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Abstract-An increasing number of embedded system 
solutions in space, military, and consumer electronics 
applications rely on processor cores inside reconfigurable 
logic devices.  Ensuring data integrity and confidentiality is of 
the utmost importance in many such applications.  This paper 
describes a practical implementation of security extensions for 
embedded systems built around soft-core processors.  These 
extensions guarantee the integrity and confidentiality of 
sensitive data residing in external memory and prevent 
various types of physical attacks on systems working in 
adverse conditions.  We describe the programming model, 
security architecture, and give an initial analysis of 
performance and complexity overheads caused by the security 
extensions.  

Keywords: Secure processors, data integrity and confidentiality, 
IP cores 

 

1 Introduction 
Embedded computer systems have become ubiquitous in 

modern society. We rely on them in a wide range of 
applications, from consumer electronics, communication, 
transportation, medicine, to national security. Many of these 
systems may operate in hostile environments where they are 
subjected to physical attacks aimed at subverting system 
operation, extracting key secrets, or intellectual property theft. 
Similarly, a system may operate in harsh conditions such as 
outer space, where natural phenomena may compromise the 
integrity of data. Security breaches in embedded systems 
could have wide ranging impacts, from loss of revenue to loss 
of life. These problems can be alleviated by building 
embedded systems that ensure (a) code and data integrity, thus 
preventing the execution of unauthorized instructions or the 
use of unauthorized data; and (b) code and data 
confidentiality, thus preventing the unauthorized copying of 
instructions or data [1]. 

A growing number of embedded systems are built around 
soft-core processors that are implemented on field-
programmable gate array (FPGA) devices. This approach 
offers a number of advantages over traditional solutions and 
custom-designed processors because of its flexibility, platform 
independence, reduced cost, and immunity to obsolescence. 
The inherent flexibility of such systems allows us to rapidly 
prototype inexpensive security extensions.    

This paper describes our approach to implementing security 
extensions to ensure data integrity and confidentiality in 

computer systems built around soft-core CPUs.  This work 
represents our first foray into implementing security 
extensions in actual hardware.  It builds on our existing 
theoretical work on secure processors [1, 2].  We focus on 
systems-on-a-chip implemented on FPGAs that store 
potentially sensitive information in off-chip memories.  The 
chip is assumed to be inviolate, and thus any instructions or 
data contained in on-chip memory is assumed to be secure.  
We therefore focus on securing data that is stored off-chip in 
external memory and brought on-chip as needed, and do not 
address systems where instructions are stored off-chip.  We 
take advantage of the inviolate nature of on-chip memory to 
keep the security hardware as simple as possible. 

The design goals of this research are threefold.  The first 
design goal is that the security extensions should ensure the 
integrity and confidentiality of data stored in off-chip 
memory.  Protecting integrity means that the processor will 
only use authorized data; any tampering will be detected.  
Protecting confidentiality requires that sensitive data be 
encrypted and thus illegible by all unauthorized entities, 
computer or human.  The second design goal is ease of use.  
The security extensions should be as transparent to the 
programmer as possible.  The third and final design goal is 
that the security extensions introduce as little performance 
overhead as possible.  Ideal security extensions would 
introduce minimal performance overhead.  Additionally, the 
extensions should not require modification of any existing soft 
cores, as these are often distributed in binary-only formats. 

We have implemented these security extensions in a system 
based on the Altera NIOS II processor.  The test system was 
implemented on a Cyclone II FPGA using Altera’s Quartus II 
toolchain.  Our implementation ensures confidentiality by 
encrypting secure data that is stored off-chip.  Integrity is 
ensured by signing that data using the cipher block chaining 
message authentication code (CBC-MAC) technique.  The 
security extensions are transparent to the programmer other 
than requiring a function call to initialize the security-related 
hardware resources.  We minimize performance overhead by 
overlapping cryptography with memory accesses and 
buffering verified blocks. 

