Total 0.789 0.047 0.033 0.858 0.052 0.038 0.954 0.056 0.042 1.061 0.057 0.045

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

NX_b

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Large Medium Small Large Medium Small

TR_b TR_e

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

Fig. 11. Trace port bandwidth in bpc for functional control-flow traces.

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 611
0.111 when N = 8 (15.8 times improvement over tNX_b), whereas
TR_e requires 0.087 bpi when N = 1 (16.3 times improvement over
tNX_b) and 0.095 bpi when N = 8 (18.6 times improvement over
tNX_b). TR_e with the Large configuration requires less than 0.1
bpi on the trace port regardless of the number of cores. The break-
down shows that the trace port bandwidth in TR_e becomes dom-
inated by bits carrying time stamps.

Fig. 13 shows the total trace port bandwidth with the min–max
ranges in bpc for tNX_b, tTR_b, and tTR_e as a function of the num-
ber of cores and mcfTRaptor configurations. The results show that
tNX_b requires 0.64 bpc (ranging from 0.33 for fmm to 1.34 for
lu) when N = 1 and 4.58 bpc (ranging from 0.89 for radix to 9.49
for radiosity) when N = 8. tTR_e with the Large configuration
requires only 0.039 bpc (ranging from �10�6 for radix to 0.094
for water-sp) when N = 1 and 0.246 bpc (ranging from �10�5 for
radix to 0.738 for water-ns) when N = 8. These results indicate that
using time-stamped rather than functional control-flow traces
more than doubles the required trace port bandwidth.

6.3. Dynamic trace port bandwidth analysis for time-stamped traces

Fig. 14 shows the trace port bandwidth as a function of time
during execution of two benchmarks, water-ns and radiosity. The
number of processors is N = 8. We analyze the bandwidth required
for time-stamped control-flow traces for tNX_b and tTR_e for all
three configurations, the Large, tTR_e (L), the Medium, tTR_e (M),
and the Small, tTR_e (S). The benchmarks water-ns and radiosity
are selected because they require the highest average total band-
width for time-stamped control-flow traces. The trace port band-
width in bpc is logged every 1 million clock cycles.

0.0

0.5

1.0

1.5

2.0

N=1 N=2 N=4 N=8

tNX_b

Trace port bandwith [bpi]

DiffTA SL Ti diffCC

0.00

0.05

0.10

0.15

0.20

N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8 N=1 N=2 N=4 N=8

Large Medium Small Large Medium Small

tTR_b tTR_e

Trace port bandwidth [bpi]

DiffTA bCnt Ti diffCC

Fig. 12. Trace port bandwidth in bpi for time-stamped control-flow traces.

Table 6
Trace port bandwidth analysis [bpi] for tNX_b, tTR_b (Large), and tTR_e (Large).

Threads/cores (N) N = 1 N = 2 N = 4 N = 8

Mechanism tNX_b tTR_b tTR_e tNX_b tTR_b tTR_e tNX_b tTR_b tTR_e tNX_b tTR_b tTR_e

barnes 1.672 0.099 0.079 1.738 0.105 0.084 1.820 0.110 0.089 1.904 0.115 0.094
cholesky 0.968 0.029 0.026 1.007 0.031 0.029 1.619 0.029 0.026 2.093 0.021 0.019
fft 1.438 0.018 0.017 1.499 0.018 0.018 1.563 0.020 0.019 1.625 0.021 0.020
fmm 0.810 0.057 0.051 0.866 0.059 0.054 0.995 0.061 0.055 1.129 0.062 0.057
lu 2.320 0.126 0.120 2.438 0.132 0.126 2.556 0.139 0.132 2.674 0.146 0.139
radiosity 1.805 0.151 0.116 1.896 0.161 0.125 2.008 0.170 0.134 2.106 0.170 0.136
radix 0.945 0.000 0.000 0.985 0.000 0.000 1.100 0.000 0.000 1.189 0.000 0.000
raytrace 1.802 0.182 0.147 1.877 0.189 0.155 1.957 0.198 0.163 2.048 0.211 0.174
water-ns 1.442 0.138 0.118 1.515 0.144 0.125 1.590 0.152 0.132 1.670 0.161 0.140
water-sp 1.467 0.134 0.115 1.543 0.140 0.122 1.619 0.147 0.129 1.695 0.155 0.137

