
Performance and Energy Consumption of
Lossless Compression/Decompression Utilities on Mobile Computing Platforms

Aleksandar Milenkovi�, Armen Dzhagaryan
Department of Electrical and Computer Engineering

The University of Alabama in Huntsville
Huntsville, AL, U.S.A.

{milenka, aad002}@uah.edu

Martin Burtscher
Department of Computer Science

Texas State University-San Marcos
San Marcos, TX, U.S.A.
burtscher@txstate.edu

Abstract—Data compression and decompression utilities can be
critical in increasing communication throughput, reducing
communication latencies, achieving energy-efficient communi-
cation, and making effective use of available storage. This
paper experimentally evaluates several such utilities for mul-
tiple compression levels on systems that represent current
mobile platforms. We characterize each utility in terms of its
compression ratio, compression and decompression through-
put, and energy efficiency. We consider different use cases that
are typical for modern mobile environments. We find a wide
variety of energy costs associated with data compression and
decompression and provide practical guidelines for selecting
the most energy efficient configurations for each use case. The
best performing configurations provide 6-fold and 4-fold im-
provements in energy efficiency for compressed uploads and
downloads over WLAN, respectively, when compared to un-
compressed data transfers.

Keywords—mobile computing; measurement techniques; da-
ta compression; energy-aware systems

I. INTRODUCTION
The general goal of data compression is to reduce the

number of bits needed to represent information. Data can be
compressed losslessly or lossily. Lossless compression
means that the original data can be reproduced exactly by the
decompressor. In contrast, lossy compression, which often
results in much higher compression ratios, can only approx-
imate the original data. This is typically acceptable if the
data are meant for human consumption such as audio and
video. However, program code and input, medical data,
email and other text generally do not tolerate lossy compres-
sion. We focus on lossless compression in this paper.

Lossless compression is achieved by replacing frequent
bit or byte strings with shorter sequences and infrequent bit
or byte strings with longer sequences, which tends to reduce
the overall data size. For example, in Huffman compression,
bit strings are assigned unique, variable-length code words
whose length is inversely proportional to the frequency of
the corresponding bit strings. Huffman coding [1], or the
slower but more sophisticated arithmetic coding [2], is often
preceded by a transformation stage whose purpose is to
model (or predict) the data. If the model is accurate, then the
difference sequence between the predicted and the actual
data primarily consists of small values that cluster around
zero, which are easy to encode effectively. Various models

are in use, including dictionaries of expected or recently
encountered “words,” sliding windows that assume that
recently seen data patterns will repeat, which are used in the
Lempel-Ziv approach [3], as well as reversibly sorting data
to bring similar values close together, which is the approach
taken by the Burrows and Wheeler transform [4]. The data
compression algorithms used in practice combine different
models and coders, thereby favoring different types of inputs
and representing different tradeoffs between speed and com-
pression ratio. Moreover, they typically allow the user to
select the dictionary, window, or block size through a com-
mand-line argument.

The choice of compression algorithm, the compression
level, and the quality of the implementation affect perfor-
mance and energy consumption. Whereas energy consumed
for compression and decompression tasks is not critical on
desktop PCs and workstations, it can be a decisive factor in
battery-powered handheld devices. Achieving a higher com-
pression ratio requires more computation and therefore ener-
gy, but better compression reduces the number of bytes, thus
saving energy when transmitting the data. Hence, we believe
it is important to take a close look at the energy efficiency of
lossless compression algorithms on state-of-the-art mobile
computing platforms. In particular, we want to determine
whether compression is useful for reducing energy consump-
tion, which common compression algorithms should be used,
what configurations result in the best energy efficiency, and
whether parallel execution can save energy.

In this paper, we perform a comparative, measurement-
based study of the most recent versions of several popular
compression utilities, including gzip, lzop, bzip2, xz, pigz (a
parallel implementation of gzip) and pbzip2 (a parallel im-
plementation of bzip2) on Pandaboard and Raspberry Pi,
state-of-the-art mobile development platforms. For each
utility, we analyze the effectiveness of all supported com-
pression levels. We examine several performance metrics,
such as compression ratio and compression and decompres-
sion throughputs. Using our experimental setup for energy
measurements [5], we study the amount of energy consumed
by compression and decompression tasks and report the
energy efficiency.

We evaluate the compression utilities in three typical use
scenarios. Local involves compression and decompression
tasks performed locally on the platforms of interest. Wired
and Wireless involve compression tasks that stream data to

2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

1526-7539/13 $26.00 © 2013 IEEE

DOI 10.1109/MASCOTS.2013.33

254

and from a remote server over a secure communication
channel. Wired uses an Ethernet network interface and Wire-
less uses a wireless LAN interface.

Our main findings are as follows.
• The effectiveness and energy efficiency of compres-

sion utilities varies widely across different utilities
and compression levels, often spanning two orders
of magnitude. We identify combinations of the utili-
ties and their compression levels that achieve the
best throughput and energy efficiency for typical use
scenarios.

• In the Local experiment, lzop with compression le-
vels -1 to -6 achieves the best throughput and energy
efficiency in spite of having the lowest compression
ratio among all the utilities. lzop with -6 to -9
achieves the best decompression throughput and
energy efficiency.

• In the Wired experiment, we find that compressed
uploads with lzop -1 to -6 and pigz -1 to -4 are the
only combinations that are beneficial, achieving a
higher throughput and energy efficiency than the un-
compressed uploads. The best performing lzop pro-
vides 7.75 times higher energy efficiency than the
uncompressed transfer. Similarly, the compressed
downloads with gzip, lzop, and pigz provide up to
2.5-fold energy savings over the uncompressed
downloads.

• In the Wireless experiment, compressed uploads
with pigz and lzop with a low compression level per-
form the best, providing up to 6.4 times more energy
efficient transfers when compared to the uncom-
pressed uploads. For decompression after download,
xz with the highest compression levels (-4 to -6)
achieves the best decompression throughput and
energy efficiency.

Our work complements a prior study that was conducted
almost a decade ago [6], [7]. We consider the most recent
compression utilities including some with parallel implemen-
tations, our setup supports more accurate energy measure-
ments, and we use a state-of-the-art platform representative
of modern mobile devices. In addition, we study perfor-
mance and energy efficiency for all supported compression
levels and in three typical use scenarios with representative
modern datasets.

