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Abstract—An exponential growth of data traffic that
originates on mobile devices and a shift toward cloud
computing necessitate finding new approaches to optimize
file transfers. Whereas compression utilities can improve
effective throughput of file transfers between mobile devices
and the cloud, finding the best-performing utility for a given
file transfer is a challenging task. In this paper we introduce
a framework for optimizing file transfers that relies on
agents running on both mobile devices and the cloud. The
agents are responsible to select an effective transfer mode
by considering characteristics of files to be transferred,
network conditions, and mobile device performance. The
framework is implemented and experimentally evaluated
for file uploads and downloads initiated from a smartphone,
while varying WLAN network conditions. The results of the
evaluation show that the framework effectively increases
upload throughputs in range from 1.46 to 2.38 times
relative to uncompressed uploads and from 1.02 to 2.97
times relative to default compressed uploads. Similarly, it
improves download throughputs in range of 1.47 to 2.5
times relative to uncompressed downloads and up to 1.2
times relative to default compressed downloads.

I. INTRODUCTION

Cloud and mobile computing represent two emerging
trends in modern computing and communication. With
a rapid shift toward cloud-based computing, mobile
devices have become the dominant platforms for con-
suming and generating digital information [1]. Mobile
devices rely on cloud services for computing and storage
needs as they are typically constrained in processing
power, storage capacity, energy, and communication
bandwidth. Data originating on mobile devices (e.g.,
physiological and inertial data from health monitors,
videos, images, documents, messages) are transferred
to the cloud. Similarly, data stored in the cloud (e.g.,
documents, applications, maps, messages, commands)
are transferred from the cloud to mobile devices. These
trends result in an exponential growth of global mobile
data traffic that reached 7.2 exabytes per month in 2016
and is forecast to increase 7 times from 2016 to 2021
[2]. It is thus critical to guarantee fast, low-latency, and
high-throughput communication between mobile devices
and the cloud.

Lossless data compression is currently being used to
reduce the required bandwidth during web page loads
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and downloads of files and applications. Google’s Fly-
wheel proxy [3], Google Chrome, and Amazon Silk
use proxy servers to provide HTTP compression. For
file downloads, Google services, such as Gmail and
Drive, provide zip compression of files and attachments.
Application stores, e.g., Google Play and Apple’s App
Store, use zip-derived containers for application distribu-
tion, while Linux software repositories use compression
utilities such as gzip, bzip2, and xz.

In this paper, we introduce a framework for optimiz-
ing data file transfers between mobile devices and the
cloud by utilizing compression utilities. The framework
seamlessly selects a file transfer mode that maximizes
the effective throughput - the file can be transferred un-
compressed or using any compression (utility, level) pair
from a set of available options. The framework selects an
effective transfer mode by considering (i) characteristics
of an input file, (ii) characteristics of network connection,
(iii) analytical models describing effective throughputs,
and (iv) characteristics of the device that initiates the
transfer. The effectiveness of the proposed framework
is experimentally evaluated using a smartphone that
performs upload and download file transfers for a range
of input files and network conditions. The performance
of the framework is compared to the performance of
uncompressed and the default compressed file transfers
that use gzip with -6 compression level. The framework
improves effective upload throughputs from 1.46 to 2.38
times relative to uncompressed uploads and from 1.02
to 2.97 times relative to default compressed uploads. It
improves effective download throughput from 1.47 to 2.5
times relative to uncompressed downloads and up to 1.2
times relative to default compressed downloads.

Section II presents background and motivation. Sec-
tion III gives an overview of the proposed framework
and describes its components. Section IV describes ex-
perimental evaluation. Section V presents the results
of the evaluation. Section VI summarizes findings and
concludes the paper.

II. BACKGROUND AND MOTIVATION

Fig. 1 illustrates data transfers initiated from a mobile
device. A data file can be uploaded to the cloud or down-
loaded from the cloud uncompressed or compressed.
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Fig. 1. Data transfers between mobile devices and the cloud.

