

LOW OVERHEAD HARDWARE TECHNIQUES FOR SOFTWARE
AND DATA INTEGRITY AND CONFIDENTIALITY IN EMBEDDED

SYSTEMS

by

AUSTIN ROGERS

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in
The Department of Electrical & Computer Engineering

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2007

 ii

In presenting this thesis in partial fulfillment of the requirements for a master's degree
from The University of Alabama in Huntsville, I agree that the Library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by my advisor or, in his/her absence, by
the Chair of the Department or the Dean of the School of Graduate Studies. It is also
understood that due recognition shall be given to me and to The University of Alabama in
Huntsville in any scholarly use which may be made of any material in this thesis.

____________________________ ___________
(student signature) (date)

 iii

THESIS APPROVAL FORM

Submitted by Austin Rogers in partial fulfillment of the requirements for the degree of Master of
Science in Engineering in Computer Engineering and accepted on behalf of the Faculty of the
School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in
Huntsville, certify that we have advised and/or supervised the candidate on the work described in
this thesis. We further certify that we have reviewed the thesis manuscript and approve it in
partial fulfillment of the requirements for the degree of Master of Science in Engineering in
Computer Engineering.

__ Committee Chair

(Date)

__

__

__

__ Department Chair

__ College Dean

__ Graduate Dean

 iv

ABSTRACT

The School of Graduate Studies
The University of Alabama in Huntsville

Degree Master of Science in Engineering College/Dept. Engineering/Electrical &
 Computer Engineering

Name of Candidate Austin Rogers
Title Low Overhead Hardware Techniques for Software and Data Integrity and
 Confidentiality in Embedded Systems

 Computer security is an ever-increasing challenge. Billions of microprocessors have

been sold, most of which form parts of embedded computer systems. Computers are subject to

both software and physical attacks, and rampant piracy causes a severe loss of revenue. These

problems can be alleviated by addressing the issues of integrity (preventing the execution of

unauthorized instructions or the use of unauthorized data) and confidentiality (preventing the

unauthorized copying of instructions or data). This thesis proposes architectural enhancements to

ensure the integrity and confidentiality of software instructions and the data used by those

instructions. The performance and energy overhead introduced by these architectures is analyzed

using a cycle-accurate simulator. The memory overhead and on-chip complexity of the proposed

architectures are analyzed qualitatively. Our analyses show that these proposed architectures may

be implemented with low performance and energy overhead, and only moderate on-chip

complexity and memory overhead.

Abstract Approval: Committee Chair _______________________________________

Department Chair _______________________________________

Graduate Dean _______________________________________

v

ACKNOWLEDGMENTS

“To know wisdom and instruction; to perceive the words of understanding;

To receive the instruction of wisdom, justice, and judgment, and equity;

To give subtlety to the simple, to the young man knowledge and discretion.”

Proverbs 1:2-4

As a researcher, I stand on the shoulders of many researchers before me. The

research documented herein builds on the work of Aleksandar and Milena Milenković,

Emil Jovanov, and Chris Otto. In particular, the simulation infrastructure they

established provided a solid foundation and convenient starting point for the simulation

software used in this current research.

In addition to the researchers whose work I have continued, I must also thank my

friends, family, and coworkers for their support and understanding.

Finally, I dedicate this thesis to my parents, Brenda Lee Nixon Rogers and

William Austin Heard Rogers (of blessed memory), without whose encouragement, love,

and support this thesis would not have been possible.

vi

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. x

LIST OF TABLES... xiii

CHAPTER

1 INTRODUCTION .. 1

1.1 Secure Processors: Motivation and Background ... 1

1.2 Proposed Architectures for Ensuring Software/Data Integrity and
Confidentiality ... 2

1.3 Contributions.. 3

1.4 Outline.. 4

2 COMPUTER SECURTITY.. 5

2.1 Software Attacks.. 5

2.1.1 Buffer Overflow Attacks.. 6

2.1.2 Format String Attacks .. 6

2.1.3 Integer Error Attacks.. 6

2.1.4 Dangling Pointer Attacks... 7

2.1.5 Arc-Injection Attacks... 7

2.2 Physical Attacks... 8

2.2.1 Spoofing Attacks.. 8

2.2.2 Splicing Attack... 9

vii

2.2.3 Replay Attacks ... 10

2.3 Side-Channel Attacks... 11

2.3.1 Timing Analysis... 11

2.3.2 Differential Power Analysis... 12

2.3.3 Fault Exploitation... 12

2.3.4 Architectural Exploitation.. 13

3 RELATED WORK ... 14

3.1 Academic Proposals... 14

3.2 Industrial Solutions .. 18

4 HARDWARE SUPPORTED TECHNIQUES FOR ENSURING SOFTWARE
INTEGRITY AND CONFIDENTIALITY... 20

4.1 Framework Overview .. 20

4.1.1 Secure Installation.. 21

4.1.2 Secure Loading .. 24

4.1.3 Secure Execution ... 25

4.1.4 Other Considerations ... 26

4.2 Basic Implementation .. 27

4.2.1 Implementation Details.. 27

4.2.2 Performance Overhead... 29

4.2.3 Hardware Requirements... 31

4.3 Reducing Overhead.. 33

viii

4.3.1 PMAC .. 34

4.3.2 Run-Before-Verification .. 36

4.3.3 Reducing Memory Overhead... 37

4.4 Summary .. 43

5 HARDWARE SUPPORTED TECHNIQUES FOR ENSURING DATA
INTEGRITYAND CONFIDENTIALITY.. 44

5.1 Data Framework Overview.. 44

5.1.1 Secure Installation.. 46

5.1.2 Secure Loading .. 47

5.1.3 Secure Execution ... 47

5.2 Hardware Support for Runtime Verification ... 54

5.3 Performance Overhead... 56

5.3.1 TLB Miss and Write-back ... 56

5.3.2 Sequence Number Cache Miss and Write-back..................................... 58

5.3.3 Data Cache Miss .. 60

5.3.4 Data Cache Write-back .. 63

5.4 Summary .. 64

6 EXPERIMENTAL ENVIRONMENT.. 65

6.1 Experimental Flow... 65

6.2 Benchmarks.. 67

6.3 Simulation Software... 71

ix

6.4 Simulation Parameters ... 72

7 RESULTS ... 74

7.1 Complexity Overhead .. 74

7.2 Memory Overhead ... 75

7.3 Instruction Protection Architecture (SICM) Overhead...................................... 75

7.3.1 Performance Overhead... 76

7.3.2 Energy Overhead ... 84

7.3.3 IVB Depth.. 90

7.4 Data Protection Architecture (DICM) Overhead... 92

8 CONCLUSIONS AND FUTURE WORK ... 103

REFERENCES ... 105

x

LIST OF FIGURES

Figure Page

2.1 Spoofing Attack .. 9

2.2 Splicing Attack.. 10

2.3 Replay Attack.. 11

4.1 Overview of Architecture for Trusted Instruction Execution 21

4.2 Signed Binary Instruction Block: (a) Signed plaintext, (b) ES, (c), EtS, (d) StE . 24

4.3 I-Cache Miss Algorithm, CBC-MAC Implementation... 30

4.4 Verification Latency, CBC-MAC WtV Implementation...................................... 31

4.5 Instruction Block Signature Verification Unit.. 33

4.6 I-Cache Miss Algorithm, PMAC Implementation.. 35

4.7 Verification Latency, PMAC WtV Implementation... 35

4.8 Instruction Verification Buffer ... 37

4.9 I-Cache Miss Algorithm, PMAC Implementation, Expanded Protected I-Block 39

4.10 Memory Layout and Cache Miss Cases.. 39

4.11 Verification Latency, PMAC RbV Implementation, Expanded Protected I-Block,
Cases 1 and 2 .. 41

4.12 Verification Latency, PMAC RbV Implementation, Expanded Protected I-Block,
Case 3.. 42

4.13 Verification Latency, PMAC RbV Implementation, Expanded Protected I-Block,
Case 4.. 43

xi

5.1 Memory Structures for Protecting Dynamic Data: (a) Dynamic Data Page,
(b) Page Table Modifications, (c) Page Root Signature Table, (d) Sequence
Number Table ... 50

5.2 Sequence Number Cache Miss Algorithm.. 59

5.3 D-Cache Miss Algorithm.. 62

5.4 Verification Latency, D-Cache Miss .. 62

5.5 D-Cache Write-back Algorithm.. 64

6.1 Experimental Flow.. 66

7.1 Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1
Cache Sizes ... 77

7.2 Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1
Cache Sizes ... 78

7.3 Performance Overhead for SPEC Benchmarks, SICM, 8 KB Cache Sizes.......... 80

7.4 Performance Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB Cache
Sizes .. 81

7.5 Normalized Execution Time vs. I-Cache Miss Rate, SICM, CBC WtV and PMAC
WtV Implementations... 83

7.6 Normalized Execution Time vs. I-Cache Miss Rate, SICM, PMAC RbV
Implementation ... 84

7.7 Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1 Cache
Sizes .. 85

7.8 Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1 Cache
Sizes .. 86

7.9 Energy Overhead for SPEC Benchmarks, SICM, 8 KB L1 Cache Size............... 88

7.10 Energy Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB Cache Sizes ..
 ... 89

xii

7.11 IVB Depth Evaluation... 91

7.12 Performance Overhead for Embedded Benchmarks, SICM/DICM, 1 KB L1
Cache Size... 93

7.13 Performance Overhead for Embedded Benchmarks, SICM/DICM, 2 KB L1
Cache Size... 94

7.14 Performance Overhead for Embedded Benchmarks, SICM/DICM, 4 KB L1
Cache Size... 95

7.15 Performance Overhead for Embedded Benchmarks, SICM/DICM, 8 KB L1
Cache Size... 96

7.16 Performance Overhead for SPEC Benchmarks, SICM/DICM, 8 KB L1 Cache
Size.. 98

7.17 Performance Overhead for SPEC Benchmarks, SICM/DICM, 16 KB L1 Cache
Size.. 99

7.18 Performance Overhead for SPEC Benchmarks, SICM/DICM, 32 KB L1 Cache
Sizes .. 100

7.19 Normalized Execution Time vs. D-Cache Miss Rate, DICM............................. 102

xiii

LIST OF TABLES

Table Page

6.1 Description of Embedded Benchmarks .. 68

6.2 Cache Miss Rates for Embedded Benchmarks ... 68

6.3 Description of SPEC Benchmarks .. 70

6.4 SPEC Benchmark Segment Weights .. 70

6.5 Cache Miss Rates for SPEC Benchmarks... 70

6.6 Simulation Parameters .. 73

7.1 Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1
Cache Sizes ... 79

7.2 Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1
Cache Sizes ... 79

7.3 Performance Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32 KB
L1 Cache Sizes.. 82

7.4 Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1 Cache
Sizes .. 87

7.5 Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1 Cache
Sizes .. 87

7.6 Energy Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32 KB L1
Cache Sizes ... 90

xiv

7.7 Performance Overhead for Embedded Benchmarks, DICM 97

7.8 Performance Overhead for SPEC Benchmarks, DICM...................................... 101

 1

CHAPTER 1

INTRODUCTION

Embedded computer systems are everywhere. They are indispensable to modern

telephones, music players, network routers, and even weapons systems. Society relies on

embedded systems to perform an increasing multitude of tasks. As the number of

embedded applications increases, so do the incentives for attackers to compromise the

security of these systems. Security breaches on these systems may have wide ranging

impacts, from simple loss of revenue to loss of life. Maintaining security on embedded

systems is therefore vital for the consumer, industry, and government.

1.1 Secure Processors: Motivation and Background

Computer systems are often subject to attacks, and the number of vulnerabilities

is high. According to the United States Computer Emergency Readiness Team [1],

5,198 software vulnerabilities were identified in the year 2005 alone, the number of

actual attacks was much greater. Unauthorized copying of software is another major

threat. The Business Software Alliance [2] estimates that, in the year 2006, 35% of all

software installed on personal computers was pirated, leading to forty billion dollars in

lost revenue. Furthermore, the number of fielded computer systems is astronomical.

Most observers would recognize general purpose desktops, workstations, and servers as

computer systems, but the number of these systems in the field is far outstripped by the

2

number of embedded systems. In 1999, an estimated total of 250 million 32-bit

processors and one billion each of 16-bit, 8-bit, and 4-bit processors were sold, which

contrasts sharply with the 100 million desktop, workstation, and server computer systems

that were sold [3].

This thesis addresses computer security from the microprocessor’s perspective.

We focus on embedded systems, and address the areas of integrity, confidentiality, and

availability. Integrity is violated whenever any unauthorized code is executed on a

system or unauthorized data is used by the processor. Confidentiality is violated

whenever some entity, human or computer, is able to view, copy, or reverse-engineer

instructions or data. Availability is violated whenever a legitimate user is denied access

to the system. The architectures we propose directly address the integrity and

confidentiality of software instructions and data. The architectures indirectly address

availability in that attacks on integrity often result in a loss of availability.

1.2 Proposed Architectures for Ensuring Software/Data Integrity and

Confidentiality

We propose two architectures for secure processors. One addresses the integrity

and confidentiality of the software itself (instructions). The other addresses the integrity

and confidentiality of data used by the software. These two architectures may be

implemented independently or combined as appropriate.

Software integrity and confidentiality is ensured using encryption and signature

verification. The confidentiality of instructions is preserved by encrypting the data using

a variant one-time pad (OTP) scheme, which provides a high level of security while

allowing for quick decryption at runtime. Instruction integrity is preserved by signing the

3

instructions during a secure installation procedure and verifying the signatures at runtime.

When new instructions are fetched from memory, their signature is recalculated and

compared to the signature from memory. If the signatures do not match, the instructions

have been subjected to tampering and program execution is halted.

Encryption and signature verification are also used to ensure the integrity and

confidentiality of the data used by the instructions. Encryption and signature generation

incorporate a data versioning scheme to support dynamic data. Data versions, stored as

sequence numbers, are themselves signed at the data page level to ensure their integrity.

The integrity of the page-level signatures is ensured by using them to calculate a

program-level signature.

1.3 Contributions

The primary contribution of this work is the proposal of architectures for ensuring

the integrity and confidentiality of both software instructions and data. This work

includes several unique and/or innovative features, such as the following:

• We propose architectures for ensuring the integrity and confidentiality of both

software instructions and data.

• We introduce several enhancements to reduce performance, power, and memory

overhead including: the parallel message authentication code (PMAC) cipher, the

instruction verification buffer, protecting multiple instruction blocks with one

signature, and caching sequence numbers.

• We establish a cycle-accurate simulation framework for quantitative evaluation of

these architectures.

4

• We use the cycle-accurate simulator to evaluate performance and power

overhead.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents an

overview of several threats to computer security. Chapter 3 surveys existing proposals

for hardware support meant to preserve software and/or data integrity and/or

confidentiality. Chapter 4 details our proposed architecture for preserving software

integrity and confidentiality, while Chapter 5 details our proposed architecture for

preserving data integrity and confidentiality. Chapter 6 describes the experimental

environment used to evaluate these architectures. Chapter 7 evaluates these architectures

both qualitatively and with quantitative test results for various benchmarks. Chapter 8

concludes the thesis and suggests avenues for further research.

 5

CHAPTER 2

COMPUTER SECURITY

This chapter briefly examines several types of attacks that embedded systems may

experience. First we look at software-based attacks, where the attacker already has

access to a system, either directly or over a network. Next we look at physical attacks,

where the attacker has physical access to the system but not necessarily software access.

Finally we examine side-channel attacks, in which the attacker attempts to gain

knowledge about the system by indirect analysis.

2.1 Software Attacks

Software attacks require the attacker to have some form of access to the target

computer system. This could be direct access, with a lower permission level than the

attacker desires. The access could also be across a network, which would require the

attacker to sniff the system’s open ports, looking for services with known vulnerabilities.

The goal of software attacks is to modify a running program by injecting and executing

code. The foreign instructions must be injected into memory, and then the return address

of the currently executing function must be overwritten to force the processor to execute

the injected instructions. These attacks are only briefly documented here; a more detailed

treatment can be found in [4].

6

2.1.1 Buffer Overflow Attacks

A common class of attacks is buffer overflow. These attacks take advantage of

I/O instructions that simply store incoming data to a buffer, without bothering to check to

see if the amount of incoming data will exceed the buffer size. After the buffer fills,

memory locations beyond the buffer are overwritten. Most systems have stacks that grow

counter to memory address growth. If the buffer is on the stack, then this attack can

overwrite the data at any address on the stack beyond the buffer with malicious

instructions. This overwrite includes the return address, allowing the attacker to divert

the program to the newly injected instructions. If the buffer is on the heap near a function

pointer, then the attacker’s goal is to inject code and overwrite that function pointer.