The rest of this paper is organized as follows. Section II
describes the operation of the six compression utilities we
have studied. Section III describes the experimental setup,
including the platforms, the dataset, and the measurement
setup used to obtain the results. Section IV explains what we
measured and how we computed the derived metrics. Section
V discusses the results. Section VI surveys related work.
Section VII summarizes our findings and draws conclusions.

II. LOSSLESS COMPRESSION UTILITIES
Table 1 lists the six lossless compression utilities we

have studied along with the supported range of compression
levels. We chose the relatively fast gzip utility and the slow-
er but better compressing bzip2 utility because of their wide-

spread use. lzop is included because of its high speed. xz is
also gaining ground and is known for its high compression
ratio, slow compression, and fast decompression. Since some
handheld devices, including our Pandaboard, are already
equipped with multicore CPUs, we also included pigz and
pbzip2, which are parallel versions of gzip and bzip2, respec-
tively. All of these utilities operate at byte granularity and
support a number of compression levels that allow the user
to trade off speed for compression ratio. Lower levels favor
speed whereas higher levels result in better compression.

gzip [8] implements the deflate algorithm, which is a va-
riant of the LZ77 algorithm [3]. It looks for repeating strings,
i.e., sequences of bytes, within a 32 kB sliding window. The
length of the string is limited to 256 bytes. gzip uses two
Huffman trees, one to compress the distances in the sliding
window and another to compress the lengths of the strings as
well as the individual bytes that were not part of any
matched sequence. The algorithm finds duplicated strings
using a chained hash table that is indexed with 3-byte strings.
The selected compression level determines the maximum
length of the hash chains and whether lazy evaluation should
be used.

lzop [9] uses a block-based compression algorithm that
favors speed over compression ratio and requires very little
memory for decompression. It splits each block of data into
sequences of matches (a sliding dictionary) and non-
matching literals, which it then compresses.

bzip2 [10] implements a variant of the block-sorting al-
gorithm described by Burrows and Wheeler (BWT) [4].
bzip2 applies a reversible transformation to a block of inputs,
uses sorting to group bytes with similar contexts together,
and then compresses them with a Huffman coder. The se-
lected compression level adjusts the block size between 100
kB and 900 kB.

xz [11] is based on the Lempel-Ziv-Markov chain com-
pression algorithm (LZMA) developed for 7-Zip [12]. It uses
a large dictionary to achieve good compression ratios and
employs a variant of LZ77 with special support for repeated
match distances. The output is encoded with a range encoder,
which uses a probability model for each bit (rather than
whole bytes) to avoid mixing unrelated bits, i.e., to boost the
compression ratio. We only use compression levels -0 to -6
as the memory requirement for levels -7 to -9 exceeds the
available memory on the platforms.

pigz [13] is a parallel version of gzip for shared memory
machines that is based on pthreads. It breaks the input up
into 128 kB chunks and concurrently compresses multiple

TABLE I. COMPRESSION UTILITIES

Utility Compression
levels

Version Notes

gzip 1 – 9 (6) 1.4 DEFLATE (Ziv-Lempel, Huffman)
lzop 1 – 9 (3) 1.0.3 LZO (Lempel-Ziv-Oberhumer)
bzip2 1 – 9 (9) 1.0.6 RLE+BWT+MTF+RLE+Huffman

xz 0 – 9 (6) 5.1.0alpha LZMA2
pigz 1 – 9 (6) 1.1.5 Parallel implementation of gzip

pbzip2 1 – 9 (9) 2.1.6 Parallel implementation of bzip2

255

chunks. The compressed data are outputted in their original
order. Decompression operates mostly sequentially.

pbzip2 [14] is a multithreaded version of bzip2 that is al-
so based on pthreads. It works by compressing multiple
blocks of data simultaneously. The resulting blocks are then
concatenated to form the final compressed file, which is
compatible with bzip2. Decompression is also parallelized.

III. EXPERIMENTAL SETUP
In subsection III.A we describe the platforms, in III.B the

dataset, and in III.C the measuring setup.

A. Platforms
We use Pandaboard and Raspberry Pi as the target plat-

forms in our experiments. Pandaboard is designed by Texas
Instruments to support software development for smart-
phones and other mobile devices [15]. It features a Texas
Instruments system-on-a-chip (SoC) OMAP4430 [16] with 1
GB of low-power DDR2 SDRAM. The OMAP4430 SoC
includes a dual-core ARM Cortex-A9 MPCore processor, a
3D graphics accelerator, an image signal processor, and a
rich set of standard peripherals. A number of commercial
mobile devices, such as the Amazon Kindle Fire, BlackBerry
Playbook, Motorola Droid RAZR, and Samsung Galaxy Tab
are based on this chipset. Pandaboard also features an on-
board 10/100 Ethernet port, wireless interfaces (802.11n and
Bluetooth), DVI and HDMI video interfaces, an audio inter-
face, and two USB ports. Unfortunately, it does not support
mobile broadband Internet access. The platform can run
mobile open-source operating systems that are based on
Linux, including Ubuntu, Android, and Tizen. In our expe-
riments, we use an Ubuntu distribution provided by Linaro, a
non-profit organization that works on consolidating and
optimizing open-source code for the ARM architecture [17].

Raspberry Pi is a low-cost platform developed by the
Raspberry Pi Foundation [18] to promote education and
software development. It features a Broadcom BCM2835
SoC, which contains an ARM1176JZFS running at 700
MHz, a Videocore 4 GPU, and 512 MB of RAM. Model B
also includes an onboard 10/100 Ethernet port, GPIO pins,
RCA and HDMI video interfaces, an audio interface, two
USB ports and an SD card slot. Raspberry Pi has a large
developer’s community with projects ranging from enter-
tainment centers to dedicated computers for photography,

home automation, as well as medical and robotic applica-
tions. We use Raspbian, a Debian Linux distribution opti-
mized for Raspberry Pi.

B. Datasets
In selecting the data to evaluate the effectiveness of com-

pression algorithms, we compiled a set of diverse input files
representative of mobile computing. The input file formats
include text, an executable, an image, a file with comma-
separated values from a wearable health monitor, and source
code. Table 2 gives the input files, their types, size in bytes,
and a description. The files are merged into a single archive
file (tar) that is used as an input for the compression utilities.

