
An Environment for Automated Power Measurements
on Mobile Computing Platforms

Mladen Milosevic, Armen Dzhagaryan, Emil Jovanov, Aleksandar Milenković

Electrical and Computer Engineering
University of Alabama in Huntsville

301 Sparkman Dr., Huntsville, AL 35899
{mladen.milosevic, aad0002, jovanoe, milenka}@uah.edu

ABSTRACT

Mobile computing devices such as smartphones, tablet computers,

and e-readers have become the dominant personal computing

platforms. Energy efficiency is a prime design requirement for

mobile device manufacturers and smart application developers

alike. Runtime power measurements on mobile platforms provide

insights that can eventually lead to more energy-efficient

operation. In this paper we describe mPowerProfile - an

environment for automated power measurements of programs

running on a mobile development platform. We discuss

mPowerProfile’s main functions and its utilization in several

example studies based on the Pandaboard and Raspberry Pi

platforms.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques.

General Terms

Measurement, Performance, Experimentation.

Keywords

Energy-efficiency, Power Profiling.

1. INTRODUCTION
Energy efficiency is a prime design requirement for mobile device

manufacturers and smart application developers alike. It is driven

by several key factors, including (i) limited energy capacity of

batteries, (ii) cost considerations favoring less expensive

packaging, and (iii) user convenience favoring lightweight designs

with small form factors that operate for long periods without

battery recharges.

A number of recent research studies has focused on power

profiling and power estimation of mobile computing platforms.

Carroll and Heiser quantified energy consumption of each

component in a mobile device by performing rigorous tests and

then simulating a number of usage scenarios on mobile devices

[2]. Bircher and John used processor performance counters and

system-specific models to estimate consumption of CPU,

memory, disk and I/O [1]. Pathak et al used system call tracing

and known observations of the system to generate models that can

perform run-time power estimation with fine grained

measurements and with low error [3, 8, 9].

Runtime power measurements on real mobile platforms are

important for studies that target power optimizations or studies

that aim at developing analytical models for energy estimation

based on parameters derived from real platforms. Whereas several

prior studies focused on capturing power traces on smartphones

[2] and wireless sensor network platforms [5], they relied on

manual control and post-processing to synchronize power traces

with events in profiled programs. Developing an environment for

automated power measurements saves time and effort and allows

for accurate and fast profiling of running programs on mobile

platforms.

In this paper we introduce an environment for automated power

measurements of mobile computing platforms. The environment

relies on minimally invasive instrumentation of a mobile platform

using a shunt resistor on the power line and an inexpensive data

acquisition system (DAQ) for sampling the voltage at the shunt

resistor. The sampled voltage is directly proportional to the

current drawn by the platform, which in turn can be used to

determine power and total energy consumed. To provide

automated capturing of power traces of programs running on the

mobile platform, we developed a custom program called

mPowerProfile. This program runs on a development workstation

and interfaces both the mobile platform through a serial link and

the DAQ through a USB link, thus allowing a user to configure

the measurement setup and to synchronize the program execution

on the mobile platform with runtime measurement on the shunt

resistor. The current samples are logged into a file for further

processing and analysis, and the energy consumed is calculated

and logged.

The rest of the paper is organized as follows. Section 2 describes

our experimental setup and gives an example for energy

calculation. Section 3 describes main functions of the

mPowerProfile program and its use in capturing power traces.

Section 4 gives a short description of two development platforms

used in testing, Pandaboard and Raspberry Pi. Section 5 describes

how mPowerProfile can be utilized in evaluating energy

efficiency in several example studies. Section 5.1 focuses on

energy efficiency of uncompressed and compressed data transfers

from/to a mobile platform. Section 5.2 examines the impact of

frequency scaling on energy efficiency of data transfers. Section

5.3 focuses on power profiling of a video player program and

playing a video in a web browser from YouTube. Finally, Section

6 gives concluding remarks.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACMSE'13, April 4-6, 201, Savannah, GA, USA.