2.1.2 Format String Attacks

 Format string attacks take advantage of printf-family instructions that take a

format string as an input. These functions will accept any pointer and interpret the

contents of memory at that address as a format string. By skillfully manipulating the

inputs passed to the printf function, the attacker can read from any address in memory.

The %n format character presents an additional vulnerability. This character causes a

printf function to write the number of characters output by the function before it reached

%n to a specified address. A skillful attacker could use this to write an arbitrary integer

to any address.

2.1.3 Integer Error Attacks

Errors arising from integer operations cannot be used as a direct attack. However,

integer errors can facilitate other forms of attacks. For instance, an unsigned integer

7

overflow can result in a smaller number than expected. If this is used to allocate a buffer,

then the buffer will also be smaller than expected. This exposes the system to a buffer

overflow attack, even if subsequent input operations using that buffer check input length.

A more thorough treatment of integer error attacks may be found in [5].

2.1.4 Dangling Pointer Attacks

Dangling pointers become an issue if the free function is called twice for the same

pointer. The vulnerability arises from the way that the GNU C library handles memory

allocation [6]. When a chunk of memory is freed, it is inserted into a doubly linked list of

free chunks. If free is called twice, the pointers to the next and previous entries may

wind up pointing back to the same chunk. An attacker may write malicious code to the

chunk’s data area and put a pointer to that code in place of the pointer to the previous list

entry. If that chunk is allocated again, the memory manager will try to unlink the chunk

from the list, and will write the attacker’s pointer to an address calculated from the

pointer to the next entry. If that address happens to contain a function’s return address,

then a successful attack has been accomplished.

2.1.5 Arc-Injection Attacks

An arc injection or “return-into-libc” involves overwriting a return address such

that control flow is disrupted. Oftentimes the address of a library function is used.

Library system calls can be used to spawn other processes on the system with the same

permissions as the compromised program. If the operating system (OS) itself is

compromised, then the attacker can run a malicious program that will have the ability to

access any and every memory location.

8

2.2 Physical Attacks

In contrast to software attacks, physical attacks involve tampering with the actual

computer hardware. Probes are often inserted on the address and data bus, allowing the

attacker to monitor all transactions and override data coming from memory with his/her

own data. This is a tool often used in industrial and military espionage. This section

describes three such attacks: spoofing, splicing, and replay.

2.2.1 Spoofing Attacks

A spoofing attack occurs when an attacker intercepts a request for a block of

memory, and then manually supplies a block of his/her choice. This block may contain

either data or instructions of a malicious nature. In an unsecured system, the processor

naïvely conducts a bus cycle, and is unaware that the data it received came from an

attacker rather than from main memory. The spoofing process is illustrated in Figure 2.1.

The processor initiates a bus read cycle for a block at memory location Ai. The attacker

intercepts the request and supplies a potentially malicious block Mi instead of the correct

block Ai.

9

BusRd(Ai)

Ai

Mi

Attacker

Processor Main
Memory

Figure 2.1 Spoofing Attack

2.2.2 Splicing Attack

Splicing attacks involve intercepting a request for a block of memory and then

supplying the data from a different block. The supplied block is a valid block from

somewhere in the address space, but it is not the actual block that the processor

requested. This attack may be performed with either data or instruction blocks. Once

again, the unsecured processor is unaware that it has received the incorrect memory

block. The splicing attack methodology is illustrated in Figure 2.2. The processor

initiates a bus read cycle for a block at memory location Ai. The attacker intercepts the

request and supplies a valid block from memory, but from address Aj rather than the

desired address.

10

Ai

Aj

Aj

BusRd(Ai)

Attacker

Processor Main
Memory

Figure 2.2 Splicing Attack

2.2.3 Replay Attacks

In a replay attack, the attacker intercepts a request for a block of memory, and

then supplies an older copy of that block. This is primarily a concern for data blocks

rather than instructions. The supplied block was correct at some point in the past, but

now it may be obsolete. The replay attack process is illustrated in Figure 2.3. The

processor initiates a bus read cycle for the data block at address Ai. The attacker

intercepts the request and returns an older version of that block, which may be different

from the current version in memory.

11

Ai

Ai
*

BusRd(Ai)

Attacker

Processor Main
Memory

Figure 2.3 Replay Attack

2.3 Side-Channel Attacks

Side-channel attacks attempt to gather information about a system or program via

indirect analysis. These attacks involve first collecting information about the system and

then analyzing that information in an attempt to deduce the system’s secrets [7]. The

information gathering stage requires some form of access to the system. The attacker

may have direct physical access to the system and its components, or have some level of

privileges to run programs on the target system. In this section, we briefly describe a few

examples of the myriad possible side-channel attacks, including timing analysis,

differential power analysis, fault exploitation, and architectural exploitation.

2.3.1 Timing Analysis

Timing attacks are, perhaps, the simplest type of side-channel attacks, taking

advantage of the fact that different operations require different amounts of time to

execute. Kochner [8] illustrates how this can be used to break cryptographic algorithms,

12

given a known algorithm and either known plaintext or known ciphertext. He uses

timing analysis to determine the secret exponent in the Diffie-Hellman algorithm, factor

RSA private keys, and determine the private key used by the Digital Signature Standard

algorithm.

2.3.2 Differential Power Analysis

A microprocessor’s power consumption at any given moment can indicate what

operations it is performing. A differential power analysis can be used to determine what

instructions are executed and when. Kocher et al. [9] discuss how to break a known,

data-driven encryption algorithm using such an attack. Instantaneous CPU power

consumption is measured at intervals during a cryptographic operation, forming a trace.

Multiple traces can be compiled and compared, revealing patterns produced by the

execution of certain instructions. Since the encryption algorithm is both known and data-

driven, the data being processed can be revealed solely from the power traces.

2.3.3 Fault Exploitation

A fault exploitation attack takes advantage of hardware faults to discover secrets.

These hardware faults may be transiently occurring within the processor, or induced

externally. Boneh et al. [10] describe a simple fault exploitation attack, whereby the

modulus used by an RSA algorithm may be calculated. A signature must be calculated

from the same data two times. One signature is calculated without a hardware fault. The

second is calculated in the presence of a hardware fault, either transient or induced. The

modulus of the RSA system can then be factored by analyzing the difference between the

13

two signatures. Boneh et al. go on to break even more sophisticated cryptographic

schemes using similar techniques.

2.3.4 Architectural Exploitation

Due to the well-known effect of Moore’s Law, microprocessor designers have

been able to introduce more and more advanced features. Sometimes these advanced

features may be exploited to reveal information about the processor. A prime example of

an architectural exploitation attack is the Simple Branch Prediction Analysis attack

devised by Aciiçmez et al. [11]. This attack expands on the classical timing attack by

taking advantage of the branch prediction unit and multi-threading capabilities of the

Pentium 4 processor. A spy process is executed in parallel with a process performing a

known cryptographic algorithm. The spy process executes branch instructions, flooding

the processor’s branch target buffer (BTB), while measuring the execution time required

for those branch instructions. When the cryptographic process executes a branch

instruction that results in the branch not being taken, no BTB eviction is needed. Thus,

the next time the spy process executes a corresponding branch, it will execute quickly,

thereby revealing that the cryptographic process had a branch not taken. Conversely, a

taken branch in the cryptographic process results in a BTB eviction, which in turn causes

a spy process branch to take longer to execute, revealing that the cryptographic process

had a taken branch. The recorded trace of branches that were taken and not taken can

then be used to deduce the cryptographic secret key. This attack relies on detailed

information about the underlying hardware and software, but such information is often

available and can be obtained using microbenchmarks [12].

 14

CHAPTER 3

RELATED WORK

In this chapter, we briefly survey several architectural techniques that have been

proposed to support the software and data integrity and confidentiality. Security may be

approached from both the software and hardware perspectives. Software techniques may

be classified as static (relying on the detection of security vulnerabilities in code at design

time) and dynamic (adding code to enhance security at runtime). A survey of static and

dynamic software techniques may be found in [4]. Hardware techniques rely primarily

on hardware to ensure security, often with some degree of software support. This chapter

focuses on hardware techniques, as our proposed security architectures are hardware-

oriented. We first examine various proposals from academia, which are well

documented. Then we examine industrial security solutions, which are not as well

documented due to their proprietary nature.

3.1 Academic Proposals

Several techniques have been put forth to address common types of attacks. Xu

et al. [13] and Ozdoganoglu et al. [14] propose using a secure hardware stack to defend

against stack buffer overflow attacks. Tuck et al. [15] suggest using encrypted address

15

pointers. Suh et al. [16] and Crandall and Chong [17] propose that all data coming from

untrusted channels be tagged, thus not allowed to be used as a jump target.

The execute-only memory (XOM) architecture proposed by Lie et al. [18]

provides an architecture meeting the requirements of integrity and confidentiality. Main

memory is assumed to be insecure, so all data entering and leaving the processor while it

is running in secure mode is encrypted. This architecture was vulnerable to replay

attacks in its original form, but that vulnerability was corrected in [19]. The drawbacks

to this architecture are its complexity and performance overhead. XOM requires

modifications to the processor core itself and to all caches, along with additional security

hardware. This architecture also incurs a significant performance overhead, by its

designers’ estimation, of up to 50%.

The high overhead of XOM is reduced by the architectural improvements

proposed by Yang et al. [20]. They only address confidentiality, as their improvements

are designed to work with XOM, which already addresses integrity concerns. They

propose to use a one-time pad (OTP) scheme for encryption and decryption, in which

only the pad is encrypted and then exclusive or-ed with plaintext to produce ciphertext, or

with ciphertext to produce plaintext. They augment data security by including a sequence

number in the pad for data blocks, and require an additional on-chip cache for said

sequence numbers. While their scheme greatly improves XOM’s performance, it inherits

its other weaknesses.

Gassend et al. [21] propose to verify untrusted memory using a tree of hashes.

They only address integrity, suggesting that their architecture can be added to a system

such as XOM, which will handle confidentiality concerns. The use of a hash tree

16

introduces significant bandwidth overhead, which is alleviated by integrating the hash

mechanism with system’s caches. However, their integrity-only overhead is still high,

with a maximum of 20% for the most efficient architecture they propose.

Lu et al. [22] propose a similar architecture, using a message authentication code

(MAC) tree. MACs are computed for each cache block, incorporating its virtual address

and a secret application key. For higher level nodes, MACs are computed using those

from the lower level and a random number generated from thermal noise in the processor.

They propose to enhance performance by caching MAC data on the chip. This MAC tree

architecture does show an improvement over the hash tree proposed by Gassend et al.,

but it still introduces an average performance overhead of between 10% and 20%.

Suh et al. [23] propose an architecture that addresses confidentiality and overall

integrity. Their architecture uses one-time pad (OTP) encryption to provide

confidentiality with relatively low overhead. However, since their cryptographic

functions take a timestamp as an input, they propose that the entire protected memory be

re-encrypted on the unlikely event of a timestamp counter rollover. To reduce overhead

from integrity checking, they propose to construct a log of memory accesses using

incremental multiset hashes. They assume that a program produces meaningful, signed

outputs either at the end of its execution or at discrete intervals during execution. Their

architecture verifies the hashed memory access sequences only when those outputs are

produced. Since verification occurs infrequently, it introduces negligible overhead. The

major drawback is that tampering is not immediately evident, leaving the system

potentially vulnerable between verifications.

17

Another architecture proposed by Suh and his colleagues [24] is the AEGIS

secure processor. They describe physical unclonable functions (PUFs) to generate the

secrets needed by their architecture. Memory is divided into four regions based on

whether it is static or dynamic (read-only or read-write) and whether it is only verified or

is both verified and confidential. They allow programs to change security modes at

runtime, starting with a standard unsecured mode, then going back and forth between a

mode supporting only integrity verification and a mode supporting both integrity and

confidentiality. They also allow the secure modes to be temporarily suspended for library

calls. This flexibility comes at a price; their architecture assumes extensive operating

system and compiler support.

The work of Milenković et al. [4, 25, 26] provides the foundation for the research

documented in this thesis. They introduced many of the elements that will be used in this

current work and described below. Their proposed architecture addresses only the

integrity of instructions, and involves signing instruction blocks during a secure

installation procedure. These signatures are calculated using instruction words, block

starting addresses, and a secret processor key, and are stored together in a table in

memory. At runtime, these signatures are recomputed and checked against signatures

fetched from memory. The cryptographic function used in the architecture is a simple

polynomial function implemented with multiple input shift registers. The architecture is

updated in [27] and [28], adding AES encryption to increase cryptographic strength and

embedding signatures with instruction blocks rather than storing them in a table. This

architecture remains vulnerable to splicing attacks, since signatures in all programs use

the same key.

18

Drinić and Kirovski [29] propose a similar architecture to that of Milenković

et al., but with greater cryptographic strength. They use a cipher block chaining (CBC-)

MAC cipher, and include the signatures in the cache line. They propose to reduce

performance overhead by reordering basic blocks, so that instructions that may not be

safely executed in a speculative manner are not issued until signature verification is

complete. The drawback to this approach is that it requires significant compiler support,

and may consistently hide the verification overhead. Furthermore, their architecture does

not address confidentiality, and is vulnerable to replay and splicing attacks.

3.2 Industrial Solutions

Microprocessor vendors Intel and Advanced Micro Devices (AMD) have each

introduced features to prevent buffer overflow attacks. Intel calls their feature the

Execute Disable Bit [30], which prohibits the processor from executing instructions that

originate from certain areas of memory. AMD’s No Execute (NX) Bit [31] is very

similar to Intel’s Execute Disable Bit. The NX bit is stored in the page table, and is

checked on translation look-aside buffer (TLB) misses. Both Intel and AMD allow

software to disable this functionality.

International Business Machines (IBM) has developed the SecureBlue

architecture [32]. Like the academically-proposed techniques described above, it relies

on cryptography to ensure integrity and confidentiality of both software and data.

SecureBlue is intended to be incorporated into existing microprocessor designs.

ARM markets the TrustZone security architecture [33], designed to augment

ARM microprocessors. It relies on both hardware and software support. The hardware

component uses cryptography to address integrity and confidentiality, allowing the

19

processor to run in either a secure or non-secure mode. The software support includes the

TrustZone Monitor, which augments the operating system and provides an application

programming interface (API) for secure programs.

Maxim (formerly Dallas Semiconductor) manufactures the DS5250 secure

microprocessor [34]. The DS5250 is designed to serve as a co-processor for embedded

systems with traditional, non-secure microprocessors. Maxim proposes that the co-

processor perform security-sensitive functions while the primary processor performs less

sensitive operations. The DS5250 contains a non-volatile on-chip memory that is erased

if physical tampering is detected. This memory is used to store the processor’s secret

key, and can also be used to securely store other sensitive data. The DS5250 can also

access external memory, using cryptography to ensure integrity and confidentiality of

such accesses.

 20

CHAPTER 4

HARDWARE SUPPORTED TECHNIQUES FOR ENSURING
SOFTWARE INTEGRITY AND CONFIDENTIALITY

In this chapter we present the proposed hardware architecture supporting software

integrity and confidentiality. We begin with a general overview of the proposed

architecture followed by a more detailed discussion of the required hardware. Further

design choices are then explored that reduce performance, energy, and memory overhead.

4.1 Framework Overview

The framework for software integrity and confidentiality encompasses three

stages [25]. The first stage is a secure installation procedure, in which binary executables

are signed and optionally encrypted for a particular processor. The second stage is secure

loading, in which the computer system prepares to run the secure program. The final

stage is secure execution, where the program is run, such that its integrity and/or

confidentiality is maintained.

The proposed architecture allows three levels of protection: unprotected, software

integrity only mode (SIOM), and software integrity and confidentiality mode (SICM). In

the SIOM mode only software integrity is guaranteed; all instructions are stored in binary

plaintext that could be read by an adversary. The SICM mode ensures both software

21

integrity and confidentiality by further encrypting the instructions. Figure 4.1 shows an

overview of the three stages of the proposed architecture when running in SICM mode.

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey3(I-Block)

Signature

Encrypt

Generate Program Keys
(Key1,Key2,Key3)

Secure Mode
EKey.CPU(Key1)
EKey.CPU (Key2)
EKey.CPU(Key3)

Encrypt

I-Block

Program
Loading

Decrypt Program Keys
(Key1,Key2,Key3)

Decrypt I-Block

=?

