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Abstract—Data compression and decompression utilities can be 
critical in increasing communication throughput, reducing 
communication latencies, achieving energy-efficient communi-
cation, and making effective use of available storage. This 
paper experimentally evaluates several such utilities for mul-
tiple compression levels on systems that represent current 
mobile platforms. We characterize each utility in terms of its 
compression ratio, compression and decompression through-
put, and energy efficiency. We consider different use cases that 
are typical for modern mobile environments. We find a wide 
variety of energy costs associated with data compression and 
decompression and provide practical guidelines for selecting 
the most energy efficient configurations for each use case. The 
best performing configurations provide 6-fold and 4-fold im-
provements in energy efficiency for compressed uploads and 
downloads over WLAN, respectively, when compared to un-
compressed data transfers.  

Keywords—mobile computing; measurement techniques; da-
ta compression; energy-aware systems 

I. INTRODUCTION 
The general goal of data compression is to reduce the 

number of bits needed to represent information. Data can be 
compressed losslessly or lossily. Lossless compression 
means that the original data can be reproduced exactly by the 
decompressor. In contrast, lossy compression, which often 
results in much higher compression ratios, can only approx-
imate the original data. This is typically acceptable if the 
data are meant for human consumption such as audio and 
video. However, program code and input, medical data, 
email and other text generally do not tolerate lossy compres-
sion. We focus on lossless compression in this paper. 

Lossless compression is achieved by replacing frequent 
bit or byte strings with shorter sequences and infrequent bit 
or byte strings with longer sequences, which tends to reduce 
the overall data size. For example, in Huffman compression, 
bit strings are assigned unique, variable-length code words 
whose length is inversely proportional to the frequency of 
the corresponding bit strings. Huffman coding [1], or the 
slower but more sophisticated arithmetic coding [2], is often 
preceded by a transformation stage whose purpose is to 
model (or predict) the data. If the model is accurate, then the 
difference sequence between the predicted and the actual 
data primarily consists of small values that cluster around 
zero, which are easy to encode effectively. Various models 

are in use, including dictionaries of expected or recently 
encountered “words,” sliding windows that assume that 
recently seen data patterns will repeat, which are used in the 
Lempel-Ziv approach [3], as well as reversibly sorting data 
to bring similar values close together, which is the approach 
taken by the Burrows and Wheeler transform [4]. The data 
compression algorithms used in practice combine different 
models and coders, thereby favoring different types of inputs 
and representing different tradeoffs between speed and com-
pression ratio. Moreover, they typically allow the user to 
select the dictionary, window, or block size through a com-
mand-line argument. 

The choice of compression algorithm, the compression 
level, and the quality of the implementation affect perfor-
mance and energy consumption. Whereas energy consumed 
for compression and decompression tasks is not critical on 
desktop PCs and workstations, it can be a decisive factor in 
battery-powered handheld devices. Achieving a higher com-
pression ratio requires more computation and therefore ener-
gy, but better compression reduces the number of bytes, thus 
saving energy when transmitting the data. Hence, we believe 
it is important to take a close look at the energy efficiency of 
lossless compression algorithms on state-of-the-art mobile 
computing platforms. In particular, we want to determine 
whether compression is useful for reducing energy consump-
tion, which common compression algorithms should be used, 
what configurations result in the best energy efficiency, and 
whether parallel execution can save energy.  

In this paper, we perform a comparative, measurement-
based study of the most recent versions of several popular 
compression utilities, including gzip, lzop, bzip2, xz, pigz (a 
parallel implementation of gzip) and pbzip2 (a parallel im-
plementation of bzip2) on Pandaboard and Raspberry Pi, 
state-of-the-art mobile development platforms. For each 
utility, we analyze the effectiveness of all supported com-
pression levels. We examine several performance metrics, 
such as compression ratio and compression and decompres-
sion throughputs. Using our experimental setup for energy 
measurements [5], we study the amount of energy consumed 
by compression and decompression tasks and report the 
energy efficiency. 

We evaluate the compression utilities in three typical use 
scenarios. Local involves compression and decompression 
tasks performed locally on the platforms of interest. Wired 
and Wireless involve compression tasks that stream data to 
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and from a remote server over a secure communication 
channel. Wired uses an Ethernet network interface and Wire-
less uses a wireless LAN interface.  

Our main findings are as follows. 
• The effectiveness and energy efficiency of compres-

sion utilities varies widely across different utilities 
and compression levels, often spanning two orders 
of magnitude. We identify combinations of the utili-
ties and their compression levels that achieve the 
best throughput and energy efficiency for typical use 
scenarios. 

• In the Local experiment, lzop with compression le-
vels -1 to -6 achieves the best throughput and energy 
efficiency in spite of having the lowest compression 
ratio among all the utilities. lzop with -6 to -9 
achieves the best decompression throughput and 
energy efficiency.  

• In the Wired experiment, we find that compressed 
uploads with lzop -1 to -6 and pigz -1 to -4 are the 
only combinations that are beneficial, achieving a 
higher throughput and energy efficiency than the un-
compressed uploads. The best performing lzop pro-
vides 7.75 times higher energy efficiency than the 
uncompressed transfer. Similarly, the compressed 
downloads with gzip, lzop, and pigz provide up to 
2.5-fold energy savings over the uncompressed 
downloads. 

• In the Wireless experiment, compressed uploads 
with pigz and lzop with a low compression level per-
form the best, providing up to 6.4 times more energy 
efficient transfers when compared to the uncom-
pressed uploads. For decompression after download, 
xz with the highest compression levels (-4 to -6) 
achieves the best decompression throughput and 
energy efficiency.   

Our work complements a prior study that was conducted 
almost a decade ago [6], [7]. We consider the most recent 
compression utilities including some with parallel implemen-
tations, our setup supports more accurate energy measure-
ments, and we use a state-of-the-art platform representative 
of modern mobile devices. In addition, we study perfor-
mance and energy efficiency for all supported compression 
levels and in three typical use scenarios with representative 
modern datasets.  

The rest of this paper is organized as follows. Section II 
describes the operation of the six compression utilities we 
have studied. Section III describes the experimental setup, 
including the platforms, the dataset, and the measurement 
setup used to obtain the results. Section IV explains what we 
measured and how we computed the derived metrics. Section 
V discusses the results. Section VI surveys related work. 
Section VII summarizes our findings and draws conclusions. 

