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ABSTRACT 

Mobile computing devices such as smartphones, tablet computers, 

and e-readers have become the dominant personal computing 

platforms. Energy efficiency is a prime design requirement for 

mobile device manufacturers and smart application developers 

alike. Runtime power measurements on mobile platforms provide 

insights that can eventually lead to more energy-efficient 

operation. In this paper we describe mPowerProfile - an 

environment for automated power measurements of programs 

running on a mobile development platform. We discuss 

mPowerProfile’s main functions and its utilization in several 

example studies based on the Pandaboard and Raspberry Pi 

platforms. 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Measurement techniques.  

General Terms 

Measurement, Performance, Experimentation. 

Keywords 

Energy-efficiency, Power Profiling. 

1. INTRODUCTION 
Energy efficiency is a prime design requirement for mobile device 

manufacturers and smart application developers alike. It is driven 

by several key factors, including (i) limited energy capacity of 

batteries, (ii) cost considerations favoring less expensive 

packaging, and (iii) user convenience favoring lightweight designs 

with small form factors that operate for long periods without 

battery recharges.  

A number of recent research studies has focused on power 

profiling and power estimation of mobile computing platforms. 

Carroll and Heiser quantified energy consumption of each 

component in a mobile device by performing rigorous tests and 

then simulating a number of usage scenarios on mobile devices 

[2]. Bircher and John used processor performance counters and 

system-specific models to estimate consumption of CPU, 

memory, disk and I/O [1]. Pathak et al used system call tracing 

and known observations of the system to generate models that can 

perform run-time power estimation with fine grained 

measurements and with low error [3, 8, 9].  

Runtime power measurements on real mobile platforms are 

important for studies that target power optimizations or studies 

that aim at developing analytical models for energy estimation 

based on parameters derived from real platforms. Whereas several 

prior studies focused on capturing power traces on smartphones 

[2] and wireless sensor network platforms [5], they relied on 

manual control and post-processing to synchronize power traces 

with events in profiled programs. Developing an environment for 

automated power measurements saves time and effort and allows 

for accurate and fast profiling of running programs on mobile 

platforms.  

In this paper we introduce an environment for automated power 

measurements of mobile computing platforms. The environment 

relies on minimally invasive instrumentation of a mobile platform 

using a shunt resistor on the power line and an inexpensive data 

acquisition system (DAQ) for sampling the voltage at the shunt 

resistor. The sampled voltage is directly proportional to the 

current drawn by the platform, which in turn can be used to 

determine power and total energy consumed. To provide 

automated capturing of power traces of programs running on the 

mobile platform, we developed a custom program called 

mPowerProfile. This program runs on a development workstation 

and interfaces both the mobile platform through a serial link and 

the DAQ through a USB link, thus allowing a user to configure 

the measurement setup and to synchronize the program execution 

on the mobile platform with runtime measurement on the shunt 

resistor. The current samples are logged into a file for further 

processing and analysis, and the energy consumed is calculated 

and logged.  

The rest of the paper is organized as follows. Section 2 describes 

our experimental setup and gives an example for energy 

calculation. Section 3 describes main functions of the 

mPowerProfile program and its use in capturing power traces. 

Section 4 gives a short description of two development platforms 

used in testing, Pandaboard and Raspberry Pi. Section 5 describes 

how mPowerProfile can be utilized in evaluating energy 

efficiency in several example studies. Section 5.1 focuses on 

energy efficiency of uncompressed and compressed data transfers 

from/to a mobile platform. Section 5.2 examines the impact of 

frequency scaling on energy efficiency of data transfers. Section 

5.3 focuses on power profiling of a video player program and 

playing a video in a web browser from YouTube. Finally, Section 

6 gives concluding remarks.   
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2. EXPERIMENTAL SETUP 
Figure 1 illustrates experimental setup for capturing power traces 

and measuring the energy consumed during program execution on 

a system under test, typically a mobile development platform. The 

mobile platform is connected to a power supply (VSUPPLY) via a 

low-resistance shunt resistor (R = 0.1 Ω). The voltage over the 

shunt resistor is directly proportional to the current drawn by the 

mobile platform (VSHUNT = R*I). The voltage is sampled using a 

data acquisition system (DAQ) connected to a development 

workstation. The current, I, can be calculated from the voltage 

samples from the shunt resistor as I = VSHUNT/R. 