Calculate
Signature

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey3(I-Block)

Signature

Encrypt

Generate Program Keys
(Key1,Key2,Key3)

Secure Mode
EKey.CPU(Key1)
EKey.CPU (Key2)
EKey.CPU(Key3)

Encrypt

I-Block

Program
Loading

Decrypt Program Keys
(Key1,Key2,Key3)

Decrypt I-Block

=?

Calculate
Signature

Figure 4.1 Overview of Architecture for Trusted Instruction Execution

4.1.1 Secure Installation

The process by which an unprotected program is installed on the system to take

advantage of hardware support for software integrity and/or confidentiality is called

secure installation. The secure installation procedure presented here is similar to that

proposed by Kirovski et al. [35]. The CPU must perform secure installations in an

atomic manner, and must not reveal any secret information during or after the

installation.

22

Key generation is the first step in secure installation. SIOM mode requires two

unique program keys, while SICM mode requires three. These keys, designated Key1,

Key2, and Key3, are randomly generated by the CPU. They are then encrypted on-chip

using the processor’s internal secret key, Key.CPU. The encrypted keys are brought off-

chip and stored in the header of the secure executable. Note that these keys should only

leave the CPU in encrypted form; the plain-text keys must stay on the CPU.

The next step in the secure installation process is signature calculation.

Signatures must be calculated for each instruction block (I-block). Protected I-block size

must be determined at this point. A natural protected I-block size is the line size of the

lowest level instruction cache (I-cache) line. Smaller protected I-block sizes will yield a

higher memory overhead, so a multiple of the I-cache line size may be chosen. This

paper focuses on cases where the protected I-block size is either equal to or twice the size

of the I-cache line size.

A protected I-block’s signature is a cryptographic function of three factors: the

block’s starting virtual address (alternatively, its offset from the beginning of the

program’s code section), two of the program keys generated earlier, and the instruction

words within the I-block. The use of unique program keys prevents the execution of any

unauthorized code that may be inserted or injected after the installation process, and also

protects against a splicing attack involving a valid I-block from another secure program.

The use of the instruction words and the block address prevent spoofing and splicing

from within the same program.

Encryption of program executables is required for SICM mode. Cryptographic

schemes must balance two requirements. First, a high level of security is absolutely

23

necessary. Secondly, decryption should be fast, thus causing a low runtime performance

overhead. The proposed architecture uses a variant of the one-time pad (OTP) encryption

algorithm, which satisfies both requirements.

Variations in the order in which signing and encryption are performed give rise to

three known approaches: encrypt&sign (ES), encrypt, then sign (EtS), and sign, then

encrypt (StE) [36]. These encryption schemes are illustrated in Figure 4.2. Part (a)

shows a plaintext 64 byte binary I-block (encoded for the ARM architecture and

represented as hexadecimal) and its 16 byte signature laid out in memory. Part (b) shows

the same I-block subjected to the ES scheme, which encrypts the plaintext and calculates

its signature independently. Part (c) represents the EtS scheme, in which the I-block is

first encrypted and the signature is calculated from the resulting ciphertext. Lastly,

part (d) shows the StE scheme, in which the signature is calculated from the plaintext and

both the I-block and signature are then encrypted. The relative strength of these

implementations is still a subject for debate [36, 37]. Implementation of all three

schemes would have similar hardware complexities, so we choose the StE scheme to

facilitate analysis.

24

3000a80: e3a02000
3000a84: e50b2030
3000a88: e59f122c
3000a8c: e5812000
3000a90: e50b2034
3000a94: e1a06000
3000a98: e59f0220
3000a9c: eb002c5b
3000aa0: e2505000
3000aa4: 0a000033
3000aa8: e1a00005
3000aac: e3a0102f
3000ab0: eb004ad2
3000ab4: e3500000
3000ab8: 0a000004
3000abc: e59f3200
3000ac0: 8228f6a9
3000ac4: c9cefbda
3000ac8: 15b99534
3000acc: 62e8bee6

3000a80: 579a754c
3000a84: c672ef35
3000a88: 2aabbff5
3000a8c: 75fbfcea
3000a90: 9f733369
3000a94: 2eefaeec
3000a98: 2d7473aa
3000a9c: 640ce79b
3000aa0: 4148cddf
3000aa4: 7bedbe21
3000aa8: 5afce7f8
3000aac: e5486c46
3000ab0: 066ce464
3000ab4: 6caac2ef
3000ab8: 0c4b1a49
3000abc: 6a9e6cc8
3000ac0: 8228f6a9
3000ac4: c9cefbda
3000ac8: 15b99534
3000acc: 62e8bee6

3000a80: 579a754c
3000a84: c672ef35
3000a88: 2aabbff5
3000a8c: 75fbfcea
3000a90: 9f733369
3000a94: 2eefaeec
3000a98: 2d7473aa
3000a9c: 640ce79b
3000aa0: 4148cddf
3000aa4: 7bedbe21
3000aa8: 5afce7f8
3000aac: e5486c46
3000ab0: 066ce464
3000ab4: 6caac2ef
3000ab8: 0c4b1a49
3000abc: 6a9e6cc8
3000ac0: f6231db4
3000ac4: 3495cc9c
3000ac8: 17350aac
3000acc: 74d7ac7b

3000a80: 579a754c
3000a84: c672ef35
3000a88: 2aabbff5
3000a8c: 75fbfcea
3000a90: 9f733369
3000a94: 2eefaeec
3000a98: 2d7473aa
3000a9c: 640ce79b
3000aa0: 4148cddf
3000aa4: 7bedbe21
3000aa8: 5afce7f8
3000aac: e5486c46
3000ab0: 066ce464
3000ab4: 6caac2ef
3000ab8: 0c4b1a49
3000abc: 6a9e6cc8
3000ac0: b5f5be91
3000ac4: cb72dd15
3000ac8: 831ef1a2
3000acc: 6b1f35a5

(a) (b) (c) (d)

Figure 4.2 Signed Binary Instruction Block: (a) Signed plaintext, (b) ES, (c), EtS, (d) StE

4.1.2 Secure Loading

The secure loading process prepares a secure executable to run on the secure

architecture. During this process, the encrypted program keys are read from the secure

executable header. These are loaded into special-purpose registers on the CPU and

decrypted using the processor’s secret key (Key.CPU). As mentioned above, these keys

should never leave the CPU as plain-text. They may only be accessed by dedicated on-

chip hardware resources, such as the instruction block signature verification unit

(IBSVU), which shall be discussed later. If a context switch occurs, these keys must be

re-encrypted before leaving the processor to be stored in the process control block. When

the context switches back to the secure program, they must be re-loaded into the

processor and decrypted once again before secure execution may resume.

25

4.1.3 Secure Execution

The secure execution stage is when the secured program actually runs. The

proposed architectural enhancements come into play whenever instructions are fetched

from memory. Since the CPU chip is assumed to be secure, and instruction caches may

be assumed to be read-only, instructions should be trusted once they are in the cache.

Thus the architectural enhancements should operate in conjunction with the highest I-

cache level, and it is convenient for the protected I-block size to be some multiple of the

cache line size. If the system has no instruction cache, then the size of the fetch buffer

may determine protected I-block size. Throughout the rest of the paper, we assume,

without loss of generality, a system with separate Level 1 instruction and data caches, and

no Level 2 caches. The general operation of the proposed mechanisms may be simply

explained for the case where protected I-block size equals the cache line size. The case

where the protected I-block size is double the cache line size will be explored below in

Section 4.3.3.

Because the I-cache is a trusted resource, signature verification need only occur

on a cache miss. Signatures are not cached, and are not available during execution, so

they may reside outside the processors virtual address space. This requires additional

logic to translate the original virtual instruction block address to the actual address of the

instruction block in memory. Page padding must also be taken into account. Once the

correct addresses are available, the protected I-block and its signature are fetched from

memory and decrypted as needed. The signature is recalculated using the newly fetched

I-block. If the calculated signature matches the fetched signature, then the I-block can be

trusted. If the signatures do not match, then the I-block has been subjected to tampering.

26

The processor then traps to the operating system, which should take appropriate action to

terminate the process. The simplest implementation would stall the processor until the I-

block’s signature has been verified. We call this a wait ‘til verified (WtV) scheme.

However, given certain additional hardware resources, a run-before-verification (RbV)

scheme may be implemented. In that case, the processor may be allowed to continue

execution once the I-block has been fetched and is in the cache. This concept will be

elaborated on in Section 4.3.2.

4.1.4 Other Considerations

At this point, we must consider two special cases. The first involves dynamically

linked libraries (DLLs), which contain binary executable code that is potentially shared

among multiple programs. The simplest option would be to forbid the use of DLLs on

the secured system. A slightly more complex option would be to introduce a bit in the

page table and translation lookaside buffer (TLB) specifying whether or not that page

contains protected code. Instruction pages within DLLs could then be marked as

unprotected. Even more complex would be to further enhance the page table (and TLB)

to mark the page as belonging to a DLL. DLL instructions would then be protected using

additional processor-specific keys. Throughout the remainder of the thesis, we assume

that DLLs are handled with one of these three methods.

The second case involves instructions that are generated at runtime, including

just-in-time compilation and interpreted code. One option is to flag pages containing

dynamically generated instructions as unprotected. Another option would be to have the

program generating the instructions insert signatures as I-blocks are created. This

27

requires that the generating program be trusted, and thus the output of the program would

also be trusted.

4.2 Basic Implementation

This section describes a simple, basic implementation of the instruction protection

architecture. We first describe the cryptographic operations required for the simple CBC-

MAC cipher, and then analyze the overhead incurred by this implementation. We finally

discuss the hardware requirements for the architecture.

4.2.1 Implementation Details

The simplest implementation of the instruction protection architecture utilizes the

cipher block chaining message authentication code (CBC-MAC) algorithm [29].

Signature generation is performed on-chip, using a dedicated hardware resource. Initial

signature generation and possibly encryption is performed during the secure installation

stage. During secure execution, the signatures must be recalculated after decryption (if

necessary).

 Signature generation may be illustrated by choosing an exemplary architecture.

We assume a 32-bit architecture with 32 byte protected I-blocks. Each I-block will be

appended with a 128-bit signature. The I-block is divided into two sub-blocks of equal

size, I0:3 and I4:7. Let A be the starting virtual address of the I-block, SP represent a

secure padding function, and KEY1 and KEY2 be the first two of the aforementioned

unique program keys.

28

When using the CBC-MAC cipher, the signature S for the I-block is calculated

according to Equation (4.1). The form of the signature function in this case is conducive

to the sequential chaining provided by the CBC-MAC.

()()[].)()()(13:027:42 ASPAESxorIAESxorIAESS KEYKEYKEY= (4.1)

Equations (4.2) and (4.3) illustrate the encryption functions for the same sample

system used to illustrate signature generation. Sub-blocks are defined as before. The

encrypted versions of the sub-blocks, C0:3 and C4:7, are calculated according to

Equation (4.2). Note that KEY3 is another unique program key. This key is distinct from

those used for signature generation since authentication and encryption should not use the

same keys [38]. The encrypted signature eS is calculated according to Equation (4.3).

() ,1..0,))(()()(334:434:4 == ++ iSBASPAESxorIC iKEYiiii (4.2)

().))((3 eSASPAESxorSeS KEY= (4.3)

During secure installation, the I-block (possibly encrypted) is stored on disk or in

memory, followed by its signature (also possibly encrypted). Protected I-blocks and their

signatures should not cross page boundaries. Therefore, page padding may be required

after the last signature in the page to ensure that the next I-block starts on the next page.

Signatures must be recalculated on instruction cache misses during secure

execution. The signature cS is recalculated in the same manner in which the original

signature S was calculated during secure installation. Recalling Equation (4.1), this

calculation requires the encryption of secure padded virtual sub-block addresses. This

29

encryption should happen in parallel with the memory access, thus overlapping some of

the cryptographic latency with memory access latency.

If the architecture is running in software integrity and confidentiality mode, then

the I-block fetched from memory will contain ciphertext. Assuming the StE scheme,

these instructions must be decrypted before signature recalculation and execution. The

fetched signature must also be decrypted before comparison with the recalculated

signature. Equations (4.4) and (4.5) illustrate the decryption of the fetched I-block and

signature, respectively. A(SBi) represents the virtual address of sub-block i. Note that if

the encrypted addresses are available when the ciphertext arrives from memory, the

decryption process only requires a simple XOR operation.

() ,1..0,))(()()(334:434:4 == ++ iSBASPAESxorCI iKEYiiii (4.4)

().))((3 eSASPAESxoreSS KEY= (4.5)

4.2.2 Performance Overhead

The implementation described thus far uses the CBC-MAC cipher with a WtV

scheme. This CBC-MAC WtV implementation, although simple, is the most inefficient

of the implementations to be discussed in this thesis. To illustrate the performance

overhead incurred by this implementation, we continue with the sample system from

Section 4.1. Throughout the remainder of this chapter, we assume that the processor is

executing in SIOM mode. SICM mode requires two extra cryptographic operations,

which for the example systems discussed below, can be completed before the encrypted

sub-blocks are available from memory.

30

The procedures to be followed on an instruction cache miss are described in

Figure 4.3. The verification latency introduced by this implementation is illustrated in

Figure 4.4. In addition to the earlier assumptions, we assume bus width of 64 bits, and

memory latency of 12 clock cycles for the first 64-bit chunk and 2 clock cycles for

subsequent chunks. The darkly shaded blocks in the figure’s cryptographic pipeline

represent encrypting the sub-block addresses using Key1, which is necessary for

signature recalculation. The lightly shaded blocks represent signature recalculation using

Key2.

Figure 4.3 I-Cache Miss Algorithm, CBC-MAC Implementation

1. Probe I-cache for desired block. If found, return,
otherwise continue.

2. Initiate fetch of instruction block and signature
from memory.

3. Start cryptographic calculation using KEY1 on
instruction block address (see Equation (4.1)).

4. If SICM, start cryptographic calculations using KEY3
on instruction sub-block and signature addresses;
decrypt instruction block and signature when
available (see Equations (4.4) and (4.5)).

5. Calculate signature for instruction block (see
Equation (4.1))

6. Compare calculated signature to signature fetched
from memory. If mismatch, trap to operating system.

31

= ?

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

SP(A)

Figure 4.4 Verification Latency, CBC-MAC WtV Implementation

Measured from the cycle at which the last instruction word is available (at which

point the processor would normally resume execution), this implementation has a

verification latency of 21 clock cycles, including a clock cycle for signature comparison.

4.2.3 Hardware Requirements

Each of the three stages of this architecture requires at least some hardware support

on the CPU. Common to all three stages, however, is the need for a cryptographic cipher

unit that implements the Advanced Encryption Standard (AES). There are multiple

existing hardware designs for such a hardware unit, two of which are convenient for use

with the proposed architecture. The first of these two, the CBC-MAC, has already been

mentioned. The other shall be discussed in Section 4.3.1.

In addition to the cryptographic unit, the secure installation stage requires a

unique processor key and the ability to generate random program keys. Manufacturers

have long had the ability to embed unique read-only data on individual chips. A similar

process may be used to embed the CPU’s secret key. This key must only be used

32

internally; it should never leave the chip. The processor must also be able to generate

program keys at random. A variety of methods exist for random number generation,

including thermal noise within the processor [39] and physical unclonable functions

(PUFs) [24]. The program keys must never leave the processor in plain-text form.

During secure installation, these keys are encrypted using the crypto unit; the encrypted

version of the keys may leave the CPU.

The processor must have a mechanism to enter a secure installation mode. One

option is to augment the instruction set, providing an instruction to initiate secure

installation. This instruction would trigger a state machine to handle secure installation

procedures such as key generation, signature generation, and encryption. Another option

is to trigger secure installation with a separate piece of hardware, such as a smart card

reader. This piece of hardware would then serve as a key, unlocking the secure

installation capabilities.

The secure loading stage requires a state machine to load the encrypted program

keys from a specified location in memory and decrypt them. The decrypted keys must be

stored in special purpose registers in the CPU, and must never leave the chip. As stated

earlier, context switch handling must also be modified to encrypt the keys and write them

out to the process control block.

The secure execution stage requires extensive hardware support in the form of the

instruction block signature verification unit (IBSVU). The IBSVU, illustrated in

Figure 4.5, contains the cryptographic unit, which is also used by the secure installation

and loading stages. The IBSVU also contains the address translation logic and a buffer to

store a signature waiting to be compared. It may also contain other hardware resources as

33

described in Section 4.3. The IBSVU must work very closely with the cache controller,

and could in some ways be considered an extension of the cache controller.