C. Measuring setup
Fig. 1 illustrates the setup for measuring the energy ex-

penditure during program execution on our mobile plat-
forms. The platform is connected to a power supply (VSUPPLY
= 5 V) via a low-resistance shunt resistor (R = 0.1 Ω). The
voltage over the shunt resistor (VSHUNT = R×I) is sampled
using a data acquisition (DAQ) device connected to a devel-
opment workstation. The current can be calculated from the
voltage drop over the shunt resistor as I = VSHUNT/R.

The workstation runs a custom mPowerProfile program
that controls both the platform (via a serial link terminal) and
the DAQ (via a USB port). mPowerProfile starts collecting
voltage samples and, after a predefined head delay, a Linux
command is issued to the platform. It collects samples during
application execution as well as for a predefined tail delay
after the application has completed. mPowerProfile provides
utilities for configuring the head and tail delays, the scaling
factor for samples, and the sampling frequency.

The accuracy of the energy estimation increases with in-
creasing sampling frequency. The maximum sampling fre-
quency supported by the DAQ is 200,000 samples per
second (200 Ksps). The processor cores are running at 1
GHz on Pandaboard, which means that we can sample the
voltage drop over the shunt resistor every 5,000 CPU clock
cycles. We experimented with different sampling frequencies
in the range of 10 Ksps to 200 Ksps and evaluated their
impact on the energy calculations. We found that the energy
calculated using 20 Ksps is within 1% of the energy calcu-
lated using 200 Ksps, so for our experiments we use a sam-
pling frequency of 20 Ksps.

TABLE II. DATASET

i Name Type Raw size
[bytes] Notes

1 book text (txt) 15,711,660 Project Gutenberg Works of
Mark Twain

2 libso exec.
(so)

12,452,484 Open source web content
engine libwebkit library

3 globe image
(bmp)

16,777,270 An image of Earth from space

4 health table
(csv)

9,988,982 ~2 hours of health and physi-
cal activity data collected on a

health monitor
5 perl code

(tar)
11,233,280 Perl 5.8.5 source code

Figure 1. Measuring energy on mobile platforms.

256

Fig. 2 shows the measured current drawn by Pandaboard
during compression of the health input file using gzip -1. The
head and tail delays are set to 4 seconds each and the com-
pression takes about 8.6 seconds. Fig. 2a shows the current
drawn by Pandaboard during this period as it is used in our
energy calculations. Fig. 2b shows the filtered signal, pro-
vided here only to enable easier visual inspection by a human
of the changes in the current drawn during program execu-
tion.

Pandaboard with all unnecessary services turned off
draws 0.565 A when idling (Iidle=0.565 A). The start of the
compression is marked with a steep increase in the current,
which remains high throughout the compression and goes
down to the idle current once the application has completed.
The number of samples during the execution of a compres-
sion utility is n = T.C×SF, where T.C is the compression
time for a given file and SF is the sampling frequency. The
total energy consumed (ET.C) is calculated as follows:

 tVICET
n

j
jPLATFORMj Δ⋅⋅=�

=1
,. (1)

where Δt=1/SF, and VPLATFORM,j = VSUPPLY – Ij×R. Note that
the calculation can be simplified by assuming VPLATFORM to
be constant because the voltage drop over the shunt resistor
is negligible. In addition to ET.C, we also calculate the ener-
gy overhead of the compression task alone, ET.C(0), which
excludes the energy needed to run the platform when idle.
This energy overhead is calculated as:

 CTVICETCET idlePLARTFORMidle ..)0(. , ⋅⋅−= (2)

where VPLATFORM,idle = VSUPPLY – Iidle×R. We similarly calcu-
late the total energy and the overhead energy for decompres-
sion tasks using the decompression time T.D instead of the
compression time T.C. Once we determine the energy over-
heads ET.C(0) and ET.D(0), we can find the total energies
ET.C(Iidle) and ET.D(Iidle) as a function of the idle current
using (2), thus decoupling our findings from Pandaboard,
which draws a relatively high idle current.

IV. METRICS AND EXPERIMENTS
In subsection IV.A, we describe the metrics used in the

evaluation of the compression utilities, including the com-
pression ratio, compression and decompression throughput,
and energy efficiency of compression and decompression
tasks. Subsection IV.B describes the type of experiments
conducted. Table 3 summarizes the metrics used as well as
their definitions.

A. Metrics
Compression ratio. We use the compression ratio to eva-

luate the compression effectiveness of an individual utility
and its levels of compression. The compression ratio CR is
calculated as the size of the uncompressed input file (US)
divided by the size of the compressed file (CS), CR=US/CS.

Performance. To evaluate the performance of individual
compression utilities and compression levels, we measure
the time to compress the raw input file (T.C) and the time to
decompress (T.D) a compressed file generated by that utility

with the selected compression level. The times are measured
using the Linux time utility that reports the elapsed time for a
running task. Each compression and decompression task is
repeated three times and the average time is calculated. In-
stead of reporting the execution times directly, we report the
compression and decompression throughput (Th.C and
Th.D), expressed in megabytes per second, which is calcu-
lated as the size of the uncompressed input file divided by
the time to perform a compression or decompression task.
Alternatively, the throughputs can be calculated as the num-
ber of bytes eliminated by compression, |US-CS|, divided by
the time to perform a compression or decompression task.

The original throughput (Th.C, Th.D) captures the effi-
ciency of data transfers from a user point of view – users
produce and consume raw data and care more about the time
it takes to transfer data than about what approach is used
internally to make the transfer fast. In addition, this metric is
suitable for evaluating networked data transfers and compar-
ing compressed and uncompressed transfers. Whereas the
alternative throughput metric captures the compression
strength of the individual utilities directly, it is not suitable
for the evaluation of networked transfers. Thus, we report
performance using the throughputs Th.C and Th.D. Howev-
er, we have considered both metrics and our findings hold
for both.

Energy efficiency. For each compression task with a se-
lected compression level, we calculate the energy overhead
for compression (ET.C(0)) using the method described in
(2). In addition, we calculate the total energy as a function of
the idle current (ET.C(Iidle), where Iidle={0.25, 0.5} A). Simi-

a.

b.

