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CHAPTER 1 

 

INTRODUCTION 

Embedded computer systems have become ubiquitous in modern society.  A wide 

range of applications rely on embedded systems, from consumer electronics, 

communications, transportation, medicine, to national security.  Security breaches in 

embedded systems could thus have wide ranging impacts, from loss of revenue to loss of 

life.  As these systems continue to proliferate, the potential damage that can be caused by 

security compromises increases.  Methods for improving computer security are therefore 

highly desirable.   

The problem of computer security is further compounded by the fact that methods 

for improving security tend to degrade performance or consume precious computational 

resources.  As embedded systems often have stringent design constraints, security 

extensions for embedded systems must incur as little overhead as possible.  This 

dissertation addresses these problems by exploring the subject of secure processors, 

which ensure security at the hardware level.  We lay out the principles of secure 

processor design and asses the various challenges faced when designing such a processor.  

We explore the design space by evaluating different approaches to these challenges, and 

offer architectural solutions to alleviate the performance and complexity overhead 

incurred by adding security to the processor design.  Finally, we prove the feasibility of 
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our security architectures by implementing security extensions for a soft-core processor 

on a low-cost field programmable gate array (FPGA). 

1.1 Secure Processors: Motivation and Background 

Computer security is a broad and dynamic field.  Computer systems are subject to 

a broad range of attacks, and suffer from many vulnerabilities.  According to the National 

Institute of Standards and Technology, 5,632 software vulnerabilities were identified in 

2008 alone [1]; the number of attacks was much greater.  Furthermore, the unauthorized 

copying of software, also known as piracy, is a major economic threat.  The Business 

Software Alliance, in their annual piracy study [2], estimates that 41% of software in use 

worldwide during the year 2008 was unlicensed, with an economic impact of 53 billion 

dollars.  These figures are increasing every year.   

The vast majority of microprocessors are manufactured and sold for use in 

embedded systems.  Indeed, only 2% of processors are manufactured as general-purpose 

computer processors [3].  That other 98% may be found in such diverse embedded 

system applications as coffeemakers, automobiles, cellular telephones, and 

intercontinental ballistic missiles.  As the embedded market has evolved, many modern 

embedded systems now have some form of network connectivity, often to the internet 

itself.  This exposes these systems to many of the same attacks that general-purpose 

systems suffer.  Many embedded systems may also operate in hostile environments where 

they are subjected to physical attacks aimed at subverting system operation, extracting 

key secrets, or intellectual property theft.  Similarly, a system may operate in harsh 

conditions such as outer space, where natural phenomena may compromise the integrity 

of data. 
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This dissertation focuses on the development of secure processors for ensuring the 

integrity and confidentiality of instructions and data in embedded systems.  Integrity is 

violated whenever any unauthorized code is executed or unauthorized data used by a 

microprocessor.  Confidentiality is violated whenever some entity, human or computer, is 

able to view, copy, or reverse-engineer the system.  Integrity and confidentiality, along 

with a third concept, availability, comprise the computer security triad, which will be 

discussed in greater detail in Chapter 2.  Our work only indirectly addresses availability, 

insofar as integrity and confidentiality concerns influence availability. 

1.2 Principles and Challenges in Ensuring Software/Data Integrity and 

Confidentiality 

This dissertation is intended to lay out the fundamental principles in designing a 

secure processor, and to explore the various challenges that must be addressed when 

designing such a processor.  We use a cycle-accurate simulator to evaluate the 

performance overhead incurred by a secure processor, which is defined as the additional 

time required to execute a program on the secure processor as compared to a similar 

processor without security extensions.  Our simulations explore many of the design 

choices that must be made when addressing design challenges.  Furthermore, we have 

implemented a research prototype secure processor in actual hardware, demonstrating the 

practicality of our proposed security extensions. 

The basic principle for ensuring integrity is the use of cryptographically sound 

signatures, that is, signatures that cannot be easily duplicated without the knowledge of 

certain secrets.  Data must be signed when they are first stored, whether during 

installation (instructions and static data) or runtime (dynamic data).  When data are used 
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at runtime, their signature must be fetched.  The signature is also calculated 

independently based on the fetched data, and the fetched and calculated signatures are 

compared.  If the signatures match, then the data can be trusted.  If they do not match, 

then the data have been subjected to tampering and should not be used.  A system 

implementing such a scheme is called a sign-and-verify system, as it signs data upon their 

creation and then verifies data upon their use. 

The basic principle for ensuring confidentiality is the use of strong encryption.  

The goal of encryption is to render sensitive data illegible to any party lacking certain 

secrets.  Thus, for full protection of both integrity and confidentiality, data must be both 

signed and encrypted before being stored, and both decrypted and verified before use.  

Signature generation and encryption may or may not be intertwined; some cryptographic 

schemes perform both at the same time while others perform them independently. 

Although these basic principles may seem simple, many challenges arise when 

implementing them in an actual system.  For instance, how should one go about 

performing encryption and decryption?  How should one calculate signatures?  Where 

should signatures be stored?  How will performance be affected, and what can be done to 

improve the performance of secure systems?  Furthermore, in addition to integrity and 

confidentiality, how can we be sure that a chunk of dynamic data is up-to-date?  How 

much memory will signatures and other additional data require, and can it be minimized?  

What are the trade-offs between performance and on-chip complexity?  All of these 

issues and more are addressed in this dissertation. 
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1.3 Main Contributions and Findings 

The main contributions of this dissertation are as follows: 

 We establish a framework for the protection of instructions, static data, and 

dynamic data using a sign-and-verify architecture with optional encryption. 

 We explore the design space in several areas, including issues such as where to 

store signatures, how to perform encryption, and what cryptographic mode to use 

for calculating signatures. 

 We present several enhancements to reduce performance and memory overhead, 

including signature victim caches, the instruction verification buffer, and 

protecting multiple blocks of data with one signature. 

 We propose a tree-like structure to ensure that protected dynamic data are up-to-

date without adversely impacting performance. 

 We develop a cycle-accurate simulator to evaluate the performance overhead of 

the secure architecture. 

 We use the simulator to investigate the effects of the various design choices and 

enhancements on the performance overhead of the secure architecture and 

establish an analytical model for performance overhead. 

 We implement a secure processor in actual hardware using existing system-on-a-

programmable chip (SOPC) technologies. 

Our main finding is that integrity and confidentiality can be implemented with 

low performance overhead by using established cryptographic modes and latency-hiding 

architectural enhancements.  These enhancements, however, add complexity, so system 

designers must make trade-offs between complexity and performance.  We also 
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demonstrate the practicality and feasibility of our security enhancements by augmenting 

an existing soft-core processor with a subset of our proposed mechanisms and 

implementing them on an FPGA platform. 

1.4 Outline 

The remainder of this dissertation is organized as follows.  Chapters 2 and 3 

present basic background material to aid in understanding the remainder of the 

dissertation, describing several types of threats to computer security and various 

cryptographic concepts that we use to counter those threats.  Chapter 4 introduces the 

general principles of secure processor design, but does not concern itself with particulars 

or optimizations.  The subsequent two chapters address the various choices and 

challenges that a computer architect will face when implementing a secure processor and 

introduce architectural enhancements to help overcome these challenges, including trade-

offs between performance, security, and complexity.  Chapter 5 is concerned with general 

issues that apply to protecting both instructions and data, while Chapter 6 focuses on the 

special issues that arise from protecting dynamic data.  Chapter 7 describes our 

simulation methodology for evaluating secure processor designs, and includes simulation 

results for many of the choices presented in the preceding chapters, as well as an 

analytical model for secure processor performance.  Chapter 8 details our implementation 

of a prototype secure processor using an FPGA-based platform.  Related work is 

presented in Chapter 9, and Chapter 10 concludes the dissertation.
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CHAPTER 2 

 

BACKGROUND: COMPUTER SECURITY 

Notions of computer security have evolved greatly over the years.  At one time, 

most systems were standalone; computer security meant locking the computer room.  As 

computer networking (and especially the Internet) became more prominent, computer 

systems could come under attack from the other side of the building, or from the other 

side of the world.  These attacks are mainly what we call software attacks, where the 

attacker has access to a system, either directly or over a network.  Once embedded 

systems began to proliferate, they became subject to further vulnerabilities such as 

physical attacks, where the attacker has physical access to the system but not necessarily 

software access.  More sophisticated computer hardware and software enables side-

channel attacks, in which the attacker attempts to gain knowledge about the system by 

indirect analysis. 

This chapter provides the relevant background information on computer security 

that is necessary for a clear understanding of the remainder of the dissertation.  We first 

examine the security triad of integrity, confidentiality, and availability.  We then examine 

the types of attacks mentioned above, including software-based attacks, physical attacks, 

and side-channel attacks. 
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2.1 The Computer Security Triad 

Computer security broadly consists of three concepts: integrity, confidentiality, 

and availability, which together constitute the well-known computer security triad.  Our 

research applies these concepts at the microprocessor level, with the goal of designing 

truly secure processors.  The first two concepts, integrity and confidentiality, are most 

relevant to our research. 

Protecting integrity means that the processor will not execute any unauthorized 

code or use any unauthorized data; any tampering should be detected.  Attacks against 

integrity may be deliberate, such as those performed directly by a human intruder or an 

automated attack set up by a human.  Integrity may also be compromised by harsh 

environmental factors, such as bit flipping caused by radiation in systems operating in 

outer space, or due to aggressive semiconductor technologies whose low swing voltages 

make them vulnerable to noise. 

Protecting confidentiality means that instructions and data must be illegible to all 

unauthorized entities, be they human or machine.  Attacks against confidentiality include 

piracy and identity theft, both of which have huge economic impacts [2].  Ensuring 

confidentiality is a concern in a wide variety of areas.  Digital rights management (DRM) 

is primarily concerned with ensuring confidentiality in consumer markets.  Corporations 

and governments may also be concerned with protecting confidentiality to prevent 

espionage. 

Availability requires that a system be available to legitimate users when needed.  

Attacks against availability try to render a system inaccessible.  A classic example of 

such an attack is the denial of service attack, which attempts to consume a system’s 
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resources so that it is unavailable to other users.  Ensuring availability can include 

techniques such as error correction and fault recovery, as well as algorithms and 

heuristics for detecting malicious access patterns.  Attacks on integrity and confidentiality 

may also be part of an attack on availability.  Our research is primarily focused on 

ensuring integrity and confidentiality; we only address availability insofar as it is 

influenced by integrity and confidentiality concerns. 

2.2 Software Attacks 

Software attacks require the attacker to have some form of access to the target 

computer system.  This could be direct access, with a lower permission level than the 

attacker desires. The access could also be across a network, which would require the 

attacker to sniff the system’s open ports, looking for services with known vulnerabilities.  

The goal of software attacks is to modify a running program by injecting and executing 

code.  The foreign instructions must be injected into memory, and then the return address 

of the currently executing function must be overwritten to force the processor to execute 

the injected instructions.  These attacks are only briefly documented here; a more detailed 

treatment can be found in [4]. 

2.2.1 Buffer Overflow Attacks 

A common class of attacks is buffer overflow.  These attacks take advantage of 

I/O instructions that simply store incoming data to a buffer, without bothering to check to 

see if the amount of incoming data will exceed the buffer size.  After the buffer fills, 

memory locations beyond the buffer are overwritten.  Most systems have stacks that grow 

counter to memory address growth.  If the buffer is on the stack, then this attack can 
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overwrite the data at any address on the stack beyond the buffer with malicious 

instructions.  This overwrite includes the return address, allowing the attacker to divert 

the program to the newly injected instructions.  If the buffer is on the heap near a function 

pointer, then the attacker’s goal is to inject code and overwrite that function pointer. 

2.2.2 Format String Attacks 

Format string attacks take advantage of printf-family of functions that take a 

format string as an input.  These functions will accept any pointer and interpret the 

contents of memory at that address as a format string.  By skillfully manipulating the 

inputs passed to the printf function, the attacker can read from any address in memory.  

The %n format character presents an additional vulnerability.  This character causes a 

printf function to write the number of characters output by the function before it reached 

%n to a specified address.  A skillful attacker could use this to write an arbitrary integer 

to any address. 

2.2.3 Integer Error Attacks 

Errors arising from integer operations cannot be used as a direct attack.  However, 

integer errors can facilitate other forms of attacks.  For instance, an unsigned integer 

overflow can result in a smaller number than expected.  If this is used to allocate a buffer, 

then the buffer will also be smaller than expected.  This exposes the system to a buffer 

overflow attack, even if subsequent input operations using that buffer check input length.  

A more thorough treatment of integer error attacks may be found in [5]. 
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2.2.4 Dangling Pointer Attacks 

Dangling pointers become an issue if the free function is called twice for the same 

pointer.  The vulnerability arises from the way that the GNU C library handles memory 

allocation [6].  When a chunk of memory is freed, it is inserted into a doubly linked list of 

free chunks.  If free is called twice, the pointers to the next and previous entries may 

wind up pointing back to the same chunk.  An attacker may write malicious code to the 

chunk’s data area and put a pointer to that code in place of the pointer to the previous list 

entry.  If that chunk is allocated again, the memory manager will try to unlink the chunk 

from the list, and will write the attacker’s pointer to an address calculated from the 

pointer to the next entry.  If that address happens to contain a function’s return address, 

then a successful attack has been accomplished. 

2.2.5 Arc-Injection Attacks 

An arc-injection or “return-into-libc” involves overwriting a return address such 

that control flow is disrupted.  Oftentimes the address of a library function is used.  

Library system calls can be used to spawn other processes on the system with the same 

permissions as the compromised program.  If the operating system (OS) itself is 

compromised, then the attacker can run a malicious program that will have the ability to 

access any and every memory location. 

2.3 Physical Attacks 

In contrast to software attacks, physical attacks involve tampering with the actual 

computer hardware [7].  Probes are often inserted on the address and data bus, allowing 

the attacker to monitor all transactions and override data coming from memory with 
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his/her own data.  This is a tool often used in industrial and military espionage.  This 

section describes three such attacks: spoofing, splicing, and replay. 

2.3.1 Spoofing Attacks 

A spoofing attack occurs when an attacker intercepts a request for a block of 

memory, and then manually supplies a block of his/her choice.  This block may contain 

either data or instructions of a malicious nature.  In an unsecured system, the processor 

naïvely conducts a bus cycle, and is unaware that the data it received came from an 

attacker rather than from main memory.  Figure 2.1 illustrates a spoofing attack.  The 

processor initiates a bus read cycle for a block at memory location DBj.  The attacker 

intercepts the request and supplies a potentially malicious block Mj instead of the correct 

block DBj. 

 

 

BusRd(DBj )

Mj

DBj

 

Figure 2.1  Spoofing Attack 
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2.3.2 Splicing Attacks 

Splicing attacks involve intercepting a request for a block of memory and then 

supplying the data from a different block.  The supplied block is a valid block from 

somewhere in the address space, but it is not the actual block that the processor 

requested.  This attack may be performed with either data or instruction blocks.  Once 

again, the unsecured processor is unaware that it has received the incorrect memory 

block.  Figure 2.2 depicts a splicing attack.  The processor initiates a bus read cycle for a 

block at memory location DBj.  The attacker intercepts the request and supplies a valid 

block from memory, but from address DBi rather than the desired address, DBj. 

 

 

DBi

DBj

BusRd(DBj )

DBi  

Figure 2.2  Splicing Attack 

2.3.3 Replay Attacks 

In a replay attack, the attacker intercepts a request for a block of memory, and 

then supplies an older copy of that block.  This is a concern for dynamic data blocks and 

instructions generated at runtime, such as self-modifying code and just-in-time 
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compilation.  The supplied block was valid at some point in the past, but now it may be 

obsolete.  Figure 2.3 illustrates a replay attack.  The processor initiates a bus read cycle 

for the data block at address DBj.  The attacker intercepts the request and returns an older 

version of that block, DBj
*, which may be different from the current version in memory. 

 

 

BusRd(DBj )
DBj

DBj  

Figure 2.3  Replay Attack 

2.4 Side-Channel Attacks 

Side-channel attacks attempt to gather information about a system or program via 

indirect analysis.  These attacks involve first collecting information about the system and 

then analyzing that information in an attempt to deduce the system’s secrets [8].  The 

information gathering stage requires some form of access to the system.  The attacker 

may have direct physical access to the system and its components, or have some level of 

privileges to run programs on the target system.  In this section, we briefly describe a few 

examples of the myriad possible side-channel attacks, including timing analysis, 

differential power analysis, fault exploitation, and architectural exploitation. 
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2.4.1 Timing Analysis 

Timing attacks are, perhaps, the simplest type of side-channel attacks, taking 

advantage of the fact that different operations require different amounts of time to 

execute.  Kocher [9] illustrates how this can be used to break cryptographic algorithms, 

given a known algorithm and either known plaintext or known ciphertext.  He uses 

timing analysis to determine the secret exponent in the Diffie-Hellman algorithm, factor 

RSA private keys, and determine the private key used by the Digital Signature Standard 

algorithm. 

2.4.2 Differential Power Analysis 

A microprocessor’s power consumption at any given moment can indicate what 

operations it is performing.  A differential power analysis can be used to determine what 

instructions are executed and when.  Kocher et al. [10] discuss how to break a known, 

data-driven encryption algorithm using such an attack.  Instantaneous CPU power 

consumption is measured at intervals during a cryptographic operation, forming a trace.  

Multiple traces can be compiled and compared, revealing patterns produced by the 

execution of certain instructions.  Since the encryption algorithm is both known and data-

driven, the data being processed can be revealed solely from the power traces. 

2.4.3 Fault Exploitation 

A fault exploitation attack takes advantage of hardware faults to discover secrets.  

These hardware faults may be transiently occurring within the processor, or induced 

externally.  Boneh et al. [11] describe a simple fault exploitation attack, whereby the 

modulus used by an RSA algorithm may be calculated.  A signature must be calculated 
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from the same data two times.  One signature is calculated without a hardware fault.  The 

second is calculated in the presence of a hardware fault, either transient or induced.  The 

modulus of the RSA system can then be factored by analyzing the difference between the 

two signatures.  Boneh et al. go on to break even more sophisticated cryptographic 

schemes using similar techniques. 

2.4.4 Architectural Exploitation 

Due to the well-known effect of Moore’s Law, microprocessor designers have 

been able to introduce more and more advanced features.  Sometimes these advanced 

features may be exploited to reveal information about the processor.  A prime example of 

an architectural exploitation attack is the Simple Branch Prediction Analysis attack 

devised by Aciiçmez et al. [12].  This attack expands on the classical timing attack by 

taking advantage of the branch prediction unit and multi-threading capabilities of the 

Pentium 4 processor.  A spy process is executed in parallel with a process performing a 

known cryptographic algorithm.  The spy process executes branch instructions, flooding 

the processor’s branch target buffer (BTB), while measuring the execution time required 

for those branch instructions.  When the cryptographic process executes a branch 

instruction that results in the branch not being taken, no BTB eviction is needed.  Thus, 

the next time the spy process executes a corresponding branch, it will execute quickly, 

thereby revealing that the cryptographic process had a branch not taken.  Conversely, a 

taken branch in the cryptographic process results in a BTB eviction, which in turn causes 

a spy process branch to take longer to execute, revealing that the cryptographic process 

had a taken branch.  The recorded trace of branches that were taken and not taken can 

then be used to deduce the cryptographic secret key.  This attack relies on detailed 
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information about the underlying hardware and software, but such information is often 

available and can be obtained using microbenchmarks [13]. 

Cache misses provide another avenue for hardware exploitation.  Percival [14] 

demonstrates that a thread running concurrently with a cryptographic thread can pollute 

the cache and time its own cache accesses, thus detecting which cache lines were evicted 

by the cryptographic thread.  With knowledge of the implementation of the RSA 

algorithm, these eviction patterns may be analyzed to determine the encryption key.  

Bernstein [15] attacks the Advanced Encryption Standard (AES) algorithm simply by 

observing algorithm run time.  The attack involves first running the algorithm on a large 

set of inputs with a known key, and then running it for another large set of inputs with an 

unknown key.  Cache misses caused by table lookups in the AES algorithm cause 

discrepancies in run time, which may then be analyzed to determine the unknown key. 
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CHAPTER 3 

 

BACKGROUND: CRYPTOGRAPHIC CONCEPTS 

This chapter provides background information on various cryptographic concepts.  

As with the previous chapter, familiarity with these concepts will greatly help in 

understanding the remainder of this dissertation.  We begin with a discussion on 

encryption methods for ensuring confidentiality.  We then discuss methods for ensuring 

integrity, focusing on two methods for generating signatures.  Finally, we discuss 

strategies for integrating the protection of both integrity and confidentiality. 

3.1 Ensuring Confidentiality 

Confidentiality is traditionally ensured by using some form of encryption.  The 

straightforward method is to use symmetric key cryptography, where the same key is 

used for both encryption and decryption.  A commonly used symmetric key cryptography 

scheme is the AES cipher [16].  The AES operation is what is known as a block cipher; it 

operates on a 128-bit block of data using either a 128-bit, 192-bit, or 256-bit key.  AES 

can operate in either encryption mode (Equation (3.1) and Figure 3.1(a)) to produce a 

chunk of unintelligible ciphertext Ci from a chunk of plaintext Ii, or in decryption mode 

(Equation (3.2) and Figure 3.1(b)) to produce a chunk of plaintext Ii from a chunk of 

ciphertext Ci.  Note that the sizes of Ii, Pi, and K are determined by the width of the AES 
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unit being used; throughout this dissertation, a 128-bit AES unit is assumed unless 

otherwise stated. 

)(, iKei IAESC       (3.1) 

)(, iKdi CAESI       (3.2) 

 

 

AESeIi

K

Ci AESd Ii

K

Ci

(a) (b)

 

Figure 3.1  Data Flow of Symmetric Key (a) Encryption and (b) Decryption 

Symmetric key cryptography is conceptually simple, but can introduce significant 

cryptographic latency in some applications.  If the application is such that data must be 

fetched or are being received in a stream, performance could be improved by somehow 

overlapping cryptographic latency with data retrieval.  This can be accomplished by 

using a one-time-pad (OTP) cryptographic scheme.  An OTP scheme using AES 

encryption is shown in Equations (3.3) and (3.4) and Figure 3.2.  For either encryption or 

decryption, a secure pad is calculated by encrypting an initial vector Pi using a key K.  

One requirement of OTP is that the secure pad should always be unique (i.e., each pad is 

only used “one time”).  Therefore, for a fixed key K, a unique initial vector Pi should be 

used for each encryption.  The ciphertext Ci is then produced by performing an exclusive 
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or (XOR) of the secure pad and the plaintext Ii.  Conversely, taking the XOR of the pad 

with the ciphertext Ci  will produce the plaintext Ii.  The circles with crosses inside them 

in the figures below, as well as in figures throughout the remainder of this dissertation, 

represent a 128-bit array of XOR gates.   

)( iKii PAESxorIC       (3.3) 

)( iKii PAESxorCI       (3.4) 
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Pi Ci AES Ii

K
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Figure 3.2  Data Flow of One Time Pad (a) Encryption and (b) Decryption 

Using OTP cryptography may hide cryptographic latency in some applications.  It 

also only requires the use of the AES cipher in encryption mode, allowing for simpler 

hardware and/or software AES implementations.  Therefore, in Figure 3.2 and throughout 

the remainder of this dissertation, any instance of AES without the subscript e or d will 

indicate an AES encryption operation. 
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3.2 Ensuring Integrity 

Message authentication codes, also known as signatures, are the traditional 

method for ensuring data integrity.  The basic concept is to sign a chunk of data, broadly 

known as a “message,” in such a way that its signature attests to its integrity.  The 

message text and other parameters may be used as inputs into the signature generation 

process, as appropriate.  When the message’s integrity needs to be verified, its signature 

is recalculated and compared to the original signature.  The signature generation 

methodology must be such that any tampering with the message will result in a mismatch 

between the new and original signatures.  

One well-known method for calculating signatures is the cipher block chaining 

message authentication code (CBC-MAC) [17].  As its name implies, CBC-MAC 

signatures are calculated via a chain of cryptographic operations.  A CBC-MAC 

implementation using the AES block cipher is depicted in Equation (3.5) and Figure 3.3.  

In the equation and figure, a signature S is calculated for an arbitrary number of data 

chunks, I1 - IN.  An initial vector P is first encrypted using a key K1.  The result is then 

XORed with the first data chunk, I1, and encrypted using another key K2.  The result of 

that encryption is then XORed with the second data chunk, I2, and encrypted using K2.  

These operations continue until the final data chunk, IN, has been XORed with the final 

intermediate value and encrypted using K2. 

)))...)(((...( 112222 PAESxorIAESxorIAESxorIAESS KKKNK    (3.5) 
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Figure 3.3  Data Flow of Signature Generation Using Cipher Block Chaining 

CBC-MAC can produce cryptographically sound signatures [18], but due to its 

chaining nature, all operations must be performed in series.  If the data chunks become 

available at intervals equal to or greater than the time required to perform an AES 

operation, then CBC-MAC may be a good cipher choice.  However, if the data chunks 

become available more quickly, CBC-MAC may potentially introduce long signature 

generation latencies. 

