
An Implementation of Security Extensions for Data Integrity
and Confidentiality in Soft-Core Processors

Austin Rogers1, Aleksandar Milenković2

1Dynetics, Huntsville, Alabama
2ECE Department, The University of Alabama in Huntsville

Abstract-An increasing number of embedded system
solutions in space, military, and consumer electronics
applications rely on processor cores inside reconfigurable
logic devices. Ensuring data integrity and confidentiality is of
the utmost importance in many such applications. This paper
describes a practical implementation of security extensions for
embedded systems built around soft-core processors. These
extensions guarantee the integrity and confidentiality of
sensitive data residing in external memory and prevent
various types of physical attacks on systems working in
adverse conditions. We describe the programming model,
security architecture, and give an initial analysis of
performance and complexity overheads caused by the security
extensions.

Keywords: Secure processors, data integrity and confidentiality,
IP cores

1 Introduction
Embedded computer systems have become ubiquitous in

modern society. We rely on them in a wide range of
applications, from consumer electronics, communication,
transportation, medicine, to national security. Many of these
systems may operate in hostile environments where they are
subjected to physical attacks aimed at subverting system
operation, extracting key secrets, or intellectual property theft.
Similarly, a system may operate in harsh conditions such as
outer space, where natural phenomena may compromise the
integrity of data. Security breaches in embedded systems
could have wide ranging impacts, from loss of revenue to loss
of life. These problems can be alleviated by building
embedded systems that ensure (a) code and data integrity, thus
preventing the execution of unauthorized instructions or the
use of unauthorized data; and (b) code and data
confidentiality, thus preventing the unauthorized copying of
instructions or data [1].

A growing number of embedded systems are built around
soft-core processors that are implemented on field-
programmable gate array (FPGA) devices. This approach
offers a number of advantages over traditional solutions and
custom-designed processors because of its flexibility, platform
independence, reduced cost, and immunity to obsolescence.
The inherent flexibility of such systems allows us to rapidly
prototype inexpensive security extensions.

This paper describes our approach to implementing security
extensions to ensure data integrity and confidentiality in

computer systems built around soft-core CPUs. This work
represents our first foray into implementing security
extensions in actual hardware. It builds on our existing
theoretical work on secure processors [1, 2]. We focus on
systems-on-a-chip implemented on FPGAs that store
potentially sensitive information in off-chip memories. The
chip is assumed to be inviolate, and thus any instructions or
data contained in on-chip memory is assumed to be secure.
We therefore focus on securing data that is stored off-chip in
external memory and brought on-chip as needed, and do not
address systems where instructions are stored off-chip. We
take advantage of the inviolate nature of on-chip memory to
keep the security hardware as simple as possible.

The design goals of this research are threefold. The first
design goal is that the security extensions should ensure the
integrity and confidentiality of data stored in off-chip
memory. Protecting integrity means that the processor will
only use authorized data; any tampering will be detected.
Protecting confidentiality requires that sensitive data be
encrypted and thus illegible by all unauthorized entities,
computer or human. The second design goal is ease of use.
The security extensions should be as transparent to the
programmer as possible. The third and final design goal is
that the security extensions introduce as little performance
overhead as possible. Ideal security extensions would
introduce minimal performance overhead. Additionally, the
extensions should not require modification of any existing soft
cores, as these are often distributed in binary-only formats.

We have implemented these security extensions in a system
based on the Altera NIOS II processor. The test system was
implemented on a Cyclone II FPGA using Altera’s Quartus II
toolchain. Our implementation ensures confidentiality by
encrypting secure data that is stored off-chip. Integrity is
ensured by signing that data using the cipher block chaining
message authentication code (CBC-MAC) technique. The
security extensions are transparent to the programmer other
than requiring a function call to initialize the security-related
hardware resources. We minimize performance overhead by
overlapping cryptography with memory accesses and
buffering verified blocks.

The remainder of this paper is organized as follows.
Section 2 defines the threat models against which our security
extensions defend. Section 3 describes how we achieve each
of our design goals: security, transparency to the programmer,
and as little performance overhead as possible. Section 4
evaluates our implementation with respect to complexity and

performance. Section 5 presents selected related work, and
Section 6 concludes the paper.