Figure 2. Current drawn by Pandaboard during execution of the gzip utility.

257

larly, for each decompression task we calculate the total
energy as a function of the idle current ((ET.D(Iidle)). For
each combination of a compression utility and a compression
level, three measurements are conducted and the average
energies are calculated. Instead of reporting the energy di-
rectly in joules, we report the energy efficiency (EE.C and
EE.D) calculated as the size of the uncompressed input file
divided by the total energy to perform a compression or
decompression task. An alternative energy efficiency metric
can be calculated as the number of bytes eliminated by com-
pression divided by the total energy (|US-CS|/ET.C or |US-
CS|/ET.D).

B. Experiments
To evaluate the throughput and energy efficiency of

compression and decompression, we consider three typical
usage scenarios as illustrated in Fig. 3.

The first experiment (Local) involves measuring the time
and energy of compression and decompression tasks per-
formed locally on Pandaboard and Raspberry Pi. To elimi-
nate latencies and energy overheads caused by reading and
writing files from the file system on the SD memory card,
the input files for the compression and decompression tasks
are read from tmpfs, a temporary Linux file system stored in
main memory. The output of the compression and decom-
pression tasks is re-directed into the Linux null device
(/dev/null) – a special ‘file’ that discards all data written to it.

The second and third experiments (Wired and Wireless)
involve measuring the time and energy of compression and
decompression tasks performed on the platforms while
communicating with a remote server. For the compression
tasks, the raw input file (UF) is read from the local tmpfs,
compressed on the platform, and streamed to the remote
server over a secure channel. The output files are redirected
to the null device of the remote server. For the decompres-
sion tasks, the compressed files (CF) are retrieved from the

temporary file system of the remote server through a secure
channel and decompressed on the platform. The output files
are redirected to the null device of the platform. The com-
munication between input, compression/decompression, and
output operations is carried out through Linux pipes. The
execution times include file transfer latencies as well as
compression and decompression times. Similarly, the ener-
gies are measured for completing the entire tasks. These two
scenarios correspond to typical file-transfer tasks on mobile
platforms: compressing and uploading files to a remote serv-
er, and downloading files from a remote server and decom-
pressing them. In addition to the transfers that involve com-
pression and decompression operations, we evaluate the time
and energy needed to upload and download the raw input file
over a secure communication channel. Whereas ssh adds the
extra task of data encryption/decryption, it reflects current
practice and better represents realistic upload and download
settings. We ran additional experiments to quantify the im-
pact of the crypto operations in ssh on the transfer times and
the energy consumed but found that their impact is not sig-
nificant when compared to the netcat and wget utilities that
do not use secure communication.

In Wired, the platforms are connected to a local router
using their Ethernet port. The remote server is also connected
to the local router and no other nodes participate in any
communication. In Wireless, Pandaboard uses its wireless
LAN interface (802.11n) to connect to the local router and
through it to the remote server. The remote server is a Dell
workstation T1600 with a quad-core Intel Xeon E3-1200
processor (SandyBridge architecture) with 8 GB of main
memory. It runs the Ubuntu 12.04 Linux distribution. The
local router is a Linksys E900 Wireless N-300 with four
10/100 Ethernet ports.

V. RESULTS
This section discusses the results of our experimental

analysis, including the compression ratio (subsection V.A),
compression and decompression throughput (subsection
V.B), and the energy efficiency as well as the overhead ener-
gy efficiency (subsection V.C). Finally, the energy efficiency
findings are summarized in subsection V.D.

Figure 3. Experiments’ data flow. Legend: blue file icons illustrate uncom-
pressed raw files, and red file icons illustrate compressed files. Description:

Local (top), and Wired and Wireless experiments (bottom).

/dev/null

/dev/null/tmpfs
UF

Compression

Decompression

CF

Mobile Platform

ssh (wireless, wired)

ssh (wireless, wired)

Remote
Server

UF
/tmpfs

CF

/dev/null

/dev/null/tmpfs
UF

Compression

Decompression

CF

Mobile Platform
UF

/tmpfs
CF

ssh (wireless, wired) /dev/null

/tmpfs
UF

ssh (wireless, wired)

UF

LOCAL

WIRED/WIRELESS

TABLE III. METRICS

Symbol Description Unit Definition
US Uncompressed file size MB Measured
CS Compressed file size MB Measured
CR Compression ratio - US/CS

T.C [T.D] Time to [de]compress s Measured
T.UUP

[T.UDW]
Time to upload [down-
load] the raw file

s Measured

ET.C
[ET.D]

Total energy for
[de]compression

J Measured

ET.UUP
[UDW]

Total energy for upload
[download] of the raw
file

J Measured

ET.C(0)
[ET.D(0)]

Overhead energy for
[de]compression

J ET.C – Iidle×VS×T.C
[ET.D – Iidle×VS×T.D]

Th.C
[Th.D]

[De]Compression
throughput

MB/s US/T.C
[US/T.D]

Th.UUP
[Th.UDW]

Raw upload [download]
throughput

MB/s US/T.UUP
[US/T.UDW]

EE.C
[EE.D]

[De]Compression energy
efficiency

MB/J US/ET.C
[US/ET.D]

258

A. Compression ratio
Fig. 4 shows the compression ratio for the input dataset.

(pigz and pbzip2 are equivalent to gzip and bzip2, respec-
tively). Generally, the compression ratio increases with an
increase in the compression level. The best overall compres-
sion ratio is achieved by xz, ranging from 3.38 with -0 to
4.29 with -6; and by bzip2/pbzip2 ranging from 3.49 with -1
to 3.91 with -9. The lowest compression ratio is achieved by
lzop, ranging from 2.07 with -1 through -6 to 2.62 with -9.

Figure 4. Overall compression ratio (CR).