 

 

Figure 1. Experimental setup. 

 

Figure 2(a) shows the measured current drawn by Pandaboard [7] 

before, during, and after compression of an input file using the 

gzip utility [11] with lowest compression level (-1). The 

compression command is issued at t=4 seconds and the 

compression takes about 8.5 seconds. The sampling is continued 

for 4 seconds after the completion of the compression task. Figure 

2(a) shows the current drawn by Pandaboard during this period as 

it is used in our energy calculations. Figure 2(b) shows the filtered 

current signal, provided here only to enable easier visual 

inspection by a human of the changes in the current drawn during 

program execution.  

The platform with all unnecessary services turned off draws 0.565 

amperes when idling (Iidle=0.565 A). The start of the compression 

is marked with a steep increase in the current, which remains high 

throughout the compression and goes down to the idle current 

level once the compression has completed. The number of 

samples during the execution of a program is n = T*FS, where T is 

the execution time for the given program and FS is the sampling 

frequency. The total energy consumed (ET) is calculated as a 

function of the measured current samples Ij as follows: 

tVIET
n

j

jPLATFORMj 
1

,
  (1) 

where, t=1/FS, and VPLATFORM,j = VSUPPLY – Ij*R. Note that the 

calculation can be simplified by assuming VPLATFORM to be 

constant because the voltage drop over the shunt resistor is 

negligible. In addition to ET, we also calculate the energy 

overhead of the executing program alone, EO, which excludes the 

energy needed to run the platform when idle. This energy 

overhead is calculated as:  

TVIETEO idlePLARTFORMidle  ,  (2) 

where VPLATFORM,idle = VSUPPLY – Iidle*R.  

The accuracy of the energy estimation increases with increasing 

sampling frequency. The maximum sampling frequency supported 

by the DAQ in our setup is 200,000 samples per second (200 

Ksps). For a processor core running at 1 GHz we can sample the 

voltage every 5,000 CPU clock cycles. We experimented with 

different sampling frequencies in the range of 10 Ksps to 200 

Ksps and evaluated their impact on the energy calculations. We 

found that the energy calculated using 20 Ksps is within 1% of the 

energy calculated using 200 Ksps, so for our experiments we use a 

sampling frequency of 20 Ksps. 

3. mPowerProfile 
mPowerProfile is a software tool for automated capturing of 

power traces and evaluating energy-efficiency of programs 

running on mobile computing platforms. mPowerProfile runs on a 

development workstation and it controls both the system under 

test (via a serial link terminal) and the DAQ (via a USB port).  

Figure 3 shows the mPowerProfile’s GUI. It can operate in one of 

the two modes – manually controlled measurements and 

automated measurements. Regardless of the mode, the user first 

configures the DAQ channel parameters, including device and 

channel name, minimum and maximum voltages, wiring 

configuration (differential or single-ended), the number of 

channels (multiple channels can be sampled simultaneously), the 

sampling frequency, and a scaling parameter (all logged samples 

are multiplied by this parameter).  

In the manual mode, the user selects the format (text or binary) 

and location of the output files where samples are to be recorded, 

and starts sampling by activating the Start button. Similarly, the 

capturing of samples is stopped by activating the Stop button.  
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Figure 2. Current drawn by Pandaboard during execution 

of the gzip utility. 



In the automated mode, the user can capture power traces for a 

number of programs automatically. The user first connects to the 

platform under test via a serial link by specifying serial port, login 

parameters, and delay parameters (Start, Stop, and Call delays). 

The user also prepares a script in the script window by entering 

the shell commands for running applications which needs to be 

profiled for power. Each shell command is preceded by the 

number sign (‘#’) followed by the file name where the samples 

are to be stored. When the user activates the Start Script button, 

mPowerProfile takes the control and executes the commands from 

the script window. It starts capturing and logging samples from 

the DAQ immediately and waits for the Start delay to expire (e.g., 

4000 ms) before issuing the first command over the serial link that 

will run an application of interest. mPowerProfile continues 

sampling during the application execution as well as during the 

period of time determined by the Stop delay after the application 

is completed. The collection of samples is then terminated and the 

log file is closed. The samples collected during the quite period 

before the application is launched can be used to determine the 

platform’s idle current, Iidle. The total energy consumed, ET, and 

the energy overhead, EO, are calculated as shown in (1) and (2). 

mPowerProfile delays the processing of the next command for the 

amount of time specified in the Call delay parameter before 

repeating the previous steps for the next command. The script can 

include as many shell commands as needed. This way, a number 

of measurements can easily be taken with minimum effort from 

the user. 