Copyright 2013 ACM 978-1-4503-1901-0/13/04...$15.00

2. EXPERIMENTAL SETUP
Figure 1 illustrates experimental setup for capturing power traces

and measuring the energy consumed during program execution on

a system under test, typically a mobile development platform. The

mobile platform is connected to a power supply (VSUPPLY) via a

low-resistance shunt resistor (R = 0.1 Ω). The voltage over the

shunt resistor is directly proportional to the current drawn by the

mobile platform (VSHUNT = R*I). The voltage is sampled using a

data acquisition system (DAQ) connected to a development

workstation. The current, I, can be calculated from the voltage

samples from the shunt resistor as I = VSHUNT/R.

Figure 1. Experimental setup.

Figure 2(a) shows the measured current drawn by Pandaboard [7]

before, during, and after compression of an input file using the

gzip utility [11] with lowest compression level (-1). The

compression command is issued at t=4 seconds and the

compression takes about 8.5 seconds. The sampling is continued

for 4 seconds after the completion of the compression task. Figure

2(a) shows the current drawn by Pandaboard during this period as

it is used in our energy calculations. Figure 2(b) shows the filtered

current signal, provided here only to enable easier visual

inspection by a human of the changes in the current drawn during

program execution.

The platform with all unnecessary services turned off draws 0.565

amperes when idling (Iidle=0.565 A). The start of the compression

is marked with a steep increase in the current, which remains high

throughout the compression and goes down to the idle current

level once the compression has completed. The number of

samples during the execution of a program is n = T*FS, where T is

the execution time for the given program and FS is the sampling

frequency. The total energy consumed (ET) is calculated as a

function of the measured current samples Ij as follows:

tVIET
n

j

jPLATFORMj 
1

,
 (1)

where, t=1/FS, and VPLATFORM,j = VSUPPLY – Ij*R. Note that the

calculation can be simplified by assuming VPLATFORM to be

constant because the voltage drop over the shunt resistor is

negligible. In addition to ET, we also calculate the energy

overhead of the executing program alone, EO, which excludes the

energy needed to run the platform when idle. This energy

overhead is calculated as:

TVIETEO idlePLARTFORMidle  , (2)

where VPLATFORM,idle = VSUPPLY – Iidle*R.

The accuracy of the energy estimation increases with increasing

sampling frequency. The maximum sampling frequency supported

by the DAQ in our setup is 200,000 samples per second (200

Ksps). For a processor core running at 1 GHz we can sample the

voltage every 5,000 CPU clock cycles. We experimented with

different sampling frequencies in the range of 10 Ksps to 200

Ksps and evaluated their impact on the energy calculations. We

found that the energy calculated using 20 Ksps is within 1% of the

energy calculated using 200 Ksps, so for our experiments we use a

sampling frequency of 20 Ksps.

3. mPowerProfile
mPowerProfile is a software tool for automated capturing of

power traces and evaluating energy-efficiency of programs

running on mobile computing platforms. mPowerProfile runs on a

development workstation and it controls both the system under

test (via a serial link terminal) and the DAQ (via a USB port).

Figure 3 shows the mPowerProfile’s GUI. It can operate in one of

the two modes – manually controlled measurements and

automated measurements. Regardless of the mode, the user first

configures the DAQ channel parameters, including device and

channel name, minimum and maximum voltages, wiring

configuration (differential or single-ended), the number of

channels (multiple channels can be sampled simultaneously), the

sampling frequency, and a scaling parameter (all logged samples

are multiplied by this parameter).

In the manual mode, the user selects the format (text or binary)

and location of the output files where samples are to be recorded,

and starts sampling by activating the Start button. Similarly, the

capturing of samples is stopped by activating the Stop button.

Workstation

serial link

Mobile Platform
(Linux)

VSUPPLY

Shunt
resistor
(0.1W)

DAQ
(FS)

usb

Voltage
samples

I [A]

1) Issue
commands over
serial link
2) Collect voltage
samples
3) Store voltage
samples
4) Calculate
energy Reports

mPowerProfile

(a)

(b)

Figure 2. Current drawn by Pandaboard during execution

of the gzip utility.