B. Compression and decompression throughput
Local. Fig. 5a shows the overall compression and de-

compression throughput on Pandaboard (Panda) and Rasp-
berry Pi (RaspPi) for Local. The compression throughput
varies widely across different compression utilities as well as
across different compression levels of a single compression
utility. For all compression utilities, the higher compression
levels result in lower throughput because of the increased
computational complexity. The throughput drop may exceed
an order of magnitude, e.g., for lzop. By far the highest com-
pression throughput is achieved by lzop -1 to -6, ~26 MB/s
on Pandaboard and 9.5 MB/s on Raspberry Pi. The second
highest compression throughput is achieved by pigz -1, 13.2
MB/s on Pandaboard and 2.7 MB/s on Raspberry Pi. pigz
fully utilizes two processor cores on Pandaboard to almost
double the compression throughput relative to gzip (~7.4
MB/s with -1). pigz gains over gzip even on the single-core
Raspberry Pi (~2.7 MB/s vs. ~2.3 MB/s). xz and bzip2
achieve significantly lower compression throughputs (e.g.,
from 1.6 to 1.1 MB/s for bzip2, and from 2.2 to 0.3 MB/s for
xz on Pandaboard). We observe an almost linear speedup in
the pbzip2 compression throughput relative to bzip2’s on
Pandaboard and no speedup on Raspberry Pi.

The decompression throughputs are much higher than the
compression throughputs (from as low as ~3 times to over
112 times higher) and are only indirectly dependent on the
compression level. The higher compression levels resulting
in smaller compressed files may increase decompression
throughputs because less time is needed to read the input
files. Notable exceptions are bzip2 and pbzip2, where de-
compression throughputs slightly decrease for higher com-
pression levels, in spite of smaller input files. This can be
explained by the higher computational complexity of bzip2’s
decompression when input files are generated using higher

compression levels. The highest decompression throughput
is achieved by lzop (of 71.9 MB/s on Pandaboard, 26.5 MB/s
on Raspberry Pi), followed by pigz and gzip. xz, bzip2, and
pbzip2 achieve significantly lower decompression through-
puts (below ~10.8 MB/s on Pandaboard and below 4.7 MB/s
on Raspberry Pi). pigz decompression throughput almost
doubles relative to the gzip on both platforms. Although
decompression itself in pigz is not parallelized (it is single
threaded), three other threads are created for reading, writ-
ing, and checking calculations that speed up decompression
[13]. Our findings indicate that even single-core systems
benefit from the parallelized implementation in pigz.
pbzip2’s implementation includes parallelized decompres-
sion, thus fully benefiting from the dual-core processor on
Pandaboard, but no speedup is observed on Raspberry Pi.

a.

b.

c.

Figure 5. Compression and decompression throughput.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 12 345 67 89 0 12 34 56 78 9 01 23 45 67 89 0 12 345 67 89 0 12 34 56 78 9 01 23 45 67 89

gzip lzop bzip2 xz pigz pbzip2

-

Compression Ratio

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

s]

Local: Compression/Decompression Throughput
Th.D(Panda) Th.C(Panda) Th.D(RaspPi) Th.C(RaspPi)

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

s]

Wired: Compression/Decompression Throughput

Th.D(Panda) Th.C(Panda) Th.UDW(Panda) Th.UUP(Panda)
Th.D(PaspPi) Th.C(RaspPi) Th.UDW(RaspPi) Th.UUP(RaspPi)

0.1

1

10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

s]

Wireless: Compression/Decompression Throughput

Th.D(Panda) Th.C(Panda) Th.UDW(Panda) Th.UUP(Panda)

259

Wired. Fig. 5b shows the compression and decompres-
sion throughputs in Wired on Pandaboard and Raspberry Pi.
The dashed lines represent the measured effective network
throughput when the uncompressed input files are uploaded
to the remote server (Th.UUP(Panda) = 5.95 MB/s,
Th.UUP(RaspPi) = 3.6 MB/s) and downloaded from the
remote server (T.UDW(Panda) = 8.8 MB/s, T.UDW(RaspPi)
= 5 MB/s).

The compression throughput is limited by the effective
network throughput and is therefore always below
CR×Th.UUP. For example, lzop -1 (through -6) on Panda-
board plateaus at 11 MB/s, which is below 2.07×5.95 = 12.3
MB/s (the compression ratio for lzop -1 is 2.07). The effec-
tive compression throughput in this case is thus significantly
below the 25 MB/s measured in Local. However, for lzop
with -7, -8, and -9, where the original compression through-
put is lower than the upload network throughput
(Th.UUP=5.95 MB/s), the compression throughputs remain
unchanged relative to those measured in Local. Similar ob-
servations can be made about the other compression utilities.
For gzip -1 and pigz -1 on Pandaboard, the compression
throughputs are 6 and 8.3 MB/s, respectively, well below the
maximum achievable 15.8 MB/s (2.65×5.95, where 2.65 is
the compression ratio for gzip and pigz with -1). In contrast,
pbzip2 consistently offers a higher compression throughput
relative to bzip2 because they both have a compression
throughput that is below the effective network upload
throughput. When compared to the throughput for uploading
the uncompressed dataset, only lzop with -1 to -6, gzip with -
1, and pigz with -1 to -4 provide an increased effective net-
work throughput on Pandaboard, whereas the other combina-
tions do not appear to be beneficial (i.e., it takes more time to
compress and upload an input file than to just upload the raw
input file). On Raspberry Pi, only lzop with -1 to -6 offers an
increased effective network throughput, ~4.1 MB/s, slightly
more than the 3.6 MB/s achieved for the uncompressed upl-
oad.

The decompression throughputs are also limited by the
effective network throughput, resulting in lower effective
decompression throughputs, which are below
CR×(US/T.UDW). For example, lzop with -9 on Pandaboard
achieves a decompression throughput of ~20.8 MB/s, which
is very close to the maximum achievable (2.62×8.84 = 23.2
MB/s). gzip with -9 achieves ~22.6 MB/s and pigz with -9
achieves ~23.5 MB/s. They outperform lzop because they
provide higher compression ratios – their achievable maxi-
mum decompression throughput is below 2.99×8.84 = 26.4
MB/s. These three utilities effectively increase the available
network throughput (their throughputs are above the
Th.UDW line) and decrease the download time relative to
the time needed to download the uncompressed file from the
remote server. pbzip2, bzip2, and xz are ineffective on both
platforms (they fall below the uncompressed throughput).