4. DEVELOPMENT PLATFORMS 

4.1 Pandaboard 
Pandaboard (Figure 4) is designed by Texas Instruments to 

support software development for smartphones and other mobile 

devices [7]. It features a Texas Instruments system-on-a-chip 

(SoC) OMAP4430 [6] with 1 GB of low-power DDR2 SDRAM. 

The OMAP4430 SoC includes a dual-core ARM Cortex-A9 

MPCore processor, a 3D graphics accelerator, an image signal 

processor, and a rich set of standard peripherals (timers, 

communication interfaces, and a memory controller). A number of 

commercial mobile devices, such as Amazon Kindle Fire, 

BlackBerry Playbook, Motorola Droid RAZR, Samsung Galaxy 

Tab and Galaxy S II, are based on this chipset. Pandaboard also 

features an onboard 10/100 Ethernet port, a wireless interface 

(802.11n and Bluetooth), DVI and HDMI video interfaces, an 

audio interface, and two USB ports. Unfortunately, it does not 

support mobile broadband Internet access. The platform can run 

mobile open-source operating systems that are based on Linux, 

including Ubuntu, Android, and Tizen. In our experiments, we use 

an Ubuntu distribution provided by Linaro, a non-profit 

organization that works on consolidating and optimizing open-

source code for the ARM architecture [4]. 

4.2 Raspberry Pi 
Raspberry Pi (Figure 5) is a credit-card size computer that is 

developed in the UK by the Raspberry Pi Foundation to be a 

readily affordable platform for schools and aspiring young 

students [10]. Raspberry Pi Model B represents a lower-end 

device and it features Broadcom BCM2835 SoC, which contains 

an ARM1176JZFS running at 700 MHz, a Videocore 4 GPU, and 

512MB of RAM. Model B also includes an onboard 10/100 

Ethernet port, GPIO pins, RCA and HDMI video interface, an 

audio interface, two USB ports and SD card slot. Raspberry Pi has 

a large developer’s community with projects ranging from 

entertainment centers to dedicated computers for photography, 

home automation, medical and robotic applications.  

 

 

Figure 5. Raspberry Pi. 
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Figure 3. mPowerProfile graphical user interface. 

 

Figure 4. Pandaboard. 

OMAP4430 (1 GHz dual-core ARM Cortex A9 
+ 3D graphics accelerator), 1 GB DDR2

WLAN/
Bluetooth

HDMI/DVI 
output

USB
10/100 
Ethernet

Serial/
RS232

SD/MMC card 
slot

Power
inputAudio



5. CASE STUDIES 

5.1 Estimating Energy of Data Transfer with 

and without Compression 
Minimizing storage capacity requirements and energy costs of 

data communication is of great interest for mobile platforms 

because of their limited storage and energy resources. Data 

compression utilities are thus critical in helping achieve energy-

efficient data communication, reducing communication latencies, 

and making effective use of available storage.  

In this case study we demonstrate the use of mPowerProfile in 

evaluating energy efficiency of uncompressed and compressed 

data transfers from Pandaboard to a remote server and vice versa, 

from the remote server to Pandaboard over a wireless LAN 

interface. This experiment involves measuring the energy of the 

uncompressed transfers as well as the energy of the transfers that 

involve compression and decompression tasks. For illustration 

purposes we consider two common compression/decompression 

utilities xz [12] and gzip [11] that are performed on Pandaboard 

while communicating with the remote server. The utilities support 

multiple compression levels (0 to 6 for xz and 1 to 9 for gzip), 

with higher levels producing smaller files at the cost of increased 

compute time. As an input file we use a single archive file (tar) of 

~64MB that includes a text, an executable, an image, a file with 

comma-separated values from a wearable health monitor, and a 

source code.  

