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CHAPTER 1 

 

INTRODUCTION 
 

Embedded computer systems are everywhere.  They are indispensable to modern 

telephones, music players, network routers, and even weapons systems.  Society relies on 

embedded systems to perform an increasing multitude of tasks.  As the number of 

embedded applications increases, so do the incentives for attackers to compromise the 

security of these systems.  Security breaches on these systems may have wide ranging 

impacts, from simple loss of revenue to loss of life.  Maintaining security on embedded 

systems is therefore vital for the consumer, industry, and government. 

1.1 Secure Processors: Motivation and Background 

Computer systems are often subject to attacks, and the number of vulnerabilities 

is high.  According to the United States Computer Emergency Readiness Team [1], 

5,198 software vulnerabilities were identified in the year 2005 alone, the number of 

actual attacks was much greater.  Unauthorized copying of software is another major 

threat.  The Business Software Alliance [2] estimates that, in the year 2006, 35% of all 

software installed on personal computers was pirated, leading to forty billion dollars in 

lost revenue.  Furthermore, the number of fielded computer systems is astronomical.  

Most observers would recognize general purpose desktops, workstations, and servers as 

computer systems, but the number of these systems in the field is far outstripped by the 
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number of embedded systems.  In 1999, an estimated total of 250 million 32-bit 

processors and one billion each of 16-bit, 8-bit, and 4-bit processors were sold, which 

contrasts sharply with the 100 million desktop, workstation, and server computer systems 

that were sold [3]. 

This thesis addresses computer security from the microprocessor’s perspective.  

We focus on embedded systems, and address the areas of integrity, confidentiality, and 

availability.  Integrity is violated whenever any unauthorized code is executed on a 

system or unauthorized data is used by the processor.  Confidentiality is violated 

whenever some entity, human or computer, is able to view, copy, or reverse-engineer 

instructions or data.  Availability is violated whenever a legitimate user is denied access 

to the system.  The architectures we propose directly address the integrity and 

confidentiality of software instructions and data.  The architectures indirectly address 

availability in that attacks on integrity often result in a loss of availability. 

1.2 Proposed Architectures for Ensuring Software/Data Integrity and 

Confidentiality 

We propose two architectures for secure processors.  One addresses the integrity 

and confidentiality of the software itself (instructions).  The other addresses the integrity 

and confidentiality of data used by the software.  These two architectures may be 

implemented independently or combined as appropriate.  

Software integrity and confidentiality is ensured using encryption and signature 

verification.  The confidentiality of instructions is preserved by encrypting the data using 

a variant one-time pad (OTP) scheme, which provides a high level of security while 

allowing for quick decryption at runtime.  Instruction integrity is preserved by signing the 
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instructions during a secure installation procedure and verifying the signatures at runtime.  

When new instructions are fetched from memory, their signature is recalculated and 

compared to the signature from memory.  If the signatures do not match, the instructions 

have been subjected to tampering and program execution is halted. 

Encryption and signature verification are also used to ensure the integrity and 

confidentiality of the data used by the instructions.  Encryption and signature generation 

incorporate a data versioning scheme to support dynamic data.  Data versions, stored as 

sequence numbers, are themselves signed at the data page level to ensure their integrity.  

The integrity of the page-level signatures is ensured by using them to calculate a 

program-level signature. 

1.3 Contributions 

The primary contribution of this work is the proposal of architectures for ensuring 

the integrity and confidentiality of both software instructions and data.  This work 

includes several unique and/or innovative features, such as the following: 

• We propose architectures for ensuring the integrity and confidentiality of both 

software instructions and data. 

• We introduce several enhancements to reduce performance, power, and memory 

overhead including: the parallel message authentication code (PMAC) cipher, the 

instruction verification buffer, protecting multiple instruction blocks with one 

signature, and caching sequence numbers. 

• We establish a cycle-accurate simulation framework for quantitative evaluation of 

these architectures. 
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• We use the cycle-accurate simulator to evaluate performance and power 

overhead. 

1.4 Outline 

The remainder of this thesis is organized as follows.  Chapter 2 presents an 

overview of several threats to computer security.  Chapter 3 surveys existing proposals 

for hardware support meant to preserve software and/or data integrity and/or 

confidentiality.  Chapter 4 details our proposed architecture for preserving software 

integrity and confidentiality, while Chapter 5 details our proposed architecture for 

preserving data integrity and confidentiality.  Chapter 6 describes the experimental 

environment used to evaluate these architectures.  Chapter 7 evaluates these architectures 

both qualitatively and with quantitative test results for various benchmarks.  Chapter 8 

concludes the thesis and suggests avenues for further research.
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CHAPTER 2 

 

COMPUTER SECURITY 

 

This chapter briefly examines several types of attacks that embedded systems may 

experience.  First we look at software-based attacks, where the attacker already has 

access to a system, either directly or over a network.  Next we look at physical attacks, 

where the attacker has physical access to the system but not necessarily software access.  

Finally we examine side-channel attacks, in which the attacker attempts to gain 

knowledge about the system by indirect analysis.   

2.1 Software Attacks 

Software attacks require the attacker to have some form of access to the target 

computer system.  This could be direct access, with a lower permission level than the 

attacker desires.  The access could also be across a network, which would require the 

attacker to sniff the system’s open ports, looking for services with known vulnerabilities.  

The goal of software attacks is to modify a running program by injecting and executing 

code.  The foreign instructions must be injected into memory, and then the return address 

of the currently executing function must be overwritten to force the processor to execute 

the injected instructions.  These attacks are only briefly documented here; a more detailed 

treatment can be found in [4]. 
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2.1.1 Buffer Overflow Attacks 

A common class of attacks is buffer overflow.  These attacks take advantage of 

I/O instructions that simply store incoming data to a buffer, without bothering to check to 

see if the amount of incoming data will exceed the buffer size.  After the buffer fills, 

memory locations beyond the buffer are overwritten.  Most systems have stacks that grow 

counter to memory address growth.  If the buffer is on the stack, then this attack can 

overwrite the data at any address on the stack beyond the buffer with malicious 

instructions.  This overwrite includes the return address, allowing the attacker to divert 

the program to the newly injected instructions.  If the buffer is on the heap near a function 

pointer, then the attacker’s goal is to inject code and overwrite that function pointer. 

2.1.2 Format String Attacks 

 Format string attacks take advantage of printf-family instructions that take a 

format string as an input.  These functions will accept any pointer and interpret the 

contents of memory at that address as a format string.  By skillfully manipulating the 

inputs passed to the printf  function, the attacker can read from any address in memory.  

The %n format character presents an additional vulnerability.  This character causes a 

printf  function to write the number of characters output by the function before it reached 

%n to a specified address.  A skillful attacker could use this to write an arbitrary integer 

to any address. 

2.1.3 Integer Error Attacks 

Errors arising from integer operations cannot be used as a direct attack.  However, 

integer errors can facilitate other forms of attacks.  For instance, an unsigned integer 



7 

 

overflow can result in a smaller number than expected.  If this is used to allocate a buffer, 

then the buffer will also be smaller than expected.  This exposes the system to a buffer 

overflow attack, even if subsequent input operations using that buffer check input length.  

A more thorough treatment of integer error attacks may be found in [5]. 

2.1.4 Dangling Pointer Attacks 

Dangling pointers become an issue if the free function is called twice for the same 

pointer.  The vulnerability arises from the way that the GNU C library handles memory 

allocation [6].  When a chunk of memory is freed, it is inserted into a doubly linked list of 

free chunks.  If  free is called twice, the pointers to the next and previous entries may 

wind up pointing back to the same chunk.  An attacker may write malicious code to the 

chunk’s data area and put a pointer to that code in place of the pointer to the previous list 

entry.  If that chunk is allocated again, the memory manager will try to unlink the chunk 

from the list, and will write the attacker’s pointer to an address calculated from the 

pointer to the next entry.  If that address happens to contain a function’s return address, 

then a successful attack has been accomplished. 

2.1.5 Arc-Injection Attacks 

An arc injection or “return-into-libc” involves overwriting a return address such 

that control flow is disrupted.  Oftentimes the address of a library function is used.  

Library system calls can be used to spawn other processes on the system with the same 

permissions as the compromised program.  If the operating system (OS) itself is 

compromised, then the attacker can run a malicious program that will have the ability to 

access any and every memory location. 
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2.2 Physical Attacks 

In contrast to software attacks, physical attacks involve tampering with the actual 

computer hardware.  Probes are often inserted on the address and data bus, allowing the 

attacker to monitor all transactions and override data coming from memory with his/her 

own data.  This is a tool often used in industrial and military espionage. This section 

describes three such attacks: spoofing, splicing, and replay. 

2.2.1 Spoofing Attacks 

A spoofing attack occurs when an attacker intercepts a request for a block of 

memory, and then manually supplies a block of his/her choice.  This block may contain 

either data or instructions of a malicious nature.  In an unsecured system, the processor 

naïvely conducts a bus cycle, and is unaware that the data it received came from an 

attacker rather than from main memory.  The spoofing process is illustrated in Figure 2.1.  

The processor initiates a bus read cycle for a block at memory location Ai.  The attacker 

intercepts the request and supplies a potentially malicious block Mi instead of the correct 

block Ai. 
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BusRd(Ai)

Ai

Mi

Attacker

Processor Main
Memory

 

Figure 2.1  Spoofing Attack 

 

 

2.2.2 Splicing Attack 

Splicing attacks involve intercepting a request for a block of memory and then 

supplying the data from a different block.  The supplied block is a valid block from 

somewhere in the address space, but it is not the actual block that the processor 

requested.  This attack may be performed with either data or instruction blocks.  Once 

again, the unsecured processor is unaware that it has received the incorrect memory 

block.  The splicing attack methodology is illustrated in Figure 2.2.  The processor 

initiates a bus read cycle for a block at memory location Ai.  The attacker intercepts the 

request and supplies a valid block from memory, but from address Aj rather than the 

desired address. 
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BusRd(Ai)

Attacker

Processor Main
Memory

 

Figure 2.2  Splicing Attack 

 

 

2.2.3 Replay Attacks 

In a replay attack, the attacker intercepts a request for a block of memory, and 

then supplies an older copy of that block.  This is primarily a concern for data blocks 

rather than instructions.  The supplied block was correct at some point in the past, but 

now it may be obsolete.  The replay attack process is illustrated in Figure 2.3.  The 

processor initiates a bus read cycle for the data block at address Ai.  The attacker 

intercepts the request and returns an older version of that block, which may be different 

from the current version in memory. 
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Figure 2.3  Replay Attack 

 

 

2.3 Side-Channel Attacks 

Side-channel attacks attempt to gather information about a system or program via 

indirect analysis.  These attacks involve first collecting information about the system and 

then analyzing that information in an attempt to deduce the system’s secrets [7].  The 

information gathering stage requires some form of access to the system.  The attacker 

may have direct physical access to the system and its components, or have some level of 

privileges to run programs on the target system.  In this section, we briefly describe a few 

examples of the myriad possible side-channel attacks, including timing analysis, 

differential power analysis, fault exploitation, and architectural exploitation. 

2.3.1 Timing Analysis 

Timing attacks are, perhaps, the simplest type of side-channel attacks, taking 

advantage of the fact that different operations require different amounts of time to 

execute.  Kochner [8] illustrates how this can be used to break cryptographic algorithms, 
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given a known algorithm and either known plaintext or known ciphertext.  He uses 

timing analysis to determine the secret exponent in the Diffie-Hellman algorithm, factor 

RSA private keys, and determine the private key used by the Digital Signature Standard 

algorithm. 

2.3.2 Differential Power Analysis 

A microprocessor’s power consumption at any given moment can indicate what 

operations it is performing.  A differential power analysis can be used to determine what 

instructions are executed and when.  Kocher et al. [9] discuss how to break a known, 

data-driven encryption algorithm using such an attack.  Instantaneous CPU power 

consumption is measured at intervals during a cryptographic operation, forming a trace.  

Multiple traces can be compiled and compared, revealing patterns produced by the 

execution of certain instructions.  Since the encryption algorithm is both known and data-

driven, the data being processed can be revealed solely from the power traces. 

2.3.3 Fault Exploitation 

A fault exploitation attack takes advantage of hardware faults to discover secrets.  

These hardware faults may be transiently occurring within the processor, or induced 

externally.  Boneh et al. [10] describe a simple fault exploitation attack, whereby the 

modulus used by an RSA algorithm may be calculated.  A signature must be calculated 

from the same data two times.  One signature is calculated without a hardware fault.  The 

second is calculated in the presence of a hardware fault, either transient or induced.  The 

modulus of the RSA system can then be factored by analyzing the difference between the 
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two signatures.  Boneh et al. go on to break even more sophisticated cryptographic 

schemes using similar techniques.  