2 Threat Models

Embedded computer systems may be subjected to a wide
variety of attacks. Our focus is protecting data stored off-chip
from physical attacks. These attacks require the attacker to
have physical access to the system. The attacker can probe
off-chip buses, and can observe and override bus transactions.
Three possible physical attacks are spoofing, splicing, and
replay.

A spoofing attack occurs when an attacker intercepts a
request for a block of memory, and then manually supplies a
block of his/her choice. In an unsecured system, the processor
naïvely conducts a bus cycle, and is unaware that the data it
received came from an attacker rather than from memory.
The processor initiates a bus read cycle for a block at memory
location Ai. The attacker intercepts the request and supplies a
potentially malicious block Mi instead of the correct block Ai.
A variation of the spoofing attack may occur in systems
operating in adverse conditions, such as outer space, where
external influences may corrupt data stored in memory.

Splicing attacks involve intercepting a request for a block of
memory and then supplying the data from a valid, but
different block. Once again, the unsecured processor is
unaware that it has received an incorrect block from memory.
The processor initiates a bus read cycle for a block at memory
location Ai. The attacker intercepts the request and supplies a
valid block from memory, but from address Aj rather than the
desired address.

In a replay attack, the attacker intercepts a request for a
block of memory, and then supplies an older copy of that
block. The supplied block was correct at some point in the
past, but it may have been superseded by a newer version.
The processor initiates a bus read cycle for the data block at
address Ai. The attacker intercepts the request and returns an
older version of that block, which may be different from the
current version in memory.

3 Implementing Security Extensions

This section describes how we achieve our three design
goals. We begin with a description of how our design
achieves security. We then discuss the programming model
for our design, and the memory architecture necessary to
implement it. We finally discuss how these security
extensions are implemented in a hardware resource called the
Encryption and Verification Unit (EVU).

3.1 Achieving Security
The basic unit of secure data is a protected block. In our

implementation, we chose a protected block size of 32 bytes.
In systems with on-chip caches, the cache block size, or some
multiple thereof, is a convenient protected block size. For our
initial implementation we do not use data caches.

Our design uses cryptography to protect the integrity and
confidentiality of data stored off-chip. Confidentiality is
protected by encryption. Integrity is protected by generating a

16-byte signature for each protected block of data. We defend
against replay attacks by associating a sequence number with
each protected block, and using it in encryption/decryption
and signature calculation.

The confidentiality of data is protected by using a low-
overhead variant of the one-time-pad encryption scheme. In
this scheme, pads are calculated using Advanced Encrypted
Standard (AES) ciphers, with the block address and sequence
number as inputs. Equation (1) shows how this encryption is
performed. The 32-byte plaintext data block D is divided into
two 16-byte sub-blocks D0:3 and D4:7, which are separately
encrypted to form ciphertext sub-blocks C0:3 and C4:7. KEY1
is the 128-bit key used for pad generation. A(SBi) is the
address of sub-block i, SN is the protected block’s sequence
number, and SP is a secure padding function that generates a
unique 128-bit value from the 32-bit address and 32-bit
sequence number.

))),(((134:434:4 SNSBASPAESxorDC iKEYiiii ++ = (1)
Decryption is simply the reverse of this operation. The

pads are calculated as in (1), and then XORed with the
ciphertext sub-blocks to produce the desired plaintext sub-
blocks.

Signatures are generated using the cipher block chaining
message authentication code (CBC-MAC) method [3]. The
protected block’s signature S is calculated according to
Equation (2). KEY2 is another 128-bit key. SP is the secure
padding function defined above, operating on the block’s
address A(SB) and sequence number SN. The use of the block
address prevents splicing attacks, the use of the block text
prevents spoofing attacks, and the use of the sequence number
prevents replay attacks. If the keys are generated randomly
for each run, then cross-executable splicing attacks will also
be prevented.

))]),((([3:027:42 SNSBASPxorCAESxorCAESS KEYKEY= (2)
If sequence numbers are stored off-chip, then they may be

subjected to sophisticated replay attacks in which the sequence
number is replayed as well as the protected block and its
signature. This gives rise to the necessity of complex
structures such as Merkle trees [4] to protect the sequence
numbers. Our design assumes that sequence numbers are
stored in on-chip memory and are thus invulnerable to replay
attacks, and require no additional protection.

