

DESIGNING COST-EFFECTIVE SECURE PROCESSORS FOR
EMBEDDED SYSTEMS: PRINCIPLES, CHALLENGES, AND

ARCHITECTURAL SOLUTIONS

by

AUSTIN ROGERS

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
The Shared Computer Engineering Program of

The University of Alabama in Huntsville
The University of Alabama at Birmingham

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2010

ii

In presenting this dissertation in partial fulfillment of the requirements for a doctoral
degree from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permission
for extensive copying for scholarly purposes may be granted by my advisor or, in his/her
absence, by the Chair of the Department or the Dean of the School of Graduate Studies.
It is also understood that due recognition shall be given to me and to The University of
Alabama in Huntsville in any scholarly use which may be made of any material in this
dissertation.

____________________________ ___________
(student signature) (date)

iii

DISSERTATION APPROVAL FORM

Submitted by Austin Rogers in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering and accepted on behalf of the Faculty of
the School of Graduate Studies by the dissertation committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in
Huntsville, certify that we have advised and/or supervised the candidate on the work
described in this dissertation. We further certify that we have reviewed the dissertation
manuscript and approve it in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering.

__ Committee Chair

(Date)

__

__

__

__

__ Department Chair

__ College Dean

__ Graduate Dean

iv

ABSTRACT

The School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering/Electrical and
 Computer Engineering

Name of Candidate Austin Rogers
Title Designing Cost-Effective Secure Processors for Embedded Systems:
 Principles, Challenges, and Architectural Solutions

 Computer security in embedded systems is becoming more and more important as these

systems diversify and proliferate, with the cost of security violations ranging from loss of revenue

to loss of life. This dissertation addresses the problem of computer security at the hardware level,

proposing a sign-and-verify secure processor architecture to ensure integrity (preventing the

execution or use of unauthorized instructions or data) and confidentiality (preventing the

unauthorized copying of instructions or data). Integrity is ensured by signing blocks of

instructions or data when they are created and then verifying them when they are used.

Confidentiality is ensured by encryption. We thoroughly explore the design challenges of the

secure processor architecture, including signature generation, signature placement, code and data

encryption, verification latency reduction, and memory overhead reduction. We propose a

number of architectural solutions to address these challenges. A cycle-accurate simulator is used

to explore the secure processor design space and evaluate the proposed solutions. We also

develop a prototype secure processor in actual hardware, implemented on an FPGA-based

platform. Our simulation results show that the proposed solutions can ensure security without

incurring prohibitive performance overhead, and our hardware implementation demonstrates that

our architecture is feasible and practical.

Abstract Approval: Committee Chair _______________________________________

Department Chair _______________________________________

Graduate Dean _______________________________________

v

ACKNOWLEDGMENTS

“The law of the LORD is perfect, converting the soul: the testimony of the LORD is sure,

making wise the simple. The statutes of the LORD are right, rejoicing the heart:

the commandment of the LORD is pure, enlightening the eyes. The fear of the LORD is

clean, enduring for ever: the judgments of the LORD are true and righteous altogether.”

Psalms 19:7-9

Before beginning this dissertation, I must acknowledge all the LaCASA

researchers, past and present, who have made this work possible: Dr. Milena Milenković,

Dr. Emil Jovanov, and Chris Otto. But most of all, I wish to thank Dr. Aleksandar

Milenković, my friend and advisor, whose knowledge, experience, assistance, and

patience have been absolutely invaluable.

I must also thank Dynetics, my employer, who has generously paid for my

graduate work and even funded trips to conferences so that I could present papers on this

research. I would also like to thank Dr. Derek Bruening for providing a Perl script for

plotting data in stacked columns.

Finally, I wish to dedicate this dissertation to the two wonderful ladies in my life:

Huichen Venus Hung Rogers, my wife, and Brenda Lee Nixon Rogers, my mother.

Without their steadfast love and support, and the rich blessings of God, I would never

have been able to accomplish this work.

vi

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... xi

LIST OF TABLES... xvi

LIST OF ACRONYMS AND UNITS... xviii

CHAPTER

1 INTRODUCTION .. 1

1.1 Secure Processors: Motivation and Background 2

1.2 Principles and Challenges in Ensuring Software/Data Integrity and
 Confidentiality .. 3

1.3 Main Contributions and Findings ... 5

1.4 Outline... 6

2 BACKGROUND: COMPUTER SECURITY.. 7

2.1 The Computer Security Triad ... 8

2.2 Software Attacks... 9

2.2.1 Buffer Overflow Attacks... 9

2.2.2 Format String Attacks ... 10

2.2.3 Integer Error Attacks... 10

2.2.4 Dangling Pointer Attacks.. 11

2.2.5 Arc-Injection Attacks.. 11

2.3 Physical Attacks.. 11

2.3.1 Spoofing Attacks... 12

2.3.2 Splicing Attacks .. 13

vii

2.3.3 Replay Attacks .. 13

2.4 Side-Channel Attacks.. 14

2.4.1 Timing Analysis.. 15

2.4.2 Differential Power Analysis.. 15

2.4.3 Fault Exploitation.. 15

2.4.4 Architectural Exploitation... 16

3 BACKGROUND: CRYPTOGRAPHIC CONCEPTS ... 18

3.1 Ensuring Confidentiality... 18

3.2 Ensuring Integrity ... 21

3.3 Integrating Integrity and Confidentiality .. 24

4 PRINCIPLES OF SECURE PROCESSOR DESIGN .. 34

4.1 Protecting Instructions and Static Data... 34

4.2 Protecting Dynamic Data.. 40

4.3 Comments ... 43

5 GENERAL CHALLENGES IN SECURE PROCESSOR DESIGN.......................... 44

5.1 Choosing Where to Store Signatures .. 44

5.1.1 Storing Signatures On-Chip.. 45

5.1.2 Storing Signatures Off-Chip ... 45

5.2 Coping with Cryptographic Latency... 49

5.3 Choosing a Cryptographic Mode for Signature Generation 52

5.3.1 CBC-MAC .. 53

5.3.2 PMAC ... 54

5.3.3 GCM ... 56

viii

5.4 Hiding Verification Latency ... 58

5.5 Coping with Memory Overhead ... 60

5.6 Securing I/O Operations ... 66

5.7 Dynamically Linked Libraries and Dynamic Executable Code 69

5.8 Comments ... 70

6 SECURE PROCESSOR DESIGN CHALLENGES FOR PROTECTING
 DYNAMIC DATA ... 71

6.1 Preventing Sequence Number Overflows... 71

6.2 Efficiently Managing the Tree .. 73

6.2.1 Page Allocation... 74

6.2.2 TLB Miss and Write-back .. 77

6.2.3 Sequence Number Cache Miss and Write-back................................ 79

6.2.4 Data Cache Miss on a Dynamic Block ... 80

6.2.5 Data Cache Write-Back .. 81

6.2.5.1 Minor Sequence Number Overflow... 83

6.3 Comments ... 84

7 SECURE PROCESSOR DESIGN EVALUATION... 85

7.1 Experimental Flow.. 85

7.2 Simulator and Parameters ... 86

7.3 Benchmark Selection .. 89

7.4 Results... 95

7.4.1 Complexity Overhead ... 95

7.4.2 Memory Overhead .. 97

7.4.3 Performance Overhead.. 98

ix

7.4.3.1 Signature Location... 98

7.4.3.1.1 Optimal Signature Victim Cache Size 108

7.4.3.2 Cryptographic Modes... 111

7.4.3.3 Speculative Execution.. 120

7.4.3.3.1 Optimal IVB Depth... 128

7.4.3.4 Sequence Number Cache Size ... 130

7.4.3.5 Double-Sized Protected Blocks ... 140

7.4.4 Analytical Model .. 148

7.4.4.1 SICM.. 149

7.4.4.2 DICM ... 152

7.5 Comments ... 154

8 AN FPGA SECURE PROCESSOR IMPLEMENTATION..................................... 155

8.1 Design Goals... 155

8.2 Basic Implementation of Security Extensions 156

8.2.1 Achieving Security.. 157

8.2.2 Programming and Memory Model.. 160

8.2.3 Implementation ... 163

8.2.4 Initial Performance Evaluation ... 170

8.3 Optimizations and Enhancements... 170

8.3.1 Parallelizing Pad Calculation.. 171

8.3.2 Parallelizing Signature Generation ... 172

8.4 Evaluation ... 173

8.4.1 Complexity Overhead ... 174

x

8.4.2 Benchmarks... 175

8.4.3 Effects of Cryptography Approaches.. 177

8.4.4 Effects of Signature Location ... 179

8.4.5 Effects of Data Caching .. 180

8.5 Comments ... 182

9 RELATED WORK ... 183

9.1 Uniprocessor Proposals... 184

9.1.1 Academic .. 184

9.1.2 Commercial... 189

9.2 Multiprocessor Proposals.. 191

9.3 Proposals Targeting Reconfigurable Logic .. 193

10 CONCLUSION... 195

APPENDIX: SIMULATOR AND PROTOTYPE IMPLEMENTATION
 SOURCE CODE... 197

REFERENCES ... 199

xi

LIST OF FIGURES

Figure Page

 2.1 Spoofing Attack ... 12

 2.2 Splicing Attack... 13

 2.3 Replay Attack... 14

 3.1 Data Flow of Symmetric Key (a) Encryption and (b) Decryption............................. 19

 3.2 Data Flow of One Time Pad (a) Encryption and (b) Decryption............................... 20

 3.3 Data Flow of Signature Generation Using Cipher Block Chaining........................... 22

 3.4 Data Flow of Signature Generation Using Parallelizable Message Authentication
 Code ... 23

 3.5 Approaches to Encryption and Signing: (a) Signed Plaintext, (b) ES, (c) EtS, and
 (d) StE .. 25

 3.6 Signed Binary Data Block: (a) Signed Plaintext, (b) ES, (c) EtS, and (d) StE.......... 26

 3.7 High Level View of a Hardware Implementation of Galois/Counter Mode 27

 3.8 Hardware Implementation of Galois/Counter Mode ... 29

 3.9 Abstraction of GCM showing GHASH ... 31

 3.10 GHASH.. 32

 3.11 Binary Data Block Encrypted, then Signed in Galois/Counter Mode 33

 4.1 Overview of Architecture for Trusted Execution .. 37

 4.2 Tree Structure for Protecting Sequence Numbers ... 42

 5.1 Memory Pipeline for (a) Embedded Signatures, (b) Signature Table, and
 (c) Signature Table with Signature Cache Hit ... 47

xii

 5.2 Cryptographic Latency for (a) Symmetric Key Decryption and
 (b) One-Time-Pad Decryption ... 50

 5.3 Verification Latency for Static Protected Blocks Using CBC-MAC 53

 5.4 Verification Latency for Static Protected Blocks Using PMAC 55

 5.5 Verification Latency for Static Protected Blocks Using GHASH............................. 57

 5.6 Instruction Verification Buffer .. 59

 5.7 Memory Layout and Cache Miss Cases... 62

 5.8 Memory Pipeline for Case 2: (a) Fetching Block B with Embedded Signatures, and
 (b) Not Fetching Block B with either EmbeddedbSignatures or Signature Table..... 63