2.3.4 Architectural Exploitation 

Due to the well-known effect of Moore’s Law, microprocessor designers have 

been able to introduce more and more advanced features.  Sometimes these advanced 

features may be exploited to reveal information about the processor.  A prime example of 

an architectural exploitation attack is the Simple Branch Prediction Analysis attack 

devised by Aciiçmez et al. [11].  This attack expands on the classical timing attack by 

taking advantage of the branch prediction unit and multi-threading capabilities of the 

Pentium 4 processor.  A spy process is executed in parallel with a process performing a 

known cryptographic algorithm.  The spy process executes branch instructions, flooding 

the processor’s branch target buffer (BTB), while measuring the execution time required 

for those branch instructions.  When the cryptographic process executes a branch 

instruction that results in the branch not being taken, no BTB eviction is needed.  Thus, 

the next time the spy process executes a corresponding branch, it will execute quickly, 

thereby revealing that the cryptographic process had a branch not taken.  Conversely, a 

taken branch in the cryptographic process results in a BTB eviction, which in turn causes 

a spy process branch to take longer to execute, revealing that the cryptographic process 

had a taken branch.  The recorded trace of branches that were taken and not taken can 

then be used to deduce the cryptographic secret key.  This attack relies on detailed 

information about the underlying hardware and software, but such information is often 

available and can be obtained using microbenchmarks [12].
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CHAPTER 3 

 

RELATED WORK 

 

In this chapter, we briefly survey several architectural techniques that have been 

proposed to support the software and data integrity and confidentiality.  Security may be 

approached from both the software and hardware perspectives.  Software techniques may 

be classified as static (relying on the detection of security vulnerabilities in code at design 

time) and dynamic (adding code to enhance security at runtime).  A survey of static and 

dynamic software techniques may be found in [4].  Hardware techniques rely primarily 

on hardware to ensure security, often with some degree of software support.  This chapter 

focuses on hardware techniques, as our proposed security architectures are hardware-

oriented.  We first examine various proposals from academia, which are well 

documented.  Then we examine industrial security solutions, which are not as well 

documented due to their proprietary nature. 

3.1 Academic Proposals 

Several techniques have been put forth to address common types of attacks.  Xu 

et al. [13] and Ozdoganoglu et al. [14] propose using a secure hardware stack to defend 

against stack buffer overflow attacks.  Tuck et al. [15] suggest using encrypted address 



15 

 

pointers.  Suh et al. [16] and Crandall and Chong [17] propose that all data coming from 

untrusted channels be tagged, thus not allowed to be used as a jump target. 

The execute-only memory (XOM) architecture proposed by Lie et al. [18] 

provides an architecture meeting the requirements of integrity and confidentiality.  Main 

memory is assumed to be insecure, so all data entering and leaving the processor while it 

is running in secure mode is encrypted.  This architecture was vulnerable to replay 

attacks in its original form, but that vulnerability was corrected in [19].  The drawbacks 

to this architecture are its complexity and performance overhead.  XOM requires 

modifications to the processor core itself and to all caches, along with additional security 

hardware.  This architecture also incurs a significant performance overhead, by its 

designers’ estimation, of up to 50%. 

The high overhead of XOM is reduced by the architectural improvements 

proposed by Yang et al. [20].  They only address confidentiality, as their improvements 

are designed to work with XOM, which already addresses integrity concerns.  They 

propose to use a one-time pad (OTP) scheme for encryption and decryption, in which 

only the pad is encrypted and then exclusive or-ed with plaintext to produce ciphertext, or 

with ciphertext to produce plaintext.  They augment data security by including a sequence 

number in the pad for data blocks, and require an additional on-chip cache for said 

sequence numbers.  While their scheme greatly improves XOM’s performance, it inherits 

its other weaknesses. 

Gassend et al. [21] propose to verify untrusted memory using a tree of hashes.  

They only address integrity, suggesting that their architecture can be added to a system 

such as XOM, which will handle confidentiality concerns.  The use of a hash tree 
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introduces significant bandwidth overhead, which is alleviated by integrating the hash 

mechanism with system’s caches.  However, their integrity-only overhead is still high, 

with a maximum of 20% for the most efficient architecture they propose. 

Lu et al. [22] propose a similar architecture, using a message authentication code 

(MAC) tree.  MACs are computed for each cache block, incorporating its virtual address 

and a secret application key.  For higher level nodes, MACs are computed using those 

from the lower level and a random number generated from thermal noise in the processor.  

They propose to enhance performance by caching MAC data on the chip.  This MAC tree 

architecture does show an improvement over the hash tree proposed by Gassend et al., 

but it still introduces an average performance overhead of between 10% and 20%. 

Suh et al. [23] propose an architecture that addresses confidentiality and overall 

integrity.  Their architecture uses one-time pad (OTP) encryption to provide 

confidentiality with relatively low overhead.  However, since their cryptographic 

functions take a timestamp as an input, they propose that the entire protected memory be 

re-encrypted on the unlikely event of a timestamp counter rollover.  To reduce overhead 

from integrity checking, they propose to construct a log of memory accesses using 

incremental multiset hashes.  They assume that a program produces meaningful, signed 

outputs either at the end of its execution or at discrete intervals during execution.  Their 

architecture verifies the hashed memory access sequences only when those outputs are 

produced.  Since verification occurs infrequently, it introduces negligible overhead.  The 

major drawback is that tampering is not immediately evident, leaving the system 

potentially vulnerable between verifications. 
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Another architecture proposed by Suh and his colleagues [24] is the AEGIS 

secure processor.  They describe physical unclonable functions (PUFs) to generate the 

secrets needed by their architecture.  Memory is divided into four regions based on 

whether it is static or dynamic (read-only or read-write) and whether it is only verified or 

is both verified and confidential.  They allow programs to change security modes at 

runtime, starting with a standard unsecured mode, then going back and forth between a 

mode supporting only integrity verification and a mode supporting both integrity and 

confidentiality.  They also allow the secure modes to be temporarily suspended for library 

calls.  This flexibility comes at a price; their architecture assumes extensive operating 

system and compiler support. 

The work of Milenković et al. [4, 25, 26] provides the foundation for the research 

documented in this thesis.  They introduced many of the elements that will be used in this 

current work and described below.  Their proposed architecture addresses only the 

integrity of instructions, and involves signing instruction blocks during a secure 

installation procedure.  These signatures are calculated using instruction words, block 

starting addresses, and a secret processor key, and are stored together in a table in 

memory.  At runtime, these signatures are recomputed and checked against signatures 

fetched from memory.  The cryptographic function used in the architecture is a simple 

polynomial function implemented with multiple input shift registers.  The architecture is 

updated in [27] and [28], adding AES encryption to increase cryptographic strength and 

embedding signatures with instruction blocks rather than storing them in a table.  This 

architecture remains vulnerable to splicing attacks, since signatures in all programs use 

the same key. 
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Drinić and Kirovski [29] propose a similar architecture to that of Milenković 

et al., but with greater cryptographic strength.  They use a cipher block chaining (CBC-) 

MAC cipher, and include the signatures in the cache line.  They propose to reduce 

performance overhead by reordering basic blocks, so that instructions that may not be 

safely executed in a speculative manner are not issued until signature verification is 

complete.  The drawback to this approach is that it requires significant compiler support, 

and may consistently hide the verification overhead.  Furthermore, their architecture does 

not address confidentiality, and is vulnerable to replay and splicing attacks. 

3.2 Industrial Solutions 

Microprocessor vendors Intel and Advanced Micro Devices (AMD) have each 

introduced features to prevent buffer overflow attacks.  Intel calls their feature the 

Execute Disable Bit [30], which prohibits the processor from executing instructions that 

originate from certain areas of memory.  AMD’s No Execute (NX) Bit [31] is very 

similar to Intel’s Execute Disable Bit.  The NX bit is stored in the page table, and is 

checked on translation look-aside buffer (TLB) misses.  Both Intel and AMD allow 

software to disable this functionality. 

International Business Machines (IBM) has developed the SecureBlue 

architecture [32].  Like the academically-proposed techniques described above, it relies 

on cryptography to ensure integrity and confidentiality of both software and data.  

SecureBlue is intended to be incorporated into existing microprocessor designs.   

ARM markets the TrustZone security architecture [33], designed to augment 

ARM microprocessors.  It relies on both hardware and software support.  The hardware 

component uses cryptography to address integrity and confidentiality, allowing the 
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processor to run in either a secure or non-secure mode.  The software support includes the 

TrustZone Monitor, which augments the operating system and provides an application 

programming interface (API) for secure programs. 

Maxim (formerly Dallas Semiconductor) manufactures the DS5250 secure 

microprocessor [34].  The DS5250 is designed to serve as a co-processor for embedded 

systems with traditional, non-secure microprocessors.  Maxim proposes that the co-

processor perform security-sensitive functions while the primary processor performs less 

sensitive operations.  The DS5250 contains a non-volatile on-chip memory that is erased 

if physical tampering is detected.  This memory is used to store the processor’s secret 

key, and can also be used to securely store other sensitive data.  The DS5250 can also 

access external memory, using cryptography to ensure integrity and confidentiality of 

such accesses. 
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CHAPTER 4 

 

HARDWARE SUPPORTED TECHNIQUES FOR ENSURING 
SOFTWARE INTEGRITY AND CONFIDENTIALITY 

 

In this chapter we present the proposed hardware architecture supporting software 

integrity and confidentiality.  We begin with a general overview of the proposed 

architecture followed by a more detailed discussion of the required hardware.  Further 

design choices are then explored that reduce performance, energy, and memory overhead. 

4.1 Framework Overview 

The framework for software integrity and confidentiality encompasses three 

stages [25].  The first stage is a secure installation procedure, in which binary executables 

are signed and optionally encrypted for a particular processor.  The second stage is secure 

loading, in which the computer system prepares to run the secure program.  The final 

stage is secure execution, where the program is run, such that its integrity and/or 

confidentiality is maintained. 

The proposed architecture allows three levels of protection: unprotected, software 

integrity only mode (SIOM), and software integrity and confidentiality mode (SICM).  In 

the SIOM mode only software integrity is guaranteed; all instructions are stored in binary 

plaintext that could be read by an adversary.  The SICM mode ensures both software 
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integrity and confidentiality by further encrypting the instructions.  Figure 4.1 shows an 

overview of the three stages of the proposed architecture when running in SICM mode. 
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Figure 4.1  Overview of Architecture for Trusted Instruction Execution 

 

 

4.1.1 Secure Installation 

The process by which an unprotected program is installed on the system to take 

advantage of hardware support for software integrity and/or confidentiality is called 

secure installation.  The secure installation procedure presented here is similar to that 

proposed by Kirovski et al. [35].  The CPU must perform secure installations in an 

atomic manner, and must not reveal any secret information during or after the 

installation.  
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Key generation is the first step in secure installation.  SIOM mode requires two 

unique program keys, while SICM mode requires three.  These keys, designated Key1, 

Key2, and Key3, are randomly generated by the CPU.  They are then encrypted on-chip 

using the processor’s internal secret key, Key.CPU.  The encrypted keys are brought off-

chip and stored in the header of the secure executable.  Note that these keys should only 

leave the CPU in encrypted form; the plain-text keys must stay on the CPU. 

The next step in the secure installation process is signature calculation.  

Signatures must be calculated for each instruction block (I-block).  Protected I-block size 

must be determined at this point.  A natural protected I-block size is the line size of the 

lowest level instruction cache (I-cache) line.  Smaller protected I-block sizes will yield a 

higher memory overhead, so a multiple of the I-cache line size may be chosen.  This 

paper focuses on cases where the protected I-block size is either equal to or twice the size 

of the I-cache line size. 

A protected I-block’s signature is a cryptographic function of three factors: the 

block’s starting virtual address (alternatively, its offset from the beginning of the 

program’s code section), two of the program keys generated earlier, and the instruction 

words within the I-block.  The use of unique program keys prevents the execution of any 

unauthorized code that may be inserted or injected after the installation process, and also 

protects against a splicing attack involving a valid I-block from another secure program.  

The use of the instruction words and the block address prevent spoofing and splicing 

from within the same program.   

Encryption of program executables is required for SICM mode.  Cryptographic 

schemes must balance two requirements.  First, a high level of security is absolutely 
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necessary.  Secondly, decryption should be fast, thus causing a low runtime performance 

overhead.  The proposed architecture uses a variant of the one-time pad (OTP) encryption 

algorithm, which satisfies both requirements. 

Variations in the order in which signing and encryption are performed give rise to 

three known approaches: encrypt&sign (ES), encrypt, then sign (EtS), and sign, then 

encrypt (StE) [36].  These encryption schemes are illustrated in Figure 4.2.  Part (a) 

shows a plaintext 64 byte binary I-block (encoded for the ARM architecture and 

represented as hexadecimal) and its 16 byte signature laid out in memory.  Part (b) shows 

the same I-block subjected to the ES scheme, which encrypts the plaintext and calculates 

its signature independently.  Part (c) represents the EtS scheme, in which the I-block is 

first encrypted and the signature is calculated from the resulting ciphertext.  Lastly, 

part (d) shows the StE scheme, in which the signature is calculated from the plaintext and 

both the I-block and signature are then encrypted.  The relative strength of these 

implementations is still a subject for debate [36, 37].  Implementation of all three 

schemes would have similar hardware complexities, so we choose the StE scheme to 

facilitate analysis. 
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Figure 4.2  Signed Binary Instruction Block: (a) Signed plaintext, (b) ES, (c), EtS, (d) StE 

 

 

4.1.2 Secure Loading 

The secure loading process prepares a secure executable to run on the secure 

architecture.  During this process, the encrypted program keys are read from the secure 

executable header.  These are loaded into special-purpose registers on the CPU and 

decrypted using the processor’s secret key (Key.CPU).  As mentioned above, these keys 

should never leave the CPU as plain-text.  They may only be accessed by dedicated on-

chip hardware resources, such as the instruction block signature verification unit 

(IBSVU), which shall be discussed later.  If a context switch occurs, these keys must be 

re-encrypted before leaving the processor to be stored in the process control block.  When 

the context switches back to the secure program, they must be re-loaded into the 

processor and decrypted once again before secure execution may resume. 
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4.1.3 Secure Execution 

The secure execution stage is when the secured program actually runs.  The 

proposed architectural enhancements come into play whenever instructions are fetched 

from memory.  Since the CPU chip is assumed to be secure, and instruction caches may 

be assumed to be read-only, instructions should be trusted once they are in the cache.  