When the programmer reads from or writes to secure data at
runtime, the appropriate sequence number, encrypted
protected block, and signature are fetched. When the pads are
available, the block is decrypted. As the two ciphertext sub-
blocks become available, its signature is recalculated. If the
calculated signature and fetched signature match, the block
has not been subjected to tampering and the read or write
operation can proceed. If the signatures do not match, a
security violation has occurred and an interrupt is raised.
More details are given below in Section 3.3.

In addition to preventing spoofing, splicing, and replay
attacks, we must also prevent the programmer from
inadvertently accessing uninitialized blocks. To that end, the
sequence number value zero is reserved to indicate that its
associated protected block is uninitialized. If a protected
block’s sequence number is zero, the programmer may write

to it, but not read from it. If the sequence number is nonzero,
then the programmer may both read from and write to the
protected block. A read from an uninitialized block will result
in an interrupt.

Whenever a protected block is written back to main
memory, its sequence number must be incremented and new
pads calculated to encrypt the block. Sequence number
overflows are undesirable, as they lead to pad re-use. Our
design uses 32-bit sequence numbers; should a particular
target application have a strong likelihood of a sequence
number rollover, the design may be modified to use 64-bit
sequence numbers.

In our design, the two cryptographic keys KEY1 and KEY2
are hard-coded in our security extension hardware. For
greater security, they could be randomly generated at runtime
for each application using methods such as physical
unclonable functions [5]. In that case, these keys must be
stored in the process control block in an encrypted form in the
event of a context switch. An additional hard-coded internal
key would be needed, which would then be used to encrypt
these keys before and decrypt them after a context switch.
Keys should never leave the chip in plaintext form. Hard-
coded keys should only be used if the design will be protected
by bitstream encryption.

3.2 Programming and Memory Model
An important design goal for these security extensions is

that they be as transparent to the programmer as possible. To
that end, our implementation does not require the programmer
to use any special application programming interface (API) to
read and store secure data. An initialization function must be
called to initialize the necessary hardware resources (see
Section 3.3 below). Thereafter, the programmer simply
defines his or her pointers appropriately and uses them as
normal.

This transparency is possible because of address mapping.
A portion of the address space is set aside to physically store
encrypted data. A similarly sized portion of the address space
is mapped to the EVU. For instance, to read or write the nth
word of encrypted data, the programmer will read or write the
nth word in the EVU’s address space. This transparency is
illustrated in the code snippets in Figure 1. In the first snippet,
OFFCHIP_MEM_BASE_ADDR defines the base address for
off-chip memory. The second snippet accesses data relative to
SECURE_DATA_BASE_ADDR, which defines the base
address for accessing secure data via the EVU.

The memory architecture of our design is illustrated in
Figure 2. The program text, heap, and stack are all stored in
on-chip memory. Sequence numbers should also be stored on-
chip. The figure depicts signatures as stored on-chip; they
may also be stored in off-chip memory if desired. The shaded
region in the address space contains the secure data in its
encrypted form, which is physically stored off-chip.

The programmer may read data directly from the encrypted
region, but the result would be a word of ciphertext. A direct
write to this region would effectively constitute a spoofing
attack, and would result in an interrupt the next time this
secure data was properly accessed. Secure data should be

accessed through an area of the address space assigned to the
EVU. Addresses in this region are mapped to those in the
encrypted data region, and the EVU handles all decryption and
verification. If a block of secure data is no longer needed, its
corresponding space in SDRAM may be reclaimed for
unsecured use. However, that block must not be treated as
secure data thereafter.