II. LOSSLESS COMPRESSION UTILITIES 
Table 1 lists the six lossless compression utilities we 

have studied along with the supported range of compression 
levels. We chose the relatively fast gzip utility and the slow-
er but better compressing bzip2 utility because of their wide-

spread use. lzop is included because of its high speed. xz is 
also gaining ground and is known for its high compression 
ratio, slow compression, and fast decompression. Since some 
handheld devices, including our Pandaboard, are already 
equipped with multicore CPUs, we also included pigz and 
pbzip2, which are parallel versions of gzip and bzip2, respec-
tively. All of these utilities operate at byte granularity and 
support a number of compression levels that allow the user 
to trade off speed for compression ratio. Lower levels favor 
speed whereas higher levels result in better compression. 

gzip [8] implements the deflate algorithm, which is a va-
riant of the LZ77 algorithm [3]. It looks for repeating strings, 
i.e., sequences of bytes, within a 32 kB sliding window. The 
length of the string is limited to 256 bytes. gzip uses two 
Huffman trees, one to compress the distances in the sliding 
window and another to compress the lengths of the strings as 
well as the individual bytes that were not part of any 
matched sequence. The algorithm finds duplicated strings 
using a chained hash table that is indexed with 3-byte strings. 
The selected compression level determines the maximum 
length of the hash chains and whether lazy evaluation should 
be used.  

lzop [9] uses a block-based compression algorithm that 
favors speed over compression ratio and requires very little 
memory for decompression. It splits each block of data into 
sequences of matches (a sliding dictionary) and non-
matching literals, which it then compresses.  

bzip2 [10] implements a variant of the block-sorting al-
gorithm described by Burrows and Wheeler (BWT) [4]. 
bzip2 applies a reversible transformation to a block of inputs, 
uses sorting to group bytes with similar contexts together, 
and then compresses them with a Huffman coder. The se-
lected compression level adjusts the block size between 100 
kB and 900 kB.  

xz [11] is based on the Lempel-Ziv-Markov chain com-
pression algorithm (LZMA) developed for 7-Zip [12]. It uses 
a large dictionary to achieve good compression ratios and 
employs a variant of LZ77 with special support for repeated 
match distances. The output is encoded with a range encoder, 
which uses a probability model for each bit (rather than 
whole bytes) to avoid mixing unrelated bits, i.e., to boost the 
compression ratio. We only use compression levels -0 to -6 
as the memory requirement for levels -7 to -9 exceeds the 
available memory on the platforms.  

pigz [13] is a parallel version of gzip for shared memory 
machines that is based on pthreads. It breaks the input up 
into 128 kB chunks and concurrently compresses multiple 

TABLE I.  COMPRESSION UTILITIES 

Utility Compression 
levels 

Version Notes 

gzip 1 – 9 (6) 1.4 DEFLATE (Ziv-Lempel, Huffman) 
lzop 1 – 9 (3)  1.0.3 LZO (Lempel-Ziv-Oberhumer) 
bzip2 1 – 9 (9) 1.0.6 RLE+BWT+MTF+RLE+Huffman 

xz 0 – 9 (6) 5.1.0alpha LZMA2  
pigz 1 – 9 (6) 1.1.5 Parallel implementation of gzip 

pbzip2 1 – 9 (9) 2.1.6 Parallel implementation of bzip2 
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chunks. The compressed data are outputted in their original 
order. Decompression operates mostly sequentially.  

pbzip2 [14] is a multithreaded version of bzip2 that is al-
so based on pthreads. It works by compressing multiple 
blocks of data simultaneously. The resulting blocks are then 
concatenated to form the final compressed file, which is 
compatible with bzip2. Decompression is also parallelized. 

III. EXPERIMENTAL SETUP 
In subsection III.A we describe the platforms, in III.B the 

dataset, and in III.C the measuring setup.  

A. Platforms 
We use Pandaboard and Raspberry Pi as the target plat-

forms in our experiments. Pandaboard is designed by Texas 
Instruments to support software development for smart-
phones and other mobile devices [15]. It features a Texas 
Instruments system-on-a-chip (SoC) OMAP4430 [16] with 1 
GB of low-power DDR2 SDRAM. The OMAP4430 SoC 
includes a dual-core ARM Cortex-A9 MPCore processor, a 
3D graphics accelerator, an image signal processor, and a 
rich set of standard peripherals. A number of commercial 
mobile devices, such as the Amazon Kindle Fire, BlackBerry 
Playbook, Motorola Droid RAZR, and Samsung Galaxy Tab 
are based on this chipset. Pandaboard also features an on-
board 10/100 Ethernet port, wireless interfaces (802.11n and 
Bluetooth), DVI and HDMI video interfaces, an audio inter-
face, and two USB ports. Unfortunately, it does not support 
mobile broadband Internet access. The platform can run 
mobile open-source operating systems that are based on 
Linux, including Ubuntu, Android, and Tizen. In our expe-
riments, we use an Ubuntu distribution provided by Linaro, a 
non-profit organization that works on consolidating and 
optimizing open-source code for the ARM architecture [17]. 

Raspberry Pi is a low-cost platform developed by the 
Raspberry Pi Foundation [18] to promote education and 
software development. It features a Broadcom BCM2835 
SoC, which contains an ARM1176JZFS running at 700 
MHz, a Videocore 4 GPU, and 512 MB of RAM. Model B 
also includes an onboard 10/100 Ethernet port, GPIO pins, 
RCA and HDMI video interfaces, an audio interface, two 
USB ports and an SD card slot. Raspberry Pi has a large 
developer’s community with projects ranging from enter-
tainment centers to dedicated computers for photography, 

home automation, as well as medical and robotic applica-
tions. We use Raspbian, a Debian Linux distribution opti-
mized for Raspberry Pi.  

B. Datasets 
In selecting the data to evaluate the effectiveness of com-

pression algorithms, we compiled a set of diverse input files 
representative of mobile computing. The input file formats 
include text, an executable, an image, a file with comma-
separated values from a wearable health monitor, and source 
code. Table 2 gives the input files, their types, size in bytes, 
and a description. The files are merged into a single archive 
file (tar) that is used as an input for the compression utilities. 