Wireless. Fig. 5c shows the compression and decompres-
sion throughputs for Wireless on Pandaboard. The dashed
lines represent the measured effective upload and download
throughput when transferring uncompressed files wirelessly,
Th.UUP = 1.64 MB/s and Th.UDW = 1.52 MB/s, respective-

ly. Similar to the prior experiment, the effective compression
throughput is limited by the network upload throughput and
is always below CR×(US/T.UUP). In Wireless, compression
effectively increases the upload throughput for gzip with -1
to -7, lzop with -1 to -6, xz with -0, pigz with -1 to -9, and
pbzip2 with -1 to -9, whereas bzip2 falls below 1.52 MB/s.
Lower effective network throughputs enable more compres-
sion configurations to be beneficial. Compression with lower
compression levels is still preferred to higher levels. The
highest compression throughput of ~5.1 MB/s is achieved by
pigz with -1. It outperforms gzip -1 (4.1 MB/s) and lzop -1
(3.2 MB/s).

With the low effective throughput for downloads offered
by the wireless interface, all decompression utilities increase
the available bandwidth (Th.D > Th.UDW for all tested
compression utilities with all compression levels). Again, the
maximum achievable decompression throughput is limited to
CR×Th.UDW. xz provides the highest decompression
throughput, ranging from 4.6 with -0 to 6.3 MB/s with -4,
followed by pigz (from 4.3 to 5.3 MB/s), and gzip (from 4 to
4.8 MB/s). Interestingly, pigz and pbzip2 offer only limited
improvements in decompression throughput over their se-
quential counterparts due to very low network throughput.

C. Energy efficiency
Local. Fig. 6a and Fig. 7a show the energy efficiency for

the compression and decompression tasks on Pandaboard
and Raspberry Pi, respectively, as a function of the idle cur-
rent Iidle (Iidle={0, 0.25} A). Expectedly, the energy efficiency
for compression varies widely for different utilities and for
different compression levels within each utility (often by
more than an order of magnitude). The most energy efficient
compression utility by far is lzop with compression levels -1
to -6 regardless of the idle current; it achieves ~54 MB/J
(Megabyte/joule) for Iidle = 0 A, ~14.5 MB/J for Iidle = 0.25 A
on Pandaboard, and 45.5 MB/J for Iidle = 0 A and 6.5 MB/J
for Iidle = 0.25 A on Raspberry Pi. Distant second and third
are gzip and pigz with -1 achieving ~14 MB/J and ~11 MB/J
for Iidle = 0 A on Pandaboard. Following the trends in com-
pression throughputs, higher compression levels for gzip,
pigz, and lzop result in a dramatic decrease in energy effi-
ciency (e.g., down to 1.5 MB/J for lzop with -9). pigz and
pbizp2 are more energy efficient than their sequential coun-
terparts when Iidle � 0 A because they reduce the compression
time. However, if we consider only the energy efficiency
when Iidle = 0 A (EE.C(0)), the parallel implementations are
slightly less energy efficient. pbzip2 and bzip2 exhibit low
energy efficiencies as does xz, which is the least attractive
choice with high compression levels.

The energy efficiencies of the decompression tasks (Fig.
6a and Fig. 7a) vary widely for different utilities. The de-
compression efficiency is relatively stable for individual
utilities – it increases slightly for higher compression levels
for all utilities except bzip2 and pbizp2. Thus, EE.D(0) on
Pandaboard is ~136 MB/J for lzop, ~50 MB/J for gzip, ~55
MB/J for pigz, and just below ~10 MB/J for bzip2/pbzip2.
lzop emerges as the most energy-efficient choice in spite of
its lower compression ratio. It remains the most energy effi-

260

cient tool even when compression strength is taken into
account by considering (|US-CS|/ET.D).

a.

b.

c.

Figure 6. Energy efficiency for Pandaboard.

Wired. Fig. 6b and Fig. 7b show the energy efficiency for
compression and decompression as a function of the idle
current on Pandaboard and Raspberry Pi, respectively, in
Wired. In addition, the graphs show the energy efficiency for
uncompressed upload (EE.UUP) and uncompressed down-
load (EE.UDW) as a function of the idle current. This way,
one can easily identify cases when transfers with compres-
sion and decompression offer higher energy efficiency than
raw uploads (EE.C(Iidle) > EE.UUP(Iidle) and raw downloads
(EE.D(Iidle) > EE.UDW(Iidle)).

With Iidle = 0, gzip, pigz, and lzop with -1 to -7 and xz
with -1 to -2 provide higher energy efficiency than the raw
upload. However, only lzop with -1 to -6, gzip -1 to -4, and

pigz with -1 to -5 provide higher energy efficiency for all
considered idle currents. Again, the most energy efficient
utility is lzop with -1 to -6 with ~12.5 MB/J when Iidle=0, ~
5MB/J when Iidle = 0.25 A. bzip2, pbizp2, and xz exhibit
rather low energy efficiency for compression. Similar con-
clusions can be drawn for Raspberry Pi: only lzop with -1 to
-6, and pigz with -1 provide increased energy efficiencies
over the uncompressed uploads for all idle currents consi-
dered.

The energy efficiency of decompression for gzip, lzop,
and pigz exceeds the energy efficiency of the uncompressed
download for all considered idle currents, whereas xz, bzip2
and pbzip2 are less energy efficient. lzop -7 to -9 (~23.7
MB/J on Pandaboard, ~29.5 MB/J on Raspberry Pi) and pigz
-4 to -9 (21 MB/J on Pandaboard, 30 MB/J on Raspberry Pi)
emerge as the most energy efficient utilities on both plat-
forms when Iidle = 0 A. They also outperform others when
Iidle = {0.25, 0.5} A.

Wireless. Fig. 6c shows the energy efficiency for com-
pression and decompression on Pandaboard as a function of
the idle current, respectively. Similar to the previous experi-
ment, the graphs also display the energy efficiency for un-
compressed upload (EE.UUP) and uncompressed download
(EE.UDW) as a function of the idle current.

a.

b.

Figure 7. Energy efficiency for Raspberry Pi.

The relatively low network throughput for upload results
in all utilities having higher energy efficiency than the raw
upload when Iidle=0 A (i.e., EE.C(0) > EE.UUP(0) for all
utilities except xz -5 and -6). pigz -1 is the most energy effi-
cient with 2.5 MB/J, followed closely by gzip -1 and lzop -1.