With the exception of external key hardware to trigger secure installation mode,

all of this hardware may be implemented with relatively low complexity. The complexity

added to the processor is qualitatively evaluated in Section 7.1.

L1
I-cache

L1
D-cache

MMU

Datapath

FPUs IF

Control IBSVU

Processor

Data bus

I-cache

… …

… …

… …

… …

… …

… …

… …

… …

sig

Crypto
Pipeline

XOR
=?

cS

S

sig

Program keys

match

Figure 4.5 Instruction Block Signature Verification Unit

4.3 Reducing Overhead

This section discusses schemes for reducing the relatively high overhead of the

implementation described above. We start by introducing the parallelizable MAC

(PMAC) algorithm, which reduces cryptographic latency. We then discuss the

34

implementation of an RbV scheme that almost completely hides verification latency.

Finally we address memory overhead by protecting multiple I-blocks with one signature.

4.3.1 PMAC

Performance overhead can be greatly reduced by using a parallelizable MAC

cipher. The PMAC algorithm was developed by Black and Rogaway [40], who show that

it approximates a random permutation. As its name implies, the PMAC can compute

multiple cryptographic functions in parallel, allowing for an efficient pipeline.

The PMAC cipher allows signatures for each sub-block to be calculated in

parallel. In this case, we can calculate a signature Sig(SBi) for each sub-block i according

to Equation (4.6). The signature S of the whole protected I-block is an exclusive or

(XOR) function of the signatures of the sub-blocks, as expressed in Equation (4.7).

()[] ,1..0,))(()()(134:42 == + iSBASPAESxorIAESSBSig iKEYiiKEYi (4.6)

.)()(10 SBSigxorSBSigS = (4.7)

The procedures to be followed for a PMAC implementation on an I-cache miss

are outlined in Figure 4.6. Figure 4.7 illustrates the verification latency for the PMAC

WtV implementation for the sample machine discussed above. Using PMAC,

verification latency is reduced to 13 cycles, including a clock cycle for signature

comparison. This is an improvement over the CBC-MAC, but still introduces a

significant performance overhead.

35

Figure 4.6 I-Cache Miss Algorithm, PMAC Implementation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

SP(A(SB0))
SP(A(SB1))

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

= ?

Figure 4.7 Verification Latency, PMAC WtV Implementation

1. Probe I-cache for desired block. If found, return,
otherwise continue.

2. Initiate fetch of instruction block and signature
from memory.

3. Start cryptographic calculations using KEY1 on
instruction sub-block addresses (see Equation
(4.6)).

4. If SICM, start cryptographic calculations using KEY3
on instruction sub-block and signature addresses;
decrypt instruction blocks and signature once
available (see Equations (4.4) and (4.5)).

4. Calculate signature for instruction block (see
Equations (4.6) and (4.7))

5. Compare calculated signature to signature fetched
from memory. If mismatch, trap to operating system.

36

4.3.2 Run-Before-Verification

Ideally, the verification latency should be completely hidden, thus introducing no

performance overhead. This would require that the processor resume executing

instructions as soon as the whole instruction cache line is available. Such a scheme is

called Run-before-Verification (RbV). The instruction block, however, may have been

subject to tampering, which will not be evident until signature verification is complete.

The solution to this quandary is to allow untrusted instructions to execute, but not

commit until their signatures have been verified. This prevents tampered instructions

from writing to CPU registers or to memory. For out-of-order processors, RbV support

requires a simple modification to the reorder buffer, adding a verified flag that the

IBSVU will update. Instructions may not be retired until that verified flag is set. The

memory access unit must also be modified to prevent an unverified instruction from

writing data to memory. In-order processors require an additional resource: the

Instruction Verification Buffer.

The structure of the IVB is shown in Figure 4.8. The IVB’s depth (number of

instructions whose information it can hold) is a design parameter, represented by n in the

figure. After instructions are fetched on an I-cache miss, their information is placed in

the IVB. When the processor has completed execution of the instruction, it checks the

IVB to see if that instruction has been verified. If it has not been verified, the instruction

may not be retired. Once the instruction is retired, it is removed from the IVB. In the

unlikely event that newly fetched instructions will not fit in the IVB, the processor must

stall until enough instructions have been removed so that the new instructions can be

inserted.

37

n - 1

…

1

0

Verified
Flag

Ready
FlagValueDestinationIType

n - 1

…

1

0

Verified
Flag

Ready
FlagValueDestinationIType

Figure 4.8 Instruction Verification Buffer

Shi and Lee point out that RbV schemes are vulnerable to side-channel attacks if a

malicious memory access or jump instruction has been injected into the I-block [41].

Such instructions may reveal confidential data by using it as the target address. If this is

a concern, then the architecture may be slightly modified to stall instructions that would

result in any memory access until they have been verified.

4.3.3 Reducing Memory Overhead

The proposed architecture could introduce a hefty memory overhead. In the

examples discussed above, for every 32 bytes of instructions, a 16 byte signature is

required. This overhead could be prohibitive on embedded systems with tight memory

constraints. The solution is to make the protected I-block size a multiple of the I-cache

line size.

In this section we consider a modification to the PMAC RbV implementation

implemented above. The protected I-blocks are 64 bytes, twice the size of the I-cache

38

line. This introduces two additional sub-blocks, I8:11 and I12:15. The equations presented

above need only be extended to take these additional sub-blocks into account. The

signatures of the two additional sub-blocks are calculated independently, and the

signature for the whole I-block is calculated by XORing the signatures of all four sub-

blocks.

Enlarging the protected I-block introduces new design choices. Since a protected

I-block now covers two cache lines, a policy is required to handle the currently unused

cache line on an I-cache miss. Additionally, the amount of data transferred from memory

influences both performance and power overhead. The most naïve implementation would

always fetch the entire I-block on an I-cache miss, and discard the portion of the block

that is not currently needed. A more efficient implementation would take advantage of

the I-cache to reduce memory accesses, and thus power and performance overhead.

The basic procedure to be followed on an I-cache miss with double size protected

blocks is outlined in Figure 4.9. The required actions can be broken down further into

four cases based on which part of the protected I-block is currently needed by the

processor and whether or not the other half of the protected I-block currently resides in

the cache. These cases are presented below. For convenience, we call the first cache line

in a protected I-block Block A, and the second Block B. The memory layout of blocks A

and B with their signature is illustrated in Figure 4.10, along with a summary of the four

cases.

39

Figure 4.9 I-Cache Miss Algorithm, PMAC Implementation, Expanded Protected I-
Block

Sub-block 0
Sub-block 1
Sub-block 2
Sub-block 3

Signature

Block A

Block B

Block A in cache

Block A not in cache

Block B in cache

Block B not in cache

Condition

4

1
Block A

3
Block B

2

Case #Miss On

Block A in cache

Block A not in cache

Block B in cache

Block B not in cache

Condition

4

1
Block A

3
Block B

2

Case #Miss On

Figure 4.10 Memory Layout and Cache Miss Cases

1. Probe I-cache for desired block. If found, return,
otherwise continue.

2. Initiate fetch of instruction block and signature
from memory.

3. Start cryptographic calculations using KEY1 on
instruction sub-block addresses (see Equation
(4.6)).

4. If SICM, start cryptographic calculations using KEY3
on instruction sub-block and signature addresses;
decrypt instruction blocks and signature once
available (see Equations (4.4) and (4.5)).

5. Calculate signatures for each instruction block (see
Equations (4.6) and (4.7)).

6. Calculate total signature by XORing instruction
block signatures.

7. Compare calculated signature to signature fetched
from memory. If mismatch, trap to operating system.

40

4.3.3.1 Miss on Block A

The first case involves an I-cache miss on Block A, with Block B not present in

the I-cache. The second case also involves a miss on Block A, but with Block B

available in the cache. In the first case, both Block A and Block B must be fetched from

memory, followed by the signature. This can be done with one bus cycle. In the second

case, Block A and the signature must be fetched from memory, while Block B could be

read from the cache. However, in most systems this would involve two bus cycles, one

to fetch Block A and another to fetch Block B. Each bus cycle incurs a significant

latency before the first chunk of data is available. For most architectures, this latency is

greater than the time required to transfer Block B during a continuous bus cycle. In our

example architecture, this latency is 12 clock cycles, as opposed to 8 clock cycles for

continuing to fetch Block B along with Block A and the signature. In the first case, both

blocks are put into the I-cache; this is a form of prefetching which may improve

performance for many applications. In the second case, only Block A should be put into

the cache and IVB.

The latency introduced in these two cases is illustrated in Figure 4.11. Since only

Block A is needed immediately, the processor can resume execution once Block A has

been completely fetched from memory. Verification for the whole protected I-block will

be complete 21 cycles later. Note that since both cases result in fetching Block B, the

extra cache hit latency incurred when probing the cache for Block B may be overlapped

with the memory access latency.

41

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

SP(A(SB0))

S

cS

Verification Latency

SP(A(SB2))
SP(A(SB1))

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3I8:9 I10:11 I12:13 I14:15

= ?

SP(A(SB3))

Figure 4.11 Verification Latency, PMAC RbV Implementation, Expanded Protected
I-Block, Cases 1 and 2

4.3.3.2 Miss on Block B

The third case involves an I-cache miss on Block B where Block A is not present

in the cache. As with the first two cases, the entire protected I-block must be fetched

from memory. Block A and Block B are both cached, and Block B’s instructions are put

into the IVB. The verification latency of this case is illustrated in Figure 4.12. The

processor may resume execution once Block B is available, which is 8 clock cycles later

than in the first two cases. Verification is complete after 13 additional clock cycles. This

case would incur an additional cache hit latency due to probing the cache for Block A.

This latency is not shown in the figure.

42

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

SP(A(SB0))

SP(A(SB3))

S

cS

Verification Latency

SP(A(SB2))
SP(A(SB1))

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3I8:9 I10:11 I12:13 I14:15

= ?

Figure 4.12 Verification Latency, PMAC RbV Implementation, Expanded Protected
I-Block, Case 3

The fourth and final case involves an I-cache miss on Block B where Block A is

available in the cache. In this situation, Block B and the signature are fetched from

memory while Block A is retrieved from the cache. The verification latency in this case

is illustrated in Figure 4.13. Execution may resume once Block B is available, and

verification is complete 13 cycles later. This case also incurs an additional cache hit

latency due to probing the cache for Block A. Again, this latency is not shown in the

figure.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

S0:1 S2:3I8:9 I10:11 I12:13 I14:15

= ?

I0:3 from cache
I4:7 from cache

SP(A(SB0))

SP(A(SB2))
SP(A(SB3))

SP(A(SB1))

Figure 4.13 Verification Latency, PMAC RbV Implementation, Expanded Protected
I-Block, Case 4

4.4 Summary

This chapter has presented an architecture for ensuring the integrity and

confidentiality of binary program instructions. The cryptographic functions are chosen

such that the architecture should have a high cryptographic strength. The simplest

implementation of this architecture with the CBC-MAC cipher introduces appreciable

performance overhead. This overhead is reduced by using the PMAC cipher, and further

reduced by allowing instructions to be speculatively executed while they are still being

verified. Memory overhead is reduced by protecting two instruction blocks with one

signature.

 44

CHAPTER 5

HARDWARE SUPPORTED TECHNIQUES FOR ENSURING DATA
INTEGRITY AND CONFIDENTIALITY

In this chapter, we discuss the proposed architecture for protecting the integrity

and confidentiality of data. It is presented as an extension of the instruction architecture,

so familiarity with the material from the previous chapter is assumed. We begin with an

overview of the proposed architectural extensions, followed by detailed descriptions. We

then examine the hardware needed to implement this protection and discuss the overhead

incurred from this architecture.

5.1 Data Framework Overview

Adding protection for data requires modifications to all three stages of the

architectural framework. As with instructions, three levels of data protection are

possible. The first is unprotected, in which neither the integrity nor the confidentiality of

data is ensured. The second is data integrity only mode (DIOM), in which data are stored

as plaintext but their integrity is assured. The last is data integrity and confidentiality

mode (DICM), which additionally encrypts data to ensure their confidentiality. These

modes may be implemented alongside any of the instruction modes (unprotected, SIOM,

or SICM) as desired.

45

The integrity of instructions is protected using signatures crafted to protect against

spoofing and splicing attacks. This scheme works well for protecting static data that

never change, such as instructions and constant data values. Therefore, static data blocks

can be protected using the same procedures that protect instructions. Dynamic data that

can be programmatically changed are further subject to replay attacks. Therefore, a

versioning scheme is required to ensure that all fetched dynamic data is up-to-date.

Versioning is implemented on the level of a protected data block. As before, the

line size of the lowest level data cache (D-cache) is the most convenient protected block

size. Each protected data block will have an associated sequence number. Sequence

numbers are stored in a table elsewhere in memory. The sequence number must be

included in the formula for the data block signature to protect against replay attacks.

Unlike data blocks, sequence numbers need not be encrypted to ensure data

confidentiality [20].

A sophisticated replay attack could conceivably replay sequence numbers as well

as data blocks. Therefore, the sequence numbers themselves must be protected against

replay attacks. To that end, the sequence number table for a given page is treated as a

collection of data blocks, and signatures are calculated for each block. These signatures

are then XORed together to form the page root signature. Page root signatures are stored

in a table somewhere in memory, likely near the existing page table.

A final signature is needed to protect the integrity of the page root signatures.

This program root signature is calculated by XORing all the page root signatures

together. This signature is never to be stored in main memory, and should never leave

the processor as plaintext.

46

5.1.1 Secure Installation

Secure installation must insert signatures for data blocks residing in static data

pages. These signatures are calculated in the same manner as instruction signatures. We

again assume a sign, then encrypt implementation of our architecture with the PMAC

cipher on the 32-bit example architecture with 32 byte protected blocks. As with

instruction blocks, the data block is divided into two sub-blocks of equal size, D0:3 and

D4:7. Let A(SBi) be the starting virtual address of sub-block i, SP represent a secure

padding function, and KEY1 and KEY2 be the first two of the aforementioned unique

program keys. We calculate a signature Sig(SBi) for each sub-block i according to

Equation (5.1). These sub-block signatures are then XORed together to produce the

block signature S, as in Equation (5.2). Each signature is stored immediately following

the data block that it protects.

()[] ,1..0,))(()()(134:42 == + iSBASPAESxorDAESSBSig iKEYiiKEYi (5.1)

.)()(10 SBSigxorSBSigS = (5.2)

If data confidentiality is desired, then the data block and signature must be

encrypted before storage. The ciphertext sub-blocks C0:3 and C4:7, are calculated

according to Equation (5.3). The encrypted signature eS is calculated according to

Equation (5.4). The encrypted sub-blocks and signatures are then stored.

() ,1..0,))(()()(334:434:4 == ++ iSBASPAESxorDC iKEYiiii (5.3)

().))((3 eSASPAESxorSeS KEY= (5.4)

47

5.1.2 Secure Loading

The secure loading procedure must be modified to reset the program root

signature in a special register on-chip. Since this signature is calculated from the page

root signatures of dynamic data pages, it is as yet undefined at load time. On a context

switch, the signature must be re-encrypted and stored in the process control block. It

should never leave the processor in plaintext.

5.1.3 Secure Execution

The data protection architecture requires several modifications to the secure

execution phase. We begin by examining the required behavior on translation lookaside

buffer (TLB) events. We then describe how secure structures for dynamic data pages are

established on or after page allocation, and how these structures are used in relation to

data caches. Finally, we discuss how this architecture deals with sequence numbers.

5.1.3.1 Page Allocation

The secure structures required for the data protection architecture must be

prepared for each dynamic data page that is allocated. First, its sequence number blocks

must be initialized and used to calculate the initial page root signature. The sequence

blocks and the page root signature must be written to memory in their appropriate

reserved areas. The starting address or offset from a known starting address for the

page’s sequence number blocks must be added to the page’s entry in the page table.

Secondly, the signatures for the page’s data blocks must be calculated and stored in

memory.

48

One option for implementing these procedures is to assume that the operating

system is trusted and allow it to perform the necessary operations on memory allocation.

This could potentially introduce high overhead. The other option is to perform the

operations in hardware and provide an instruction allowing the OS to trigger them. We

choose the latter option for both procedures.

Sequence number blocks must be initialized and used to calculate the page root

signature before the allocated page can be used. We assume a page size of four kilobytes

for our example architecture. Each page can contain 85 data blocks with their 16 byte

signatures, with 16 bytes of padding required at the end of the page. We define our

sequence numbers to be two bytes long. Thus, a total of six 32 byte blocks is required,

with less than half of the last block actually used. As mentioned earlier, these blocks are

stored in a reserved location in memory.