C. Measuring setup 
Fig. 1 illustrates the setup for measuring the energy ex-

penditure during program execution on our mobile plat-
forms. The platform is connected to a power supply (VSUPPLY 
= 5 V) via a low-resistance shunt resistor (R = 0.1 Ω). The 
voltage over the shunt resistor (VSHUNT = R×I) is sampled 
using a data acquisition (DAQ) device connected to a devel-
opment workstation. The current can be calculated from the 
voltage drop over the shunt resistor as I = VSHUNT/R. 

The workstation runs a custom mPowerProfile program 
that controls both the platform (via a serial link terminal) and 
the DAQ (via a USB port). mPowerProfile starts collecting 
voltage samples and, after a predefined head delay, a Linux 
command is issued to the platform. It collects samples during 
application execution as well as for a predefined tail delay 
after the application has completed. mPowerProfile provides 
utilities for configuring the head and tail delays, the scaling 
factor for samples, and the sampling frequency. 

The accuracy of the energy estimation increases with in-
creasing sampling frequency. The maximum sampling fre-
quency supported by the DAQ is 200,000 samples per 
second (200 Ksps). The processor cores are running at 1 
GHz on Pandaboard, which means that we can sample the 
voltage drop over the shunt resistor every 5,000 CPU clock 
cycles. We experimented with different sampling frequencies 
in the range of 10 Ksps to 200 Ksps and evaluated their 
impact on the energy calculations. We found that the energy 
calculated using 20 Ksps is within 1% of the energy calcu-
lated using 200 Ksps, so for our experiments we use a sam-
pling frequency of 20 Ksps. 

TABLE II.  DATASET 

i Name Type Raw size 
[bytes] Notes 

1 book text (txt) 15,711,660 Project Gutenberg Works of 
Mark Twain 

2 libso exec. 
(so) 

12,452,484 Open source web content 
engine libwebkit library 

3 globe image 
(bmp) 

16,777,270 An image of Earth from space 

4 health table 
(csv) 

9,988,982 ~2 hours of health and physi-
cal activity data collected on a 

health monitor 
5 perl code 

(tar) 
11,233,280 Perl 5.8.5 source code 

Figure 1. Measuring energy on mobile platforms. 

256



Fig. 2 shows the measured current drawn by Pandaboard 
during compression of the health input file using gzip -1. The 
head and tail delays are set to 4 seconds each and the com-
pression takes about 8.6 seconds. Fig. 2a shows the current 
drawn by Pandaboard during this period as it is used in our 
energy calculations. Fig. 2b shows the filtered signal, pro-
vided here only to enable easier visual inspection by a human 
of the changes in the current drawn during program execu-
tion.  

Pandaboard with all unnecessary services turned off 
draws 0.565 A when idling (Iidle=0.565 A). The start of the 
compression is marked with a steep increase in the current, 
which remains high throughout the compression and goes 
down to the idle current once the application has completed. 
The number of samples during the execution of a compres-
sion utility is n = T.C×SF, where T.C is the compression 
time for a given file and SF is the sampling frequency. The 
total energy consumed (ET.C) is calculated as follows: 

 tVICET
n

j
jPLATFORMj Δ⋅⋅=�

=1
,.    (1) 

where Δt=1/SF, and VPLATFORM,j = VSUPPLY – Ij×R. Note that 
the calculation can be simplified by assuming VPLATFORM to 
be constant because the voltage drop over the shunt resistor 
is negligible. In addition to ET.C, we also calculate the ener-
gy overhead of the compression task alone, ET.C(0), which 
excludes the energy needed to run the platform when idle. 
This energy overhead is calculated as:  

 CTVICETCET idlePLARTFORMidle ..)0(. , ⋅⋅−=  (2) 

where VPLATFORM,idle = VSUPPLY – Iidle×R. We similarly calcu-
late the total energy and the overhead energy for decompres-
sion tasks using the decompression time T.D instead of the 
compression time T.C. Once we determine the energy over-
heads ET.C(0) and ET.D(0), we can find the total energies 
ET.C(Iidle) and ET.D(Iidle) as a function of the idle current 
using (2), thus decoupling our findings from Pandaboard, 
which draws a relatively high idle current. 

IV. METRICS AND EXPERIMENTS 
In subsection IV.A, we describe the metrics used in the 

evaluation of the compression utilities, including the com-
pression ratio, compression and decompression throughput, 
and energy efficiency of compression and decompression 
tasks. Subsection IV.B describes the type of experiments 
conducted. Table 3 summarizes the metrics used as well as 
their definitions. 

A. Metrics 
Compression ratio. We use the compression ratio to eva-

luate the compression effectiveness of an individual utility 
and its levels of compression. The compression ratio CR is 
calculated as the size of the uncompressed input file (US) 
divided by the size of the compressed file (CS), CR=US/CS.  

Performance. To evaluate the performance of individual 
compression utilities and compression levels, we measure 
the time to compress the raw input file (T.C) and the time to 
decompress (T.D) a compressed file generated by that utility 

with the selected compression level. The times are measured 
using the Linux time utility that reports the elapsed time for a 
running task. Each compression and decompression task is 
repeated three times and the average time is calculated. In-
stead of reporting the execution times directly, we report the 
compression and decompression throughput (Th.C and 
Th.D), expressed in megabytes per second, which is calcu-
lated as the size of the uncompressed input file divided by 
the time to perform a compression or decompression task. 
Alternatively, the throughputs can be calculated as the num-
ber of bytes eliminated by compression, |US-CS|, divided by 
the time to perform a compression or decompression task.  

The original throughput (Th.C, Th.D) captures the effi-
ciency of data transfers from a user point of view – users 
produce and consume raw data and care more about the time 
it takes to transfer data than about what approach is used 
internally to make the transfer fast. In addition, this metric is 
suitable for evaluating networked data transfers and compar-
ing compressed and uncompressed transfers. Whereas the 
alternative throughput metric captures the compression 
strength of the individual utilities directly, it is not suitable 
for the evaluation of networked transfers. Thus, we report 
performance using the throughputs Th.C and Th.D. Howev-
er, we have considered both metrics and our findings hold 
for both. 