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

J]

Pandaboard: Local Compression/Decompression Energy Efficiency

EE.D(0) EE.C(0) EE.D(0.25) EE.C(0.25)

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

J]

Pandaboard: Wired Compression/Decompression Energy Efficiency
EE.D(0) EE.C(0) EE.UDW(0) EE.UUP(0)
EE.D(0.25) EE.C(0.25) EE.UDW(0.25) EE.UUP(0.25)

0.1

1

10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

J]

Pandaboard: Wireless Compression/Decompression Energy Efficiency

EE.D(0) EE.C(0) EE.UDW(0) EE.UUP(0)
EE.D(0.25) EE.C(0.25) EE.UDW(0.25) EE.UUP(0.25)

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

J]

Raspberry Pi: Local Compression/Decompression Energy Efficiency

EE.D(0) EE.C(0) EE.D(0.25) EE.C(0.25)

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

gzip lzop bzip2 xz pigz pbzip2

[M
B/

J]

Raspberry Pi: Wired Compression/Decompression Energy Efficiency
EE.D(0) EE.C(0) EE.UDW(0) EE.UUP(0)
EE.D(0.25) EE.C(0.25) EE.UDW(0.25) EE.UUP(0.25)

261

pigz -1 remains the most energy-efficient compression utility
when Iidle = {0.25, 0.5} A.

All decompression alternatives offer a total energy effi-
ciency that exceeds the total energy efficiency of uncom-
pressed download from the remote server, EE.UDW(0),
which is 1.16 MB/J. Generally, downloading files that were
compressed with higher compression levels increases the
energy efficiency except for bzip2 and pbzip2. The total
energy efficiency when Iidle=0 A, EE.D(0), is 3.6 to 4.3 MB/J
for gzip, 2.9 to 3.7 MB/J for lzop, 4 to 4.8 MB/J for pigz, 2.9
to 3.1 MB/J for pbzip2, and 3.6 to 4.6 MB/J for xz. pigz and
xz emerge as the most energy-efficient utilities when Iidle =
{0.25, 0.5} A. xz benefits from providing a superior com-
pression ratio in conditions where communication energy
dominates the overall energy cost.

D. Putting it all together
Table 4 summarizes the results of our experimental

study. It lists the most energy efficient utilities for compres-
sion and decompression tasks in the three experimental se-
tups (Local, Wired, Wireless) for both platforms (Panda-
board/Raspberry Pi). We show the energy efficiency for
compression and decompression tasks (EE.C and EE.D) as
well as for raw file transfers (EE.UUP, EE.UDW). The ener-
gy efficiencies are reported for three idle currents.

For local compression tasks, we find lzop with -1 to -6 to
be superior for both compression throughput and energy
efficiency, in spite of yielding the lowest compression ratio.
It outperforms the next best utilities pigz with -1 and gzip
with -1 by more than a factor of four. Similarly, we find that
lzop -6 to -9 outperforms the next best utilities pigz -9 and
gzip -9 for local decompression tasks by a factor of 2.5.

For compression tasks in the wired experiment, we find
lzop with -1 to -6 to offer superior throughput and energy
efficiency. It outperforms pigz with -1 and gzip -1 as the next
best alternatives. For decompression tasks, lzop with -7 to -9
and pigz with -6 to -9 are the most energy efficient, with pigz
having slightly higher efficiency when the idle current is
higher than zero. The most energy-efficient compression
utility in the wireless experiment is pigz -1 (followed closely
by gzip -1 and lzop -1 to -6), whereas xz with -4 to -6 and
pigz with -7 to -9 stand out for decompression tasks.

In summary, we find a high throughput to be most impor-
tant for achieving good energy efficiency for compression
tasks, with improved compression ratios only slightly affect-
ing the choice of utility as the available bandwidth becomes
constrained. In contrast, decompression also favors through-
put but only in combination with a reasonable compression
ratio, and the balance rapidly tips towards more emphasis on
compression ratio as the available bandwidth becomes li-
mited.

VI. RELATED WORK
We are aware of two related studies that investigate data

compression in the context of energy efficiency on embed-
ded and mobile systems [6], [19]. Both studies examine the
feasibility of using compression to reduce energy consump-
tion and explore tradeoffs between time, compression ratio,
and energy.

The most closely related work to ours is a study by Barr
and Asanovi� [6], [7]. It also investigates the energy effi-
ciency of lossless data compression on a wireless mobile
device. Their excellent publications include details that are
beyond the scope of our work, such as the frequency with
which different types of instructions are executed, the branch
prediction accuracy, and the performance of the memory
hierarchy. Their experimental setup has several advantages
over ours. For example, their Skiff platform, which mimics
an iPAQ mobile device, enabled them to separately measure
the energy drawn by the CPU, the memory subsystem, peri-
pherals, and the wireless interface. However, our test envi-
ronment is superior in other aspects. Some of them are simp-
ly a result of almost a decade of advances in technology. For
instance, their now obsolete processor had a single core, a
clock frequency of 233 MHz, and 32 MB of DRAM. The
Skiff platform was further limited to 4 MB of nonvolatile
flash memory. Thus, the root file system had to be mounted
externally via an Ethernet port using NFS. In comparison,
our OMAP4430 has two cores, runs at 1.01 GHz, and has 1
GB of DDR2 SDRAM. The OMAP SoC is one of the lead-
ing platforms for current mobile devices and features an
integrated communication interface and supports higher
transmission speeds. Another advantage of our test bed is the
sampling frequency of 20 kHz, which is about 500 times

TABLE IV. THE MOST ENERGY-EFFICIENT UTILITIES

Experiment Compression Raw UUP Decompression Raw UDW
LOCAL Best Utility EE.C [MB/J] EE.UUP [MB/J] Best Utility EE.D [MB/J] EE.UDW [MB/J]
 Panda RaspPi Panda RaspPi Panda RaspPi Panda RaspPi
Iidle = 0 A lzop -1 to -6 55 44 - - lzop -6 to -9 137 90 - -

Iidle = 0.25 A lzop -1 to -6 14.5 6.5 - - lzop -6 to -9 40 17 - -

Iidle = 0.5 A lzop -1 to -6 8.5 3.5 - lzop -1 to -9 23 9.5 - -

WIRED -
Iidle = 0 A lzop -1 to -6 12.4 15.5 1.6 1.53 lzop -7 to -9 23.5 30 9.4 13.5

Iidle = 0.25 A lzop -1 to -6 5.1 2.7 1.2 0.74 pigz -6 to -9 10 5.5 4.0 3.1

Iidle = 0.5 A lzop -1 to -6 3.2 1.5 0.95 0.6 pigz -6 to -9 6.5 3 2.6 1.7

WIRELESS
Iidle = 0 A pigz -1 2.5 0.39 pigz -4 to -7 4.6 1.16

Iidle = 0.25 A pigz -1 1.5 0.30 xz -4 to -6 2.4 0.59

Iidle = 0.5 A pigz -1 1.1 0.25 xz -4 to -6 1.6 0.40

262

higher than theirs, presumably yielding more accurate mea-
surements. Even when accounting for the difference in clock
frequency, our hardware takes a sample every 50,000 CPU
clock periods whereas theirs sampled once per five million
clocks.