Black and Rogaway [19] developed the parallelizable message authentication 

code (PMAC) algorithm to address the latency issue.  The PMAC cipher, which is proven 

to be secure [19], calculates the signature for each chunk of data in parallel and XORs 

these together to form the final signature, as demonstrated in Equations (3.6) and (3.7) 

and Figure 3.4.  Each data chunk Ii has an associated initial vector Pi, which is encrypted 

using a key K1.  The result is XORed with the data chunk Ii and encrypted using K2 to 

produce that chunk’s signature Sig(Ii).  Each of these signatures may be calculated in 

parallel, and are XORed together to produce the message’s overall signature S.  The 

PMAC approach is ideal if multiple AES operations can be performed at one time, or if 

the AES operations can be pipelined. 
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Figure 3.4  Data Flow of Signature Generation Using 

Parallelizable Message Authentication Code 
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NiforPAESxorIAESISig iKiKi ..1))(()( 12     (3.6) 

)(...)()( 21 NISigxorISigxorISigS     (3.7) 

3.3 Integrating Integrity and Confidentiality 

When both integrity and confidentiality are to be protected, one must choose the 

order in which to calculate signatures and/or perform encryption.  Variations in the order 

in which signing and encryption are performed give rise to three known approaches: 

encrypt&sign (ES), encrypt, then sign (EtS), and sign, then encrypt (StE) [20].  The high-

level data flow for each of these approaches is shown in Figure 3.5, along with the 

degenerate case of signature generation without any encryption.  The ES scheme involves 

encryption and signature generation performed in parallel; the signature is calculated on 

the plaintext, which is also encrypted.  The EtS scheme requires that the plaintext be 

encrypted first; the signature is then calculated on ciphertext.  The StE scheme calculates 

the signature on plaintext, and then encrypts both the plaintext and the signature. 
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Figure 3.5  Approaches to Encryption and Signing: (a) Signed Plaintext, (b) ES, (c) EtS, 

and (d) StE 

These schemes are further illustrated using actual data in Figure 3.6.  The 

plaintext in this case is a 64 byte binary instruction block, encoded for the ARM 

architecture and expressed in hexadecimal.  This block is assumed to reside in memory 

beginning at address 3000a80, and its 128-bit signature is stored immediately following 

the block at address 3000ac0.  This block’s confidentiality is ensured using OTP 

encryption, and its integrity is ensured using the PMAC method.  The initial vectors Pi 

for each 128-bit sub-block consist of the sub-block’s address left padded with zeros; 

these are used for both encryption and signature generation.  Key1 and Key2 are used for 

signature generation, while Key3 is used for encryption. 
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Key1: 
Key2: 
Key3: 

P1: 
P2: 
P3: 
P4: 

Psig: 

0123456789abcdef012345678abcdef0 
fedcba9876543210fedcba9876543210 
02132435465768798a9bacbdcedfe0f1 
00000000000000000000000003000a80 
00000000000000000000000003000a90 
00000000000000000000000003000aa0 
00000000000000000000000003000ab0 
00000000000000000000000003000ac0 

3000a80:  e3a02000 
3000a84:  e50b2030 
3000a88:  e59f122c 
3000a8c:  e5812000 
3000a90:  e50b2034 
3000a94:  e1a06000 
3000a98:  e59f0220 
3000a9c:  eb002c5b 
3000aa0:  e2505000 
3000aa4:  0a000033 
3000aa8:  e1a00005 
3000aac:  e3a0102f 
3000ab0:  eb004ad2 
3000ab4:  e3500000 
3000ab8:  0a000004 
3000abc:  e59f3200 
3000ac0:  094a0eb7 
3000ac4:  be78f193 
3000ac8:  e2ee9fc4 
3000acc:  11dc5edb 

3000a80:  09389787 
3000a84:  ec965efc 
3000a88:  2e33ac4e 
3000a8c:  4885154b 
3000a90:  ba26d576 
3000a94:  f15f6ea5 
3000a98:  453cdd9c 
3000a9c:  40af6677 
3000aa0:  105aa547 
3000aa4:  f1b7f562 
3000aa8:  689b2016 
3000aac:  e6a28d0e 
3000ab0:  94d4e3f1 
3000ab4:  10e25c31 
3000ab8:  7f00577b 
3000abc:  31cd649d 
3000ac0:  094a0eb7 
3000ac4:  be78f193 
3000ac8:  e2ee9fc4 
3000acc:  11dc5edb 

3000a80:  09389787 
3000a84:  ec965efc 
3000a88:  2e33ac4e 
3000a8c:  4885154b 
3000a90:  ba26d576 
3000a94:  f15f6ea5 
3000a98:  453cdd9c 
3000a9c:  40af6677 
3000aa0:  105aa547 
3000aa4:  f1b7f562 
3000aa8:  689b2016 
3000aac:  e6a28d0e 
3000ab0:  94d4e3f1 
3000ab4:  10e25c31 
3000ab8:  7f00577b 
3000abc:  31cd649d 
3000ac0:  d2acbdef 
3000ac4:  bca24992 
3000ac8:  c6028b0c 
3000acc:  440b6d3f 

3000a80:  09389787 
3000a84:  ec965efc 
3000a88:  2e33ac4e 
3000a8c:  4885154b 
3000a90:  ba26d576 
3000a94:  f15f6ea5 
3000a98:  453cdd9c 
3000a9c:  40af6677 
3000aa0:  105aa547 
3000aa4:  f1b7f562 
3000aa8:  689b2016 
3000aac:  e6a28d0e 
3000ab0:  94d4e3f1 
3000ab4:  10e25c31 
3000ab8:  7f00577b 
3000abc:  31cd649d 
3000ac0:  5a07eb1d 
3000ac4:  b6db16db 
3000ac8:  48269248 
3000acc:  7f1d8ba2 

(a) (b) (c) (d) 
Figure 3.6  Signed Binary Data Block: (a) Signed Plaintext, (b) ES, (c) EtS, and (d) StE 

The relative strength of these implementations is still a subject for debate [20, 21].  

However, another cryptographic algorithm has been developed that specifically address 

the need for both encryption/decryption and signature generation.  The Galois/Counter 

Mode (GCM) of cryptographic operation was introduced by McGrew and Viega [22].  It 

implements an EtS cryptographic scheme, incorporating the block cipher of choice (for 

this dissertation, we continue to use AES).  The goal of GCM was to provide a secure yet 

flexible solution with low latency.  With appropriate inputs, GCM is as secure as the 

chosen underlying block cipher [22]. 

The flexibility of GCM is apparent in Figure 3.7, which shows a high-level “black 

box” view of the inputs and outputs of GCM.  The inputs include an arbitrary number of 
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data blocks (I1 – IN).  An additional data block (ADD_DATA) may also be inputted; these 

data will be used for signature generation but will not be encrypted.  GCM requires only 

two cryptographic keys, K1 and K2.  Key K1 is used for encryption, and K2 is used for 

signature generation.  An initial vector IV is also required.  The initial vector must be a 

nonce, that is, it should be unique with a high probability.  The size of IV is a design 

parameter, but 96 bits is recommended as the most efficient when working with 128-bit 

block ciphers [22].  The final input, ENCRYPT, specifies whether GCM is operating in 

encryption or decryption mode.  If ENCRYPT is 1, then GCM is running in encryption 

mode and the input blocks I1 - IN are interpreted as plaintext.  Otherwise, GCM is running 

in decryption mode and the input blocks are interpreted as ciphertext. 

The outputs of GCM include output blocks O1 - ON and a signature S.  If GCM is 

running in encryption mode, then the output blocks are ciphertext.  If GCM is running in 

decryption mode, the output blocks are plaintext.  The signature is internally 
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Figure 3.7  High Level View of a Hardware Implementation of Galois/Counter Mode 
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calculated on the ciphertext blocks (which are internally available in either mode) and the 

additional data (ADD_DATA).  Note that the ADD_DATA is never encrypted. 

The implementation of GCM used in this dissertation is shown in Figure 3.8 and 

described mathematically in Equations (3.8) - (3.13).  As before, we use 128-bit input and 

output blocks, and 128-bit keys.  We further chose a 96-bit initial vector for maximum 

efficiency.  Our chosen block cipher is the Advanced Encryption Standard (AES).  Note 

that the initial vector is concatenated (represented by the || symbol) with the number 1 

represented in binary and zero-padded out to 32 bits (denoted as 132), ensuring a 128-bit 

input to the AES cores.  The initial vector is also incremented (represented by inc blocks) 

before each subsequent AES operation, ensuring unique results for each operation.  The 

results of the AES encryptions are one-time pads, which are XORed with the input blocks 

Ii to produce ciphertext or plaintext outputs Oi, as appropriate.  The additional data block 

and ciphertext blocks Ci are then used to calculate the signature S, along with the block 

lengths (represented by the len() symbol and padded to 64 bits each) and a final one-time 

pad Y0.  The GMULT operation, which is a Galois field multiplication of two 128-bit 

values in the 2128 domain, is instrumental in signature generation.  The values Xi in the 

equations below are intermediate results of GMULT operations.   

NiforiIVAESxorIO Kii ..1))1(||( 321     (3.8) 

)1||( 3210 IVAESY K       (3.9) 

Nifor
ENCwhenO

ENCwhenI
C

i

i
i ..1

1

0
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Figure 3.8  Hardware Implementation of Galois/Counter Mode 

After the final data block is ready (or has been encrypted, in the case of GCM 

encryption), two GMULT operations are required to produce the signature.  The time 

required to perform GMULT thus determines whether or not GCM will offer a 

performance advantage over PMAC.  In the PMAC mode, one AES operation is required 

to produce the signature after the final data block is ready.  Thus, GCM achieves better 
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performance only if the time required to perform two GMULT operations is less than the 

time required to perform one AES operation. 

McGrew and Viega [22] discuss options for implementing GMULT.  The fastest 

option performs the multiplication in only one clock cycle.  They state that the hardware 

complexity for such an implementation is O(q2) logic gates, where q is the block width in 

bits.  As we are using 128-bit blocks, the fastest GMULT implementation thus has a 

complexity on the order of 16,384 gates.  This is on par with a pipelined AES unit [23], 

and may be practically implemented in hardware.  With this fast implementation, the 

signature will be available two clock cycles after the final data block is ready, providing a 

clear performance advantage over PMAC. 

A useful abstraction of the GCM hardware is shown in Figure 3.9.  This 

abstraction represents the combinational logic for signature generation as a single 

function, GHASH.  The contents of the GHASH block are shown in Figure 3.10.  The 

inputs to GHASH are a 128 bit key H, an initial pad Y0, the additional data block A, and 

the ciphertext blocks C1 - CN.  The output of GHASH is the signature T, as shown in 

Equations (3.14) - (3.16).  Using this abstraction allows us to write simple equations for 

signature generation, expressing signatures as a GHASH of various parameters. 
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Figure 3.9  Abstraction of GCM showing GHASH 
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Figure 3.10  GHASH 

The results of using GCM on an actual block of binary data are shown in 

Figure 3.11.  The plaintext is the same 64 byte instruction block used above in Figure 3.6.  

The initial vector is the block’s starting address, left padded with zeros to 96 bits.  The 

additional data block is all zeros.  Figure 3.11 shows the plaintext block, along with the 

resulting ciphertext and signature. 
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Key1: 
Key2: 

ADD_DATA: 
IV: 

0123456789abcdef012345678abcdef0 
fedcba9876543210fedcba9876543210 
00000000000000000000000000000000 
000000000000000003000a8 

Plaintext: Ciphertext: 
3000a80:  e3a02000 
3000a84:  e50b2030 
3000a88:  e59f122c 
3000a8c:  e5812000 
3000a90:  e50b2034 
3000a94:  e1a06000 
3000a98:  e59f0220 
3000a9c:  eb002c5b 
3000aa0:  e2505000 
3000aa4:  0a000033 
3000aa8:  e1a00005 
3000aac:  e3a0102f 
3000ab0:  eb004ad2 
3000ab4:  e3500000 
3000ab8:  0a000004 
3000abc:  e59f3200 

3000a80:  3731cfe8 
3000a84:  92c2b117 
3000a88:  9982c15d 
3000a8c:  61935ea6 
3000a90:  d9744f9f 
3000a94:  b501a5e2 
3000a98:  2aef63da 
3000a9c:  d80cfb18 
3000aa0:  4c439843 
3000aa4:  2f96660e 
3000aa8:  128ec3ba 
3000aac:  745beec3 
3000ab0:  2a2d38a2 
3000ab4:  d3899dd2 
3000ab8:  1a2edbbc 
3000abc:  82349c3c 

S: a68c7a304b00e5ef10c99f7678957f38 
Figure 3.11  Binary Data Block Encrypted, then Signed in Galois/Counter Mode 
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CHAPTER 4 

 

PRINCIPLES OF SECURE PROCESSOR DESIGN 

The previous two chapters have provided background information regarding 

threats to computer security and cryptographic concepts that can be used to help counter 

these threats.  We now delve into the basic principles of secure processor design.  We 

start with the relatively simple case of protecting instructions and other static data.  Then 

we proceed to the more complicated case of protecting dynamic data. 

4.1 Protecting Instructions and Static Data 

Before going into architectural details, we must define a few concepts.  The first 

concept is that of security mode, which specifies the protection levels for software 

(instructions and static data) and dynamic data.  A secure processor should provide 

options to protect both integrity and confidentiality.  Our proposed architecture is 

flexible, allowing the system designer to choose the appropriate security level for the 

target system.  The protection levels for compiled binary software code (including static 

data) and dynamic data may be chosen separately.  For software protection, the designer 

may choose software integrity only mode (SIOM), software confidentiality only mode 

(SCOM), or software integrity and confidentiality mode (SICM).  Similarly, data 

integrity only mode (DIOM), data confidentiality only mode (DCOM), or data integrity 
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and confidentiality mode (DICM) are available for protecting dynamic data.  As their 

names imply, the SIOM and DIOM modes are limited to protecting the integrity of 

software or data.  Instruction or data blocks are stored in binary plaintext that could be 

read by an adversary.  The SCOM and DCOM modes encrypt data to ensure 

confidentiality, but do not ensure their integrity.  The SICM and DICM modes ensure 

both integrity and confidentiality.  The system designer may choose the modes for 

software and data independently, possibly with different levels of protection.  The 

SICM/DICM combination is recommended for maximum security.  This section focuses 

on the relatively simple case of protecting static data and instructions; the architectural 

principles explained here will be expanded in Section 4.2 to cover the more complex case 

of protecting dynamic data. 

Another concept that must be defined is the security boundary.  This is simply the 

boundary beyond which data are potentially vulnerable to tampering by the threats 

delineated in Chapter 2.  Data inside this boundary are said to be in the secure domain, 

and are thus trusted.  In this research, we assume that the processor chip itself is the 

secure domain; data stored on-chip are assumed to be invulnerable, while data stored off-

chip are unsecure.  Thus the security boundary is, conveniently, the processor chip’s 

physical boundary. 

The standard approach to protecting integrity is known as a sign-and-verify 

architecture [4, 24, 25].  As the name implies, a sign-and-verify architecture requires that 

data be signed with a secure signature when they leave the secure domain, and verified 

when they come into the secure domain.  The standard approach to protecting 

confidentiality is encryption, which may be added if desired.  In our architecture, data are 
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encrypted and/or signed when they leave the chip, and then decrypted and/or verified 

when they come back onto the chip. 

The use of cryptography requires that the data be divided up into discrete units.  

This basic unit of security is called a protected block.  Each protected block will be 

independently encrypted, and will have a signature associated with it.  Protected block 

size is a design parameter; however, three factors should be kept in mind when choosing 

a protected block size.  The first is cipher width, which is 128 bits (16 bytes) for the 

standard AES cipher.  Protected block sizes that are some multiple of the selected block 

cipher width would be the most efficient; otherwise, cryptographic operations will require 

some padding.  The second factor is cache line size.  Since a cache line miss results in a 

block of data being brought on-chip and thus crossing the security boundary, the cache 

line size or some multiple thereof is a convenient protected block size.  These first two 

factors are, thankfully, easily harmonized, as common cache block sizes such as 32 bytes 

and 64 bytes are both multiples of the standard AES cipher width.  The third factor in 

choosing protected block size is memory constraints.  Since every protected block has its 

own signature, and those signatures must be stored somewhere in memory, smaller 

protected blocks incur greater memory overhead than larger protected blocks.  

Throughout all the theoretical portions of this dissertation we assume, without loss of 

generality, a system with separate level-1 instruction and data caches with identical cache 

line sizes.  We will mostly confine our discussion to protected block sizes equaling cache 

line sizes, exploring protected blocks of twice the cache line size in Section 5.5. 

Protecting integrity requires that signatures be calculated in such a way that all 

possible attacks on integrity will be detected.  Spoofing attacks can be prevented by using 
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the block text in signature generation. Splicing attacks can be prevented by incorporating 

the block’s address in the signature generation.  One possible variation on the splicing 

attack would be to splice a block from another executable but at the same address into the 

present executable; this can be prevented by using keys unique to each executable.  Static 

program code and data are not vulnerable to replay attacks, which will be considered 

below in Section 4.2. 

Our proposed sign-and-verify mechanism involves three stages: secure 

installation, secure loading, and secure execution [26].  These stages are depicted in 

Figure 4.1.  The first stage is a secure installation procedure, in which binary executables 

are signed and optionally encrypted for a particular processor.  The second stage is secure 

loading, in which the computer system prepares to run the program.  The final stage is 

secure execution, where the program is run such that its integrity and/or confidentiality is 

maintained. 
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Figure 4.1  Overview of Architecture for Trusted Execution 
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The process by which an unprotected program is installed on the system to take 

advantage of hardware support for integrity and/or confidentiality is called secure 

installation.  An unsecured executable file is processed by the CPU to create a secure 

executable file.  The secure installation procedure presented here is similar to that 

proposed by Kirovski et al. [27].  The CPU must perform secure installations in an 

atomic manner, and must not reveal any secret information during or after the 

installation.  The level of protection must be chosen before beginning secure installation 

as flag specifying the selected mode is stored in the header of the secure executable. 

The first step during secure execution is to generate the keys necessary for 

cryptographic operations.  Depending on the cryptographic mode, either one, two, or 

three keys will be required.  These keys may be randomly generated from thermal noise 

in the processor chip [28] or by using physical unclonable functions [29].  The keys must 

be encrypted on-chip using a secret key built into the processor, Key.CPU.  The 

encrypted keys are stored in the header of the secure executable.  These keys must never 

leave the secure domain in their unencrypted form. 

If the secure executable is to run in a software integrity mode (SIOM or SICM), 

then every instruction block and static data block must be signed.  Signature generation 

must use the block text, address, and program keys as discussed above.  Signatures must 

be stored somewhere in the secure executable, either embedded immediately preceding or 

following protected blocks, or in a signature table.  The ramifications of this choice are 

explored in Section 5.1. 
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Encryption is required for modes protecting confidentiality (SCOM and SICM).  

The protected blocks are encrypted via the method of choice and stored in the secure 

executable. 

The secure loading process prepares a secure executable to run on the secure 

architecture.  During this process, the encrypted program keys are read from the secure 

executable header.  These are decrypted using the processor’s secret key (Key.CPU) and 

loaded into special-purpose registers on the CPU.  The plaintext keys may only be 

accessed by dedicated on-chip hardware resources, and, as mentioned above, they should 

never leave the CPU as plaintext.  If a context switch occurs, these keys must be re-

encrypted before leaving the processor to be stored in the process control block.  When 

the context switches back to the secure program, they must be re-loaded into the 

processor and decrypted once again before secure execution may resume. 

The secure execution stage is when the secured program actually runs.  The sign-

and-verify architecture comes into play when protected data are brought into the secure 

domain.  In our design, that occurs when a cache miss causes a protected block to be 

fetched from external memory.  Since the cache is on-chip, and thus a trusted resource, 

all data in the cache are assumed to be trusted; thus, only trusted or unprotected data 

should be placed in the cache. 

On a cache miss, the appropriate protected block must be fetched from memory.  

The block’s signature must also be fetched from memory if the system is operating in an 

integrity mode (SIOM or SICM).  The signature must also be recalculated based on the 

block that was fetched and other parameters as described above.  The calculated signature 

is compared with the fetched signature.  If the fetched and calculated signatures match, 
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then the block is valid and may be inserted in the cache.  If the signatures do not match, 

the block is invalid and an exception is raised.  The operating system may then 

appropriately handle the exception.  If the system is operating in a confidentiality mode 

(SCOM or SICM), the block must be decrypted before being placed in the cache, or 

perhaps even before calculating its signature, depending on the choice of cryptographic 

mode. 

4.2 Protecting Dynamic Data 

Dynamic data is anything that is created and/or changed at runtime.  Dynamically 

generated code, such as that produced by just-in-time compilers, also fits this description, 

and thus may be considered as dynamic data for discussion purposes.  Protecting this data 

produces additional challenges.  Due to its changeable nature, it is subject to replay 

attacks in addition to spoofing and splicing.  A versioning scheme is therefore required to 

ensure that a fetched protected block is fresh.  To that end, we introduce a sequence 

number for each protected block of dynamic data.  These sequence numbers must be 

stored in a table in memory during runtime. 

If encryption is being employed, sequence numbers must be considered during the 

encryption/decryption process.  They are particularly important if OTP encryption is 

being used.  A protected block may need to be encrypted multiple times as it is updated 

throughout the course of a run.  The pads used for encryption must be unique each time.  

Therefore, the sequence number must be incremented at least as often as the block is 

encrypted, and must also be included in the initial vector that is used to calculate the pads 

for encryption to ensure pad uniqueness. 
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A block’s sequence number must also be a parameter in the signatures of dynamic 

data blocks so that signature verification will detect replay attacks.  Furthermore, replay 

attacks may include a replay of the protected block, its signature, and/or its sequence 

number.  Consider attacks where one of either the protected block or its signature is 

replayed, but its sequence number is not.  These attacks will be detected as if it were a 

spoofing attack.  An attack where both the protected block and its signature are replayed, 

but the sequence number is not, will be detected because the sequence number is included 

in the signature generation.  Finally, consider a sophisticated attack where the protected 

block, its signature, and its sequence number are all replayed.  Simply verifying the 

signature will not detect this attack; further protection is needed.  

The traditional method for providing this additional protection was to use a 

Merkle tree over all dynamic data [30, 31].  A Merkle tree involves calculating signatures 

or hashes over all data, and then calculating signatures over these signatures, for as many 

levels as desired.  The amount of data protected by a single signature at each level is 

chosen to set the depth of the tree.  Eventually, some level of the tree will be protected by 

a single signature, known as the root.  The root will contain information from everything 

protected by the tree, and must be stored in a secure location as it will provide the root of 

security.  When one node on a Merkle tree needs to be verified, nodes above it must also 

be verified until a signature can be compared to something that is known to be secure.  

This can lead to large amounts of performance overhead. 

Our previous research has shown that a Merkle tree over all dynamic data is 

unnecessary [32]; only the sequence numbers need to be protected by a tree-like 

structure.  This was independently proposed in [33].  To that end, our architecture uses a 
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tree-like structure such as that depicted in Figure 4.2.  Signatures are calculated for 

blocks of sequence number data.  The signatures for sequence number blocks associated 

with one page of data are XORed together to produce a page root signature.  A page root 

signature is thus the overall signature of the sequence numbers associated with a single 

page of dynamic data.  All the program’s page root signatures are XORed to produce the 

program root signature.  The program root signature is the root of trust, and must be 

stored in a special register on the processor.  Like the program keys, it must be stored in 

the process control block in encrypted form during a context switch.  Managing this tree 

efficiently poses a significant design challenge, which shall be discussed below in 

Section 6.2.  Note that sequence number blocks need not be encrypted [34]. 
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Figure 4.2  Tree Structure for Protecting Sequence Numbers 

As in static data protection, protected blocks of dynamic data are verified when 

they enter the secure domain.  In our architecture, this occurs on a cache miss.  When 
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protecting dynamic data, the first operation required on a cache miss is to fetch the 

sequence number, as the sequence number is required for decrypting the block (when 

using OTP) and/or calculating its signature.  Once the sequence number is available, the 

protected block and its signature can be fetched, and will be decrypted and/or verified as 

in the static case. 

Unlike static data, dynamic data must be encrypted and/or signed when it leaves 

the secure domain.  In our architecture, this occurs on a cache writeback.  As before, the 

first required operation is to fetch the sequence number.  The sequence number must then 

be incremented and the updated sequence number used to encrypt and/or sign the 

protected block.  The encrypted protected block and its signature may then be written to 

memory. 

When sequence numbers are fetched, they must be verified against higher nodes 

in the tree.  When sequence numbers are incremented, the tree must be updated.  As 

mentioned before, managing the tree efficiently poses a serious challenge, which will be 

discussed below in Section 6.2. 

4.3 Comments 

This chapter has presented the basic framework of our sign-and-verify solution.  

We have not yet delved into any particulars, such as how encryption should be 

performed, how signatures should be generated, etc.  These issues must still be addressed, 

and we do so in the following two chapters. 

 

 



 

44 

 

 

CHAPTER 5 

 

GENERAL CHALLENGES IN SECURE PROCESSOR DESIGN 

This chapter examines several challenges that the computer architect will 

encounter when designing a secure processor.  The challenges discussed here are general 

in nature; challenges specifically related to protecting dynamic data are discussed in the 

next chapter.  We address where to store signatures, how to encrypt protected blocks, 

how to sign protected blocks, speculative execution to hide latency, and methods for 

reducing memory overhead.  We also discuss a way to enable secure input and output, 

and some other related topics. 

5.1 Choosing Where to Store Signatures 

One of the first challenges that must be dealt with in designing a secure processor 

is deciding where to store signatures.  This decision influences all three stages: secure 

installation, loading, and execution, and also has implications for system performance.  

Signatures may be either stored on-chip in a dedicated resource or off-chip somewhere in 

memory. 
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5.1.1 Storing Signatures On-Chip 

Storing signatures in a dedicated on-chip memory has great performance 

advantages.  Data stored on-chip can be accessed much more quickly than that stored off-

chip, and is assumed to be safe from tampering.  Also, depending on the on-chip buses 

that are used, signatures may be able to be fetched in parallel with fetching the protected 

block.  However, using a dedicated on-chip memory would require a potentially large 

number of transistors that could be used for other performance-enhancing hardware 

resources.  Also, the amount of data that could be protected would be limited by the size 

of the on-chip memory reserved for signatures. 

A secure installation procedure supporting signatures stored on-chip would create 

a table of signatures for the static blocks in the secure executable file.  The secure loading 

process would then load the contents of that table into the on-chip resource.  Signatures 

of dynamic blocks would be created at runtime.  Context switches would become more 

time-consuming, as the signatures stored on-chip would need to be dumped into the 

process control block and later loaded back in. 

This signature storage scheme may be desirable for a simple system-on-a-chip 

that rarely, if ever, performs context switches, but for high-end embedded systems and 

general purpose systems, it is not likely to be desirable.  The remainder of this chapter 

will therefore assume that signatures will be stored off-chip. 

5.1.2 Storing Signatures Off-Chip 

The two methods for storing signatures off-chip are to either embed the signatures 

with the protected blocks or to store them in a signature table.  An embedded signature 

either immediately precedes or immediately follows the protected block it protects.  The 
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major advantage of embedded signatures is that, with appropriate memory controller 

support, the signature can be fetched in the same pipelined memory operation as the 

protected block.  This is depicted in Figure 5.1 (a).  The figure shows the timing of a 

memory pipeline fetching a 32 byte protected block followed by a 16 byte signature.  The 

first 64-bit chunk is available in 12 clock cycles, with subsequent chunks becoming 

available every two cycles. 