Total 1.419 0.104 0.087 1.486 0.109 0.092 1.614 0.112 0.095 1.759 0.111 0.095

0

1

2

3

4

5

6

7

8

9

10

tNX_b

Trace port bandwidth (bpc)
N=1 N=2 N=4 N=8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Large Medium Small Large Medium Small

tTR_b tTR_e

Trace port bandwidth (bpc)

N=1 N=2 N=4 N=8

Fig. 13. Trace port bandwidth in bpc for time-stamped control-flow traces.

612 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
Let us first analyze water-ns. The average trace port bandwidth
for tNX_b is 8.84 bpc, but the bandwidth varies over time from as
low as 1.25 bpc to over 12.8 bpc. On the other side tTR_e (L)
requires the average trace port bandwidth of 0.738 bpc. tTR_e (L)
variations in the bandwidth mimic those in tNX_b, but they range
between 0.05 bpc and 1.01 bpc. In case of radiosity, tNX_b requires
the average bandwidth of 9.49 bpc. However, the bandwidth varies
widely over time from as low as 0.28 bpc to 94.7 bpc at the very end
of the program execution. Contrary to tNX_b, tTR_e requires 0.613
bpc on average, while varying between �0 and 1.01 bpc. These
results show that mcfTRaptor not only reduces the average trace
port bandwidth, but also limits the variability of required
bandwidth as the benchmarks move through different phases of
program execution.

6.4. Hardware complexity estimation

To estimate the hardware complexity of the proposed trace
modules, we estimate the size of all structures including the out-
come gshare predictor, RAS, iBTB, registers PIR, PTA, PCC, as well
as the estimated size of the output buffer. In estimating the fields
that keep target addresses, we can eliminate the uppermost 12
address bits since they remain unchanged relative to the previous
target addresses. The complexity of the Small configuration

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140
Clock cycle [x109]

water-ns: trace port bandwidth in bpc as a func�on of �me

tNX_b tTR_e (L) tTR_e (M) tTR_e (S)

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400 450 500
Clock cycle [x109]

radiosity: trace port bandwidth in bpc as a func�on of �me

tNX_b tTR_e (L) tTR_e (M) tTR_e (S)

Fig. 14. Trace port bandwidth in bpc as a function of time during execution of
water-ns and radiosity for N = 8.

A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614 613
(512-entry gshare and 8-entry RAS) is estimated to 2300 logic
gates per processor core. The shared output trace buffer of N * 64
bits (where N is the number of processor cores) should be able to
amortize all trace messages in case of time-stamped trace mes-
sages. The output trace buffer would need to be emptied at the rate
of 2 bpc to accommodate streaming out time-stamped trace mes-
sages of radiosity. The Medium configuration is estimated to
�4800 logic gates per processor core. The output buffer would
need to be emptied at the rate of 1.7 bpc if time-stamped trace
messages are streamed out. Finally, the Large configuration
requires �16,500 logic gates. The output buffer needs to be emp-
tied at the rate of �1.3 bpc to accommodate the worst-case
(water-ns). It should be noted that this analysis assumes tracing
of time-stamped control-flow messages and the processor model
described in Section 2. Our results indicate that it would be bene-
ficial to ensure on-chip ordering of trace messages and streaming
out ordered trace messages with minimal or no time information.
Different processor timing characteristics would result in different
trace port bandwidth requirements.
7. Conclusions

Growing complexity and sophistication of embedded computer
platforms, a recent shift toward multicore architectures, and
ever-tightening time-to-market make software development and
debugging the most critical aspect of embedded system develop-
ment. Improved on-chip tracing infrastructure coupled with
sophisticated software debuggers promises to enable finding diffi-
cult and intermittent software bugs faster, resulting in higher qual-
ity software and increased overall productivity.