The remainder of this paper is organized as follows.  
Section 2 defines the threat models against which our security 
extensions defend.  Section 3 describes how we achieve each 
of our design goals: security, transparency to the programmer, 
and as little performance overhead as possible.  Section 4 
evaluates our implementation with respect to complexity and 



performance.  Section 5 presents selected related work, and 
Section 6 concludes the paper. 

 
2 Threat Models 

Embedded computer systems may be subjected to a wide 
variety of attacks.  Our focus is protecting data stored off-chip 
from physical attacks.  These attacks require the attacker to 
have physical access to the system.  The attacker can probe 
off-chip buses, and can observe and override bus transactions.  
Three possible physical attacks are spoofing, splicing, and 
replay. 

A spoofing attack occurs when an attacker intercepts a 
request for a block of memory, and then manually supplies a 
block of his/her choice.  In an unsecured system, the processor 
naïvely conducts a bus cycle, and is unaware that the data it 
received came from an attacker rather than from memory.  
The processor initiates a bus read cycle for a block at memory 
location Ai.  The attacker intercepts the request and supplies a 
potentially malicious block Mi instead of the correct block Ai.  
A variation of the spoofing attack may occur in systems 
operating in adverse conditions, such as outer space, where 
external influences may corrupt data stored in memory. 

Splicing attacks involve intercepting a request for a block of 
memory and then supplying the data from a valid, but 
different block.  Once again, the unsecured processor is 
unaware that it has received an incorrect block from memory.  
The processor initiates a bus read cycle for a block at memory 
location Ai. The attacker intercepts the request and supplies a 
valid block from memory, but from address Aj rather than the 
desired address. 

In a replay attack, the attacker intercepts a request for a 
block of memory, and then supplies an older copy of that 
block.  The supplied block was correct at some point in the 
past, but it may have been superseded by a newer version.  
The processor initiates a bus read cycle for the data block at 
address Ai.  The attacker intercepts the request and returns an 
older version of that block, which may be different from the 
current version in memory. 
 
3 Implementing Security Extensions 

This section describes how we achieve our three design 
goals.  We begin with a description of how our design 
achieves security.  We then discuss the programming model 
for our design, and the memory architecture necessary to 
implement it.  We finally discuss how these security 
extensions are implemented in a hardware resource called the 
Encryption and Verification Unit (EVU). 

3.1 Achieving Security 
The basic unit of secure data is a protected block.  In our 

implementation, we chose a protected block size of 32 bytes.  
In systems with on-chip caches, the cache block size, or some 
multiple thereof, is a convenient protected block size. For our 
initial implementation we do not use data caches.  

Our design uses cryptography to protect the integrity and 
confidentiality of data stored off-chip.  Confidentiality is 
protected by encryption.  Integrity is protected by generating a 

16-byte signature for each protected block of data.  We defend 
against replay attacks by associating a sequence number with 
each protected block, and using it in encryption/decryption 
and signature calculation. 

The confidentiality of data is protected by using a low-
overhead variant of the one-time-pad encryption scheme.  In 
this scheme, pads are calculated using Advanced Encrypted 
Standard (AES) ciphers, with the block address and sequence 
number as inputs.  Equation (1) shows how this encryption is 
performed.  The 32-byte plaintext data block D is divided into 
two 16-byte sub-blocks D0:3 and D4:7, which are separately 
encrypted to form ciphertext sub-blocks C0:3 and C4:7.  KEY1 
is the 128-bit key used for pad generation.  A(SBi) is the 
address of sub-block i, SN is the protected block’s sequence 
number, and SP is a secure padding function that generates a 
unique 128-bit value from the 32-bit address and 32-bit 
sequence number. 

))),(((134:434:4 SNSBASPAESxorDC iKEYiiii ++ =  (1) 
Decryption is simply the reverse of this operation.  The 

pads are calculated as in (1), and then XORed with the 
ciphertext sub-blocks to produce the desired plaintext sub-
blocks. 