Figure 1 - Programmer’s View of Securing Data in Off-Chip Memory

Text, Heap, and Stack

Encrypted Data

Signatures

Sequence Numbers

Secure Data Access

On-Chip

Memory

EVU Address Space

Off-Chip

Memory

Address
Mapping
via EVU

Address Space Physical Memory

Figure 2 - Memory Architecture

The maximum number of 32-byte protected blocks is
determined by the amount of memory allocated to storing
signatures and sequence numbers. Each protected block
requires a 16-byte signature and a 4-byte sequence number.
Thus the maximum number of protected blocks NPB in a
system is limited by Equation (3). In this equation, Sz(Msig)
and Sz(Mseqnum) are the sizes in bytes of the memory regions
allocated for storing signatures and sequence numbers,
respectively.

)4/)(,16/)(min(seqnumsigPB MSzMSzN = (3)
Since signatures introduce the greatest memory overhead,

the designer may wish to fix the size of the region of memory
allocated to signatures, and then calculate the required sizes

/* This code writes data directly to off-chip
 memory in an insecure manner. */
void Array_Access_Insecure()
{
 int i;
 int *pArray;

 pArray = OFFCHIP_MEM_BASE_ADDR;

 for(i = 0; i < 16; i++)
 pArray[i] = i;
}

/* This code writes secure data using the EVU. */
void Array_Access_Secure()
{
 int i;
 int *pArray;

 Initialize_EVU();

 pArray = SECURE_DATA_BASE_ADDR;

 for(i = 0; i < 16; i++)
 pArray[i] = i;
}

 Encrypted Data Base Address

Signature Base Address

Sequence Number Base Address

Control Register

Opportunity Buffer

Pad 1 Pad 2

Sequence Number

AES UnitAES Unit
Controller

Memory Access Controller

Ciphertext Block

=/=

To Avalon
Bus (Slave)

To Avalon
Bus (Slave)

To Avalon
Bus (Master)

Interrupt
Request

Fetched Signature

Calculated Signature

Tag Valid Dirty

Data and
Control

Registers

Secure Data
Access

Memory
Access

Figure 4 - Block Diagram of the Encryption and Verification Unit

for the other memory regions. In our implementation, we
chose to allocate four kilobytes of memory for storing
signatures. This allows us to have 256 protected blocks of 32
bytes each, for a total of eight kilobytes of secure data. We
thus require one kilobyte of on-chip memory for sequence
numbers.

3.3 Implementation
The implementation of these security extensions must

balance complexity and performance overhead, while at the
same time not requiring the modification of any existing soft
cores. To that end, the EVU is implemented as an on-chip
peripheral attached to the bus. Other implementations are
certainly possible, such as embedding the EVU functionality
into a custom SDRAM controller. The implementation
strategy we choose, however, allows our design to be flexible
and applicable to existing systems.

Figure 3 shows a block diagram of our implementation of
an embedded system incorporating our security extensions.
All components of the baseline system are unshaded, while the
shaded components are added to implement the security
extensions. The baseline system for this implementation is a
simple 32-bit NIOS II system-on-a-chip. On-chip memories
are used to store program instructions and data (heap and
stack). An SDRAM controller provides access to off-chip
memory. The system is generated using Altera’s System-on-
a-Programmable Chip (SOPC) generator, part of the Quartus
II toolchain. The on-chip bus interconnects conform to the
Altera Avalon standard [6], with loads and stores occurring at
the word level.

The base system uses a simple NIOS II CPU with no data

cache. In a NIOS II system with caches, cache lines are
loaded and evicted via sequences of single-word accesses.
The EVU would handle these like any other accesses.

The additional hardware to implement the security
extensions consists of a discrete EVU peripheral, an on-chip
memory for the sequence
number table, and an on-chip
memory for the signature
table. Secure data is
physically stored in its
encrypted form in the off-chip
SDRAM. (As mentioned
earlier, signatures may also be
stored off-chip if necessary.)
The programmer may read
directly from the SDRAM;

however, if a location in the SDRAM containing secure data is
read, encrypted data will be returned. SDRAM locations not
used for storing secure data or signatures may be used to store
non-sensitive plaintext data.

The internals and interfaces of the EVU are shown in
Figure 4. In the upper left of this figure are the data and
control registers for the EVU. Three data registers specify the
base addresses of encrypted data in external memory, the
signatures, and sequence numbers. These should be set in the
aforementioned initialization function. The control register
allows the programmer to reset the EVU and clear the
interrupt. An Avalon bus slave interface allows access to
these data and control registers.