Thus the architectural enhancements should operate in conjunction with the highest I-

cache level, and it is convenient for the protected I-block size to be some multiple of the 

cache line size.  If the system has no instruction cache, then the size of the fetch buffer 

may determine protected I-block size.  Throughout the rest of the paper, we assume, 

without loss of generality, a system with separate Level 1 instruction and data caches, and 

no Level 2 caches.  The general operation of the proposed mechanisms may be simply 

explained for the case where protected I-block size equals the cache line size.  The case 

where the protected I-block size is double the cache line size will be explored below in 

Section 4.3.3. 

Because the I-cache is a trusted resource, signature verification need only occur 

on a cache miss.  Signatures are not cached, and are not available during execution, so 

they may reside outside the processors virtual address space.  This requires additional 

logic to translate the original virtual instruction block address to the actual address of the 

instruction block in memory.  Page padding must also be taken into account.  Once the 

correct addresses are available, the protected I-block and its signature are fetched from 

memory and decrypted as needed.  The signature is recalculated using the newly fetched 

I-block.  If the calculated signature matches the fetched signature, then the I-block can be 

trusted.  If the signatures do not match, then the I-block has been subjected to tampering.  
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The processor then traps to the operating system, which should take appropriate action to 

terminate the process.  The simplest implementation would stall the processor until the I-

block’s signature has been verified.  We call this a wait ‘til verified (WtV) scheme.  

However, given certain additional hardware resources, a run-before-verification (RbV) 

scheme may be implemented.  In that case, the processor may be allowed to continue 

execution once the I-block has been fetched and is in the cache.  This concept will be 

elaborated on in Section 4.3.2. 

4.1.4 Other Considerations 

At this point, we must consider two special cases.  The first involves dynamically 

linked libraries (DLLs), which contain binary executable code that is potentially shared 

among multiple programs.  The simplest option would be to forbid the use of DLLs on 

the secured system.  A slightly more complex option would be to introduce a bit in the 

page table and translation lookaside buffer (TLB) specifying whether or not that page 

contains protected code.  Instruction pages within DLLs could then be marked as 

unprotected.  Even more complex would be to further enhance the page table (and TLB) 

to mark the page as belonging to a DLL.  DLL instructions would then be protected using 

additional processor-specific keys.  Throughout the remainder of the thesis, we assume 

that DLLs are handled with one of these three methods. 

The second case involves instructions that are generated at runtime, including 

just-in-time compilation and interpreted code.  One option is to flag pages containing 

dynamically generated instructions as unprotected.  Another option would be to have the 

program generating the instructions insert signatures as I-blocks are created.  This 
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requires that the generating program be trusted, and thus the output of the program would 

also be trusted. 

4.2 Basic Implementation 

This section describes a simple, basic implementation of the instruction protection 

architecture.  We first describe the cryptographic operations required for the simple CBC-

MAC cipher, and then analyze the overhead incurred by this implementation.  We finally 

discuss the hardware requirements for the architecture. 

4.2.1 Implementation Details 

The simplest implementation of the instruction protection architecture utilizes the 

cipher block chaining message authentication code (CBC-MAC) algorithm [29].  

Signature generation is performed on-chip, using a dedicated hardware resource.  Initial 

signature generation and possibly encryption is performed during the secure installation 

stage.  During secure execution, the signatures must be recalculated after decryption (if 

necessary). 

 Signature generation may be illustrated by choosing an exemplary architecture.  

We assume a 32-bit architecture with 32 byte protected I-blocks.  Each I-block will be 

appended with a 128-bit signature.  The I-block is divided into two sub-blocks of equal 

size, I0:3 and I4:7.  Let A be the starting virtual address of the I-block, SP represent a 

secure padding function, and KEY1 and KEY2 be the first two of the aforementioned 

unique program keys. 
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When using the CBC-MAC cipher, the signature S for the I-block is calculated 

according to Equation (4.1).  The form of the signature function in this case is conducive 

to the sequential chaining provided by the CBC-MAC.  

( )( )[ ].)()()( 13:027:42 ASPAESxorIAESxorIAESS KEYKEYKEY=  (4.1) 

 

Equations (4.2) and (4.3) illustrate the encryption functions for the same sample 

system used to illustrate signature generation.  Sub-blocks are defined as before.  The 

encrypted versions of the sub-blocks, C0:3 and C4:7, are calculated according to 

Equation (4.2).  Note that KEY3 is another unique program key.  This key is distinct from 

those used for signature generation since authentication and encryption should not use the 

same keys [38].  The encrypted signature eS is calculated according to Equation (4.3). 

( ) ,1..0,))(()()( 334:434:4 == ++ iSBASPAESxorIC iKEYiiii   (4.2) 

 

( ).))((3 eSASPAESxorSeS KEY=  (4.3) 

 

During secure installation, the I-block (possibly encrypted) is stored on disk or in 

memory, followed by its signature (also possibly encrypted).  Protected I-blocks and their 

signatures should not cross page boundaries.  Therefore, page padding may be required 

after the last signature in the page to ensure that the next I-block starts on the next page. 

Signatures must be recalculated on instruction cache misses during secure 

execution.  The signature cS is recalculated in the same manner in which the original 

signature S was calculated during secure installation.  Recalling Equation (4.1), this 

calculation requires the encryption of secure padded virtual sub-block addresses.  This 
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encryption should happen in parallel with the memory access, thus overlapping some of 

the cryptographic latency with memory access latency. 

If the architecture is running in software integrity and confidentiality mode, then 

the I-block fetched from memory will contain ciphertext.  Assuming the StE scheme, 

these instructions must be decrypted before signature recalculation and execution.  The 

fetched signature must also be decrypted before comparison with the recalculated 

signature.  Equations (4.4) and (4.5) illustrate the decryption of the fetched I-block and 

signature, respectively.  A(SBi) represents the virtual address of sub-block i.  Note that if 

the encrypted addresses are available when the ciphertext arrives from memory, the 

decryption process only requires a simple XOR operation. 

( ) ,1..0,))(()()( 334:434:4 == ++ iSBASPAESxorCI iKEYiiii  (4.4) 

 

( ).))((3 eSASPAESxoreSS KEY=  (4.5) 

 

4.2.2 Performance Overhead 

The implementation described thus far uses the CBC-MAC cipher with a WtV 

scheme.  This CBC-MAC WtV implementation, although simple, is the most inefficient 

of the implementations to be discussed in this thesis.  To illustrate the performance 

overhead incurred by this implementation, we continue with the sample system from 

Section 4.1.  Throughout the remainder of this chapter, we assume that the processor is 

executing in SIOM mode.  SICM mode requires two extra cryptographic operations, 

which for the example systems discussed below, can be completed before the encrypted 

sub-blocks are available from memory. 
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The procedures to be followed on an instruction cache miss are described in 

Figure 4.3.  The verification latency introduced by this implementation is illustrated in 

Figure 4.4.  In addition to the earlier assumptions, we assume bus width of 64 bits, and 

memory latency of 12 clock cycles for the first 64-bit chunk and 2 clock cycles for 

subsequent chunks.  The darkly shaded blocks in the figure’s cryptographic pipeline 

represent encrypting the sub-block addresses using Key1, which is necessary for 

signature recalculation.  The lightly shaded blocks represent signature recalculation using 

Key2. 

 

 

 

Figure 4.3  I-Cache Miss Algorithm, CBC-MAC Implementation 

 

 

1. Probe I-cache for desired block. If found, return, 
otherwise continue. 

2. Initiate fetch of instruction block and signature 
from memory. 

3. Start cryptographic calculation using KEY1 on 
instruction block address (see Equation (4.1)). 

4. If SICM, start cryptographic calculations using KEY3 
on instruction sub-block and signature addresses; 
decrypt instruction block and signature when 
available (see Equations (4.4) and (4.5)). 

5. Calculate signature for instruction block (see 
Equation (4.1)) 

6. Compare calculated signature to signature fetched 
from memory.  If mismatch, trap to operating system.



31 

 

= ?

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

SP(A)

 

Figure 4.4  Verification Latency, CBC-MAC WtV Implementation 

 

 

Measured from the cycle at which the last instruction word is available (at which 

point the processor would normally resume execution), this implementation has a 

verification latency of 21 clock cycles, including a clock cycle for signature comparison. 

4.2.3 Hardware Requirements 

Each of the three stages of this architecture requires at least some hardware support 

on the CPU.  Common to all three stages, however, is the need for a cryptographic cipher 

unit that implements the Advanced Encryption Standard (AES).  There are multiple 

existing hardware designs for such a hardware unit, two of which are convenient for use 

with the proposed architecture.  The first of these two, the CBC-MAC, has already been 

mentioned.  The other shall be discussed in Section 4.3.1. 

In addition to the cryptographic unit, the secure installation stage requires a 

unique processor key and the ability to generate random program keys.  Manufacturers 

have long had the ability to embed unique read-only data on individual chips.  A similar 

process may be used to embed the CPU’s secret key.  This key must only be used 
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internally; it should never leave the chip.  The processor must also be able to generate 

program keys at random.  A variety of methods exist for random number generation, 

including thermal noise within the processor [39] and physical unclonable functions 

(PUFs) [24].  The program keys must never leave the processor in plain-text form.  

During secure installation, these keys are encrypted using the crypto unit; the encrypted 

version of the keys may leave the CPU.   

The processor must have a mechanism to enter a secure installation mode.  One 

option is to augment the instruction set, providing an instruction to initiate secure 

installation.  This instruction would trigger a state machine to handle secure installation 

procedures such as key generation, signature generation, and encryption.  Another option 

is to trigger secure installation with a separate piece of hardware, such as a smart card 

reader.  This piece of hardware would then serve as a key, unlocking the secure 

installation capabilities. 

The secure loading stage requires a state machine to load the encrypted program 

keys from a specified location in memory and decrypt them.  The decrypted keys must be 

stored in special purpose registers in the CPU, and must never leave the chip.  As stated 

earlier, context switch handling must also be modified to encrypt the keys and write them 

out to the process control block. 

The secure execution stage requires extensive hardware support in the form of the 

instruction block signature verification unit (IBSVU).  The IBSVU, illustrated in  

Figure 4.5, contains the cryptographic unit, which is also used by the secure installation 

and loading stages.  The IBSVU also contains the address translation logic and a buffer to 

store a signature waiting to be compared.  It may also contain other hardware resources as 
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described in Section 4.3.  The IBSVU must work very closely with the cache controller, 

and could in some ways be considered an extension of the cache controller. 

With the exception of external key hardware to trigger secure installation mode, 

all of this hardware may be implemented with relatively low complexity.  The complexity 

added to the processor is qualitatively evaluated in Section 7.1. 
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Figure 4.5  Instruction Block Signature Verification Unit 

 

 

4.3 Reducing Overhead 

This section discusses schemes for reducing the relatively high overhead of the 

implementation described above.  We start by introducing the parallelizable MAC 

(PMAC) algorithm, which reduces cryptographic latency.  We then discuss the 
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implementation of an RbV scheme that almost completely hides verification latency.  

Finally we address memory overhead by protecting multiple I-blocks with one signature. 

4.3.1 PMAC 

Performance overhead can be greatly reduced by using a parallelizable MAC 

cipher.  The PMAC algorithm was developed by Black and Rogaway [40], who show that 

it approximates a random permutation.  As its name implies, the PMAC can compute 

multiple cryptographic functions in parallel, allowing for an efficient pipeline.   

The PMAC cipher allows signatures for each sub-block to be calculated in 

parallel.  In this case, we can calculate a signature Sig(SBi) for each sub-block i according 

to Equation (4.6).  The signature S of the whole protected I-block is an exclusive or 

(XOR) function of the signatures of the sub-blocks, as expressed in Equation (4.7).  

( )[ ] ,1..0,))(()()( 134:42 == + iSBASPAESxorIAESSBSig iKEYiiKEYi  (4.6) 

 

.)()( 10 SBSigxorSBSigS =  (4.7) 

 

The procedures to be followed for a PMAC implementation on an I-cache miss 

are outlined in Figure 4.6.  Figure 4.7 illustrates the verification latency for the PMAC 

WtV implementation for the sample machine discussed above.  Using PMAC, 

verification latency is reduced to 13 cycles, including a clock cycle for signature 

comparison.  This is an improvement over the CBC-MAC, but still introduces a 

significant performance overhead. 
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Figure 4.6  I-Cache Miss Algorithm, PMAC Implementation 
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Figure 4.7  Verification Latency, PMAC WtV Implementation 

 

 

1. Probe I-cache for desired block. If found, return, 
otherwise continue. 

2. Initiate fetch of instruction block and signature 
from memory. 

3. Start cryptographic calculations using KEY1 on 
instruction sub-block addresses (see Equation 
(4.6)). 

4. If SICM, start cryptographic calculations using KEY3 
on instruction sub-block and signature addresses; 
decrypt instruction blocks and signature once 
available (see Equations (4.4) and (4.5)). 

4. Calculate signature for instruction block (see 
Equations (4.6) and (4.7)) 

5. Compare calculated signature to signature fetched 
from memory.  If mismatch, trap to operating system. 



36 

 

4.3.2 Run-Before-Verification 

Ideally, the verification latency should be completely hidden, thus introducing no 

performance overhead.  This would require that the processor resume executing 

instructions as soon as the whole instruction cache line is available.  Such a scheme is 

called Run-before-Verification (RbV).  The instruction block, however, may have been 

subject to tampering, which will not be evident until signature verification is complete. 