Signatures are generated using the cipher block chaining 
message authentication code (CBC-MAC) method [3].  The 
protected block’s signature S is calculated according to 
Equation (2).  KEY2 is another 128-bit key.  SP is the secure 
padding function defined above, operating on the block’s 
address A(SB) and sequence number SN.  The use of the block 
address prevents splicing attacks, the use of the block text 
prevents spoofing attacks, and the use of the sequence number 
prevents replay attacks.  If the keys are generated randomly 
for each run, then cross-executable splicing attacks will also 
be prevented. 

))]),((([ 3:027:42 SNSBASPxorCAESxorCAESS KEYKEY=  (2) 
If sequence numbers are stored off-chip, then they may be 

subjected to sophisticated replay attacks in which the sequence 
number is replayed as well as the protected block and its 
signature.  This gives rise to the necessity of complex 
structures such as Merkle trees [4] to protect the sequence 
numbers.  Our design assumes that sequence numbers are 
stored in on-chip memory and are thus invulnerable to replay 
attacks, and require no additional protection. 

When the programmer reads from or writes to secure data at 
runtime, the appropriate sequence number, encrypted 
protected block, and signature are fetched.  When the pads are 
available, the block is decrypted.  As the two ciphertext sub-
blocks become available, its signature is recalculated.  If the 
calculated signature and fetched signature match, the block 
has not been subjected to tampering and the read or write 
operation can proceed.  If the signatures do not match, a 
security violation has occurred and an interrupt is raised.  
More details are given below in Section 3.3. 

In addition to preventing spoofing, splicing, and replay 
attacks, we must also prevent the programmer from 
inadvertently accessing uninitialized blocks.  To that end, the 
sequence number value zero is reserved to indicate that its 
associated protected block is uninitialized.  If a protected 
block’s sequence number is zero, the programmer may write 



to it, but not read from it.  If the sequence number is nonzero, 
then the programmer may both read from and write to the 
protected block.  A read from an uninitialized block will result 
in an interrupt. 

Whenever a protected block is written back to main 
memory, its sequence number must be incremented and new 
pads calculated to encrypt the block.  Sequence number 
overflows are undesirable, as they lead to pad re-use.  Our 
design uses 32-bit sequence numbers; should a particular 
target application have a strong likelihood of a sequence 
number rollover, the design may be modified to use 64-bit 
sequence numbers. 

In our design, the two cryptographic keys KEY1 and KEY2 
are hard-coded in our security extension hardware.  For 
greater security, they could be randomly generated at runtime 
for each application using methods such as physical 
unclonable functions [5].  In that case, these keys must be 
stored in the process control block in an encrypted form in the 
event of a context switch.  An additional hard-coded internal 
key would be needed, which would then be used to encrypt 
these keys before and decrypt them after a context switch.  
Keys should never leave the chip in plaintext form.  Hard-
coded keys should only be used if the design will be protected 
by bitstream encryption. 

3.2 Programming and Memory Model 
An important design goal for these security extensions is 

that they be as transparent to the programmer as possible.  To 
that end, our implementation does not require the programmer 
to use any special application programming interface (API) to 
read and store secure data.  An initialization function must be 
called to initialize the necessary hardware resources (see 
Section 3.3 below).  Thereafter, the programmer simply 
defines his or her pointers appropriately and uses them as 
normal. 

This transparency is possible because of address mapping.  
A portion of the address space is set aside to physically store 
encrypted data.  A similarly sized portion of the address space 
is mapped to the EVU.  For instance, to read or write the nth 
word of encrypted data, the programmer will read or write the 
nth word in the EVU’s address space.  This transparency is 
illustrated in the code snippets in Figure 1.  In the first snippet, 
OFFCHIP_MEM_BASE_ADDR defines the base address for 
off-chip memory.  The second snippet accesses data relative to 
SECURE_DATA_BASE_ADDR, which defines the base 
address for accessing secure data via the EVU. 