A second Avalon bus slave interface is shown in the bottom
left of the figure. This is the interface that the programmer
will use to access secure data. Therefore, the portion of
address space allocated to this interface should be
commensurate with the amount of protected data. This is
achieved by setting the width of the address signal on the
slave interface. Avalon slave interface address signals are
actually word indices rather than actual addresses. In our
sample system, we have eight kilobytes of secure data,
constituting 2,048 32-bit words. Thus, the address bus for this
interface must be 11 bits wide to address all 2,048 words.

The memory access controller is a state machine
responsible for fetching sequence numbers, signatures, and
data blocks from memory and maintaining local buffers. The
controller can access on-chip and external memories via an
Avalon bus master interface. The EVU also contains an AES
core and a state machine to control it. An interrupt interface
allows interrupts to be raised by the memory access controller
if the programmer tries to read from an uninitialized block or a
fetched block and signature fails verification.

The upper right of the figure shows the various buffers used
in the EVU. There are buffers for the fetched signature,
calculated signature, the ciphertext block that has been read
from memory or will be written to memory, the pads used to
encrypt and decrypt the block, and the sequence number. An
additional structure called the opportunity buffer attempts to
reduce performance overhead by taking advantage of the
locality of data accesses. Even though the processor will only
read or write one word at a time, the entire protected block
must be brought into the EVU in order to perform verification.
This block is stored in the opportunity buffer as plaintext.
Any further reads or writes to the protected block while it is
buffered can be done within the EVU, without having to
access memory. The block’s address may be reconstructed

NIOS II
CPU

On-Chip
Instruction
Memory

On-Chip
Data

Memory

On-Chip
SeqNum
Memory

On-Chip
Signature
Memory

EVU

SDRAM
Controller

Off-Chip
SDRAMAltera Avalon Bus

Chip
Boundary

Figure 3 - System-on-a-Programmable-Chip Incorporating Security

Extensions

from the opportunity buffer’s tag. Its sequence number and
the pads used to encrypt and decrypt it are also buffered.

When a word from a different block is requested, the block
in the opportunity buffer must be evicted, along with its
sequence number and signature. If the block is dirty, then it
must be written back to external memory. The sequence
number must be incremented and the pads recalculated before
the plaintext block can be encrypted for storage. The
opportunity buffer’s tag is used to calculate the addresses for
the block to be written back, its sequence number, and
signature.

Figure 5 and Figure 6 list the algorithms used for reading
and writing words of secure data, respectively. These
algorithms reveal the latency hiding mechanisms used in the
EVU. Whenever possible, cryptographic operations are done
concurrently with memory operations to hide cryptographic
latency. When writing to a protected block, new pads must be
calculated once the sequence number has been incremented.
As Figure 6 shows, the sequence number is only incremented
when a block in the opportunity buffer is first marked dirty.
Pad calculation is begun, and the processor is allowed to
continue execution. If another read or write is initiated before
the new pads have been calculated, the new access is stalled
until the pads are completed.

4 Evaluation
The implementation of our security extensions was
synthesized, placed, routed, and deployed on a Terasic DE2-
70 [7], a low-cost development and education board. The
DE2-70 includes an Altera Cyclone II 2C70 FPGA. The
system was then evaluated for complexity and performance.

4.1 Complexity
Three discrete components were added to the baseline

system to implement the security extensions: the EVU, a 1 KB
on-chip memory for the sequence number table, and a 4 KB
on-chip memory for the signature table. The complexity
overhead introduced by these components is shown in

Table 1. The figures in the table are reported by the Quartus

II tool. The overhead introduced by the AES core is shown
separately from that of the EVU, as it contributes nearly half
the additional logic. The AES core used in this
implementation is an open-source intellectual property (IP)
core, requiring 15 clock cycles per operation [8]. It is not
pipelined.