 5.9 Verification Latency for Double Sized Static Protected Blocks Using HASH,
 Cases 1 and 2 ... 64

 5.10 Verification Latency for Double Sized Static Protected Blocks Using GHASH,
 Case 3... 65

 5.11 Verification Latency for Double Sized Static Protected Blocks Using GHASH,
 Case 4... 65

 5.12 Memory Mapped Interface for Cryptographic Acceleration 68

 5.13 Control Word Format... 69

 6.1 Split Sequence Number Block Layout... 72

 6.2 Memory Structures for Protecting Dynamic Data ... 76

 7.1 Experimental Flow... 86

 7.2 Performance Overhead Implications of Signature Location, Cortex M3, 1 KB...... 100

 7.3 Performance Overhead Implications of Signature Location, Cortex M3, 2 KB...... 101

 7.4 Performance Overhead Implications of Signature Location, Cortex M3, 4 KB...... 102

 7.5 Performance Overhead Implications of Signature Location, Cortex M3, 8 KB...... 103

 7.6 Performance Overhead Implications of Signature Location, Cortex A8, 16 KB 104

xiii

 7.7 Performance Overhead Implications of Signature Location, Cortex A8, 32 KB 105

 7.8 Performance Overhead Implications of Signature Victim Cache Size.................... 109

 7.9 Performance Overhead Implications of Cipher Choice, Cortex M3, 1 KB............. 112

 7.10 Performance Overhead Implications of Cipher Choice, Cortex M3, 2 KB........... 113

 7.11 Performance Overhead Implications of Cipher Choice, Cortex M3, 4 KB........... 114

 7.12 Performance Overhead Implications of Cipher Choice, Cortex M3, 8 KB........... 115

 7.13 Performance Overhead Implications of Cipher Choice, Cortex A8, 16 KB.......... 116

 7.14 Performance Overhead Implications of Cipher Choice, Cortex A8, 32 KB.......... 117

 7.15 Performance Overhead Implications of Speculative Execution, Cortex M3,
 1 KB... 121

 7.16 Performance Overhead Implications of Speculative Execution, Cortex M3,
 2 KB... 122

 7.17 Performance Overhead Implications of Speculative Execution, Cortex M3,
 4 KB... 123

 7.18 Performance Overhead Implications of Speculative Execution, Cortex M3,
 8 KB... 124

 7.19 Performance Overhead Implications of Speculative Execution, Cortex A8,
 16 KB... 125

 7.20 Performance Overhead Implications of Speculative Execution, Cortex A8,
 32 KB... 126

 7.21 Performance Overhead Implications of IVB Depth... 129

 7.22 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex M3, 1 KB.. 132

 7.23 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex M3, 2 KB.. 133

 7.24 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex M3, 4 KB.. 134

xiv

 7.25 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex M3, 8 KB.. 135

 7.26 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex A8, 16 KB .. 136

 7.27 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex A8, 32 KB .. 137

 7.28 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex M3, 1 KB.. 141

 7.29 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex M3, 2 KB.. 142

 7.30 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex M3, 4 KB.. 143

 7.31 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex M3, 8 KB.. 144

 7.32 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex A8, 16 KB .. 145

 7.33 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex A8, 32 KB .. 146

 7.34 Analytical Model of SICM Performance Overhead, CBC-MAC.......................... 150

 7.35 Analytical Model of SICM Performance Overhead, PMAC and GCM 151

 7.36 Analytical Model of DICM Performance Overhead, CBC-MAC and PMAC 153

 7.37 Analytical Model of DICM Performance Overhead, GCM................................... 154

 8.1 Programmer’s View of Securing Data in Off-Chip Memory 161

 8.2 Memory Architecture... 162

 8.3 System-on-a-Programmable Chip Incorporating Security Extensions 164

 8.4 Block Diagram of the Encryption and Verification Unit... 165

 8.5 Algorithm for Secure Read .. 168

 8.6 Algorithm for Secure Write ... 169

xv

 8.7 Performance Overhead on a Read Miss... 170

 8.8 Performance Overhead on a Read Miss with Parallelized Pad Generation 172

 8.9 Performance Overhead on a Read Miss with Parallelized Pad and Signature
 Generation.. 173

xvi

LIST OF TABLES

Table Page

7.1 Simulation Parameters ... 89

7.2 Benchmark Descriptions.. 91

7.3 Benchmark Instruction Cache Miss Rates ... 92

7.4 Benchmark Data Cache Miss Rates... 93

7.5 Benchmarks Selected by Clustering Analysis ... 95

7.6 Performance Overhead Implications of Signature Location, Cortex M3 106

7.7 Performance Overhead Implications of Signature Location, Cortex A8................. 107

7.8 Performance Overhead Implications of Signature Victim Cache Size,
 Cortex M3, 2 KB.. 110

7.9 Performance Overhead Implications of Cipher Choice, Cortex M3........................ 118

7.10 Performance Overhead Implications of Cipher Choice, Cortex A8 119

7.11 Performance Overhead Implications of Speculative Execution, Cortex M3......... 127

7.12 Performance Overhead Implications of Speculative Execution, Cortex A8.......... 128

7.13 Performance Overhead Implications of IVB Depth, Cortex M3, 2 KB................. 130

7.14 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex M3 .. 138

7.15 Performance Overhead Implications of Sequence Number Cache Size,
 Cortex A8... 139

7.16 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex M3 .. 147

7.17 Performance Overhead Implications of Using Double-Sized Protected Blocks,
 Cortex A8... 148

xvii

8.1 Complexity Overhead .. 175

 8.2 Embedded System Benchmarks... 177

 8.3 Performance Overhead Implications of EVU Design.. 178

 8.4 Performance Overhead Implications of Signature Location.................................... 180

 8.5 Performance Overhead Implications of Data Caching .. 181

xviii

LIST OF ACRONYMS AND UNITS

ADPCM Adaptive Differential Pulse Code Modulation

AES Advanced Encryption Standard

ARM Advanced RISC Machine

BTB Branch Target Buffer

CBC-MAC Cipher Block Chaining Message Authentication Code

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DCOM Data Confidentiality Only Mode

DICM Data Integrity and Confidentiality Mode

DIOM Data Integrity Only Mode

DLL Dynamically Linked Library

DMA Direct Memory Access

DRM Digital Rights Management

ELF Executable and Linkable Format

EVU Encryption and Verification Unit

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GCM Galois/Counter Mode

GHz Gigahertz

GSM Global Standard for Mobile

xix

IP Intellectual Property

IVB Instruction Verification Buffer

JPEG Joint Photographic Experts Group

KB Kilobyte

LaCASA Laboratory for Advanced Computer Architectures and Systems

MP3 MPEG-1 Audio Layer 3

MPEG Moving Pictures Experts Group

OTP One-Time Pad

PMAC Parallelizable Message Authentication Code

RbV Run Before Verified

RGB Red, Green, and Blue

RISC Reduced Instruction Set Computer

RSA Rivest, Shamir, and Adleman

SCOM Software Confidentiality Only Mode

SDRAM Synchronous Dynamic Random Access Memory

SICM Software Integrity and Confidentiality Mode

SIOM Software Integrity Only Mode

SOPC System-on-a-Programmable Chip

TIFF Tagged Image File Format

TLB Translation Lookaside Buffer

VHDL Very-high-speed integrated circuit Hardware Description Language

WtV Wait ‘Till Verified

XOR Exclusive OR

1

CHAPTER 1

INTRODUCTION

Embedded computer systems have become ubiquitous in modern society. A wide

range of applications rely on embedded systems, from consumer electronics,

communications, transportation, medicine, to national security. Security breaches in

embedded systems could thus have wide ranging impacts, from loss of revenue to loss of

life. As these systems continue to proliferate, the potential damage that can be caused by

security compromises increases. Methods for improving computer security are therefore

highly desirable.

The problem of computer security is further compounded by the fact that methods

for improving security tend to degrade performance or consume precious computational

resources. As embedded systems often have stringent design constraints, security

extensions for embedded systems must incur as little overhead as possible. This

dissertation addresses these problems by exploring the subject of secure processors,

which ensure security at the hardware level. We lay out the principles of secure

processor design and asses the various challenges faced when designing such a processor.

We explore the design space by evaluating different approaches to these challenges, and

offer architectural solutions to alleviate the performance and complexity overhead

incurred by adding security to the processor design. Finally, we prove the feasibility of

2

our security architectures by implementing security extensions for a soft-core processor

on a low-cost field programmable gate array (FPGA).

1.1 Secure Processors: Motivation and Background

Computer security is a broad and dynamic field. Computer systems are subject to

a broad range of attacks, and suffer from many vulnerabilities. According to the National

Institute of Standards and Technology, 5,632 software vulnerabilities were identified in

2008 alone [1]; the number of attacks was much greater. Furthermore, the unauthorized

copying of software, also known as piracy, is a major economic threat. The Business

Software Alliance, in their annual piracy study [2], estimates that 41% of software in use

worldwide during the year 2008 was unlicensed, with an economic impact of 53 billion

dollars. These figures are increasing every year.

The vast majority of microprocessors are manufactured and sold for use in

embedded systems. Indeed, only 2% of processors are manufactured as general-purpose

computer processors [3]. That other 98% may be found in such diverse embedded

system applications as coffeemakers, automobiles, cellular telephones, and

intercontinental ballistic missiles. As the embedded market has evolved, many modern

embedded systems now have some form of network connectivity, often to the internet

itself. This exposes these systems to many of the same attacks that general-purpose

systems suffer. Many embedded systems may also operate in hostile environments where

they are subjected to physical attacks aimed at subverting system operation, extracting

key secrets, or intellectual property theft. Similarly, a system may operate in harsh

conditions such as outer space, where natural phenomena may compromise the integrity

of data.

3

This dissertation focuses on the development of secure processors for ensuring the

integrity and confidentiality of instructions and data in embedded systems. Integrity is

violated whenever any unauthorized code is executed or unauthorized data used by a

microprocessor. Confidentiality is violated whenever some entity, human or computer, is

able to view, copy, or reverse-engineer the system. Integrity and confidentiality, along

with a third concept, availability, comprise the computer security triad, which will be

discussed in greater detail in Chapter 2. Our work only indirectly addresses availability,

insofar as integrity and confidentiality concerns influence availability.

1.2 Principles and Challenges in Ensuring Software/Data Integrity and

Confidentiality

This dissertation is intended to lay out the fundamental principles in designing a

secure processor, and to explore the various challenges that must be addressed when

designing such a processor. We use a cycle-accurate simulator to evaluate the

performance overhead incurred by a secure processor, which is defined as the additional

time required to execute a program on the secure processor as compared to a similar

processor without security extensions. Our simulations explore many of the design

choices that must be made when addressing design challenges. Furthermore, we have

implemented a research prototype secure processor in actual hardware, demonstrating the

practicality of our proposed security extensions.

The basic principle for ensuring integrity is the use of cryptographically sound

signatures, that is, signatures that cannot be easily duplicated without the knowledge of

certain secrets. Data must be signed when they are first stored, whether during

installation (instructions and static data) or runtime (dynamic data). When data are used

4

at runtime, their signature must be fetched. The signature is also calculated

independently based on the fetched data, and the fetched and calculated signatures are

compared. If the signatures match, then the data can be trusted. If they do not match,

then the data have been subjected to tampering and should not be used. A system

implementing such a scheme is called a sign-and-verify system, as it signs data upon their

creation and then verifies data upon their use.

The basic principle for ensuring confidentiality is the use of strong encryption.

The goal of encryption is to render sensitive data illegible to any party lacking certain

secrets. Thus, for full protection of both integrity and confidentiality, data must be both

signed and encrypted before being stored, and both decrypted and verified before use.

Signature generation and encryption may or may not be intertwined; some cryptographic

schemes perform both at the same time while others perform them independently.

Although these basic principles may seem simple, many challenges arise when

implementing them in an actual system. For instance, how should one go about

performing encryption and decryption? How should one calculate signatures? Where

should signatures be stored? How will performance be affected, and what can be done to

improve the performance of secure systems? Furthermore, in addition to integrity and

confidentiality, how can we be sure that a chunk of dynamic data is up-to-date? How

much memory will signatures and other additional data require, and can it be minimized?

What are the trade-offs between performance and on-chip complexity? All of these

issues and more are addressed in this dissertation.

5

1.3 Main Contributions and Findings

The main contributions of this dissertation are as follows:

 We establish a framework for the protection of instructions, static data, and

dynamic data using a sign-and-verify architecture with optional encryption.

 We explore the design space in several areas, including issues such as where to

store signatures, how to perform encryption, and what cryptographic mode to use

for calculating signatures.

 We present several enhancements to reduce performance and memory overhead,

including signature victim caches, the instruction verification buffer, and

protecting multiple blocks of data with one signature.

 We propose a tree-like structure to ensure that protected dynamic data are up-to-

date without adversely impacting performance.

 We develop a cycle-accurate simulator to evaluate the performance overhead of

the secure architecture.

 We use the simulator to investigate the effects of the various design choices and

enhancements on the performance overhead of the secure architecture and

establish an analytical model for performance overhead.

 We implement a secure processor in actual hardware using existing system-on-a-

programmable chip (SOPC) technologies.

Our main finding is that integrity and confidentiality can be implemented with

low performance overhead by using established cryptographic modes and latency-hiding

architectural enhancements. These enhancements, however, add complexity, so system

designers must make trade-offs between complexity and performance. We also

6

demonstrate the practicality and feasibility of our security enhancements by augmenting

an existing soft-core processor with a subset of our proposed mechanisms and

implementing them on an FPGA platform.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapters 2 and 3

present basic background material to aid in understanding the remainder of the

dissertation, describing several types of threats to computer security and various

cryptographic concepts that we use to counter those threats. Chapter 4 introduces the

general principles of secure processor design, but does not concern itself with particulars

or optimizations. The subsequent two chapters address the various choices and

challenges that a computer architect will face when implementing a secure processor and

introduce architectural enhancements to help overcome these challenges, including trade-

offs between performance, security, and complexity. Chapter 5 is concerned with general

issues that apply to protecting both instructions and data, while Chapter 6 focuses on the

special issues that arise from protecting dynamic data. Chapter 7 describes our

simulation methodology for evaluating secure processor designs, and includes simulation

results for many of the choices presented in the preceding chapters, as well as an

analytical model for secure processor performance. Chapter 8 details our implementation

of a prototype secure processor using an FPGA-based platform. Related work is

presented in Chapter 9, and Chapter 10 concludes the dissertation.

7

CHAPTER 2

BACKGROUND: COMPUTER SECURITY

Notions of computer security have evolved greatly over the years. At one time,

most systems were standalone; computer security meant locking the computer room. As

computer networking (and especially the Internet) became more prominent, computer

systems could come under attack from the other side of the building, or from the other

side of the world. These attacks are mainly what we call software attacks, where the

attacker has access to a system, either directly or over a network. Once embedded

systems began to proliferate, they became subject to further vulnerabilities such as

physical attacks, where the attacker has physical access to the system but not necessarily

software access. More sophisticated computer hardware and software enables side-

channel attacks, in which the attacker attempts to gain knowledge about the system by

indirect analysis.