TABLE I
COMPRESSION UTILITIES

Utility Levels Version Notes

gzip 1-9 (6) 1.6 DEFLATE (Ziv-Lempel, Huffman)
1zop 1-9 (6) 1.03 LZO (Lempel-Ziv-Oberhumer)
bzip2 1-9 (6) 1.0.6 RLE+BWT+MTF+Huffman

XZ 0-9(6) 5.1.0a LZMA2

pigz 1-9 (6) 2.3 Parallel implementation of gzip
pbzip2 1-9(9) 1.1.12  Parallel implementation of bzip2

For uncompressed transfers, an uncompressed file (UF)
is uploaded or downloaded over a network directly.
For compressed uploads, the uncompressed file is first
compressed locally on to a mobile device, and then
a compressed file (CF) is uploaded to the cloud over
the network. For compressed downloads, a compressed
version of the requested file is downloaded from the
cloud, and then the compressed file is decompressed
locally. The file transfer and local (de)compression tasks
are often overlapped in time using piping. Compressed
uploads and downloads utilize one of available compres-
sion utilities. Each compression utility supports a range
of compression levels that allow us to trade off speed
for compression ratio (CR): lower levels - speed, higher
levels - better compression ratio.

We consider six common compression utilities listed
in Table 1. gzip and I[zop utilities are relatively fast,
whereas bzip2 and xz provide a higher compression ratio.
pigz and pbzip2 are parallel versions of gzip and bzip2,
respectively. They exploit multiple processor cores in
modern mobile devices to speed up (de)compression
tasks. For each, we consider at least three compression
levels: L - low (1), M - medium (6), and H - high (9).

A. Related Work

Recent measurement-based studies [4]-[7] showed
that compressed transfers over WLAN and cellular inter-
faces outperform corresponding uncompressed file trans-
fers. These studies showed that not a single combination
of a compression utility and level performs the best for
all file transfers and network conditions.

To optimize file transfers, several studies introduced
run-time techniques for deciding whether to use com-
pressed transfer or not [8]-[10]. In most closely related

work to ours [8], 32 KB blocks of streaming data are
analyzed at network stack level to determine which
compression technique to apply, if any. Instead of ana-
lyzing data in-transit, other studies used pre-compression
techniques to estimate compression ratios for selecting
the optimal transfer method [9], [10]. Pre-compression
is done either on the file header or multiple segments
within a file prior to the file transfer. While sharing
several aspects, these studies use a limited selection of
compression utilities (gzip, bzip2, and [zo) and rely on
time and energy consuming pre-compression of files, or
on frequent analysis of data blocks at the network level.
In addition, studies [9], [10] rely on compression ratio
as the sole factor in selecting an optimal transfer mode,
which may result in suboptimal effective throughput.

B. The Case of Intelligent File Transfers

To illustrate challenges in selecting an optimal trans-
fer mode, we conduct a measurement-based evaluation
of the effectiveness of uncompressed and compressed
transfers to and from a remote server initiated on the
OnePlus One smartphone connected to the Internet over
its WLAN interface. To measure the effectiveness of file
transfers we use the effective throughput (7h), defined
as the ratio between the uncompressed file size in
megabytes and the time needed to complete the file
transfer. This metric captures the system’s ability to
perform a file transfer with the least amount of time
regardless of a transfer mode. To demonstrate the impact
of network connection parameters, the measurements are
performed when the WLAN network throughput is set
to 0.5MB/s and 5MB/s. The measurements for each
transfer are repeated three times to mask variability of
network conditions. A detailed description of measure-
ment setup can be found in [6], [11].