The major disadvantage of embedded signatures is that they clutter and 

complicate the address space.  Of a necessity, they are visible in the physical address 

space, but the security designer must decide whether they will be visible in the virtual 

address space, and, if so, whether there will be an additional “secure address space” 

within which the signatures will not be visible.  Either way, additional address translation 

logic would be required, as blocks of data are no longer contiguous in the physical 

address space.  If the signatures are visible in the virtual address space, cache controllers 

must also be modified to prevent cache pollution from the signatures. 

If this scheme is to be implemented, the signatures for static blocks will be 

embedded with their protected blocks in the secure executable file during secure 

installation.  Secure loading will not need to specially handle the signatures.  During 

secure execution, dynamic protected blocks and their signatures will be written to 

memory together to preserve the embedding scheme. 
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Figure 5.1  Memory Pipeline for (a) Embedded Signatures, (b) Signature Table, and  

(c) Signature Table with Signature Cache Hit 

Storing signatures in a signature table in off-chip memory relieves some of the 

complications of embedded signatures but introduces others.  For instance, it reduces the 

complexity of address translation hardware, reduces address space confusion, and 

relieves cache pollution concerns by storing signatures separately from their protected 

blocks. 

The major disadvantage of this signature storage scheme is that a second memory 

access must be initiated to fetch the signature after the protected block has been fetched.  

This introduces additional performance overhead, as shown in Figure 5.1 (b).  The 

solution to this is to cache signatures on-chip.  The signature cache can be probed in 

parallel with fetching the protected block.  If there is a hit in the signature cache, then the 

signature need not be fetched from external memory, as in Figure 5.1 (c).  This situation 

obviously minimizes the contribution of memory accesses to performance overhead.  If 
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the signature cache access misses, however, the latency depicted in Figure 5.1 (b) still 

applies. 

One approach to designing a signature cache is to use a dedicated cache structure 

with cache lines of the same size as the signatures.  This approach takes advantage of 

existing and well-understood cache designs.  However, this approach may not be 

desirable as it requires an additional large, power-hungry on-chip resource.  An 

alternative approach would be to use a much smaller victim cache structure.  A victim 

cache is a relatively small, fully associative structure for storing evicted data in the hope 

that they will be needed again soon.  In this case, the signatures of blocks that are evicted 

from the instruction and data caches would be placed in the victim cache.  This would 

require that the instruction and data cache lines be widened to include the protected block 

plus its signature.  This approach enlarges existing cache structures, but removes the need 

for all but a simple victim cache for signatures.   An alternative is to regenerate protected 

blocks’ signatures when they are evicted.  This would obviate the need to widen 

instruction and data cache lines, but at the cost of increased performance overhead.  The 

signatures of dynamic and static blocks could use either the same or separate victim 

caches, as desired.  Victim cache depth is a design parameter. 

As with storing signatures on-chip, the secure installation stage must create a 

signature table in the secure executable.  The secure loading stage must copy this table 

into the appropriate location in memory.  During context switches, the contents of the 

signature cache must be invalidated.  When dynamic protected blocks are evicted form 

the data cache, their new signatures should still be written out to memory.  Even though 
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the signatures are no longer contiguous with protected blocks, this should introduce 

minimal performance overhead given sufficient write buffers. 

5.2 Coping with Cryptographic Latency 

Chapter 3 above presented two methods for ensuring confidentiality: symmetric 

key and one-time pad cryptography.  Both of these methods have the potential to 

introduce cryptographic latency, that is, performance overhead caused by 

encryption/decryption.  We here analyze these two methods in the context of a secure 

processor to determine which is likely to introduce the lowest performance overhead. 

As seen in Section 3.1, the straightforward method for encrypting and decrypting 

a block of data is symmetric cryptography.  Equations (5.1) and (5.2) show symmetric 

cryptography being used to encrypt and decrypt, respectively, a 32 byte plaintext block 

with a 128-bit AES cipher.  In this equation, I0:3 and I4:7 are the two 16 byte sub-blocks 

comprising the plaintext block, C0:3 and C4:7 are the corresponding sub-blocks of 

ciphertext, AESe and AESd allude to the AES cipher operating in encryption and 

decryption modes, respectively, and KEY3 is one of the unique program keys discussed 

above in Section 4.1. 

1..0)( 34:43,34:4   iforIAESC iiKEYeii  (5.1) 

1..0)( 34:43,34:4   iforCAESI iiKEYdii  (5.2) 

The major drawback of applying symmetric cryptography in secure processors is 

the large amount of cryptographic latency it induces.  Figure 5.2 (a) shows the 

cryptographic latency incurred by symmetric cryptography when decrypting a protected 

block in our example secure processor.  A 32 byte protected block is fetched from 
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memory in 64-bit chunks.  Each 16 byte sub-block is decrypted independently using a 

128-bit, fully pipelined AES unit that requires 12 clock cycles to complete an AES 

operation.  AES operations in Figure 5.2 are depicted as rows of shaded blocks.  As the 

figure indicates, decryption of a ciphertext sub-block cannot begin until that sub-block is 

completely available.  The end result is that the protected block is not available in its 

decrypted form until 12 clock cycles after it has been completely fetched from memory. 
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Figure 5.2  Cryptographic Latency for (a) Symmetric Key Decryption 

and (b) One-Time-Pad Decryption 

This cryptographic latency can be alleviated by using OTP cryptography.  

Equations (5.3) and (5.4) demonstrate how OTP is used for encryption and decryption, 

respectively.  The initial vector for each sub-block is calculated from the sub-block’s 
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address A(SBi) and the protected block’s sequence number SN, which are expanded to 

128 bits using a secure padding function SP.  This 128-bit value is then encrypted using 

the program key KEY3.  (In OTP, AES need only operate in encryption mode, so the 

subscript e is omitted for clarity.)  The result is the actual one-time pad, which is XORed 

with the plaintext sub-block to produce a ciphertext sub-block when encrypting, or vice-

versa when decrypting. 

1..0))),((()( 334:434:4   iforSNSBASPAESxorIC iKEYiiii  (5.3) 

1..0))),((()( 334:434:4   iforSNSBASPAESxorCI iKEYiiii  (5.4) 

Galois/Counter Mode cryptography intrinsically utilizes OTP for encryption and 

decryption, as shown in Equations (5.5) and (5.6), respectively.  In GCM, the pads are 

produced by concatenating a 96-bit initial vector with a 32-bit counter to form a 128-bit 

value, which is then encrypted.  The initial vector consists of the protected block’s 

address A and sequence number SN, which are extended to 96 bits by a secure padding 

function SP96.  Note that GCM requires only two keys, as opposed to the three keys 

required for the other modes discussed in this dissertation.  When using GCM, we use 

KEY1 to perform all AES operations. 

1..0))2(||),(()( 3296134:434:4   iforiSNASPAESxorIC KEYiiii   (5.5) 

1..0))2(||),(()( 3296134:434:4   iforiSNASPAESxorCI KEYiiii   (5.6) 

The performance advantage of using OTP in a secure processor is evident in 

Figure 5.2 (b).  The sub-block’s address is known at the beginning of the memory fetch 

operation; if we assume that the sequence number is also known at that time, then we 

may go ahead and perform the cryptographic operations required for calculating the one-

time pads in parallel with the memory access.  Thus the pads are ready for use even 
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before the protected block itself is available; a simple XOR operation is all that is 

required for decryption, leading to no cryptographic latency whatsoever.  Furthermore, 

using OTP cryptography makes more efficient use of the pipelined AES unit. 

For blocks of static data, the sequence number is always the same, and so the 

above assumption regarding the sequence number holds.  The confidentiality of static 

data may thus be ensured without incurring any performance overhead.  For dynamic 

data, however, the sequence number must be fetched and possibly validated before pad 

calculation can begin.  As the sequence number is also required for signature generation, 

sequence numbers are necessary in both the DICM and DIOM modes.  Techniques 

discussed below in the next chapter may be applied to minimize the overhead caused by 

sequence numbers. 

5.3 Choosing a Cryptographic Mode for Signature Generation 

Three cryptographic modes were presented above in Section 3.2: cipher block 

chaining message authentication code, parallelizable message authentication code, and 

Galois/counter mode.  This section examines the use of these modes in our example 

architecture, with the memory pipeline, cryptographic pipeline, protected block size, etc. 

as described above.  Each of these modes introduces a different amount of verification 

latency, that is, the time from when the protected block is available until the time that it is 

verified.  In analyzing the performance of these modes, we will focus on verifying blocks 

of static data.  The performance analyses would also apply to protecting dynamic data if 

one assumes that the described actions take place after the sequence number is fetched 

and possibly verified.  For the purpose of clarity, this discussion assumes, without loss of 

generality, that signatures are calculated on plain-text. 
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5.3.1 CBC-MAC 

One well-known cryptographic mode is CBC-MAC, which calculates signatures 

using a chain of cryptographic operations.  An implementation of CBC-MAC in our 

example system is described in Equation (5.7), with all symbols as defined above.   As 

this mode’s name implies, all cryptographic operations must be performed in series; an 

operation must complete before the next one may begin. 

)))),(((( 13:027:42 SNASPAESxorIAESxorIAESS KEYKEYKEY    (5.7) 

The verification latency that CBC-MAC introduces into our sample system is 

shown in Figure 5.3.  In this figure, S denotes the signature fetched from memory, while 

cS denotes the signature being calculated for verification purposes.  The serial nature of 

this cryptographic mode can be plainly seen in this figure.  The protected block is 

completely fetched within 18 clock cycles, but the signature is not ready until 39 clock 

cycles, leading to a verification latency of 21 cycles, including a cycle to compare the 

fetched and calculated signatures. 
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Figure 5.3  Verification Latency for Static Protected Blocks Using CBC-MAC 
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CBC-MAC is a well-known and established method for calculating signatures.  It 

is also very simple to implement, and can be performed in hardware with a single non-

pipelined AES unit.  (Note that performing encryption in addition to signature generation 

would complicate matters, especially if using such simple AES hardware.)  The primary 

drawback is the potentially large verification latencies that it entails, 21 clock cycles in 

our example architecture.  This latency would be less dramatic in systems with longer 

memory access times, as the signature generation would overlap more of the memory 

access.  However, the minimum lower bound on verification latency is set by the number 

of cycles required for an AES operation (plus one for signature comparison), as the final 

operation cannot begin until the protected block is fully available. 

5.3.2 PMAC 

PMAC is an alternative cryptographic mode that may reduce verification latency 

in many systems.  The PMAC mode is applied to our example architecture in 

Equations (5.8) and (5.9).  Using this mode, a signature Sig(SBi) is calculated for each 

128-bit sub-block (Equation (5.8)) and then XORed together to form the overall signature 

(Equation (5.9)).  Each sub-block’s address, A(SBi), is used in calculating the individual 

sub-block’s signature.  Two AES operations are required to calculate each sub-block’s 

signature; these must be performed in sequence.  However, the signatures for each sub-

block are calculated independently, and thus may be calculated concurrently. 

1..0)))),((()(()( 134:42   iforSNSBASPAESxorIAESSBSig iKEYiiKEYi   (5.8) 

)()( 10 SBSigxorSBSigS       (5.9) 

The verification latency introduced by using the PMAC cipher in our example 

system is illustrated in Figure 5.4.  The figure shows the parallel nature of this mode.  
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The verification latency of the PMAC mode in our sample system is 13 clock cycles, 

which is a performance improvement over the CBC-MAC mode.   
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Figure 5.4  Verification Latency for Static Protected Blocks Using PMAC 

The glaring advantage of the PMAC mode is its improved performance.  Its 

downside is that it requires either a pipelined AES unit or two simple AES units.  If a 

pipelined AES unit is used, then the PMAC mode makes more efficient use of it than 

does the CBC-MAC.  Furthermore, the PMAC mode has the same minimum lower bound 

on verification latency as the CBC-MAC, so the simpler mode may be preferable in 

systems where memory access times dominate.  Another disadvantage of PMAC is that it 

is patent encumbered, but the patent holder has promised to “license these patents under 

fair, reasonable, and non-discriminatory terms” [35]. 
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5.3.3 GCM 

The third and final cryptographic mode discussed in Chapter 3 is the 

Galois/counter mode.  This mode is applied to our example system in Equations (5.10) 

and (5.11).  Recall that 96-bit initial vectors are most efficient for GCM [22].  We 

therefore use the aforementioned 96-bit secure padding function concatenated with 32-bit 

counter values as inputs for all AES operations.  Equation (5.11) uses the GHASH 

abstraction for simplicity; see Section 3.3 for the details of this abstraction.  Unlike the 

other two modes discussed above, GCM enforces the encrypt, then sign approach, so the 

two ciphertext sub-blocks C0:3 and C4:7 as calculated according to Equations (5.5) and 

(5.6) are used as parameters to GHASH.  The additional data value is 128 bits of zeros 

(0128), and the program key KEY2 is used for the Galois field multiplications performed 

by GHASH. 

)1||),(( 329610 SNASPAESY KEY  (5.10) 

),,0,,2( 7:43:01280 CCYKEYGHASHS     (5.11) 

Our example system’s verification latency when using GCM is shown in  

Figure 5.5.  In actuality, much of the work of GHASH can be done in parallel with the 

memory operations, with the various GMULT operations being performed as inputs 

become available, leaving only two GMULTs to be performed once the final ciphertext 

sub-block is provided.  This figure assumes that those two GMULT operations are fully 

combinational and require only one clock cycle.  Such an implementation, while 

mathematically possible, is likely not feasible in actual hardware.  As we have seen in 

Section 3.3, the practical minimum time required to perform these two GMULTs is  

two clock cycles.  The minimum lower bound on verification latency for a particular 
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implementation with GCM is either the time it takes to fetch the signature or the time 

required to perform the last two GMULT operations, whichever is larger, plus one cycle 

for signature comparison. Our example system can tolerate GHASH latencies of up to 

four clock cycles without increasing the verification latency, which is shown to be five 

clock cycles in the figure. 
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Figure 5.5  Verification Latency for Static Protected Blocks Using GHASH 

Section 3.3 stated that GCM will provide better performance than PMAC as long 

as the time required to perform two GMULTs is less than the time required to perform an 

AES operation.  In our example system, an AES operation requires 12 clock cycles, so 

GCM yields better performance as long as a GMULT operation requires less than  

six clock cycles.  We have mostly limited our discussion thus far to a fully combinational 
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GMULT implementation that requires one clock cycle.  Although this implementation is 

practical, the complexity it entails may be undesirable in some applications.  Several 

alternative, sequential implementations of GMULT with lower complexity have been 

proposed [36-39].  No matter which implementation of GMULT is chosen, as long as it 

requires less than six cycles, GCM will outperform PMAC.  Otherwise, the lower 

complexity PMAC mode is more attractive.  The remainder of this dissertation assumes a 

GMULT implementation taking no more than two clock cycles, which will yield 

performance as in Figure 5.5. 

5.4 Hiding Verification Latency 

A conservative approach to designing a secure processor would wait until a 

protected block is verified before executing its instructions or using its data.  We call 

such an implementation wait ‘till verified (WtV).  This exposes the verification latency 

discussed above, leading to possibly extensive performance overhead. 

Ideally, the verification latency should be completely hidden, thus introducing no 

performance overhead.  This would require the processor to resume execution as soon as 

the whole protected block is available.  Such a scheme is called run before verification 

(RbV).  Protected blocks, however, may have been subject to tampering, which will not 

be evident until signature verification is complete. 

The solution to this quandary is to allow the speculative execution of untrusted 

instructions and the speculative use of untrusted data.  Untrusted instructions, and 

instructions using untrusted data, must not be allowed to commit until their signatures 

have been verified.  This prevents tampered data from propagating into CPU registers or 

memory.  For out-of-order processors, RbV support requires a simple modification to the 
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reorder buffer, adding two verified flags (one for instruction verification and one for data 

verification) which will be updated as blocks are verified.  Instructions may not be retired 

until those flags are set.  The memory access unit must also be modified to prevent an 

unverified instruction from writing data to memory.  In-order processors require an 

additional resource: the Instruction Verification Buffer (IVB). 
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Figure 5.6  Instruction Verification Buffer 

The structure of the IVB is shown in Figure 5.6.  The IVB’s depth (number of 

instructions whose information it can hold) is a design parameter, represented by n in the 

figure.  Two IVBs should be implemented, one for instructions and one for data.  As 

instructions are fetched on I-cache misses, their information is placed in the instruction 

IVB.  When an instruction causes a D-cache miss, its information is placed in the data 

IVB.  Once the processor has completed execution of an instruction, it checks the IVBs to 

see if that instruction or its data are pending verification.  If it is not marked as verified, 

the instruction may not be retired.  In the unlikely event that newly fetched or issued 
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instructions will not fit in the IVBs, the processor must stall until enough instructions 

have been removed so that new instructions can be inserted. 

Shi and Lee point out that RbV schemes are vulnerable to side-channel attacks if a 

malicious memory access or jump instruction has been injected into an instruction block 

[40].  When such instructions execute speculatively during verification, they may reveal 

confidential data by using it as the target address.  This concern may be alleviated by 

stalling all instructions that would result in a memory access until they have been 

verified.  Alternatively, a bus encryption scheme may be employed, but this would likely 

increase complexity and performance overhead. 

5.5 Coping with Memory Overhead 

The sample architecture we have discussed so far would introduce a hefty 

memory overhead.  For every 32 byte protected block, a 16 byte signature is required.  

This overhead could be prohibitive on embedded systems with tight memory constraints.  

The solution, alluded to in Section 4.1, is to make the protected block size a multiple of 

the cache line size. 

In this section we consider modifying the example architecture to use 64 byte 

protected blocks, which are twice the size of the 32 byte cache lines.  This introduces two 

additional 128-bit sub-blocks, I8:11 and I12:15.  The equations for the various cryptographic 

modes presented above need only be extended to take these additional sub-blocks into 

account.  For CBC-MAC, the chain of cryptographic operations may be extended to 

include the two additional sub-blocks.  For PMAC, signatures for the two additional sub-

blocks will be independently calculated, just like the first two, and all four signatures 
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XORed together to produce the total signature.  If GCM is used, the GHASH 

implementation must be expanded to handle four sub-blocks instead of two. 

On a cache miss, the cache line that was missed in the cache is needed 

immediately, while the other cache line contained within the protected block is not.  For 

ease of discussion, we call the immediately needed block the missed block and the other 

block the unmissed block.  A policy is required to handle the unmissed block on a cache 

miss.  Additionally, the amount of data transferred form memory influences both 

performance and power overhead.  The most naïve implementation would always fetch 

the entire protected block on a cache miss, and discard the unmissed block.  A more 

sophisticated implementation would place the unmissed block into the instruction or data 

cache, as appropriate, thus exhibiting a prefetching behavior to take advantage of 

memory access locality.  This could prevent future cache misses, but comes at the risk of 

cache pollution. 

The actions required on a cache miss when using double-sized protected blocks 

can be broken down into four cases.  These cases, which are outlined in Figure 5.7, are 

divided on the basis of which cache line within the protected block was the missed block, 

and whether or not the other cache line is also in the cache or is dirty.  If the unmissed 

block is available on-chip and is not dirty, then the on-chip version can be used for 

signature generation.  If it is not available on-chip, or is dirty, then the original version of 

the block must be fetched from memory.  Note that if the unmissed block is on-chip and 

dirty, the unmissed block fetched from memory must be discarded after signature 

verification.  For convenience, we call the first cache line in a protected block Block A, 

and the second Block B. 
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Figure 5.7  Memory Layout and Cache Miss Cases 

Even if the unmissed block is available on-chip and is not dirty, fetching it from 

memory may be more economical in some situations.  For instance, in Case 2, Block B is 

available on-chip for signature generation.  However, if the system is using embedded 

signatures, then one continuous memory operation to fetch the entire protected block and 

its signature is faster than fetching Block A and then starting a new memory operation to 

fetch the signature.  As Figure 5.8 illustrates, if a new memory operation has to be started 

to fetch an embedded signature, the resulting latency is the same as if the signature were 

fetched from a signature table. 
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Figure 5.8  Memory Pipeline for Case 2:  

(a) Fetching Block B with Embedded Signatures, and  

(b) Not Fetching Block B with either Embedded Signatures or Signature Table 

We demonstrate the verification latency introduced by doubling the protected 

block size using our example architecture with embedded signatures and GCM 

cryptography.  Cases 1 and 2 are illustrated in Figure 5.9.  We fetch the whole protected 

block in both cases as it is necessary in Case 1 and fetching the unmissed block reduces 

memory latency in Case 2, as described above.  Our architecture thus automatically 

fetches the entire protected block when Block A is the missed block.  As the figure 

shows, the verification latency is 13 clock cycles for both of these cases. 
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Figure 5.9  Verification Latency for Double Sized Static Protected Blocks Using 

GHASH, Cases 1 and 2 

Cases 3 and 4, however, are slightly more complicated.  As these cases involve a 

miss on Block B, the cache must be probed for Block A before starting a memory access.  

If Block A is not found in the cache, or is dirty, then the whole protected block must be 

fetched.  This is Case 3 and, as depicted in Figure 5.10, incurs a verification overhead of 

14 clock cycles.  (Recall that verification overhead is measured from the time that the 

cache line would have become available if no security extensions were present.)  If Block 

A is found in the cache, then it need not be fetched, significantly reducing the memory 

overhead.  Figure 5.11 shows Case 4, which only has a 6 clock cycle performance 

overhead.  Thus, with some added complexity up front (the cache probe), significant 

performance gains can be achieved for Case 4 cache misses. 
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Figure 5.10  Verification Latency for Double Sized Static Protected Blocks Using 

GHASH, Case 3 
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Figure 5.11  Verification Latency for Double Sized Static Protected Blocks Using 

GHASH, Case 4 
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5.6 Securing I/O Operations 

Providing blanket protection for all input/output devices would be a very tricky, if 

not impossible, proposition.  The first problem is that many devices may exist in separate 

chips on a board, and the connections between these chips may be vulnerable to physical 

attacks.  Complete protection would require encryption of all communications between 

these chips, entailing a matched, customized chipset with cryptographic hardware on 

every chip, and introducing high performance overheads. 

Another problem with securing input and output is the wide variety of I/O 

devices.  Some devices transmit or receive a byte at a time; others may stream large 

amounts of data.  Furthermore, other than standardized bus protocols, memory mapped 

interfaces are not consistent.  Supporting such a wide variety of devices could require 

custom hardware on the CPU to communicate with each device. 

Rather than enforce the security of I/O at the hardware level, we propose to 

provide hardware acceleration for cryptography to be performed in software.  We do this 

by exposing the hardware used for encrypting/decrypting and signing protected blocks on 

a memory mapped interface.  This will allow software developers to use the existing 

hardware to efficiently and securely perform cryptographic operations.  Device drivers 

for existing peripherals can thus be modified to use the cryptographic accelerator in ways 

that are appropriate for each individual peripheral.  Software development expertise, 

which is much more prevalent than hardware development expertise, can thus be 

leveraged to increase security.  Furthermore, performing cryptography using an on-chip 

hardware resource rather than a software implementation of a cryptographic algorithm 

reduces the vulnerability to side-channel attacks. 
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The memory mapped interface for accessing the cryptographic software is shown 

in Figure 5.12.  This interface is agnostic with respect to the underlying cryptographic 

system used (AES encryption vs. OTP, or CBC-MAC vs. PMAC vs. GCM).  The 

interface shown here is for encrypting and/or signing 32 byte blocks; it could easily be 

modified to support smaller or larger blocks as needed.  The right hand column in the 

figure depicts several 128-bit registers, a 16-bit register, and an 8-bit register.  The 

addresses in the left column are relative to a base address, which will be assigned by the 

processor designer.  We assume a byte-addressable architecture. 

The 128-bit registers allow the software developer to specify the inputs for, and 

read the outputs from cryptographic operations.  Inputs include the keys to be used (the 

number of which will be determined by the underlying cipher) and the initial value IV to 

be used for encryption and/or signature generation (again, dependent on the underlying 

cipher).  If the operation to be performed includes encryption, the 32 byte plaintext block 

must be loaded into the two plaintext registers, one for each 16 byte sub-block.  If the 

operation includes decryption, then the ciphertext block must be loaded into the two 

ciphertext registers.  Finally, the appropriate 16-bit control word should be set to start the 

cryptographic operation.  The 8-bit status word should be polled until it indicates that the 

operation is complete.  At that point, the results of the operation should be read from the 

plaintext, ciphertext, and/or signature registers as appropriate. 
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Figure 5.12  Memory Mapped Interface for Cryptographic Acceleration 

One possible format for the control word is shown in Figure 5.13, with the most 

significant bit on the left and the least significant on the right.  This format should, of 

course, be tailored to fit the underlying cipher implementation.  The sample format 

includes three 3-bit fields for selecting each of the up to three keys used in the 

cryptographic operations.  Each key may be user defined (specified in the Key n) 

registers, the CPU key, or any of the up to three program keys for the currently running 

secure executable.  A bit is used to specify whether the desired operation is encryption or 

decryption; another bit specifies whether or not signature generation is desired. 
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Figure 5.13  Control Word Format 

The state machine controlling the cryptographic hardware will look for a 1 in the 

lowest bit to begin operations.  It will then set this bit to 0 and also zero out the status 

register.  The order of encryption and signature generation will be determined by the 

underlying hardware; greater flexibility may be implemented but at the cost of greater 

complexity.  When the cryptographic operation is complete and all results are in their 

respective registers, the state machine will set the status register’s value to 0x01, which 

will trigger the polling software.  An interrupt system could be implemented if desired to 

prevent polling, but this would again increase complexity. 

5.7 Dynamically Linked Libraries and Dynamic Executable Code 

At this point, we must consider two special cases.  The first involves dynamically 

linked libraries (DLLs), which contain binary executable code that is potentially shared 
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among multiple programs.  The simplest option would be to forbid the use of DLLs on 

the secured system, but that might prove too restrictive.  A better option would be to 

perform a secure installation of any libraries that will be needed, using a single set of 

program keys for the libraries.  Three additional registers would be needed to store the 

library program keys in addition to the currently running program’s keys.  During secure 

loading, the library keys should be read in and decrypted.  When a program jumps to a 

library function, the library keys would then be used to decrypt and authenticate the 

instructions and static data in the library. 