The page root signature for the new dynamic page must be calculated from the

page’s sequence number blocks. Each sequence number block is divided into two sub-

blocks, SQ0:3 and SQ4:7, and their signatures calculated according to Equation (5.5). The

signatures of each sub-block are XORed together to form the page root signature. Note

that the latter half of the sixth sequence number block in each page is not used; it may be

omitted from page root signature calculation. Once calculated, the page root signature is

stored in the page root signature table. The index of the page root signature in the table is

stored in the page table.

()[] .1..0,))(()()(134:42 == + iSBASPAESxorSQAESSBSig iKEYiiKEYi (5.5)

49

The program root signature is calculated from the page root signatures. It is

calculated by XORing the page root signatures of dynamic data pages. Thus, when a new

dynamic data page is allocated, the program root signature must be updated by XORing it

with the newly calculated page root signature. All calculations on the program root

signature must be performed on-chip. As stated earlier, it must never leave the CPU in

plaintext form. It must be encrypted using the processor’s secret key, Key.CPU, before

being brought off-chip during a context switch.

The other task required for new dynamic data pages is data block signature

initialization. This could be done on page allocation, but that could introduce significant

overhead. Instead, we propose to create the signatures on the block’s first write-back. A

block initialization bit vector must be established with a bit for each data block in the new

page. This bit vector specifies which data blocks in the page have been used. Each block

is initially marked as unused. The block initialization bit vector is stored in the page

table.

The memory structures described above are summarized in Figure 5.1. Part (a) of

this table shows a protected dynamic data page with signatures and page padding. Part

(b) shows the new fields required in the page table. The first field specifies whether this

page contains static data or dynamic data. The second field is the block initialization

vector. The third field is a pointer to the page’s root signature in the page root signature

table (part (c) in the figure). The final field is a pointer to the first sequence number

block for the page (part (d) in the figure). Note that the TLB must also be expanded to

include these data.

50

Data Block 0

Page Padding

Signature 0

Data Block 1

Signature 1

Data Block 84

Signature 84

...

S/D? Seq Num PointerPage Root Sig Offset

Seq Num Block 1

Seq Num Block 2

Seq Num Block 3

Seq Num Block 4

Seq Num Block 5

Seq Num Block 6Page Root Sig

(a)

(b)

(c) (d)

Block Init. Vector

Figure 5.1 Memory Structures for Protecting Dynamic Data: (a) Dynamic Data Page,
(b) Page Table Modifications, (c) Page Root Signature Table, (d) Sequence Number

Table

5.1.3.2 TLB Miss and Write-back

On a TLB miss, information about a data page is brought into the TLB. If the

page in question is a dynamic data page, the extra data required by this architecture must

be loaded from the page table and stored in the TLB at this point: a bit specifying

whether this page is static or dynamic, the starting address (or offset from a known

starting address) of the page’s sequence number blocks, the index of the page root

signature associated with this page, and the page’s block initialization bit vector. The

integrity of the page root signatures is also verified at this point. The signatures from

every active data page are retrieved from the TLB or from memory. These signatures are

XORed together to recalculate the current program root signature. If the calculated

program root signature does not match that stored on-chip, then the page root signatures

have been subjected to tampering and a trap to the operating system is asserted.

51

A page root signature will be updated when the sequence number for a data block

within that page is incremented. The program root signature will also be updated at that

time. See Section 5.1.3.5 below for discussion on the handling of sequence numbers.

Thus the only action required upon a TLB write-back is to write the page root signature

and block initialization bit vector contained in the TLB entry being evicted to memory.

5.1.3.3 Data Cache Miss

Data block verification is performed on data cache read misses and write misses

on blocks that have already been used. Therefore, on a write miss the first task is to

check the block’s entry in the block initialization bit vector in the TLB. If the block has

not yet been used then no memory access is required. The cache block is simply loaded

with all zeros, preventing malicious data from being injected at this point.

If the miss was a read miss or a write miss on a previously used block, then the

data block must be fetched and verified. The signatures of the sub-blocks D0:3 and D4:7

fetched from memory are calculated in the same manner as static data sub-blocks

according to Equation (5.1). If the block is in a dynamic page, the sequence number SN j

must be fetched and encrypted (Equation (5.6)) before the signature cS of the entire block

may be calculated (Equation (5.7)). Therefore, fetching the sequence number is in the

critical path of data verification. The handling of sequence numbers is discussed below

in Section 5.1.3.5. As with the instruction architecture described above, the simplest

implementation stalls the processor until data block verification is complete. We assume

this simple implementation throughout the rest of the paper as speculatively using the

data would introduce somewhat more complex hardware requirements than are

52

introduced by allowing the processor to execute newly fetched instructions before they

are verified.

,))((1
* j

KEY
j SNSPAESSN = (5.6)

.)()(*
10

jSNxorSBSigxorSBSigcS = (5.7)

If the architecture is running in DICM mode, then the fetched data must be

decrypted. In this case, ciphertext sub-blocks C0:3 and C4:7 are fetched from memory, and

the plaintext data sub-blocks D0:3 and D4:7 are calculated according to Equation (5.8).

The encrypted signature eS fetched from memory must also be decrypted according to

Equation (5.9). As with encrypted instructions, the necessary encryption operations may

be computed in parallel with memory access, so fetched data blocks can be decrypted via

a simple XOR operation as soon as both the necessary cryptographic operation is

complete and the data sub-block is available from memory.

() ,1..0,))(()()(334:434:4 == ++ iSBASPAESxorCD iKEYiiii (5.8)

().))((3 eSASPAESxoreSS KEY= (5.9)

5.1.3.4 Data Cache Write-back

The data cache write-back procedure must be modified to support integrity and

confidentiality. When a dirty data block from a dynamic data page is chosen for eviction,

the signatures of its sub-blocks are calculated according to Equation (5.1). The sequence

number must be also be updated. The current sequence number SN j must be fetched and

incremented according to Equation (5.10). The new sequence number SN (j+1) is then

53

encrypted as described in Equation (5.11), and used to calculate the new signature for the

total data block as in Equation (5.12). Again, the sequence number is on the critical path

for signature generation, and must be handled appropriately. At this point, the page root

signature must also be updated. The signature of the appropriate sequence number sub-

block must be calculated prior to the sequence number increment. This signature is then

XORed with the page root signature contained in the TLB, effectively subtracting it out

of the signature. A similar procedure is followed to update the program root signature

using the old and new page root signatures. The signature of the sequence number sub-

block after the increment is also calculated and XORed with the page root signature,

which is stored back in the TLB.

,1)1(+=+ jj SNSN (5.10)

,))](()1(
1

*)1(++ = j
KEY

j SNSPAESSN (5.11)

.)()()*1(
10

+= jSNxorSBSigxorSBSigS (5.12)

If data confidentiality is not being protected, then the data block and its new

signature S are then put into the write buffer. If confidentiality is required, then the

encrypted data block C and encrypted signature cS are calculated according to

Equations (5.13) and (5.14). The encrypted block and signature are then put in the write

buffer.

() ,1..0,))(()()(334:434:4 == ++ iSBASPAESxorDC iKEYiiii (5.13)

().))((3 eSASPAESxorSeS KEY= (5.14)

54

5.1.3.5 Handling Sequence Numbers

Since sequence numbers are on the critical path for both data cache misses and

write-backs, efficient handling of sequence numbers is imperative to keep performance

overhead low. Thus we cache sequence numbers on-chip, preventing extra memory

accesses on each data cache miss or write-back. This caching will be further elaborated

in Section 5.3.2 below.

Whenever the required sequence number is not found in the sequence number

cache, it must be fetched from memory. At this point, the integrity of the sequence

numbers for the data page in question must be verified. This requires all six sequence

number blocks associated from the page. These blocks may be retrieved from the cache

or from memory as appropriate. The signatures for each sub-block of the sequence

number blocks are calculated according to Equation (5.5). As during page allocation, the

latter sub-block of the sixth sequence number block may be ignored. The signatures of

all the sub-blocks are XORed together to calculate the page root signature. This

recalculated page root signature is checked against that stored in the TLB. If they do not

match, then a trap to the operating system is asserted.

When sequence number blocks are evicted from the sequence number cache, no

cryptographic activity is required. Furthermore, the page root signature is updated during

data cache write-back, and will be written to memory during a TLB write-back.

5.2 Hardware Support for Runtime Verification

As with the instruction architecture, all three stages of the data architecture

require hardware support. The secure installation state machine must be modified to sign

static data blocks. A special-purpose register is required to hold the program root

55

signature. An instruction must be added to trigger a state machine to initialize sequence

number blocks and page root signatures. The data TLB must be enlarged such that each

entry can hold its corresponding page root signature, the address (or offset from a known

starting address) of the first sequence number block for that page, index of the

appropriate page root signature in the page root signature table, the page root signature

itself, and the page’s block initialization bit vector. It must also have a dirty bit

specifying whether or not the page root signature has changed and a bit specifying

whether the page is static or dynamic. The context switch operation must be modified to

write back any dirty page root signatures in the TLB.

The IBSVU must be modified to also serve as a generalized signature verification

unit (SVU). The most complex part of the SVU is still the AES cipher hardware. The

same pipelined PMAC cipher hardware used for instructions can also be used with the

data architecture. Address translation hardware and additional buffers for temporary

storage are also required in the SVU.

Sequence number retrieval is on the critical path for both data cache misses and

write-backs. These are the most common of the events described during secure

execution. Furthermore, sequence number verification requires all the sequence number

blocks corresponding to the page in question. We therefore propose that a dedicated on-

chip sequence number cache be used. When a sequence number is needed, it is first

sought in the sequence number cache. If it is not in that cache, then all sequence number

blocks not in the cache for that page must be fetched. The integrity of the sequence

numbers will then be verified and the newly fetched sequence number blocks stored in

56

the sequence number cache. Using the sequence number cache requires an increase in

cache budget, but should keep performance overhead low.

5.3 Performance Overhead

In this section, we analyze the overhead introduced by the proposed architecture

for data integrity and confidentiality during secure execution. We start with TLB events,

which occur the least frequently of the events required by the architecture, but potentially

introduce the greatest overhead. We then address sequence number cache events, which

are more frequent. We finally look at data cache events, which are the most frequent of

all defined events in this architecture. These discussions assume the example system

discussed above with the PMAC cipher.

5.3.1 TLB Miss and Write-back

The overhead introduced by the architecture on a TLB miss depends on the

number of protected data pages at the time of the miss. It also depends on design choices

made when implementing the architecture. The page root signatures for every protected

data page are required. Signatures currently residing in the TLB should be used, as the

data in memory might be stale. All signatures not currently in the TLB must be fetched

from memory.

This situation leads to a design choice. Consider the case where the TLB contains

a noncontiguous subset of the total page root signature table. In some memory

architectures, fetching only the signatures not currently in the TLB would introduce

greater memory overhead than simply fetching all signatures and ignoring those already

in the TLB. This is due to the longer latencies introduced by starting new memory

57

fetches to skip the currently cached signatures. At the cost of additional TLB controller

complexity, control logic could be developed to determine the optimal operation on a

signature-by-signature basis.

Our example system has a memory latency of 12 clock cycles for the first eight

byte chunk, and 2 clock cycles for subsequent chunks. Fetching a 16-byte signature by

initiating a new fetch operation would cost 14 clock cycles. Fetching the same signature

as part of a longer fetch would only cost four clock cycles. Starting new memory fetches

to skip signatures currently in the TLB is only advantageous when four signatures must

be skipped. Therefore, we choose the simpler implementation of fetching all page root

signatures on a TLB miss and simply substituting those found in the TLB.

After each signature becomes available, a simple XOR operation is required for

recalculating the program root signature. Once the final signature has been processed,

the recalculated root signature is compared with that stored on the chip. This operation

takes less than one clock cycle. Therefore, the total added overhead on a TLB miss is

simply the time required to fetch the page root signatures for all protected data pages.

This overhead, tTLBmiss, may be calculated according to Equation (5.15), in which np

represents the number of protected data pages. The first term in the equation covers

fetching the two chunks comprising the first signature while the second term covers

fetching the remaining signatures.

[].4)1(14 ×−+= nptTLBmiss (5.15)

TLB write-backs add negligible overhead. If the page root signature contained in

the entry to be evicted is not dirty, then no operations are required. If it is dirty, the only

58

required operation is to place the appropriate page root signature and bit initialization

vector into the write buffer, which will independently write it to memory when the bus is

free.

5.3.2 Sequence Number Cache Miss and Write-back

The basic procedure to be followed on a sequence number cache miss is outlined

in Figure 5.2. We are presented with another design choice. On a sequence number

cache miss, the six sequence number blocks associated with the page that caused the miss

must be retrieved. Some of these may be already cached; the rest must be fetched from

memory. As with the TLB miss handling scheme, the implementation must balance

overhead versus complexity. For our sample implementation, we choose a scheme of

moderate complexity. On a sequence number cache miss, the sequence number cache is

probed for the page’s first sequence number block. If it is found in the cache, the cache is

probed for the next block and so forth until a block is not found in the cache. A memory

fetch is initiated for that block, and further probing for the rest of the blocks occurs in

parallel. All blocks between and including the first not found in the cache to the last not

found in the cache are fetched from memory. Any fetched blocks that were found in the

sequence number cache are ignored, and the blocks that were not previously cached are

inserted in the cache.

59

Figure 5.2 Sequence Number Cache Miss Algorithm

The necessary cryptographic operations for regenerating the root page signature

are started at the same time as the first cache probe. In most cases, the final

cryptographic operation can be started when the last chunk of data is read from memory.

The number of clock cycles required to handle a sequence number cache miss, tSNmiss, can

be calculated from Equation (5.16). In this equation, bα is the number of the first block to

be fetched (from one to six), and bω is the number of the last block to be fetched. The

first term represents the overhead induced by the initial probes before the first fetch. The

second and third terms show the number of clock cycles required to fetch the first and

subsequent data blocks, respectively. The final term indicates that the final cryptographic

operation begins after the memory fetch is completed, and includes a clock cycle for

signature comparison.

1. Probe seqnum cache for desired sequence number
block. If found, return, otherwise continue.

2. Probe seqnum cache for page’s first sequence number
block. Continue probing until a block is not found.

3. Initiate fetch of first sequence number block that
was not found, keep probing for other blocks in
parallel and schedule appropriate memory fetches.

4. Start cryptographic calculations using KEY1 for all
sequence number sub-block addresses (see Equation
(5.5)).

5. Calculate signature for sub-blocks (see Equation
(5.5)).

6. XOR sub-block signatures together to calculate page
root signature.

7. Compare calculated page root signature to that in
TLB. If mismatch, trap to operating system.

60

() .,13818 ωααωα bbbbbt SNmiss ≤+−++= (5.16)

Our architecture does have a few exceptions to this equation. The first exception

is when only the first sequence number block must be fetched. In this case, the probing

and memory operations are complete before all necessary cryptographic operations can

be started, leading to an additional delay of two clock cycles. A similar issue exists when

only the second block must be fetched; this case requires one additional clock cycle.

Furthermore, for simplicity’s sake, the equation above assumes that the entire sixth block

will be fetched. Since only the first half of the sixth block is used, the second half does

not contribute to the page root signature and need not be fetched. Thus when the sixth

block is fetched, four fewer clock cycles are required.

Sequence number cache write-backs introduce negligible overhead. As with TLB

write-backs, no cryptographic operations are required. The sequence number block being

evicted only needs to be placed in the write buffer to be written to memory when the bus

is available.

5.3.3 Data Cache Miss

The first task that must be performed on a data cache miss is to request the

appropriate sequence number from the sequence number cache. In our sample system,

this takes only one clock cycle on a sequence number cache hit, and between 33 and

67 clock cycles on a miss. Once the sequence number is available, the necessary

cryptographic operations and memory access can begin in parallel. The procedures to be

followed on a D-cache miss are outlined in Figure 5.3. The verification latency from the

time the sequence number is available to the time when the processor can continue

execution is illustrated in Figure 5.4. As in the verification latency figures from

61

Chapter 4, the darkly shaded boxes in the crypto pipeline section indicate cryptographic

operations required before signature calculation begins. The lighter shaded boxes

indicate actual signature calculation operations. This figure assumes DIOM mode for

brevity; DICM would not introduce any additional latency as it only requires two

additional cryptographic operations prior to starting signature generation. This would

shift the start of signature generation for the first block by one clock cycle, but would not

affect the overall latency. As the figure shows, signature verification is complete after

31 clock cycles, at which time the processor may continue and use the fetched data.