The memory architecture of our design is illustrated in 
Figure 2.  The program text, heap, and stack are all stored in 
on-chip memory.  Sequence numbers should also be stored on-
chip.  The figure depicts signatures as stored on-chip; they 
may also be stored in off-chip memory if desired.  The shaded 
region in the address space contains the secure data in its 
encrypted form, which is physically stored off-chip. 

The programmer may read data directly from the encrypted 
region, but the result would be a word of ciphertext.  A direct 
write to this region would effectively constitute a spoofing 
attack, and would result in an interrupt the next time this 
secure data was properly accessed.  Secure data should be 

accessed through an area of the address space assigned to the 
EVU.  Addresses in this region are mapped to those in the 
encrypted data region, and the EVU handles all decryption and 
verification.  If a block of secure data is no longer needed, its 
corresponding space in SDRAM may be reclaimed for 
unsecured use.  However, that block must not be treated as 
secure data thereafter. 
 

 
Figure 1 - Programmer’s View of Securing Data in Off-Chip Memory 
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Figure 2 - Memory Architecture 

The maximum number of 32-byte protected blocks is 
determined by the amount of memory allocated to storing 
signatures and sequence numbers.  Each protected block 
requires a 16-byte signature and a 4-byte sequence number.  
Thus the maximum number of protected blocks NPB in a 
system is limited by Equation (3).  In this equation, Sz(Msig) 
and Sz(Mseqnum) are the sizes in bytes of the memory regions 
allocated for storing signatures and sequence numbers, 
respectively. 

)4/)(,16/)(min( seqnumsigPB MSzMSzN =   (3) 
Since signatures introduce the greatest memory overhead, 

the designer may wish to fix the size of the region of memory 
allocated to signatures, and then calculate the required sizes 

/* This code writes data directly to off-chip  
   memory in an insecure manner. */ 
void Array_Access_Insecure() 
{ 
   int i; 
   int *pArray; 
 
   pArray = OFFCHIP_MEM_BASE_ADDR; 
 
   for(i = 0; i < 16; i++) 
      pArray[i] = i; 
} 
 
/* This code writes secure data using the EVU. */ 
void Array_Access_Secure() 
{ 
   int i; 
   int *pArray; 
 
   Initialize_EVU(); 
 
   pArray = SECURE_DATA_BASE_ADDR; 
 
   for(i = 0; i < 16; i++) 
      pArray[i] = i; 
} 
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Figure 4 - Block Diagram of the Encryption and Verification Unit 

for the other memory regions.   In our implementation, we 
chose to allocate four kilobytes of memory for storing 
signatures.  This allows us to have 256 protected blocks of 32 
bytes each, for a total of eight kilobytes of secure data.  We 
thus require one kilobyte of on-chip memory for sequence 
numbers.  

3.3 Implementation 
The implementation of these security extensions must 

balance complexity and performance overhead, while at the 
same time not requiring the modification of any existing soft 
cores.  To that end, the EVU is implemented as an on-chip 
peripheral attached to the bus.  Other implementations are 
certainly possible, such as embedding the EVU functionality 
into a custom SDRAM controller.  The implementation 
strategy we choose, however, allows our design to be flexible 
and applicable to existing systems.   

Figure 3 shows a block diagram of our implementation of 
an embedded system incorporating our security extensions.  
All components of the baseline system are unshaded, while the 
shaded components are added to implement the security 
extensions.  The baseline system for this implementation is a 
simple 32-bit NIOS II system-on-a-chip.  On-chip memories 
are used to store program instructions and data (heap and 
stack).  An SDRAM controller provides access to off-chip 
memory.  The system is generated using Altera’s System-on-
a-Programmable Chip (SOPC) generator, part of the Quartus 
II toolchain.  The on-chip bus interconnects conform to the 
Altera Avalon standard [6], with loads and stores occurring at 
the word level. 

 
The base system uses a simple NIOS II CPU with no data 

cache.  In a NIOS II system with caches, cache lines are 
loaded and evicted via sequences of single-word accesses.  
The EVU would handle these like any other accesses. 