This chapter provides the relevant background information on computer security

that is necessary for a clear understanding of the remainder of the dissertation. We first

examine the security triad of integrity, confidentiality, and availability. We then examine

the types of attacks mentioned above, including software-based attacks, physical attacks,

and side-channel attacks.

8

2.1 The Computer Security Triad

Computer security broadly consists of three concepts: integrity, confidentiality,

and availability, which together constitute the well-known computer security triad. Our

research applies these concepts at the microprocessor level, with the goal of designing

truly secure processors. The first two concepts, integrity and confidentiality, are most

relevant to our research.

Protecting integrity means that the processor will not execute any unauthorized

code or use any unauthorized data; any tampering should be detected. Attacks against

integrity may be deliberate, such as those performed directly by a human intruder or an

automated attack set up by a human. Integrity may also be compromised by harsh

environmental factors, such as bit flipping caused by radiation in systems operating in

outer space, or due to aggressive semiconductor technologies whose low swing voltages

make them vulnerable to noise.

Protecting confidentiality means that instructions and data must be illegible to all

unauthorized entities, be they human or machine. Attacks against confidentiality include

piracy and identity theft, both of which have huge economic impacts [2]. Ensuring

confidentiality is a concern in a wide variety of areas. Digital rights management (DRM)

is primarily concerned with ensuring confidentiality in consumer markets. Corporations

and governments may also be concerned with protecting confidentiality to prevent

espionage.

Availability requires that a system be available to legitimate users when needed.

Attacks against availability try to render a system inaccessible. A classic example of

such an attack is the denial of service attack, which attempts to consume a system’s

9

resources so that it is unavailable to other users. Ensuring availability can include

techniques such as error correction and fault recovery, as well as algorithms and

heuristics for detecting malicious access patterns. Attacks on integrity and confidentiality

may also be part of an attack on availability. Our research is primarily focused on

ensuring integrity and confidentiality; we only address availability insofar as it is

influenced by integrity and confidentiality concerns.

2.2 Software Attacks

Software attacks require the attacker to have some form of access to the target

computer system. This could be direct access, with a lower permission level than the

attacker desires. The access could also be across a network, which would require the

attacker to sniff the system’s open ports, looking for services with known vulnerabilities.

The goal of software attacks is to modify a running program by injecting and executing

code. The foreign instructions must be injected into memory, and then the return address

of the currently executing function must be overwritten to force the processor to execute

the injected instructions. These attacks are only briefly documented here; a more detailed

treatment can be found in [4].

2.2.1 Buffer Overflow Attacks

A common class of attacks is buffer overflow. These attacks take advantage of

I/O instructions that simply store incoming data to a buffer, without bothering to check to

see if the amount of incoming data will exceed the buffer size. After the buffer fills,

memory locations beyond the buffer are overwritten. Most systems have stacks that grow

counter to memory address growth. If the buffer is on the stack, then this attack can

10

overwrite the data at any address on the stack beyond the buffer with malicious

instructions. This overwrite includes the return address, allowing the attacker to divert

the program to the newly injected instructions. If the buffer is on the heap near a function

pointer, then the attacker’s goal is to inject code and overwrite that function pointer.

2.2.2 Format String Attacks

Format string attacks take advantage of printf-family of functions that take a

format string as an input. These functions will accept any pointer and interpret the

contents of memory at that address as a format string. By skillfully manipulating the

inputs passed to the printf function, the attacker can read from any address in memory.

The %n format character presents an additional vulnerability. This character causes a

printf function to write the number of characters output by the function before it reached

%n to a specified address. A skillful attacker could use this to write an arbitrary integer

to any address.

2.2.3 Integer Error Attacks

Errors arising from integer operations cannot be used as a direct attack. However,

integer errors can facilitate other forms of attacks. For instance, an unsigned integer

overflow can result in a smaller number than expected. If this is used to allocate a buffer,

then the buffer will also be smaller than expected. This exposes the system to a buffer

overflow attack, even if subsequent input operations using that buffer check input length.

A more thorough treatment of integer error attacks may be found in [5].

11

2.2.4 Dangling Pointer Attacks

Dangling pointers become an issue if the free function is called twice for the same

pointer. The vulnerability arises from the way that the GNU C library handles memory

allocation [6]. When a chunk of memory is freed, it is inserted into a doubly linked list of

free chunks. If free is called twice, the pointers to the next and previous entries may

wind up pointing back to the same chunk. An attacker may write malicious code to the

chunk’s data area and put a pointer to that code in place of the pointer to the previous list

entry. If that chunk is allocated again, the memory manager will try to unlink the chunk

from the list, and will write the attacker’s pointer to an address calculated from the

pointer to the next entry. If that address happens to contain a function’s return address,

then a successful attack has been accomplished.

2.2.5 Arc-Injection Attacks

An arc-injection or “return-into-libc” involves overwriting a return address such

that control flow is disrupted. Oftentimes the address of a library function is used.

Library system calls can be used to spawn other processes on the system with the same

permissions as the compromised program. If the operating system (OS) itself is

compromised, then the attacker can run a malicious program that will have the ability to

access any and every memory location.

2.3 Physical Attacks

In contrast to software attacks, physical attacks involve tampering with the actual

computer hardware [7]. Probes are often inserted on the address and data bus, allowing

the attacker to monitor all transactions and override data coming from memory with

12

his/her own data. This is a tool often used in industrial and military espionage. This

section describes three such attacks: spoofing, splicing, and replay.

2.3.1 Spoofing Attacks

A spoofing attack occurs when an attacker intercepts a request for a block of

memory, and then manually supplies a block of his/her choice. This block may contain

either data or instructions of a malicious nature. In an unsecured system, the processor

naïvely conducts a bus cycle, and is unaware that the data it received came from an

attacker rather than from main memory. Figure 2.1 illustrates a spoofing attack. The

processor initiates a bus read cycle for a block at memory location DBj. The attacker

intercepts the request and supplies a potentially malicious block Mj instead of the correct

block DBj.

BusRd(DBj)

Mj

DBj

Figure 2.1 Spoofing Attack

13

2.3.2 Splicing Attacks

Splicing attacks involve intercepting a request for a block of memory and then

supplying the data from a different block. The supplied block is a valid block from

somewhere in the address space, but it is not the actual block that the processor

requested. This attack may be performed with either data or instruction blocks. Once

again, the unsecured processor is unaware that it has received the incorrect memory

block. Figure 2.2 depicts a splicing attack. The processor initiates a bus read cycle for a

block at memory location DBj. The attacker intercepts the request and supplies a valid

block from memory, but from address DBi rather than the desired address, DBj.

DBi

DBj

BusRd(DBj)

DBi

Figure 2.2 Splicing Attack

2.3.3 Replay Attacks

In a replay attack, the attacker intercepts a request for a block of memory, and

then supplies an older copy of that block. This is a concern for dynamic data blocks and

instructions generated at runtime, such as self-modifying code and just-in-time

14

compilation. The supplied block was valid at some point in the past, but now it may be

obsolete. Figure 2.3 illustrates a replay attack. The processor initiates a bus read cycle

for the data block at address DBj. The attacker intercepts the request and returns an older

version of that block, DBj
*, which may be different from the current version in memory.

BusRd(DBj)
DBj

DBj

Figure 2.3 Replay Attack

2.4 Side-Channel Attacks

Side-channel attacks attempt to gather information about a system or program via

indirect analysis. These attacks involve first collecting information about the system and

then analyzing that information in an attempt to deduce the system’s secrets [8]. The

information gathering stage requires some form of access to the system. The attacker

may have direct physical access to the system and its components, or have some level of

privileges to run programs on the target system. In this section, we briefly describe a few

examples of the myriad possible side-channel attacks, including timing analysis,

differential power analysis, fault exploitation, and architectural exploitation.

15

2.4.1 Timing Analysis

Timing attacks are, perhaps, the simplest type of side-channel attacks, taking

advantage of the fact that different operations require different amounts of time to

execute. Kocher [9] illustrates how this can be used to break cryptographic algorithms,

given a known algorithm and either known plaintext or known ciphertext. He uses

timing analysis to determine the secret exponent in the Diffie-Hellman algorithm, factor

RSA private keys, and determine the private key used by the Digital Signature Standard

algorithm.

2.4.2 Differential Power Analysis

A microprocessor’s power consumption at any given moment can indicate what

operations it is performing. A differential power analysis can be used to determine what

instructions are executed and when. Kocher et al. [10] discuss how to break a known,

data-driven encryption algorithm using such an attack. Instantaneous CPU power

consumption is measured at intervals during a cryptographic operation, forming a trace.

Multiple traces can be compiled and compared, revealing patterns produced by the

execution of certain instructions. Since the encryption algorithm is both known and data-

driven, the data being processed can be revealed solely from the power traces.

2.4.3 Fault Exploitation

A fault exploitation attack takes advantage of hardware faults to discover secrets.

These hardware faults may be transiently occurring within the processor, or induced

externally. Boneh et al. [11] describe a simple fault exploitation attack, whereby the

modulus used by an RSA algorithm may be calculated. A signature must be calculated

16

from the same data two times. One signature is calculated without a hardware fault. The

second is calculated in the presence of a hardware fault, either transient or induced. The

modulus of the RSA system can then be factored by analyzing the difference between the

two signatures. Boneh et al. go on to break even more sophisticated cryptographic

schemes using similar techniques.

2.4.4 Architectural Exploitation

Due to the well-known effect of Moore’s Law, microprocessor designers have

been able to introduce more and more advanced features. Sometimes these advanced

features may be exploited to reveal information about the processor. A prime example of

an architectural exploitation attack is the Simple Branch Prediction Analysis attack

devised by Aciiçmez et al. [12]. This attack expands on the classical timing attack by

taking advantage of the branch prediction unit and multi-threading capabilities of the

Pentium 4 processor. A spy process is executed in parallel with a process performing a

known cryptographic algorithm. The spy process executes branch instructions, flooding

the processor’s branch target buffer (BTB), while measuring the execution time required

for those branch instructions. When the cryptographic process executes a branch

instruction that results in the branch not being taken, no BTB eviction is needed. Thus,

the next time the spy process executes a corresponding branch, it will execute quickly,

thereby revealing that the cryptographic process had a branch not taken. Conversely, a

taken branch in the cryptographic process results in a BTB eviction, which in turn causes

a spy process branch to take longer to execute, revealing that the cryptographic process

had a taken branch. The recorded trace of branches that were taken and not taken can

then be used to deduce the cryptographic secret key. This attack relies on detailed

17

information about the underlying hardware and software, but such information is often

available and can be obtained using microbenchmarks [13].

Cache misses provide another avenue for hardware exploitation. Percival [14]

demonstrates that a thread running concurrently with a cryptographic thread can pollute

the cache and time its own cache accesses, thus detecting which cache lines were evicted

by the cryptographic thread. With knowledge of the implementation of the RSA

algorithm, these eviction patterns may be analyzed to determine the encryption key.

Bernstein [15] attacks the Advanced Encryption Standard (AES) algorithm simply by

observing algorithm run time. The attack involves first running the algorithm on a large

set of inputs with a known key, and then running it for another large set of inputs with an

unknown key. Cache misses caused by table lookups in the AES algorithm cause

discrepancies in run time, which may then be analyzed to determine the unknown key.

18

CHAPTER 3

BACKGROUND: CRYPTOGRAPHIC CONCEPTS

This chapter provides background information on various cryptographic concepts.

As with the previous chapter, familiarity with these concepts will greatly help in

understanding the remainder of this dissertation. We begin with a discussion on

encryption methods for ensuring confidentiality. We then discuss methods for ensuring

integrity, focusing on two methods for generating signatures. Finally, we discuss

strategies for integrating the protection of both integrity and confidentiality.

3.1 Ensuring Confidentiality

Confidentiality is traditionally ensured by using some form of encryption. The

straightforward method is to use symmetric key cryptography, where the same key is

used for both encryption and decryption. A commonly used symmetric key cryptography

scheme is the AES cipher [16]. The AES operation is what is known as a block cipher; it

operates on a 128-bit block of data using either a 128-bit, 192-bit, or 256-bit key. AES

can operate in either encryption mode (Equation (3.1) and Figure 3.1(a)) to produce a

chunk of unintelligible ciphertext Ci from a chunk of plaintext Ii, or in decryption mode

(Equation (3.2) and Figure 3.1(b)) to produce a chunk of plaintext Ii from a chunk of

ciphertext Ci. Note that the sizes of Ii, Pi, and K are determined by the width of the AES

19

unit being used; throughout this dissertation, a 128-bit AES unit is assumed unless

otherwise stated.

)(, iKei IAESC (3.1)

)(, iKdi CAESI (3.2)

AESeIi

K

Ci AESd Ii

K

Ci

(a) (b)

Figure 3.1 Data Flow of Symmetric Key (a) Encryption and (b) Decryption

Symmetric key cryptography is conceptually simple, but can introduce significant

cryptographic latency in some applications. If the application is such that data must be

fetched or are being received in a stream, performance could be improved by somehow

overlapping cryptographic latency with data retrieval. This can be accomplished by

using a one-time-pad (OTP) cryptographic scheme. An OTP scheme using AES

encryption is shown in Equations (3.3) and (3.4) and Figure 3.2. For either encryption or

decryption, a secure pad is calculated by encrypting an initial vector Pi using a key K.