Energy efficiency. For each compression task with a se-
lected compression level, we calculate the energy overhead 
for compression (ET.C(0)) using the method described in 
(2). In addition, we calculate the total energy as a function of 
the idle current (ET.C(Iidle), where Iidle={0.25, 0.5} A). Simi-

 
a. 

 
b. 

Figure 2. Current drawn by Pandaboard during execution of the gzip utility.
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larly, for each decompression task we calculate the total 
energy as a function of the idle current ((ET.D(Iidle)). For 
each combination of a compression utility and a compression 
level, three measurements are conducted and the average 
energies are calculated. Instead of reporting the energy di-
rectly in joules, we report the energy efficiency (EE.C and 
EE.D) calculated as the size of the uncompressed input file 
divided by the total energy to perform a compression or 
decompression task. An alternative energy efficiency metric 
can be calculated as the number of bytes eliminated by com-
pression divided by the total energy (|US-CS|/ET.C or |US-
CS|/ET.D).  

B. Experiments 
To evaluate the throughput and energy efficiency of 

compression and decompression, we consider three typical 
usage scenarios as illustrated in Fig. 3.  

The first experiment (Local) involves measuring the time 
and energy of compression and decompression tasks per-
formed locally on Pandaboard and Raspberry Pi. To elimi-
nate latencies and energy overheads caused by reading and 
writing files from the file system on the SD memory card, 
the input files for the compression and decompression tasks 
are read from tmpfs, a temporary Linux file system stored in 
main memory. The output of the compression and decom-
pression tasks is re-directed into the Linux null device 
(/dev/null) – a special ‘file’ that discards all data written to it.  

The second and third experiments (Wired and Wireless) 
involve measuring the time and energy of compression and 
decompression tasks performed on the platforms while 
communicating with a remote server. For the compression 
tasks, the raw input file (UF) is read from the local tmpfs, 
compressed on the platform, and streamed to the remote 
server over a secure channel. The output files are redirected 
to the null device of the remote server. For the decompres-
sion tasks, the compressed files (CF) are retrieved from the 

temporary file system of the remote server through a secure 
channel and decompressed on the platform. The output files 
are redirected to the null device of the platform. The com-
munication between input, compression/decompression, and 
output operations is carried out through Linux pipes. The 
execution times include file transfer latencies as well as 
compression and decompression times. Similarly, the ener-
gies are measured for completing the entire tasks. These two 
scenarios correspond to typical file-transfer tasks on mobile 
platforms: compressing and uploading files to a remote serv-
er, and downloading files from a remote server and decom-
pressing them. In addition to the transfers that involve com-
pression and decompression operations, we evaluate the time 
and energy needed to upload and download the raw input file 
over a secure communication channel. Whereas ssh adds the 
extra task of data encryption/decryption, it reflects current 
practice and better represents realistic upload and download 
settings. We ran additional experiments to quantify the im-
pact of the crypto operations in ssh on the transfer times and 
the energy consumed but found that their impact is not sig-
nificant when compared to the netcat and wget utilities that 
do not use secure communication. 

In Wired, the platforms are connected to a local router 
using their Ethernet port. The remote server is also connected 
to the local router and no other nodes participate in any 
communication. In Wireless, Pandaboard uses its wireless 
LAN interface (802.11n) to connect to the local router and 
through it to the remote server. The remote server is a Dell 
workstation T1600 with a quad-core Intel Xeon E3-1200 
processor (SandyBridge architecture) with 8 GB of main 
memory. It runs the Ubuntu 12.04 Linux distribution. The 
local router is a Linksys E900 Wireless N-300 with four 
10/100 Ethernet ports. 

V. RESULTS 
This section discusses the results of our experimental 

analysis, including the compression ratio (subsection V.A), 
compression and decompression throughput (subsection 
V.B), and the energy efficiency as well as the overhead ener-
gy efficiency (subsection V.C). Finally, the energy efficiency 
findings are summarized in subsection V.D. 

 
Figure 3. Experiments’ data flow. Legend: blue file icons illustrate uncom-
pressed raw files, and red file icons illustrate compressed files. Description: 

Local (top), and Wired and Wireless experiments (bottom).  

/dev/null

/dev/null/tmpfs
UF

Compression

Decompression

CF

Mobile Platform

ssh (wireless, wired)

ssh (wireless, wired)

Remote
Server

UF
/tmpfs

CF

/dev/null

/dev/null/tmpfs
UF

Compression

Decompression

CF

Mobile Platform
UF

/tmpfs
CF

ssh (wireless, wired) /dev/null

/tmpfs
UF

ssh (wireless, wired)

UF

LOCAL

WIRED/WIRELESS

TABLE III.  METRICS 

Symbol Description Unit Definition 
US Uncompressed file size MB Measured 
CS Compressed file size  MB Measured 
CR Compression ratio - US/CS 

T.C [T.D] Time to [de]compress s Measured 
T.UUP 

[T.UDW] 
Time to upload [down-
load] the raw file 

s Measured 

ET.C 
[ET.D] 

Total energy for 
[de]compression 

J Measured 

ET.UUP 
[UDW] 

Total energy for upload 
[download] of the raw 
file 

J Measured 

ET.C(0) 
[ET.D(0)] 

Overhead energy for 
[de]compression 

J ET.C – Iidle×VS×T.C 
[ET.D – Iidle×VS×T.D] 

Th.C 
[Th.D] 

[De]Compression  
throughput 

MB/s US/T.C 
[US/T.D] 

Th.UUP 
[Th.UDW] 

Raw upload [download] 
throughput 

MB/s US/T.UUP 
[US/T.UDW] 

EE.C 
[EE.D] 

[De]Compression energy 
efficiency  

MB/J US/ET.C 
[US/ET.D] 
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A. Compression ratio  
Fig. 4 shows the compression ratio for the input dataset. 

(pigz and pbzip2 are equivalent to gzip and bzip2, respec-
tively). Generally, the compression ratio increases with an 
increase in the compression level. The best overall compres-
sion ratio is achieved by xz, ranging from 3.38 with -0 to 
4.29 with -6; and by bzip2/pbzip2 ranging from 3.49 with -1 
to 3.91 with -9. The lowest compression ratio is achieved by 
lzop, ranging from 2.07 with -1 through -6 to 2.62 with -9. 