Table 1 - Complexity Overhead

Component Name Logic
Cells

Dedicated Logic
Registers

M4K
Blocks

EVU 3,290 1,910 0
AES Core 5,031 658 0
Sequence Number
Memory (1 KB)

2 0 2

Signature Memory (4
KB)

2 0 9

Total Overhead: 8,325 2,568 11

Wait for any crypto operations from a previous access to complete.
Is buffer valid and does buffer tag match address?
 Yes: (read hit)
 Return word from buffer and exit.
 No: (read miss)
 Is buffer valid and dirty?
 Yes: (evict block from buffer)
 Encrypt block using buffered pads.
 Write sequence number and cryptotext block to memory.
 In parallel with memory write, calculate block signature.
 When signature is ready, write signature to memory.
 Continue with read miss operation.
 No: (do nothing, continue with read miss operation)
 Fetch sequence number from memory.
 Is sequence number nonzero?
 Yes: (block has been initialized)
 Read block and signature from memory.
 In parallel with memory accesses, calculate pads.
 Decrypt sub-blocks as pads and data are available.
 When block is fully available, calculate signature.
 Do calculated signature and fetched signature match?
 Yes: (everything is fine)
 Buffer block and pads; mark buffer valid and clean.
 Return word from buffer and exit.
 No: (security violation)
 Raise interrupt, mark buffer invalid, and exit.
 No: (trying to read an uninitialized block)
 Raise interrupt, mark buffer invalid, and exit.

Figure 5 - Algorithm for Secure Read

Wait for any crypto operations from a previous access to complete.
Is buffer valid and does buffer tag match address?
 Yes: (write hit)
 Latch word into buffer.
 Is buffer currently marked clean?
 Yes: (precompute pads for eventual writeback)
 Mark buffer dirty.
 Increment buffered sequence number.
 Start calculation for new pads, and exit.
 No: (do nothing, exit)
 No: (write miss)
 Is buffer valid and dirty?
 Yes: (evict block from buffer)
 Encrypt block using buffered pads.
 Write sequence number and cryptotext block to memory.
 In parallel with memory write, calculate block signature.
 When signature is ready, write signature to memory.
 Continue with write miss operation.
 No: (do nothing, continue with write miss operation)
 Fetch sequence number from memory.
 Is sequence number nonzero?
 Yes: (block has been initialized)
 Read block and signature from memory.
 In parallel with memory accesses, calculate pads.
 Decrypt sub-blocks as pads and data are available.
 When block is fully available, calculate signature.
 Do calculated signature and fetched signature match?
 Yes: (everything is fine)
 Buffer block and pads; mark buffer valid and dirty.
 Increment sequence number.
 Latch word into buffer.
 Start calculation for new pads, and exit.
 No: (security violation)
 Raise an interrupt, mark buffer invalid, and exit.
 No: (initialize the block)
 Set sequence number to 1.
 Start pad calculation.
 Load buffer with zeros; mark buffer valid and dirty.
 Set block init bit.
 Latch word into buffer and exit.

Figure 6 - Algorithm for Secure Write

The EVU itself requires many registers to implement the
opportunity buffer. The additional memories consume little in
the way of logic cells, but do consume M4K blocks, which are
on-chip RAM resources. Recall that signatures need not be
stored on-chip; they may be stored in an off-chip memory if
on-chip memory space is at a premium. The base system
(without the EVU and additional memories) took
approximately 7% of our target FPGA’s resources. The
secure system required 21%, three times the total on-chip
resources.

4.2 Performance
The performance overhead introduced by the security

extensions was evaluated by running a microbenchmark to
stress-test the system. The microbenchmark potentially
introduces far greater overhead than an actual application. It
reads and writes to an array in memory with a varying stride
factor. When performing write accesses, a miss in the
opportunity buffer will always cause a writeback. Baseline
results are measured by reading and writing directly to SRAM.
Overhead is determined by reading and writing using the
secure extensions. The array is read or written many
thousands of times, and the total number of clock cycles
required for all accesses is counted. This value is then divided
by the total number of accesses to provide the average number
of clock cycles per access. Varying the stride factor allows
the benchmark to vary the degree to which it takes advantage
of the opportunity buffer. With a stride of one, it takes full
advantage of the buffer, with an opportunity buffer miss every
eighth access. With a stride of eight, an opportunity buffer
miss occurs every access, thus allowing us to measure the
average time required to fetch and verify a protected block
from off-chip memory. Neither the baseline nor secure
systems contain data caches or any other performance
enhancement mechanisms. This allows us to see the worst-
case, bottom-line latencies. Therefore, the latencies reported
in this section are worse than they would be in a more realistic
system containing one or more levels of data cache.