The second case involves instructions that are generated at runtime, including 

just-in-time compilation and interpreted code.  One option is to flag pages containing 

dynamically generated instructions as unprotected.  Another option would be to have the 

program generating the instructions insert signatures as instruction blocks are created.  

This requires that the generating program be trusted, and thus the output of the program 

would also be trusted.  Still another option is to treat dynamic instructions like blocks of 

dynamic data and protect them accordingly [41]. 

5.8 Comments 

A computer architect must address many issues when designing a secure 

processor.  This chapter has addressed issues that apply either to protecting instructions 

and static data, or to protecting instructions, static, and dynamic data.  The architectural 

solutions we have herein proposed should allow such protection without incurring a large 

performance overhead.  However, the designer must still face challenges peculiar to the 

protection of dynamic data; these are addressed in the next chapter.
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CHAPTER 6 

 

SECURE PROCESSOR DESIGN CHALLENGES FOR 

PROTECTING DYNAMIC DATA 

This chapter continues the theme of addressing challenges that arise when 

designing secure processors.  Here, we focus on challenges related specifically to 

protecting dynamic data.  We first discuss the troubling issue of sequence number 

overflows.  The remainder of the chapter is related to the management of the tree-like 

structure mentioned in Section 4.2. 

6.1 Preventing Sequence Number Overflows 

When using OTP cryptography, each encryption operation must use a unique pad.  

Sequence numbers are used to ensure pad uniqueness for the encryption of dynamic data.  

The sequence number associated with a protected block must be incremented whenever 

that block is encrypted (i.e., whenever it is evicted from the cache).  A problem arises 

when the sequence number overflows, that is, when an increment results in it returning to 

its starting value.  Using this overflowed sequence number to calculate a pad for OTP 

encryption will result in pad reuse, which violates the very principle of OTP. 

The obvious solution to prevent sequence number overflows is to use large 

sequence numbers that are highly unlikely to ever overflow.  For instance, if a 32-bit 
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sequence number is incremented at a rate of one gigahertz (GHz), it will overflow in  

4.29 seconds.  A 64-bit sequence number incremented at the same rate will overflow in 

585 years, which is likely to be far beyond the useful life of the system.  However, larger 

sequence numbers lead to greater memory overhead and longer latency times. 

The solution to this quandary is a split sequence number scheme, first introduced 

by Yan et al. [42].  In the split sequence number scheme, each dynamic protected block 

has its own 8-bit sequence number, called the minor sequence number.  Several minor 

sequence numbers are associated with a 56-bit major sequence number.  A protected 

block’s full sequence number consists of the major sequence number concatenated with 

the minor sequence number, yielding a total of 64 bits.  The split sequence number 

scheme used in our architecture is depicted in Figure 6.1.  We assume a sequence number 

block of 32 bytes, which allows 25 8-bit minor sequence numbers to be associated with a 

single 56-bit major sequence number.  Whenever any of the minor sequence numbers 

overflow, the major sequence number is incremented and all the data blocks associated 

with that major sequence number must be re-encrypted and re-signed. 

 

 

Major Minor Minor Minor … Minor

32 bytes

56 bits 8 bits
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Figure 6.1  Split Sequence Number Block Layout 
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Let us assume a four kilobyte page size for our example system.  Using 32 byte 

protected blocks, we thus have 128 data blocks per page when storing signatures in a 

signature table, and 85 data blocks per page (plus some padding) when embedding 

signatures with protected blocks.  As we have seen above, each sequence number block 

contains 25 sequence numbers, thus requiring six sequence number blocks for the 

signature table case and four sequence number blocks for the embedded signature case.  

In both cases, part of the final sequence number block for each page will be unused.  The 

remainder of this chapter will assume that we are using embedded signatures, and thus 

require four 32 byte sequence number blocks per page of dynamic data. 

6.2 Efficiently Managing the Tree 

Perhaps the greatest challenge in protecting dynamic data is managing the tree-

like structure that was first introduced in Section 4.2.  This structure is necessary to 

prevent sophisticated replay attacks that replay a protected block, its signature, and its 

sequence number.  The tree must be managed in an efficient manner to minimize the 

performance overhead that it will introduce.  Note that if sequence numbers are stored in 

an on-chip resource, this tree-like structure is not necessary.  Storing sequence numbers 

in an on-chip resource thus reduces overall complexity and performance overhead, but at 

the cost of limiting the number of protected dynamic blocks.  For the remainder of this 

section, we assume that sequence numbers are stored off-chip, requiring the tree to 

protect them. 

Our approach to managing the tree during secure execution is event driven.  When 

protecting static blocks, the primary event of interest is an instruction cache miss, or a 

data cache miss on a static block.  The complexity required for protecting dynamic data 
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blocks is much greater due to the need to defend against replay attacks.  In addition to 

high security, we would like to introduce as little overhead as possible.  To that end, we 

have associated operations on each part of the tree with events during secure execution.  

The goal is to associate high-overhead operations with the rarest events, while ensuring 

that more common events have lower overhead. 

The most frequent of the events discussed in this chapter should be data cache 

misses.  Therefore, the data cache miss should be optimized if at all possible.  A block’s 

sequence number is required for both decryption and signature generation, putting 

sequence number fetching on the critical path of a data cache miss.  We introduce an 

additional on-chip cache resource to reduce the overhead of sequence number retrieval.  

This cache, called the sequence number cache, will hold the sequence number blocks 

discussed above in Section 6.1.  As one sequence number block contains sequence 

numbers for multiple data blocks, the sequence number cache exploits both temporal and 

spatial locality of dynamic data accesses. 

6.2.1 Page Allocation 

The secure structures required for the dynamic data protection architecture must 

be prepared for each dynamic data page that is allocated.  First, its sequence number 

blocks must be initialized and used to calculate the initial page root signature (see  

Figure 4.2).  The sequence number blocks and the page root signature must be written to 

memory in their appropriate reserved areas.  The starting address or offset from a known 

starting address for the page’s sequence number blocks must be added to the page’s entry 

in the page table.  Secondly, the signatures for the page’s data blocks must be calculated 

and stored in the appropriate location. 
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One option for implementing these procedures is to assume that the operating 

system is trusted and allow it to perform the necessary operations on memory allocation.  

This could potentially introduce high overhead.  The other option is to perform the 

operations in hardware and provide an instruction allowing the OS to trigger them.  We 

choose the latter option for both procedures. 

Sequence number blocks must be initialized and used to calculate the page root 

signature before the allocated page can be used.  One approach to calculating the page 

root signature would be to sign the four sequence number blocks using the mode of 

choice and then XORing the resulting signatures together.  Another method would be to 

extend the desired mode to sign all four blocks at once.  For CBC-MAC, this simply 

requires extending the chain of AES operations.  Doing this for PMAC would effectively 

be the same as the method previously mentioned.  For GCM, the GHASH function must 

be extended to handle eight 128-bit blocks.  This can be implemented with the same 

hardware used to sign two 128-bit blocks by modifying the state machine that controls 

the GMULT unit. 

The program root signature is calculated by XORing the page root signatures of 

each dynamic data page.  Thus, when a new dynamic data page is allocated, the program 

root signature must be updated by XORing it with the newly calculated page root 

signature.  All calculations on the program root signature must be performed on-chip.  As 

stated in Section 4.2, it must never leave the CPU in plaintext form. 

The other task required for new dynamic data pages is data block signature 

initialization.  This could be done on page allocation, but that could introduce significant 

overhead.  Instead, we propose to create a block’s signature on its first write-back.  A 
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block initialization bit vector must be established with a bit for each data block in the new 

page (85 bits for our example system with embedded signatures).  This bit vector 

specifies which data blocks in the page have been used, with each block initially marked 

as unused.  The block initialization vector is stored in the page table. 

The memory structures described above are summarized in Figure 6.2.  Part (a) 

shows the protected dynamic data page with embedded signatures.  Part (b) shows the 

new fields required in the page table, which must be loaded into an expanded TLB.  The 

first field specifies whether this page contains static or dynamic data.  The second field is 

the block initialization vector.  The third field is a pointer to the page’s root signature in 

the page root signature table (part (c) in the figure).  The final field is a pointer to the first 

sequence number block for the page (part (e) in the figure). 
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Figure 6.2  Memory Structures for Protecting Dynamic Data 
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6.2.2 TLB Miss and Write-back 

On a TLB miss, information about a data page is brought into the TLB.  If the 

page in question is a dynamic page, the aforementioned extra data required by this 

architecture must be loaded from the page table and stored in the TLB at this point.  The 

page root signature for the data page should also be stored in the TLB.  The integrity of 

the program root signature is also verified at this time.  The signatures from every active 

dynamic data page are retrieved from the TLB or from memory.  These signatures are 

XORed together to recalculate the current program root signature.  If the calculated 

program root signature does not match that stored on on-chip, then the page root 

signatures have been subjected to tampering and an exception is raised. 

The overhead introduced by the architecture on a TLB miss depends on the 

number of protected dynamic data pages at the time of the miss.  It also depends on 

design choices made when implementing the architecture. The page root signatures for 

every protected data page are required.  Signatures currently residing in the TLB should 

be used, as the data in memory might be stale.  All signatures not currently in the TLB 

must be fetched from memory. 

This situation leads to a design choice.  Consider the case where the TLB contains 

a noncontiguous subset of the total page root signature table.  In some memory 

architectures, fetching only the signatures not currently in the TLB would introduce 

greater memory overhead than simply fetching all signatures and ignoring those already 

in the TLB.  This is due to the longer latencies introduced by starting new memory 

fetches to skip the currently cached signatures.  At the cost of additional TLB controller 
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complexity, control logic could be developed to determine the optimal operation on a 

signature-by-signature basis. 

Our example system has a memory latency of 12 clock cycles for the first eight 

byte chunk, and two clock cycles for subsequent chunks.  Fetching a 16 byte signature by 

initiating a new fetch operation would cost 14 clock cycles.  Fetching the same signature 

as part of a longer fetch would only cost four clock cycles.  Starting new memory fetches 

to skip signatures currently in the TLB is only advantageous when four signatures must 

be skipped.  Therefore, we choose the simpler implementation of fetching all page root 

signatures on a TLB miss and simply substituting those found in the TLB. 

After each signature becomes available from memory, a simple XOR operation is 

required for recalculating the program root signature.  Once the final signature has been 

processed, the recalculated program root signature is compared with that stored on the 

chip.  This operation takes less than one clock cycle.  Therefore, the added overhead on a 

TLB miss due to program root signature verification is simply the time required to fetch 

the page root signatures for all protected data pages.  This overhead, tTLBmiss, may be 

calculated for our example architecture according to Equation (6.1), in which np 

represents the number of protected dynamic data pages.  The first term in the equation 

covers fetching the two chunks comprising the first signature while the second term 

covers fetching the remaining signatures. 

]4)1[(14 xnptTLBmiss      (6.1) 

A page root signature will be updated when the sequence number for a data block 

within that page is incremented.  The program root signature will also be updated at that 

time.  See Section 6.2.3 below for discussion on the handling of sequence numbers.  Thus 
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the only action required upon a TLB write-back is to write the page root signature and 

block initialization bit vector contained in the TLB entry being evicted to memory. 

TLB write-backs thus introduce negligible overhead.  If the page root signature 

contained in the entry to be evicted is not dirty, then no operations are required.  If it is 

dirty, the only required operation is to place the appropriate page root signature and bit 

initialization vector into the write buffer, which will independently write it to memory 

when the bus is free. 

6.2.3 Sequence Number Cache Miss and Write-back 

When a block’s sequence number is needed, it will first be sought in the sequence 

number cache.  If the requested sequence number is not found in the sequence number 

cache, it must be fetched from memory.  At this point, the integrity of the sequence 

numbers from the data page in question must be verified.  This requires all four sequence 

number blocks associated with the page.  These blocks may be retrieved from the cache 

or from memory as appropriate.  The four sequence number blocks are signed to calculate 

the page root signature as described in Section 6.2.1.  This calculated page root signature 

is checked against that stored in the TLB.  If they do not match, then a trap to the 

operating system is asserted. 

Some of the sequence number blocks needed to calculate the page root signature 

may already be cached; the rest must be fetched from memory.  As with the TLB miss 

handling scheme, the implementation must balance overhead versus complexity.  For our 

sample implementation, we choose a scheme of moderate complexity.  On a sequence 

number cache miss, the sequence number cache is probed for the page’s first sequence 

number block.  If it is found in the cache, the cache is probed for the next block and so 
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forth until a block is not found in the cache.  A memory fetch is initiated for the first 

sequence number block not found in the cache and all subsequent sequence number 

blocks associated with that page.  Further probing for the rest of the blocks occurs in 

parallel with the memory fetch.  If a sequence number block is found in the cache, the 

cached version is used and the version from memory is ignored.  The blocks that were not 

previously cached are inserted in the cache.   

The performance overhead incurred on a sequence number cache miss depends on 

the amount of data fetched from memory and the chosen cryptographic mode for 

calculating the signature.  We may set the upper bound for our example system by 

examining the worst case scenario of having to fetch all four sequence number blocks.  

The memory latency in this case would be 43 clock cycles, including one cycle required 

to probe the cache for the first block, 18 cycles to fetch the first block, and eight cycles to 

fetch each remaining block.  The total performance overhead will depend on the 

cryptographic mode; PMAC would lead to a total overhead of 55 clock cycles, while 

GCM with a single-cycle implementation of GMULT would require 45 clock cycles. 

When sequence number blocks are evicted from the sequence number cache, no 

cryptographic activity is required.  Furthermore, the page root signature is updated during 

data cache write-back, and will be written to memory during a TLB write-back.  Thus the 

only operation required is to place the evicted sequence number block in the write buffer 

to be written to memory when the bus is available.  This introduces negligible overhead. 

6.2.4 Data Cache Miss on a Dynamic Block 

Data block verification is performed on data cache read misses for dynamic 

blocks and write misses on blocks that have already been used.  Therefore, on a write 
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miss the first task is to check the block’s entry in the block initialization bit vector in the 

TLB.  If the block has not yet been used then no memory access is required.  The cache 

block is simply loaded with all zeros, preventing malicious data from being injected at 

this point. 

If the miss was a read miss or a write miss on a previously used block, then the 

data block must be fetched, decrypted, and/or verified using one of the methods described 

above.  Recall that a protected block’s sequence number is required for calculating its 

signature, and also for decrypting the block when using OTP or GCM.  Therefore, 

fetching the sequence number is in the critical path for dynamic data verification.  The 

sequence number is retrieved as described above.  Once the sequence number is 

available, the cryptographic operations may commence in parallel with fetching the data 

block from memory. 

We have seen that the first task that must be performed on a data cache miss is to 

request the appropriate sequence number form the sequence number cache.  In our 

sample system, this takes only one clock cycle on a sequence number cache hit, and up to 

55 clock cycles when using PMAC, or 45 clock cycles when using GCM.  Once the 

sequence number is available, the verification timing for a dynamic block is the same as 

for a static block. 

6.2.5 Data Cache Write-Back 

The data cache write-back procedure must be modified to support integrity and 

confidentiality.  When a dirty data block from a dynamic data page is chosen for eviction, 

it must be encrypted and its signature calculated.  Once again, the sequence number fetch 

is on the critical path, so the current sequence number must be fetched before any other 
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operations.  Once the sequence number is available, the minor sequence number must be 

incremented.  If the increment causes a minor sequence number overflow, then the major 

sequence number must also be incremented.  Such an increment requires special handling 

as described below. 

Regardless of whether or not there was a minor sequence number overflow, the 

page root signature and program root signature must be updated at this point.  The 

signature of the sequence number block in its existing form is XORed with the page root 

signature contained in the TLB, effectively subtracting it.  The signature of the updated 

sequence number block then added into the page root signature via another XOR.  The 

same operations are performed on the program root signature to update it.  These 

operations calculate the signature of the sequence number twice, once before and once 

after the sequence number increment.   

The pre-increment signature generation can be eliminated if the sequence number 

cache lines are widened to include the sequence number block’s current signature.  This 

is similar to the technique described in Section 5.1.2.  The signature would be populated 

when it is calculated as part of sequence number verification on a sequence number cache 

miss, and also after a sequence number increment.  As before, this decreases performance 

overhead at the cost of greater cache complexity. 

Once the new sequence number is available, the dynamic data block under 

eviction may be encrypted and/or signed.  If hardware cryptographic resources permit, 

the cryptographic operations for encryption may be interspersed with those for updating 

the page root signature.  When using PMAC and cached sequence number signatures, this 

leads to a latency of 27 clock cycles after the sequence number is available; this drops to 
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18 cycles when using GCM with a single-cycle GMULT implementation.  When running 

with double sized protected blocks, the latencies increase to 31 and 21 clock cycles for 

PMAC and GCM, respectively. 

6.2.5.1 Minor Sequence Number Overflow 

If a minor sequence number overflow occurs, the major sequence number must be 

incremented.  This requires that all data blocks associated with that sequence number 

block and are not currently in the cache must be fetched, decrypted and/or validated, re-

encrypted and/or re-signed, and written back to memory.  Those that are currently in the 

data cache may be ignored, but the rest must be fetched from memory, re-encrypted 

and/or re-signed, and written back to memory.   

The best case scenario would occur when all blocks reside in the cache.  In this 

case, 24 cache probes must be performed, which may be overlapped with the 

cryptographic operations required to update the page root signature and encrypt/sign the 

data block.  The best case overhead in the event of a minor sequence number overflow is 

thus either 24 clock cycles or the time required to evict a dynamic protected block 

without an overflow, whichever is longer. 

The worst case scenario is when none of the other 24 blocks are available in the 

cache, and the evicted block is not the first among the 25.  In this case, 24 blocks must be 

fetched from memory, with a new memory access started.  (In our example system with 

embedded signatures, it is faster to start a new memory fetch to skip an unwanted block 

and its signature than to simply continue fetching and ignore the unwanted data.)  The 

time required to fetch all 25 protected blocks and their signatures is 308 cycles.  

Assuming a pipelined AES unit and OTP (or GCM) cryptography, cryptographic 
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operations using the old and new major sequence number can be interleaved; thus the 

final protected block will be re-encrypted and re-signed at the same time that its previous 

signature has been verified.  Thus, with PMAC, the total worst case overhead from a 

minor sequence number overflow is 317 cycles.  With GCM, it would only be 309 cycles, 

as GHASH operations would complete while fetching the final signature.  These figures 

assume infinite write buffers; in an actual system there would likely be additional 

overhead from writing back the re-encrypted and/or re-signed protected blocks due to 

waiting for write buffers to become free. 

One option that should be considered is integrating this functionality with the 

DMA controller.  Such an integration would allow the processor to continue executing 

while the re-encryption and/or re-signing takes place in the background.  The processor 

would only have to stall if there were a cache miss on one of the 25 affected protected 

blocks. 

6.3 Comments 

We have explored the challenges related to protecting dynamic data, including 

how to efficiently store sequence numbers and prevent sequence number overflows.  We 

have also developed a tree-like structure for defending dynamic data against replay 

attacks.  This tree may be managed efficiently by limiting its scope to protecting 

sequence numbers and maintaining it on events such as TLB and cache misses.   The 

approaches discussed in this chapter allow the protection of dynamic data without 

incurring prohibitively large amounts of overhead.
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CHAPTER 7 

 

SECURE PROCESSOR DESIGN EVALUATION 

Cycle-accurate simulation software was used to evaluate the performance 

overhead of our proposed secure processor architecture and explore various design 

choices and tradeoffs as discussed above.  This chapter describes the methodology used 

in evaluating the architecture with the simulator and the observed results.  We start with 

an overview of the experimental flow.  We then discuss the simulator we have developed, 

the simulation parameters used in our evaluation runs, and the benchmarks that are 

chosen for simulation.  We then present the results of our simulations, evaluating the 

performance of the techniques proposed in Chapters 5 and 6 for each design choice of 

interest.  Finally, we use the simulation results to develop a mathematical model for 

predicting performance overhead. 

7.1 Experimental Flow 

The experimental flow for evaluating our proposed architectures is illustrated in 

Figure 7.1.  We start with uncompiled source code for benchmark applications of interest, 

which are described in Section 7.3 below.  These are compiled using a cross-compiler to 

generate executable binaries in the standard Executable and Linkable Format (ELF) [43].  
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The cross-compiler encodes the executables for the Advanced Reduced Instruction Set 

(RISC) Computer Machine (ARM) instruction set.  These binaries may then be run in the 

simulator under a baseline configuration without security enhancements.  The simulator, 

which is described in Section 7.2, mimics an embedded microprocessor based on the 

ARM architecture, and produces cycle-accurate execution times for benchmarks run 

thereon.  The benchmark binaries are then run with the simulator configured to model a 

secure processor architecture with the various features as described in Chapters 4-6.  

Once simulation runs are completed, the relevant results can be mined from the simulator 

outputs. 
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Figure 7.1  Experimental Flow 

7.2 Simulator and Parameters 

The simulator used to evaluate the performance of the proposed architectures is a 

derivative of sim-outorder, the most detailed simulator from the SimpleScalar suite [44].  

The simulator is updated to provide a cycle-accurate timing analysis for our secure 
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processor, and supports many of the design choices and tradeoffs discussed in this 

dissertation.  Specifically, the simulator supports the following options: 

 Protecting software and/or data integrity and confidentiality 

 CBC-MAC, PMAC, and GCM cryptographic modes 

 Storing signatures in a signature table or embedded with protected blocks 

 Signature victim cache presence and size 

 Sequence number cache size 

 Instruction verification buffer (IVB) presence and depth 

As our proposed architecture is event-driven, so is our simulator: the bulk of the 

simulator updates are in various event handlers.  The instruction and data cache miss and 

TLB miss handlers have been updated as appropriate.  Sequence number cache support 

was added and its miss handler written.  Data structures and routines were written to 

provide support for victim caches and IVBs; these were written to reuse as much code as 

possible when using separate instances of these resources to protect static and dynamic 

data.  Using the IVBs required modifications to the instruction issuing and memory 

fetching code.  The source code for our updated simulator, which we call simsec-outorder 

is available as an electronic appendix to this dissertation. 

Performance overhead is analyzed by using the simulator to run the benchmark 

programs described in Section 7.3.  The SimpleScalar metric of interest for performance 

overhead analysis is sim_cycle, the number of simulated clock cycles required for the 

benchmark to run to completion.  After simulation is complete, this value is mined from 

the simulation outputs.  The performance overhead is reported using normalized 
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execution time - the value of sim_cycle for a secure architecture divided by the value 

of sim_cycle from the appropriate baseline simulation run. 

The simulator is configured to simulate two architectures based on ARM Cortex 

cores.  The parameters derived from these two architectures are shown in Table 7.1.  The 

Cortex-M3 [45] is a relatively simple, low-cost processor designed for deeply embedded 

architectures and implementation on FPGAs.  It is a single-issue in-order processor with a 

single integer pipeline.  The Cortex-A8 [46] is a faster and much more sophisticated core.  

The A8 is dual-issue superscalar in-order processor.  The A8 exploits instruction-level 

parallelism, but its faster clock leads to longer memory fetch times and cryptographic 

latencies.  In our simulation runs, the M3 architecture is used to demonstrate how our 

security extensions operate in a midrange embedded processor, while the A8 represents a 

more high-end processor.   
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Table 7.1  Simulation Parameters 

Simulator Parameter ARM Cortex-M3 ARM Cortex-A8 

Branch predictor type None 

Two-Level, 4096-entry global 
branch history buffer indexed by 

10-bit branch history register and 4 
bits of program counter 

Branch Target Buffer (BTB) N/A 512 entires, 2-way set associative 

Instruction decode bandwidth 1 instruction/cycle 2 instructions/cycle 

Instruction issue bandwidth 1 instruction/cycle 2 instructions/cycle 

Instruction commit bandwidth 1 instruction/cycle 2 instructions/cycle 

Pipeline with in-order issue True True 

I-cache/D-cache 
4-way, first level only, 

1 KB, 2 KB, 4 KB, or 8 KB 
4-way, first level only, 

16 KB or 32 KB 

Cache Hit Time 1 cycle 1 cycle 

I-TLB/D-TLB 32 entries, fully associative 32 entries, fully associative 

Execution units 1 floating point, 1 integer 1 floating point, 2 integer 

Memory fetch latency 
(first/other chunks) 

12/2 cycles 24/4 cycles 

Branch misprediction latency N/A 13 cycles 

TLB latency 30 cycles 60 cycles 

AES latency 12 cycles 24 cycles 

GHASH latency 1 cycle 2 cycles 

 

 

7.3 Benchmark Selection 

We select a set of benchmarks for evaluating the performance overhead of our 

proposed security enhancements on the simulated architectures discussed in the previous 

section.  These benchmarks represent typical tasks that an embedded system might 

perform.  They are selected primarily from the MiBench suite [47], with a few from the 

MediaBench [48] and Basicrypt [49] suites.  The primary criteria used in selecting 

benchmarks are the cache miss rates.  In order to properly exercise the proposed security 

extensions, high miss rates for at least one of the simulated architectures is desired.  Thus, 
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these benchmarks often represent a worst-case scenario with the greatest possible 

overhead; other benchmarks with very low cache miss rates would only show negligible 

overhead. 