This paper introduces mcfTRaptor, a new low-cost technique for
the on-the-fly capturing and compressing of control-flow traces in
multicore systems. mcfTRaptor combines on-chip per-core private
predictor structures and corresponding software counterparts in
the software debugger to dramatically reduce the number of trace
messages that need to be captured and streamed out on the target
platform. The number of bits streamed out is further reduced by
employing a variable encoding for counter and address fields in
trace messages.

Our experimental evaluation explores the baseline trace port
bandwidth requirements for control-flow traces in multicores
and evaluates effectiveness of mcfTRaptor as a function of the num-
ber of cores, the configuration of predictor structures and their
complexity, and the encoding mechanism. Our most effective con-
figuration of mcfTRaptor reduces the trace port bandwidth between
23.8 times for functional control-flow traces and 18.6 times for
time-stamped control-flow traces.
Acknowledgments

This material is based upon work supported in part by the
United States National Science Foundation under Grants Nos.
0855237, 1205439, and 1217470. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation. The authors would like to thank the
anonymous reviewers for their valuable suggestions.
References

[1] G. Tassey, The economic impacts of inadequate infrastructure for software
testing. [Online]. Available: http://www.rti.org/pubs/software_testing.pdf,
2002.

[2] IEEE-ISTO, The Nexus 5001 forum standard for a global embedded processor
Debug Interface V 3.01, Nexus 5001 Forum, 2012. [Online]. Available: http://
www.nexus5001.org/standard (accessed 27.09.14).

[3] IEEE, IEEE Standard 1149.1-2013 for Test Access Port and Boundary-Scan
Architecture, IEEE standards Association, May-2013. [Online]. Available:
http://standards.ieee.org/findstds/standard/1149.1-2013.html (accessed
27.09.14).

[4] W. Orme, Debug and trace for multicore SoCs, White paper, ARM, 2008.
[5] MIPS, MIPS PDtrace Specification Rev 7.50, MIPS Technologies Inc., CA, 2012.
[6] A. Mayer, H. Siebert, C. Lipsky, MCDS – multi-core debug solution, White paper,

IPextreme, 2007.
[7] N. Stollon, R. Collins, Nexus Based Multi-Core Debug, in: Proceeding of the

Design Conference International Engineering Consortium, Santa Clara, CA, USA,
2006, vol. 1, 805–822.

[8] C.-F. Kao, S.-M. Huang, I.-J. Huang, A hardware approach to real-time program
trace compression for embedded processors, IEEE Trans. Circuits Syst. 54
(2007) 530–543.

[9] V. Uzelac, A. Milenkovic, A real-time program trace compressor utilizing
double move-to-front method, in: Proceedings of the 46th Annual Design
Automation Conference (DAC’09), July 26–31, San Francisco, CA, USA, 2009,
738–743.

[10] M. Milenkovic, A. Milenkovic, M. Burtscher, Algorithms and hardware
structures for unobtrusive real-time compression of instruction and data
address traces, in: Proceeding of the 2007 Data Compression Conference
(DCC’07), Mar 27–29, Snowbird, UT, 2007, 55–65.

[11] A. Milenkovic, V. Uzelac, M. Milenkovic, M. Burtscher, Caches and predictors
for real-time, unobtrusive, and cost-effective program tracing in embedded
systems, IEEE Trans. Comput. 60 (7) (2011) 992–1005.

[12] V. Uzelac, A. Milenković, M. Burtscher, M. Milenković, Real-time unobtrusive
program execution trace compression using branch predictor events, in:
Proceeding of the International Conference on Compilers, Architectures and
Synthesis of Embedded Systems (CASES’10), Scottsdale, AZ, 2010, 97–106.

[13] V. Uzelac, A. Milenković, M. Milenković, M. Burtscher, Using branch predictors
and variable encoding for on-the-fly program tracing, IEEE Trans. Comput. 63
(4) (2014) 1008–1020.

[14] M. Williams, ARMV8 debug and trace architectures, in: Proceedings of the
System, Software, SoC and Silicon Debug Conference (S4D), 2012, Vienna,
2012, 1–6.

[15] V. Uzelac, A. Milenković, Hardware-based data value and address trace
filtering techniques, in: Proceeding of the International Conference on
Compilers, Architectures and Synthesis for Embedded System (CASES’10),
Scottsdale, AZ, USA, 2010, 117–126.