Upload examples. Two text files containing informa-
tion gathered on a wearable health monitor are uploaded
to the cloud using uncompressed and compressed file
transfers. The first file, BRW.csv (19.7 MB), contains
raw samples from a breathing sensor. The second file,
LOG.csv (4.7 MB), contains periodic health logs. These
types of files are often uploaded to the cloud-based
health monitoring applications. Fig. 2 shows compres-
sion ratio (CR), the uncompressed upload through-
put (Th.UUP), and the compressed upload through-
put (Th.CUP) for uploads over 0.5MB/s and 5MB/s
networks. For 0.5 MB/s network, Th.UUP matches the
network throughput (7h.UP). For BRW.csv, the best
compressed upload using xz -/ improves the effective
throughput 10.33 times (5.45 MB/s) relative to the un-
compressed upload and 1.64 times relative to gzip -6
(3.31 MB/s). For LOG.csv, xz -0 improves the effective
throughput 1.19 times (4.83 MB/s) relative to gzip -
6 (4.05MB/s). For 5MB/s network, the uncompressed
uploads achieve 4.45 MB/s for BRW.csv and 3.16 MB/s
for LOG.csv. For BRW.csv, pigz -6 achieves 4.05-fold
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Fig. 2. Compression ratios and throughputs for uploads of mHealth
files.
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Fig. 3. Compression ratios and throughputs for downloads of appli-
cations and books.

improvement (18.03 MB/s) relative to the uncompressed
upload and a 2.27-fold improvement relative to gzip -
6 (7.96 MB/s). For LOG.csv, pigz -6 achives 1.77-fold
improvement relative to gzip -6.

Download examples. An executable (DBX.tar -
69.3MB) and an ebook (EBK.txt - 5.4 MB) are down-
loaded using different transfer modes from the cloud. All
compressed versions of files are made available in the
cloud. Fig. 3 shows compression ratio (CR), the uncom-
pressed download throughput (Th.UDW), and the com-
pressed download throughput (7h.CDW) for downloads
over 0.5MB/s and 5 MB/s networks. For downloads of
DBX.tar over 0.5 MB/s network, xz -9 achieves the best
effective throughput, offering a 2.46-fold improvement
(1.23 MB/s) relative to the uncompressed download and
a 1.3-fold improvement relative to gzip -6 (0.95 MB/s).
For EBK.txt, xz -6 offers 1.3-fold improvement relative
to gzip -6. For downloads 5 MB/s network, the uncom-
pressed downloads achieve the effective throughputs of
4.8 MB/s for DBX.tar and 3.5MB/s for EBK.txt. For
DBX.tar, xz -9 achieves a 1.34-fold improvement over
gzip -6. For EBK.txt, gzip -9 slightly outperforms gzip
-6.

These examples illustrate effectiveness of compressed
file transfers as well as how file type, file size, level of
redundancy, and network conditions impact the choice
of best performing file transfer mode. Ideally, we would
like to have on-demand agents that can autonomously, in
real-time, with no significant overhead make a selection
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Fig. 5. System view of optimized file downloads.

of a near optimal file transfer mode.

III. PROPOSED FRAMEWORK
A. System View of Optimized File Transfers

Fig. 4 illustrates a system view of optimized file
uploads initiated on a mobile device. An upload agent
running on the device selects an effective transfer mode.
To do so, it relies on the following: (i) file information
(type, size); (ii) network connection parameters; (iii)
analytical models describing the effective throughput for
uncompressed as well as for compressed file uploads for
all (utility, level) combinations supported on the device;
and (iv) history-based prediction tables that predict the
compression ratio and the local compression throughput
for a given file on a given mobile platform.

The upload agent operates as follows. On a new
upload request, the agent performs a query on the
prediction table with the file size and type as inputs. The
query produces estimated compression ratios and local
compression throughputs for each (utility, level) pair sup-
ported on the device. The agent uses these estimates and
the current network parameters in the analytical models
to calculate the effective compressed and uncompressed
upload throughputs. The estimated effective throughput
of the best performing pair is compared to the estimated
effective throughput of the uncompressed upload. If it



offers a higher throughput, the agent initiates the selected
compressed upload. Otherwise, the file is transferred
uncompressed.

Fig. 5 illustrates a system view of optimized file
downloads initiated from a mobile device. A download
agent running on the mobile device initiates a download
request by sending the device id, file name, and the
current network parameters to the cloud. Another agent
running on the cloud maintains prediction tables as
well as analytical models describing effective download
throughputs for each mobile device.