The additional hardware to implement the security 
extensions consists of a discrete EVU peripheral, an on-chip 
memory for the sequence 
number table, and an on-chip 
memory for the signature 
table.  Secure data is 
physically stored in its 
encrypted form in the off-chip 
SDRAM.  (As mentioned 
earlier, signatures may also be 
stored off-chip if necessary.)  
The programmer may read 
directly from the SDRAM; 

however, if a location in the SDRAM containing secure data is 
read, encrypted data will be returned.  SDRAM locations not 
used for storing secure data or signatures may be used to store 
non-sensitive plaintext data. 

The internals and interfaces of the EVU are shown in 
Figure 4.  In the upper left of this figure are the data and 
control registers for the EVU.  Three data registers specify the 
base addresses of encrypted data in external memory, the 
signatures, and sequence numbers.  These should be set in the 
aforementioned initialization function.  The control register 
allows the programmer to reset the EVU and clear the 
interrupt.  An Avalon bus slave interface allows access to 
these data and control registers. 

A second Avalon bus slave interface is shown in the bottom 
left of the figure.  This is the interface that the programmer 
will use to access secure data.  Therefore, the portion of 
address space allocated to this interface should be 
commensurate with the amount of protected data.  This is 
achieved by setting the width of the address signal on the 
slave interface.  Avalon slave interface address signals are 
actually word indices rather than actual addresses.  In our 
sample system, we have eight kilobytes of secure data, 
constituting 2,048 32-bit words.  Thus, the address bus for this 
interface must be 11 bits wide to address all 2,048 words. 

The memory access controller is a state machine 
responsible for fetching sequence numbers, signatures, and 
data blocks from memory and maintaining local buffers.  The 
controller can access on-chip and external memories via an 
Avalon bus master interface.  The EVU also contains an AES 
core and a state machine to control it.  An interrupt interface 
allows interrupts to be raised by the memory access controller 
if the programmer tries to read from an uninitialized block or a 
fetched block and signature fails verification. 

The upper right of the figure shows the various buffers used 
in the EVU.  There are buffers for the fetched signature, 
calculated signature, the ciphertext block that has been read 
from memory or will be written to memory, the pads used to 
encrypt and decrypt the block, and the sequence number.  An 
additional structure called the opportunity buffer attempts to 
reduce performance overhead by taking advantage of the 
locality of data accesses.  Even though the processor will only 
read or write one word at a time, the entire protected block 
must be brought into the EVU in order to perform verification.  
This block is stored in the opportunity buffer as plaintext.  
Any further reads or writes to the protected block while it is 
buffered can be done within the EVU, without having to 
access memory.  The block’s address may be reconstructed 
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Figure 3 - System-on-a-Programmable-Chip Incorporating Security 
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from the opportunity buffer’s tag.  Its sequence number and 
the pads used to encrypt and decrypt it are also buffered. 

When a word from a different block is requested, the block 
in the opportunity buffer must be evicted, along with its 
sequence number and signature.  If the block is dirty, then it 
must be written back to external memory.  The sequence 
number must be incremented and the pads recalculated before 
the plaintext block can be encrypted for storage.  The 
opportunity buffer’s tag is used to calculate the addresses for 
the block to be written back, its sequence number, and 
signature.  

Figure 5 and Figure 6 list the algorithms used for reading 
and writing words of secure data, respectively.  These 
algorithms reveal the latency hiding mechanisms used in the 
EVU.  Whenever possible, cryptographic operations are done 
concurrently with memory operations to hide cryptographic 
latency.  When writing to a protected block, new pads must be 
calculated once the sequence number has been incremented.  
As Figure 6 shows, the sequence number is only incremented 
when a block in the opportunity buffer is first marked dirty.  
Pad calculation is begun, and the processor is allowed to 
continue execution.  If another read or write is initiated before 
the new pads have been calculated, the new access is stalled 
until the pads are completed. 