The solution to this quandary is to allow untrusted instructions to execute, but not 

commit until their signatures have been verified.  This prevents tampered instructions 

from writing to CPU registers or to memory.  For out-of-order processors, RbV support 

requires a simple modification to the reorder buffer, adding a verified flag that the 

IBSVU will update.  Instructions may not be retired until that verified flag is set.  The 

memory access unit must also be modified to prevent an unverified instruction from 

writing data to memory.  In-order processors require an additional resource: the 

Instruction Verification Buffer. 

The structure of the IVB is shown in Figure 4.8.  The IVB’s depth (number of 

instructions whose information it can hold) is a design parameter, represented by n in the 

figure.  After instructions are fetched on an I-cache miss, their information is placed in 

the IVB.  When the processor has completed execution of the instruction, it checks the 

IVB to see if that instruction has been verified.  If it has not been verified, the instruction 

may not be retired.  Once the instruction is retired, it is removed from the IVB.  In the 

unlikely event that newly fetched instructions will not fit in the IVB, the processor must 

stall until enough instructions have been removed so that the new instructions can be 

inserted.  
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Figure 4.8  Instruction Verification Buffer 

 

 

Shi and Lee point out that RbV schemes are vulnerable to side-channel attacks if a 

malicious memory access or jump instruction has been injected into the I-block [41].  

Such instructions may reveal confidential data by using it as the target address.  If this is 

a concern, then the architecture may be slightly modified to stall instructions that would 

result in any memory access until they have been verified. 

4.3.3 Reducing Memory Overhead 

The proposed architecture could introduce a hefty memory overhead.  In the 

examples discussed above, for every 32 bytes of instructions, a 16 byte signature is 

required.  This overhead could be prohibitive on embedded systems with tight memory 

constraints.  The solution is to make the protected I-block size a multiple of the I-cache 

line size. 

In this section we consider a modification to the PMAC RbV implementation 

implemented above.  The protected I-blocks are 64 bytes, twice the size of the I-cache 



38 

 

line.  This introduces two additional sub-blocks, I8:11 and I12:15.  The equations presented 

above need only be extended to take these additional sub-blocks into account.  The 

signatures of the two additional sub-blocks are calculated independently, and the 

signature for the whole I-block is calculated by XORing the signatures of all four sub-

blocks. 

Enlarging the protected I-block introduces new design choices.  Since a protected 

I-block now covers two cache lines, a policy is required to handle the currently unused 

cache line on an I-cache miss.  Additionally, the amount of data transferred from memory 

influences both performance and power overhead.  The most naïve implementation would 

always fetch the entire I-block on an I-cache miss, and discard the portion of the block 

that is not currently needed.  A more efficient implementation would take advantage of 

the I-cache to reduce memory accesses, and thus power and performance overhead. 

The basic procedure to be followed on an I-cache miss with double size protected 

blocks is outlined in Figure 4.9.  The required actions can be broken down further into 

four cases based on which part of the protected I-block is currently needed by the 

processor and whether or not the other half of the protected I-block currently resides in 

the cache.  These cases are presented below.  For convenience, we call the first cache line 

in a protected I-block Block A, and the second Block B.  The memory layout of blocks A 

and B with their signature is illustrated in Figure 4.10, along with a summary of the four 

cases. 
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Figure 4.9  I-Cache Miss Algorithm, PMAC Implementation, Expanded Protected I-
Block 
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Figure 4.10  Memory Layout and Cache Miss Cases 

 

 

1. Probe I-cache for desired block. If found, return, 
otherwise continue. 

2. Initiate fetch of instruction block and signature 
from memory. 

3. Start cryptographic calculations using KEY1 on 
instruction sub-block addresses (see Equation 
(4.6)). 

4. If SICM, start cryptographic calculations using KEY3 
on instruction sub-block and signature addresses; 
decrypt instruction blocks and signature once 
available (see Equations (4.4) and (4.5)). 

5. Calculate signatures for each instruction block (see 
Equations (4.6) and (4.7)). 

6. Calculate total signature by XORing instruction 
block signatures. 

7. Compare calculated signature to signature fetched 
from memory.  If mismatch, trap to operating system. 
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4.3.3.1 Miss on Block A 

The first case involves an I-cache miss on Block A, with Block B not present in 

the I-cache.  The second case also involves a miss on Block A, but with Block B 

available in the cache.  In the first case, both Block A and Block B must be fetched from 

memory, followed by the signature.  This can be done with one bus cycle.  In the second 

case, Block A and the signature must be fetched from memory, while Block B could be 

read from the cache.  However, in most systems this would involve two bus cycles, one 

to fetch Block A and another to fetch Block B.  Each bus cycle incurs a significant 

latency before the first chunk of data is available.  For most architectures, this latency is 

greater than the time required to transfer Block B during a continuous bus cycle.  In our 

example architecture, this latency is 12 clock cycles, as opposed to 8 clock cycles for 

continuing to fetch Block B along with Block A and the signature.  In the first case, both 

blocks are put into the I-cache; this is a form of prefetching which may improve 

performance for many applications.  In the second case, only Block A should be put into 

the cache and IVB. 

The latency introduced in these two cases is illustrated in Figure 4.11.  Since only 

Block A is needed immediately, the processor can resume execution once Block A has 

been completely fetched from memory.  Verification for the whole protected I-block will 

be complete 21 cycles later.  Note that since both cases result in fetching Block B, the 

extra cache hit latency incurred when probing the cache for Block B may be overlapped 

with the memory access latency. 
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Figure 4.11  Verification Latency, PMAC RbV Implementation, Expanded Protected       
I-Block, Cases 1 and 2 

 

 

4.3.3.2 Miss on Block B  

The third case involves an I-cache miss on Block B where Block A is not present 

in the cache.  As with the first two cases, the entire protected I-block must be fetched 

from memory.  Block A and Block B are both cached, and Block B’s instructions are put 

into the IVB.  The verification latency of this case is illustrated in Figure 4.12.  The 

processor may resume execution once Block B is available, which is 8 clock cycles later 

than in the first two cases.  Verification is complete after 13 additional clock cycles.  This 

case would incur an additional cache hit latency due to probing the cache for Block A.  

This latency is not shown in the figure. 
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Figure 4.12  Verification Latency, PMAC RbV Implementation, Expanded Protected       
I-Block, Case 3 

 

 

The fourth and final case involves an I-cache miss on Block B where Block A is 

available in the cache.  In this situation, Block B and the signature are fetched from 

memory while Block A is retrieved from the cache.  The verification latency in this case 

is illustrated in Figure 4.13.  Execution may resume once Block B is available, and 

verification is complete 13 cycles later.  This case also incurs an additional cache hit 

latency due to probing the cache for Block A.  Again, this latency is not shown in the 

figure. 
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Figure 4.13  Verification Latency, PMAC RbV Implementation, Expanded Protected       
I-Block, Case 4 

 

 

4.4 Summary 

This chapter has presented an architecture for ensuring the integrity and 

confidentiality of binary program instructions.  The cryptographic functions are chosen 

such that the architecture should have a high cryptographic strength.  The simplest 

implementation of this architecture with the CBC-MAC cipher introduces appreciable 

performance overhead.  This overhead is reduced by using the PMAC cipher, and further 

reduced by allowing instructions to be speculatively executed while they are still being 

verified.  Memory overhead is reduced by protecting two instruction blocks with one 

signature.
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CHAPTER 5 

 

HARDWARE SUPPORTED TECHNIQUES FOR ENSURING DATA 
INTEGRITY AND CONFIDENTIALITY 

 

In this chapter, we discuss the proposed architecture for protecting the integrity 

and confidentiality of data.  It is presented as an extension of the instruction architecture, 

so familiarity with the material from the previous chapter is assumed.  We begin with an 

overview of the proposed architectural extensions, followed by detailed descriptions.  We 

then examine the hardware needed to implement this protection and discuss the overhead 

incurred from this architecture. 

5.1 Data Framework Overview 

Adding protection for data requires modifications to all three stages of the 

architectural framework.  As with instructions, three levels of data protection are 

possible.  The first is unprotected, in which neither the integrity nor the confidentiality of 

data is ensured.  The second is data integrity only mode (DIOM), in which data are stored 

as plaintext but their integrity is assured.  The last is data integrity and confidentiality 

mode (DICM), which additionally encrypts data to ensure their confidentiality.  These 

modes may be implemented alongside any of the instruction modes (unprotected, SIOM, 

or SICM) as desired. 
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The integrity of instructions is protected using signatures crafted to protect against 

spoofing and splicing attacks.  This scheme works well for protecting static data that 

never change, such as instructions and constant data values.  Therefore, static data blocks 

can be protected using the same procedures that protect instructions.  Dynamic data that 

can be programmatically changed are further subject to replay attacks.  Therefore, a 

versioning scheme is required to ensure that all fetched dynamic data is up-to-date. 

Versioning is implemented on the level of a protected data block.  As before, the 

line size of the lowest level data cache (D-cache) is the most convenient protected block 

size.  Each protected data block will have an associated sequence number.  Sequence 

numbers are stored in a table elsewhere in memory.  The sequence number must be 

included in the formula for the data block signature to protect against replay attacks.  

Unlike data blocks, sequence numbers need not be encrypted to ensure data 

confidentiality [20]. 

A sophisticated replay attack could conceivably replay sequence numbers as well 

as data blocks.  Therefore, the sequence numbers themselves must be protected against 

replay attacks.  To that end, the sequence number table for a given page is treated as a 

collection of data blocks, and signatures are calculated for each block.  These signatures 

are then XORed together to form the page root signature.  Page root signatures are stored 

in a table somewhere in memory, likely near the existing page table.  

A final signature is needed to protect the integrity of the page root signatures.  

This program root signature is calculated by XORing all the page root signatures 

together.  This signature is never to be stored in main memory, and should never leave 

the processor as plaintext. 
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5.1.1 Secure Installation 

Secure installation must insert signatures for data blocks residing in static data 

pages.  These signatures are calculated in the same manner as instruction signatures.  We 

again assume a sign, then encrypt implementation of our architecture with the PMAC 

cipher on the 32-bit example architecture with 32 byte protected blocks.  As with 

instruction blocks, the data block is divided into two sub-blocks of equal size, D0:3 and 

D4:7.  Let A(SBi) be the starting virtual address of sub-block i, SP represent a secure 

padding function, and KEY1 and KEY2 be the first two of the aforementioned unique 

program keys.  We calculate a signature Sig(SBi) for each sub-block i according to 

Equation (5.1).  These sub-block signatures are then XORed together to produce the 

block signature S, as in Equation (5.2).  Each signature is stored immediately following 

the data block that it protects. 

( )[ ] ,1..0,))(()()( 134:42 == + iSBASPAESxorDAESSBSig iKEYiiKEYi  (5.1)  

 

.)()( 10 SBSigxorSBSigS =  (5.2) 

 
If data confidentiality is desired, then the data block and signature must be 

encrypted before storage.  The ciphertext sub-blocks C0:3 and C4:7, are calculated 

according to Equation (5.3).  The encrypted signature eS is calculated according to 

Equation (5.4).  The encrypted sub-blocks and signatures are then stored. 

( ) ,1..0,))(()()( 334:434:4 == ++ iSBASPAESxorDC iKEYiiii   (5.3) 

 

( ).))((3 eSASPAESxorSeS KEY=   (5.4) 
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5.1.2 Secure Loading 

The secure loading procedure must be modified to reset the program root 

signature in a special register on-chip.  Since this signature is calculated from the page 

root signatures of dynamic data pages, it is as yet undefined at load time.  On a context 

switch, the signature must be re-encrypted and stored in the process control block.  It 

should never leave the processor in plaintext. 

5.1.3 Secure Execution 

The data protection architecture requires several modifications to the secure 

execution phase.  We begin by examining the required behavior on translation lookaside 

buffer (TLB) events.  We then describe how secure structures for dynamic data pages are 

established on or after page allocation, and how these structures are used in relation to 

data caches.  Finally, we discuss how this architecture deals with sequence numbers. 

5.1.3.1 Page Allocation 

The secure structures required for the data protection architecture must be 

prepared for each dynamic data page that is allocated.  First, its sequence number blocks 

must be initialized and used to calculate the initial page root signature.  The sequence 

blocks and the page root signature must be written to memory in their appropriate 

reserved areas.  The starting address or offset from a known starting address for the 

page’s sequence number blocks must be added to the page’s entry in the page table.  

Secondly, the signatures for the page’s data blocks must be calculated and stored in 

memory. 
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One option for implementing these procedures is to assume that the operating 

system is trusted and allow it to perform the necessary operations on memory allocation.  

This could potentially introduce high overhead.  The other option is to perform the 

operations in hardware and provide an instruction allowing the OS to trigger them.  We 

choose the latter option for both procedures. 

Sequence number blocks must be initialized and used to calculate the page root 

signature before the allocated page can be used.  We assume a page size of four kilobytes 

for our example architecture.  Each page can contain 85 data blocks with their 16 byte 

signatures, with 16 bytes of padding required at the end of the page.  We define our 

sequence numbers to be two bytes long.  Thus, a total of six 32 byte blocks is required, 

with less than half of the last block actually used.  As mentioned earlier, these blocks are 

stored in a reserved location in memory. 