The cloud agent operates as follows. When a new
request is received, it performs a query on the predic-
tion tables with the device id and the uncompressed
file size and type as inputs. The query produces esti-
mated compression ratios and the local decompression
throughputs for each (utility, level) pair supported on the
requesting device. Note: if the cloud already maintains
compressed versions of the requested file, the actual
compression ratios are known and do not have to be
predicted. These estimates are then used in the analytical
models to calculate the effective compressed download
throughputs for each (utility, level) pair. The throughput
of the best performing pair is compared to the effective
throughput of the uncompressed download. If it offers
a higher throughput, a file compressed with winning
(utility, level) pair is sent from the cloud to the mobile
device and the agent on the mobile device then initiates
a decompression task. Otherwise, the uncompressed file
is sent by the cloud to the mobile device.

The expected savings due to compressed file uploads
or downloads should exceed by far the time the agent(s)
spends in the selection process. To avoid imposing an
additional overhead to the current file transfers, we
assume that network parameters such as communication
channel upload throughput, Th.UP, download through-
put, Th.DW, and the connection setup time, 7.SC, are all
acquired prior to the actual transfer e.g., by periodically
probing the communication channel. Once the transfer
has been completed, the upload and download agents on
the mobile device determine the compression ratio and
the local (de)compression throughput and create a new
entry in the prediction tables to inform future queries.

B. Analytical Models and Prediction Tables

The proposed framework relies on analytical models
that estimate the effective upload [download] throughput
of uncompressed and compressed file transfers. The total
time for an uncompressed file transfer includes the time
to establish the connection, 7.SC, and the file transmis-
sion time, which depends on the files size (US) and
the network throughput (Th.UP [Th.DW]). The effective
upload throughput, Th.UUP, is calculated as the uncom-
pressed file size in megabytes divided by the total upload
time and can be calculated as shown in Eq. (1). Similarly,

the effective download throughput, Th.UDW, is calcu-
lated as shown in Eq. (2). The expressions imply that the
effective uncompressed throughputs reach the network
throughputs when transferring very large files. In the
case of small files, the time to establish the network
connection significantly limits effective throughputs.

ThUUP = ot e (D
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To extract unknown network parameters, 7.SC and
Th.UP [Th.DW], we perform a two file upload [down-
load] test. Two files of different sizes are transferred over
a network connection that we want to characterize. The
total times are measured and then used to calculate the
effective network throughputs described in Egs. (1) and
(2). By replacing the measured Th. UUP and US for both
files in Eq. (1), we get two equations with two unknowns,
T.SC and Th.UP. Similarly, by replacing the measured
Th.UDW and US in (2) for both files, we can determine
T.SC and T.DW that characterize the download channel
[12].

For compressed uploads and downloads we assume
piped data transfers where local (de)compression tasks
are partially or fully overlapped with file transfers. Egs.
(3) and (4) are used to estimate compressed upload
and download throughputs. We start from an optimistic
assumption where local compression and decompression
tasks are fully overlapped with file transfers, and then
introduce corrective factors (k.up [k.dw] and k.c [k.d]) to
capture actual behavior. The degree of overlap depends
either on the ratio between the network throughput and
the maximum effective throughput (for k.up [k.dw]) or
on the ratio between the network throughput and the
local (de)compression throughput (for k.c [k.d]). A de-
tailed description of presented throughput and similarly
derived energy efficiency models can be found in [12].

The analytical models for estimating throughputs
of compressed data transfers rely on predicting local
throughputs on a mobile device, Th.C [Th.D], and com-
pression ratio, CR. The prediction relies on history logs
captured on the device for each combination of compres-
sion utility and level. They are initially created with a
set of representative data and updated with each new file
transfer. The logs are stored in tables; each entry contains
the following parameters: the compression utility and
level, the uncompressed file size, US, the compression
ratio, CR, and the (de)compression throughput, Th.C
[Th.D]. The prediction relies on statistical redundancy in
categories of files such as sensor-generated (physiologi-
cal data, raw images), computer generated (code, binary),
and human-readable data (books, documents, emails).