 
4 Evaluation 
The implementation of our security extensions was 
synthesized, placed, routed, and deployed on a Terasic DE2-
70 [7], a low-cost development and education board.  The 
DE2-70 includes an Altera Cyclone II 2C70 FPGA.  The 
system was then evaluated for complexity and performance. 

4.1 Complexity 
Three discrete components were added to the baseline 

system to implement the security extensions: the EVU, a 1 KB 
on-chip memory for the sequence number table, and a 4 KB 
on-chip memory for the signature table.  The complexity 
overhead introduced by these components is shown in  

 
Table 1.  The figures in the table are reported by the Quartus 

II tool.  The overhead introduced by the AES core is shown 
separately from that of the EVU, as it contributes nearly half 
the additional logic.  The AES core used in this 
implementation is an open-source intellectual property (IP) 
core, requiring 15 clock cycles per operation [8].  It is not 
pipelined. 

 

Table 1 - Complexity Overhead 

Component Name Logic 
Cells 

Dedicated Logic 
Registers 

M4K 
Blocks 

EVU 3,290 1,910 0 
AES Core 5,031 658 0 
Sequence Number 
Memory (1 KB) 

2 0 2 

Signature Memory (4 
KB) 

2 0 9 

Total Overhead: 8,325 2,568 11 
 

 
Wait for any crypto operations from a previous access to complete. 
Is buffer valid and does buffer tag match address? 
 Yes: (read hit) 
  Return word from buffer and exit. 
 No: (read miss) 
  Is buffer valid and dirty? 
   Yes: (evict block from buffer) 
    Encrypt block using buffered pads. 
    Write sequence number and cryptotext block to memory. 
    In parallel with memory write, calculate block signature. 
    When signature is ready, write signature to memory. 
    Continue with read miss operation. 
   No: (do nothing, continue with read miss operation) 
  Fetch sequence number from memory. 
  Is sequence number nonzero? 
   Yes: (block has been initialized) 
    Read block and signature from memory. 
    In parallel with memory accesses, calculate pads. 
    Decrypt sub-blocks as pads and data are available. 
    When block is fully available, calculate signature. 
    Do calculated signature and fetched signature match? 
     Yes: (everything is fine) 
      Buffer block and pads; mark buffer valid and clean. 
      Return word from buffer and exit. 
     No: (security violation) 
      Raise interrupt, mark buffer invalid, and exit. 
   No: (trying to read an uninitialized block) 
    Raise interrupt, mark buffer invalid, and exit. 

Figure 5 - Algorithm for Secure Read 

Wait for any crypto operations from a previous access to complete. 
Is buffer valid and does buffer tag match address? 
 Yes: (write hit) 
  Latch word into buffer. 
  Is buffer currently marked clean? 
   Yes: (precompute pads for eventual writeback) 
    Mark buffer dirty. 
    Increment buffered sequence number. 
    Start calculation for new pads, and exit. 
   No: (do nothing, exit) 
 No: (write miss) 
  Is buffer valid and dirty? 
   Yes: (evict block from buffer) 
    Encrypt block using buffered pads. 
    Write sequence number and cryptotext block to memory. 
    In parallel with memory write, calculate block signature. 
    When signature is ready, write signature to memory. 
    Continue with write miss operation. 
   No: (do nothing, continue with write miss operation) 
  Fetch sequence number from memory. 
  Is sequence number nonzero? 
   Yes: (block has been initialized) 
    Read block and signature from memory. 
    In parallel with memory accesses, calculate pads. 
    Decrypt sub-blocks as pads and data are available. 
    When block is fully available, calculate signature. 
    Do calculated signature and fetched signature match? 
     Yes: (everything is fine) 
      Buffer block and pads; mark buffer valid and dirty. 
      Increment sequence number. 
      Latch word into buffer. 
      Start calculation for new pads, and exit. 
     No: (security violation) 
      Raise an interrupt, mark buffer invalid, and exit. 
   No: (initialize the block) 
    Set sequence number to 1. 
    Start pad calculation. 
    Load buffer with zeros; mark buffer valid and dirty. 
    Set block init bit. 
    Latch word into buffer and exit. 