This architecture may be optimized further, beyond the aforementioned possibility

of using fetched data while it is still being verified. For instance, the memory operation

for fetching the data could be initiated as soon as the last sequence number block is

fetched on a sequence number cache miss. The necessary cryptographic operations may

also start as soon as possible, even while the sequence number verification operations are

ongoing. These optimizations are not explored here, but would be a potential area for

future research.

62

Figure 5.3 D-Cache Miss Algorithm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles after sequence number is available)

Memory
pipeline

Crypto
pipeline

SP(A(SB0))
SP(A(SB1))

S

cS

Verification Latency

D0:1 D2:3 D4:5 D6:7 S0:1 S2:3

= ?

SP(SN j)

Figure 5.4 Verification Latency, D-Cache Miss

1. Probe D-cache for desired block. If found, return,
otherwise continue.

2. Request sequence number block from seqnum cache.
Wait until sequence number is available.

3. Initiate fetch of data block and signature from
memory.

4. Start cryptographic calculations using KEY1 on data
sub-block addresses and the sequence number (see
Equations (5.1) and (5.6)).

5. If DICM, start cryptographic calculations using KEY3
on data sub-block addresses; decrypt data block when
available (see Equations (5.8) and (5.9)).

6. Calculate signature for data block (see Equations
(5.1), (5.6), and (5.7)).

7. Compare calculated signature to signature fetched
from memory. If mismatch, trap to operating system.

63

5.3.4 Data Cache Write-back

 The sequence number is also required on a data cache write-back. Again, the first

operation should be to request the sequence number. Once it is available, cryptographic

operations can begin. The procedure to be followed is outlined in Figure 5.5. Once the

operations supporting signature sub-block updates are complete, the page root signature

in the TLB may be updated in parallel with the ongoing data block signature calculation.

The program root signature must also be updated along with the page root signature. A

total of 8 cryptographic operations is required in DIOM mode, yielding a total latency of

19 clock cycles. DICM mode requires an additional three cryptographic operations to

support data block and signature encryption, leading to a total latency of 22 clock cycles.

64

Figure 5.5 D-Cache Write-back Algorithm

5.4 Summary

An architecture for protecting integrity and confidentiality has been presented in

this chapter. It builds on the previous chapter’s instruction protection architecture,

inheriting its cryptographic strength. Static data is protected with the same low overhead

introduced by the instruction protection architecture. Dynamic data are further protected

by implementing a versioning scheme using sequence numbers to prevent replay attacks.

The increased overhead is alleviated by caching the sequence numbers.

1. Request sequence number block from seqnum cache.
Wait until sequence number is available.

2. Increment sequence number while buffering original
sequence number sub-block (see Equation (5.10)).

3. Start cryptographic calculations using KEY1 on
sequence number, sequence number sub-block address,
and data sub-block addresses (see Equations (5.1)
and (5.11)).

4. Calculate signature for original and updated
sequence number sub-blocks (see Equation (5.1)).

5. XOR program root signature with page root signature
in TLB.

6. XOR page root signature in TLB with original
sequence number sub-block signature.

7. XOR page root signature in TLB with updated sequence
number sub-block signature.

8. XOR program root signature with new page root
signature in TLB.

9. Calculate signature for data block (see Equations
(5.1) and (5.12)).

10. If DICM, start cryptographic calculations using
KEY3 on data sub-block and signature addresses
XORed with updated sequence number; encrypt data
block and signature when ready (see Equations
(5.13) and (5.14)).

11. Place data block and signature in write buffer.

 65

CHAPTER 6

EXPERIMENTAL ENVIRONMENT

Cycle-accurate simulation software was used to evaluate the overhead of our

proposed architectural enhancements. This simulator performs functional simulation of

the instruction protection architecture, but only a timing simulation of the data protection

architecture. This chapter describes the methodology used in this evaluation. We start

with an overview of the experimental flow, then discuss the benchmark applications that

are chosen for simulation. We finally discuss the simulator itself, and the simulation

parameters used in our evaluation runs.

6.1 Experimental Flow

The experimental flow for evaluating our proposed architectures is illustrated in

Figure 6.1. We start with uncompiled source code for benchmark applications of interest,

which are described in Section 6.2 below. These are compiled using a cross-compiler to

generate executable binaries in the standard Executable and Linkable Format (ELF) [42].

The cross-compiler encodes the executables for the ARM instruction set. These binaries

may then be run in the simulator under a baseline configuration without security

enhancements. The simulator mimics an embedded microprocessor based on the ARM

architecture. With the appropriate inputs, it analyzes both execution time and power

66

Benchmark
Source Code

ARM
Cross Compiler

Binary
Executable

Secure Installation
Emulator

Secure Binary
Executable

SimulatorBenchmark
Inputs

Architectural
Parameters

Results

Simulator Baseline Architectural
Parameters

Benchmark Inputs

Baseline
Results

Figure 6.1 Experimental Flow

consumption for the baseline configuration. This simulator is described more thoroughly

in Section 6.3.

The cross-compiled executables are processed through a program that emulates

the secure installation process to produce secure executables. This secure installation

emulator is based on the one described in [4], but has been updated to insert instruction

signatures directly after the instruction blocks they protect. The secure installation

procedures for protecting data are not emulated since the simulator only performs a

timing analysis for the data architecture.

The secure benchmark executables can then be run in the simulator. The

simulator is configured to model the aforementioned ARM-based embedded processor

67

enhanced with the instruction and/or data protection architectures proposed in Chapters 3

and 4. It analyzes the execution time of the benchmarks for both architectures. It also

analyzes the power overhead for the instruction protection architecture. Once simulation

runs are completed, the relevant results can be mined from the simulator outputs.

6.2 Benchmarks

Two sets of benchmarks are selected for evaluating the overhead of the proposed

architectures. The first set of benchmarks represents typical tasks that an embedded

system might perform. These benchmarks are described in Table 6.1, which lists the

name, description, and total number of executed instructions for each of the embedded

benchmarks. They are selected from among the benchmark suites MiBench [43],

MediaBench [44], and Basicrypt [45]. The primary criteria for selecting these

benchmarks are the cache miss rates. In order to properly exercise the proposed

architectures, high miss rates for at least one of the cache sizes to be simulated are

desired. Thus, these benchmarks often represent a worst-case scenario with the greatest

possible overhead; other benchmarks with very low cache miss rates would only show

negligible overhead. The embedded benchmarks’ cache miss rates when simulated on a

baseline architecture for various cache sizes of interest are shown in Table 6.2.

68

Table 6.1 Description of Embedded Benchmarks

Benchmark Description Executed
Instructions [106]

blowfish_enc Blowfish encryption 544.0

cjpeg JPEG compression 104.6

djpeg JPEG decompression 23.4

ecdhb Diffie-Hellman key exchange 122.5

ecelgencb El-Gamal encryption 180.2

ispell Spell checker 817.7

mpeg2_enc MPEG2 compression 127.5

rijndael_enc Rijndael encryption 307.9

stringsearch String search 3.7

Table 6.2 Cache Miss Rates for Embedded Benchmarks

Benchmark Instruction Cache Misses
per 1000 Executed Instructions

Data Cache Misses
per 1000 Executed Instructions

 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB

blowfish_enc 33.8 5.1 0 0 63.5 43.4 8.4 0.3

cjpeg 7.6 1.3 0.3 0.1 92.5 69.8 56.9 8.9

djpeg 11.9 5.5 1.3 0.3 88 54.3 34.8 13.4

ecdhb 28.5 8.5 2.9 0.1 5.7 1.2 0.3 0.2

ecelgencb 25.4 4.5 1.4 0.1 3 0.7 0.2 0.1

ispell 72.4 53 18.8 2.9 60.4 33.4 4.3 1.5

mpeg2_enc 2.2 1.1 0.4 0.2 54.6 30.2 6.7 1.7

rijndael_enc 110.2 108.3 69.5 10.3 227.5 190.9 111.5 15.2

stringsearch 57.7 35 6.2 2.4 87.6 43 7.3 4.3

69

The second set of benchmarks represent tasks that are more suited to general

purpose computers rather than embedded systems. These benchmarks are selected from

the Standard Performance Evaluation Corporation (SPEC) 2000 benchmark suite [46].

SPEC benchmarks have much longer runtimes than the selected embedded benchmarks;

therefore, these benchmarks are selected so they could be simulated in a reasonable

timeframe (weeks rather than months) without placing undue strain on available

computing resources. Furthermore, only specific segments of the benchmarks are chosen

for detailed simulation. The SimPoint tool [47] is used to calculate the segments, which

are weighted such that metrics of interest may be measured for each segment, multiplied

by the appropriate weights, and the products summed to produce metrics that represent

the overall behavior of the benchmarks. Individual segments are executed by running the

benchmark program in a low-fidelity simulator for an offset of a certain number of

instructions, and then executing one hundred million instructions using the full simulator.

The selected SPEC benchmarks are described in Table 6.3, along with their

segment offsets. The weights for the various segments are presented in Table 6.4. The

overall cache miss rates (after weighting) for the benchmarks simulated with a baseline

system configuration are shown in Table 6.5. These benchmarks are run on simulated

systems with larger caches than the embedded benchmarks. Note that most of these

benchmarks have very few instruction cache misses, which should lead to a low overhead

for instruction protection. They do, however, exhibit appreciable data cache miss rates,

which makes them useful for observing the overhead introduced by data protection.

70

Table 6.3 Description of SPEC Benchmarks

Benchmark Description Segment Offset
[108 Instructions]

 0 1 2 3 4 5 6 7 8

bzip2 Data
compression 611 85 421 149 473 12 42 194 342

gcc C
Compiler 207 23 115 130 90 166 35 N/A N/A

gzip Data
compression 360 226 875 761 344 779 543 693 143

parser Language
processor 288 162 148 337 278 421 52 382 N/A

Table 6.4 SPEC Benchmark Segment Weights

Benchmark Description Segment Weight

 0 1 2 3 4 5 6 7 8

bzip2 Data
compression .027 .079 .028 .084 .158 .296 .105 .093 .130

gcc C
Compiler .472 .028 .108 .090 .127 .146 .028 N/A N/A

gzip Data
compression .007 .021 .111 .072 .050 .375 .033 .047 .085

parser Language
processor .077 .106 .115 .168 .162 .009 .031 .049 N/A

Table 6.5 Cache Miss Rates for SPEC Benchmarks

Benchmark
Instruction Cache Misses
per 1000 Executed
Instructions

Data Cache Misses
per 1000 Executed
Instructions

 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB

bzip2 0 0 0 9.3 7.2 5.8

gcc 27.5 15.4 4.4 46.6 38.7 32.9

gzip 0 0 0 21.8 19.5 16.8

parser 0.8 0.3 0 7.2 4.9 3.7

71

6.3 Simulation Software

The simulator used to evaluate the performance of the proposed architectures is a

derivative of the Sim-Panalyzer ARM simulator [48]. Sim-Panalyzer is itself an

extension of sim-outorder, the most detailed simulator from the SimpleScalar suite [49].

As before, we use the simulator modifications documented in [4] as the starting point for

our updates.

The simulator is updated to perform a full functional simulation of the instruction

protection architecture. This allows it to provide both a cycle-accurate timing analysis as

well as an estimate of the energy overhead. The largest update is the inclusion of the

instruction verification buffer, allowing instructions to execute in parallel with

verification. The instruction cache miss handler is modified to handle instruction

signatures located directly after the protected instruction blocks. It is also modified to

allow an individual signature to protect either one instruction block or two instruction

blocks. The energy overhead caused by the pipelined cryptographic hardware is

modeled as that caused by 57,000 gates of combinational logic [50].

The simulator is also updated to provide a partial functional simulation of the data

protection architecture. This only yields a cycle-accurate timing analysis; energy

overhead is not estimated. The most complex of the updates to support data protection is

the addition of a sequence number cache. This cache and its controller are fully

functional, although the sequence number data it handles are purely fictitious. The data

cache miss handler is modified to report the overhead that the data protection architecture

would incur. It queries the sequence number cache as appropriate, but only reports the

potential timing of all other operations. The data TLB handler is updated in a similar

72

manner. The simulator does not account for the overhead introduced by initializing

sequence number blocks on page allocation.

Performance overhead is analyzed by using the simulator to run the benchmark

programs described in Section 6.3. The SimpleScalar metric of interest for performance

overhead analysis is sim_cycle, the number of simulated clock cycles required for the

benchmark to run to completion. After simulation is complete, this value is mined from

the results and divided by the value of sim_cycle for appropriate baseline simulation

run, producing a normalized execution time value.

Energy overhead is also analyzed by running the benchmark programs in the

simulator. Only the energy overhead of the SICM architecture is analyzed, as a complete

functional DICM simulation is not implemented. The SimPAnalyzer metric of interest

for performance overhead analysis is uarch.pdissipation, the total power

dissipated by the simulated microarchitecture. As with the performance overhead metric,

this value is mined from simulation results and divided by the baseline microarchitecture

power dissipation, producing a normalized power dissipation value.

6.4 Simulation Parameters

The simulator is configured to simulate an ARM architecture running at

200 MHz. The I/O supply voltage is 3.3 V, with an internal logic power supply of 1 V.

All other power-related parameters correspond with a 0.18 μm process, and are obtained

from a template file provided with Sim-Panalyzer. All simulated systems are assumed to

have separate Level 1 instruction and data caches of the same size. This size varies

between 1 KB, 2 KB, 4 KB and 8 KB for the embedded benchmarks, and 8 KB, 16 KB,

and 32 KB for SPEC benchmarks. All cache line sizes are taken to be 32 bytes, as every

73

benchmark exhibited better performance on a baseline system with 32 byte cache lines

than with 64 byte lines. All caches use the least recently used (LRU) replacement policy,

For RbV implementations, instruction verification buffer depth is 16 unless otherwise

noted. Other architectural parameters used in the simulations are described in Table 6.6.

Table 6.6 Simulation Parameters

Simulator Parameter Value
Branch predictor type Bimodal
Branch predictor table size 128 entries, direct-mapped
Return address stack size 8 entries
Instruction decode bandwidth 1 instruction/cycle
Instruction issue bandwidth 1 instruction/cycle
Instruction commit bandwidth 1 instruction/cycle
Pipeline with in-order issue True
I-cache/D-cache 4-way, first level only
I-TLB/D-TLB 32 entries, fully associative
Execution units 1 floating point, 1 integer
Memory fetch latency (first/other chunks) 12/2 cycles and 24/2 cycles
Branch misprediction latency 2 cycles
TLB latency 30 cycles
AES latency 12 clock cycles
Address translation (due to signatures) 1 clock cycle
Signature comparison 1 clock cycle

 74

CHAPTER 7

RESULTS

This chapter presents the results of both qualitative and quantitative analyses of

the proposed architectures for instruction and data protection. We start with qualitative

analyses of the complexity overhead required to implement our architectures on a

processor chip, followed by the extra space in memory required to run a secure program

on our architecture. We then present quantitative results from simulating the execution of

secure benchmark programs, focusing on performance and energy overhead.

7.1 Complexity Overhead

The hardware requirements for the instruction and data protection architectures

are discussed in Sections 4.2, 4.3, and 5.2. These architectures require state machines for

performing various tasks, logic for address translation, buffers and registers, hardware for

key generation, and a pipelined cryptographic unit. All but the last two of these

requirements introduce relatively little additional on-chip area. A physical unclonable

function (PUF) unit for key generation requires nearly 3,000 gates [24]. The pipelined

cryptographic unit, which is shared among both architectures, introduces the greatest

amount of overhead. Assuming that this cryptographic unit follows the commercially

available Cadence high performance 128-bit AES core [50], the on-chip area it requires

75

should be approximately equal to that required for 57,000 logic gates. An additional

source of complexity is the sequence number cache; its complexity is determined by its

size and organization, which are design parameters.

7.2 Memory Overhead

The memory overhead incurred by the instruction protection architecture is a

simple function of the protected block size and the number of instruction blocks in the

program. Each signature is 16 bytes long. If 32 byte protected blocks are chosen, then

the size of the executable segment of the program increases by 50%. This overhead is

reduced to 25% for 64 byte protected blocks, and to 12.5% for 128 byte protected blocks.

Data protection incurs overhead at different rates for pages containing constant

data and pages containing dynamic data. Constant data is protected like instructions, so

the memory overhead from protecting constant data blocks follows the figures given for

instruction blocks above. The memory overhead required for protecting dynamic data is

slightly larger. The data signatures lead to the same overhead figures as for static data

and instructions. However, each dynamic data page requires sequence number blocks,

additional space in the page table, and an entry in the page root signature table. The size

of the sequence number blocks is a design parameter; the sample architecture presented

in this paper requires 6 sequence number blocks of 32 bytes each, for a total sequence

number overhead of 192 bytes per protected dynamic page.