These benchmarks are described in Table 7.2, along with the number of 

instructions that will be executed when running each benchmark.  Their cache miss rates 

when simulated on the architectures described above are shown in Table 7.3 and  

Table 7.4. 
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Table 7.2  Benchmark Descriptions 

Benchmark Description 
Executed  
Instructions [106] 

adpcm ADPCM encoder 732.8 

blowfish_enc Blowfish encryption 544.1 

cjpeg JPEG compression 104.6 

djpeg JPEG decompression 23.4 

ecdhb Diffie-Hellman key exchange 122.5 

ecelgencb El-Gamal encryption 180.2 

fft Fast Fourier transform 301.8 

ghostcript Postscript interpreter 708.1 

gsm_d GSM encoder 1299.4 

ispell Spell checker 817.8 

lame MP3 encoder 1151.8 

mad MPEG audio decoder 287.1 

mpeg2_enc MPEG2 compression 127.5 

rijndael_enc Rijndael encryption 259.3 

rsynth Synthesize text to speech 796.1 

stringsearch String search 3.7 

sha Secure hash algorithm 140.9 

tiff2bw Convert color TIFF to black and white 143.4 

tiff2rgba Convert TIFF image to RGB 151.9 

tiffdither Dither a TIFF image 833.0 

tiffmedian Reduce TIFF image color palette 541.5 
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Table 7.3  Benchmark Instruction Cache Miss Rates 

Instruction Cache Misses per 1000 Executed Instructions 

Cortex M3 Cortex A8 Benchmark 

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 

adpcm < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

blowfish_enc 41.05 5.98 0.06 < 0.01 < 0.01 < 0.01 

cjpeg 8.08 1.40 0.34 0.08 0.03 0.01 

djpeg 12.06 5.81 1.38 0.29 0.08 0.06 

ecdhb 30.57 9.25 2.97 0.15 0.03 0.01 

ecelgencb 28.30 4.97 1.51 0.08 0.01 < 0.01 

fft 107.04 90.60 28.35 1.10 < 0.01 < 0.01 

ghostcript 153.96 88.35 31.61 1.69 0.66 0.20 

gsm_d 4.30 3.49 2.50 2.22 0.23 < 0.01 

ispell 94.20 65.19 19.09 2.99 0.73 0.03 

lame 22.56 11.90 2.89 2.12 1.56 1.20 

mad 43.20 26.06 25.36 1.79 0.57 0.07 

mpeg2_enc 2.29 1.16 0.41 0.20 0.07 0.04 

rijndael_enc 130.16 127.79 75.51 11.12 < 0.01 < 0.01 

rsynth 113.16 13.67 6.41 2.47 0.01 < 0.01 

stringsearch 71.24 42.85 5.92 2.84 0.12 0.12 

sha 5.56 0.08 < 0.01 < 0.01 < 0.01 < 0.01 

tiff2bw 3.10 2.62 1.31 0.12 < 0.01 < 0.01 

tiff2rgba 3.60 2.53 0.63 0.01 < 0.01 < 0.01 

tiffdither 43.97 10.32 0.82 0.27 0.01 < 0.01 

tiffmedian 1.53 1.15 0.47 0.02 < 0.01 < 0.01 
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Table 7.4  Benchmark Data Cache Miss Rates 

Data Cache Misses per 1000 Executed Instructions 

Cortex M3 Cortex A8 Benchmark 

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 

adpcm 1.56 1.42 0.15 < 0.01 < 0.01 < 0.01 

blowfish_enc 44.93 30.78 6.01 0.09 < 0.01 < 0.01 

cjpeg 29.38 22.90 19.15 3.12 0.72 0.47 

djpeg 40.93 25.49 16.78 6.59 2.52 0.58 

ecdhb 2.56 0.55 0.13 0.07 0.02 0.01 

ecelgencb 1.79 0.32 0.05 0.02 0.01 0.01 

fft 33.10 9.37 1.31 0.77 0.69 0.65 

ghostcript 26.18 9.08 1.64 0.82 0.58 0.47 

gsm_d 1.28 0.69 0.23 0.04 < 0.01 < 0.01 

ispell 32.61 17.42 2.14 0.68 0.17 0.03 

lame 53.91 38.12 25.58 14.82 7.64 4.82 

mad 28.01 21.39 12.70 3.83 2.24 0.24 

mpeg2_enc 20.96 11.06 2.34 0.55 0.43 0.38 

rijndael_enc 134.19 112.97 65.65 7.08 0.02 < 0.01 

rsynth 21.35 11.46 2.22 0.82 0.32 0.29 

stringsearch 35.43 17.39 2.96 1.33 0.47 0.33 

sha 0.94 0.75 0.74 0.27 < 0.01 < 0.01 

tiff2bw 26.25 26.22 26.21 25.36 17.63 0.30 

tiff2rgba 50.29 50.27 50.26 50.26 37.45 18.24 

tiffdither 10.23 3.88 3.73 3.37 1.91 0.04 

tiffmedian 29.43 25.45 22.47 21.14 17.10 6.43 
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Rather than run the entire set of benchmarks for every permutation of 

architectural parameters that we investigate, we wish to select a meaningful subset of 

benchmarks.  We make the selection using cluster analysis.  For each architectural 

configuration (processor core plus level - caches), we consider the cache miss rates from 

the above tables in a Cartesian plane with the level-1 instruction cache miss rate as the 

abscissa and the level-1 data cache miss rate as the ordinate.  A minimum spanning tree 

method is then used to group the benchmarks into four clusters with similar cache miss 

rate characteristics.  The benchmark closest to the centroid of each cluster is selected to 

represent the cluster.  The selected benchmarks for each configuration are shown in  

Table 7.5.  All 12 of these selected benchmarks will be used when evaluating across all 

the simulated configurations.  For evaluations whose scope is limited to one 

configuration, only the four benchmarks chosen as significant for that configuration will 

be used.   
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Table 7.5  Benchmarks Selected by Clustering Analysis 

Configurations Relevant to Benchmarks 

Cortex M3 Cortex A8 Benchmark 

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 

blowfish_enc       

cjpeg       

fft       

ghostcript       

lame       

mad       

mpeg2_enc       

rijndael_enc       

stringsearch       

tiff2bw       

tiff2rgba       

tiffmedian       

 

 

7.4 Results 

This section presents the results of both qualitative and quantitative analyses of 

security extensions to the example system discussed in this dissertation.  We start with 

qualitative analyses of the complexity overhead required to implement our architectures 

on a processor chip, followed by the extra space in memory required to run a secure 

program on our architecture.  We then present quantitative performance overhead results 

obtained by simulating the execution of secure benchmark programs.  

7.4.1 Complexity Overhead 

The architecture we have proposed requires state machines for performing various 

tasks, logic for address translation, buffers and registers, hardware for key generation, 
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and a pipelined cryptographic unit.  All but the last two of these requirements introduce 

relatively little additional on-chip area.  A physical unclonable function (PUF) unit for 

key generation requires nearly 3,000 gates [29].  The pipelined cryptographic unit, which 

is shared among both architectures, introduces the greatest amount of overhead.  

Assuming that this cryptographic unit follows the commercially available Jetstream 

JetAES Fast high speed 128-bit AES core [23], the on-chip area it requires should be 

approximately equal to that required for about 31,000 logic gates.  If using GCM, a 

GMULT unit must is also required.  As we have seen in Section 3.3, the most complex 

(but fastest) GMULT implementation has a complexity on the order of 1282 (16,384) 

gates; slower implementations require fewer gates, but introduce a small state machine to 

control the GMULT unit.  Entire high-throughput GCM cores are commercially 

available, which would cover both the AES and GMULT units, with gate counts ranging 

from 30,000 to 60,000 [50, 51].  An additional source of complexity is the sequence 

number cache; its complexity is determined by its size and organization, which are design 

parameters. 

The complexity overhead of the optional signature victim caches and instruction 

verification buffers may be estimated by treating them as fully associative structures.  

Each register bit in may be modeled as a latch using 2.5 logic gates.  Every entry must 

also have a comparator, also requiring 2.5 gates per bit.  Each entry’s output must also be 

protected by tri-state buffers at 0.5 gates per bit [52]. 

Each entry in the signature victim cache must contain a 128-bit signature and a 

tag.  In the worst case scenario, the tag would be the full 32-bit address, leading to  

160 register bits, with a 32-bit comparator for the tag and a 128-bit array of tri-state 
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buffers.  This leads to a total overhead of 544 logic gates per entry.  The victim cache 

could also be implemented as an array of indices into an on-chip memory.  In this case, 

the 128-bit register for the signature and the array of tri-state buffers would not be 

required.  The memory would be indexed by the number of the entry whose tag matched 

the address.  This would reduce the overhead per entry to 160 gates, but on-chip memory 

resources would also be required.  Furthermore, regardless of which victim cache design 

was chosen, the instruction and data cache lines must be widened by 128 bits to support 

storing signatures for placement in the victim caches. 

Every IVB entry must contain a tag and two single-bit flags.  Again assuming the 

worst case scenario of a 32-bit tag, we have 34 register bits per entry, with a 32-bit 

comparator and two tri-state buffers.  The IVB overhead is thus 166 logic gates per entry. 

7.4.2 Memory Overhead 

The memory overhead incurred by protecting instructions and static data is a 

simple function of the protected block size and the number of instruction blocks in the 

program.  Each signature is 16 bytes long.  If 32 byte protected blocks are chosen, then 

the size of the executable segment of the program increases by 50%.  This overhead is 

reduced to 25% for 64 byte protected blocks, and to 12.5% for 128 byte protected blocks. 

The memory overhead required for protecting dynamic data is slightly larger.  

The data signatures lead to the same overhead figures as for static data and instructions.  

However, each dynamic data page requires sequence number blocks, additional space in 

the page table, and an entry in the page root signature table.  The sample architecture 

presented in this dissertation requires six sequence number blocks when storing 

signatures in a signature table, for a total of 192 bytes per protected dynamic page.  Only 
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four sequence number blocks are required when using embedded signatures, lowering the 

sequence number overhead to 128 bytes per page. 

7.4.3 Performance Overhead 

We evaluate the performance overhead of our proposed architectural extensions 

using the experimental flow and simulator described above.  Our strategy is to reveal how 

the various choices and approaches described in Chapters 5 and 6 would affect the 

performance of modern processor designs using security extensions.  For each choice or 

approach of interest, we set simulation parameters to isolate its influence and then 

compare simulation results with theoretical projections. 

7.4.3.1 Signature Location 

We first evaluate how the signature location influences performance overhead.  

This influence may be isolated by choosing the GCM cipher mode, which will minimize 

the time required to calculate signatures and ensure that fetching signatures from memory 

is the greatest contributor to performance overhead.  We fix signature cache sizes at 50% 

of the data cache size (i.e., an architecture with a 4 KB data cache would have a 2 KB 

signature cache).  We evaluate storing signatures in a signature table, a signature table 

with 32-entry victim caches, and embedding them with protected blocks.  We project that 

using a signature table without victim caches will incur the most performance overhead, 

while embedded signatures will provide the best performance.  When using a signature 

table with victim caches, the overhead should be somewhere in between. 

The simulation results are graphed in Figure 7.2 - Figure 7.7 and presented 

numerically in Table 7.6 and Table 7.7 for all architectures described above in 
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Section 7.2.  The contributions to overhead from protecting instructions/static data and 

dynamic data are shown separately.  We find that the observed overheads mostly follow 

the theorized behavior.  Embedded signatures generally provide the best performance.  

However, in a few instances, using a signature table with victim caches outperforms 

embedded signatures. 
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Figure 7.2  Performance Overhead Implications of Signature Location, Cortex M3, 1 KB 
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Figure 7.3  Performance Overhead Implications of Signature Location, Cortex M3, 2 KB 
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Figure 7.4  Performance Overhead Implications of Signature Location, Cortex M3, 4 KB 
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Figure 7.5  Performance Overhead Implications of Signature Location, Cortex M3, 8 KB 
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Figure 7.6  Performance Overhead Implications of Signature Location, Cortex A8, 16 KB 
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Figure 7.7  Performance Overhead Implications of Signature Location, Cortex A8, 32 KB 
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Table 7.6  Performance Overhead Implications of Signature Location, Cortex M3 

1 KB 2 KB 4 KB 8 KB 
Benchmark 

Signature 
Location SICM Both SICM Both SICM Both SICM Both 

Tbl 1.40 1.47 1.06 1.19 1.00 1.04 1.00 1.00 
Tbl/V.C. 1.40 1.46 1.06 1.15 1.00 1.02 1.00 1.00 bf_e 

Emb 1.40 1.43 1.06 1.11 1.00 1.02 1.00 1.00 
Tbl 1.13 1.44 1.02 1.19 1.01 1.14 1.00 1.03 

Tbl/V.C. 1.13 1.32 1.02 1.08 1.01 1.05 1.00 1.02 cjpeg 

Emb 1.13 1.33 1.02 1.10 1.01 1.06 1.00 1.02 
Tbl 2.40 2.90 2.37 2.41 1.46 1.46 1.02 1.02 

Tbl/V.C. 2.40 2.83 2.37 2.39 1.45 1.46 1.02 1.02 fft 

Emb 2.39 2.82 2.37 2.38 1.45 1.46 1.02 1.02 
Tbl 3.22 3.68 2.33 2.37 1.47 1.48 1.03 1.03 

Tbl/V.C. 3.22 3.64 2.33 2.36 1.46 1.48 1.03 1.03 ghostcript 

Emb 3.21 3.62 2.33 2.36 1.47 1.48 1.03 1.03 
Tbl 1.25 1.75 1.14 1.43 1.04 1.21 1.03 1.13 

Tbl/V.C. 1.25 1.70 1.14 1.41 1.04 1.20 1.03 1.10 lame 

Emb 1.25 1.60 1.14 1.31 1.04 1.13 1.03 1.08 
Tbl 1.75 2.02 1.48 1.66 1.50 1.61 1.03 1.06 

Tbl/V.C. 1.75 2.00 1.48 1.65 1.50 1.58 1.03 1.06 mad 

Emb 1.75 1.93 1.48 1.59 1.50 1.57 1.03 1.05 
Tbl 1.04 1.22 1.02 1.12 1.01 1.03 1.00 1.01 

Tbl/V.C. 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01 mpeg2e 

Emb 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01 
Tbl 2.00 2.46 2.06 2.38 1.78 1.99 1.14 1.2 

Tbl/V.C. 2.00 2.44 2.06 2.36 1.78 1.92 1.14 1.16 rijndael 

Emb 2.00 2.33 2.06 2.27 1.78 1.87 1.14 1.17 
Tbl 2.13 2.66 1.72 1.91 1.11 1.13 1.05 1.06 

Tbl/V.C. 2.12 2.59 1.72 1.87 1.11 1.13 1.05 1.06 stringsearch 

Emb 2.12 2.60 1.72 1.88 1.11 1.12 1.05 1.06 
Tbl 1.05 1.21 1.04 1.19 1.02 1.18 1.00 1.17 

Tbl/V.C. 1.04 1.21 1.04 1.19 1.02 1.18 1.00 1.17 tiff2bw 

Emb 1.05 1.13 1.04 1.11 1.02 1.10 1.00 1.09 
Tbl 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.22 

Tbl/V.C. 1.05 1.26 1.03 1.24 1.01 1.22 1.00 1.22 tiff2rgba 

Emb 1.05 1.17 1.03 1.15 1.00 1.12 0.99 1.12 
Tbl 1.02 1.78 1.02 1.45 1.01 1.29 1.00 1.23 

Tbl/V.C. 1.02 1.76 1.02 1.44 1.01 1.28 1.00 1.22 tiffmedian 

Emb 1.02 1.66 1.02 1.34 1.01 1.19 1.00 1.14 
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Table 7.7  Performance Overhead Implications of Signature Location, Cortex A8 

16 KB 32 KB 
Benchmark 

Signature 
Location SICM Both SICM Both 

Tbl 1.00 1.00 1.00 1.00 
Tbl/V.C. 1.00 1.00 1.00 1.00 bf_e 

Emb 1.00 1.00 1.00 1.00 
Tbl 1.00 1.01 1.00 1.01 

Tbl/V.C. 1.00 1.01 1.00 1.01 cjpeg 
Emb 1.00 1.01 1.00 1.00 
Tbl 1.00 1.00 1.00 1.00 

Tbl/V.C. 1.00 1.00 1.00 1.00 fft 
Emb 1.00 1.00 1.00 1.00 
Tbl 1.02 1.03 1.01 1.02 

Tbl/V.C. 1.02 1.03 1.01 1.02 ghostcript 
Emb 1.02 1.03 1.01 1.01 
Tbl 1.06 1.18 1.05 1.12 

Tbl/V.C. 1.06 1.17 1.05 1.12 lame 
Emb 1.06 1.12 1.05 1.09 
Tbl 1.03 1.05 1.00 1.01 

Tbl/V.C. 1.03 1.05 1.00 1.01 mad 
Emb 1.03 1.04 1.00 1.01 
Tbl 1.00 1.02 1.00 1.02 

Tbl/V.C. 1.00 1.02 1.00 1.02 mpeg2e 
Emb 1.00 1.01 1.00 1.01 
Tbl 1.00 1.00 1.00 1.00 

Tbl/V.C. 1.00 1.00 1.00 1.00 rijndael 
Emb 1.00 1.00 1.00 1.00 
Tbl 1.00 1.01 1.00 1.01 

Tbl/V.C. 1.00 1.01 1.00 1.01 stringsearch 
Emb 1.00 1.01 1.00 1.01 
Tbl 1.00 1.27 1.00 1.01 

Tbl/V.C. 1.00 1.26 1.00 1.00 tiff2bw 
Emb 1.00 1.16 1.00 1.00 
Tbl 1.00 1.44 1.00 1.13 

Tbl/V.C. 1.00 1.44 1.00 1.11 tiff2rgba 
Emb 0.99 1.26 1.00 1.09 
Tbl 1.00 1.35 1.00 1.17 

Tbl/V.C. 1.00 1.33 1.00 1.16 tiffmedian 
Emb 1.00 1.20 1.00 1.10 
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7.4.3.1.1 Optimal Signature Victim Cache Size 

In addition to evaluating the effects of signature location, we would also like to 

find the optimal signature victim cache size to balance complexity with performance 

overhead.  We use the same parameters as in evaluating signature location, but fix the 

architecture on the Cortex M3 with 2 KB caches, as this architecture demonstrates 

nontrivial performance overhead.  We choose the four benchmarks that the clustering 

analysis found to be significant on this architecture, and simulate them using a signature 

table.  We vary the victim cache sizes among reasonable values, from eight to 64 entries 

in powers of two, and compare the resulting performance overheads, as well as the 

overhead from no victim caches.  We predict that larger victim caches will provide better 

performance.   

The simulation results, which are shown in Figure 7.8 and Table 7.8, bear out this 

prediction.  They show no clear optimal victim cache size, but that increasing the victim 

cache size slightly decreases performance overhead.  Three of the benchmarks show little 

sensitivity to victim cache size, but the results for the rijndael benchmark suggest that 

some workloads would benefit somewhat from larger victim caches.  The results also 

indicate that victim caches are more effective in reducing the overhead of dynamic data 

protection, and have little to no effect on the overhead from protecting instructions and 

static data.  However, as the overall effect of signature victim caches appears to be 

negligible, it is probably not worthwhile to employ these caches. 
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Figure 7.8  Performance Overhead Implications of Signature Victim Cache Size 
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Table 7.8  Performance Overhead Implications of Signature Victim Cache Size, 

Cortex M3, 2 KB 

Benchmark 
Signature 
Victim 
Caches 

SICM Both 

None 2.33 2.36 
8 Entries 2.34 2.38 
16 Entries 2.34 2.38 
32 Entries 2.34 2.37 
64 Entries 2.34 2.37 

ghostcript 

128 Entries 2.34 2.37 
None 1.02 1.06 
8 Entries 1.02 1.09 
16 Entries 1.02 1.07 
32 Entries 1.02 1.06 
64 Entries 1.02 1.06 

mpeg2e 

128 Entries 1.02 1.05 
None 2.06 2.36 
8 Entries 2.06 2.38 
16 Entries 2.06 2.37 
32 Entries 2.06 2.36 
64 Entries 2.06 2.32 

rijndael 

128 Entries 2.06 2.25 
None 1.72 1.87 
8 Entries 1.72 1.88 
16 Entries 1.72 1.87 
32 Entries 1.72 1.87 
64 Entries 1.72 1.87 

stringsearch 

128 Entries 1.72 1.87 
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7.4.3.2 Cryptographic Modes 

We evaluate the influence of cryptographic mode choice by fixing all parameters 

other than cryptographic mode and simulating all chosen benchmarks for all architectures 

of interest.  For these simulations, signatures are embedded with protected blocks and all 

sequence number caches are sized at 50% of their respective data caches.  The three 

cipher modes discussed in this dissertation are simulated: CBC-MAC, PMAC, and GCM.  

Theoretically, CBC-MAC should induce the greatest performance overhead, with PMAC 

offering a noticeable improvement, and GCM providing the best performance. 

The simulation results are graphed in Figure 7.9 - Figure 7.14, and presented 

numerically in Table 7.9 and Table 7.10.  The simulation results closely follow the 

theoretical projections.  They also show that going from CBC-MAC to PMAC exhibits 

the greatest increase in performance.  GCM does provide the best performance, but the 

difference between PMAC and GCM is not as dramatic for most workloads. 
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Figure 7.9  Performance Overhead Implications of Cipher Choice, Cortex M3, 1 KB 
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Figure 7.10  Performance Overhead Implications of Cipher Choice, Cortex M3, 2 KB 
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Figure 7.11  Performance Overhead Implications of Cipher Choice, Cortex M3, 4 KB 

 



 

115 

DICM
SICM

  0.5

  2

  2.5

  3

  3.5

  4

  4.5

  5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

  1

  1.5

 

DICM
SICM

  0.5

  2

  2.5

  3

  3.5

  4

  4.5

  5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

  1

  1.5

 

Figure 7.12  Performance Overhead Implications of Cipher Choice, Cortex M3, 8 KB 
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Figure 7.13  Performance Overhead Implications of Cipher Choice, Cortex A8, 16 KB 
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Figure 7.14  Performance Overhead Implications of Cipher Choice, Cortex A8, 32 KB 
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Table 7.9  Performance Overhead Implications of Cipher Choice, Cortex M3 

1 KB 2 KB 4 KB 8 KB 
Benchmark Cipher 

SICM Both SICM Both SICM Both SICM Both 
CBC 1.68 1.76 1.10 1.28 1.00 1.06 1.00 1.00 

PMAC 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00 bf_e 
GCM 1.40 1.43 1.06 1.11 1.00 1.02 1.00 1.00 
CBC 1.21 1.61 1.04 1.27 1.01 1.21 1.00 1.05 

PMAC 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.03 cjpeg 
GCM 1.13 1.33 1.02 1.10 1.01 1.06 1.00 1.02 
CBC 3.22 3.74 3.15 3.20 1.71 1.72 1.02 1.03 

PMAC 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02 fft 
GCM 2.39 2.82 2.37 2.38 1.45 1.46 1.02 1.02 
CBC 4.45 5.00 3.08 3.15 1.74 1.76 1.04 1.05 

PMAC 3.22 3.76 2.33 2.39 1.47 1.48 1.03 1.04 ghostcript 
GCM 3.22 3.67 2.33 2.37 1.47 1.48 1.03 1.03 
CBC 1.41 2.06 1.23 1.65 1.06 1.32 1.05 1.19 

PMAC 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.13 lame 
GCM 1.25 1.60 1.14 1.31 1.04 1.13 1.03 1.08 
CBC 2.18 2.54 1.75 2.04 1.77 1.96 1.05 1.10 

PMAC 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.06 mad 
GCM 1.75 1.93 1.48 1.59 1.50 1.57 1.03 1.05 
CBC 1.06 1.31 1.03 1.16 1.01 1.05 1.01 1.02 

PMAC 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01 mpeg2e 
GCM 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01 
CBC 2.75 3.21 2.83 3.17 2.31 2.60 1.23 1.31 

PMAC 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.19 rijndael 
GCM 2.00 2.33 2.06 2.27 1.78 1.87 1.14 1.17 
CBC 2.77 3.33 2.13 2.35 1.17 1.21 1.08 1.10 

PMAC 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.07 stringsearch 
GCM 2.12 2.60 1.72 1.88 1.11 1.12 1.05 1.06 
CBC 1.07 1.30 1.06 1.28 1.03 1.27 1.00 1.27 

PMAC 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.18 tiff2bw 
GCM 1.05 1.13 1.04 1.11 1.02 1.10 1.00 1.09 
CBC 1.10 1.39 1.07 1.37 1.03 1.34 1.01 1.34 

PMAC 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.23 tiff2rgba 
GCM 1.07 1.17 1.05 1.15 1.02 1.13 1.01 1.13 
CBC 1.04 1.97 1.03 1.61 1.01 1.42 1.00 1.35 

PMAC 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.24 tiffmedian 
GCM 1.02 1.66 1.02 1.34 1.01 1.19 1.00 1.14 
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Table 7.10  Performance Overhead Implications of Cipher Choice, Cortex A8 

16 KB 32 KB 
Benchmark Cipher 

SICM Both SICM Both 
CBC 1.00 1.00 1.00 1.00 

PMAC 1.00 1.00 1.00 1.00 bf_e 
GCM 1.00 1.00 1.00 1.00 
CBC 1.00 1.02 1.00 1.01 

PMAC 1.00 1.01 1.00 1.01 cjpeg 
GCM 1.00 1.01 1.00 1.00 
CBC 1.00 1.00 1.00 1.00 

PMAC 1.00 1.00 1.00 1.00 fft 
GCM 1.00 1.00 1.00 1.00 
CBC 1.04 1.05 1.01 1.02 

PMAC 1.04 1.04 1.01 1.02 ghostcript 
GCM 1.02 1.03 1.01 1.01 
CBC 1.09 1.28 1.07 1.19 

PMAC 1.09 1.19 1.07 1.13 lame 
GCM 1.06 1.12 1.05 1.09 
CBC 1.04 1.09 1.00 1.01 

PMAC 1.04 1.06 1.00 1.01 mad 
GCM 1.03 1.04 1.00 1.01 
CBC 1.01 1.03 1.00 1.03 

PMAC 1.01 1.02 1.00 1.02 mpeg2e 
GCM 1.00 1.01 1.00 1.01 
CBC 1.00 1.00 1.00 1.00 

PMAC 1.00 1.00 1.00 1.00 rijndael 
GCM 1.00 1.00 1.00 1.00 
CBC 1.01 1.02 1.01 1.01 

PMAC 1.01 1.01 1.01 1.01 stringsearch 
GCM 1.00 1.01 1.00 1.01 
CBC 1.00 1.47 1.00 1.01 

PMAC 1.00 1.31 1.00 1.01 tiff2bw 
GCM 1.00 1.16 1.00 1.00 
CBC 1.00 1.77 1.00 1.22 

PMAC 1.00 1.52 1.00 1.16 tiff2rgba 
GCM 1.00 1.26 1.00 1.09 
CBC 1.00 1.61 1.00 1.29 

PMAC 1.00 1.40 1.00 1.19 tiffmedian 
GCM 1.00 1.20 1.00 1.09 
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7.4.3.3 Speculative Execution 

We would also like to demonstrate the efficacy of speculative execution by 

comparing the results of runs using the WtV scheme with those using an RbV scheme.  