One requirement of OTP is that the secure pad should always be unique (i.e., each pad is

only used “one time”). Therefore, for a fixed key K, a unique initial vector Pi should be

used for each encryption. The ciphertext Ci is then produced by performing an exclusive

20

or (XOR) of the secure pad and the plaintext Ii. Conversely, taking the XOR of the pad

with the ciphertext Ci will produce the plaintext Ii. The circles with crosses inside them

in the figures below, as well as in figures throughout the remainder of this dissertation,

represent a 128-bit array of XOR gates.

)(iKii PAESxorIC (3.3)

)(iKii PAESxorCI (3.4)

AES

Ii

K

Pi Ci AES Ii

K

Pi

Ci
(a) (b)

Figure 3.2 Data Flow of One Time Pad (a) Encryption and (b) Decryption

Using OTP cryptography may hide cryptographic latency in some applications. It

also only requires the use of the AES cipher in encryption mode, allowing for simpler

hardware and/or software AES implementations. Therefore, in Figure 3.2 and throughout

the remainder of this dissertation, any instance of AES without the subscript e or d will

indicate an AES encryption operation.

21

3.2 Ensuring Integrity

Message authentication codes, also known as signatures, are the traditional

method for ensuring data integrity. The basic concept is to sign a chunk of data, broadly

known as a “message,” in such a way that its signature attests to its integrity. The

message text and other parameters may be used as inputs into the signature generation

process, as appropriate. When the message’s integrity needs to be verified, its signature

is recalculated and compared to the original signature. The signature generation

methodology must be such that any tampering with the message will result in a mismatch

between the new and original signatures.

One well-known method for calculating signatures is the cipher block chaining

message authentication code (CBC-MAC) [17]. As its name implies, CBC-MAC

signatures are calculated via a chain of cryptographic operations. A CBC-MAC

implementation using the AES block cipher is depicted in Equation (3.5) and Figure 3.3.

In the equation and figure, a signature S is calculated for an arbitrary number of data

chunks, I1 - IN. An initial vector P is first encrypted using a key K1. The result is then

XORed with the first data chunk, I1, and encrypted using another key K2. The result of

that encryption is then XORed with the second data chunk, I2, and encrypted using K2.

These operations continue until the final data chunk, IN, has been XORed with the final

intermediate value and encrypted using K2.

)))...)(((...(112222 PAESxorIAESxorIAESxorIAESS KKKNK (3.5)

22

AES AES AES AES

I1 I2 IN

K1 K2 K2 K2

SP

Figure 3.3 Data Flow of Signature Generation Using Cipher Block Chaining

CBC-MAC can produce cryptographically sound signatures [18], but due to its

chaining nature, all operations must be performed in series. If the data chunks become

available at intervals equal to or greater than the time required to perform an AES

operation, then CBC-MAC may be a good cipher choice. However, if the data chunks

become available more quickly, CBC-MAC may potentially introduce long signature

generation latencies.

Black and Rogaway [19] developed the parallelizable message authentication

code (PMAC) algorithm to address the latency issue. The PMAC cipher, which is proven

to be secure [19], calculates the signature for each chunk of data in parallel and XORs

these together to form the final signature, as demonstrated in Equations (3.6) and (3.7)

and Figure 3.4. Each data chunk Ii has an associated initial vector Pi, which is encrypted

using a key K1. The result is XORed with the data chunk Ii and encrypted using K2 to

produce that chunk’s signature Sig(Ii). Each of these signatures may be calculated in

parallel, and are XORed together to produce the message’s overall signature S. The

PMAC approach is ideal if multiple AES operations can be performed at one time, or if

the AES operations can be pipelined.

23

AES AES

I1

K1 K2

P1

AES AES

I2

K1 K2

P2

AES AES

IN

K1 K2

PN

S

Figure 3.4 Data Flow of Signature Generation Using

Parallelizable Message Authentication Code

24

NiforPAESxorIAESISig iKiKi ..1))(()(12 (3.6)

)(...)()(21 NISigxorISigxorISigS (3.7)

3.3 Integrating Integrity and Confidentiality

When both integrity and confidentiality are to be protected, one must choose the

order in which to calculate signatures and/or perform encryption. Variations in the order

in which signing and encryption are performed give rise to three known approaches:

encrypt&sign (ES), encrypt, then sign (EtS), and sign, then encrypt (StE) [20]. The high-

level data flow for each of these approaches is shown in Figure 3.5, along with the

degenerate case of signature generation without any encryption. The ES scheme involves

encryption and signature generation performed in parallel; the signature is calculated on

the plaintext, which is also encrypted. The EtS scheme requires that the plaintext be

encrypted first; the signature is then calculated on ciphertext. The StE scheme calculates

the signature on plaintext, and then encrypts both the plaintext and the signature.

25

Sign

Encrypt

Plaintext

Plaintext

Signature
on Plaintext

Sign

Plaintext

Ciphertext

Sign

Plaintext

Ciphertext

Signature
on Ciphertext

Encrypt

Signature
on Plaintext

Sign

Plaintext

Encrypted Signature
on Plaintext

Encrypt

Encrypt

Ciphertext

(a) (b)

(d)(c)

Figure 3.5 Approaches to Encryption and Signing: (a) Signed Plaintext, (b) ES, (c) EtS,

and (d) StE

These schemes are further illustrated using actual data in Figure 3.6. The

plaintext in this case is a 64 byte binary instruction block, encoded for the ARM

architecture and expressed in hexadecimal. This block is assumed to reside in memory

beginning at address 3000a80, and its 128-bit signature is stored immediately following

the block at address 3000ac0. This block’s confidentiality is ensured using OTP

encryption, and its integrity is ensured using the PMAC method. The initial vectors Pi

for each 128-bit sub-block consist of the sub-block’s address left padded with zeros;

these are used for both encryption and signature generation. Key1 and Key2 are used for

signature generation, while Key3 is used for encryption.

26

Key1:
Key2:
Key3:

P1:
P2:
P3:
P4:

Psig:

0123456789abcdef012345678abcdef0
fedcba9876543210fedcba9876543210
02132435465768798a9bacbdcedfe0f1
00000000000000000000000003000a80
00000000000000000000000003000a90
00000000000000000000000003000aa0
00000000000000000000000003000ab0
00000000000000000000000003000ac0

3000a80: e3a02000
3000a84: e50b2030
3000a88: e59f122c
3000a8c: e5812000
3000a90: e50b2034
3000a94: e1a06000
3000a98: e59f0220
3000a9c: eb002c5b
3000aa0: e2505000
3000aa4: 0a000033
3000aa8: e1a00005
3000aac: e3a0102f
3000ab0: eb004ad2
3000ab4: e3500000
3000ab8: 0a000004
3000abc: e59f3200
3000ac0: 094a0eb7
3000ac4: be78f193
3000ac8: e2ee9fc4
3000acc: 11dc5edb

3000a80: 09389787
3000a84: ec965efc
3000a88: 2e33ac4e
3000a8c: 4885154b
3000a90: ba26d576
3000a94: f15f6ea5
3000a98: 453cdd9c
3000a9c: 40af6677
3000aa0: 105aa547
3000aa4: f1b7f562
3000aa8: 689b2016
3000aac: e6a28d0e
3000ab0: 94d4e3f1
3000ab4: 10e25c31
3000ab8: 7f00577b
3000abc: 31cd649d
3000ac0: 094a0eb7
3000ac4: be78f193
3000ac8: e2ee9fc4
3000acc: 11dc5edb

3000a80: 09389787
3000a84: ec965efc
3000a88: 2e33ac4e
3000a8c: 4885154b
3000a90: ba26d576
3000a94: f15f6ea5
3000a98: 453cdd9c
3000a9c: 40af6677
3000aa0: 105aa547
3000aa4: f1b7f562
3000aa8: 689b2016
3000aac: e6a28d0e
3000ab0: 94d4e3f1
3000ab4: 10e25c31
3000ab8: 7f00577b
3000abc: 31cd649d
3000ac0: d2acbdef
3000ac4: bca24992
3000ac8: c6028b0c
3000acc: 440b6d3f

3000a80: 09389787
3000a84: ec965efc
3000a88: 2e33ac4e
3000a8c: 4885154b
3000a90: ba26d576
3000a94: f15f6ea5
3000a98: 453cdd9c
3000a9c: 40af6677
3000aa0: 105aa547
3000aa4: f1b7f562
3000aa8: 689b2016
3000aac: e6a28d0e
3000ab0: 94d4e3f1
3000ab4: 10e25c31
3000ab8: 7f00577b
3000abc: 31cd649d
3000ac0: 5a07eb1d
3000ac4: b6db16db
3000ac8: 48269248
3000acc: 7f1d8ba2

(a) (b) (c) (d)
Figure 3.6 Signed Binary Data Block: (a) Signed Plaintext, (b) ES, (c) EtS, and (d) StE

The relative strength of these implementations is still a subject for debate [20, 21].

However, another cryptographic algorithm has been developed that specifically address

the need for both encryption/decryption and signature generation. The Galois/Counter

Mode (GCM) of cryptographic operation was introduced by McGrew and Viega [22]. It

implements an EtS cryptographic scheme, incorporating the block cipher of choice (for

this dissertation, we continue to use AES). The goal of GCM was to provide a secure yet

flexible solution with low latency. With appropriate inputs, GCM is as secure as the

chosen underlying block cipher [22].

The flexibility of GCM is apparent in Figure 3.7, which shows a high-level “black

box” view of the inputs and outputs of GCM. The inputs include an arbitrary number of

27

data blocks (I1 – IN). An additional data block (ADD_DATA) may also be inputted; these

data will be used for signature generation but will not be encrypted. GCM requires only

two cryptographic keys, K1 and K2. Key K1 is used for encryption, and K2 is used for

signature generation. An initial vector IV is also required. The initial vector must be a

nonce, that is, it should be unique with a high probability. The size of IV is a design

parameter, but 96 bits is recommended as the most efficient when working with 128-bit

block ciphers [22]. The final input, ENCRYPT, specifies whether GCM is operating in

encryption or decryption mode. If ENCRYPT is 1, then GCM is running in encryption

mode and the input blocks I1 - IN are interpreted as plaintext. Otherwise, GCM is running

in decryption mode and the input blocks are interpreted as ciphertext.

The outputs of GCM include output blocks O1 - ON and a signature S. If GCM is

running in encryption mode, then the output blocks are ciphertext. If GCM is running in

decryption mode, the output blocks are plaintext. The signature is internally

GCM

I1

K1

K2

IV

S

I2

IN

O1

O2

ON

ENCRYPT

ADD_DATA

Figure 3.7 High Level View of a Hardware Implementation of Galois/Counter Mode

28

calculated on the ciphertext blocks (which are internally available in either mode) and the

additional data (ADD_DATA). Note that the ADD_DATA is never encrypted.

The implementation of GCM used in this dissertation is shown in Figure 3.8 and

described mathematically in Equations (3.8) - (3.13). As before, we use 128-bit input and

output blocks, and 128-bit keys. We further chose a 96-bit initial vector for maximum

efficiency. Our chosen block cipher is the Advanced Encryption Standard (AES). Note

that the initial vector is concatenated (represented by the || symbol) with the number 1

represented in binary and zero-padded out to 32 bits (denoted as 132), ensuring a 128-bit

input to the AES cores. The initial vector is also incremented (represented by inc blocks)

before each subsequent AES operation, ensuring unique results for each operation. The

results of the AES encryptions are one-time pads, which are XORed with the input blocks

Ii to produce ciphertext or plaintext outputs Oi, as appropriate. The additional data block

and ciphertext blocks Ci are then used to calculate the signature S, along with the block

lengths (represented by the len() symbol and padded to 64 bits each) and a final one-time

pad Y0. The GMULT operation, which is a Galois field multiplication of two 128-bit

values in the 2128 domain, is instrumental in signature generation. The values Xi in the

equations below are intermediate results of GMULT operations.

NiforiIVAESxorIO Kii ..1))1(||(321 (3.8)

)1||(3210 IVAESY K (3.9)

Nifor
ENCwhenO

ENCwhenI
C

i

i
i ..1

1

0

 (3.10)

),(20 KAGMULTX (3.11)

NiforKXxorCGMULTX iii ..1),(21 (3.12)

29

),)(||)((264640 KClenAlenxorXGMULTxorYS iN (3.13)

AES AES AESK1 K1 K1

I1 I2 IN

ENC ENC ENC

O1 O2 ON

0 1 0 1 0 1

GMULT GMULT GMULTK2 K2 K2

GMULTK2

S

len(Ii)64 ||
len(ADD_DATA)64

AESK1

+ 1IV||132 + 1 + 1

GMULTK2

ADD_DATA

Y0

C1 C2 CN

X0 X1 X2 XN

Figure 3.8 Hardware Implementation of Galois/Counter Mode

After the final data block is ready (or has been encrypted, in the case of GCM

encryption), two GMULT operations are required to produce the signature. The time

required to perform GMULT thus determines whether or not GCM will offer a

performance advantage over PMAC. In the PMAC mode, one AES operation is required

to produce the signature after the final data block is ready. Thus, GCM achieves better

30

performance only if the time required to perform two GMULT operations is less than the

time required to perform one AES operation.