In the automated mode, the user can capture power traces for a

number of programs automatically. The user first connects to the

platform under test via a serial link by specifying serial port, login

parameters, and delay parameters (Start, Stop, and Call delays).

The user also prepares a script in the script window by entering

the shell commands for running applications which needs to be

profiled for power. Each shell command is preceded by the

number sign (‘#’) followed by the file name where the samples

are to be stored. When the user activates the Start Script button,

mPowerProfile takes the control and executes the commands from

the script window. It starts capturing and logging samples from

the DAQ immediately and waits for the Start delay to expire (e.g.,

4000 ms) before issuing the first command over the serial link that

will run an application of interest. mPowerProfile continues

sampling during the application execution as well as during the

period of time determined by the Stop delay after the application

is completed. The collection of samples is then terminated and the

log file is closed. The samples collected during the quite period

before the application is launched can be used to determine the

platform’s idle current, Iidle. The total energy consumed, ET, and

the energy overhead, EO, are calculated as shown in (1) and (2).

mPowerProfile delays the processing of the next command for the

amount of time specified in the Call delay parameter before

repeating the previous steps for the next command. The script can

include as many shell commands as needed. This way, a number

of measurements can easily be taken with minimum effort from

the user.

4. DEVELOPMENT PLATFORMS

4.1 Pandaboard
Pandaboard (Figure 4) is designed by Texas Instruments to

support software development for smartphones and other mobile

devices [7]. It features a Texas Instruments system-on-a-chip

(SoC) OMAP4430 [6] with 1 GB of low-power DDR2 SDRAM.

The OMAP4430 SoC includes a dual-core ARM Cortex-A9

MPCore processor, a 3D graphics accelerator, an image signal

processor, and a rich set of standard peripherals (timers,

communication interfaces, and a memory controller). A number of

commercial mobile devices, such as Amazon Kindle Fire,

BlackBerry Playbook, Motorola Droid RAZR, Samsung Galaxy

Tab and Galaxy S II, are based on this chipset. Pandaboard also

features an onboard 10/100 Ethernet port, a wireless interface

(802.11n and Bluetooth), DVI and HDMI video interfaces, an

audio interface, and two USB ports. Unfortunately, it does not

support mobile broadband Internet access. The platform can run

mobile open-source operating systems that are based on Linux,

including Ubuntu, Android, and Tizen. In our experiments, we use

an Ubuntu distribution provided by Linaro, a non-profit

organization that works on consolidating and optimizing open-

source code for the ARM architecture [4].

4.2 Raspberry Pi
Raspberry Pi (Figure 5) is a credit-card size computer that is

developed in the UK by the Raspberry Pi Foundation to be a

readily affordable platform for schools and aspiring young

students [10]. Raspberry Pi Model B represents a lower-end

device and it features Broadcom BCM2835 SoC, which contains

an ARM1176JZFS running at 700 MHz, a Videocore 4 GPU, and

512MB of RAM. Model B also includes an onboard 10/100

Ethernet port, GPIO pins, RCA and HDMI video interface, an

audio interface, two USB ports and SD card slot. Raspberry Pi has

a large developer’s community with projects ranging from

entertainment centers to dedicated computers for photography,

home automation, medical and robotic applications.

Figure 5. Raspberry Pi.

RCA Video out Audio out

USB 2.0

Ethernet

GPIO Headers

Broadcom BCM2835
ARM11 (700 MHz)

SD card slot
(back side)

HDMI

Micro
USB

Figure 3. mPowerProfile graphical user interface.

Figure 4. Pandaboard.

OMAP4430 (1 GHz dual-core ARM Cortex A9
+ 3D graphics accelerator), 1 GB DDR2

WLAN/
Bluetooth

HDMI/DVI
output

USB
10/100
Ethernet

Serial/
RS232

SD/MMC card
slot

Power
inputAudio

5. CASE STUDIES

5.1 Estimating Energy of Data Transfer with

and without Compression
Minimizing storage capacity requirements and energy costs of

data communication is of great interest for mobile platforms

because of their limited storage and energy resources. Data

compression utilities are thus critical in helping achieve energy-

efficient data communication, reducing communication latencies,

and making effective use of available storage.