We have already simulated all benchmarks on all architectures with all ciphers in WtV 

mode, so we choose the PMAC cipher and run additional simulations in RbV mode with 

16-entry IVBs.  Theoretically, the RbV mode should show considerably improved 

performance over the WtV mode. 

The results of the RbV simulations are graphically compared with those of the 

WtV simulations in Figure 7.15 - Figure 7.20 and numerically in Table 7.11 and  

Table 7.12.  The observed results agree with the theoretical projections.  Utilizing 

speculative execution does provide a dramatic increase in performance, especially in 

architectures with small caches (and thus higher cache miss rates). 
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Figure 7.15  Performance Overhead Implications of Speculative Execution, 

Cortex M3, 1 KB 
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Figure 7.16  Performance Overhead Implications of Speculative Execution, 

Cortex M3, 2 KB 
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Figure 7.17  Performance Overhead Implications of Speculative Execution, 

Cortex M3, 4 KB 
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Figure 7.18  Performance Overhead Implications of Speculative Execution, 

Cortex M3, 8 KB 
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Figure 7.19  Performance Overhead Implications of Speculative Execution, 

Cortex A8, 16 KB 
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Figure 7.20  Performance Overhead Implications of Speculative Execution, 

Cortex A8, 32 KB 
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Table 7.11  Performance Overhead Implications of Speculative Execution, Cortex M3 

1 KB 2 KB 4 KB 8 KB 
Benchmark  

SICM Both SICM Both SICM Both SICM Both 
WtV 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00 

bf_e 
RbV 16 1.14 1.14 1.02 1.03 1.00 1.00 1.00 1.00 

WtV 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.02 
cjpeg 

RbV 16 1.06 1.17 1.01 1.02 1.00 1.01 1.00 1.00 
WtV 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02 

fft 
RbV 16 1.58 1.86 1.59 1.60 1.20 1.20 1.01 1.01 

WtV 3.21 3.76 2.33 2.39 1.47 1.48 1.03 1.03 
ghostcript 

RbV 16 1.99 2.41 1.59 1.61 1.20 1.21 1.01 1.02 
WtV 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.08 

lame 
RbV 16 1.09 1.29 1.05 1.12 1.01 1.04 1.01 1.03 

WtV 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.05 
mad 

RbV 16 1.33 1.45 1.21 1.28 1.22 1.26 1.02 1.02 
WtV 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01 

mpeg2e 
RbV 16 1.02 1.06 1.01 1.03 1.00 1.01 1.00 1.00 

WtV 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.17 
rijndael 

RbV 16 1.30 1.53 1.32 1.47 1.27 1.29 1.06 1.06 
WtV 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.06 

stringsearch 
RbV 16 1.49 1.85 1.32 1.43 1.05 1.05 1.02 1.03 

WtV 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.09 
tiff2bw 

RbV 16 1.02 1.07 1.01 1.06 1.01 1.06 1.00 1.05 
WtV 1.05 1.27 1.03 1.25 1.02 1.23 1.01 1.13 

tiff2rgba 
RbV 16 1.03 1.12 1.03 1.11 1.00 1.10 1.00 1.09 

WtV 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.14 
tiffmedian 

RbV 16 1.01 1.39 1.01 1.17 1.00 1.08 1.00 1.05 
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Table 7.12  Performance Overhead Implications of Speculative Execution, Cortex A8 

16 KB 32 KB 
Benchmark  

SICM Both SICM Both 
WtV 1.00 1.00 1.00 1.00 

bf_e 
RbV 16 1.00 1.00 1.00 1.00 

WtV 1.00 1.01 1.00 1.00 
cjpeg 

RbV 16 1.00 1.01 1.00 1.00 
WtV 1.00 1.00 1.00 1.00 

fft 
RbV 16 1.00 1.00 1.00 1.00 

WtV 1.02 1.03 1.01 1.01 
ghostcript 

RbV 16 1.01 1.02 1.00 1.01 
WtV 1.06 1.12 1.05 1.09 

lame 
RbV 16 1.03 1.06 1.02 1.04 

WtV 1.03 1.04 1.00 1.01 
mad 

RbV 16 1.01 1.02 1.00 1.00 
WtV 1.00 1.01 1.00 1.01 

mpeg2e 
RbV 16 1.00 1.01 1.00 1.01 

WtV 1.00 1.00 1.00 1.00 
rijndael 

RbV 16 1.00 1.00 1.00 1.00 
WtV 1.00 1.01 1.00 1.01 

stringsearch 
RbV 16 1.00 1.01 1.00 1.00 

WtV 1.00 1.16 1.00 1.00 
tiff2bw 

RbV 16 1.00 1.12 1.00 1.00 
WtV 1.00 1.26 1.00 1.09 

tiff2rgba 
RbV 16 1.00 1.22 1.00 1.07 

WtV 1.00 1.2 1.00 1.09 
tiffmedian 

RbV 16 1.00 1.06 1.00 1.02 

 

7.4.3.3.1 Optimal IVB Depth 

In addition to demonstrating the usefulness of speculative execution, we would 

like to determine the optimal depth, or number of entries, for the instruction verification 

buffer.  We isolate the effects of the IVB by choosing the CBC-MAC mode, which 

results in the longest verification latencies and thus will stress the IVB more than the 

other cipher modes.  We again fix the architecture as Cortex M3 with 2 KB caches and 

use the benchmarks that are significant for that architecture, varying the IVB depth from 

eight to 64 in powers of two.  Theoretically, there should be a performance increase 

going from WtV to an eight-entry IBV with further performance increases as the IVB 
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size increases.  At some IVB size, the performance should level out as blocks may be 

verified and instructions issued without saturating the IVB. 

The simulation results are presented graphically in Figure 7.21 and numerically in 

Table 7.13.  The results demonstrate the dramatic increase in performance when going 

from WtV to RbV with a small, eight-entry RbV.  However, the performance overhead 

shows no sensitivity to IVB depth; small IVBs perform as well as large IVBs.  This 

indicates that, even using the CBC-MAC cipher mode, the secure blocks are being 

verified and their associated instructions retired before even a small IVB can be saturated.  

Thus, only small IVBs are necessary for this architecture, and transistors may be 

allocated for other uses on the chip.  
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Figure 7.21  Performance Overhead Implications of IVB Depth 
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Table 7.13  Performance Overhead Implications of IVB Depth, Cortex M3, 2 KB 

Benchmark  SICM Both 
WtV 3.08 3.15 

RbV 8 1.60 1.62 
RbV 16 1.60 1.62 
RbV 32 1.60 1.62 
RbV 64 1.60 1.62 

ghostcript 

RbV 128 1.60 1.62 
WtV 1.03 1.16 

RbV 8 1.01 1.03 
RbV 16 1.01 1.03 
RbV 32 1.01 1.03 
RbV 64 1.01 1.03 

mpeg2e 

RbV 128 1.01 1.03 
WtV 2.83 3.17 

RbV 8 1.32 1.47 
RbV 16 1.32 1.47 
RbV 32 1.32 1.47 
RbV 64 1.32 1.47 

rijndael 

RbV 128 1.32 1.47 
WtV 2.13 2.35 

RbV 8 1.32 1.43 
RbV 16 1.32 1.43 
RbV 32 1.32 1.43 
RbV 64 1.32 1.43 

stringsearch 

RbV 128 1.32 1.43 

 

 

7.4.3.4 Sequence Number Cache Size 

All simulations up until this point have used sequence number caches that are 

50% of the size of their associated data caches.  We here explore the effects that varying 

the sequence number cache will have on overhead.  We choose the PMAC cipher mode 

with embedded signatures and vary the signature cache sizes between 25%, 50%, and 

100% of the associated data cache size.  We predict that performance will increase as the 

signature cache size increases. 
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The simulation results are plotted in Figure 7.22 - Figure 7.27 and displayed 

numerically in Table 7.14 and Table 7.15.  For most workloads, the results follow our 

theoretical projections.  In many cases with the Cortex M3 architecture, increasing the 

sequence number cache size from 50% to 100% has less effect than going from 25% to 

50%.  We therefore conclude that sequence number cache sizes of 50% provide the 

optimal balance between performance and complexity when data caches are small  

(≤ 8 KB).  For large data caches (> 8 KB), the results indicate minimal performance 

improvements with increasing sequence number cache size.  Smaller sequence number 

caches, such as 25% of the data cache size, are acceptable in this case. 
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Figure 7.22  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex M3, 1 KB 
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Figure 7.23  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex M3, 2 KB 
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Figure 7.24  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex M3, 4 KB 
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Figure 7.25  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex M3, 8 KB 
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Figure 7.26  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex A8, 16 KB 
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Figure 7.27  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex A8, 32 KB 
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Table 7.14  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex M3 

1 KB 2 KB 4 KB 8 KB 
Benchmark 

Seqnum 
Cache 
Size SICM Both SICM Both SICM Both SICM Both 

25 % 1.40 1.59 1.06 1.19 1.00 1.04 1.00 1.07 
50 % 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.07 bf_e 
100 % 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.07 
25 % 1.13 1.71 1.02 1.22 1.01 1.13 1.00 1.29 
50 % 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.28 cjpeg 
100 % 1.13 1.33 1.02 1.18 1.01 1.13 1.00 1.28 
25 % 2.40 3.15 2.37 2.54 1.46 1.46 1.02 1.46 
50 % 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.46 fft 
100 % 2.40 2.62 2.37 2.41 1.46 1.46 1.02 1.46 
25 % 3.22 3.76 2.33 2.38 1.47 1.49 1.03 1.49 
50 % 3.22 3.76 2.33 2.38 1.47 1.48 1.03 1.49 ghostcript 
100 % 3.22 3.36 2.33 2.38 1.47 1.48 1.03 1.48 
25 % 1.25 2.10 1.14 1.53 1.04 1.24 1.03 1.29 
50 % 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.26 lame 
100 % 1.25 1.63 1.14 1.41 1.04 1.21 1.03 1.26 
25 % 1.75 2.28 1.48 1.75 1.50 1.63 1.03 1.72 
50 % 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.72 mad 
100 % 1.75 1.95 1.48 1.68 1.50 1.62 1.03 1.72 
25 % 1.04 1.37 1.02 1.12 1.01 1.04 1.00 1.05 
50 % 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.05 mpeg2e 
100 % 1.04 1.19 1.02 1.10 1.01 1.03 1.00 1.05 
25 % 2.00 3.25 2.06 2.52 1.78 2.14 1.14 2.80 
50 % 2.00 2.45 2.06 2.38 1.78 1.98 1.14 2.59 rijndael 
100 % 2.00 2.35 2.06 2.22 1.78 1.98 1.14 2.59 
25 % 2.13 2.86 1.72 2.03 1.11 1.15 1.05 1.16 
50 % 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.14 stringsearch 
100 % 2.13 2.50 1.72 1.81 1.11 1.13 1.05 1.14 
25 % 1.05 1.30 1.04 1.20 1.02 1.19 1.00 1.19 
50 % 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.18 tiff2bw 
100 % 1.05 1.19 1.04 1.18 1.02 1.17 1.00 1.18 
25 % 1.06 1.41 1.04 1.27 1.01 1.25 1.01 1.25 
50 % 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.23 tiff2rgba 
100 % 1.06 1.26 1.04 1.24 1.01 1.23 1.01 1.23 
25 % 1.02 2.01 1.02 1.74 1.01 1.45 1.00 1.46 
50 % 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.31 tiffmedian 
100 % 1.02 1.49 1.02 1.34 1.01 1.26 1.00 1.27 
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Table 7.15  Performance Overhead Implications of Sequence Number Cache Size, 

Cortex A8 

16 KB 32 KB 
Benchmark 

Seqnum 
Cache Size SICM Both SICM Both 

25 % 1.00 1.00 1.00 1.00 
50 % 1.00 1.00 1.00 1.00 bf_e 
100 % 1.00 1.00 1.00 1.00 
25 % 1.00 1.01 1.00 1.01 
50 % 1.00 1.01 1.00 1.01 cjpeg 
100 % 1.00 1.01 1.00 1.01 
25 % 1.00 1.00 1.00 1.00 
50 % 1.00 1.00 1.00 1.00 fft 
100 % 1.00 1.00 1.00 1.00 
25 % 1.04 1.04 1.01 1.02 
50 % 1.04 1.04 1.01 1.02 ghostcript 
100 % 1.04 1.03 1.01 1.02 
25 % 1.09 1.19 1.07 1.13 
50 % 1.09 1.19 1.07 1.13 lame 
100 % 1.09 1.18 1.07 1.13 
25 % 1.04 1.06 1.00 1.01 
50 % 1.04 1.06 1.00 1.01 mad 
100 % 1.04 1.06 1.00 1.01 
25 % 1.01 1.02 1.00 1.02 
50 % 1.01 1.02 1.00 1.02 mpeg2e 
100 % 1.01 1.02 1.00 1.02 
25 % 1.00 1.00 1.00 1.00 
50 % 1.00 1.00 1.00 1.00 rijndael 
100 % 1.00 1.00 1.00 1.00 
25 % 1.01 1.01 1.01 1.01 
50 % 1.01 1.01 1.01 1.01 stringsearch 
100 % 1.01 1.01 1.01 1.01 
25 % 1.00 1.31 1.00 1.01 
50 % 1.00 1.31 1.00 1.01 tiff2bw 
100 % 1.00 1.31 1.00 1.01 
25 % 1.00 1.52 1.00 1.16 
50 % 1.00 1.52 1.00 1.16 tiff2rgba 
100 % 1.00 1.52 1.00 1.16 
25 % 1.00 1.44 1.00 1.19 
50 % 1.00 1.40 1.00 1.19 tiffmedian 
100 % 1.00 1.40 1.00 1.19 
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7.4.3.5 Double-Sized Protected Blocks 

We also demonstrate the performance overhead effects of using double-sized 

protected blocks, that is, protected blocks whose size is twice that of the cache line.  We 

have previously used 32 byte protected blocks, so double-sized protected blocks allude to 

protecting 64 bytes of data with one signature (and one sequence number in the dynamic 

case).  We simulate using double-sized protected blocks on systems using the PMAC 

cipher and embedded systems, and compare the results to the same systems using single-

sized protected blocks.  We predict that, in the majority of workload cases, performance 

should be roughly the same.  Some cases should exhibit better performance as a result of 

the prefetching behavior that using double-sized protected blocks entails.  In some cases, 

however, this prefetching may do more harm than good, leading to cache pollution and 

degraded performance. 

The results of these simulations are displayed graphically in Figure 7.28 -  

Figure 7.33 and numerically in Table 7.16 and Table 7.17.  The simulation results mostly 

follow the theoretical projections.  Note that using double-sized protected blocks when 

protecting instructions and static data nearly always yields the same or better 

performance as using single-sized protected blocks; protecting dynamic data shows 

greater sensitivity to protected block size.  Overall, an improvement in performance is 

seen in most cases with smaller caches.  Lower performance is observed in most cases 

with larger caches. 
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Figure 7.28  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex M3, 1 KB 
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Figure 7.29  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex M3, 2 KB 
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Figure 7.30  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex M3, 4 KB 
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Figure 7.31  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex M3, 8 KB 
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Figure 7.32  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex A8, 16 KB 
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Figure 7.33  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex A8, 32 KB 
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Table 7.16  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex M3 

1 KB 2 KB 4 KB 8 KB 
Benchmark 

Block 
Size SICM Both SICM Both SICM Both SICM Both 

Single 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00 
bf_e 

Double 1.21 1.38 1.04 1.23 1.00 1.08 1.00 1.00 
Single 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.02 

cjpeg 
Double 1.09 1.51 1.02 1.26 1.00 1.18 1.00 1.05 
Single 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02 

fft 
Double 1.88 2.82 1.90 2.12 1.43 1.44 1.03 1.03 
Single 3.21 3.76 2.33 2.39 1.47 1.48 1.03 1.03 

ghostcript 
Double 2.31 3.40 1.87 2.04 1.50 1.53 1.02 1.03 
Single 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.08 

lame 
Double 1.14 1.79 1.10 1.45 1.02 1.20 1.02 1.13 
Single 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.05 

mad 
Double 1.46 1.79 1.24 1.43 1.24 1.41 1.02 1.05 
Single 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01 

mpeg2e 
Double 1.03 1.25 1.01 1.12 1.01 1.04 1.00 1.01 
Single 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.17 

rijndael 
Double 1.59 2.37 1.59 2.15 1.57 2.00 1.15 1.28 
Single 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.06 

stringsearch 
Double 1.87 2.71 1.52 1.85 1.12 1.18 1.06 1.08 
Single 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.09 

tiff2bw 
Double 1.03 1.13 1.03 1.12 1.02 1.12 1.00 1.12 
Single 1.05 1.27 1.03 1.25 1.00 1.23 1.00 1.13 

tiff2rgba 
Double 1.04 1.19 1.03 1.19 1.02 1.17 1.01 1.17 
Single 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.14 

tiffmedian 
Double 1.02 1.70 1.01 1.42 1.01 1.32 1.00 1.28 

 



 

148 

Table 7.17  Performance Overhead Implications of Using Double-Sized Protected 

Blocks, Cortex A8 

16 KB 32 KB 
Benchmark 

Block 
Size SICM Both SICM Both 

Single 1.00 1.00 1.00 1.00 
bf_e 

Double 1.00 1.00 1.00 1.00 
Single 1.00 1.01 1.00 1.00 

cjpeg 
Double 1.00 1.01 1.00 1.01 

fft Single 1.00 1.00 1.00 1.00 
 Double 1.00 1.00 1.00 1.00 

ghostcript Single 1.02 1.03 1.01 1.01 
 Double 1.02 1.03 1.01 1.02 

lame Single 1.06 1.12 1.05 1.09 
 Double 1.03 1.16 1.03 1.11 

mad Single 1.03 1.04 1.00 1.01 
 Double 1.02 1.06 1.00 1.01 

mpeg2e Single 1.00 1.01 1.00 1.01 
 Double 1.00 1.02 1.00 1.01 

rijndael Single 1.00 1.00 1.00 1.00 
 Double 1.00 1.00 1.00 1.00 

stringsearch Single 1.00 1.01 1.00 1.01 
 Double 1.00 1.01 1.00 1.01 

tiff2bw Single 1.00 1.16 1.00 1.00 
 Double 1.00 1.22 1.00 1.01 

tiff2rgba Single 1.00 1.26 1.00 1.09 
 Double 1.00 1.35 1.00 1.14 

tiffmedian Single 1.00 1.20 1.00 1.09 
 Double 1.00 1.53 1.00 1.29 

 

 

7.4.4 Analytical Model 

We use the simulation results from the cipher choice evaluation to generate 

analytical models of our architecture’s performance overhead.  We first plot performance 

overhead versus the cache miss rate for a dataset of interest.  Visual inspections of these 

plots suggest that performance overhead trends piecewise linearly with respect to cache 

miss rate.  We therefore use linear regression to find approximate equations for each 

piecewise segment and the breakpoint between segments.  The linear regression is 
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performed using Microsoft Solver, with Microsoft Excel used as a front-end.  The 

resulting formulae are valid over the range of cache miss rates that we have simulated.  

We limit our analysis to the Cortex M3 architecture, as the Cortex A8 demonstrates little 

or no overhead in most cases.  All Cortex M3 cache sizes are considered simultaneously, 

as the overhead from an individual cache miss is independent of cache size.  We analyze 

each cipher mode separately, producing a plot and an equation for each cipher mode.  

Furthermore, since our simulated system has independent instruction and data caches, we 

treat the SICM and DICM modes independently. 

7.4.4.1 SICM 

The performance overhead incurred by protecting instructions and static data is 

plotted versus the number of instruction cache misses is plotted in Figure 7.34 and  

Figure 7.35.  Equations (7.1), (7.2), and (7.3) were produced by piecewise linear 

regression, and can be used to predict the performance overhead y as a function of the 

instruction cache miss rate x for the CBC-MAC, PMAC, and GCM cipher modes, 

respectively.  The cache miss rate is in units of misses per thousand instructions.  These 

equations are valid for applications with instruction cache miss rates up to 160 misses per 

1,000 instructions.   

Note that the equations for the PMAC and GCM modes are very similar, and the 

breakpoints for all three modes are close to each other.  Also of interest is that the linear 

functions for the higher cache miss rates have gentler slopes than their respective lower 

miss rate functions.  This suggests that, during the execution of real programs, our 

security extensions incur a basic performance penalty up to a certain threshold.  After that 

threshold is met, additional cache misses incur less penalty. 
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otherwisex

xforx
y

 1.568590.01424

57.45560 1.001120.02412
    (7.1) 

 








otherwisex

xforx
y

 1.383690.00854

57.29303 1.000180.01523
     (7.2) 

 








otherwisex

xforx
y

 1.379080.00856

57.17616 1.001130.01517
     (7.3) 
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Figure 7.34  Analytical Model of SICM Performance Overhead, CBC-MAC 
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Figure 7.35  Analytical Model of SICM Performance Overhead, PMAC and GCM 
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7.4.4.2 DICM 

The protection overhead incurred by protecting only dynamic data is plotted 

versus the number of data caches misses in Figure 7.36 and Figure 7.37.  Equations (7.4), 

(7.5), and (7.6) may be used to model this performance overhead for applications with 

data cache misses up to about 140 per 1,000 instructions.  We note a dramatic difference 

in slope for higher miss rates; the slope, in fact, is negative, indicating that past a certain 

cache miss rate, security becomes less costly.  A rough analogy could be made with 

receiving a volume discount when purchasing a large number of items. 









otherwisex

xforx
y

1.454680.00077-

29.43342 0.975360.01551
     (7.4) 









otherwisex

xforx
y

1.287330.00002-

29.38261 0.990290.01009
     (7.5) 









otherwisex

xforx
y

1.188260.00021-

29.38261 0.990570.00652
     (7.6) 
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Figure 7.36  Analytical Model of DICM Performance Overhead, CBC-MAC and PMAC 
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Figure 7.37  Analytical Model of DICM Performance Overhead, GCM 

7.5 Comments 

In this chapter, we have used a simulator to evaluate the performance of our 

proposed security enhancements.  This evaluation shows that our enhancements are, for 

the most part, practical for implementation.  However, some enhancements, such as 

signature victim caches, do not increase performance enough to justify their use.  We 

have also evaluated the complexity and memory overheads of our enhancements 

analytically, and used the simulation results to develop an analytical model that can be 

used to produce a first-order prediction of performance overhead without having to run 

the simulator. 
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CHAPTER 8 

 

AN FPGA SECURE PROCESSOR IMPLEMENTATION 

The security extensions proposed in this dissertation should be feasibly 

implementable using existing technologies.  To prove this, we have implemented a 

prototype of a subset of our security extensions using existing, inexpensive hardware.  

Our implementation is limited to protecting the integrity and confidentiality of data stored 

off-chip in a system on a programmable chip (SOPC).  We here describe this 

implementation, including the application of various enhancements discussed in previous 

chapters and an evaluation of its performance. 

8.1 Design Goals 

Our implementation has three design goals: ensure a high level of security 

(integrity and confidentiality), make the security extensions transparent to the 

programmer, and keep the performance and complexity overheads as low as possible.  

We ensure confidentiality by encrypting secure data that is stored off-chip.  The base 

implementation ensures integrity by generating cryptographically sound signatures for 

off-chip data and using those signatures to verify those data when they are brought on-

chip.  The security extensions are transparent to the programmer other than requiring a 

function call to initialize the security-related hardware resources.  We minimize 
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performance overhead in our base implementation by overlapping cryptography with 

memory accesses and buffering verified blocks.  Further enhancements include 

parallelizing encryption/decryption, and parallelizing signature generation.   

In the earlier chapters of this dissertation, we assumed that the computer architect 

could modify the microprocessor, cache controller, TLB, and any other system 

components as necessary.  However, in the SOPC arena, many of these components are 

implemented as binary intellectual property (IP) cores that cannot be modified.  

Therefore, a guiding principle of our prototype implementation of security extensions is it 

will not require the modification of any other cores in the system. 

We have implemented these security extensions in a system based on the Altera 

NIOS II soft-core processor.  The test system was implemented on a Cyclone II FPGA 

using Altera’s Quartus II toolchain.  The performance of our extensions is evaluated 

using both a targeted microbenchmark and a small suite of embedded system benchmarks 

running on the actual SOPC.  Evaluation shows that parallelizing encryption/decryption 

and signature generation yields the best performance, but at the cost of increased 

complexity. 

8.2 Basic Implementation of Security Extensions 

This section describes how our basic implementation achieves our three design 

goals.  We begin with a description of how our design achieves security.  We then discuss 

the programming model for our design, and the memory architecture necessary to 

implement it.  We finally discuss how these security extensions are implemented in a 

hardware resource called the Encryption and Verification Unit (EVU). 
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8.2.1 Achieving Security 

As described in earlier chapters, the basic unit of secure data is a protected block.  

In systems with on-chip caches, the cache block size, or some multiple thereof, is a 

convenient protected block size.  In our implementation, we chose a protected block size 

of 32 bytes.  For our initial implementation we do not use data caches.  

Our design uses cryptography to protect the integrity and confidentiality of data 

stored off-chip.  Confidentiality is protected by encryption.  Integrity is protected by 

generating a 16 byte signature for each protected block of data.  We defend against replay 

attacks by associating a sequence number with each protected block, and using it in 

encryption/decryption and signature generation. 

The confidentiality of data is protected by using the low-overhead OTP 

encryption scheme described in Section 5.1.  Equation (8.1) shows how this encryption is 

performed.  The 32 byte plaintext data block D is divided into two 16 byte sub-blocks 

D0:3 and D4:7, which are separately encrypted to form ciphertext sub-blocks C0:3 and C4:7.  

The 128-bit key used for pad generation is denoted as KEY1,  A(SBi) is the address of 

sub-block i, SN is the protected block’s sequence number, and SP is a secure padding 

function that generates a unique 128-bit value from the 32-bit address and 32-bit 

sequence number. 