[16] V. Uzelac, A. Milenković, Hardware-based load value trace filtering for on-the-
fly debugging, ACM Trans. Embed. Comput. Syst. 12 (2s) (2013) 1–18.

[17] C. Hochberger, A. Weiss, Acquiring an exhaustive, continuous and real-time
trace from SoCs, in: Proceeding of the IEEE International Conference on
Computer Design, ICCD 2008, 356–362.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, in: Proceeding of the
22nd Annual International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, 1995, 24–36.

http://www.rti.org/pubs/software_testing.pdf
http://www.nexus5001.org/standard
http://www.nexus5001.org/standard
http://standards.ieee.org/findstds/standard/1149.1-2013.html
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0040
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0040
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0040
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0055
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0055
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0055
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0065
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0065
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0065
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0080
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0080

614 A.K. Tewar et al. / Journal of Systems Architecture 61 (2015) 601–614
[19] SPLASH-2, 32 bit binary archive, Multi2Sim benchmarks. [Online].
Available: https://www.multi2sim.org/benchmarks/splash2.php (accessed
7.03.15).

[20] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli, Multi2Sim: a simulation
framework for CPU–GPU computing, in: Proceedings of the 21st international
conference on Parallel architectures and compilation techniques, Minneapolis,
MN, USA, 2012, 335–344.

[21] K. Driesen, U. Hölze, Accurate indirect branch prediction, SIGARCH Comput.
Arch. News 26 (1998) 167–178.

[22] S. McFarling, Combining Branch Predictors, Digital Equipment Corporation,
1993.

[23] V. Uzelac, A. Milenkovic, Experiment flows and microbenchmarks for reverse
engineering of branch predictor structures, in: Proceeding of the IEEE
International Symposium on Performance Analysis of Systems and Software,
April 2009, Boston, MA, USA, 2009, 207–217.

Amrish K. Tewar received the B.Sc. degree in electrical
engineering from the South Gujarat University, Surat,
India in 2003. He is currently pursuing MS degree in
computer engineering at University of Alabama in
Huntsville (UAH) and expected to graduate in May
2015. His research interests include computer archi-
tecture, embedded systems, and mobile software
development. He interned with Mentor Graphics Inc.
during summer 2014. Prior to joining the UAH he
worked in industry for eight years as an electrical
engineer.
Albert Myers received the MS degree in computer
engineering from the University of Alabama in
Huntsville in 2014. His research interests include com-
puter systems architecture. He is currently an engineer
working in hardware design and failure analysis for the
United States Army.
Aleksandar Milenković received the Dipl. Ing, MS, and
PhD degrees in computer engineering and science from
the University of Belgrade, Serbia, in 1994, 1997, and
1999, respectively. He is a professor of electrical and
computer engineering at the University of Alabama in
Huntsville, where he leads the LaCASA Laboratory
(http://www.ece.uah.edu/~milenka). His research
interests include computer architecture, embedded
systems, VLSI, and wireless sensor networks. Prior to
joining the University of Alabama in Huntsville, he held
academic positions at the University of Belgrade in
Serbia and the Dublin City University in Ireland. He has

coauthored over 80 peer-reviewed research publications. He is a senior member of
the IEEE, its Computer Society, the ACM, and Eta Kappa Nu.

https://www.multi2sim.org/benchmarks/splash2.php
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0105
http://refhub.elsevier.com/S1383-7621(15)00075-2/h0105
http://www.ece.uah.edu/~milenka

	mcfTRaptor: Toward unobtrusive on-the-fly control-flow tracing in multicores
	1 Introduction
	2 Control flow traces
	3 mcfTRaptor
	4 Trace messages encoding
	5 Experimental environment
	6 Results
	6.1 Trace port bandwidth analysis for functional traces
	6.2 Trace port bandwidth analysis for time-stamped traces
	6.3 Dynamic trace port bandwidth analysis for time-stamped traces
	6.4 Hardware complexity estimation

	7 Conclusions
	Acknowledgments
	References