 
Figure 4. Overall compression ratio (CR). 

B. Compression and decompression throughput 
Local. Fig. 5a shows the overall compression and de-

compression throughput on Pandaboard (Panda) and Rasp-
berry Pi (RaspPi) for Local. The compression throughput 
varies widely across different compression utilities as well as 
across different compression levels of a single compression 
utility. For all compression utilities, the higher compression 
levels result in lower throughput because of the increased 
computational complexity. The throughput drop may exceed 
an order of magnitude, e.g., for lzop. By far the highest com-
pression throughput is achieved by lzop -1 to -6, ~26 MB/s 
on Pandaboard and 9.5 MB/s on Raspberry Pi. The second 
highest compression throughput is achieved by pigz -1, 13.2 
MB/s on Pandaboard and 2.7 MB/s on Raspberry Pi. pigz 
fully utilizes two processor cores on Pandaboard to almost 
double the compression throughput relative to gzip (~7.4 
MB/s with -1). pigz gains over gzip even on the single-core 
Raspberry Pi (~2.7 MB/s vs. ~2.3 MB/s). xz and bzip2 
achieve significantly lower compression throughputs (e.g., 
from 1.6 to 1.1 MB/s for bzip2, and from 2.2 to 0.3 MB/s for 
xz on Pandaboard). We observe an almost linear speedup in 
the pbzip2 compression throughput relative to bzip2’s on 
Pandaboard and no speedup on Raspberry Pi.  

The decompression throughputs are much higher than the 
compression throughputs (from as low as ~3 times to over 
112 times higher) and are only indirectly dependent on the 
compression level. The higher compression levels resulting 
in smaller compressed files may increase decompression 
throughputs because less time is needed to read the input 
files. Notable exceptions are bzip2 and pbzip2, where de-
compression throughputs slightly decrease for higher com-
pression levels, in spite of smaller input files. This can be 
explained by the higher computational complexity of bzip2’s 
decompression when input files are generated using higher 

compression levels. The highest decompression throughput 
is achieved by lzop (of 71.9 MB/s on Pandaboard, 26.5 MB/s 
on Raspberry Pi), followed by pigz and gzip. xz, bzip2, and 
pbzip2 achieve significantly lower decompression through-
puts (below ~10.8 MB/s on Pandaboard and below 4.7 MB/s 
on Raspberry Pi). pigz decompression throughput almost 
doubles relative to the gzip on both platforms. Although 
decompression itself in pigz is not parallelized (it is single 
threaded), three other threads are created for reading, writ-
ing, and checking calculations that speed up decompression 
[13]. Our findings indicate that even single-core systems 
benefit from the parallelized implementation in pigz. 
pbzip2’s implementation includes parallelized decompres-
sion, thus fully benefiting from the dual-core processor on 
Pandaboard, but no speedup is observed on Raspberry Pi.  
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c. 

Figure 5. Compression and decompression throughput. 
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Wired. Fig. 5b shows the compression and decompres-
sion throughputs in Wired on Pandaboard and Raspberry Pi. 
The dashed lines represent the measured effective network 
throughput when the uncompressed input files are uploaded 
to the remote server (Th.UUP(Panda) = 5.95 MB/s, 
Th.UUP(RaspPi) = 3.6 MB/s) and downloaded from the 
remote server (T.UDW(Panda) = 8.8 MB/s, T.UDW(RaspPi) 
= 5 MB/s). 

The compression throughput is limited by the effective 
network throughput and is therefore always below 
CR×Th.UUP. For example, lzop -1 (through -6) on Panda-
board plateaus at 11 MB/s, which is below 2.07×5.95 = 12.3 
MB/s (the compression ratio for lzop -1 is 2.07). The effec-
tive compression throughput in this case is thus significantly 
below the 25 MB/s measured in Local. However, for lzop 
with -7, -8, and -9, where the original compression through-
put is lower than the upload network throughput 
(Th.UUP=5.95 MB/s), the compression throughputs remain 
unchanged relative to those measured in Local. Similar ob-
servations can be made about the other compression utilities. 
For gzip -1 and pigz -1 on Pandaboard, the compression 
throughputs are 6 and 8.3 MB/s, respectively, well below the 
maximum achievable 15.8 MB/s (2.65×5.95, where 2.65 is 
the compression ratio for gzip and pigz with -1). In contrast, 
pbzip2 consistently offers a higher compression throughput 
relative to bzip2 because they both have a compression 
throughput that is below the effective network upload 
throughput. When compared to the throughput for uploading 
the uncompressed dataset, only lzop with -1 to -6, gzip with -
1, and pigz with -1 to -4 provide an increased effective net-
work throughput on Pandaboard, whereas the other combina-
tions do not appear to be beneficial (i.e., it takes more time to 
compress and upload an input file than to just upload the raw 
input file). On Raspberry Pi, only lzop with -1 to -6 offers an 
increased effective network throughput, ~4.1 MB/s, slightly 
more than the 3.6 MB/s achieved for the uncompressed upl-
oad. 

The decompression throughputs are also limited by the 
effective network throughput, resulting in lower effective 
decompression throughputs, which are below 
CR×(US/T.UDW). For example, lzop with -9 on Pandaboard 
achieves a decompression throughput of ~20.8 MB/s, which 
is very close to the maximum achievable (2.62×8.84 = 23.2 
MB/s). gzip with -9 achieves ~22.6 MB/s and pigz with -9 
achieves ~23.5 MB/s. They outperform lzop because they 
provide higher compression ratios – their achievable maxi-
mum decompression throughput is below 2.99×8.84 = 26.4 
MB/s. These three utilities effectively increase the available 
network throughput (their throughputs are above the 
Th.UDW line) and decrease the download time relative to 
the time needed to download the uncompressed file from the 
remote server. pbzip2, bzip2, and xz are ineffective on both 
platforms (they fall below the uncompressed throughput).  