1..0))),(((134:434:4   iforSNSBASPAESxorDC iKEYiiii   (8.1) 

Decryption is simply the reverse of this operation.  The pads are calculated as in 

Equation (8.1), and then XORed with the ciphertext sub-blocks to produce the desired 

plaintext sub-blocks. 
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Signatures are generated using a modified version of the CBC-MAC mode.  The 

protected block’s signature S is calculated according to Equation (8.2).  Another 128-bit 

key, KEY2, is used for signature generation.  We also use the same secure padding 

function defined above, SP, operating on the block’s address A(SB) and sequence number 

SN.  The use of the block address prevents splicing attacks, the use of the block text 

prevents spoofing attacks, and the use of the sequence number prevents replay attacks.  If 

the keys are generated randomly for each run, then cross-executable splicing attacks will 

also be prevented.  The CBC-MAC approach used here differs from the approach in 

Section 5.3.1 in that the initial vector is not encrypted and the signature is calculated on 

ciphertext rather than plaintext.  These changes are due to the limitations of the AES core 

used in our implementation; it is not pipelined, so adding an additional operation to 

encrypt the initial vector would significantly increase latency.  This should not greatly 

effect the resulting cryptographic soundness of the signatures as long as the secure 

padding function assures uniqueness. 

 ))),((( 3:027:42 SNSBASPxorCAESxorCAESS KEYKEY    (8.2) 

If sequence numbers are stored off-chip, then they may be subjected to 

sophisticated replay attacks in which the sequence number is replayed as well as the 

protected block and its signature.  This gives rise to the necessity of complex structures 

such as Merkle trees [30, 31] to protect the sequence numbers.  Our design assumes that 

sequence numbers are stored in on-chip memory and are thus invulnerable to replay 

attacks, and require no additional protection. 

When the programmer reads from or writes to secure data at runtime, the 

appropriate sequence number, encrypted protected block, and signature are fetched.  
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When the pads are available, the block is decrypted.  As the two ciphertext sub-blocks 

become available, its signature is recalculated.  If the calculated signature and fetched 

signature match, the block has not been subjected to tampering and the read or write 

operation can proceed.  If the signatures do not match, a security violation has occurred 

and an interrupt is raised.  More operational details are given below in Section 8.2.3. 

In addition to preventing spoofing, splicing, and replay attacks, we must also 

prevent the programmer from inadvertently accessing uninitialized blocks.  To that end, 

the sequence number value zero is reserved to indicate that its associated protected block 

is uninitialized.  If a protected block’s sequence number is zero, the programmer may 

write to it, but not read from it.  If the sequence number is nonzero, then the programmer 

may both read from and write to the protected block.  A read from an uninitialized block 

will result in an interrupt. 

Whenever a protected block is written back to main memory, its sequence number 

must be incremented and new pads calculated to encrypt the block.  Sequence number 

overflows are undesirable, as they lead to pad re-use.  Our design uses 32-bit sequence 

numbers; should a particular target application have a strong likelihood of a sequence 

number rollover, the design may be modified to use 64-bit sequence numbers. 

In our design, the two cryptographic keys KEY1 and KEY2 are hard-coded in our 

security extension hardware.  For greater security, they could be randomly generated at 

runtime for each application using methods such as physical unclonable functions [29].  

In that case, these keys must be stored in the process control block in an encrypted form 

in the event of a context switch.  An additional hard-coded internal key would be needed, 

which would then be used to encrypt these keys before and decrypt them after a context 
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switch.  Keys should never leave the chip in plaintext form.  Hard-coded keys should 

only be used if the design will be protected by bitstream encryption. 

8.2.2 Programming and Memory Model 

An important design goal for these security extensions is that they be as 

transparent to the programmer as possible.  To that end, our implementation does not 

require the programmer to use any special application programming interface (API) to 

read and store secure data.  An initialization function must be called to initialize the 

necessary hardware resources (see Section 8.2.3 below).  Thereafter, the programmer 

simply defines his or her pointers appropriately and uses them as normal. 

This transparency is possible because of address mapping.  A portion of the 

address space is set aside to physically store encrypted data.  A similarly sized portion of 

the address space is mapped to the EVU.  For instance, to read or write the nth word of 

encrypted data, the programmer will read or write the nth word in the EVU’s address 

space.  This transparency is illustrated in the code snippets in Figure 8.1.  In the first 

snippet, OFFCHIP_MEM_BASE_ADDR defines the base address for off-chip memory.  

The second snippet accesses data relative to SECURE_DATA_BASE_ADDR, which 

defines the base address for accessing secure data via the EVU. 

The memory architecture of our design is illustrated in Figure 8.2.  The program 

text, heap, and stack are all stored in on-chip memory.  Sequence numbers should also be 

stored on-chip.  The figure depicts signatures as stored on-chip; they may also be stored 

in off-chip memory if desired.  The shaded region in the address space contains the 

secure data in its encrypted form, which is physically stored off-chip.  
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The programmer may read data directly from the encrypted region, but the result 

would be a word of ciphertext.  A direct write to this region would effectively constitute a 

spoofing attack, and would result in an interrupt the next time this secure data was 

properly accessed.  Secure data should be accessed through an area of the address space 

assigned to the EVU.  Addresses in this region are mapped to those in the encrypted data 

region, and the EVU handles all decryption and verification.  If a block of secure data is 

no longer needed, its corresponding space in off-chip memory may be reclaimed for 

unsecured use.  However, that block must not be treated as secure data thereafter. 

 

 

 

Figure 8.1  Programmer’s View of Securing Data in Off-Chip Memory 

/* This code writes data directly to off-chip  
   memory in an insecure manner. */ 
void Array_Access_Insecure() 
{ 
   int i; 
   int *pArray; 
 
   pArray = OFFCHIP_MEM_BASE_ADDR; 
 
   for(i = 0; i < 16; i++) 
      pArray[i] = i; 
} 
 
/* This code writes secure data using the EVU. */ 
void Array_Access_Secure() 
{ 
   int i; 
   int *pArray; 
 
   Initialize_EVU(); 
 
   pArray = SECURE_DATA_BASE_ADDR; 
 
   for(i = 0; i < 16; i++) 
      pArray[i] = i; 
} 
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Figure 8.2  Memory Architecture 

The maximum number of 32 byte protected blocks is determined by the amount 

of memory allocated to storing signatures and sequence numbers.  Each protected block 

requires a 16 byte signature and a four byte sequence number.  Thus the maximum 

number of protected blocks NPB in a system is limited by Equation (8.3).  In this equation, 

Sz(Msig) and Sz(Mseqnum) are the sizes in bytes of the memory regions allocated for storing 

signatures and sequence numbers, respectively. 
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Since signatures introduce the greatest memory overhead, the designer may wish 

to fix the size of the region of memory allocated to signatures, and then calculate the 

required sizes for the other memory regions.   In our implementation, we chose to 

allocate eight kilobytes of memory for storing signatures.  This allows us to have  

512 protected blocks of 32 bytes each, for a total of 16 kilobytes of secure data.  We thus 

require two kilobytes of on-chip memory for sequence numbers.  

8.2.3 Implementation 

The implementation of these security extensions must balance complexity and 

performance overhead, while at the same time not requiring the modification of any 

existing soft cores.  To that end, the EVU is implemented as an on-chip peripheral 

attached to the bus.  Other implementations are certainly possible, such as embedding the 

EVU functionality in a custom memory controller.  The implementation strategy we 

choose, however, allows our design to be flexible and applicable to existing systems. 

Figure 8.3 shows a block diagram of our implementation of an embedded system 

incorporating our security extensions.  All components of the baseline system are 

unshaded, while the shaded components are added to implement the security extensions.  

The baseline system for this implementation is a simple 32-bit NIOS II system-on-a-chip.  

On-chip memories are used to store program instructions and data (heap and stack).  A 

synchronous dynamic random access memory (SDRAM) controller provides access to 

off-chip memory.  The system is generated using Altera’s SOPC Builder, part of the 

Quartus II toolchain.  The on-chip bus interconnects conform to the Altera Avalon 

standard [53], with loads and stores occurring at the word level. 
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Figure 8.3  System-on-a-Programmable Chip Incorporating Security Extensions 

The base system uses a simple NIOS II CPU with no data cache.  In a NIOS II 

system with caches, cache lines are loaded and evicted via sequences of single-word 

accesses.  The EVU would handle these like any other accesses. 

The additional hardware to implement the security extensions consists of a 

discrete EVU peripheral, an on-chip memory for the sequence number table, and an on-

chip memory for the signature table.  Secure data is physically stored in its encrypted 

form in the off-chip SDRAM.  (As mentioned earlier, signatures may also be stored off-

chip if necessary.)  The programmer may read directly from the SDRAM; however, if a 

location in the SDRAM containing secure data is read, encrypted data will be returned.  

SDRAM locations not used for storing secure data or signatures may be used to store 

non-sensitive plaintext data. 

The internals and interfaces of the EVU are shown in Figure 8.4.  In the upper left 

of this figure are the data and control registers for the EVU.  Three data registers specify 

the base addresses of encrypted data in external memory, the signatures, and sequence 
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numbers.  These should be set in the aforementioned initialization function.  (The 

initialization function should also initialize the sequence number table to all zeros.)  The 

control register allows the programmer to reset the EVU and clear the interrupt.  An 

Avalon bus slave interface allows access to these data and control registers. 
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Figure 8.4  Block Diagram of the Encryption and Verification Unit 

A second Avalon bus slave interface is shown in the bottom left of the figure.  

This is the interface that the programmer will use to access secure data.  Therefore, the 

portion of address space allocated to this interface should be commensurate with the 

amount of protected data.  This is achieved by setting the width of the address signal on 

the slave interface.  Avalon slave interface address signals are actually word indices 

rather than actual addresses.  In our sample system, we have 16 kilobytes of secure data, 

constituting 4,096 32-bit words.  Thus, the address bus for this interface must be 12 bits 

wide to address all 4,096 words. 
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The memory access controller is a state machine responsible for fetching 

sequence numbers, signatures, and data blocks from memory and maintaining local 

buffers.  The controller can access on-chip and external memories via an Avalon bus 

master interface.  The EVU also contains an AES core and a state machine to control it.  

An interrupt interface allows interrupts to be raised by the memory access controller if 

the programmer tries to read from an uninitialized block or a fetched block and signature 

fails verification. 

The upper right of the figure shows the various buffers used in the EVU.  There 

are buffers for the fetched signature, calculated signature, the ciphertext block that has 

been read from memory or will be written to memory, the pads used to encrypt and 

decrypt the block, and the sequence number.  An additional structure called the 

opportunity buffer attempts to reduce performance overhead by taking advantage of the 

locality of data accesses.  Even though the processor will only read or write one word at a 

time, the entire protected block must be brought into the EVU in order to perform 

verification.  This block is stored in the opportunity buffer as plaintext.  Any further reads 

from or writes to the protected block while it is buffered can be done within the EVU, 

without having to access external memory.  The block’s address may be reconstructed 

from the opportunity buffer’s tag.  Its sequence number and the pads used to encrypt and 

decrypt it are also buffered. 

When a word from a different block is requested, the block in the opportunity 

buffer must be evicted, along with its sequence number and signature.  If the block is 

dirty, then it must be written back to external memory.  The sequence number must be 

incremented and the pads recalculated before the plaintext block can be encrypted for 
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storage.  The opportunity buffer’s tag is used to calculate the addresses for the block to be 

written back, its sequence number, and signature. 

Figure 8.5 and Figure 8.6 list the algorithms used for reading and writing words of 

secure data, respectively.  Conditions that cause an interrupt to be raised are marked in 

italicized text.  These algorithms reveal the latency hiding mechanisms used in the EVU.  

Whenever possible, cryptographic operations are done concurrently with memory 

operations to hide cryptographic latency.  When writing to a protected block, new pads 

must be calculated once the sequence number has been incremented.  As Figure 8.6 

shows, the sequence number is only incremented when a block in the opportunity buffer 

is first marked dirty.  Pad calculation is begun, and the processor is allowed to continue 

execution.  If another secure read or write is initiated before the new pads have been 

calculated, the new access is stalled until the pads are completed. 
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Figure 8.5  Algorithm for Secure Read 

 

Wait for any crypto operations from a previous access to complete. 
Is buffer valid and does buffer tag match address? 
 Yes: (read hit) 
  Return word from buffer and exit. 
 No: (read miss) 
  Is buffer valid and dirty? 
   Yes: (evict block from buffer) 
    Encrypt block using buffered pads. 
    Write sequence number and cryptotext block to memory. 
    In parallel with memory write, calculate block signature. 
    When signature is ready, write signature to memory. 
    Continue with read miss operation. 
   No: (do nothing, continue with read miss operation) 
  Fetch sequence number from memory. 
  Is sequence number nonzero? 
   Yes: (block has been initialized) 
    Read block and signature from memory. 
    In parallel with memory accesses, calculate pads. 
    Decrypt sub-blocks as pads and data are available. 
    When block is fully available, calculate signature. 
    Do calculated signature and fetched signature match? 
     Yes: (everything is fine) 
      Buffer block and pads; mark buffer valid and clean. 
      Return word from buffer and exit. 
     No: (security violation) 
      Raise interrupt, mark buffer invalid, and exit. 
   No: (trying to read an uninitialized block) 
Raise interrupt, mark buffer invalid, and exit. 
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Figure 8.6  Algorithm for Secure Write 

Wait for any crypto operations from a previous access to complete. 
Is buffer valid and does buffer tag match address? 
 Yes: (write hit) 
  Latch word into buffer. 
  Is buffer currently marked clean? 
   Yes: (precompute pads for eventual writeback) 
    Mark buffer dirty. 
    Increment buffered sequence number. 
    Start calculation for new pads, and exit. 
   No: (do nothing, exit) 
 No: (write miss) 
  Is buffer valid and dirty? 
   Yes: (evict block from buffer) 
    Encrypt block using buffered pads. 
    Write sequence number and cryptotext block to memory. 
    In parallel with memory write, calculate block signature. 
    When signature is ready, write signature to memory. 
    Continue with write miss operation. 
   No: (do nothing, continue with write miss operation) 
  Fetch sequence number from memory. 
  Is sequence number nonzero? 
   Yes: (block has been initialized) 
    Read block and signature from memory. 
    In parallel with memory accesses, calculate pads. 
    Decrypt sub-blocks as pads and data are available. 
    When block is fully available, calculate signature. 
    Do calculated signature and fetched signature match? 
     Yes: (everything is fine) 
      Buffer block and pads; mark buffer valid and dirty. 
      Increment sequence number. 
      Latch word into buffer. 
      Start calculation for new pads, and exit. 
     No: (security violation) 
      Raise an interrupt, mark buffer invalid, and exit. 
   No: (initialize the block) 
    Set sequence number to 1. 
    Start pad calculation. 
    Load buffer with zeros; mark buffer valid and dirty. 
    Latch word into buffer and exit. 
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8.2.4 Initial Performance Evaluation 

The EVU’s performance was profiled using built-in counters inside the EVU.  

The EVU’s behavior on a read miss is of particular interest, as the actions taken on a read 

miss also occur on a write miss.  The counters report that a read miss in the EVU’s 

opportunity buffer takes about 74 clock cycles.  Further analysis reveals that memory 

accesses complete long before the cryptographic operations, as depicted in Figure 8.7.  

This analysis assumes that sequence numbers and signatures are stored on-chip, while the 

protected blocks are stored in off-chip SDRAM.   

 

Pad for First Sub-Block Pad for Second Sub-Block Signature, Part One Signature, Part Two

Memory Accesses

Cryptographic Operations 70 cycles

40 cycles

SN Encrypted Data Block Signature

 

Figure 8.7  Performance Overhead on a Read Miss 

8.3 Optimizations and Enhancements 

All theoretical analysis in this dissertation, other than that in this chapter, has 

assumed a pipelined AES core.  However, such cores may be prohibitively large to 

implement in reconfigurable logic.  For instance, the simple open-source AES IP core 

used in this implementation [54] is not pipelined, and still contributes about half of the 

total complexity overhead of the EVU (see Section 8.4.1).  Using a non-pipelined core 

requires all cryptographic operations to be performed sequentially, resulting in the 

cryptographic latency being on the critical path of an opportunity buffer miss. 
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As we have seen in Chapter 5, exploiting parallelism in cryptographic operations 

can decrease performance overhead.  However, such optimizations would require either a 

more complex, pipelined AES core or another independent AES core acting in parallel.  

We choose the latter approach for lack of a pipelined AES core optimized for our target 

platform.  The following sections describe how we exploit cryptographic parallelism to 

reduce performance overhead.   

8.3.1 Parallelizing Pad Calculation 

The first optimization we pursue is parallelizing pad calculation.  Recall that the 

protected block is divided into two sub-blocks, which are decrypted and encrypted by 

XORing them with a precomputed pad, as in Equation (8.1).    Each pad requires only the 

sub-block’s address and the protected block’s sequence number, and thus the pads may 

be calculated independently.  We exploit this independence by initializing a second AES 

core and generating both pads concurrently.  The resulting performance profile is shown 

in Figure 8.8.  Comparing Figure 8.8 with Figure 8.7 shows that parallelizing pad 

calculation reduces the cryptographic latency from 70 clock cycles to 57 clock cycles.  
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Figure 8.8  Performance Overhead on a Read Miss with Parallelized Pad Generation 

 

 

8.3.2 Parallelizing Signature Generation 

The cryptographic latency may be further reduced by parallelizing signature 

generation.  The CBC-MAC technique, by its very nature, requires that the cryptographic 

operations required for signature generation be performed in sequence.  Therefore, we 

modify the signature generation methodology to use a variation on the PMAC mode. 

Using this technique, signatures for each sub-block are calculated independently 

(Equation (8.4)) and then XORed together to form the signature for the protected block 

(Equation (8.5)).  In these equations, Sig(SBi) is the signature for sub-block i, C0:3 and 

C4:7 are the two ciphertext sub-blocks, SP is the secure padding function defined above, 

A(SBi) is the address of sub-block i, SN is the protected block’s sequence number, and S 

is the protected block’s signature.  Like our CBC-MAC implementation, this 

implementation of the PMAC mode differs from that discussed in Section 5.3.2 in that 

the initial vectors are not encrypted.  As with our CBC-MAC variant, this should not 

significantly reduce the cryptographic soundness of our signatures as long as the initial 

vectors are unique. 
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Applying these equations, the cryptographic operation required for each sub-

block’s signature may be started as soon as the sub-block’s ciphertext is available from 

memory.  We again take advantage of the presence of two independent AES cores to 

perform these operations concurrently.  Figure 8.9 shows the resulting performance 

profile incorporating both parallelized pad generation and parallelized signature 

generation.  Applying these techniques reduces the cryptographic latency to 47 clock 

cycles (as compared to 70 cycles with a single AES core and 57 cycles for parallelized 

pad generation alone). 
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Figure 8.9  Performance Overhead on a Read Miss with Parallelized Pad  

and Signature Generation 

8.4 Evaluation 

This section evaluates the complexity and performance overheads introduced by 

the EVU in an actual SOPC.  The implementation of our security extensions was 
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synthesized, placed, routed, and deployed on a Terasic DE2-70 [55], a low-cost 

development and education board.  The DE2-70 includes an Altera Cyclone II 2C70 

FPGA.  The complexity overhead is evaluated using the output of the synthesizer, while 

the performance overhead is evaluated by running several benchmarks on the actual 

secure system. 

8.4.1 Complexity Overhead 

Three discrete components were added to the baseline system to implement the 

security extensions: the EVU, a 2 KB on-chip memory for the sequence number table, 

and an 8 KB on-chip memory for the signature table.  Furthermore, we have three distinct 

EVU designs: an EVU with one AES core using CBC-MAC, an EVU with two AES 

cores using CBC-MAC with parallelized signatures, and an EVU with two AES cores 

using PMAC with parallelized signatures.  The complexity overhead introduced by these 

components is shown in Table 8.1.  The figures in the table are reported by the Quartus II 

tool.  The first three rows in the table show the overheads for each of the EVU types.  

The first number in each cell is the overall figure for that design EVU, followed by the 

contribution of the AES cores in parenthesis.  The final two lines show the overheads 

induced by the memories, which are constant regardless of which EVU is chosen. 

Note that about half of the overhead induced by any given EVU design comes 

from its AES cores.  The EVU itself takes advantage of dedicated logic registers to 

implement the opportunity buffer.  The additional memories consume little in the way of 

logic cells, but do consume M4K blocks, which are on-chip RAM resources.  Recall that 

signatures need not be stored on-chip; they may be stored in an off-chip memory if on-

chip memory space is at a premium.  The higher complexity of the PMAC EVU design 



 

175 

and CBC EVU design with parallelized pads is due to the presence of the second AES 

core.  Also, the complexity of the PMAC EVU design is similar to that of the CBC EVU 

design with parallelized pads. 

 

 

Table 8.1  Complexity Overhead 

Component Name Logic Cells Dedicated Logic 
Registers 

M4K 
Blocks 

EVU – CBC 8,321 (5,031) 2,768 (658) 0 
EVU – CBC with Parallelized Pads 13,514 (10,062) 3,403 (1,316) 0 
EVU – PMAC 13,780 (10,062) 3,564 (1,316) 0 
Sequence Number Memory (2 KB) 2 0 4 
Signature Memory (8 KB) 2 0 16 

 

 

8.4.2 Benchmarks 

We run a suite of benchmarks to evaluate the performance overhead introduced 

by our security extensions and explore the design space.  A microbenchmark is used to 

stress-test the system and evaluate its performance under a worst-case scenario.  Four 

actual benchmarks for embedded systems are used to evaluate performance under a more 

realistic workload.  Performance overhead is determined by dividing the number of clock 

cycles required to run the benchmark on hardware with a secure configuration of interest 

by the number of cycles required to run the same benchmark on a system without security 

extensions. 

The worst-case performance overhead introduced by the security extensions is 

evaluated by running a microbenchmark to stress-test the system.  The microbenchmark 

potentially introduces far greater overhead than an actual application.  It reads and writes 
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to an eight kilobyte array in memory with a varying stride factor.  When performing 

secure writes, a miss in the opportunity buffer will always cause a writeback.  Baseline 

results are measured by reading and writing directly to SDRAM.  Varying the stride 

factor allows the benchmark to vary the degree to which it takes advantage of the 

opportunity buffer.  With a stride of one, it takes full advantage of the buffer, with an 

opportunity buffer miss every eighth access.  With a stride of eight, an opportunity buffer 

miss occurs every access, thus allowing us to measure the average time required to fetch 

and verify a protected block from off-chip memory.  Unless otherwise noted, neither the 

baseline nor secure systems contain data caches or any other performance enhancement 

mechanisms other than those in the EVUs being evaluated.  This allows us to see the 

worst-case, bottom-line latencies.  Therefore, the latencies reported from the 

microbenchmark are worse than they would be in a more realistic system containing one 

or more levels of data cache. 

In addition to the microbenchmark, four actual benchmarks representing typical 

workloads for embedded processors were ported to run on the secure system.  We chose 

two benchmarks, ADPCM and a cyclic redundancy check (CRC) algorithm, CRC32, 

from the MiBench suite [47].  We also chose two digital signal processing algorithms, a 

fast Fourier transform (FFT) and finite impulse response (FIR) filter, to use as 

benchmarks [56].  (Note that this FFT benchmark is different from that used in 

Chapter 7.)  The benchmarks were modified to place buffers, working variables, and 

lookup tables in secure memory.  Input and output files were read from and written to a 

personal computer using the Altera Host Filesystem driver.  This introduced a source of 

uncertainty in runtimes, and so all performance data reported for these benchmarks are 
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averages across several runs.  These benchmarks are profiled in Table 8.2.  The table 

shows the average number of cycles required for execution in the unsecured case (with 

data placed in off-chip SDRAM), as well as the numbers of secure reads and writes, and 

the read and write opportunity buffer miss rates. 

 

 

Table 8.2  Embedded System Benchmarks 

Benchmark Avg. Cycles 
Unsecured 
(millions) 

Secure  
Reads 

Secure 
Writes 

OB Read  
Miss Rate 
[%] 

OB Write 
Miss Rate 
[%] 

ADPCM 248.80 26,661,720 14,044,719 17.97 14.87 
CRC32 358.81 1,368,864 256 96.87 12.50 
FFT 18.91 20,920 10,434 55.65 87.71 
FIR 12.35 35,422 9,241 73.56 6.24 

 

 

8.4.3 Effects of Cryptography Approaches 

The suite of benchmarks was run on three secure systems incorporating EVUs 

with all three designs discussed in this chapter: CBC-MAC without any cryptographic 

parallelization, CBC-MAC with parallelized pad generation, and PMAC with parallelized 

pad and signature generation.  The performance overheads experienced by these 

benchmarks are presented in Table 8.3.  The first two sections of this table report the 

worst-case read and write overheads, respectively, as reported by the microbenchmark.  

The third section reports the overhead from the more realistic benchmarks. 

As the table shows, the PMAC design consistently outperforms the other designs, 

as would be expected based on theoretical analysis.  This holds for both the raw, worst-

case overhead as reported by the microbenchmark and the more realistic benchmarks.  
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This suggests that the PMAC design should be used if its additional complexity relative 

to CBC-MAC with a single AES unit can be tolerated. 

The two benchmarks with long runtimes, ADPCM and CRC32, exhibit very low 

overhead.  ADPCM even takes advantage of the prefetching behavior of the opportunity 

buffer, and experiences a speedup.  The CRC32 benchmark, even with its high 

opportunity buffer read miss rate, appears to amortize performance overhead over its 

runtime, and still exhibits negligible overhead when using a CBC EVU.  The FFT and 

FIR benchmarks, on the other hand, have much shorter runtimes and high opportunity 

buffer miss rates, thus exhibiting a much greater sensitivity to overhead from security 

extensions. 