In this case study we demonstrate the use of mPowerProfile in

evaluating energy efficiency of uncompressed and compressed

data transfers from Pandaboard to a remote server and vice versa,

from the remote server to Pandaboard over a wireless LAN

interface. This experiment involves measuring the energy of the

uncompressed transfers as well as the energy of the transfers that

involve compression and decompression tasks. For illustration

purposes we consider two common compression/decompression

utilities xz [12] and gzip [11] that are performed on Pandaboard

while communicating with the remote server. The utilities support

multiple compression levels (0 to 6 for xz and 1 to 9 for gzip),

with higher levels producing smaller files at the cost of increased

compute time. As an input file we use a single archive file (tar) of

~64MB that includes a text, an executable, an image, a file with

comma-separated values from a wearable health monitor, and a

source code.

For the compression tasks, the raw input file is read from the

Pandaboard’s tmpfs, compressed, streamed to the remote server

over a secure channel, and the output is redirected to the null

device of the remote server. By reading from the tmpfs on

Pandaboard (local file system in the memory) and writing into

/dev/null on the remote server we eliminate the impact of the

latencies caused by reading from an SD card or by writing to hard

disks on the remote server. Figure 6, line 2 shows a Linux

command that carries out the compression task using xz with -4.

For the decompression tasks, the compressed files are retrieved

from the temporary file system of the remote server through a

secure channel, decompressed on Pandaboard, and the output file

is redirected to the null device of Pandaboard. Figure 6, line 4

shows a Linux command that carries out the decompression task

using xz with -4. The communication between input,

compression/decompression, and output operations is carried out

through Linux pipes. The energies are measured for completing

the entire tasks (transfers with compression and decompression).

For the uncompressed upload (UUP), the raw input file is read

from the local tmpfs and streamed to the remote server over the

secure channel (Figure 6, line 6). For the uncompressed download

(UDW), the raw input file is read from the remote server’s tmpfs

and streamed to the null device on Pandaboard (Figure 6, line 8).

Figure 7 shows the total energy (ET) and energy overhead (EO) in

Joules for the uncompressed transfer (ET.UUP and EO.UUP) and

for the transfers with compression (ET.C and EO.C) from

Pandaboard to the remote server. The results indicate that the

transfers with xz compression are not energy efficient – xz with -0

is the only combination that requires less energy than the

uncompressed transfer. In all other cases, the compressed transfers

require more energy than the uncompressed transfer. On the other

side, gzip proves to be energy efficient for all compression levels

except with -8 and -9. The most energy efficient combination is

gzip with -1 requiring ~68 Joules, whereas the uncompressed

transfer requires ~161 Joules. These conclusions hold regardless

of the metric considered, the total energy or the energy overhead.

These results indicate (a) gzip is indeed useful in reducing energy

consumed for file uploads over WLAN, and (b) the common

practice of using the default gzip (with -6) is not the most energy

efficient way of uploading data from a mobile platform and thus

low levels should be used instead.

Figure 8 shows the total energy (ET) and the energy overhead

(EO) in Joules for the uncompressed transfer from the remote

server (ET.UDW and EO.UDW) and for the transfers with

decompression (ET.D and EO.D) on Pandaboard. Downloading

compressed files that are streamed into decompression utilities on

Pandboard proves to saves energy relatively to the uncompressed

download for both xz and gzip with all compression levels. xz

with -4 and -5 requires only ~42 Joules instead of ~158 needed for

Figure 7. Pandaboard: Energy for upload over WLAN.

Figure 8. Pandaboard: Energy for download over WLAN.