7.3 Instruction Protection Architecture (SICM) Overhead

This section presents qualitative analysis results for the instruction protection

architecture running in full SICM mode. We evaluate its performance and power

76

overhead, exploring the design space by varying cache sizes, cryptographic ciphers, and

implementation details. We also explore the optimum value for instruction verification

buffer depth.

7.3.1 Performance Overhead

The normalized execution times of the embedded benchmarks running in SICM

mode are plotted in Figure 7.1 and Figure 7.2, and expressed numerically in Table 7.1

and Table 7.2. Results are presented for Level 1 cache sizes of 1 KB, 2 KB, 4 KB, and

8 KB, and for the following implementations: CBC-MAC WtV, PMAC WtV, PMAC

RbV, and PMAC RbV with double-sized protected blocks and caching all fetched

I-blocks. These plots clearly show that, among the three normal-sized protected block

implementations, the PMAC RbV implementation incurs the lowest performance

overhead (negligible in most cases). They also indicate that double-sized protected

blocks can be used without incurring further overhead. In fact, some benchmarks exhibit

a speedup relative to baseline performance due to the prefetching behavior of caching all

fetched I-blocks.

77

1 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

2 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.1 Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB
L1 Cache Sizes

78

4 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

8 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.2 Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB
L1 Cache Sizes

79

Table 7.1 Performance Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1
Cache Sizes

Performance Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double

 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB
blowfish_enc 72.6 13.7 50.2 9.46 3.14 0.60 -12.3 -1.70
cjpeg 25.3 5.23 17.5 3.60 1.14 0.23 -1.52 0.35
djpeg 31.9 18.0 21.9 12.3 1.23 0.64 -2.51 -1.41
ecdhb 77.5 35.7 53.6 24.7 3.49 1.46 -12.0 -5.94
ecelgencb 68.8 18.8 47.6 13.0 3.14 0.77 -4.12 -3.10
ispell 99.8 88.5 68.8 60.9 4.31 4.03 -7.68 0.48
mpeg2enc 8.70 5.05 6.00 3.50 0.39 0.24 -0.58 -0.39
rijndael_enc 117.4 117.7 80.6 80.9 3.62 3.77 -14.2 -16.1
stringsearch 96.6 79.3 66.7 54.9 4.33 3.80 1.79 -2.03
Total 91.2 72.7 62.8 50.1 3.70 2.97 -9.37 -3.72

Table 7.2 Performance Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1
Cache Sizes

Performance Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double

 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB
blowfish_enc 0.17 0.00 0.14 0.00 0.09 0.00 0.06 -0.01
cjpeg 1.13 0.29 0.77 0.19 0.00 0.00 0.06 -0.00
djpeg 4.89 0.88 3.31 0.53 0.07 0.00 -0.21 -0.09
ecdhb 14.2 0.78 9.85 0.54 0.64 0.03 -1.96 -0.06
ecelgencb 6.58 0.34 4.55 0.24 0.30 0.01 -0.91 -0.04
ispell 49.7 10.4 34.3 7.22 2.60 0.50 4.29 1.33
mpeg2enc 2.16 1.09 1.50 0.76 0.13 0.09 -0.05 -0.02
rijndael_enc 93.8 24.1 64.5 16.2 3.09 0.00 -8.34 7.53
stringsearch 23.7 10.4 16.4 7.16 1.36 0.30 5.75 1.75
Total 43.2 7.65 29.8 5.23 1.86 0.16 -0.18 1.52

80

The overall normalized execution times for the SPEC benchmarks running in

SICM mode are plotted in Figure 7.3 and Figure 7.4, and presented numerically in

Table 7.3. As described in Section 6.2, these results are produced by simulating various

weighted segments of the benchmark program and calculating the overall overhead.

Results are presented for 8 KB, 16 KB, and 32 KB cache sizes, and for the same SICM

implementations as in Figure 7.1 and Figure 7.2. Referring back to Table 6.5, only the

gcc benchmark has an appreciable number of I-cache misses, and thus it is the only SPEC

benchmark to exhibit appreciable performance overhead on the SICM architecture. As

with the embedded benchmarks, the PMAC RbV implementation with single-sized

protected blocks presents negligible overhead, and doubling the protected block size

introduces little or no additional overhead.

8 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.3 Performance Overhead for SPEC Benchmarks, SICM, 8 KB Cache Sizes

81

16 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

32 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.4 Performance Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB
Cache Sizes

82

Table 7.3 Performance Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32
KB L1 Cache Sizes

Performance Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double
 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB
bzip2 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gcc 64.2 44.1 16.0 44.4 30.5 11.1 2.86 2.10 0.75 -2.28 0.58 0.60
gzip 0.06 0.01 0.01 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
parser 3.50 1.59 0.26 2.42 1.10 0.18 0.16 0.07 0.01 -0.44 -0.19 -0.02

Total 26.3 16.0 4.99 18.2 11.0 3.45 1.17 0.76 0.23 -1.00 0.16 0.18

The SICM architectures with single-sized protected I-blocks, as described in

Section 4.3.3, introduce a fixed amount of verification latency on each I-cache miss.

Assuming that this latency dominates other contributions to performance overhead, a

linear relationship between the performance overhead and the I-cache miss rate is

expected. Figure 7.5 and Figure 7.6 plot the normalized execution time versus baseline I-

cache miss rate for the CBC WtV, PMAC WtV, and PMIC RbV single-sized protected

block SICM implementations. These plots include data points from both embedded and

SPEC benchmarks for all cache sizes. As expected, these plots exhibit some linearity,

but other architectural issues (such as IVB occupancy) introduce significant deviation.

83

CBC WtV

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 20 40 60 80 100 120
I-Cache Misses per 1,000 Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

PMAC WtV

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 20 40 60 80 100 120
I-Cache Misses per 1,000 Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 7.5 Normalized Execution Time vs. I-Cache Miss Rate, SICM, CBC WtV and
PMAC WtV Implementations

84

PMAC RbV

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 20 40 60 80 100 120
I-Cache Misses per 1,000 Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 7.6 Normalized Execution Time vs. I-Cache Miss Rate, SICM, PMAC RbV
Implementation

7.3.2 Energy Overhead

The normalized power dissipation values of the embedded benchmarks running in

SICM mode are plotted in Figure 7.7 and Figure 7.8, and shown numerically in Table 7.4

and Table 7.5. Results are presented for cache sizes of 1 KB, 2 KB, 4 KB, and 8 KB, and

for the following implementations: CBC-MAC WtV, PMAC WtV, PMAC RbV, and

PMAC RbV with double-sized protected blocks and caching all fetched I-blocks. The

plots follow the normalized execution time plots very closely, showing a strong

correlation between execution time and power dissipation. Once again, PMAC RbV is

the most efficient of the single-sized protected block implementations, and the double-

sized protected block implementation introduces little or no additional overhead. As

85

1 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

2 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.7 Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1
Cache Sizes

86

4 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

8 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.8 Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1
Cache Sizes

87

Table 7.4 Energy Overhead for Embedded Benchmarks, SICM, 1 KB and 2 KB L1
Cache Sizes

Energy Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double

 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB 1 KB 2 KB
blowfish_enc 72.3 13.7 49.9 9.44 3.17 0.60 -12.2 -1.69
cjpeg 25.3 5.22 17.5 3.59 1.17 0.24 -1.45 0.36
djpeg 31.9 18.0 21.8 12.3 1.26 0.65 -2.43 -1.39
ecdhb 77.4 35.6 53.5 24.7 3.60 1.49 -11.8 -5.90
ecelgencb 68.7 18.8 47.5 13.0 3.24 0.78 -3.91 -3.07
ispell 99.6 88.4 68.6 60.8 4.43 4.09 -7.45 0.61
mpeg2enc 8.68 5.05 5.98 3.50 0.40 0.24 -0.56 -0.38
rijndael_enc 116.8 117.5 80.1 80.7 3.72 3.83 -14.0 -16.0
stringsearch 96.3 79.2 66.5 54.9 4.44 3.85 2.02 -1.93
Total 90.9 72.6 62.6 50.0 3.79 3.01 -9.17 -3.63

Table 7.5 Energy Overhead for Embedded Benchmarks, SICM, 4 KB and 8 KB L1
Cache Sizes

Energy Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double

 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB 4 KB 8 KB
blowfish_enc 0.17 0.00 0.14 0.00 0.09 0.00 0.06 -0.01
cjpeg 1.13 0.29 0.77 0.19 0.00 0.00 0.06 0.00
djpeg 4.88 0.87 3.30 0.53 0.07 0.00 -0.21 -0.08
ecdhb 14.2 0.78 9.84 0.54 0.65 0.03 -1.94 -0.06
ecelgencb 6.57 0.34 4.55 0.24 0.30 0.01 -0.90 -0.04
ispell 49.6 10.4 34.3 7.21 2.64 0.51 4.37 1.35
mpeg2enc 2.16 1.09 1.50 0.76 0.13 0.09 -0.05 -0.02
rijndael_enc 93.6 24.1 64.3 16.2 3.13 0.00 -8.23 7.61
stringsearch 23.6 10.4 16.3 7.14 1.38 0.31 5.80 1.77
Total 43.1 7.65 29.7 5.23 1.88 0.16 -0.12 1.54

88

before, some benchmarks benefit from the prefetching behavior in the double-sized

protected block implementation, dissipating less power due to shorter runtimes.

The normalized power dissipation values of the SPEC benchmarks running in

SICM mode are plotted in Figure 7.9 and Figure 7.10, and presented numerically in

Table 7.6. Level 1 cache sizes vary between 8 KB, 16 KB, and 32 KB. As with the

embedded benchmarks, the energy overhead closely follows the performance overhead.

The only benchmark showing any appreciable overhead is gcc, and this is reduced to less

than 25% with an I-cache size of 32 KB.

8 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.9 Energy Overhead for SPEC Benchmarks, SICM, 8 KB L1 Cache Size

89

16 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

32 KB L1 Caches

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n

CBC WtV
PMAC WtV
PMAC RbV
PMAC RbV Double

Figure 7.10 Energy Overhead for SPEC Benchmarks, SICM, 16 KB and 32 KB Cache
Sizes

90

Table 7.6 Energy Overhead for SPEC Benchmarks, SICM, 8 KB, 16 KB, and 32 KB L1
Cache Sizes

Energy Overhead [%]

Benchmark CBC
WtV

PMAC
WtV

PMAC
RBV

PMAC
RBV

Double
 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB
bzip2 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gcc 64.2 44.1 16.0 44.3 30.5 11.0 2.90 2.13 0.76 -2.21 0.63 0.61
gzip 0.06 0.01 0.01 0.04 0.01 0.01 0.00 0.00 0.00 -0.01 0.00 0.00
parser 3.50 1.59 0.26 2.42 1.10 0.18 0.16 0.07 0.01 -0.44 -0.19 -0.02

Total 26.3 15.9 4.99 18.2 11.0 3.44 1.19 0.77 0.24 -0.97 0.18 0.18

7.3.3 IVB Depth

We choose two benchmarks for exploring the optimum IVB depth: cjpeg, which

exhibits a low I-cache miss rate, and ispell, which exhibits a relatively high I-cache miss

rate. These benchmarks are simulated in the SICM mode using the PMAC cipher with

single-sized protected blocks. IVB depth is varied from two to 32 entries in powers of

two. The normalized performance overheads from these experiments are plotted in

Figure 7.11. For both benchmarks, the greatest performance increase is observed when

the IVB depth is increased from 8 to 16. Further increasing the IVB depth yields

minimal improvement. Thus, a 16-entry IVB appears to be optimal. Additionally,

systems with large caches and thus low I-cache miss rates may use even smaller IVBs

without experiencing great performance degradation.

91

cjpeg

0.99

1

1.01

1.02

1.03

1.04

1.05

2 4 8 16 32

IVB Depth

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

1 KB Caches
2 KB Caches
4 KB Caches
8 KB Caches

ispell

0.98
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14
1.16
1.18
1.2

2 4 8 16 32

IVB Depth

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

1 KB Caches
2 KB Caches
4 KB Caches
8 KB Caches

Figure 7.11 IVB Depth Evaluation

92

7.4 Data Protection Architecture (DICM) Overhead

Performance overhead is also evaluated for the data protection architecture. The

simulator used to evaluate the overhead of the DICM mode is an extended version of the

simulator for SICM mode. We use the most efficient single-sized protected block SICM

implementation, PMAC RbV, which has been shown above to introduce negligible

performance overhead. We again use the normalized execution time metric to evaluate

the DICM architecture.

The normalized execution times for embedded benchmarks running in both the

SICM and DICM modes are shown in Figure 7.12 through Figure 7.15, and presented

numerically in Table 7.7. Results are shown for 1 KB, 2 KB, 4 KB, and 8 KB cache

sizes. Within each cache size, the sequence number cache size is varied between 25% of

the data cache size (thus 256 B, 512 B, 1 KB, and 2 KB) and 50% of the data cache (thus

512 B, 1 KB, 2 KB, and 4 KB). All sequence number caches are 4-way set associative.

The figures break down the overhead between the contributions from the SICM and

DICM modes, while the table includes only the overhead from the DICM mode. These

results show that the DICM architecture incurs significant overhead for small D-cache

sizes. This overhead greatly decreases as D-cache size increases; all benchmarks exhibit

less than 25% performance overhead with an 8 KB D-cache. They also indicate that

larger sequence number caches significantly reduce the performance overhead of most

benchmarks on systems with small D-caches, but offer little improvement for systems

with large D-caches. Thus the choice of sequence number cache size in an actual

hardware implementation should be driven by the expected workload of the system and

93

1 KB L1 Caches, 256 B Seqnum Cache

1.03 1.01 1.01 1.03 1.03 1.04 1.00 1.04 1.04 1.04

0.70 1.63 2.04 0.15 0.07 0.74 1.16 1.53 1.22 0.85

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

1 KB L1 Caches, 512 B Seqnum Cache

1.03 1.01 1.01 1.03 1.03 1.04 1.00 1.04 1.04 1.04

0.13 1.00 0.85 0.08 0.03 0.52 0.53 0.64 0.60 0.44

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.12 Performance Overhead for Embedded Benchmarks, SICM/DICM, 1 KB L1
Cache Size

94

2 KB L1 Caches, 512 B Seqnum Cache

1.01 1.00 1.01 1.01 1.01 1.04 1.00 1.04 1.04 1.03

0.33 0.81 0.76 0.03 0.01 0.44 0.35 0.60 0.43 0.43

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

2 KB L1 Caches, 1 KB Seqnum Cache

1.01 1.00 1.01 1.01 1.01 1.04 1.00 1.04 1.04 1.03

0.20 0.24 0.46 0.01 0.01 0.35 0.19 0.35 0.26 0.29

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.13 Performance Overhead for Embedded Benchmarks, SICM/DICM, 2 KB L1
Cache Size

95

4 KB L1 Caches, 1 KB Seqnum Cache

1.00 1.00 1.00 1.01 1.00 1.03 1.00 1.03 1.01 1.02

0.10 0.18 0.40 0.00 0.00 0.05 0.08 0.42 0.11 0.15

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

4 KB L1 Caches, 2 KB Seqnum Cache

1.00 1.00 1.00 1.01 1.00 1.03 1.00 1.03 1.01 1.02

0.09 0.15 0.29 0.00 0.00 0.04 0.06 0.30 0.05 0.11

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.14 Performance Overhead for Embedded Benchmarks, SICM/DICM, 4 KB L1
Cache Size

96

8 KB L1 Caches, 2 KB Seqnum Cache

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.05 0.18 0.00 0.00 0.03 0.03 0.15 0.03 0.03

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

8 KB L1 Caches, 4 KB Seqnum Cache

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.05 0.13 0.00 0.00 0.02 0.02 0.14 0.03 0.03

0.5

1

1.5

2

2.5

3

blo
wfis

h_
en

c
cjp

eg
djp

eg
ec

dh
b

ec
elg

en
cb

isp
ell

mpe
g2e

nc

rijn
da

el_
en

c

str
ing

se
arc

h
Tota

l

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.15 Performance Overhead for Embedded Benchmarks, SICM/DICM, 8 KB L1
Cache Size

97

Table 7.7 Performance Overhead for Embedded Benchmarks, DICM

Performance Overhead [%]
Benchmark Sequence Number Cache Size

25% of L1 Data Cache Size
Sequence Number Cache Size
50% of L1 Data Cache Size

 1 KB 2 KB 4 KB 8 KB 1 KB 2 KB 4 KB 8 KB
blowfish_enc 69.5 33.5 10.4 0.02 13.3 20.0 9.14 0.02
cjpeg 162.9 81.0 18.0 5.09 100.4 24.4 15.3 4.52
djpeg 204.3 75.7 40.2 18.0 85.3 45.8 28.7 13.0
ecdhb 15.0 2.60 0.41 0.26 7.92 1.15 0.26 0.24
ecelgencb 7.11 1.30 0.19 0.05 3.47 0.66 0.15 0.03
ispell 73.6 43.9 5.28 2.58 52.4 34.9 3.61 1.60
mpeg2enc 115.9 34.9 7.88 2.55 53.3 19.0 6.27 2.02
rijndael_enc 153.2 59.7 41.8 15.3 63.9 34.9 29.9 13.8
stringsearch 121.9 43.2 10.7 3.22 60.2 26.4 4.85 2.92

Total 85.2 43.3 14.9 3.49 44.0 29.4 11.0 2.80

the overall cache budget. Systems with larger D-caches and smaller sequence number

caches tend to outperform systems with smaller D-caches and larger sequence number

caches.