The data tables maintained by the mobile device agent
are historyComp, historyDecomp, compUtil, and exclu-
sionType. The historyComp table contains history logs
for local compressions and includes the following fields:
US and Type to describe the uncompressed file size and
type, C_Util and C_Level to describe the corresponding
compression (utility, level) pair (e.g., "gzip”, ”1”), and
Th_C and CR to describe the local compression through-
put and compression ratio. The historyDecomp table sim-
ilarly maintains history logs for local decompressions.
Finally, the compUtil table maintains a list of all com-
pression pairs available on the device. The exclusionType
table maintains a list of uncompressible file types which
are ignored and transferred uncompressed.

The cloud agent maintains tables similar to the tables
on the mobile device. However, since cloud agent needs
to maintain history logs and device characteristics for
multiple mobile devices, additional tables are needed to
perform long-term storage and initialization of mobile
data tables. In addition, the historyComp, historyDe-
comp, and compUtil tables include the Device_ID field.
The deviceType table includes a list of all supported
devices, while the fileStorage table maintains remote and
local locations of files.

C. Agent Implementation

The framework’s mobile device agent is implemented
in C++ with a SQLite database, selected due to its
default Android support. The mobile agent is compiled
for Android using NDK toolset. The implementation of
the cloud agent utilizes MySQL to allow concurrent
requests from the numerous devices.

Optimized uploads. Assuming the network parameters
are set in advance and file information is retrieved
from the file system, the mobile device performing opti-
mized upload invokes its framework agent with a set of
above parameters as arguments. With those parameters,
the agent executes a set of SQL statements to query
historyComp prediction table, uses analytical model to
estimate the throughputs of compressed upload, sorts
the query results, and finally performs a system call to
invoke final selection for optimized transfer.

Fig. 6 shows the SQL statements generated for upload
of 101.4MB file over a WLAN interface with the
network throughput of 5 MB/s and the connection setup
time of 0.39 seconds. Lines 1-22 query the closest local
compression throughput, 7h.C, and compression ratio,
CR, and create a temporary table with values for each
(utility, level) pair. Lines 22-29 sort the temporary table
using analytical model, select the result with the highest
estimated throughput (e.g. "pigz”, ”1”), and drop tem-
porary table. After SQL execution, estimated effective
throughput of selected (utility, level) pair is compared to
the uncompressed upload throughput. If a compressed
upload is selected, the compressed size, CS, and total
execution time, T.CUP, are returned at the end of the

1 // inUS=101.4; inType=’csv’; inThUP=5.0; inTSC=0.362;

2 CREATE TEMPORARY TABLE tempt AS

3 SELECT T.C_Util,T.C_Level,Ext,CR,Th_C FROM (

4 SELECT C_Util,C_Level, (SELECT CR FROM (SELECT CR,diff FROM (

5 SELECT CR, abs(US-inUS) AS diff FROM historyComp AS T2

6 WHERE Type=inType and T2.C_Util=Tools.C_Util and

7 T2.C_Level=Tools.C_Level and US<=inUS

8 ORDER BY US DESC LIMIT 1)UNION ALL

9 SELECT CR,diff FROM (

10 SELECT CR, abs (US-inUS) AS diff FROM historyComp AS T2

11 WHERE US=inType and T2.C_Util=Tools.C_Util and

12 T2.C_Level=Tools.C_Level and US>inUS ORDER BY US DESC LIMIT 1) ORDER
BY diff LIMIT 1)

AS CR, (SELECT Th_C FROM (SELECT Th_C, diff FROM (

14 SELECT Th_C, abs (US-inUS) AS diff FROM historyComp AS T3

15 WHERE Type=inType and T3.C_Util=Tools.C_Util and

16 T3.C_level=Tools.C_Level and US<= inUS

17 ORDER BY US DESC LIMIT 1) UNION ALL

18 SELECT Th_C,diff FROM (

19 SELECT Th_C, abs (US-inUS) AS diff FROM historyComp AS T3

20 WHERE Type=inType and T3.C_Util=Tools.C_Util and

21 T3.C_Level=Tools.C_Level and US>inUS ORDER BY US DESC LIMIT 1) ORDER

)