1

10

100

1000

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Pandaboard: Energy for Wireless Upload

EO.C ET.C EO.UUP ET.UUP

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Pandaboard: Energy for Wireless Download

EO.D ET.D EO.UDW ET.UDW

1. #xz_4_c.Isamples.txt (compression)

2. xz –kfc 4 /run/shm/test/input/totalInput.tar |

ssh armend@xeon-server "cat > /dev/null"

3. #xz_4_d.Isamples.txt (decompression)

4. ssh armend@xeon-server "cat

/run/shm/xz.cfd/totalInput.4.tar.xz" | xz -kfdc

> /dev/null

5. #UUP_c.Isamples.txt (raw upload)

6. cat /run/shm/test/input/totalInput.tar | ssh

armend@xeon-server "cat > /dev/null"

7. #UDW_d.Isamples.txt (raw download)

8. ssh armend@xeon-server "cat

/run/shm/input/totalInput.tar" | cat >

/dev/null

Figure 6. Examples of Linux commands for compressed and

uncompressed data transfers.

the download of the uncompressed input file.

We repeat the same experiment for Raspberry Pi, this time using

an Ethernet interface for communication to the remote server

instead of WLAN. Figure 9 shows the energies for the

uncompressed and compressed uploads. The results indicate that

neither of the compression utilities saves the energy and that the

the uncompressed file upload is the most energy efficient.

Raspberry Pi’s slower and weaker processor, smaller memory,

and faster communication channel than in Pandaboard make the

compressed uploads less energy efficient than the uncompressed

ones. Figure 10 shows the energies for the uncompressed and

compressed downloads. The gzip utility provides the energy

savings over the uncompressed file downloads, whereas xz

decompression tasks prove to be energy-wise inferior to the

uncompressed downloads.

5.2 Estimating Impact of Frequency Scaling

on Energy Consumed
Modern mobile platforms support dynamic frequency scaling in

order to preserve energy or amount of heat generated by the

processor chip. A Linux kernel infrastructure cpufreq allows for

automatic scaling of the frequency up or down depending on the

system load or manually scaling from userspace programs. For

example, Pandaboard based on OMAP4430 chip supports the

following clock frequencies: 300 MHz, 600 MHz, 800 MHz, and

1010 MHz.

Figure 11 shows the energies on Pandaboard for raw and

compressed uploads when the processor is running at 300 MHz.

By comparing the results with the ones from Figure 7 we can

observe that lowering the clock does not significantly impact the

energy overhead for the uncompressed transfer (50 Joules vs. 54

Joules) or for the compressed transfers with low compression

levels. However, it does increase the total energy because the

compression tasks take more time to complete and relatively high

idle current dominates the total energy. Similar conclusions can be

drawn for the download transfers shown in Figure 12. It should be

noted that the energy overhead for gzip is 60% lower when

running at 300 MHz instead of 1010 MHz. In addition, the

uncompressed download is more energy efficient when running at

300 MHz, e.g., EO.UDW(300 MHz) = 25.6 Joules, ET.UDW(300

MHz) = 132.86 Joules, EO.UDW(1.01GHz) = 44.87 Joules, and

ET.UDW(1.01GHz) = 158.86. This indicates that uncompressed

transfers that are not critical for user experience should utilize low

clock frequencies.

Figure 11. Pandaboard: Energy for uploads over WLAN at

300 MHz processor clock.

Figure 12. Pandaboard: Energy for downloads over WLAN

@300 MHz processor clock.

5.3 Power Profiling of Video Playing Tasks
The proposed environment allows for concurrent capturing power

traces from multiple shunt resistors. In this example, we

instrumente a Pandaboard ES platform that runs at 1.2 GHz. In

addition to the shunt resistor on the power supply line for the

platform, we placed a shunt resistor on the power distribution line

1

10

100

1000

10000

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Pandaboard: Energy for Wireless Upload @ 300 MHz

EO.C ET.C EO.UUP ET.UUP

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Pandaboard: Energy for Wireless Download @ 300 MHz

EO.D ET.D EO.UDW ET.UDW

Figure 9. Raspberry Pi: Energy for uploads over Ethernet.