There are also substantial software differences between
Barr and Asanovi�’s study and ours. Whereas several of their
compression utilities are predecessors of the utilities we
evaluated, they only tested a few compression levels (we test
all of them), and we include newer utilities such as xz as well
as the parallel implementations pigz and pbzip2. Further-
more, their input data was limited to 1 MB of text and 1 MB
of web data. We cover a wider range of relevant data types
and our files are over an order of magnitude larger. Due to
their hardware’s low sampling rate, they were forced to run
the same compression or decompression in an infinite loop to
obtain sufficiently many samples. We are able to run our
tests individually, that is, in a manner that is more repre-
sentative of actual usage.

VII. CONCLUSION
This paper describes an experimental evaluation of recent

implementations of common compression utilities on Panda-
board and Raspberry Pi, two state-of-the-art mobile devel-
opment platforms. We measure compression and decompres-
sion times, total and overhead energies consumed by com-
pression and decompression tasks and report metrics such as
compression ratio, compression/decompression throughputs,
and compression/decompression energy efficiencies across
different compression levels. Our measurements mimic
typical usage scenarios of mobile devices involving transfers
of data over wired and wireless networks.

Based on the results of our analysis, we provide practical
guidelines for selecting the most energy-efficient utilities
depending on the usage scenario. For compression tasks,
utilities that are fast and have low computational complexity,
such as lzop with compression levels -1 to -6 and pigz
with -1, are the most energy-efficient options in spite of their
relatively low compression ratio. For decompression tasks,
lzop, gzip, and pigz are good choices, as well as xz when
transferring data over a low-throughput wireless network.
The results of our study show that the common utilities with
their default compression levels may not always be the most
energy-efficient combinations. For example, the energy
efficiency of compressed uploads over the wireless network
using the widely used gzip with the default compression
level -6 is 1.6 MB/J, whereas pigz -1 achieves 2.5 MB/J, a
50% improvement in energy-efficiency.

Our findings may guide energy optimizations of data
transfers in mobile applications and encourage the develop-
ment of data transfer frameworks that are conscientious of
the mobile device’s energy status. For example, a server
could easily store multiple copies of the same file, com-
pressed with different utilities and compression levels, to
allow the mobile device to choose, based on its capabilities,
currently available network bandwidth, energy status, and

user preferences, which version of a file to download. Based
on similar criteria, the mobile device could choose which
format to use for uploading a file, and the server could then
convert the file, if necessary, to the best download format(s).

ACKNOWLEDGMENT
This material is based upon work supported in part by the

National Science Foundation under Grants No. 1141022,
1205439, 1217231 and 1217470. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES
[1] D. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” Proc. Ire, vol. 40, no. 9, pp. 1098–1101, Sep.
1952.

[2] J. Rissanen and G. G. Langdon, “Arithmetic Coding,” IBM J. Res.
Dev., vol. 23, no. 2, pp. 149–162, Mar. 1979.

[3] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, pp. 337–343, 1977.

[4] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data
Compression Algorithm,” Digital SRC, Report 124, May 1994.

[5] M. Milosevic, A. Dzhagaryan, E. Jovanov, and A. Milenkovic, “An
Environment for Automated Power Measurements on Mobile
Computing Platform,” in in the Proceedings of the ACM Southeast
Conference (ACMSE’13), Savannah, GA, 2013.

[6] K. Barr and K. Asanovi�, “Energy aware lossless data compres-
sion,” in Proceedings of the 1st International Conference on Mo-
bile Systems, Applications and Services (MobiSys’03), 2003, pp.
231–244.

[7] K. C. Barr and K. Asanovi�, “Energy-aware lossless data compres-
sion,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 250–291, Aug.
2006.

[8] “The gzip home page.” [Online]. Available: http://www.gzip.org/.
[Accessed: 25-May-2012].

[9] M. Oberhumer, “lzop file compressor (oberhumer.com Open-
Source).” [Online]. Available: http://www.lzop.org/. [Accessed: 25-
May-2012].

[10] “bzip2: Home.” [Online]. Available: http://www.bzip.org/. [Ac-
cessed: 25-May-2012].

[11] “XZ Utils.” [Online]. Available: http://tukaani.org/xz/. [Accessed:
25-May-2012].

[12] I. Pavlov, “7-Zip.” [Online]. Available: http://www.7-zip.org/.
[Accessed: 25-May-2012].

[13] “pigz - Parallel gzip.” [Online]. Available: http://zlib.net/pigz/.
[Accessed: 25-May-2012].

[14] J. Gilchrist, “Parallel BZIP2 (PBZIP2).” [Online]. Available:
http://compression.ca/pbzip2/. [Accessed: 25-May-2012].

[15] “Pandaboard.” [Online]. Available: http://pandaboard.org/. [Ac-
cessed: 28-May-2012].

[16] “OMAPTM 4 Platform - OMAP4430/OMAP4460.” [Online]. Avail-
able: http://www.ti.com/omap4430. [Accessed: 02-Jun-2012].

[17] “Linaro: open source software for ARM SoCs.” [Online]. Availa-
ble: http://www.linaro.org/. [Accessed: 28-May-2012].

[18] “Raspberry Pi.” [Online]. Available: http://www.raspberrypi.org/.
[Accessed: 05-Feb-2013].

[19] C. M. Sadler and M. Martonosi, “Data compression algorithms for
energy-constrained devices in delay tolerant networks,” in Proceed-
ings of the 4th International Conference on Embedded Networked
Sensor Systems, 2006, pp. 265–278.

263