BY diff LIMIT 1)) AS Th_C FROM compUtil AS Tools) AS T
22 LEFT JOIN compUtilExt ON (compUtilExt.C_Util=T.C_Util);
23 // Sort and select optimal pair
24 SELECT C_Util,C_Level,Ext,CR,Th_C FROM tempT
25 ORDER BY CASE WHEN Th_C>(1/(1/(CR+inThUP)+inTSC/US)) THEN
26 (1/((1/(CR+inThUP)+inTSC/US)+ (inThUP/Th_C)/Th_C)) ELSE
27 (1/((1/CR+inThUP*inTSC/US) x (1/ (CR*inThUP)+inTSC/US)+1/Th_C))
28 END DESC LIMIT 1;
29 DROP TABLE tempt;

Fig. 6. SQL query for uploading 101.4 MB file on 5 MB/s WLAN.

upload process. The agent will then update prediction
tables with compression ratio, CR, and estimated local
compression throughput, 7h.C. SQL execution being the
critical component, the query is optimized to execute on
a 30,000 entry table in 27.4 ms for upload.

Optimized downloads. To perform optimized down-
load, the mobile device sends download request to the
cloud agent with input parameters set to include the
network parameters, file information, and mobile devices
id (e.g., A00O1 for OnePlus One). Upon receiving the
request, the cloud agent retrieves file size and type from
its file system or from fileStorage table and executes a
similar set of SQL statements on historyDecomp table
to select a transfer mode with the highest effective
throughput for the given device type. Selected transfer
modes send either the compressed versions of files main-
tained on the cloud or perform on-demand compression
of maintained uncompressed files. With 30,000 table
entries, SQL query executes in 2.5 ms for download.

Once the mobile device starts receiving the file, it
decodes the first incoming bytes to decide which decom-
pression utility it should use to complete the transaction.
If decompression is selected, the compressed size, CS,
and total execution time, T.CDW, are returned at the
end of the download process. The mobile device agent
will then update its prediction tables with compression
ratio, CR, and estimated local decompression throughput,
Th.D. Updates to historyDecomp table will refine pre-
diction data with each successful compressed download,
and will be used periodically to update clouds tables.

IV. EXPERIMENTAL EVALUATION

Experimental evaluation involves running upload and
download agents on a mobile device and the cloud. Each
transfer mode selected by the proposed framework is



TABLE II
DATASETS TO CHARACTERIZE LOCATION COMPRESSION

Dataset # of Size

D Name 1YP€ Files GB Notes

DO APK apk 279 7.4 Extracted apk files

D1 apksource code 59 1.2 Android source files

D2 Books text 1067 0.6 Project Gutenberg ebooks
D3 DNG dng 67 1.5 Lossless DNG images
D4  HealthSUM csv/idat 28 0.07 Physiological log records
D5 HealthWAVE csv/dat 86 2.9 Physiological waveforms
D6 Maps  tar 51 2.6 MAPS.ME offline maps
D7  Maps.route  tar 50 2.5 MAPS.ME offline routes
D8 OsmAnd  tar 50 7.6 OsmAnd navigation files
D9 Translate  tar 50 9.4 Google translation files

augmented to measure the effective upload and down-
load throughputs. To measure the effectiveness of the
proposed framework, the effective throughputs achieved
by the framework, Th.FW, are compared to the ef-
fective throughputs of uncompressed transfers, Th.UUP
[Th.UDW], and the default compressed transfers that
utilize gzip -6, Th.CUP(gzip -6) [Th.CDW(gzip -6)].
The measurements are repeated for WLAN network
throughputs set to 0.5, 2, 3.5, and 5 MB/s

Datasets. To evaluate the effectiveness of the frame-
work for various data files, a collection of representative
datasets is compiled. The datasets include executables
and source files of popular Android applications, text
files, lossless images in the DNG format, mobile health
summary and waveform files in text and binary formats,
offline maps and routing files from MAPS.ME and
OsmAnd applications, and offline language packages
from the Google Translate application. Table II gives
a complete list of the datasets used, including file types,
the number of files in a set, the total size, a description,
and dataset identifiers (D0-D9) used in the rest of this
paper. Files that are compressed by default (e.g., apk)
are repackaged into uncompressed archives (tar). The
datasets are used in creating prediction tables for sup-
ported local compression utilities and levels. Finally, the
number of entries in the tables is reduced and averaged
to a certain file size granularity.