McGrew and Viega [22] discuss options for implementing GMULT. The fastest

option performs the multiplication in only one clock cycle. They state that the hardware

complexity for such an implementation is O(q2) logic gates, where q is the block width in

bits. As we are using 128-bit blocks, the fastest GMULT implementation thus has a

complexity on the order of 16,384 gates. This is on par with a pipelined AES unit [23],

and may be practically implemented in hardware. With this fast implementation, the

signature will be available two clock cycles after the final data block is ready, providing a

clear performance advantage over PMAC.

A useful abstraction of the GCM hardware is shown in Figure 3.9. This

abstraction represents the combinational logic for signature generation as a single

function, GHASH. The contents of the GHASH block are shown in Figure 3.10. The

inputs to GHASH are a 128 bit key H, an initial pad Y0, the additional data block A, and

the ciphertext blocks C1 - CN. The output of GHASH is the signature T, as shown in

Equations (3.14) - (3.16). Using this abstraction allows us to write simple equations for

signature generation, expressing signatures as a GHASH of various parameters.

),(0 HAGMULTX (3.14)

NiforHXxorCGMULTX iii ..1),(1 (3.15)

),)(||)((

),,,,,(

64640

10

HClenAlenxorXGMULTxorY

CCAYHGHASHT

iN

N

 (3.16)

31

AES AES AESK1 K1 K1

I1 I2 IN

ENC ENC ENC

O1 O2 ON

0 1 0 1 0 1

S

AESK1

+ 1IV||132 + 1 + 1

ADD_DATA

GHASHK2

Y0 A C1 C2 CN

T

H

AES AES AESK1 K1 K1

I1 I2 IN

ENC ENC ENC

O1 O2 ON

0 1 0 1 0 1

S

AESK1

+ 1IV||132 + 1 + 1

ADD_DATA

GHASHK2

Y0 A C1 C2 CN

T

H

Figure 3.9 Abstraction of GCM showing GHASH

32

GMULT GMULT GMULTH H H

GMULTH

T

len(Ci)64 || len(A)64

GMULTH

A C1 C2 CN

Y0

X0 X1 X2 XN

Figure 3.10 GHASH

The results of using GCM on an actual block of binary data are shown in

Figure 3.11. The plaintext is the same 64 byte instruction block used above in Figure 3.6.

The initial vector is the block’s starting address, left padded with zeros to 96 bits. The

additional data block is all zeros. Figure 3.11 shows the plaintext block, along with the

resulting ciphertext and signature.

33

Key1:
Key2:

ADD_DATA:
IV:

0123456789abcdef012345678abcdef0
fedcba9876543210fedcba9876543210
00000000000000000000000000000000
000000000000000003000a8

Plaintext: Ciphertext:
3000a80: e3a02000
3000a84: e50b2030
3000a88: e59f122c
3000a8c: e5812000
3000a90: e50b2034
3000a94: e1a06000
3000a98: e59f0220
3000a9c: eb002c5b
3000aa0: e2505000
3000aa4: 0a000033
3000aa8: e1a00005
3000aac: e3a0102f
3000ab0: eb004ad2
3000ab4: e3500000
3000ab8: 0a000004
3000abc: e59f3200

3000a80: 3731cfe8
3000a84: 92c2b117
3000a88: 9982c15d
3000a8c: 61935ea6
3000a90: d9744f9f
3000a94: b501a5e2
3000a98: 2aef63da
3000a9c: d80cfb18
3000aa0: 4c439843
3000aa4: 2f96660e
3000aa8: 128ec3ba
3000aac: 745beec3
3000ab0: 2a2d38a2
3000ab4: d3899dd2
3000ab8: 1a2edbbc
3000abc: 82349c3c

S: a68c7a304b00e5ef10c99f7678957f38
Figure 3.11 Binary Data Block Encrypted, then Signed in Galois/Counter Mode

34

CHAPTER 4

PRINCIPLES OF SECURE PROCESSOR DESIGN

The previous two chapters have provided background information regarding

threats to computer security and cryptographic concepts that can be used to help counter

these threats. We now delve into the basic principles of secure processor design. We

start with the relatively simple case of protecting instructions and other static data. Then

we proceed to the more complicated case of protecting dynamic data.

4.1 Protecting Instructions and Static Data

Before going into architectural details, we must define a few concepts. The first

concept is that of security mode, which specifies the protection levels for software

(instructions and static data) and dynamic data. A secure processor should provide

options to protect both integrity and confidentiality. Our proposed architecture is

flexible, allowing the system designer to choose the appropriate security level for the

target system. The protection levels for compiled binary software code (including static

data) and dynamic data may be chosen separately. For software protection, the designer

may choose software integrity only mode (SIOM), software confidentiality only mode

(SCOM), or software integrity and confidentiality mode (SICM). Similarly, data

integrity only mode (DIOM), data confidentiality only mode (DCOM), or data integrity

35

and confidentiality mode (DICM) are available for protecting dynamic data. As their

names imply, the SIOM and DIOM modes are limited to protecting the integrity of

software or data. Instruction or data blocks are stored in binary plaintext that could be

read by an adversary. The SCOM and DCOM modes encrypt data to ensure

confidentiality, but do not ensure their integrity. The SICM and DICM modes ensure

both integrity and confidentiality. The system designer may choose the modes for

software and data independently, possibly with different levels of protection. The

SICM/DICM combination is recommended for maximum security. This section focuses

on the relatively simple case of protecting static data and instructions; the architectural

principles explained here will be expanded in Section 4.2 to cover the more complex case

of protecting dynamic data.

Another concept that must be defined is the security boundary. This is simply the

boundary beyond which data are potentially vulnerable to tampering by the threats

delineated in Chapter 2. Data inside this boundary are said to be in the secure domain,

and are thus trusted. In this research, we assume that the processor chip itself is the

secure domain; data stored on-chip are assumed to be invulnerable, while data stored off-

chip are unsecure. Thus the security boundary is, conveniently, the processor chip’s

physical boundary.

The standard approach to protecting integrity is known as a sign-and-verify

architecture [4, 24, 25]. As the name implies, a sign-and-verify architecture requires that

data be signed with a secure signature when they leave the secure domain, and verified

when they come into the secure domain. The standard approach to protecting

confidentiality is encryption, which may be added if desired. In our architecture, data are

36

encrypted and/or signed when they leave the chip, and then decrypted and/or verified

when they come back onto the chip.

The use of cryptography requires that the data be divided up into discrete units.

This basic unit of security is called a protected block. Each protected block will be

independently encrypted, and will have a signature associated with it. Protected block

size is a design parameter; however, three factors should be kept in mind when choosing

a protected block size. The first is cipher width, which is 128 bits (16 bytes) for the

standard AES cipher. Protected block sizes that are some multiple of the selected block

cipher width would be the most efficient; otherwise, cryptographic operations will require

some padding. The second factor is cache line size. Since a cache line miss results in a

block of data being brought on-chip and thus crossing the security boundary, the cache

line size or some multiple thereof is a convenient protected block size. These first two

factors are, thankfully, easily harmonized, as common cache block sizes such as 32 bytes

and 64 bytes are both multiples of the standard AES cipher width. The third factor in

choosing protected block size is memory constraints. Since every protected block has its

own signature, and those signatures must be stored somewhere in memory, smaller

protected blocks incur greater memory overhead than larger protected blocks.

Throughout all the theoretical portions of this dissertation we assume, without loss of

generality, a system with separate level-1 instruction and data caches with identical cache

line sizes. We will mostly confine our discussion to protected block sizes equaling cache

line sizes, exploring protected blocks of twice the cache line size in Section 5.5.

Protecting integrity requires that signatures be calculated in such a way that all

possible attacks on integrity will be detected. Spoofing attacks can be prevented by using

37

the block text in signature generation. Splicing attacks can be prevented by incorporating

the block’s address in the signature generation. One possible variation on the splicing

attack would be to splice a block from another executable but at the same address into the

present executable; this can be prevented by using keys unique to each executable. Static

program code and data are not vulnerable to replay attacks, which will be considered

below in Section 4.2.

Our proposed sign-and-verify mechanism involves three stages: secure

installation, secure loading, and secure execution [26]. These stages are depicted in

Figure 4.1. The first stage is a secure installation procedure, in which binary executables

are signed and optionally encrypted for a particular processor. The second stage is secure

loading, in which the computer system prepares to run the program. The final stage is

secure execution, where the program is run such that its integrity and/or confidentiality is

maintained.

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey1(Static
Blocks)

Signatures

Encrypt

Generate Program Keys
(Key1,Key2)

Secure Mode
EKey.CPU(Key1)

EKey.CPU (Key2)
Encrypt

Static
Blocks

Program
Loading

Decrypt
Program Keys
(Key1,Key2)

Decrypt
Static

Blocks

=?

Calculate
Signature

Original Code Signed Code

Secure
Installation

Trusted Code

Signature
Match

Signature Fetch

Instruction Fetch

Secure
Execution

Calculate
Signature

EKey1(Static
Blocks)

Signatures

Encrypt

Generate Program Keys
(Key1,Key2)

Secure Mode
EKey.CPU(Key1)

EKey.CPU (Key2)
Encrypt

Static
Blocks

Program
Loading

Decrypt
Program Keys
(Key1,Key2)

Decrypt
Static

Blocks

=?

Calculate
Signature

Figure 4.1 Overview of Architecture for Trusted Execution

38

The process by which an unprotected program is installed on the system to take

advantage of hardware support for integrity and/or confidentiality is called secure

installation. An unsecured executable file is processed by the CPU to create a secure

executable file. The secure installation procedure presented here is similar to that

proposed by Kirovski et al. [27]. The CPU must perform secure installations in an

atomic manner, and must not reveal any secret information during or after the

installation. The level of protection must be chosen before beginning secure installation

as flag specifying the selected mode is stored in the header of the secure executable.

The first step during secure execution is to generate the keys necessary for

cryptographic operations. Depending on the cryptographic mode, either one, two, or

three keys will be required. These keys may be randomly generated from thermal noise

in the processor chip [28] or by using physical unclonable functions [29]. The keys must

be encrypted on-chip using a secret key built into the processor, Key.CPU. The

encrypted keys are stored in the header of the secure executable. These keys must never

leave the secure domain in their unencrypted form.

If the secure executable is to run in a software integrity mode (SIOM or SICM),

then every instruction block and static data block must be signed. Signature generation

must use the block text, address, and program keys as discussed above. Signatures must

be stored somewhere in the secure executable, either embedded immediately preceding or

following protected blocks, or in a signature table. The ramifications of this choice are

explored in Section 5.1.

39

Encryption is required for modes protecting confidentiality (SCOM and SICM).

The protected blocks are encrypted via the method of choice and stored in the secure

executable.

The secure loading process prepares a secure executable to run on the secure

architecture. During this process, the encrypted program keys are read from the secure

executable header. These are decrypted using the processor’s secret key (Key.CPU) and

loaded into special-purpose registers on the CPU. The plaintext keys may only be

accessed by dedicated on-chip hardware resources, and, as mentioned above, they should

never leave the CPU as plaintext. If a context switch occurs, these keys must be re-

encrypted before leaving the processor to be stored in the process control block. When

the context switches back to the secure program, they must be re-loaded into the

processor and decrypted once again before secure execution may resume.

The secure execution stage is when the secured program actually runs. The sign-

and-verify architecture comes into play when protected data are brought into the secure

domain. In our design, that occurs when a cache miss causes a protected block to be

fetched from external memory. Since the cache is on-chip, and thus a trusted resource,

all data in the cache are assumed to be trusted; thus, only trusted or unprotected data

should be placed in the cache.

On a cache miss, the appropriate protected block must be fetched from memory.

The block’s signature must also be fetched from memory if the system is operating in an

integrity mode (SIOM or SICM). The signature must also be recalculated based on the

block that was fetched and other parameters as described above. The calculated signature

is compared with the fetched signature. If the fetched and calculated signatures match,

40

then the block is valid and may be inserted in the cache. If the signatures do not match,

the block is invalid and an exception is raised. The operating system may then

appropriately handle the exception. If the system is operating in a confidentiality mode

(SCOM or SICM), the block must be decrypted before being placed in the cache, or

perhaps even before calculating its signature, depending on the choice of cryptographic

mode.

4.2 Protecting Dynamic Data

Dynamic data is anything that is created and/or changed at runtime. Dynamically

generated code, such as that produced by just-in-time compilers, also fits this description,

and thus may be considered as dynamic data for discussion purposes. Protecting this data

produces additional challenges. Due to its changeable nature, it is subject to replay

attacks in addition to spoofing and splicing. A versioning scheme is therefore required to

ensure that a fetched protected block is fresh. To that end, we introduce a sequence

number for each protected block of dynamic data. These sequence numbers must be

stored in a table in memory during runtime.