The microbenchmark was run with signatures stored on-
chip and with signatures stored in off-chip SDRAM. The
results of these runs are shown in Table 2. Results are shown
for the baseline system (reading or writing directly to or from
off-chip SDRAM) and for the secure system taking advantage
of the opportunity buffer to varying degrees.

This table shows that a read miss in the opportunity buffer
introduces 59 cycles of overhead, regardless of whether
signatures are stored on-chip or off-chip. When the
benchmark takes advantage of the opportunity buffer,
performance increases, even to the point of performing better

than the baseline system when a read miss occurs every eighth
access (due to a pre-fetching effect). Write misses, however,
introduce much higher overheads. This is because the EVU
stalls the write transaction while performing the writeback
operation (if necessary) and then fetching and verifying the
protected block. In the baseline case, the SDRAM controller
buffers the block and does not stall the transaction. The
overhead introduced by the writeback can be found by
subtracting the number of cycles reported for a read miss by
that reported for a write miss. This shows that a writeback
takes 60 cycles when signatures are stored on-chip, and 69
cycles when signatures are stored off-chip.

Table 2 – Performance Overhead, Signatures Stored On-Chip/Off-Chip

 SIG. ON-CHIP SIG.OFF-CHIP
 Avg

Cycles
Over-
head

Avg
Cycles

Over-
head

Read Accesses
Baseline System 24 1 24 1
Secure, Miss Every 8th Access 19 0.79 19 0.79
Secure, Miss Every 4th Access 28 1.17 28 1.17
Secure, Miss Every Other Access 46 1.92 46 1.92
Secure, Miss Every Access 83 3.46 83 3.46
Write Accesses with Writebacks
Baseline System 2 1 2 1
Secure, Miss Every 8th Access 20 10 21 10.5
Secure, Miss Every 4th Accesses 38 19 40 20
Secure, Miss Every Other Access 73 36.5 77 38.5
Secure, Miss Every Access 143 71.5 152 76

The major contributors to performance overhead were

identified using built-in counters inside the EVU. The
counters reported that a read miss in the opportunity buffer
takes 75 clock cycles. Further analysis revealed that memory
accesses completed long before the cryptographic operations,
as depicted in Figure 7. Latency from cryptographic
operations dominates, thus explaining why the overhead on a
read miss is not dependent on whether or not signatures are
stored on- or off-chip. This suggests that performance could
be improved by using either a pipelined AES core or two AES
cores operating in parallel. Either of those arrangements
would also allow signatures to be generated using the parallel
message authentication code (PMAC) technique [1], which
will further decrease performance overhead.

In addition to the microbenchmark, an actual benchmark
was ported to run on the secure system. The Rijndael
benchmark from the MiBench suite [9] was modified to read
its keys and input data from, and store its outputs to, secure
memory. The performance overhead was found to be only
1.01 times (about 1%) for both on-chip and off-chip
signatures. This indicates that actual applications should
exhibit far less overhead than the stress-test microbenchmark.

Pad for First Sub-Block Pad for Second Sub-Block Signature, Part One Signature, Part Two

SignatureEncrypted Data Block
Sequence Number

Memory Accesses

Cryptographic Operations75 cycles

40 cycles

Figure 7 - Performance Overhead on a Read Miss (Not to Scale)

5 Related Work
Several computer security researchers have targeted the

reconfigurable computing domain. In this section, we briefly
survey several existing proposals for implementing security
extensions in reconfigurable logic.

Wang, Yeh, Huang, and Wu [10] developed a cryptographic
coprocessor on an FPGA to accelerate cryptographic functions
in an embedded system. Zambreno, Honbo, Choudhary,
Simha, and Narahari [11] propose to use an FPGA as an
intermediary, analyzing all instructions fetched by a processor.
It calculates checksums for basic blocks using two different
methods, such as a hash on the code and the list of registers
used by instructions, and compares the two checksums at the
end of the basic block. The level of security provided by this
approach is an open question, and requires extensive compiler
support, including the insertion of dummy instructions, to
establish the appropriate “register stream.” This leads to a
rather high overhead of around 20%, and only supports
instruction integrity and confidentiality (by means of optional
encryption).