For the compression tasks, the raw input file is read from the 

Pandaboard’s tmpfs, compressed, streamed to the remote server 

over a secure channel, and the output is redirected to the null 

device of the remote server. By reading from the tmpfs on 

Pandaboard (local file system in the memory) and writing into 

/dev/null on the remote server we eliminate the impact of the 

latencies caused by reading from an SD card or by writing to hard 

disks on the remote server. Figure 6, line 2 shows a Linux 

command that carries out the compression task using xz with -4. 

For the decompression tasks, the compressed files are retrieved 

from the temporary file system of the remote server through a 

secure channel, decompressed on Pandaboard, and the output file 

is redirected to the null device of Pandaboard. Figure 6, line 4 

shows a Linux command that carries out the decompression task 

using xz with -4. The communication between input, 

compression/decompression, and output operations is carried out 

through Linux pipes. The energies are measured for completing 

the entire tasks (transfers with compression and decompression). 

For the uncompressed upload (UUP), the raw input file is read 

from the local tmpfs and streamed to the remote server over the 

secure channel (Figure 6, line 6). For the uncompressed download 

(UDW), the raw input file is read from the remote server’s tmpfs 

and streamed to the null device on Pandaboard (Figure 6, line 8).  

Figure 7 shows the total energy (ET) and energy overhead (EO) in 

Joules for the uncompressed transfer (ET.UUP and EO.UUP) and 

for the transfers with compression (ET.C and EO.C) from 

Pandaboard to the remote server. The results indicate that the 

transfers with xz compression are not energy efficient – xz with -0 

is the only combination that requires less energy than the 

uncompressed transfer. In all other cases, the compressed transfers 

require more energy than the uncompressed transfer. On the other 

side, gzip proves to be energy efficient for all compression levels 

except with -8 and -9. The most energy efficient combination is 

gzip with -1 requiring ~68 Joules, whereas the uncompressed 

transfer requires ~161 Joules. These conclusions hold regardless 

of the metric considered, the total energy or the energy overhead. 

These results indicate (a) gzip is indeed useful in reducing energy 

consumed for file uploads over WLAN, and (b) the common 

practice of using the default gzip (with -6) is not the most energy 

efficient way of uploading data from a mobile platform and thus 

low levels should be used instead. 

Figure 8 shows the total energy (ET) and the energy overhead 

(EO) in Joules for the uncompressed transfer from the remote 

server (ET.UDW and EO.UDW) and for the transfers with 

decompression (ET.D and EO.D) on Pandaboard. Downloading 

compressed files that are streamed into decompression utilities on 

Pandboard proves to saves energy relatively to the uncompressed 

download for both xz and gzip with all compression levels. xz 

with -4 and -5 requires only ~42 Joules instead of ~158 needed for 

 

Figure 7. Pandaboard: Energy for upload over WLAN. 

 

 

Figure 8. Pandaboard: Energy for download over WLAN. 
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1. #xz_4_c.Isamples.txt (compression) 

2. xz –kfc 4 /run/shm/test/input/totalInput.tar | 

ssh armend@xeon-server "cat > /dev/null"  

3. #xz_4_d.Isamples.txt (decompression) 

4. ssh armend@xeon-server "cat 

/run/shm/xz.cfd/totalInput.4.tar.xz" | xz -kfdc 

> /dev/null 

5. #UUP_c.Isamples.txt (raw upload) 

6. cat /run/shm/test/input/totalInput.tar | ssh 

armend@xeon-server "cat > /dev/null" 

7. #UDW_d.Isamples.txt (raw download) 

8. ssh armend@xeon-server "cat 

/run/shm/input/totalInput.tar" | cat > 

/dev/null 

Figure 6. Examples of Linux commands for compressed and 

uncompressed data transfers. 

 



the download of the uncompressed input file. 

We repeat the same experiment for Raspberry Pi, this time using 

an Ethernet interface for communication to the remote server 

instead of WLAN. Figure 9 shows the energies for the 

uncompressed and compressed uploads. The results indicate that 

neither of the compression utilities saves the energy and that the 

the uncompressed file upload is the most energy efficient. 