If encryption is being employed, sequence numbers must be considered during the

encryption/decryption process. They are particularly important if OTP encryption is

being used. A protected block may need to be encrypted multiple times as it is updated

throughout the course of a run. The pads used for encryption must be unique each time.

Therefore, the sequence number must be incremented at least as often as the block is

encrypted, and must also be included in the initial vector that is used to calculate the pads

for encryption to ensure pad uniqueness.

41

A block’s sequence number must also be a parameter in the signatures of dynamic

data blocks so that signature verification will detect replay attacks. Furthermore, replay

attacks may include a replay of the protected block, its signature, and/or its sequence

number. Consider attacks where one of either the protected block or its signature is

replayed, but its sequence number is not. These attacks will be detected as if it were a

spoofing attack. An attack where both the protected block and its signature are replayed,

but the sequence number is not, will be detected because the sequence number is included

in the signature generation. Finally, consider a sophisticated attack where the protected

block, its signature, and its sequence number are all replayed. Simply verifying the

signature will not detect this attack; further protection is needed.

The traditional method for providing this additional protection was to use a

Merkle tree over all dynamic data [30, 31]. A Merkle tree involves calculating signatures

or hashes over all data, and then calculating signatures over these signatures, for as many

levels as desired. The amount of data protected by a single signature at each level is

chosen to set the depth of the tree. Eventually, some level of the tree will be protected by

a single signature, known as the root. The root will contain information from everything

protected by the tree, and must be stored in a secure location as it will provide the root of

security. When one node on a Merkle tree needs to be verified, nodes above it must also

be verified until a signature can be compared to something that is known to be secure.

This can lead to large amounts of performance overhead.

Our previous research has shown that a Merkle tree over all dynamic data is

unnecessary [32]; only the sequence numbers need to be protected by a tree-like

structure. This was independently proposed in [33]. To that end, our architecture uses a

42

tree-like structure such as that depicted in Figure 4.2. Signatures are calculated for

blocks of sequence number data. The signatures for sequence number blocks associated

with one page of data are XORed together to produce a page root signature. A page root

signature is thus the overall signature of the sequence numbers associated with a single

page of dynamic data. All the program’s page root signatures are XORed to produce the

program root signature. The program root signature is the root of trust, and must be

stored in a special register on the processor. Like the program keys, it must be stored in

the process control block in encrypted form during a context switch. Managing this tree

efficiently poses a significant design challenge, which shall be discussed below in

Section 6.2. Note that sequence number blocks need not be encrypted [34].

.

.

.

Sequence Number
Blocks

Sequence Number
Blocks associated

with one page

.

.

.

Signatures Page Root
Signatures

Program Root
Signature

Figure 4.2 Tree Structure for Protecting Sequence Numbers

As in static data protection, protected blocks of dynamic data are verified when

they enter the secure domain. In our architecture, this occurs on a cache miss. When

43

protecting dynamic data, the first operation required on a cache miss is to fetch the

sequence number, as the sequence number is required for decrypting the block (when

using OTP) and/or calculating its signature. Once the sequence number is available, the

protected block and its signature can be fetched, and will be decrypted and/or verified as

in the static case.

Unlike static data, dynamic data must be encrypted and/or signed when it leaves

the secure domain. In our architecture, this occurs on a cache writeback. As before, the

first required operation is to fetch the sequence number. The sequence number must then

be incremented and the updated sequence number used to encrypt and/or sign the

protected block. The encrypted protected block and its signature may then be written to

memory.

When sequence numbers are fetched, they must be verified against higher nodes

in the tree. When sequence numbers are incremented, the tree must be updated. As

mentioned before, managing the tree efficiently poses a serious challenge, which will be

discussed below in Section 6.2.

4.3 Comments

This chapter has presented the basic framework of our sign-and-verify solution.

We have not yet delved into any particulars, such as how encryption should be

performed, how signatures should be generated, etc. These issues must still be addressed,

and we do so in the following two chapters.

44

CHAPTER 5

GENERAL CHALLENGES IN SECURE PROCESSOR DESIGN

This chapter examines several challenges that the computer architect will

encounter when designing a secure processor. The challenges discussed here are general

in nature; challenges specifically related to protecting dynamic data are discussed in the

next chapter. We address where to store signatures, how to encrypt protected blocks,

how to sign protected blocks, speculative execution to hide latency, and methods for

reducing memory overhead. We also discuss a way to enable secure input and output,

and some other related topics.

5.1 Choosing Where to Store Signatures

One of the first challenges that must be dealt with in designing a secure processor

is deciding where to store signatures. This decision influences all three stages: secure

installation, loading, and execution, and also has implications for system performance.

Signatures may be either stored on-chip in a dedicated resource or off-chip somewhere in

memory.

45

5.1.1 Storing Signatures On-Chip

Storing signatures in a dedicated on-chip memory has great performance

advantages. Data stored on-chip can be accessed much more quickly than that stored off-

chip, and is assumed to be safe from tampering. Also, depending on the on-chip buses

that are used, signatures may be able to be fetched in parallel with fetching the protected

block. However, using a dedicated on-chip memory would require a potentially large

number of transistors that could be used for other performance-enhancing hardware

resources. Also, the amount of data that could be protected would be limited by the size

of the on-chip memory reserved for signatures.

A secure installation procedure supporting signatures stored on-chip would create

a table of signatures for the static blocks in the secure executable file. The secure loading

process would then load the contents of that table into the on-chip resource. Signatures

of dynamic blocks would be created at runtime. Context switches would become more

time-consuming, as the signatures stored on-chip would need to be dumped into the

process control block and later loaded back in.

This signature storage scheme may be desirable for a simple system-on-a-chip

that rarely, if ever, performs context switches, but for high-end embedded systems and

general purpose systems, it is not likely to be desirable. The remainder of this chapter

will therefore assume that signatures will be stored off-chip.

5.1.2 Storing Signatures Off-Chip

The two methods for storing signatures off-chip are to either embed the signatures

with the protected blocks or to store them in a signature table. An embedded signature

either immediately precedes or immediately follows the protected block it protects. The

46

major advantage of embedded signatures is that, with appropriate memory controller

support, the signature can be fetched in the same pipelined memory operation as the

protected block. This is depicted in Figure 5.1 (a). The figure shows the timing of a

memory pipeline fetching a 32 byte protected block followed by a 16 byte signature. The

first 64-bit chunk is available in 12 clock cycles, with subsequent chunks becoming

available every two cycles.

The major disadvantage of embedded signatures is that they clutter and

complicate the address space. Of a necessity, they are visible in the physical address

space, but the security designer must decide whether they will be visible in the virtual

address space, and, if so, whether there will be an additional “secure address space”

within which the signatures will not be visible. Either way, additional address translation

logic would be required, as blocks of data are no longer contiguous in the physical

address space. If the signatures are visible in the virtual address space, cache controllers

must also be modified to prevent cache pollution from the signatures.

If this scheme is to be implemented, the signatures for static blocks will be

embedded with their protected blocks in the secure executable file during secure

installation. Secure loading will not need to specially handle the signatures. During

secure execution, dynamic protected blocks and their signatures will be written to

memory together to preserve the embedding scheme.

47

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

(a) I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

32

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

I0:1 I2:3 I4:5 I6:7

(b)

(c)

Figure 5.1 Memory Pipeline for (a) Embedded Signatures, (b) Signature Table, and

(c) Signature Table with Signature Cache Hit

Storing signatures in a signature table in off-chip memory relieves some of the

complications of embedded signatures but introduces others. For instance, it reduces the

complexity of address translation hardware, reduces address space confusion, and

relieves cache pollution concerns by storing signatures separately from their protected

blocks.

The major disadvantage of this signature storage scheme is that a second memory

access must be initiated to fetch the signature after the protected block has been fetched.

This introduces additional performance overhead, as shown in Figure 5.1 (b). The

solution to this is to cache signatures on-chip. The signature cache can be probed in

parallel with fetching the protected block. If there is a hit in the signature cache, then the

signature need not be fetched from external memory, as in Figure 5.1 (c). This situation

obviously minimizes the contribution of memory accesses to performance overhead. If

48

the signature cache access misses, however, the latency depicted in Figure 5.1 (b) still

applies.

One approach to designing a signature cache is to use a dedicated cache structure

with cache lines of the same size as the signatures. This approach takes advantage of

existing and well-understood cache designs. However, this approach may not be

desirable as it requires an additional large, power-hungry on-chip resource. An

alternative approach would be to use a much smaller victim cache structure. A victim

cache is a relatively small, fully associative structure for storing evicted data in the hope

that they will be needed again soon. In this case, the signatures of blocks that are evicted

from the instruction and data caches would be placed in the victim cache. This would

require that the instruction and data cache lines be widened to include the protected block

plus its signature. This approach enlarges existing cache structures, but removes the need

for all but a simple victim cache for signatures. An alternative is to regenerate protected

blocks’ signatures when they are evicted. This would obviate the need to widen

instruction and data cache lines, but at the cost of increased performance overhead. The

signatures of dynamic and static blocks could use either the same or separate victim

caches, as desired. Victim cache depth is a design parameter.

As with storing signatures on-chip, the secure installation stage must create a

signature table in the secure executable. The secure loading stage must copy this table

into the appropriate location in memory. During context switches, the contents of the

signature cache must be invalidated. When dynamic protected blocks are evicted form

the data cache, their new signatures should still be written out to memory. Even though

49

the signatures are no longer contiguous with protected blocks, this should introduce

minimal performance overhead given sufficient write buffers.

5.2 Coping with Cryptographic Latency

Chapter 3 above presented two methods for ensuring confidentiality: symmetric

key and one-time pad cryptography. Both of these methods have the potential to

introduce cryptographic latency, that is, performance overhead caused by

encryption/decryption. We here analyze these two methods in the context of a secure

processor to determine which is likely to introduce the lowest performance overhead.

As seen in Section 3.1, the straightforward method for encrypting and decrypting

a block of data is symmetric cryptography. Equations (5.1) and (5.2) show symmetric

cryptography being used to encrypt and decrypt, respectively, a 32 byte plaintext block

with a 128-bit AES cipher. In this equation, I0:3 and I4:7 are the two 16 byte sub-blocks

comprising the plaintext block, C0:3 and C4:7 are the corresponding sub-blocks of

ciphertext, AESe and AESd allude to the AES cipher operating in encryption and

decryption modes, respectively, and KEY3 is one of the unique program keys discussed

above in Section 4.1.

1..0)(34:43,34:4 iforIAESC iiKEYeii (5.1)

1..0)(34:43,34:4 iforCAESI iiKEYdii (5.2)

The major drawback of applying symmetric cryptography in secure processors is

the large amount of cryptographic latency it induces. Figure 5.2 (a) shows the

cryptographic latency incurred by symmetric cryptography when decrypting a protected

block in our example secure processor. A 32 byte protected block is fetched from

50

memory in 64-bit chunks. Each 16 byte sub-block is decrypted independently using a

128-bit, fully pipelined AES unit that requires 12 clock cycles to complete an AES

operation. AES operations in Figure 5.2 are depicted as rows of shaded blocks. As the

figure indicates, decryption of a ciphertext sub-block cannot begin until that sub-block is

completely available. The end result is that the protected block is not available in its

decrypted form until 12 clock cycles after it has been completely fetched from memory.

0 2 4 6 8 10 12 14 16 18 20 22

Time (clock cycles)

Memory
pipeline

Crypto
pipelines

C0:1 C2:3 C4:5 C6:7

24 26 28 30

Plaintext Ready at Cycle 30

Plaintext Ready at Cycle 18

(a)

(b)

Figure 5.2 Cryptographic Latency for (a) Symmetric Key Decryption

and (b) One-Time-Pad Decryption

This cryptographic latency can be alleviated by using OTP cryptography.

Equations (5.3) and (5.4) demonstrate how OTP is used for encryption and decryption,

respectively. The initial vector for each sub-block is calculated from the sub-block’s

51

address A(SBi) and the protected block’s sequence number SN, which are expanded to

128 bits using a secure padding function SP. This 128-bit value is then encrypted using

the program key KEY3. (In OTP, AES need only operate in encryption mode, so the

subscript e is omitted for clarity.) The result is the actual one-time pad, which is XORed

with the plaintext sub-block to produce a ciphertext sub-block when encrypting, or vice-

versa when decrypting.

1..0))),((()(334:434:4 iforSNSBASPAESxorIC iKEYiiii (5.3)

1..0))),((()(334:434:4 iforSNSBASPAESxorCI iKEYiiii (5.4)

Galois/Counter Mode cryptography intrinsically utilizes OTP for encryption and

decryption, as shown in Equations (5.5) and (5.6), respectively. In GCM, the pads are

produced by concatenating a 96-bit initial vector with a 32-bit counter to form a 128-bit

value, which is then encrypted. The initial vector consists of the protected block’s

address A and sequence number SN, which are extended to 96 bits by a secure padding

function SP96. Note that GCM requires only two keys, as opposed to the three keys

required for the other modes discussed in this dissertation. When using GCM, we use

KEY1 to perform all AES operations.