Figure 6 - Algorithm for Secure Write 



The EVU itself requires many registers to implement the 
opportunity buffer.  The additional memories consume little in 
the way of logic cells, but do consume M4K blocks, which are 
on-chip RAM resources.  Recall that signatures need not be 
stored on-chip; they may be stored in an off-chip memory if 
on-chip memory space is at a premium.  The base system 
(without the EVU and additional memories) took 
approximately 7% of our target FPGA’s resources.  The 
secure system required 21%, three times the total on-chip 
resources. 

4.2 Performance 
The performance overhead introduced by the security 

extensions was evaluated by running a microbenchmark to 
stress-test the system.  The microbenchmark potentially 
introduces far greater overhead than an actual application.  It 
reads and writes to an array in memory with a varying stride 
factor.  When performing write accesses, a miss in the 
opportunity buffer will always cause a writeback.  Baseline 
results are measured by reading and writing directly to SRAM.  
Overhead is determined by reading and writing using the 
secure extensions.  The array is read or written many 
thousands of times, and the total number of clock cycles 
required for all accesses is counted.  This value is then divided 
by the total number of accesses to provide the average number 
of clock cycles per access.  Varying the stride factor allows 
the benchmark to vary the degree to which it takes advantage 
of the opportunity buffer.  With a stride of one, it takes full 
advantage of the buffer, with an opportunity buffer miss every 
eighth access.  With a stride of eight, an opportunity buffer 
miss occurs every access, thus allowing us to measure the 
average time required to fetch and verify a protected block 
from off-chip memory.  Neither the baseline nor secure 
systems contain data caches or any other performance 
enhancement mechanisms.  This allows us to see the worst-
case, bottom-line latencies.  Therefore, the latencies reported 
in this section are worse than they would be in a more realistic 
system containing one or more levels of data cache. 

The microbenchmark was run with signatures stored on-
chip and with signatures stored in off-chip SDRAM.  The 
results of these runs are shown in Table 2.  Results are shown 
for the baseline system (reading or writing directly to or from 
off-chip SDRAM) and for the secure system taking advantage 
of the opportunity buffer to varying degrees.   

This table shows that a read miss in the opportunity buffer 
introduces 59 cycles of overhead, regardless of whether 
signatures are stored on-chip or off-chip.  When the 
benchmark takes advantage of the opportunity buffer, 
performance increases, even to the point of performing better 

than the baseline system when a read miss occurs every eighth 
access (due to a pre-fetching effect).  Write misses, however, 
introduce much higher overheads.  This is because the EVU 
stalls the write transaction while performing the writeback 
operation (if necessary) and then fetching and verifying the 
protected block.  In the baseline case, the SDRAM controller 
buffers the block and does not stall the transaction.  The 
overhead introduced by the writeback can be found by 
subtracting the number of cycles reported for a read miss by 
that reported for a write miss.  This shows that a writeback 
takes 60 cycles when signatures are stored on-chip, and 69 
cycles when signatures are stored off-chip. 

Table 2 – Performance Overhead, Signatures Stored On-Chip/Off-Chip 

 SIG. ON-CHIP SIG.OFF-CHIP 
 Avg 

Cycles 
Over-
head  

Avg 
Cycles 

Over-
head  

Read Accesses  
Baseline System 24 1 24 1 
Secure, Miss Every 8th Access 19 0.79 19 0.79 
Secure, Miss Every 4th Access 28 1.17 28 1.17 
Secure, Miss Every Other Access 46 1.92 46 1.92 
Secure, Miss Every Access 83 3.46 83 3.46 
Write Accesses with Writebacks  
Baseline System 2 1 2 1 
Secure, Miss Every 8th Access 20 10 21 10.5 
Secure, Miss Every 4th Accesses 38 19 40 20 
Secure, Miss Every Other Access 73 36.5 77 38.5 
Secure, Miss Every Access 143 71.5 152 76 