V. RESULTS
A. Throughput Speedup for Uploads

The first throughput speedup for uploads is calculated
as the throughput achieved by the framework divided
by the throughput of the corresponding uncompressed
upload, Th.FW/Th.UUP. It varies as a function of file
type, file size, and network parameters. The optimized
file uploads are highly beneficial for the majority of files,
except for a small group of book files. The maximum
speedup ranges from 1.29 for D7 files to 14.74 for the
D5 files on a 0.5 MB/s WLAN, and from 2.34 for the
D4 files to 6.71 for the D5 files on the 5 MB/s WLAN.

The second speedup is calculated as the throughput
achieved by the framework divided by the throughput
of the default compressed upload, Th.FW/Th.CUP(gzip

-6). In the case of low network throughput (0.5 MB/s),
the advantage of the optimized file uploads is highly
depended on the file type. The maximum speedup ranges
from 1.2 to 1.3 for DO-D3, from 1.15 to 1.6 for D4-
D5, and effectively achieving no speedup for D6-D9.
The framework selects utilities with a high compression
ratio for easily compressible files (e.g., 91% bzip2 for
D5.dat, and 42% xz for DI) and faster utilities for files
with limited compressibility (100% pigz for D6-D9).
For high network throughput (5MB/s), the optimized
uploads provide significant improvements over the de-
fault compressed uploads. The maximum speedup ranges
from 2.23 to 5.28 for DO-D2, from 2.85 to 11.56 for D3,
from 4.78 to 11.32 for D4-D5, and from 3.44 to 5.58 for
D6-D9. The framework selects pigz (50%-100%), Izop
(up to 60% for D2 and D4), and uncompressed transfer.
Table III shows the total upload throughput speedups
for each and for all datasets combined (row Total)
when transferring files over the WLAN network con-
nection with the network throughputs set to 0.5, 2, 3.5,
and 5 MB/s. To determine the total throughput speedup
achieved by the framework for a dataset, we divide the
sum of all total uncompressed file transfer times in the
dataset with the sum of all total compressed file transfer
times when using the framework. The total throughput
speedup relative to uncompressed file uploads for all
datasets used in the evaluation ranges from 1.46 (on
the 3.5 MB/s network) to 2.38 (on the 5 MB/s network).
The speedup increases with an increase in the network
throughput. It should be noted that the optimized uploads
are most beneficial for files that are most likely to be
uploaded to the cloud, including the mHealth files and
DNG images. The optimized transfers perform well for
all network conditions. The total throughput speedup
relative to the default compressed file uploads for all
files used in the evaluation ranges from 1.02 (on the
0.5 MB/s network) to 2.97 (on the 5 MB/s network).

B. Throughput Speedup for Downloads

The first speedup for downloads is calculated as the
throughput achieved by the framework divided by the
throughput of the corresponding uncompressed down-
load. The optimized file downloads are highly beneficial
for the majority of files, except for a small group of book
files transferred over a high-throughput connection. The
maximum speedup ranges from 1.37 for the D7 files to
32.49 for the D5 files on the 0.5 MB/s network, and from
2.77 for the D7 files to 18.28 for D5 files on the 5 MB/s
network.

The second speedup is calculated as the throughput
achieved by the framework divided by the throughput of
the default compressed download, Th.FW/Th.CDW(gzip
-6). For low network throughput, the maximum speedup
ranges from 1.20 to 1.78 for DO-D3, from 1.51 to 3.8 for
D4-D5, and from 1.08 to 1.25 for D6-D9. The framework
selects bzip2 (91% for D2), xz (86%-100%), and pbzip2



TABLE III
UPLOAD SPEEDUPS: TH.FW/TH.UUP [TH.CUP(GZIP)]

0.5 MB/s
Th.FW/Th. UUP gzip

D0 229 1.05
D1 325 1.03
D2 195 1.01
D3 240 128
724 1.16
542 1.15
12.28 1.57
451 1.37
D6 126 1.00
D7 1.14 1.00
D8 135 1.00
D9 128 1.00

1.56 1.02

2 MB/s
UUP gzip

2.12 1.38
2.82 121
1.27 1.10
1.84
3.20
2.68 1
7.17 3
279 2.