1..0))2(||),(()(3296134:434:4 iforiSNASPAESxorIC KEYiiii (5.5)

1..0))2(||),(()(3296134:434:4 iforiSNASPAESxorCI KEYiiii (5.6)

The performance advantage of using OTP in a secure processor is evident in

Figure 5.2 (b). The sub-block’s address is known at the beginning of the memory fetch

operation; if we assume that the sequence number is also known at that time, then we

may go ahead and perform the cryptographic operations required for calculating the one-

time pads in parallel with the memory access. Thus the pads are ready for use even

52

before the protected block itself is available; a simple XOR operation is all that is

required for decryption, leading to no cryptographic latency whatsoever. Furthermore,

using OTP cryptography makes more efficient use of the pipelined AES unit.

For blocks of static data, the sequence number is always the same, and so the

above assumption regarding the sequence number holds. The confidentiality of static

data may thus be ensured without incurring any performance overhead. For dynamic

data, however, the sequence number must be fetched and possibly validated before pad

calculation can begin. As the sequence number is also required for signature generation,

sequence numbers are necessary in both the DICM and DIOM modes. Techniques

discussed below in the next chapter may be applied to minimize the overhead caused by

sequence numbers.

5.3 Choosing a Cryptographic Mode for Signature Generation

Three cryptographic modes were presented above in Section 3.2: cipher block

chaining message authentication code, parallelizable message authentication code, and

Galois/counter mode. This section examines the use of these modes in our example

architecture, with the memory pipeline, cryptographic pipeline, protected block size, etc.

as described above. Each of these modes introduces a different amount of verification

latency, that is, the time from when the protected block is available until the time that it is

verified. In analyzing the performance of these modes, we will focus on verifying blocks

of static data. The performance analyses would also apply to protecting dynamic data if

one assumes that the described actions take place after the sequence number is fetched

and possibly verified. For the purpose of clarity, this discussion assumes, without loss of

generality, that signatures are calculated on plain-text.

53

5.3.1 CBC-MAC

One well-known cryptographic mode is CBC-MAC, which calculates signatures

using a chain of cryptographic operations. An implementation of CBC-MAC in our

example system is described in Equation (5.7), with all symbols as defined above. As

this mode’s name implies, all cryptographic operations must be performed in series; an

operation must complete before the next one may begin.

)))),((((13:027:42 SNASPAESxorIAESxorIAESS KEYKEYKEY (5.7)

The verification latency that CBC-MAC introduces into our sample system is

shown in Figure 5.3. In this figure, S denotes the signature fetched from memory, while

cS denotes the signature being calculated for verification purposes. The serial nature of

this cryptographic mode can be plainly seen in this figure. The protected block is

completely fetched within 18 clock cycles, but the signature is not ready until 39 clock

cycles, leading to a verification latency of 21 cycles, including a cycle to compare the

fetched and calculated signatures.

= ?

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

SP(A)

Figure 5.3 Verification Latency for Static Protected Blocks Using CBC-MAC

54

CBC-MAC is a well-known and established method for calculating signatures. It

is also very simple to implement, and can be performed in hardware with a single non-

pipelined AES unit. (Note that performing encryption in addition to signature generation

would complicate matters, especially if using such simple AES hardware.) The primary

drawback is the potentially large verification latencies that it entails, 21 clock cycles in

our example architecture. This latency would be less dramatic in systems with longer

memory access times, as the signature generation would overlap more of the memory

access. However, the minimum lower bound on verification latency is set by the number

of cycles required for an AES operation (plus one for signature comparison), as the final

operation cannot begin until the protected block is fully available.

5.3.2 PMAC

PMAC is an alternative cryptographic mode that may reduce verification latency

in many systems. The PMAC mode is applied to our example architecture in

Equations (5.8) and (5.9). Using this mode, a signature Sig(SBi) is calculated for each

128-bit sub-block (Equation (5.8)) and then XORed together to form the overall signature

(Equation (5.9)). Each sub-block’s address, A(SBi), is used in calculating the individual

sub-block’s signature. Two AES operations are required to calculate each sub-block’s

signature; these must be performed in sequence. However, the signatures for each sub-

block are calculated independently, and thus may be calculated concurrently.

1..0)))),((()(()(134:42 iforSNSBASPAESxorIAESSBSig iKEYiiKEYi (5.8)

)()(10 SBSigxorSBSigS (5.9)

The verification latency introduced by using the PMAC cipher in our example

system is illustrated in Figure 5.4. The figure shows the parallel nature of this mode.

55

The verification latency of the PMAC mode in our sample system is 13 clock cycles,

which is a performance improvement over the CBC-MAC mode.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

= ?SP(A(SB0))
SP(A(SB1))

Figure 5.4 Verification Latency for Static Protected Blocks Using PMAC

The glaring advantage of the PMAC mode is its improved performance. Its

downside is that it requires either a pipelined AES unit or two simple AES units. If a

pipelined AES unit is used, then the PMAC mode makes more efficient use of it than

does the CBC-MAC. Furthermore, the PMAC mode has the same minimum lower bound

on verification latency as the CBC-MAC, so the simpler mode may be preferable in

systems where memory access times dominate. Another disadvantage of PMAC is that it

is patent encumbered, but the patent holder has promised to “license these patents under

fair, reasonable, and non-discriminatory terms” [35].

56

5.3.3 GCM

The third and final cryptographic mode discussed in Chapter 3 is the

Galois/counter mode. This mode is applied to our example system in Equations (5.10)

and (5.11). Recall that 96-bit initial vectors are most efficient for GCM [22]. We

therefore use the aforementioned 96-bit secure padding function concatenated with 32-bit

counter values as inputs for all AES operations. Equation (5.11) uses the GHASH

abstraction for simplicity; see Section 3.3 for the details of this abstraction. Unlike the

other two modes discussed above, GCM enforces the encrypt, then sign approach, so the

two ciphertext sub-blocks C0:3 and C4:7 as calculated according to Equations (5.5) and

(5.6) are used as parameters to GHASH. The additional data value is 128 bits of zeros

(0128), and the program key KEY2 is used for the Galois field multiplications performed

by GHASH.

)1||),((329610 SNASPAESY KEY (5.10)

),,0,,2(7:43:01280 CCYKEYGHASHS (5.11)

Our example system’s verification latency when using GCM is shown in

Figure 5.5. In actuality, much of the work of GHASH can be done in parallel with the

memory operations, with the various GMULT operations being performed as inputs

become available, leaving only two GMULTs to be performed once the final ciphertext

sub-block is provided. This figure assumes that those two GMULT operations are fully

combinational and require only one clock cycle. Such an implementation, while

mathematically possible, is likely not feasible in actual hardware. As we have seen in

Section 3.3, the practical minimum time required to perform these two GMULTs is

two clock cycles. The minimum lower bound on verification latency for a particular

57

implementation with GCM is either the time it takes to fetch the signature or the time

required to perform the last two GMULT operations, whichever is larger, plus one cycle

for signature comparison. Our example system can tolerate GHASH latencies of up to

four clock cycles without increasing the verification latency, which is shown to be five

clock cycles in the figure.

0 2 4 6 8 10 12 14 16 18 20 22
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

= ?

AESKEY1(IV||132)

AESKEY1(IV||232)
AESKEY1(IV||332)

GHASH

Figure 5.5 Verification Latency for Static Protected Blocks Using GHASH

Section 3.3 stated that GCM will provide better performance than PMAC as long

as the time required to perform two GMULTs is less than the time required to perform an

AES operation. In our example system, an AES operation requires 12 clock cycles, so

GCM yields better performance as long as a GMULT operation requires less than

six clock cycles. We have mostly limited our discussion thus far to a fully combinational

58

GMULT implementation that requires one clock cycle. Although this implementation is

practical, the complexity it entails may be undesirable in some applications. Several

alternative, sequential implementations of GMULT with lower complexity have been

proposed [36-39]. No matter which implementation of GMULT is chosen, as long as it

requires less than six cycles, GCM will outperform PMAC. Otherwise, the lower

complexity PMAC mode is more attractive. The remainder of this dissertation assumes a

GMULT implementation taking no more than two clock cycles, which will yield

performance as in Figure 5.5.

5.4 Hiding Verification Latency

A conservative approach to designing a secure processor would wait until a

protected block is verified before executing its instructions or using its data. We call

such an implementation wait ‘till verified (WtV). This exposes the verification latency

discussed above, leading to possibly extensive performance overhead.

Ideally, the verification latency should be completely hidden, thus introducing no

performance overhead. This would require the processor to resume execution as soon as

the whole protected block is available. Such a scheme is called run before verification

(RbV). Protected blocks, however, may have been subject to tampering, which will not

be evident until signature verification is complete.

The solution to this quandary is to allow the speculative execution of untrusted

instructions and the speculative use of untrusted data. Untrusted instructions, and

instructions using untrusted data, must not be allowed to commit until their signatures

have been verified. This prevents tampered data from propagating into CPU registers or

memory. For out-of-order processors, RbV support requires a simple modification to the

59

reorder buffer, adding two verified flags (one for instruction verification and one for data

verification) which will be updated as blocks are verified. Instructions may not be retired

until those flags are set. The memory access unit must also be modified to prevent an

unverified instruction from writing data to memory. In-order processors require an

additional resource: the Instruction Verification Buffer (IVB).

n-1

…

1

0

Verified

Flag

Ready

FlagTag

n-1

…

1

0

Verified

Flag

Ready

FlagTag

Figure 5.6 Instruction Verification Buffer

The structure of the IVB is shown in Figure 5.6. The IVB’s depth (number of

instructions whose information it can hold) is a design parameter, represented by n in the

figure. Two IVBs should be implemented, one for instructions and one for data. As

instructions are fetched on I-cache misses, their information is placed in the instruction

IVB. When an instruction causes a D-cache miss, its information is placed in the data

IVB. Once the processor has completed execution of an instruction, it checks the IVBs to

see if that instruction or its data are pending verification. If it is not marked as verified,

the instruction may not be retired. In the unlikely event that newly fetched or issued

60

instructions will not fit in the IVBs, the processor must stall until enough instructions

have been removed so that new instructions can be inserted.

Shi and Lee point out that RbV schemes are vulnerable to side-channel attacks if a

malicious memory access or jump instruction has been injected into an instruction block

[40]. When such instructions execute speculatively during verification, they may reveal

confidential data by using it as the target address. This concern may be alleviated by

stalling all instructions that would result in a memory access until they have been

verified. Alternatively, a bus encryption scheme may be employed, but this would likely

increase complexity and performance overhead.

5.5 Coping with Memory Overhead

The sample architecture we have discussed so far would introduce a hefty

memory overhead. For every 32 byte protected block, a 16 byte signature is required.

This overhead could be prohibitive on embedded systems with tight memory constraints.

The solution, alluded to in Section 4.1, is to make the protected block size a multiple of

the cache line size.

In this section we consider modifying the example architecture to use 64 byte

protected blocks, which are twice the size of the 32 byte cache lines. This introduces two

additional 128-bit sub-blocks, I8:11 and I12:15. The equations for the various cryptographic

modes presented above need only be extended to take these additional sub-blocks into

account. For CBC-MAC, the chain of cryptographic operations may be extended to

include the two additional sub-blocks. For PMAC, signatures for the two additional sub-

blocks will be independently calculated, just like the first two, and all four signatures

61

XORed together to produce the total signature. If GCM is used, the GHASH

implementation must be expanded to handle four sub-blocks instead of two.

On a cache miss, the cache line that was missed in the cache is needed

immediately, while the other cache line contained within the protected block is not. For

ease of discussion, we call the immediately needed block the missed block and the other

block the unmissed block. A policy is required to handle the unmissed block on a cache

miss. Additionally, the amount of data transferred form memory influences both

performance and power overhead. The most naïve implementation would always fetch

the entire protected block on a cache miss, and discard the unmissed block. A more

sophisticated implementation would place the unmissed block into the instruction or data

cache, as appropriate, thus exhibiting a prefetching behavior to take advantage of

memory access locality. This could prevent future cache misses, but comes at the risk of

cache pollution.

The actions required on a cache miss when using double-sized protected blocks

can be broken down into four cases. These cases, which are outlined in Figure 5.7, are

divided on the basis of which cache line within the protected block was the missed block,

and whether or not the other cache line is also in the cache or is dirty. If the unmissed

block is available on-chip and is not dirty, then the on-chip version can be used for

signature generation. If it is not available on-chip, or is dirty, then the original version of

the block must be fetched from memory. Note that if the unmissed block is on-chip and

dirty, the unmissed block fetched from memory must be discarded after signature

verification. For convenience, we call the first cache line in a protected block Block A,

and the second Block B.

62

Sub-block 0 (I0:3)

Sub-block 1 (I4:7)

Sub-block 2 (I8:11)

Sub-block 3 (I12:15)

. . .