 
The major contributors to performance overhead were 

identified using built-in counters inside the EVU.  The 
counters reported that a read miss in the opportunity buffer 
takes 75 clock cycles.  Further analysis revealed that memory 
accesses completed long before the cryptographic operations, 
as depicted in Figure 7.  Latency from cryptographic 
operations dominates, thus explaining why the overhead on a 
read miss is not dependent on whether or not signatures are 
stored on- or off-chip.  This suggests that performance could 
be improved by using either a pipelined AES core or two AES 
cores operating in parallel.  Either of those arrangements 
would also allow signatures to be generated using the parallel 
message authentication code (PMAC) technique [1], which 
will further decrease performance overhead. 

In addition to the microbenchmark, an actual benchmark 
was ported to run on the secure system.  The Rijndael 
benchmark from the MiBench suite [9] was modified to read 
its keys and input data from, and store its outputs to, secure 
memory.  The performance overhead was found to be only 
1.01 times (about 1%) for both on-chip and off-chip 
signatures.  This indicates that actual applications should 
exhibit far less overhead than the stress-test microbenchmark. 

 

Pad for First Sub-Block Pad for Second Sub-Block Signature, Part One Signature, Part Two

SignatureEncrypted Data Block
Sequence Number

Memory Accesses

Cryptographic Operations75 cycles

40 cycles

 
Figure 7 - Performance Overhead on a Read Miss (Not to Scale)



5 Related Work 
Several computer security researchers have targeted the 

reconfigurable computing domain.  In this section, we briefly 
survey several existing proposals for implementing security 
extensions in reconfigurable logic. 

Wang, Yeh, Huang, and Wu [10] developed a cryptographic 
coprocessor on an FPGA to accelerate cryptographic functions 
in an embedded system. Zambreno, Honbo, Choudhary, 
Simha, and Narahari [11] propose to use an FPGA as an 
intermediary, analyzing all instructions fetched by a processor. 
It calculates checksums for basic blocks using two different 
methods, such as a hash on the code and the list of registers 
used by instructions, and compares the two checksums at the 
end of the basic block. The level of security provided by this 
approach is an open question, and requires extensive compiler 
support, including the insertion of dummy instructions, to 
establish the appropriate “register stream.” This leads to a 
rather high overhead of around 20%, and only supports 
instruction integrity and confidentiality (by means of optional 
encryption). 

Suh, Charles, Ishan, and Srinivas [5] propose the AEGIS 
secure processor. They introduce physical unclonable 
functions (PUFs) to generate the secrets needed by their 
architecture.  Memory is divided into four regions based on 
whether it is static or dynamic (read-only or read-write) and 
whether it is only verified or is both verified and confidential. 
They allow programs to change security modes at runtime, 
starting with a standard unsecured mode, then going back and 
forth between a mode supporting only integrity verification 
and a mode supporting both integrity and confidentiality. They 
also allow the secure modes to be temporarily suspended for 
library calls. This flexibility comes at a price; their 
architecture assumes extensive operating system and compiler 
support. 

Although several research efforts have developed security 
solutions for microprocessors on FPGAs, our research is 
unique in that it presents practical security extensions that can 
be implemented non-invasively in soft-core-based systems on 
inexpensive FPGAs.  Reconfigurable devices are excellent 
platforms for this research, allowing us to rapidly prototype 
new designs and evaluate trade-offs. 

 
6 Conclusions 

This paper has shown one possible implementation of 
security extensions ensuring data integrity and confidentiality 
in embedded systems utilizing soft-core CPUs.  This is our 
first cut at implementing security extensions in actual 
hardware, and will be improved in future work.  Possible 
avenues for further work include extending this design to 
protect the integrity and confidentiality of instructions as well 
as data, and implementing the EVU in a more complex system 
containing instruction and data caches.  The design could also 
be tested with different AES units, exploring the tradeoffs 

between using a single non-pipelined AES unit, multiple AES 
units, or a single pipelined unit. 
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