The page root signature for the new dynamic page must be calculated from the 

page’s sequence number blocks.  Each sequence number block is divided into two sub-

blocks, SQ0:3 and SQ4:7, and their signatures calculated according to Equation (5.5).  The 

signatures of each sub-block are XORed together to form the page root signature.  Note 

that the latter half of the sixth sequence number block in each page is not used; it may be 

omitted from page root signature calculation.  Once calculated, the page root signature is 

stored in the page root signature table.  The index of the page root signature in the table is 

stored in the page table.  

( )[ ] .1..0,))(()()( 134:42 == + iSBASPAESxorSQAESSBSig iKEYiiKEYi  (5.5)  
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The program root signature is calculated from the page root signatures.  It is 

calculated by XORing the page root signatures of dynamic data pages.  Thus, when a new 

dynamic data page is allocated, the program root signature must be updated by XORing it 

with the newly calculated page root signature.  All calculations on the program root 

signature must be performed on-chip.  As stated earlier, it must never leave the CPU in 

plaintext form.  It must be encrypted using the processor’s secret key, Key.CPU, before 

being brought off-chip during a context switch. 

The other task required for new dynamic data pages is data block signature 

initialization.  This could be done on page allocation, but that could introduce significant 

overhead.  Instead, we propose to create the signatures on the block’s first write-back.  A 

block initialization bit vector must be established with a bit for each data block in the new 

page.  This bit vector specifies which data blocks in the page have been used.  Each block 

is initially marked as unused.  The block initialization bit vector is stored in the page 

table. 

The memory structures described above are summarized in Figure 5.1.  Part (a) of 

this table shows a protected dynamic data page with signatures and page padding.  Part 

(b) shows the new fields required in the page table.  The first field specifies whether this 

page contains static data or dynamic data.  The second field is the block initialization 

vector.  The third field is a pointer to the page’s root signature in the page root signature 

table (part (c) in the figure).  The final field is a pointer to the first sequence number 

block for the page (part (d) in the figure).  Note that the TLB must also be expanded to 

include these data. 
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Figure 5.1  Memory Structures for Protecting Dynamic Data: (a) Dynamic Data Page, 
(b) Page Table Modifications, (c) Page Root Signature Table, (d) Sequence Number 

Table 

 

5.1.3.2 TLB Miss and Write-back 

On a TLB miss, information about a data page is brought into the TLB.  If the 

page in question is a dynamic data page, the extra data required by this architecture must 

be loaded from the page table and stored in the TLB at this point: a bit specifying 

whether this page is static or dynamic, the starting address (or offset from a known 

starting address) of the page’s sequence number blocks, the index of the page root 

signature associated with this page, and the page’s block initialization bit vector.  The 

integrity of the page root signatures is also verified at this point.  The signatures from 

every active data page are retrieved from the TLB or from memory.  These signatures are 

XORed together to recalculate the current program root signature.  If the calculated 

program root signature does not match that stored on-chip, then the page root signatures 

have been subjected to tampering and a trap to the operating system is asserted. 
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A page root signature will be updated when the sequence number for a data block 

within that page is incremented.  The program root signature will also be updated at that 

time.  See Section 5.1.3.5 below for discussion on the handling of sequence numbers.  

Thus the only action required upon a TLB write-back is to write the page root signature 

and block initialization bit vector contained in the TLB entry being evicted to memory. 

5.1.3.3 Data Cache Miss 

Data block verification is performed on data cache read misses and write misses 

on blocks that have already been used.  Therefore, on a write miss the first task is to 

check the block’s entry in the block initialization bit vector in the TLB.  If the block has 

not yet been used then no memory access is required.  The cache block is simply loaded 

with all zeros, preventing malicious data from being injected at this point. 

If the miss was a read miss or a write miss on a previously used block, then the 

data block must be fetched and verified.  The signatures of the sub-blocks D0:3 and D4:7 

fetched from memory are calculated in the same manner as static data sub-blocks 

according to Equation (5.1).  If the block is in a dynamic page, the sequence number SN j 

must be fetched and encrypted (Equation (5.6)) before the signature cS of the entire block 

may be calculated (Equation (5.7)).  Therefore, fetching the sequence number is in the 

critical path of data verification.  The handling of sequence numbers is discussed below 

in Section 5.1.3.5.  As with the instruction architecture described above, the simplest 

implementation stalls the processor until data block verification is complete.  We assume 

this simple implementation throughout the rest of the paper as speculatively using the 

data would introduce somewhat more complex hardware requirements than are 
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introduced by allowing the processor to execute newly fetched instructions before they 

are verified. 

,))((1
* j

KEY
j SNSPAESSN =  (5.6)  

 

.)()( *
10

jSNxorSBSigxorSBSigcS =  (5.7) 

 

If the architecture is running in DICM mode, then the fetched data must be 

decrypted.  In this case, ciphertext sub-blocks C0:3 and C4:7 are fetched from memory, and 

the plaintext data sub-blocks D0:3 and D4:7 are calculated according to Equation (5.8).  

The encrypted signature eS fetched from memory must also be decrypted according to 

Equation (5.9).  As with encrypted instructions, the necessary encryption operations may 

be computed in parallel with memory access, so fetched data blocks can be decrypted via 

a simple XOR operation as soon as both the necessary cryptographic operation is 

complete and the data sub-block is available from memory. 

( ) ,1..0,))(()()( 334:434:4 == ++ iSBASPAESxorCD iKEYiiii  (5.8) 

 

( ).))((3 eSASPAESxoreSS KEY=  (5.9) 

 

5.1.3.4 Data Cache Write-back 

The data cache write-back procedure must be modified to support integrity and 

confidentiality.  When a dirty data block from a dynamic data page is chosen for eviction, 

the signatures of its sub-blocks are calculated according to Equation (5.1).  The sequence 

number must be also be updated.  The current sequence number SN j must be fetched and 

incremented according to Equation (5.10).  The new sequence number SN (j+1) is then 
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encrypted as described in Equation (5.11), and used to calculate the new signature for the 

total data block as in Equation (5.12).  Again, the sequence number is on the critical path 

for signature generation, and must be handled appropriately.  At this point, the page root 

signature must also be updated.  The signature of the appropriate sequence number sub-

block must be calculated prior to the sequence number increment.  This signature is then 

XORed with the page root signature contained in the TLB, effectively subtracting it out 

of the signature.  A similar procedure is followed to update the program root signature 

using the old and new page root signatures.  The signature of the sequence number sub-

block after the increment is also calculated and XORed with the page root signature, 

which is stored back in the TLB. 

,1)1( +=+ jj SNSN  (5.10)  

 

,))](( )1(
1

*)1( ++ = j
KEY

j SNSPAESSN  (5.11) 

 

.)()( )*1(
10

+= jSNxorSBSigxorSBSigS  (5.12) 

 

If data confidentiality is not being protected, then the data block and its new 

signature S are then put into the write buffer.  If confidentiality is required, then the 

encrypted data block C and encrypted signature cS are calculated according to 

Equations (5.13) and (5.14).  The encrypted block and signature are then put in the write 

buffer. 

( ) ,1..0,))(()()( 334:434:4 == ++ iSBASPAESxorDC iKEYiiii  (5.13) 

 

( ).))((3 eSASPAESxorSeS KEY=  (5.14) 
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5.1.3.5 Handling Sequence Numbers 

Since sequence numbers are on the critical path for both data cache misses and 

write-backs, efficient handling of sequence numbers is imperative to keep performance 

overhead low.  Thus we cache sequence numbers on-chip, preventing extra memory 

accesses on each data cache miss or write-back.  This caching will be further elaborated 

in Section 5.3.2 below. 

Whenever the required sequence number is not found in the sequence number 

cache, it must be fetched from memory.  At this point, the integrity of the sequence 

numbers for the data page in question must be verified.  This requires all six sequence 

number blocks associated from the page.  These blocks may be retrieved from the cache 

or from memory as appropriate.  The signatures for each sub-block of the sequence 

number blocks are calculated according to Equation (5.5).  As during page allocation, the 

latter sub-block of the sixth sequence number block may be ignored.  The signatures of 

all the sub-blocks are XORed together to calculate the page root signature.  This 

recalculated page root signature is checked against that stored in the TLB.  If they do not 

match, then a trap to the operating system is asserted. 

When sequence number blocks are evicted from the sequence number cache, no 

cryptographic activity is required.  Furthermore, the page root signature is updated during 

data cache write-back, and will be written to memory during a TLB write-back. 

5.2 Hardware Support for Runtime Verification 

As with the instruction architecture, all three stages of the data architecture 

require hardware support.  The secure installation state machine must be modified to sign 

static data blocks.  A special-purpose register is required to hold the program root 
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signature.  An instruction must be added to trigger a state machine to initialize sequence 

number blocks and page root signatures.  The data TLB must be enlarged such that each 

entry can hold its corresponding page root signature, the address (or offset from a known 

starting address) of the first sequence number block for that page, index of the 

appropriate page root signature in the page root signature table, the page root signature 

itself, and the page’s block initialization bit vector.  It must also have a dirty bit 

specifying whether or not the page root signature has changed and a bit specifying 

whether the page is static or dynamic.  The context switch operation must be modified to 

write back any dirty page root signatures in the TLB. 

The IBSVU must be modified to also serve as a generalized signature verification 

unit (SVU).  The most complex part of the SVU is still the AES cipher hardware.  The 

same pipelined PMAC cipher hardware used for instructions can also be used with the 

data architecture.  Address translation hardware and additional buffers for temporary 

storage are also required in the SVU. 

Sequence number retrieval is on the critical path for both data cache misses and 

write-backs.  These are the most common of the events described during secure 

execution.  Furthermore, sequence number verification requires all the sequence number 

blocks corresponding to the page in question.  We therefore propose that a dedicated on-

chip sequence number cache be used.  When a sequence number is needed, it is first 

sought in the sequence number cache. If it is not in that cache, then all sequence number 

blocks not in the cache for that page must be fetched.  The integrity of the sequence 

numbers will then be verified and the newly fetched sequence number blocks stored in 
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the sequence number cache.  Using the sequence number cache requires an increase in 

cache budget, but should keep performance overhead low. 

5.3 Performance Overhead 

In this section, we analyze the overhead introduced by the proposed architecture 

for data integrity and confidentiality during secure execution.  We start with TLB events, 

which occur the least frequently of the events required by the architecture, but potentially 

introduce the greatest overhead.  We then address sequence number cache events, which 

are more frequent.  We finally look at data cache events, which are the most frequent of 

all defined events in this architecture.  These discussions assume the example system 

discussed above with the PMAC cipher. 

5.3.1 TLB Miss and Write-back 

The overhead introduced by the architecture on a TLB miss depends on the 

number of protected data pages at the time of the miss.  It also depends on design choices 

made when implementing the architecture.  The page root signatures for every protected 

data page are required.  Signatures currently residing in the TLB should be used, as the 

data in memory might be stale.  All signatures not currently in the TLB must be fetched 

from memory. 

This situation leads to a design choice.  Consider the case where the TLB contains 

a noncontiguous subset of the total page root signature table.  In some memory 

architectures, fetching only the signatures not currently in the TLB would introduce 

greater memory overhead than simply fetching all signatures and ignoring those already 

in the TLB.  This is due to the longer latencies introduced by starting new memory 
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fetches to skip the currently cached signatures.  At the cost of additional TLB controller 

complexity, control logic could be developed to determine the optimal operation on a 

signature-by-signature basis. 

Our example system has a memory latency of 12 clock cycles for the first eight 

byte chunk, and 2 clock cycles for subsequent chunks.  Fetching a 16-byte signature by 

initiating a new fetch operation would cost 14 clock cycles.  Fetching the same signature 

as part of a longer fetch would only cost four clock cycles.  Starting new memory fetches 

to skip signatures currently in the TLB is only advantageous when four signatures must 

be skipped.  Therefore, we choose the simpler implementation of fetching all page root 

signatures on a TLB miss and simply substituting those found in the TLB. 

After each signature becomes available, a simple XOR operation is required for 

recalculating the program root signature.  Once the final signature has been processed, 

the recalculated root signature is compared with that stored on the chip.  This operation 

takes less than one clock cycle.  Therefore, the total added overhead on a TLB miss is 

simply the time required to fetch the page root signatures for all protected data pages.  

This overhead, tTLBmiss, may be calculated according to Equation (5.15), in which np 

represents the number of protected data pages.  The first term in the equation covers 

fetching the two chunks comprising the first signature while the second term covers 

fetching the remaining signatures. 

[ ].4)1(14 ×−+= nptTLBmiss  (5.15) 

 

TLB write-backs add negligible overhead.  If the page root signature contained in 

the entry to be evicted is not dirty, then no operations are required.  If it is dirty, the only 
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required operation is to place the appropriate page root signature and bit initialization 

vector into the write buffer, which will independently write it to memory when the bus is 

free. 

5.3.2 Sequence Number Cache Miss and Write-back 

The basic procedure to be followed on a sequence number cache miss is outlined 

in Figure 5.2.  We are presented with another design choice.  On a sequence number 

cache miss, the six sequence number blocks associated with the page that caused the miss 

must be retrieved.  Some of these may be already cached; the rest must be fetched from 

memory.  As with the TLB miss handling scheme, the implementation must balance 

overhead versus complexity.  For our sample implementation, we choose a scheme of 

moderate complexity.  On a sequence number cache miss, the sequence number cache is 

probed for the page’s first sequence number block.  If it is found in the cache, the cache is 

probed for the next block and so forth until a block is not found in the cache.  A memory 

fetch is initiated for that block, and further probing for the rest of the blocks occurs in 

parallel.  All blocks between and including the first not found in the cache to the last not 

found in the cache are fetched from memory.  Any fetched blocks that were found in the 

sequence number cache are ignored, and the blocks that were not previously cached are 

inserted in the cache. 
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Figure 5.2  Sequence Number Cache Miss Algorithm 
 

 

The necessary cryptographic operations for regenerating the root page signature 

are started at the same time as the first cache probe.  In most cases, the final 

cryptographic operation can be started when the last chunk of data is read from memory.  