Suh, Charles, Ishan, and Srinivas [5] propose the AEGIS
secure processor. They introduce physical unclonable
functions (PUFs) to generate the secrets needed by their
architecture. Memory is divided into four regions based on
whether it is static or dynamic (read-only or read-write) and
whether it is only verified or is both verified and confidential.
They allow programs to change security modes at runtime,
starting with a standard unsecured mode, then going back and
forth between a mode supporting only integrity verification
and a mode supporting both integrity and confidentiality. They
also allow the secure modes to be temporarily suspended for
library calls. This flexibility comes at a price; their
architecture assumes extensive operating system and compiler
support.

Although several research efforts have developed security
solutions for microprocessors on FPGAs, our research is
unique in that it presents practical security extensions that can
be implemented non-invasively in soft-core-based systems on
inexpensive FPGAs. Reconfigurable devices are excellent
platforms for this research, allowing us to rapidly prototype
new designs and evaluate trade-offs.

6 Conclusions

This paper has shown one possible implementation of
security extensions ensuring data integrity and confidentiality
in embedded systems utilizing soft-core CPUs. This is our
first cut at implementing security extensions in actual
hardware, and will be improved in future work. Possible
avenues for further work include extending this design to
protect the integrity and confidentiality of instructions as well
as data, and implementing the EVU in a more complex system
containing instruction and data caches. The design could also
be tested with different AES units, exploring the tradeoffs

between using a single non-pipelined AES unit, multiple AES
units, or a single pipelined unit.

7 References
[1] A. Rogers, M. Milenković, and A. Milenković, "A Low

Overhead Hardware Technique for Software Integrity and
Confidentiality," in International Conference on
Computer Design. Lake Tahoe, CA, USA, 2007.

[2] A. Milenković, M. Milenković, and E. Jovanov, "An
Efficient Runtime Instruction Block Verification for
Secure Embedded Systems," Journal of Embedded
Computing, vol. 4, January 2006, pp. 57-76.

[3] M. Drinic and D. Kirovski, "A Hardware-Software
Platform for Intrusion Prevention," in 37th Annual
ACM/IEEE International Symposium on
Microarchitecture (MICRO), Portland, OR, USA, 2004,
pp. 233-242.

[4] B. Gassend, G. E. Suh, D. Clarke, M. v. Dijk, and S.
Devadas, "Caches and Hash Trees for Efficient Memory
Integrity Verification," in Proceedings of the 9th
International Symposium on High-Performance
Computer Architecture, Anaheim, CA, USA, 2003, pp.
295-306.

[5] G. E. Suh, W. O. D. Charles, S. Ishan, and D. Srinivas,
"Design and Implementation of the Aegis Single-Chip
Secure Processor Using Physical Random Functions," in
Proceedings of the 32nd Annual International Symposium
on Computer Architecture, Madison, WI, USA, 2005, pp.
25-36.

[6] Altera, "Avalon Interface Specifications,"
<http://www.altera.com/literature/manual/mnl_avalon_sp
ec.pdf> (Available January, 2009).

[7] T. Technologies, "Altera De2-70 - Development and
Education Board," <http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=39
&No=226> (Available September, 2008).

[8] H. Satyanarayana, "Aes128,"
<http://www.opencores.org/projects.cgi/web/aes_crypto_
core/> (Available August, 2008).

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, "Mibench: A Free,
Commercially Representative Embedded Benchmark
Suite," in IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, USA, 2001, pp. 3-14.

[10] C.-H. Wang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu,
"Scalable Security Processor Design and Its
Implementation," in Asian Solid-State Circuits
Conference, Hsinchu, China, 2005, pp. 513-516.

[11] J. Zambreno, D. Honbo, A. Choudhary, R. Simha, and B.
Narahari, "High-Performance Software Protection Using
Reconfigurable Architectures," Proceedings of the IEEE,
vol. 94, February 2006, pp. 419-431.