Raspberry Pi’s slower and weaker processor, smaller memory, 

and faster communication channel than in Pandaboard make the 

compressed uploads less energy efficient than the uncompressed 

ones. Figure 10 shows the energies for the uncompressed and 

compressed downloads. The gzip utility provides the energy 

savings over the uncompressed file downloads, whereas xz 

decompression tasks prove to be energy-wise inferior to the 

uncompressed downloads.  

5.2 Estimating Impact of Frequency Scaling 

on Energy Consumed 
Modern mobile platforms support dynamic frequency scaling in 

order to preserve energy or amount of heat generated by the 

processor chip. A Linux kernel infrastructure cpufreq allows for 

automatic scaling of the frequency up or down depending on the 

system load or manually scaling from userspace programs. For 

example, Pandaboard based on OMAP4430 chip supports the 

following clock frequencies: 300 MHz, 600 MHz, 800 MHz, and 

1010 MHz.  

Figure 11 shows the energies on Pandaboard for raw and 

compressed uploads when the processor is running at 300 MHz. 

By comparing the results with the ones from Figure 7 we can 

observe that lowering the clock does not significantly impact the 

energy overhead for the uncompressed transfer (50 Joules vs. 54 

Joules) or for the compressed transfers with low compression 

levels. However, it does increase the total energy because the 

compression tasks take more time to complete and relatively high 

idle current dominates the total energy. Similar conclusions can be 

drawn for the download transfers shown in Figure 12. It should be 

noted that the energy overhead for gzip is 60% lower when 

running at 300 MHz instead of 1010 MHz. In addition, the 

uncompressed download is more energy efficient when running at 

300 MHz, e.g., EO.UDW(300 MHz) = 25.6 Joules, ET.UDW(300 

MHz) = 132.86 Joules, EO.UDW(1.01GHz) = 44.87 Joules, and 

ET.UDW(1.01GHz) = 158.86.  This indicates that uncompressed 

transfers that are not critical for user experience should utilize low 

clock frequencies.  

 

 

Figure 11. Pandaboard: Energy for uploads over WLAN at 

300 MHz processor clock.  

 

 

Figure 12. Pandaboard: Energy for downloads over WLAN 

@300 MHz processor clock.   

 

5.3 Power Profiling of Video Playing Tasks 
The proposed environment allows for concurrent capturing power 

traces from multiple shunt resistors. In this example, we 

instrumente a Pandaboard ES platform that runs at 1.2 GHz. In 

addition to the shunt resistor on the power supply line for the 

platform, we placed a shunt resistor on the power distribution line 
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Figure 9. Raspberry Pi: Energy for uploads over Ethernet.  

 

 

Figure 10. Raspberry Pi: Energy for downloads over 

Ethernet. 
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for the processor core only. This way we can concurently record 

the energy consumed by the entire platform and the energy 

consumed by the processor core only.  

Figure 13 shows the current drawn by Pandaboard ES and the 

processor core alone while playing a video clip from the SD card 

using mplayer program. The clip plays for about 12 seconds, and 

ET=49.8 Joules, and EO=12.2 Joules, whereas the ET(CPU)=9.8 

Joules, and EO(CPU)=5.5 Joules. The results clearly indicate that 

the processor is responsible for only a part of the total energy 

overhead, and that the graphics accelator is likely reponsible for 

the rest of the energy consumed. 

Figure 14 shows the current drawn by Pandaboard ES and the 

processor core while playing a Youtube video clip (overe the 

Etherenet) from the Firefox web browser. We can see that the 

current drawn by the platform is practically identical to the current 

drawn by the processor core. This indicates that the processor is 

heavily tasked when playing YouTube video.  

 

 

Figure 13. Pandaboard: Current drawn by the platform (blue) 

and processor core (green) for playing a video clip in mplayer. 

 

 

Figure 14. Pandaboard: Current drawn by the platform (blue) 

and processor core (green) for playing a Youtube video clip in 

Firefox. 

6. CONCLUSIONS 
This paper introduces an environment for automated power 

measurements of programs running on mobile computing 

platforms. The proposed environment relies on minimal 

instrumentation of the mobile computing platform and the 

mPowerProfile program that supports synchronized collection of 

power traces and automated calculation of the total energy and the 

energy overhead for running programs. The environment 

capabilities are demonstrated on several case studies.  
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