The number of clock cycles required to handle a sequence number cache miss, tSNmiss, can 

be calculated from Equation (5.16).  In this equation, bα is the number of the first block to 

be fetched (from one to six), and bω is the number of the last block to be fetched.  The 

first term represents the overhead induced by the initial probes before the first fetch.  The 

second and third terms show the number of clock cycles required to fetch the first and 

subsequent data blocks, respectively.  The final term indicates that the final cryptographic 

operation begins after the memory fetch is completed, and includes a clock cycle for 

signature comparison. 

1. Probe seqnum cache for desired sequence number 
block. If found, return, otherwise continue. 

2. Probe seqnum cache for page’s first sequence number 
block.  Continue probing until a block is not found. 

3. Initiate fetch of first sequence number block that 
was not found, keep probing for other blocks in 
parallel and schedule appropriate memory fetches. 

4. Start cryptographic calculations using KEY1 for all 
sequence number sub-block addresses (see Equation 
(5.5)). 

5. Calculate signature for sub-blocks (see Equation 
(5.5)). 

6. XOR sub-block signatures together to calculate page 
root signature. 

7. Compare calculated page root signature to that in 
TLB.  If mismatch, trap to operating system. 
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Our architecture does have a few exceptions to this equation.  The first exception 

is when only the first sequence number block must be fetched.  In this case, the probing 

and memory operations are complete before all necessary cryptographic operations can 

be started, leading to an additional delay of two clock cycles.  A similar issue exists when 

only the second block must be fetched; this case requires one additional clock cycle.  

Furthermore, for simplicity’s sake, the equation above assumes that the entire sixth block 

will be fetched.  Since only the first half of the sixth block is used, the second half does 

not contribute to the page root signature and need not be fetched.  Thus when the sixth 

block is fetched, four fewer clock cycles are required. 

Sequence number cache write-backs introduce negligible overhead.  As with TLB 

write-backs, no cryptographic operations are required.  The sequence number block being 

evicted only needs to be placed in the write buffer to be written to memory when the bus 

is available. 

5.3.3 Data Cache Miss 

The first task that must be performed on a data cache miss is to request the 

appropriate sequence number from the sequence number cache.  In our sample system, 

this takes only one clock cycle on a sequence number cache hit, and between 33 and 

67 clock cycles on a miss.  Once the sequence number is available, the necessary 

cryptographic operations and memory access can begin in parallel.  The procedures to be 

followed on a D-cache miss are outlined in Figure 5.3.  The verification latency from the 

time the sequence number is available to the time when the processor can continue 

execution is illustrated in Figure 5.4.  As in the verification latency figures from  
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Chapter 4, the darkly shaded boxes in the crypto pipeline section indicate cryptographic 

operations required before signature calculation begins.  The lighter shaded boxes 

indicate actual signature calculation operations.  This figure assumes DIOM mode for 

brevity; DICM would not introduce any additional latency as it only requires two 

additional cryptographic operations prior to starting signature generation.  This would 

shift the start of signature generation for the first block by one clock cycle, but would not 

affect the overall latency.  As the figure shows, signature verification is complete after 

31 clock cycles, at which time the processor may continue and use the fetched data. 

This architecture may be optimized further, beyond the aforementioned possibility 

of using fetched data while it is still being verified. For instance, the memory operation 

for fetching the data could be initiated as soon as the last sequence number block is 

fetched on a sequence number cache miss.  The necessary cryptographic operations may 

also start as soon as possible, even while the sequence number verification operations are  

ongoing.  These optimizations are not explored here, but would be a potential area for 

future research. 

 



62 

 

 

Figure 5.3  D-Cache Miss Algorithm 
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Figure 5.4  Verification Latency, D-Cache Miss 

 

1. Probe D-cache for desired block. If found, return, 
otherwise continue. 

2. Request sequence number block from seqnum cache.  
Wait until sequence number is available. 

3. Initiate fetch of data block and signature from 
memory. 

4. Start cryptographic calculations using KEY1 on data 
sub-block addresses and the sequence number (see 
Equations (5.1) and (5.6)). 

5. If DICM, start cryptographic calculations using KEY3 
on data sub-block addresses; decrypt data block when 
available (see Equations (5.8) and (5.9)). 

6. Calculate signature for data block (see Equations 
(5.1), (5.6), and (5.7)). 

7. Compare calculated signature to signature fetched 
from memory.  If mismatch, trap to operating system. 
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5.3.4  Data Cache Write-back 

 The sequence number is also required on a data cache write-back.  Again, the first 

operation should be to request the sequence number.  Once it is available, cryptographic 

operations can begin.  The procedure to be followed is outlined in Figure 5.5.  Once the 

operations supporting signature sub-block updates are complete, the page root signature 

in the TLB may be updated in parallel with the ongoing data block signature calculation.  

The program root signature must also be updated along with the page root signature.  A 

total of 8 cryptographic operations is required in DIOM mode, yielding a total latency of 

19 clock cycles.  DICM mode requires an additional three cryptographic operations to 

support data block and signature encryption, leading to a total latency of 22 clock cycles. 
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Figure 5.5  D-Cache Write-back Algorithm 

 
 

5.4 Summary 

An architecture for protecting integrity and confidentiality has been presented in 

this chapter.  It builds on the previous chapter’s instruction protection architecture, 

inheriting its cryptographic strength.  Static data is protected with the same low overhead 

introduced by the instruction protection architecture.  Dynamic data are further protected 

by implementing a versioning scheme using sequence numbers to prevent replay attacks.  

The increased overhead is alleviated by caching the sequence numbers.

1. Request sequence number block from seqnum cache.  
Wait until sequence number is available. 

2. Increment sequence number while buffering original 
sequence number sub-block (see Equation (5.10)). 

3. Start cryptographic calculations using KEY1 on 
sequence number, sequence number sub-block address, 
and data sub-block addresses (see Equations (5.1) 
and (5.11)). 

4. Calculate signature for original and updated 
sequence number sub-blocks (see Equation (5.1)). 

5. XOR program root signature with page root signature 
in TLB. 

6. XOR page root signature in TLB with original 
sequence number sub-block signature. 

7. XOR page root signature in TLB with updated sequence 
number sub-block signature. 

8. XOR program root signature with new page root 
signature in TLB. 

9. Calculate signature for data block (see Equations 
(5.1) and (5.12)). 

10. If DICM, start cryptographic calculations using 
KEY3 on data sub-block and signature addresses 
XORed with updated sequence number; encrypt data 
block and signature when ready (see Equations 
(5.13) and (5.14)). 

11. Place data block and signature in write buffer. 
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CHAPTER 6 

 

EXPERIMENTAL ENVIRONMENT 

 

Cycle-accurate simulation software was used to evaluate the overhead of our 

proposed architectural enhancements.  This simulator performs functional simulation of 

the instruction protection architecture, but only a timing simulation of the data protection 

architecture.  This chapter describes the methodology used in this evaluation.  We start 

with an overview of the experimental flow, then discuss the benchmark applications that 

are chosen for simulation.  We finally discuss the simulator itself, and the simulation 

parameters used in our evaluation runs. 

6.1 Experimental Flow 

The experimental flow for evaluating our proposed architectures is illustrated in  

Figure 6.1.  We start with uncompiled source code for benchmark applications of interest, 

which are described in Section 6.2 below.  These are compiled using a cross-compiler to 

generate executable binaries in the standard Executable and Linkable Format (ELF) [42].  

The cross-compiler encodes the executables for the ARM instruction set.  These binaries 

may then be run in the simulator under a baseline configuration without security 

enhancements.  The simulator mimics an embedded microprocessor based on the ARM   

architecture.  With the appropriate inputs, it analyzes both execution time and power 
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Figure 6.1  Experimental Flow 

 
consumption for the baseline configuration.  This simulator is described more thoroughly 

in Section 6.3. 

The cross-compiled executables are processed through a program that emulates 

the secure installation process to produce secure executables.  This secure installation 

emulator is based on the one described in [4], but has been updated to insert instruction 

signatures directly after the instruction blocks they protect.  The secure installation 

procedures for protecting data are not emulated since the simulator only performs a 

timing analysis for the data architecture. 

The secure benchmark executables can then be run in the simulator.  The 

simulator is configured to model the aforementioned ARM-based embedded processor 
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enhanced with the instruction and/or data protection architectures proposed in Chapters 3 

and 4.  It analyzes the execution time of the benchmarks for both architectures.  It also 

analyzes the power overhead for the instruction protection architecture.  Once simulation 

runs are completed, the relevant results can be mined from the simulator outputs. 

6.2 Benchmarks 

Two sets of benchmarks are selected for evaluating the overhead of the proposed 

architectures.  The first set of benchmarks represents typical tasks that an embedded 

system might perform.  These benchmarks are described in Table 6.1, which lists the 

name, description, and total number of executed instructions for each of the embedded 

benchmarks.  They are selected from among the benchmark suites MiBench [43], 

MediaBench [44], and Basicrypt [45].  The primary criteria for selecting these 

benchmarks are the cache miss rates.  In order to properly exercise the proposed 

architectures, high miss rates for at least one of the cache sizes to be simulated are 

desired.   Thus, these benchmarks often represent a worst-case scenario with the greatest 

possible overhead; other benchmarks with very low cache miss rates would only show 

negligible overhead.  The embedded benchmarks’ cache miss rates when simulated on a 

baseline architecture for various cache sizes of interest are shown in Table 6.2. 
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Table 6.1  Description of Embedded Benchmarks 

Benchmark Description Executed  
Instructions [106] 

blowfish_enc Blowfish encryption 544.0 

cjpeg JPEG compression 104.6 

djpeg JPEG decompression 23.4 

ecdhb Diffie-Hellman key exchange 122.5 

ecelgencb El-Gamal encryption 180.2 

ispell Spell checker 817.7 

mpeg2_enc MPEG2 compression 127.5 

rijndael_enc Rijndael encryption 307.9 

stringsearch String search 3.7 

 

 

Table 6.2  Cache Miss Rates for Embedded Benchmarks 

Benchmark Instruction Cache Misses 
per 1000 Executed Instructions  

Data Cache Misses  
per 1000 Executed Instructions  

 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB 

blowfish_enc 33.8 5.1 0 0 63.5 43.4 8.4 0.3 

cjpeg 7.6 1.3 0.3 0.1 92.5 69.8 56.9 8.9 

djpeg 11.9 5.5 1.3 0.3 88 54.3 34.8 13.4 

ecdhb 28.5 8.5 2.9 0.1 5.7 1.2 0.3 0.2 

ecelgencb 25.4 4.5 1.4 0.1 3 0.7 0.2 0.1 

ispell 72.4 53 18.8 2.9 60.4 33.4 4.3 1.5 

mpeg2_enc 2.2 1.1 0.4 0.2 54.6 30.2 6.7 1.7 

rijndael_enc 110.2 108.3 69.5 10.3 227.5 190.9 111.5 15.2 

stringsearch 57.7 35 6.2 2.4 87.6 43 7.3 4.3 
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The second set of benchmarks represent tasks that are more suited to general 

purpose computers rather than embedded systems.  These benchmarks are selected from 

the Standard Performance Evaluation Corporation (SPEC) 2000 benchmark suite [46].  

SPEC benchmarks have much longer runtimes than the selected embedded benchmarks; 

therefore, these benchmarks are selected so they could be simulated in a reasonable 

timeframe (weeks rather than months) without placing undue strain on available 

computing resources.  Furthermore, only specific segments of the benchmarks are chosen 

for detailed simulation.  The SimPoint tool [47] is used to calculate the segments, which 

are weighted such that metrics of interest may be measured for each segment, multiplied 

by the appropriate weights, and the products summed to produce metrics that represent 

the overall behavior of the benchmarks.  Individual segments are executed by running the 

benchmark program in a low-fidelity simulator for an offset of a certain number of 

instructions, and then executing one hundred million instructions using the full simulator. 