Wireless. Fig. 5c shows the compression and decompres-
sion throughputs for Wireless on Pandaboard. The dashed 
lines represent the measured effective upload and download 
throughput when transferring uncompressed files wirelessly, 
Th.UUP = 1.64 MB/s and Th.UDW = 1.52 MB/s, respective-

ly. Similar to the prior experiment, the effective compression 
throughput is limited by the network upload throughput and 
is always below CR×(US/T.UUP). In Wireless, compression 
effectively increases the upload throughput for gzip with -1 
to -7, lzop with -1 to -6, xz with -0, pigz with -1 to -9, and 
pbzip2 with -1 to -9, whereas bzip2 falls below 1.52 MB/s. 
Lower effective network throughputs enable more compres-
sion configurations to be beneficial. Compression with lower 
compression levels is still preferred to higher levels. The 
highest compression throughput of ~5.1 MB/s is achieved by 
pigz with -1. It outperforms gzip -1 (4.1 MB/s) and lzop -1 
(3.2 MB/s).  

With the low effective throughput for downloads offered 
by the wireless interface, all decompression utilities increase 
the available bandwidth (Th.D > Th.UDW for all tested 
compression utilities with all compression levels). Again, the 
maximum achievable decompression throughput is limited to 
CR×Th.UDW. xz provides the highest decompression 
throughput, ranging from 4.6 with -0 to 6.3 MB/s with -4, 
followed by pigz (from 4.3 to 5.3 MB/s), and gzip (from 4 to 
4.8 MB/s). Interestingly, pigz and pbzip2 offer only limited 
improvements in decompression throughput over their se-
quential counterparts due to very low network throughput.  

C. Energy efficiency  
Local. Fig. 6a and Fig. 7a show the energy efficiency for 

the compression and decompression tasks on Pandaboard 
and Raspberry Pi, respectively, as a function of the idle cur-
rent Iidle (Iidle={0, 0.25} A). Expectedly, the energy efficiency 
for compression varies widely for different utilities and for 
different compression levels within each utility (often by 
more than an order of magnitude). The most energy efficient 
compression utility by far is lzop with compression levels -1 
to -6 regardless of the idle current; it achieves ~54 MB/J 
(Megabyte/joule) for Iidle = 0 A, ~14.5 MB/J for Iidle = 0.25 A 
on Pandaboard, and 45.5 MB/J for Iidle = 0 A and 6.5 MB/J 
for Iidle = 0.25 A on Raspberry Pi. Distant second and third 
are gzip and pigz with -1 achieving ~14 MB/J and ~11 MB/J 
for Iidle = 0 A on Pandaboard. Following the trends in com-
pression throughputs, higher compression levels for gzip, 
pigz, and lzop result in a dramatic decrease in energy effi-
ciency (e.g., down to 1.5 MB/J for lzop with -9). pigz and 
pbizp2 are more energy efficient than their sequential coun-
terparts when Iidle � 0 A because they reduce the compression 
time. However, if we consider only the energy efficiency 
when Iidle = 0 A (EE.C(0)), the parallel implementations are 
slightly less energy efficient. pbzip2 and bzip2 exhibit low 
energy efficiencies as does xz, which is the least attractive 
choice with high compression levels.   

The energy efficiencies of the decompression tasks (Fig. 
6a and Fig. 7a) vary widely for different utilities. The de-
compression efficiency is relatively stable for individual 
utilities – it increases slightly for higher compression levels 
for all utilities except bzip2 and pbizp2. Thus, EE.D(0) on 
Pandaboard is ~136 MB/J for lzop, ~50 MB/J for gzip, ~55 
MB/J for pigz, and just below ~10 MB/J for bzip2/pbzip2. 
lzop emerges as the most energy-efficient choice in spite of 
its lower compression ratio. It remains the most energy effi-
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cient tool even when compression strength is taken into 
account by considering (|US-CS|/ET.D).  

 
a. 

 
b. 

 
c. 

Figure 6. Energy efficiency for Pandaboard. 

Wired. Fig. 6b and Fig. 7b show the energy efficiency for 
compression and decompression as a function of the idle 
current on Pandaboard and Raspberry Pi, respectively, in 
Wired. In addition, the graphs show the energy efficiency for 
uncompressed upload (EE.UUP) and uncompressed down-
load (EE.UDW) as a function of the idle current. This way, 
one can easily identify cases when transfers with compres-
sion and decompression offer higher energy efficiency than 
raw uploads (EE.C(Iidle) > EE.UUP(Iidle) and raw downloads 
(EE.D(Iidle) > EE.UDW(Iidle)).  

With Iidle = 0, gzip, pigz, and lzop with -1 to -7 and xz 
with -1 to -2 provide higher energy efficiency than the raw 
upload. However, only lzop with -1 to -6, gzip -1 to -4, and 

pigz with -1 to -5 provide higher energy efficiency for all 
considered idle currents. Again, the most energy efficient 
utility is lzop with -1 to -6 with ~12.5 MB/J when Iidle=0, ~ 
5MB/J when Iidle = 0.25 A. bzip2, pbizp2, and xz exhibit 
rather low energy efficiency for compression. Similar con-
clusions can be drawn for Raspberry Pi: only lzop with -1 to 
-6, and pigz with -1 provide increased energy efficiencies 
over the uncompressed uploads for all idle currents consi-
dered. 

The energy efficiency of decompression for gzip, lzop, 
and pigz exceeds the energy efficiency of the uncompressed 
download for all considered idle currents, whereas xz, bzip2 
and pbzip2 are less energy efficient. lzop -7 to -9 (~23.7 
MB/J on Pandaboard, ~29.5 MB/J on Raspberry Pi) and pigz 
-4 to -9 (21 MB/J on Pandaboard, 30 MB/J on Raspberry Pi) 
emerge as the most energy efficient utilities on both plat-
forms when Iidle = 0 A. They also outperform others when 
Iidle = {0.25, 0.5} A.  

Wireless. Fig. 6c shows the energy efficiency for com-
pression and decompression on Pandaboard as a function of 
the idle current, respectively. Similar to the previous experi-
ment, the graphs also display the energy efficiency for un-
compressed upload (EE.UUP) and uncompressed download 
(EE.UDW) as a function of the idle current.  
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Figure 7. Energy efficiency for Raspberry Pi. 