1

1

1

3.5 MB/s
UUP gzip

1.86 1.97
272 2.14
1.09 1.20
1.74 4.55
2.53 1.76
2 196 1.52
7 597 443
5 2.18 3.60
6 1.23 1.61
6
4

5 MB/s
UUP gzip

1.84 2.70
295 230
1.10 1.14
2.52 640
2.17 1.80
1.83 1.44
535 5.83
275 4.04
223 241
2.03 271
2.64 324
252 2.80

238 297

1.24
1.13
1.33
1.27

1.50

1.14 1.93
1.34 2.14
128 1.84

146 2.06

TABLE IV
DOWNLOAD SPEEDUPS: TH.FW/TH.UDW [TH.CDW(GZIP)]

05MB/s 2MB/s 35MB/s 5 MB/s
Th.FW/Th. UDW gzip UDW gzip UDW gzip UDW gzip
D0 272 126 287 122 244 115 206 101
D1 412 131 393 129 321 1.14 3.64 1.00
D2 192 1.7 121 125 1.15 107 112 124
D3 278 147 249 149 228 127 3.6 1.13
Ddcsy 7.1 121 362 108 261 124 230 1.04
Dddat 572 129 284 113 210 1.07 183 1.02
DS.csv 2218 284 1568 2.13 7.88 1.14 118 125
D5dat 458 140 3.15 115 250 105 3.08 1.04
D6 145 1.15 144 115 125 099 230 1.02
D7 121 106 115 101 1.15 1.00 2.12 1.0l
D8 163 120 160 1.18 136 1.00 251 098
D9 155 120 153 1.19 129 100 255 1.04
Total 1.85 120 178 1.19 153 1.02 250 1.03

(100% for D3 and 60% for D5.dat). For higher network
throughput, the advantage of the optimized file down-
loads is highly depended on the file type. The maximum
speedup ranges from 1.01 to 1.40 for DO-D3, from 1.18
to 1.7 for D4-D5, and from 1.00 to 1.09 for D6-D9. The
framework selects fast utilities such as pigz (31% for
DI to 100% for D8-D9), lzop (31% for D2), and gzip,
as well as slower utilities such as xz (43% for D4.csv)
and pbzip2 (100% for D3 and D5.csv).

Table IV shows the total download throughput
speedup for each and for all datasets combined (row To-
tal) when transferring files over the WLAN network with
the network throughput set to 0.5, 2, 3.5, and 5 MB/s.
The total throughput speedup relative to uncompressed
file downloads for all files used in the evaluation ranges
from 1.53 (on the 3.5MB/s network) to 2.5 (on the
5 MB/s network). The total throughput speedup relative
to the default compressed file downloads for all files
used in the evaluation ranges from 1.02 (on the 3.5 MB/s
network) to 1.2 (on the 0.5 MB/s network).

VI. CONCLUSION

This paper describes the design and an implementa-
tion of the framework for optimizing data file transfers

between mobile devices and the cloud using compression
utilities. Agents running on mobile devices and the cloud

utilize file information, network connection parameters,
analytical models for describing effective throughput of
uncompressed and compressed file transfers, and history-
based tables for predicting compression ratio and local
(de)compression throughputs to select a transfer mode
that maximizes the effective file transfer throughput. The
effectiveness of the proposed framework is experimen-
tally evaluated for a range of files by comparing the
effective throughput of optimized file transfers to the ef-
fective throughput of uncompressed file transfers and file
transfers that use the default compression. We showed
that the proposed framework significantly improves the
effective throughput and outperforms the default com-
pressed transfers for certain network conditions.
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