 

 

Table 8.3  Performance Overhead Implications of EVU Design 

Performance Overhead 
Benchmark 

CBC 
CBC with 

Parallelized Pads 
PMAC 

Microbenchmark Read Accesses 
Miss Every 8th Access 0.94 0.92 0.90  
Miss Every 4th Access 1.06 1.02 0.98 
Miss Every 2nd Access 1.31 1.21 1.15 
Miss Every Access 1.80 1.61 1.47 
Microbenchmark Write Accesses with Writebacks 
Miss Every 8th Access 1.37 1.35 1.33 
Miss Every 4th Access 1.73 1.68 1.63 
Miss Every 2nd Access 2.44 2.35 2.24 
Miss Every Access 3.85 3.68 3.46 
Embedded System Benchmarks 
ADPCM 0.99 0.97 0.97 
CRC32 1.02 1.01 1.00 
FFT 1.28 1.27 1.26 
FIR 1.14 1.09 1.07 
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8.4.4 Effects of Signature Location 

We use the same suite of benchmarks to evaluate the performance overhead 

incurred by storing signatures in off-chip SDRAM rather than in an on-chip memory.  

We use the PMAC EVU design, as it has the lowest cryptographic latency and is thus 

more likely to show the effects of longer memory fetch times.  The resulting performance 

overheads are shown in Table 8.4.  The microbenchmark clearly shows an increase in 

performance overhead when signatures are moved off-chip, but it is relatively minor for 

all but the extreme worst case with a miss on every access.  The embedded system 

benchmarks, however, exhibit very little sensitivity to performance overhead, incurring 

about the same amount of overhead regardless of signature location.  These figures 

suggest that, for actual applications, storing signatures off-chip should not introduce 

prohibitive latencies.  System designers may thus conserve on-chip memory resources 

when needed without suffering prohibitive performance overheads. 
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Table 8.4  Performance Overhead Implications of Signature Location 

Performance Overhead 
Benchmark PMAC 

Signatures On-Chip 
PMAC 

Signatures Off-Chip 
Read Accesses 
Miss Every 8th Access 0.90 0.92 
Miss Every 4th Access 0.98 1.02 
Miss Every 2nd Access 1.15 1.23 
Miss Every Access 1.47 1.65 
Write Accesses with Writebacks 
Miss Every 8th Access 1.33 1.37 
Miss Every 4th Access 1.63 1.71 
Miss Every 2nd Access 2.24 2.41 
Miss Every Access 3.46 3.80 
Embedded System Benchmarks 
ADPCM 0.97 0.98 
CRC32 1.00 1.00 
FFT 1.27 1.27 
FIR 1.07 1.07 

 

 

8.4.5 Effects of Data Caching 

The analysis presented in this chapter has assumed that the processor has no data 

cache.  Many mid-range to high end embedded processors, however, will have one or 

more levels of data cache.  We therefore use the benchmark suite to evaluate the 

performance of our security extensions in the presence of a data cache.  The benchmarks 

were run in systems with cache sizes of 2 KB, 4 KB, and 8 KB, with and without security 

extensions.  Recall from Section 4.1 that protected block size should be some multiple of 

cache block size for best performance.  As our protected block size is already set at 

32 bytes, we choose cache line sizes of 32 bytes as well. 

The observed performance overhead is presented in Table 8.5.  The 

microbenchmark operates on an 8 KB array, and thus will behave well for a cache size of 

8 KB, but will cause severe thrashing for smaller caches.  As the results from the 
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microbenchmark show, when an application is thrashing in the cache, the security 

extensions amplify the thrashing’s deleterious effects.  However, when an application is 

well-behaved with respect to the cache, the security extensions introduce negligible 

overhead. 

 

 

Table 8.5  Performance Overhead Implications of Data Caching 

Performance Overhead 
Benchmark PMAC 

2 KB D-Cache 
PMAC 

4 KB D-Cache 
PMAC 

8 KB D-Cache 
Read Accesses 
Miss Every 8th Access 1.11 1.12 1.00 
Miss Every 4th Access 1.21 1.21 1.01 
Miss Every 2nd Access 1.37 1.37 1.01 
Miss Every Access 1.58 1.58 1.02 
Write Accesses with Writebacks 
Miss Every 8th Access 1.38 1.40 1.01 
Miss Every 4th Access 1.69 1.72 1.02 
Miss Every 2nd Access 2.25 2.27 1.03 
Miss Every Access 3.29 3.33 1.05 
Embedded System Benchmarks 
ADPCM 0.91 0.95 1.00 
CRC32 0.99 1.02 0.99 
FFT 0.86 0.99 1.01 
FIR 0.93 0.93 0.97 

 

 

The more realistic benchmarks have relatively small working data sets, so they 

are more well-behaved in these small data caches than the microbenchmark.  The effects 

of the EVU should therefore be negligible in these benchmarks.  However, the 

benchmarks all exhibit a speedup when running with the EVU with smaller caches, and 

performance overheads approaching unity as the cache size increases.  We can conclude 

that the performance of systems with a data cache and an EVU is comparable to that of 
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systems with only a data cache, but the uncertainty introduced by using the Altera Host 

Filesystem driver prevents us from drawing any further conclusions. 

8.5 Comments 

The implementation documented in this chapter proves that the sign-and-verify 

security extensions described in this dissertation can be feasibly implemented in low-cost 

embedded systems.  Existing technology allows security extensions to be implemented 

right now in systems utilizing soft-core processors; designers of such systems need not 

wait for security features to be included in future generations of microprocessors.  

Furthermore, the performance overhead results from the optimizations explored in this 

chapter bear out the theories that were described above in Chapter 5.  They demonstrate 

that the theory applies in actual hardware, not just simulations. 

This chapter should contain sufficient information to allow the interested reader to 

design their own security extensions using the hardware description language of their 

choice.  However, we offer the source code of our implementation as an electronic 

appendix to this dissertation.  The basic principles and optimizations presented in this 

dissertation and used in our implementation may be easily adapted for use with other 

soft-core processors. 
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CHAPTER 9 

 

RELATED WORK 

In this chapter, we briefly survey several architectural techniques that have been 

proposed to support software and data integrity and confidentiality.  Security may be 

approached from both the software and hardware perspectives.  Software techniques may 

be classified as static (relying on the detection of security vulnerabilities in code at design 

time) and dynamic (adding code to enhance security at runtime).  A survey of static and 

dynamic software techniques may be found in [4].  Hardware techniques rely primarily 

on hardware to ensure security, often with some degree of software support.  This chapter 

focuses on hardware techniques, as our proposed security architectures are hardware-

oriented.   

Several non-comprehensive hardware techniques have been put forth to address 

common types of attacks.  Xu et al. [57] and Ozdoganoglu et al. [58] propose using a 

secure hardware stack to defend against stack buffer overflow attacks.  Tuck et al. [59] 

suggest using encrypted address pointers.  Suh et al. [60] and Crandall and Chong [61] 

propose that all data coming from untrusted channels be tagged and not allowed to be 

used as a jump target.  Barrantes et al. [62] randomize a processor’s instruction set to 

make attacks more difficult.  Some techniques address side channel-attacks on software 

cryptography, such as Wang and Lee’s proposal [63] to partition caches to thwart cache 
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miss analysis and Ambrose et al.’s [64] injection of random code to defeat power 

analysis attacks. 

Our approach, however, is intended to be more comprehensive than the proposals 

mentioned above.  Therefore, we more thoroughly examine proposals that are similarly 

comprehensive in both the uniprocessor and multiprocessor domains.  Uniprocessor 

solutions may be further divided into proposals from academia, which are well 

documented, and proposals from industry, which are not as well documented due to their 

proprietary nature.  We finally examine solutions targeting reconfigurable logic.  Our 

research primarily involves uniprocessor systems, with a focus on embedded systems 

such as might be implemented in reconfigurable logic, so the uniprocessor and 

reconfigurable logic topics are most salient for this dissertation. 

9.1 Uniprocessor Proposals 

Most secure processor research to date has focused on systems with a single 

microprocessor.  This type of system encompasses many general purpose computing 

systems and embedded systems.  In this section, we examine comprehensive proposals 

for securing uniprocessor systems from both the academic and commercial sectors. 

9.1.1 Academic 

Ragel and Parameswaran [65] introduce an architecture for verifying code 

integrity.  The compiler calculates a checksum for each basic block.  Special instructions 

are inserted at the beginning of each basic block to load its checksum into a dedicated 

register.  The checksum is independently calculated as the block executes, and when an 

instruction that alters control flow is encountered, the calculated checksum is compared 
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with the loaded checksum.  If they mismatch, then the block has been subjected to 

tampering.  This approach requires both software and hardware support, including 

compiler modifications and adding custom instructions to the instruction set.  Also, it 

only targets instruction integrity, and does not address data integrity or any form of 

confidentiality. 

The execute-only memory (XOM) architecture proposed by Lie et al. [66] 

provides an architecture meeting the requirements of integrity and confidentiality.  Main 

memory is assumed to be insecure, so all data entering and leaving the processor while it 

is running in secure mode is encrypted.  This architecture was vulnerable to replay 

attacks in its original form, but that vulnerability was corrected in [67].  The drawbacks 

to this architecture are its complexity and performance overhead.  XOM requires 

modifications to the processor core itself and to all caches, along with additional security 

hardware.  This architecture also incurs a significant performance overhead, by its 

designers’ estimation, of up to 50%. 

The high overhead of XOM is reduced by the architectural improvements 

proposed by Yang et al. [34].  They only address confidentiality, as their improvements 

are designed to work with XOM, which already addresses integrity concerns.  They 

propose to use a one-time pad (OTP) scheme for encryption and decryption, in which 

only the pad is encrypted and then XORed with plaintext to produce ciphertext, or with 

ciphertext to produce plaintext.  They augment data security by including a sequence 

number in the pad for data blocks, and require an additional on-chip cache for said 

sequence numbers.  While their scheme greatly improves XOM’s performance, it inherits 

its other weaknesses. 
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Gassend et al. [31] propose to verify untrusted memory using a tree of hashes.  

They only address integrity, suggesting that their architecture can be added to a system 

such as XOM, which will handle confidentiality concerns.  The use of a hash tree 

introduces significant bandwidth overhead, which is alleviated by integrating the hash 

mechanism with system’s caches.  However, their integrity-only overhead is still high, 

with a maximum of 20% for the most efficient architecture they propose. 

Lu et al. [68] propose a similar architecture, using a message authentication code 

(MAC) tree.  MACs are computed for each cache block, incorporating its virtual address 

and a secret application key.  For higher level nodes, MACs are computed using those 

from the lower level and a random number generated from thermal noise in the processor.  

They propose to enhance performance by caching MAC data on the chip.  This MAC tree 

architecture does show an improvement over the hash tree proposed by Gassend et al., 

but it still introduces an average performance overhead of between 10% and 20%. 

Platte and Naroska [41] describe another tree-based sign-and-verify system for 

protecting the integrity of code and data, also protecting the values of registers during 

traps to the operating system.  They treat dynamically generated code in the same manner 

as dynamic data, but do not allow the use of dynamically linked libraries.  Their design 

only addresses integrity, and does not ensure confidentiality.  Furthermore, verification is 

not immediate; data block verification is only guaranteed to complete by the next 

sequence call or context switch.  This opens a window of vulnerability during which 

malicious instructions may execute unchecked.  Due to the securing of registers, the 

compiler and operating system must be modified to utilize added instructions for 

accessing secure data.  No performance overhead analysis is presented. 
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Elbaz et al. [69] develop a technique for performing decryption and integrity 

checking at the same time.  They take advantage of the spreading property of the AES 

algorithm, whereby every bit in a plaintext block influences every bit in the 

corresponding ciphertext block.  Every block of protected data is appended with a 

random nonce before each encryption.  The nonces are stored on-chip, and when a 

protected block is decrypted, the resulting plaintext nonce is compared with the stored 

nonce.  If the nonces match, the block is safe for use.  An average simulated overhead of 

4% is reported.  This approach requires a method for generating nonces that is at once 

random yet also deterministic enough to guarantee that the same nonce will never by 

generated twice.  It also requires an on-chip resource to store a table of expected nonces; 

however, this also eliminates the need for a tree-like structure in memory.  This 

architecture is extended in [70] to support off-chip nonce storage.  In the extended 

architecture, the nonce consists of the protected block address and counter value.  A tree-

like structure is used to protect the counter values.  Their approach introduces a 100% 

memory overhead, and no performance evaluation is presented. 

Suh et al. [71] propose an architecture that addresses confidentiality and overall 

integrity.  Their architecture uses one-time pad (OTP) encryption to provide 

confidentiality with relatively low overhead.  However, since their cryptographic 

functions take a timestamp as an input, they propose that the entire protected memory be 

re-encrypted on the unlikely event of a timestamp counter rollover.  To reduce overhead 

from integrity checking, they propose to construct a log of memory accesses using 

incremental multiset hashes.  They assume that a program produces meaningful, signed 

outputs either at the end of its execution or at discrete intervals during execution.  Their 
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architecture verifies the hashed memory access sequences only when those outputs are 

produced.  Since verification occurs infrequently, it introduces negligible overhead.  The 

major drawback is that tampering is not immediately evident, leaving the system 

potentially vulnerable between verifications. 

The work of Milenković et al. [4, 26, 72] provides the foundation for the research 

documented in this dissertation, and introduced many of the elements used in this work.  

Their proposed architecture addresses only the integrity of instructions, and involves 

signing instruction blocks during a secure installation procedure.  These signatures are 

calculated using instruction words, block starting addresses, and a secret processor key, 

and are stored together in a table in memory.  At runtime, these signatures are 

recomputed and checked against signatures fetched from memory.  The cryptographic 

function used in the architecture is a simple polynomial function implemented with 

multiple input shift registers.  The architecture is updated in [73] and [74], adding AES 

encryption to increase cryptographic strength and embedding signatures with instruction 

blocks rather than storing them in a table.  This architecture remains vulnerable to 

splicing attacks, since signatures in all programs use the same key. 

Drinić and Kirovski [24] propose a similar architecture to that of Milenković 

et al., but with greater cryptographic strength.  They use the CBC-MAC cipher, and 

include the signatures in the cache line.  They propose to reduce performance overhead 

by reordering basic blocks, so that instructions that may not be safely executed in a 

speculative manner are not issued until signature verification is complete.  The drawback 

to this approach is that it requires significant compiler support, and may not consistently 
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hide the verification overhead.  Furthermore, their architecture does not address 

confidentiality, and is vulnerable to replay and splicing attacks. 

A joint research team from the Georgia Institute of Technology (GA Tech) and 

North Carolina State University (NCSU) has proposed several secure processor designs.  

Yan et al. [42] describe a sign-and-verify architecture using Galois/Counter Mode 

cryptography.  They protect dynamic data using split sequence numbers to reduce 

memory overhead and reduce the probability of a sequence number rollover.  A tree-like 

structure is used to protect dynamic data against replay attacks.  Rogers et al. [33] lower 

the overhead of the design by restricting the tree structure to only protect sequence 

numbers.  They claim an average performance overhead of 11.9%.  This overhead may 

be artificially low as they use “non-precise integrity verification,” which allows 

potentially harmful instructions to execute and retire before they are verified. 

9.1.2 Commercial 

Microprocessor vendors Intel and Advanced Micro Devices (AMD) have each 

introduced features to prevent buffer overflow attacks.  Intel calls their feature the 

Execute Disable Bit [75], which prohibits the processor from executing instructions that 

originate from certain areas of memory.  AMD’s No Execute (NX) Bit [76] is very 

similar to Intel’s Execute Disable Bit.  The NX bit is stored in the page table, and is 

checked on translation look-aside buffer (TLB) misses.  Both Intel and AMD allow 

software to disable this functionality. 

International Business Machines (IBM) has developed the SecureBlue 

architecture [77].  Like the academically-proposed techniques described above, it relies 
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on cryptography to ensure integrity and confidentiality of both software and data.  

SecureBlue is intended to be incorporated into existing microprocessor designs.   

ARM markets the TrustZone security architecture [78], designed to augment 

ARM microprocessors.  It relies on both hardware and software support.  The hardware 

component uses cryptography to address integrity and confidentiality, allowing the 

processor to run in either a secure or non-secure mode.  The software support includes the 

TrustZone Monitor, which augments the operating system and provides an application 

programming interface (API) for secure programs. 

Maxim (formerly Dallas Semiconductor) manufactures the DS5250 secure 

microprocessor [79].  The DS5250 is designed to serve as a co-processor for embedded 

systems with traditional, non-secure microprocessors.  Maxim proposes that the co-

processor perform security-sensitive functions while the primary processor performs less 

sensitive operations.  The DS5250 contains a non-volatile on-chip memory that is erased 

if physical tampering is detected.  This memory is used to store the processor’s secret 

key, and can also be used to securely store other sensitive data.  The DS5250 can also 

access external memory, using cryptography to ensure the integrity and confidentiality of 

such accesses. 

Secure Machines proposes an architecture to secure entire embedded computer 

systems, such as those contained in cellular telephones [80].  Their architecture targets 

the whole system, and ensures secure off-chip communications with peripherals.  

However, this security requires that all chips used in the system be a custom-made 

matched set sharing the same keys and containing security state machines called 
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hardware secure controllers.  A secure kernel running on the microprocessor interacts 

with the hardware secure controllers, but details are not specified. 

9.2 Multiprocessor Proposals 

Researchers have also explored secure multiprocessor system designs.  However, 

the added complexity of multiprocessor systems makes these designs difficult and costly 

to evaluate.  We look at a few secure multiprocessor proposals in this section. 

Shi et al. present a scheme for bus-snooping multiprocessor systems [81].  The 

basic architecture is sign-and-verify, like many of the above uniprocessor systems.  They 

propose two security domains, with the boundary at the Northbridge memory controller.  

All incoming data (including executable code) is encrypted and signed using so-called 

vendor keys.  The memory controller decrypts and verifies the data, and then re-encrypts 

and re-signs using system keys.  All chips in the system must be matched sets, each 

containing cryptographic hardware and a set of secrets common across chips (including 

the system keys).  Data is decrypted and verified when brought on a given chip.  A 

sequential authentication buffer is used to allow speculative execution in parallel with 

data verification.  The authors claim a performance overhead of 5% when running 

SPLASH2 benchmarks. 

Zhang et al. also target bus-snooping multiprocessors [82].  They assume an 

existing method for securing external memory (such as one of the sign-and-verify 

systems described above) and focus on cache coherence messages.  Processors in the 

system are divided into groups, each with a unique ID.  Messages for each process are 

tagged with group and process IDs, requiring extra lines on the bus.  All messages are 

encrypted using an OTP scheme and signatures are generated using CBC-MAC.  A 
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global message counter is used to serialize the messages, and each processor keeps a 

circular buffer of precomputed pads for quick encryption and decryption.  For a given 

message, one processor supplies the signature and all other processors recalculate the 

signature and verify the message individually.  For maximum security, each message is 

verified.  The chaining nature of the CBC scheme can be used to verify batches of 

messages at a time, increasing performance at the expense of decreased security.  Their 

simulations predict that protecting messages in this manner adds an additional 2.03% 

overhead, above and beyond the overhead required for protecting external memory.  Bus 

traffic also increases by 34%. 

Lee et al. address the protection of cache coherence messages in distributed 

shared-memory systems [83].  Their goal is to provide security regardless of the 

interconnect system.  They apply GCM cryptography, with a single authority assigning 

ranges of counters (initial vectors) to individual processors.  When a processor receives a 

counter assignment, it precomputes the pads needed for GCM and stores them in a queue 

to accelerate the encryption of outgoing messages.  The other processors precompute the 

same pads and cache them to accelerate the decryption of incoming messages.  Recently 

used pads are also cached in case a block is received and then sent out again unmodified.  

The authors claim an average overhead of around 4% for protecting coherency messages.  

They admit a weakness in that control messages are not protected. 

Patel et al. [84] propose to use a monitor processor to ensure the integrity of 

programs executing on a multiprocessor system-on-a-chip.  The compiler maps out all 

possible execution paths for critical code, generating a constraint database of valid paths 

and minimum/maximum allowable execution times for each basic block.  At runtime, one 
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processor is used as a monitor while others execute the programs.  At the beginning and 

end of each secured basic block, its executing processor reports flow and execution time 

data to the monitor via a first-in-first-out queue.  The monitor processor checks these data 

against the constraints database.  If the flow is invalid, or if the basic block took too much 

or too little time to execute, the program has been compromised.  This approach has 

several admitted weaknesses, including reliance on a static analysis of program code that 

may not accurately profile data-dependent execution paths.  It does not address code 

confidentiality; neither does it protect data.  Reported performance overheads range 

between 6.6% and 9.3%. 

Rogers et al. from the GA Tech-NCSU team further extend their earlier design 

into the multiprocessor arena [85], addressing distributed shared-memory systems.  In 

their design, each processor maintains its own tree for dynamic data protection. Sequence 

numbers and timestamps are communicated among processors in addition to blocks of 

data and their signatures.  Coherence messages containing data blocks are also protected 

by an additional message signature.  Like this team’s earlier work, verification is non-

precise, which may lead to security vulnerabilities. 

9.3 Proposals Targeting Reconfigurable Logic 

A few researchers have targeted the reconfigurable logic domain.  Wang et al. 

[86] developed a cryptographic coprocessor on an FPGA to accelerate cryptographic 

functions in an embedded system.  Zambreno et al. [87, 88] propose to use an FPGA as 

an intermediary, analyzing all instructions fetched by a processor.  It calculates 

checksums for basic blocks using two different methods, such as a hash on the code and 

the list of registers used by instructions, and compares the two checksums at the end of 
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the basic block.  The level of security provided by this approach is an open question, and 

requires extensive compiler support, including the insertion of dummy instructions, to 

establish the appropriate “register stream.”  This leads to a rather high overhead of 

around 20%, and only supports instruction integrity and confidentiality (by means of 

optional encryption). 

Suh et al. [29] developed and implemented the AEGIS secure processor on an 

FPGA.  They describe physical unclonable functions (PUFs) to generate the secrets 

needed by their architecture.  Memory is divided into four regions based on whether it is 

static or dynamic (read-only or read-write) and whether it is only verified or is both 

verified and confidential.  They allow programs to change security modes at runtime, 

starting with a standard unsecured mode, then going back and forth between a mode 

supporting only integrity verification and a mode supporting both integrity and 

confidentiality.  They also allow the secure modes to be temporarily suspended for library 

calls.  This flexibility comes at a price; their architecture assumes extensive operating 

system and compiler support.
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CHAPTER 10 

 

CONCLUSION 

This dissertation has laid out the basic principles for implementing a secure 

processor, presenting a sign-and-verify architecture for protecting the integrity and 

confidentiality of software, static data, and dynamic data.  We have also discussed many 

challenges that a computer architect will face when implementing a secure processor, and 

explored the various design options for meeting those challenges.  We have also 

introduced enhancements to reduce performance latency relative to that caused by a naïve 

implementation of security extensions. 

The performance overhead of our secure processor design has been evaluated 

using a cycle-accurate simulator.  This simulator allowed us to examine the effects of the 

various design choices as if they were implemented in modern embedded processors and 

prove that security can be ensured without incurring excessive performance overhead.  

Utilizing our simulator, properly configured for the appropriate microprocessor 

architecture, would allow computer architects to make informed decisions when 

implementing our security enhancements in an actual processor design. 

Furthermore, we have successfully demonstrated a prototypical implementation of 

our security enhancements using a soft-core embedded processor in actual hardware.  Our 

implementation proves that our secure processor design concepts are sound, and may be 
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feasibly implemented in real systems.  Security need not wait for future generations of 

microprocessors; it can be implemented at the hardware level using existing technologies. 

The field of secure processor research is quickly maturing, as evidenced by the 

multiple academic proposals and industrial offerings discussed above.  This means that 

future advances in secure processor designs will likely be incremental in nature.  As 

cryptography evolves, secure processor designs should evolve along with it, embracing 

newer, more secure cryptographic standards while still adhering to the basic established 

principles of preserving integrity and confidentiality.  Advances in hardware process and 

fabrication will also influence secure processor development; more transistors will allow 

more elaborate security hardware to be included on-chip.  Chip designers must use those 

added transistors wisely to ensure that security extensions are not detrimental to system 

performance. 

Given the breadth of the field of computer security, approaches above the 

hardware level must also be employed.  However, we believe that secure processors will 

be an important part of overall solutions to computer security challenges.  This 

dissertation has treated the subject of secure processors in detail, in hopes of contributing 

to making tomorrow’s computer environments safer for all users. 
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APPENDIX 

SIMULATOR AND PROTOTYPE IMPLEMENTATION 

SOURCE CODE 

 

This dissertation includes an electronic appendix in the accompanying CD-ROM.  

The electronic appendix is comprised of two zip archives, containing the source code for 

the simsec-outorder simulator described in Section 7.2 and the EVU hardware 

implementation described in Chapter 8.  This printed appendix describes the contents of 

those archives. 

The zip archive simsec-outorder_source_pack.zip contains source 

code, documentation, and configuration files for the simsec-outorder simulator.  The 

source code, which may be found in the archive’s src directory, is a patch to the 

SimpleScalar/ARM suite.  Therefore, SimpleScalar/ARM must be downloaded from the 

SimpleScalar website [89] and unpacked before applying the source patches contained in  

the simsec-outorder source pack.  Instructions for applying the patch, compiling, and 

running simsec-outorder are included in a file called README.txt, which is at the top 

level of the archive.  It also documents the configuration options for simsec-outorder and 

gives several example command lines for various configurations.  The sample command 

lines reference the configuration files located in the archive’s conf directory, which may 
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be used to simulate architectures based on ARM Cortex-M3 and Cortex-A8 cores with 

varying caches sizes. 

The zip archive EVU_source_pack.zip contains source code and 

documentation for our EVU implementation.  At the top level, the archive contains 

several files and a directory called EVU.  The EVU directory contains the bulk of the 

source code for the EVU implementation, in very-high-speed integrated circuit hardware 

description language (VHDL) for the hardware component and C for the associated 

device driver.  The source is released under the GNU Lesser General Public License, 

version 2.1, the text of which is included in a file at the top level of the archive.  The file 

README.txt gives instructions on how to incorporate the EVU into an existing 

Quartus II project.  There are also VHDL files for three EVU designs at the top level: an 

EVU using the CBC-MAC mode, an EVU using the CBC-MAC mode and calculating 

OTP pads in parallel, and an EVU using the PMAC mode and parallel pads.  The desired 

EVU VHDL file should be copied into the EVU directory and there renamed to 

EVU.vhdl, per the instructions in README.txt.  The top level of the archive also 

contains a C source code file, EVU_demo.c, which demonstrates how to use the EVU in 

an application.
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