The selected SPEC benchmarks are described in Table 6.3, along with their 

segment offsets.  The weights for the various segments are presented in Table 6.4.  The 

overall cache miss rates (after weighting) for the benchmarks simulated with a baseline 

system configuration are shown in Table 6.5.  These benchmarks are run on simulated 

systems with larger caches than the embedded benchmarks.  Note that most of these 

benchmarks have very few instruction cache misses, which should lead to a low overhead 

for instruction protection.  They do, however, exhibit appreciable data cache miss rates, 

which makes them useful for observing the overhead introduced by data protection. 
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Table 6.3  Description of SPEC Benchmarks 

Benchmark Description Segment Offset 
[108 Instructions] 

  0 1 2 3 4 5 6 7 8 

bzip2 Data 
compression 611 85 421 149 473 12 42 194 342 

gcc C  
Compiler 207 23 115 130 90 166 35 N/A N/A 

gzip Data 
compression 360 226 875 761 344 779 543 693 143 

parser Language 
processor 288 162 148 337 278 421 52 382 N/A 

 

Table 6.4  SPEC Benchmark Segment Weights 

Benchmark Description Segment Weight 

  0 1 2 3 4 5 6 7 8 

bzip2 Data 
compression .027 .079 .028 .084 .158 .296 .105 .093 .130 

gcc C  
Compiler .472 .028 .108 .090 .127 .146 .028 N/A N/A 

gzip Data 
compression .007 .021 .111 .072 .050 .375 .033 .047 .085 

parser Language 
processor .077 .106 .115 .168 .162 .009 .031 .049 N/A 

 

Table 6.5  Cache Miss Rates for SPEC Benchmarks 

Benchmark 
Instruction Cache Misses
per 1000 Executed  
Instructions    

Data Cache Misses  
per 1000 Executed 
Instructions    

 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 

bzip2 0 0 0 9.3 7.2 5.8 

gcc 27.5 15.4 4.4 46.6 38.7 32.9 

gzip 0 0 0 21.8 19.5 16.8 

parser 0.8 0.3 0 7.2 4.9 3.7 
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6.3 Simulation Software 

The simulator used to evaluate the performance of the proposed architectures is a 

derivative of the Sim-Panalyzer ARM simulator [48].  Sim-Panalyzer is itself an 

extension of sim-outorder, the most detailed simulator from the SimpleScalar suite [49].  

As before, we use the simulator modifications documented in [4] as the starting point for 

our updates. 

The simulator is updated to perform a full functional simulation of the instruction 

protection architecture.  This allows it to provide both a cycle-accurate timing analysis as 

well as an estimate of the energy overhead.  The largest update is the inclusion of the 

instruction verification buffer, allowing instructions to execute in parallel with 

verification.  The instruction cache miss handler is modified to handle instruction 

signatures located directly after the protected instruction blocks.  It is also modified to 

allow an individual signature to protect either one instruction block or two instruction 

blocks.  The energy overhead caused by the pipelined cryptographic hardware is  

modeled as that caused by 57,000 gates of combinational logic [50].  

The simulator is also updated to provide a partial functional simulation of the data 

protection architecture.  This only yields a cycle-accurate timing analysis; energy 

overhead is not estimated.  The most complex of the updates to support data protection is 

the addition of a sequence number cache.  This cache and its controller are fully 

functional, although the sequence number data it handles are purely fictitious.  The data 

cache miss handler is modified to report the overhead that the data protection architecture 

would incur.  It queries the sequence number cache as appropriate, but only reports the 

potential timing of all other operations.  The data TLB handler is updated in a similar 
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manner.  The simulator does not account for the overhead introduced by initializing 

sequence number blocks on page allocation. 

Performance overhead is analyzed by using the simulator to run the benchmark 

programs described in Section 6.3.  The SimpleScalar metric of interest for performance 

overhead analysis is sim_cycle, the number of simulated clock cycles required for the 

benchmark to run to completion.  After simulation is complete, this value is mined from 

the results and divided by the value of sim_cycle for appropriate baseline simulation 

run, producing a normalized execution time value. 

Energy overhead is also analyzed by running the benchmark programs in the 

simulator.  Only the energy overhead of the SICM architecture is analyzed, as a complete 

functional DICM simulation is not implemented.  The SimPAnalyzer metric of interest 

for performance overhead analysis is uarch.pdissipation, the total power 

dissipated by the simulated microarchitecture.  As with the performance overhead metric, 

this value is mined from simulation results and divided by the baseline microarchitecture 

power dissipation, producing a normalized power dissipation value. 

6.4 Simulation Parameters 

The simulator is configured to simulate an ARM architecture running at 

200 MHz.  The I/O supply voltage is 3.3 V, with an internal logic power supply of 1 V.  

All other power-related parameters correspond with a 0.18 μm process, and are obtained 

from a template file provided with Sim-Panalyzer.  All simulated systems are assumed to 

have separate Level 1 instruction and data caches of the same size.  This size varies 

between 1 KB, 2 KB, 4 KB and 8 KB for the embedded benchmarks, and 8 KB, 16 KB, 

and 32 KB for SPEC benchmarks.  All cache line sizes are taken to be 32 bytes, as every 
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benchmark exhibited better performance on a baseline system with 32 byte cache lines 

than with 64 byte lines.  All caches use the least recently used (LRU) replacement policy,  

For RbV implementations, instruction verification buffer depth is 16 unless otherwise 

noted.  Other architectural parameters used in the simulations are described in Table 6.6. 

 

 

Table 6.6  Simulation Parameters 

Simulator Parameter Value 
Branch predictor type Bimodal 
Branch predictor table size 128 entries, direct-mapped 
Return address stack size 8 entries 
Instruction decode bandwidth  1 instruction/cycle 
Instruction issue bandwidth  1 instruction/cycle 
Instruction commit bandwidth  1 instruction/cycle 
Pipeline with in-order issue True 
I-cache/D-cache 4-way, first level only 
I-TLB/D-TLB 32 entries, fully associative 
Execution units 1 floating point, 1 integer 
Memory fetch latency (first/other chunks) 12/2 cycles  and 24/2 cycles 
Branch misprediction latency 2 cycles  
TLB latency 30 cycles  
AES latency 12 clock cycles 
Address translation (due to signatures) 1 clock cycle 
Signature comparison 1 clock cycle 
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CHAPTER 7 

 

RESULTS 

 

This chapter presents the results of both qualitative and quantitative analyses of 

the proposed architectures for instruction and data protection.  We start with qualitative 

analyses of the complexity overhead required to implement our architectures on a 

processor chip, followed by the extra space in memory required to run a secure program 

on our architecture.  We then present quantitative results from simulating the execution of 

secure benchmark programs, focusing on performance and energy overhead.  

7.1 Complexity Overhead 

The hardware requirements for the instruction and data protection architectures 

are discussed in Sections 4.2, 4.3, and 5.2.  These architectures require state machines for 

performing various tasks, logic for address translation, buffers and registers, hardware for 

key generation, and a pipelined cryptographic unit.  All but the last two of these 

requirements introduce relatively little additional on-chip area.  A physical unclonable 

function (PUF) unit for key generation requires nearly 3,000 gates [24].  The pipelined 

cryptographic unit, which is shared among both architectures, introduces the greatest 

amount of overhead.  Assuming that this cryptographic unit follows the commercially 

available Cadence high performance 128-bit AES core [50], the on-chip area it requires 
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should be approximately equal to that required for 57,000 logic gates.  An additional 

source of complexity is the sequence number cache; its complexity is determined by its 

size and organization, which are design parameters. 

7.2 Memory Overhead 

The memory overhead incurred by the instruction protection architecture is a 

simple function of the protected block size and the number of instruction blocks in the 

program.  Each signature is 16 bytes long.  If 32 byte protected blocks are chosen, then 

the size of the executable segment of the program increases by 50%.  This overhead is 

reduced to 25% for 64 byte protected blocks, and to 12.5% for 128 byte protected blocks. 

Data protection incurs overhead at different rates for pages containing constant 

data and pages containing dynamic data.  Constant data is protected like instructions, so 

the memory overhead from protecting constant data blocks follows the figures given for 

instruction blocks above.  The memory overhead required for protecting dynamic data is 

slightly larger.  The data signatures lead to the same overhead figures as for static data 

and instructions.  However, each dynamic data page requires sequence number blocks, 

additional space in the page table, and an entry in the page root signature table.  The size 

of the sequence number blocks is a design parameter; the sample architecture presented 

in this paper requires 6 sequence number blocks of 32 bytes each, for a total sequence 

number overhead of 192 bytes per protected dynamic page. 

7.3 Instruction Protection Architecture (SICM) Overhead 

This section presents qualitative analysis results for the instruction protection 

architecture running in full SICM mode.  We evaluate its performance and power 
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overhead, exploring the design space by varying cache sizes, cryptographic ciphers, and 

implementation details.  We also explore the optimum value for instruction verification 

buffer depth. 

7.3.1 Performance Overhead 

The normalized execution times of the embedded benchmarks running in SICM 

mode are plotted in Figure 7.1 and Figure 7.2, and expressed numerically in Table 7.1 

and Table 7.2.  Results are presented for Level 1 cache sizes of 1 KB, 2 KB, 4 KB, and 

8 KB, and for the following implementations: CBC-MAC WtV, PMAC WtV, PMAC 

RbV, and PMAC RbV with double-sized protected blocks and caching all fetched  

I-blocks.  These plots clearly show that, among the three normal-sized protected block 

implementations, the PMAC RbV implementation incurs the lowest performance 

overhead (negligible in most cases).  They also indicate that double-sized protected 

blocks can be used without incurring further overhead.  In fact, some benchmarks exhibit 

a speedup relative to baseline performance due to the prefetching behavior of caching all 

fetched I-blocks. 
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Figure 7.1  Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB 
L1 Cache Sizes 
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Figure 7.2  Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB 
L1 Cache Sizes 
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Table 7.1  Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1 
Cache Sizes 

Performance Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 

 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 
blowfish_enc 72.6 13.7 50.2 9.46 3.14 0.60 -12.3 -1.70 
cjpeg 25.3 5.23 17.5 3.60 1.14 0.23 -1.52 0.35 
djpeg 31.9 18.0 21.9 12.3 1.23 0.64 -2.51 -1.41 
ecdhb 77.5 35.7 53.6 24.7 3.49 1.46 -12.0 -5.94 
ecelgencb 68.8 18.8 47.6 13.0 3.14 0.77 -4.12 -3.10 
ispell 99.8 88.5 68.8 60.9 4.31 4.03 -7.68 0.48 
mpeg2enc 8.70 5.05 6.00 3.50 0.39 0.24 -0.58 -0.39 
rijndael_enc 117.4 117.7 80.6 80.9 3.62 3.77 -14.2 -16.1 
stringsearch 96.6 79.3 66.7 54.9 4.33 3.80 1.79 -2.03 
Total 91.2 72.7 62.8 50.1 3.70 2.97 -9.37 -3.72 
 

 

Table 7.2  Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1 
Cache Sizes 

Performance Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 

 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 
blowfish_enc 0.17 0.00 0.14 0.00 0.09 0.00 0.06 -0.01 
cjpeg 1.13 0.29 0.77 0.19 0.00 0.00 0.06 -0.00 
djpeg 4.89 0.88 3.31 0.53 0.07 0.00 -0.21 -0.09 
ecdhb 14.2 0.78 9.85 0.54 0.64 0.03 -1.96 -0.06 
ecelgencb 6.58 0.34 4.55 0.24 0.30 0.01 -0.91 -0.04 
ispell 49.7 10.4 34.3 7.22 2.60 0.50 4.29 1.33 
mpeg2enc 2.16 1.09 1.50 0.76 0.13 0.09 -0.05 -0.02 
rijndael_enc 93.8 24.1 64.5 16.2 3.09 0.00 -8.34 7.53 
stringsearch 23.7 10.4 16.4 7.16 1.36 0.30 5.75 1.75 
Total 43.2 7.65 29.8 5.23 1.86 0.16 -0.18 1.52 
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The overall normalized execution times for the SPEC benchmarks running in 

SICM mode are plotted in Figure 7.3 and Figure 7.4, and presented numerically in  

Table 7.3.  As described in Section 6.2, these results are produced by simulating various 

weighted segments of the benchmark program and calculating the overall overhead.  

Results are presented for 8 KB, 16 KB, and 32 KB cache sizes, and for the same SICM 

implementations as in Figure 7.1 and Figure 7.2.  Referring back to Table 6.5, only the 

gcc benchmark has an appreciable number of I-cache misses, and thus it is the only SPEC 

benchmark to exhibit appreciable performance overhead on the SICM architecture.  As 

with the embedded benchmarks, the PMAC RbV implementation with single-sized 

protected blocks presents negligible overhead, and doubling the protected block size 

introduces little or no additional overhead. 
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Figure 7.3  Performance Overhead for SPEC Benchmarks, SICM, 8 KB Cache Sizes 
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Figure 7.4  Performance Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB 
Cache Sizes 
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Table 7.3  Performance Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32 
KB L1 Cache Sizes 

Performance Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 
 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB
bzip2 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
gcc 64.2 44.1 16.0 44.4 30.5 11.1 2.86 2.10 0.75 -2.28 0.58 0.60 
gzip 0.06 0.01 0.01 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
parser 3.50 1.59 0.26 2.42 1.10 0.18 0.16 0.07 0.01 -0.44 -0.19 -0.02

Total 26.3 16.0 4.99 18.2 11.0 3.45 1.17 0.76 0.23 -1.00 0.16 0.18 
 

 

The SICM architectures with single-sized protected I-blocks, as described in 

Section 4.3.3, introduce a fixed amount of verification latency on each I-cache miss.  