Figure 10. Raspberry Pi: Energy for downloads over

Ethernet.

1

10

100

1000

10000

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Raspberry Pi: Energy for Wired Upload

EO.C ET.C EO.UUP ET.UUP

0

10

20

30

40

50

60

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

xz gzip

[J
o

u
le

]

Raspberry Pi: Energy for Wired Download

E0.D ET.D EO.DW ET.DW

for the processor core only. This way we can concurently record

the energy consumed by the entire platform and the energy

consumed by the processor core only.

Figure 13 shows the current drawn by Pandaboard ES and the

processor core alone while playing a video clip from the SD card

using mplayer program. The clip plays for about 12 seconds, and

ET=49.8 Joules, and EO=12.2 Joules, whereas the ET(CPU)=9.8

Joules, and EO(CPU)=5.5 Joules. The results clearly indicate that

the processor is responsible for only a part of the total energy

overhead, and that the graphics accelator is likely reponsible for

the rest of the energy consumed.

Figure 14 shows the current drawn by Pandaboard ES and the

processor core while playing a Youtube video clip (overe the

Etherenet) from the Firefox web browser. We can see that the

current drawn by the platform is practically identical to the current

drawn by the processor core. This indicates that the processor is

heavily tasked when playing YouTube video.

Figure 13. Pandaboard: Current drawn by the platform (blue)

and processor core (green) for playing a video clip in mplayer.

Figure 14. Pandaboard: Current drawn by the platform (blue)

and processor core (green) for playing a Youtube video clip in

Firefox.

6. CONCLUSIONS
This paper introduces an environment for automated power

measurements of programs running on mobile computing

platforms. The proposed environment relies on minimal

instrumentation of the mobile computing platform and the

mPowerProfile program that supports synchronized collection of

power traces and automated calculation of the total energy and the

energy overhead for running programs. The environment

capabilities are demonstrated on several case studies.

7. ACKNOWLEDGMENTS
This work has been supported in part by National Science

Foundation grants CNS-1205439 and CNS-1217470.

8. REFERENCES
[1] Bircher, W.L. and John, L.K. 2012. Complete System

Power Estimation Using Processor Performance Events.

IEEE Transactions on Computers. 61, 4 (Apr. 2012), 563 –

577.

[2] Carroll, A. and Heiser, G. 2010. An analysis of power

consumption in a smartphone. Proceedings of the 2010

USENIX conference on USENIX annual technical

conference (Berkeley, CA, USA, 2010), 21–21.

[3] Li, T. and John, L.K. 2003. Run-time modeling and

estimation of operating system power consumption.

SIGMETRICS Perform. Eval. Rev. 31, 1 (Jun. 2003), 160–

171.

[4] Linaro: open source software for ARM SoCs:

http://www.linaro.org/. Accessed: 2012-05-28.

[5] Milenkovic, A. et al. 2005. An environment for runtime

power monitoring of wireless sensor network platforms.

System Theory, 2005. SSST’05. Proceedings of the Thirty-

Seventh Southeastern Symposium on (2005), 406–410.

[6] OMAPTM 4 Platform - OMAP4430/OMAP4460:

http://www.ti.com/omap4430. Accessed: 2012-06-02.

[7] Pandaboard: http://pandaboard.org/. Accessed: 2012-05-

28.

[8] Pathak, A. et al. 2011. Fine-grained power modeling for

smartphones using system call tracing. Proceedings of the

sixth conference on Computer systems (New York, NY,

USA, 2011), 153–168.

[9] Pathak, A. et al. 2012. Where is the energy spent inside my

app?: fine grained energy accounting on smartphones with

Eprof. Proceedings of the 7th ACM european conference

on Computer Systems (New York, NY, USA, 2012), 29–

42.

[10] Raspberry Pi: http://www.raspberrypi.org/. Accessed:

2013-02-05.

[11] The gzip home page: http://www.gzip.org/. Accessed:

2012-05-25.

[12] XZ Utils: http://tukaani.org/xz/. Accessed: 2012-05-25.