The overall normalized execution times of the SPEC benchmarks running in both

the SICM and DICM mode are plotted in Figure 7.16 though Figure 7.18, and presented

numerically in Table 7.8. Results are presented for D-cache sizes of 8 KB, 16 KB, and

32 KB. Sequence number cache sizes vary between 25% of the D-cache size (thus 2 KB,

4 KB, and 8 KB) and 50% of the D-cache size (4 KB, 8 KB, and 16 KB). As with the

embedded benchmarks, the figures show the separate contributions of the SICM and

DICM modes to total overhead, while the table only presents the DICM overhead. Once

again overhead decreases as cache sizes increase. The benchmarks gcc and gzip incur the

highest overhead, with larger sequence number caches boosting gzip’s performance, even

98

8 KB L1 Caches, 2 KB Seqnum Cache

1.00 1.03 1.00 1.00 1.01

0.20 0.34 1.12 0.03 0.43

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

8 KB L1 Caches, 4 KB Seqnum Cache

1.00 1.03 1.00 1.00 1.01

0.16 0.29 0.93 0.02 0.36

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.16 Performance Overhead for SPEC Benchmarks, SICM/DICM, 8 KB L1

Cache Size

99

16 KB L1 Caches, 4 KB Seqnum Cache

1.00 1.02 1.00 1.00 1.01

0.14 0.28 0.87 0.01 0.34

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

16 KB L1 Caches, 8 KB Seqnum Cache

1.00 1.02 1.00 1.00 1.01

0.13 0.25 0.60 0.01 0.26

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.17 Performance Overhead for SPEC Benchmarks, SICM/DICM, 16 KB L1
Cache Size

100

32 KB L1 Caches, 8 KB Seqnum Cache

1.00 1.01 1.00 1.00 1.00

0.13 0.29 0.55 0.00 0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

32 KB L1 Caches, 16 KB Seqnum Cache

1.00 1.01 1.00 1.00 1.00

0.11 0.26 0.39 0.00 0.20

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

bzip2 gcc gzip parser Total

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DICM
SICM

Figure 7.18 Performance Overhead for SPEC Benchmarks, SICM/DICM, 32 KB L1
Cache Sizes

101

Table 7.8 Performance Overhead for SPEC Benchmarks, DICM

Performance Overhead [%]
Benchmark Sequence Number Cache Size

25% of L1 Data Cache Size
Sequence Number Cache Size
50% of L1 Data Cache Size

 8 KB 16 KB 32 KB 8 KB 16 KB 32 KB
bzip2 20.3 14.2 12.6 16.1 12.7 11.0
gcc 34.3 28.2 28.7 29.0 24.8 26.4
gzip 111.6 87.3 54.9 92.9 60.0 38.6
parser 3.05 1.12 0.28 2.23 0.74 0.23
Total 42.8 33.7 25.4 35.6 25.7 20.2

with a 32 KB D-cache. If a workload similar to gzip were anticipated for an actual

hardware implementation, larger sequence number caches should be considered if the

cache budget so permits.

The performance overhead incurred by the DICM architecture described in

Section 5.3 should be much less linear than that incurred by the SICM architecture. In

this case, overhead is incurred on TLB misses and sequence number cache misses in

addition to D-cache misses. Figure 7.19 shows plots of the normalized execution times

versus the number of D-cache misses for all simulated cache sizes and sequence number

cache sizes of 25% D-cache size and 50% D-cache size, respectively. As expected, these

plots show much less linearity than comparable plots for the SICM architecture.

102

25% Seqnum Cache

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

0 50 100 150 200 250
D-Cache Misses per 1,000 Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

50% Seqnum Cache

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 50 100 150 200 250
D-Cache Misses per 1,000 Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 7.19 Normalized Execution Time vs. D-Cache Miss Rate, DICM

 103

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This thesis directly addresses the issues of integrity and confidentiality for both

software instructions and data in embedded systems. The issue of availability is

addressed indirectly, in so far as violation of integrity and/or confidentiality may lead to a

loss of availability. Two architectures are proposed for ensuring integrity and

confidentiality, one protecting instructions and the other protecting data. These

architectures may be implemented independently or combined as needed. Both

architectures use encryption to ensure confidentiality and verification of signatures

embedded in instruction and data pages to ensure integrity. The data protection

architecture addresses the additional needs of dynamic data by including sequence

numbers in both the encryption and signature processes.

Analysis of these proposed architectures reveals the following findings:

• Both architectures can be implemented with relatively low complexity. The most

complex component, the cryptographic pipeline, may be shared between the two

architectures.

• The instruction protection architecture using the PMAC cipher with an IVB

introduces very low performance and energy overhead.

104

• The data protection architecture introduces significant performance overhead for

systems with extremely small caches, but that overhead dramatically decreases for

larger cache sizes.

• Both architectures incur memory overheads of up to 50%. The memory overhead

caused by the instruction protection architecture may be reduced to 25% with no

increase in performance overhead.

The large volume of embedded computer systems and the resourceful nature of

attackers lead to many opportunities for future research in the field of secure computing.

The work presented in this thesis may be extended and improved in the future. Areas for

future research on these architectures include the following:

• Further analyze the cryptographic strength of the proposed architectures and

increasing that strength as appropriate.

• Investigate any possible vulnerabilities to side-channel attacks.

• Extend the power dissipation model to include the data protection architecture.

• Modify the data protection architecture to allow one signature to protect multiple

data blocks, thus reducing memory overhead.

• Tweak the data protection architecture to make more efficient use of memory and

the cryptographic pipeline when a sequence number cache miss occurs during a

data cache miss.

 105

REFERENCES

[1] US-CERT, "US-CERT Cyber Security Bulletin 2005 Summary," <http://www.us-

cert.gov/cas/bulletins/SB2005.html> (Available August 2007).

[2] BSA, "2007 Global Piracy Study," <http://w3.bsa.org/globalstudy/> (Available
August 2007).

[3] J. Turley, "Embedded Processors by the Numbers,"
<http://www.embedded.com/1999/9905/9905turley.htm > (Available
August 2007).

[4] M. Milenković, "Architectures for Run-Time Verification of Code Integrity,"
Ph.D. Thesis, Electrical and Computer Engineering Department, University of
Alabama in Huntsville, 2005.

[5] D. Ahmad, "The Rising Threat of Vulnerabilities Due to Integer Errors," IEEE
Security & Privacy, vol. 1, July-August 2003, pp. 77-82.

[6] Anonymous, "Once Upon a Free(),"
<http://www.phrack.org/issues.html?issue=57&id=9#article> (Available
August 2007).

[7] N. R. Potlapally, A. Raghunathan, S. Ravi, N. K. Jha, and R. B. Lee,
"Satisfiability-Based Framework for Enabling Side-Channel Attacks on
Cryptographic Software," in Advances in Cryptology: Proceedings of
EUROCRYPT '97, Konstanz, Germany, 1997, pp. 37-51.

[8] P. Kocher, "Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Systems
Using Timing Attacks," 1995.

[9] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," in Advances in
Cryptology: Proceedings of CRYPTO '99, Santa Barbara, CA, USA, 1999,
pp. 388-397.

[10] D. Boneh, R. A. DeMillo, and R. J. Lipton, "On the Importance of Checking
Cryptographic Protocols for Faults," Cryptology, vol. 14, February 2001, pp. 101-
119.

[11] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, "On the Power of Simple Branch
Prediction Analysis," in Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security, Singapore, 2007, pp. 312-320.

106

[12] M. Milenković, A. Milenković, and J. Kulick, "Microbenchmarks for
Determining Branch Predictor Organization," Software Practice & Experience,
vol. 34, April 2004, pp. 465-487.

[13] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, "Architecture Support for
Defending against Buffer Overflow Attacks," in Workshop on Evaluating and
Architecting System Dependability (EASY), San Jose, CA, USA, 2002, pp. 50-56.

[14] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A. Kuperman, and A.
Jalote, "Smashguard: A Hardware Solution to Prevent Security Attacks on the
Function Return Address," Purdue University, TR-ECE 03-13, November 2003.

[15] N. Tuck, B. Calder, and G. Varghese, "Hardware and Binary Modification
Support for Code Pointer Protection from Buffer Overflow," in 37th Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO), Portland,
OR, USA, 2004, pp. 209-220.

[16] G. E. Suh, J. W. Lee, and S. Devadas, "Secure Program Execution Via Dynamic
Information Flow Tracking," in 11th Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Boston, MA, USA, 2004, pp. 85-
96.

[17] J. R. Crandall and F. T. Chong, "Minos: Control Data Attack Prevention
Orthogonal to Memory Model," in 37th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Portland, OR, USA, 2004, pp. 221-
232.

[18] D. Lie, C. Thekkath, M. Mitchell, P. Lincolny, D. Boneh, J. Mitchell, and M.
Horowitz, "Architectural Support for Copy and Tamper Resistant Software," in
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, 2000, pp. 168-177.

[19] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz, "Specifying and Verifying
Hardware for Tamper-Resistant Software," in IEEE Conference on Security and
Privacy, Berkeley, CA, USA, 2003, pp. 166-177.

[20] J. Yang, L. Gao, and Y. Zhang, "Improving Memory Encryption Performance in
Secure Processors," IEEE Transactions on Computers, vol. 54, May 2005,
pp. 630-640.

[21] B. Gassend, G. E. Suh, D. Clarke, M. v. Dijk, and S. Devadas, "Caches and Hash
Trees for Efficient Memory Integrity Verification," in Proceedings of the 9th
International Symposium on High-Performance Computer Architecture,
Anaheim, CA, USA, 2003, pp. 295-306.

[22] C. Lu, T. Zhang, W. Shi, and H.-H. S. Lee, "M-TREE: A High Efficiency
Security Architecture for Protecting Integrity and Privacy of Software," Journal
of Parallel and Distributed Computing, vol. 66, September 2006, pp. 1116-1128.

107

[23] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, "Efficient Memory
Integrity Verification and Encryption for Secure Processors," in Proceedings of
the 36th International Symposium on Microarchitecture, San Diego, CA, USA,
2003, pp. 339-350.

[24] G. E. Suh, W. O. D. Charles, S. Ishan, and D. Srinivas, "Design and
Implementation of the AEGIS Single-Chip Secure Processor Using Physical
Random Functions," in Proceedings of the 32nd Annual International Symposium
on Computer Architecture, Madison, WI, USA, 2005, pp. 25-36.

[25] M. Milenković, A. Milenković, and E. Jovanov, "A Framework for Trusted
Instruction Execution Via Basic Block Signature Verification," in 42nd Annual
ACM Southeast Conference, Huntsville, AL, USA, 2004, pp. 191-196.

[26] M. Milenković, A. Milenković, and E. Jovanov, "Using Instruction Block
Signatures to Counter Code Injection Attacks," in Workshop on Architectural
Support for Security and Anti-Virus (WASSA), Boston, MA, USA, 2004, pp. 104-
113.

[27] M. Milenković, A. Milenković, and E. Jovanov, "Hardware Support for Code
Integrity in Embedded Processors," in Proceedings of the 2005 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems,
San Francisco, CA, USA, 2005, pp. 55-65.

[28] A. Milenković, M. Milenković, and E. Jovanov, "An Efficient Runtime
Instruction Block Verification for Secure Embedded Systems," Journal of
Embedded Computing, vol. 4, January 2006, pp. 57-76.

[29] M. Drinic and D. Kirovski, "A Hardware-Software Platform for Intrusion
Prevention," in 37th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), Portland, OR, USA, 2004, pp. 233-242.

[30] Intel, "Execute Disable Bit and Enterprise Security,"
<http://www.intel.com/business/bss/infrastructure/security/xdbit.htm> (Available
August 2007).

[31] A. Zeichick, "Security Ahoy! Flying the NX Flag on Windows and AMD64 to
Stop Attacks," <http://developer.amd.com/articlex.jsp?id=143> (Available
August 2007).

[32] IBM, "IBM Extends Enhanced Data Security to Consumer Electronics Products,"
<http://www-03.ibm.com/press/us/en/pressrelease/19527.wss> (Available
August 2007).

[33] T. Alves and D. Felton, "Trustzone: Integrated Hardware and Software Security,"
I.Q. Publication, vol. 3, November 2004, pp. 18-24.

108

[34] MAXIM, "Increasing System Security by Using the DS5250 as a Secure
Coprocessor," <http://www.maxim-ic.com/appnotes.cfm/appnote_number/3294>
(Available August 2007).

[35] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling Trusted Software Integrity,"
in 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), San Jose, CA, USA, 2002,
pp. 108-120.

[36] J. H. An, Y. Dodis, and T. Rabin, "On the Security of Joint Signature and
Encryption," in Advances in Cryptology: Proceedings of EUROCRYPT 2002
Amsterdam, Netherlands, 2002, pp. 83-107.

[37] M. Bellare and C. Namprempre, "Authenticated Encryption: Relations among
Notions and Analysis of the Generic Composition Paradigm," in Advances in
Cryptology: Proceedings of EUROCRYPT 2000, Bruges, Belgium, 2000, pp. 531-
545.

[38] N. Ferguson and B. Schneier, Practical Cryptography: John Wiley & Sons, 2003.

[39] Y.-H. Wang, H.-G. Zhang, Z.-D. Shen, and K.-S. Li, "Thermal Noise Random
Number Generator Based on SHA-2 (512)," in Proceedings of 2005 International
Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005,
pp. 3970-3974.

[40] J. Black and P. Rogaway, "A Block-Cipher Mode of Operation for Parallelizable
Message Authentication," in Advances in Cryptology: Proceedings of
EUROCRYPT 2002, Amsterdam, Netherlands, 2002, pp. 384-397.

[41] W. Shi and H.-H. S. Lee, "Accelerating Memory Decryption with Frequent Value
Prediction," in ACM International Conference on Computing Frontiers, Ischia,
Italy, 2007, pp. 35-46.

[42] TIS, "Executable and Linking Format (Elf) Specification,"
<http://x86.ddj.com/ftp/manuals/tools/elf.pdf> (Available January 2005).

[43] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, "MiBench: A Free, Commercially Representative Embedded Benchmark
Suite," in IEEE 4th Annual Workshop on Workload Characterization, Austin, TX,
USA, 2001, pp. 3-14.

[44] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems," IEEE
Micro, vol. 30, December 1997, pp. 330-335.

[45] I. Branovic, R. Giorgi, and E. Martinelli, "A Workload Characterization of
Elliptic Curve Cryptography Methods in Embedded Environments," ACM
SIGARCH Computer Architecture News, vol. 32, June 2004, pp. 27-34.

109

[46] SPEC, "SPEC 2000 CPU Benchmark Suite," <http://www.spec.org> (Available
August 2007).

[47] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, "Automatically
Characterizing Large Scale Program Behavior," in Proceedings of the 10th
International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, USA, 2002, pp. 45-57.

[48] N. Kim, T. Kgil, V. Bertacco, T. Austin, and T. Mudge, "Microarchitectural
Power Modeling Techniques for Deep Sub-Micron Microprocessors," in
International Symposium on Low Power Electronics and Design (ISLPED),
Newport Beach, CA, USA, 2004, pp. 212-217.

[49] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: An Infrastructure for
Computer System Modeling," IEEE Computer, vol. 35, February 2002, pp. 59-67.

[50] "Cadence Aes Cores,"
<http://www.cadence.com/datasheets/AES_DataSheet.pdf> (Available
August 2007).