Assuming that this latency dominates other contributions to performance overhead, a 

linear relationship between the performance overhead and the I-cache miss rate is 

expected.  Figure 7.5 and Figure 7.6 plot the normalized execution time versus baseline I-

cache miss rate for the CBC WtV, PMAC WtV, and PMIC RbV single-sized protected 

block SICM implementations.  These plots include data points from both embedded and 

SPEC benchmarks for all cache sizes.  As expected, these plots exhibit some linearity, 

but other architectural issues (such as IVB occupancy) introduce significant deviation.  
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Figure 7.5  Normalized Execution Time vs. I-Cache Miss Rate, SICM, CBC WtV and 
PMAC WtV Implementations 
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Figure 7.6  Normalized Execution Time vs. I-Cache Miss Rate, SICM, PMAC RbV 
Implementation 

 

 

7.3.2 Energy Overhead 

The normalized power dissipation values of the embedded benchmarks running in 

SICM mode are plotted in Figure 7.7 and Figure 7.8, and shown numerically in Table 7.4 

and Table 7.5.  Results are presented for cache sizes of 1 KB, 2 KB, 4 KB, and 8 KB, and 

for the following implementations: CBC-MAC WtV, PMAC WtV, PMAC RbV, and 

PMAC RbV with double-sized protected blocks and caching all fetched I-blocks.  The 

plots follow the normalized execution time plots very closely, showing a strong 

correlation between execution time and power dissipation.  Once again, PMAC RbV is 

the most efficient of the single-sized protected block implementations, and the double-

sized protected block implementation introduces little or no additional overhead.  As  
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Figure 7.7  Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1 
Cache Sizes 
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Figure 7.8  Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1 
Cache Sizes 
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Table 7.4  Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1 
Cache Sizes 

Energy Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 

 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 
blowfish_enc 72.3 13.7 49.9 9.44 3.17 0.60 -12.2 -1.69 
cjpeg 25.3 5.22 17.5 3.59 1.17 0.24 -1.45 0.36 
djpeg 31.9 18.0 21.8 12.3 1.26 0.65 -2.43 -1.39 
ecdhb 77.4 35.6 53.5 24.7 3.60 1.49 -11.8 -5.90 
ecelgencb 68.7 18.8 47.5 13.0 3.24 0.78 -3.91 -3.07 
ispell 99.6 88.4 68.6 60.8 4.43 4.09 -7.45 0.61 
mpeg2enc 8.68 5.05 5.98 3.50 0.40 0.24 -0.56 -0.38 
rijndael_enc 116.8 117.5 80.1 80.7 3.72 3.83 -14.0 -16.0 
stringsearch 96.3 79.2 66.5 54.9 4.44 3.85 2.02 -1.93 
Total 90.9 72.6 62.6 50.0 3.79 3.01 -9.17 -3.63 
 

 

Table 7.5  Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1 
Cache Sizes 

Energy Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 

 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 
blowfish_enc 0.17 0.00 0.14 0.00 0.09 0.00 0.06 -0.01 
cjpeg 1.13 0.29 0.77 0.19 0.00 0.00 0.06 0.00 
djpeg 4.88 0.87 3.30 0.53 0.07 0.00 -0.21 -0.08 
ecdhb 14.2 0.78 9.84 0.54 0.65 0.03 -1.94 -0.06 
ecelgencb 6.57 0.34 4.55 0.24 0.30 0.01 -0.90 -0.04 
ispell 49.6 10.4 34.3 7.21 2.64 0.51 4.37 1.35 
mpeg2enc 2.16 1.09 1.50 0.76 0.13 0.09 -0.05 -0.02 
rijndael_enc 93.6 24.1 64.3 16.2 3.13 0.00 -8.23 7.61 
stringsearch 23.6 10.4 16.3 7.14 1.38 0.31 5.80 1.77 
Total 43.1 7.65 29.7 5.23 1.88 0.16 -0.12 1.54 
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before, some benchmarks benefit from the prefetching behavior in the double-sized 

protected block implementation, dissipating less power due to shorter runtimes. 

The normalized power dissipation values of the SPEC benchmarks running in 

SICM mode are plotted in Figure 7.9 and Figure 7.10, and presented numerically in  

Table 7.6.  Level 1 cache sizes vary between 8 KB, 16 KB, and 32 KB.  As with the 

embedded benchmarks, the energy overhead closely follows the performance overhead.  

The only benchmark showing any appreciable overhead is gcc, and this is reduced to less 

than 25% with an I-cache size of 32 KB. 
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Figure 7.9  Energy Overhead for SPEC Benchmarks, SICM, 8 KB L1 Cache Size 
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Figure 7.10  Energy Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB Cache 
Sizes 

 



90 

 

Table 7.6  Energy Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32 KB L1 
Cache Sizes 

Energy Overhead [%] 

Benchmark CBC 
WtV 

PMAC 
WtV 

PMAC 
RBV 

PMAC 
RBV 

Double 
 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB
bzip2 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
gcc 64.2 44.1 16.0 44.3 30.5 11.0 2.90 2.13 0.76 -2.21 0.63 0.61 
gzip 0.06 0.01 0.01 0.04 0.01 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 
parser 3.50 1.59 0.26 2.42 1.10 0.18 0.16 0.07 0.01 -0.44 -0.19 -0.02

Total 26.3 15.9 4.99 18.2 11.0 3.44 1.19 0.77 0.24 -0.97 0.18 0.18 
 

 

7.3.3 IVB Depth 

We choose two benchmarks for exploring the optimum IVB depth: cjpeg, which 

exhibits a low I-cache miss rate, and ispell, which exhibits a relatively high I-cache miss 

rate.  These benchmarks are simulated in the SICM mode using the PMAC cipher with 

single-sized protected blocks.  IVB depth is varied from two to 32 entries in powers of 

two.  The normalized performance overheads from these experiments are plotted in 

Figure 7.11.  For both benchmarks, the greatest performance increase is observed when 

the IVB depth is increased from 8 to 16.  Further increasing the IVB depth yields 

minimal improvement.  Thus, a 16-entry IVB appears to be optimal.  Additionally, 

systems with large caches and thus low I-cache miss rates may use even smaller IVBs 

without experiencing great performance degradation. 
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Figure 7.11  IVB Depth Evaluation 
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7.4 Data Protection Architecture (DICM) Overhead 

Performance overhead is also evaluated for the data protection architecture.  The 

simulator used to evaluate the overhead of the DICM mode is an extended version of the 

simulator for SICM mode.  We use the most efficient single-sized protected block SICM 

implementation, PMAC RbV, which has been shown above to introduce negligible 

performance overhead.  We again use the normalized execution time metric to evaluate 

the DICM architecture. 

The normalized execution times for embedded benchmarks running in both the 

SICM and DICM modes are shown in Figure 7.12 through Figure 7.15, and presented 

numerically in Table 7.7.  Results are shown for 1 KB, 2 KB, 4 KB, and 8 KB cache 

sizes.  Within each cache size, the sequence number cache size is varied between 25% of 

the data cache size (thus 256 B, 512 B, 1 KB, and 2 KB) and 50% of the data cache (thus 

512 B, 1 KB, 2 KB, and 4 KB).  All sequence number caches are 4-way set associative.  

The figures break down the overhead between the contributions from the SICM and 

DICM modes, while the table includes only the overhead from the DICM mode. These 

results show that the DICM architecture incurs significant overhead for small D-cache 

sizes.  This overhead greatly decreases as D-cache size increases; all benchmarks exhibit 

less than 25% performance overhead with an 8 KB D-cache.  They also indicate that 

larger sequence number caches significantly reduce the performance overhead of most 

benchmarks on systems with small D-caches, but offer little improvement for systems 

with large D-caches.  Thus the choice of sequence number cache size in an actual 

hardware implementation should be driven by the expected workload of the system and  
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Figure 7.12  Performance Overhead for Embedded Benchmarks, SICM/DICM, 1 KB L1 
Cache Size 
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Figure 7.13  Performance Overhead for Embedded Benchmarks, SICM/DICM, 2 KB L1 
Cache Size 
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Figure 7.14  Performance Overhead for Embedded Benchmarks, SICM/DICM, 4 KB L1 
Cache Size 
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8 KB L1 Caches, 2 KB Seqnum Cache
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Figure 7.15  Performance Overhead for Embedded Benchmarks, SICM/DICM, 8 KB L1 
Cache Size 
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Table 7.7  Performance Overhead for Embedded Benchmarks, DICM 

Performance Overhead [%] 
Benchmark Sequence Number Cache Size 

25% of L1 Data Cache Size 
Sequence Number Cache Size 
50% of L1 Data Cache Size 

 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB 
blowfish_enc 69.5 33.5 10.4 0.02 13.3 20.0 9.14 0.02 
cjpeg 162.9 81.0 18.0 5.09 100.4 24.4 15.3 4.52 
djpeg 204.3 75.7 40.2 18.0 85.3 45.8 28.7 13.0 
ecdhb 15.0 2.60 0.41 0.26 7.92 1.15 0.26 0.24 
ecelgencb 7.11 1.30 0.19 0.05 3.47 0.66 0.15 0.03 
ispell 73.6 43.9 5.28 2.58 52.4 34.9 3.61 1.60 
mpeg2enc 115.9 34.9 7.88 2.55 53.3 19.0 6.27 2.02 
rijndael_enc 153.2 59.7 41.8 15.3 63.9 34.9 29.9 13.8 
stringsearch 121.9 43.2 10.7 3.22 60.2 26.4 4.85 2.92 

Total 85.2 43.3 14.9 3.49 44.0 29.4 11.0 2.80 
 

 

the overall cache budget.  Systems with larger D-caches and smaller sequence number 

caches tend to outperform systems with smaller D-caches and larger sequence number 

caches. 

The overall normalized execution times of the SPEC benchmarks running in both 

the SICM and DICM mode are plotted in Figure 7.16 though Figure 7.18, and presented 

numerically in Table 7.8.  Results are presented for D-cache sizes of 8 KB, 16 KB, and 

32 KB.  Sequence number cache sizes vary between 25% of the D-cache size (thus 2 KB, 

4 KB, and 8 KB) and 50% of the D-cache size (4 KB, 8 KB, and 16 KB).  As with the 

embedded benchmarks, the figures show the separate contributions of the SICM and 

DICM modes to total overhead, while the table only presents the DICM overhead.  Once 

again overhead decreases as cache sizes increase.  The benchmarks gcc and gzip incur the 

highest overhead, with larger sequence number caches boosting gzip’s performance, even  
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8 KB L1 Caches, 4 KB Seqnum Cache
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Figure 7.16  Performance Overhead for SPEC Benchmarks, SICM/DICM, 8 KB L1 

Cache Size 
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16 KB L1 Caches, 4 KB Seqnum Cache
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16 KB L1 Caches, 8 KB Seqnum Cache
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Figure 7.17  Performance Overhead for SPEC Benchmarks, SICM/DICM, 16 KB L1 
Cache Size 
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32 KB L1 Caches, 8 KB Seqnum Cache
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32 KB L1 Caches, 16 KB Seqnum Cache
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Figure 7.18  Performance Overhead for SPEC Benchmarks, SICM/DICM, 32 KB L1 
Cache Sizes 
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Table 7.8  Performance Overhead for SPEC Benchmarks, DICM 

Performance Overhead [%] 
Benchmark Sequence Number Cache Size 

25% of L1 Data Cache Size 
Sequence Number Cache Size 
50% of L1 Data Cache Size 

 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 
bzip2 20.3 14.2 12.6 16.1 12.7 11.0 
gcc 34.3 28.2 28.7 29.0 24.8 26.4 
gzip 111.6 87.3 54.9 92.9 60.0 38.6 
parser 3.05 1.12 0.28 2.23 0.74 0.23 
Total 42.8 33.7 25.4 35.6 25.7 20.2 

 

 

with a 32 KB D-cache.  If a workload similar to gzip were anticipated for an actual 

hardware implementation, larger sequence number caches should be considered if the 

cache budget so permits.  

The performance overhead incurred by the DICM architecture described in 

Section 5.3 should be much less linear than that incurred by the SICM architecture.  In 

this case, overhead is incurred on TLB misses and sequence number cache misses in 

addition to D-cache misses.  Figure 7.19 shows plots of the normalized execution times 

versus the number of D-cache misses for all simulated cache sizes and sequence number 

cache sizes of 25% D-cache size and 50% D-cache size, respectively.  As expected, these 

plots show much less linearity than comparable plots for the SICM architecture. 
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Figure 7.19  Normalized Execution Time vs. D-Cache Miss Rate, DICM 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE WORK 

 

This thesis directly addresses the issues of integrity and confidentiality for both 

software instructions and data in embedded systems.  The issue of availability is 

addressed indirectly, in so far as violation of integrity and/or confidentiality may lead to a 

loss of availability.  Two architectures are proposed for ensuring integrity and 

confidentiality, one protecting instructions and the other protecting data.  These 

architectures may be implemented independently or combined as needed.  Both 

architectures use encryption to ensure confidentiality and verification of signatures 

embedded in instruction and data pages to ensure integrity.  The data protection 

architecture addresses the additional needs of dynamic data by including sequence 

numbers in both the encryption and signature processes. 

Analysis of these proposed architectures reveals the following findings: 

• Both architectures can be implemented with relatively low complexity.  The most 

complex component, the cryptographic pipeline, may be shared between the two 

architectures. 

• The instruction protection architecture using the PMAC cipher with an IVB 

introduces very low performance and energy overhead. 
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• The data protection architecture introduces significant performance overhead for 

systems with extremely small caches, but that overhead dramatically decreases for 

larger cache sizes. 

• Both architectures incur memory overheads of up to 50%.  The memory overhead 

caused by the instruction protection architecture may be reduced to 25% with no 

increase in performance overhead. 

 

The large volume of embedded computer systems and the resourceful nature of 

attackers lead to many opportunities for future research in the field of secure computing.  

The work presented in this thesis may be extended and improved in the future.  Areas for 

future research on these architectures include the following:  

• Further analyze the cryptographic strength of the proposed architectures and 

increasing that strength as appropriate. 

• Investigate any possible vulnerabilities to side-channel attacks. 

• Extend the power dissipation model to include the data protection architecture. 

• Modify the data protection architecture to allow one signature to protect multiple 

data blocks, thus reducing memory overhead. 

• Tweak the data protection architecture to make more efficient use of memory and 

the cryptographic pipeline when a sequence number cache miss occurs during a 

data cache miss. 
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