The relatively low network throughput for upload results 
in all utilities having higher energy efficiency than the raw 
upload when Iidle=0 A (i.e., EE.C(0) > EE.UUP(0) for all 
utilities except xz -5 and -6). pigz -1 is the most energy effi-
cient with 2.5 MB/J, followed closely by gzip -1 and lzop -1. 
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pigz -1 remains the most energy-efficient compression utility 
when Iidle = {0.25, 0.5} A.  

All decompression alternatives offer a total energy effi-
ciency that exceeds the total energy efficiency of uncom-
pressed download from the remote server, EE.UDW(0), 
which is 1.16 MB/J. Generally, downloading files that were 
compressed with higher compression levels increases the 
energy efficiency except for bzip2 and pbzip2. The total 
energy efficiency when Iidle=0 A, EE.D(0), is 3.6 to 4.3 MB/J 
for gzip, 2.9 to 3.7 MB/J for lzop, 4 to 4.8 MB/J for pigz, 2.9 
to 3.1 MB/J for pbzip2, and 3.6 to 4.6 MB/J for xz. pigz and 
xz emerge as the most energy-efficient utilities when Iidle = 
{0.25, 0.5} A. xz benefits from providing a superior com-
pression ratio in conditions where communication energy 
dominates the overall energy cost. 

D. Putting it all together 
Table 4 summarizes the results of our experimental 

study. It lists the most energy efficient utilities for compres-
sion and decompression tasks in the three experimental se-
tups (Local, Wired, Wireless) for both platforms (Panda-
board/Raspberry Pi). We show the energy efficiency for 
compression and decompression tasks (EE.C and EE.D) as 
well as for raw file transfers (EE.UUP, EE.UDW). The ener-
gy efficiencies are reported for three idle currents.  

For local compression tasks, we find lzop with -1 to -6 to 
be superior for both compression throughput and energy 
efficiency, in spite of yielding the lowest compression ratio. 
It outperforms the next best utilities pigz with -1 and gzip 
with -1 by more than a factor of four. Similarly, we find that 
lzop -6 to -9 outperforms the next best utilities pigz -9 and 
gzip -9 for local decompression tasks by a factor of 2.5.  

For compression tasks in the wired experiment, we find 
lzop with -1 to -6 to offer superior throughput and energy 
efficiency. It outperforms pigz with -1 and gzip -1 as the next 
best alternatives. For decompression tasks, lzop with -7 to -9 
and pigz with -6 to -9 are the most energy efficient, with pigz 
having slightly higher efficiency when the idle current is 
higher than zero. The most energy-efficient compression 
utility in the wireless experiment is pigz -1 (followed closely 
by gzip -1 and lzop -1 to -6), whereas xz with -4 to -6 and 
pigz with -7 to -9 stand out for decompression tasks. 

In summary, we find a high throughput to be most impor-
tant for achieving good energy efficiency for compression 
tasks, with improved compression ratios only slightly affect-
ing the choice of utility as the available bandwidth becomes 
constrained. In contrast, decompression also favors through-
put but only in combination with a reasonable compression 
ratio, and the balance rapidly tips towards more emphasis on 
compression ratio as the available bandwidth becomes li-
mited. 

VI. RELATED WORK 
We are aware of two related studies that investigate data 

compression in the context of energy efficiency on embed-
ded and mobile systems [6], [19]. Both studies examine the 
feasibility of using compression to reduce energy consump-
tion and explore tradeoffs between time, compression ratio, 
and energy. 

The most closely related work to ours is a study by Barr 
and Asanovi� [6], [7]. It also investigates the energy effi-
ciency of lossless data compression on a wireless mobile 
device. Their excellent publications include details that are 
beyond the scope of our work, such as the frequency with 
which different types of instructions are executed, the branch 
prediction accuracy, and the performance of the memory 
hierarchy. Their experimental setup has several advantages 
over ours. For example, their Skiff platform, which mimics 
an iPAQ mobile device, enabled them to separately measure 
the energy drawn by the CPU, the memory subsystem, peri-
pherals, and the wireless interface. However, our test envi-
ronment is superior in other aspects. Some of them are simp-
ly a result of almost a decade of advances in technology. For 
instance, their now obsolete processor had a single core, a 
clock frequency of 233 MHz, and 32 MB of DRAM. The 
Skiff platform was further limited to 4 MB of nonvolatile 
flash memory. Thus, the root file system had to be mounted 
externally via an Ethernet port using NFS. In comparison, 
our OMAP4430 has two cores, runs at 1.01 GHz, and has 1 
GB of DDR2 SDRAM. The OMAP SoC is one of the lead-
ing platforms for current mobile devices and features an 
integrated communication interface and supports higher 
transmission speeds. Another advantage of our test bed is the 
sampling frequency of 20 kHz, which is about 500 times 

TABLE IV.  THE MOST ENERGY-EFFICIENT UTILITIES 

Experiment Compression Raw UUP Decompression Raw UDW
LOCAL Best Utility EE.C [MB/J] EE.UUP [MB/J] Best Utility EE.D [MB/J] EE.UDW [MB/J] 
  Panda RaspPi Panda RaspPi Panda RaspPi Panda RaspPi
Iidle = 0 A lzop -1 to -6 55 44 - - lzop -6 to -9 137 90  - -

Iidle = 0.25 A lzop -1 to -6 14.5 6.5 - - lzop -6 to -9 40 17  - -

Iidle = 0.5 A lzop -1 to -6 8.5 3.5 - lzop -1 to -9 23 9.5  - -

WIRED      -    
Iidle = 0 A lzop -1 to -6 12.4 15.5 1.6 1.53 lzop -7 to -9 23.5 30 9.4 13.5

Iidle = 0.25 A lzop -1 to -6 5.1 2.7 1.2 0.74 pigz -6 to -9 10 5.5 4.0 3.1

Iidle = 0.5 A lzop -1 to -6 3.2 1.5 0.95 0.6 pigz -6 to -9 6.5 3 2.6 1.7

WIRELESS         
Iidle = 0 A pigz -1 2.5 0.39 pigz -4 to -7 4.6  1.16 

Iidle = 0.25 A pigz -1 1.5 0.30 xz -4 to -6 2.4  0.59 

Iidle = 0.5 A pigz -1 1.1 0.25 xz -4 to -6 1.6  0.40 
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higher than theirs, presumably yielding more accurate mea-
surements. Even when accounting for the difference in clock 
frequency, our hardware takes a sample every 50,000 CPU 
clock periods whereas theirs sampled once per five million 
clocks. 

There are also substantial software differences between 
Barr and Asanovi�’s study and ours. Whereas several of their 
compression utilities are predecessors of the utilities we 
evaluated, they only tested a few compression levels (we test 
all of them), and we include newer utilities such as xz as well 
as the parallel implementations pigz and pbzip2. Further-
more, their input data was limited to 1 MB of text and 1 MB 
of web data. We cover a wider range of relevant data types 
and our files are over an order of magnitude larger. Due to 
their hardware’s low sampling rate, they were forced to run 
the same compression or decompression in an infinite loop to 
obtain sufficiently many samples. We are able to run our 
tests individually, that is, in a manner that is more repre-
sentative of actual usage. 

VII. CONCLUSION 
This paper describes an experimental evaluation of recent 

implementations of common compression utilities on Panda-
board and Raspberry Pi, two state-of-the-art mobile devel-
opment platforms. We measure compression and decompres-
sion times, total and overhead energies consumed by com-
pression and decompression tasks and report metrics such as 
compression ratio, compression/decompression throughputs, 
and compression/decompression energy efficiencies across 
different compression levels. Our measurements mimic 
typical usage scenarios of mobile devices involving transfers 
of data over wired and wireless networks.  

Based on the results of our analysis, we provide practical 
guidelines for selecting the most energy-efficient utilities 
depending on the usage scenario. For compression tasks, 
utilities that are fast and have low computational complexity, 
such as lzop with compression levels -1 to -6 and pigz 
with -1, are the most energy-efficient options in spite of their 
relatively low compression ratio. For decompression tasks, 
lzop, gzip, and pigz are good choices, as well as xz when 
transferring data over a low-throughput wireless network. 
The results of our study show that the common utilities with 
their default compression levels may not always be the most 
energy-efficient combinations. For example, the energy 
efficiency of compressed uploads over the wireless network 
using the widely used gzip with the default compression 
level -6  is 1.6 MB/J, whereas pigz -1 achieves 2.5 MB/J, a 
50% improvement in energy-efficiency.  

Our findings may guide energy optimizations of data 
transfers in mobile applications and encourage the develop-
ment of data transfer frameworks that are conscientious of 
the mobile device’s energy status. For example, a server 
could easily store multiple copies of the same file, com-
pressed with different utilities and compression levels, to 
allow the mobile device to choose, based on its capabilities, 
currently available network bandwidth, energy status, and 

user preferences, which version of a file to download. Based 
on similar criteria, the mobile device could choose which 
format to use for uploading a file, and the server could then 
convert the file, if necessary, to the best download format(s). 

ACKNOWLEDGMENT 
This material is based upon work supported in part by the 

National Science Foundation under Grants No. 1141022, 
1205439, 1217231 and 1217470. Any opinions, findings, and 
conclusions or recommendations expressed in this material 
are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation.  

REFERENCES 
[1] D. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” Proc. Ire, vol. 40, no. 9, pp. 1098–1101, Sep. 
1952. 

[2] J. Rissanen and G. G. Langdon, “Arithmetic Coding,” IBM J. Res. 
Dev., vol. 23, no. 2, pp. 149–162, Mar. 1979. 

[3] J. Ziv and A. Lempel, “A universal algorithm for sequential data 
compression,” IEEE Trans. Inf. Theory, vol. 23, pp. 337–343, 1977. 

[4] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data 
Compression Algorithm,” Digital SRC, Report 124, May 1994. 

[5] M. Milosevic, A. Dzhagaryan, E. Jovanov, and A. Milenkovic, “An 
Environment for Automated Power Measurements on Mobile 
Computing Platform,” in in the Proceedings of the ACM Southeast 
Conference (ACMSE’13), Savannah, GA, 2013. 

[6] K. Barr and K. Asanovi�, “Energy aware lossless data compres-
sion,” in Proceedings of the 1st International Conference on Mo-
bile Systems, Applications and Services (MobiSys’03), 2003, pp. 
231–244. 

[7] K. C. Barr and K. Asanovi�, “Energy-aware lossless data compres-
sion,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 250–291, Aug. 
2006. 

[8] “The gzip home page.” [Online]. Available: http://www.gzip.org/. 
[Accessed: 25-May-2012]. 

[9] M. Oberhumer, “lzop file compressor (oberhumer.com Open-
Source).” [Online]. Available: http://www.lzop.org/. [Accessed: 25-
May-2012]. 

[10] “bzip2: Home.” [Online]. Available: http://www.bzip.org/. [Ac-
cessed: 25-May-2012]. 

[11] “XZ Utils.” [Online]. Available: http://tukaani.org/xz/. [Accessed: 
25-May-2012]. 

[12] I. Pavlov, “7-Zip.” [Online]. Available: http://www.7-zip.org/. 
[Accessed: 25-May-2012]. 

[13] “pigz - Parallel gzip.” [Online]. Available: http://zlib.net/pigz/. 
[Accessed: 25-May-2012]. 

[14] J. Gilchrist, “Parallel BZIP2 (PBZIP2).” [Online]. Available: 
http://compression.ca/pbzip2/. [Accessed: 25-May-2012]. 

[15] “Pandaboard.” [Online]. Available: http://pandaboard.org/. [Ac-
cessed: 28-May-2012]. 

[16] “OMAPTM 4 Platform - OMAP4430/OMAP4460.” [Online]. Avail-
able: http://www.ti.com/omap4430. [Accessed: 02-Jun-2012]. 

[17] “Linaro: open source software for ARM SoCs.” [Online]. Availa-
ble: http://www.linaro.org/. [Accessed: 28-May-2012]. 

[18] “Raspberry Pi.” [Online]. Available: http://www.raspberrypi.org/. 
[Accessed: 05-Feb-2013]. 

[19] C. M. Sadler and M. Martonosi, “Data compression algorithms for 
energy-constrained devices in delay tolerant networks,” in Proceed-
ings of the 4th International Conference on Embedded Networked 
Sensor Systems, 2006, pp. 265–278. 

 

 
 

263