Signature

Block A

Block B

4Block A on-chip and not dirty

3Block A not on-chip or on-chip and dirty
Block B

2Block B on-chip and not dirty

1Block B not on-chip or on-chip and dirty
Block A

Case #ConditionMiss On

4Block A on-chip and not dirty

3Block A not on-chip or on-chip and dirty
Block B

2Block B on-chip and not dirty

1Block B not on-chip or on-chip and dirty
Block A

Case #ConditionMiss On

Figure 5.7 Memory Layout and Cache Miss Cases

Even if the unmissed block is available on-chip and is not dirty, fetching it from

memory may be more economical in some situations. For instance, in Case 2, Block B is

available on-chip for signature generation. However, if the system is using embedded

signatures, then one continuous memory operation to fetch the entire protected block and

its signature is faster than fetching Block A and then starting a new memory operation to

fetch the signature. As Figure 5.8 illustrates, if a new memory operation has to be started

to fetch an embedded signature, the resulting latency is the same as if the signature were

fetched from a signature table.

63

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

32

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

(a)

(b)

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3I8:9 I10:11 I12:13 I14:15

Figure 5.8 Memory Pipeline for Case 2:

(a) Fetching Block B with Embedded Signatures, and

(b) Not Fetching Block B with either Embedded Signatures or Signature Table

We demonstrate the verification latency introduced by doubling the protected

block size using our example architecture with embedded signatures and GCM

cryptography. Cases 1 and 2 are illustrated in Figure 5.9. We fetch the whole protected

block in both cases as it is necessary in Case 1 and fetching the unmissed block reduces

memory latency in Case 2, as described above. Our architecture thus automatically

fetches the entire protected block when Block A is the missed block. As the figure

shows, the verification latency is 13 clock cycles for both of these cases.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (clock cycles)

32

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

(a)

(b)

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3I8:9 I10:11I12:13I14:15

64

0 2 4 6 8 10 12 14 16 18 20 22
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

= ?

AESKEY1(IV||332)

AESKEY1(IV||132)
AESKEY1(IV||232)

GHASH

I8:9 I10:11 I12:13 I14:15

24 26 28 30

AESKEY1(IV||432)
AESKEY1(IV||532)

Figure 5.9 Verification Latency for Double Sized Static Protected Blocks Using

GHASH, Cases 1 and 2

Cases 3 and 4, however, are slightly more complicated. As these cases involve a

miss on Block B, the cache must be probed for Block A before starting a memory access.

If Block A is not found in the cache, or is dirty, then the whole protected block must be

fetched. This is Case 3 and, as depicted in Figure 5.10, incurs a verification overhead of

14 clock cycles. (Recall that verification overhead is measured from the time that the

cache line would have become available if no security extensions were present.) If Block

A is found in the cache, then it need not be fetched, significantly reducing the memory

overhead. Figure 5.11 shows Case 4, which only has a 6 clock cycle performance

overhead. Thus, with some added complexity up front (the cache probe), significant

performance gains can be achieved for Case 4 cache misses.

65

0 2 4 6 8 10 12 14 16 18 20 22

Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

I0:1 I2:3 I4:5 I6:7 S0:1 S2:3

= ?

AESKEY1(IV||332)

AESKEY1(IV||132)
AESKEY1(IV||232)

GHASH

I8:9 I10:11 I12:13 I14:15

24 26 28 30

AESKEY1(IV||432)
AESKEY1(IV||532)

P

32

Figure 5.10 Verification Latency for Double Sized Static Protected Blocks Using

GHASH, Case 3

0 2 4 6 8 10 12 14 16 18 20 22
Time (clock cycles)

Memory
pipeline

Crypto
pipeline

S

cS

Verification Latency

S0:1 S2:3

= ?

AESKEY1(IV||532)

AESKEY1(IV||132)
AESKEY1(IV||432)

GHASH

I8:9 I10:11 I12:13 I14:15

AESKEY1(IV||232)
AESKEY1(IV||332)

I0:7 (from cache)

P

24

Figure 5.11 Verification Latency for Double Sized Static Protected Blocks Using

GHASH, Case 4

66

5.6 Securing I/O Operations

Providing blanket protection for all input/output devices would be a very tricky, if

not impossible, proposition. The first problem is that many devices may exist in separate

chips on a board, and the connections between these chips may be vulnerable to physical

attacks. Complete protection would require encryption of all communications between

these chips, entailing a matched, customized chipset with cryptographic hardware on

every chip, and introducing high performance overheads.

Another problem with securing input and output is the wide variety of I/O

devices. Some devices transmit or receive a byte at a time; others may stream large

amounts of data. Furthermore, other than standardized bus protocols, memory mapped

interfaces are not consistent. Supporting such a wide variety of devices could require

custom hardware on the CPU to communicate with each device.

Rather than enforce the security of I/O at the hardware level, we propose to

provide hardware acceleration for cryptography to be performed in software. We do this

by exposing the hardware used for encrypting/decrypting and signing protected blocks on

a memory mapped interface. This will allow software developers to use the existing

hardware to efficiently and securely perform cryptographic operations. Device drivers

for existing peripherals can thus be modified to use the cryptographic accelerator in ways

that are appropriate for each individual peripheral. Software development expertise,

which is much more prevalent than hardware development expertise, can thus be

leveraged to increase security. Furthermore, performing cryptography using an on-chip

hardware resource rather than a software implementation of a cryptographic algorithm

reduces the vulnerability to side-channel attacks.

67

The memory mapped interface for accessing the cryptographic software is shown

in Figure 5.12. This interface is agnostic with respect to the underlying cryptographic

system used (AES encryption vs. OTP, or CBC-MAC vs. PMAC vs. GCM). The

interface shown here is for encrypting and/or signing 32 byte blocks; it could easily be

modified to support smaller or larger blocks as needed. The right hand column in the

figure depicts several 128-bit registers, a 16-bit register, and an 8-bit register. The

addresses in the left column are relative to a base address, which will be assigned by the

processor designer. We assume a byte-addressable architecture.

The 128-bit registers allow the software developer to specify the inputs for, and

read the outputs from cryptographic operations. Inputs include the keys to be used (the

number of which will be determined by the underlying cipher) and the initial value IV to

be used for encryption and/or signature generation (again, dependent on the underlying

cipher). If the operation to be performed includes encryption, the 32 byte plaintext block

must be loaded into the two plaintext registers, one for each 16 byte sub-block. If the

operation includes decryption, then the ciphertext block must be loaded into the two

ciphertext registers. Finally, the appropriate 16-bit control word should be set to start the

cryptographic operation. The 8-bit status word should be polled until it indicates that the

operation is complete. At that point, the results of the operation should be read from the

plaintext, ciphertext, and/or signature registers as appropriate.

68

Key 1

Key 2

IV

Plaintext Sub-block 1

Plaintext Sub-block 2

Ciphertext Sub-block 1

Ciphertext Sub-block 2

Signature

Control

Status

Base

Base + 16

Base + 32

Base + 48

Base + 64

Base + 80

Base + 96

Base + 112

Base + 128

Base + 144

RegisterAddress

Key 3

Base + 146

Register widths not to scale

Figure 5.12 Memory Mapped Interface for Cryptographic Acceleration

One possible format for the control word is shown in Figure 5.13, with the most

significant bit on the left and the least significant on the right. This format should, of

course, be tailored to fit the underlying cipher implementation. The sample format

includes three 3-bit fields for selecting each of the up to three keys used in the

cryptographic operations. Each key may be user defined (specified in the Key n)

registers, the CPU key, or any of the up to three program keys for the currently running

secure executable. A bit is used to specify whether the desired operation is encryption or

decryption; another bit specifies whether or not signature generation is desired.

69

1

Key 1
Selection

000 User Defined
001 CPU Key
010 Program Key 1
011 Program Key 2
100 Program Key 3
101 – 111 Reserved

Key 2
Selection

Key 3
Selection

0 for Encrypt
1 for Decrypt

0 for Do Not Sign
1 for Sign

Reserved

Figure 5.13 Control Word Format

The state machine controlling the cryptographic hardware will look for a 1 in the

lowest bit to begin operations. It will then set this bit to 0 and also zero out the status

register. The order of encryption and signature generation will be determined by the

underlying hardware; greater flexibility may be implemented but at the cost of greater

complexity. When the cryptographic operation is complete and all results are in their

respective registers, the state machine will set the status register’s value to 0x01, which

will trigger the polling software. An interrupt system could be implemented if desired to

prevent polling, but this would again increase complexity.

5.7 Dynamically Linked Libraries and Dynamic Executable Code

At this point, we must consider two special cases. The first involves dynamically

linked libraries (DLLs), which contain binary executable code that is potentially shared

70

among multiple programs. The simplest option would be to forbid the use of DLLs on

the secured system, but that might prove too restrictive. A better option would be to

perform a secure installation of any libraries that will be needed, using a single set of

program keys for the libraries. Three additional registers would be needed to store the

library program keys in addition to the currently running program’s keys. During secure

loading, the library keys should be read in and decrypted. When a program jumps to a

library function, the library keys would then be used to decrypt and authenticate the

instructions and static data in the library.

The second case involves instructions that are generated at runtime, including

just-in-time compilation and interpreted code. One option is to flag pages containing

dynamically generated instructions as unprotected. Another option would be to have the

program generating the instructions insert signatures as instruction blocks are created.

This requires that the generating program be trusted, and thus the output of the program

would also be trusted. Still another option is to treat dynamic instructions like blocks of

dynamic data and protect them accordingly [41].

5.8 Comments

A computer architect must address many issues when designing a secure

processor. This chapter has addressed issues that apply either to protecting instructions

and static data, or to protecting instructions, static, and dynamic data. The architectural

solutions we have herein proposed should allow such protection without incurring a large

performance overhead. However, the designer must still face challenges peculiar to the

protection of dynamic data; these are addressed in the next chapter.

71

CHAPTER 6

SECURE PROCESSOR DESIGN CHALLENGES FOR

PROTECTING DYNAMIC DATA

This chapter continues the theme of addressing challenges that arise when

designing secure processors. Here, we focus on challenges related specifically to

protecting dynamic data. We first discuss the troubling issue of sequence number

overflows. The remainder of the chapter is related to the management of the tree-like

structure mentioned in Section 4.2.

6.1 Preventing Sequence Number Overflows

When using OTP cryptography, each encryption operation must use a unique pad.

Sequence numbers are used to ensure pad uniqueness for the encryption of dynamic data.

The sequence number associated with a protected block must be incremented whenever

that block is encrypted (i.e., whenever it is evicted from the cache). A problem arises

when the sequence number overflows, that is, when an increment results in it returning to

its starting value. Using this overflowed sequence number to calculate a pad for OTP

encryption will result in pad reuse, which violates the very principle of OTP.

The obvious solution to prevent sequence number overflows is to use large

sequence numbers that are highly unlikely to ever overflow. For instance, if a 32-bit

72

sequence number is incremented at a rate of one gigahertz (GHz), it will overflow in

4.29 seconds. A 64-bit sequence number incremented at the same rate will overflow in

585 years, which is likely to be far beyond the useful life of the system. However, larger

sequence numbers lead to greater memory overhead and longer latency times.

The solution to this quandary is a split sequence number scheme, first introduced

by Yan et al. [42]. In the split sequence number scheme, each dynamic protected block

has its own 8-bit sequence number, called the minor sequence number. Several minor

sequence numbers are associated with a 56-bit major sequence number. A protected

block’s full sequence number consists of the major sequence number concatenated with

the minor sequence number, yielding a total of 64 bits. The split sequence number

scheme used in our architecture is depicted in Figure 6.1. We assume a sequence number

block of 32 bytes, which allows 25 8-bit minor sequence numbers to be associated with a

single 56-bit major sequence number. Whenever any of the minor sequence numbers

overflow, the major sequence number is incremented and all the data blocks associated

with that major sequence number must be re-encrypted and re-signed.

Major Minor Minor Minor … Minor

32 bytes

56 bits 8 bits

25 minor counters

Figure 6.1 Split Sequence Number Block Layout

73

Let us assume a four kilobyte page size for our example system. Using 32 byte

protected blocks, we thus have 128 data blocks per page when storing signatures in a

signature table, and 85 data blocks per page (plus some padding) when embedding

signatures with protected blocks. As we have seen above, each sequence number block

contains 25 sequence numbers, thus requiring six sequence number blocks for the

signature table case and four sequence number blocks for the embedded signature case.

In both cases, part of the final sequence number block for each page will be unused. The

remainder of this chapter will assume that we are using embedded signatures, and thus

require four 32 byte sequence number blocks per page of dynamic data.

6.2 Efficiently Managing the Tree

Perhaps the greatest challenge in protecting dynamic data is managing the tree-

like structure that was first introduced in Section 4.2. This structure is necessary to

prevent sophisticated replay attacks that replay a protected block, its signature, and its

sequence number. The tree must be managed in an efficient manner to minimize the

performance overhead that it will introduce. Note that if sequence numbers are stored in

an on-chip resource, this tree-like structure is not necessary. Storing sequence numbers

in an on-chip resource thus reduces overall complexity and performance overhead, but at

the cost of limiting the number of protected dynamic blocks. For the remainder of this

section, we assume that sequence numbers are stored off-chip, requiring the tree to

protect them.

Our approach to managing the tree during secure execution is event driven. When

protecting static blocks, the primary event of interest is an instruction cache miss, or a

data cache miss on a static block. The complexity required for protecting dynamic data

74

blocks is much greater due to the need to defend against replay attacks. In addition to

high security, we would like to introduce as little overhead as possible. To that end, we

have associated operations on each part of the tree with events during secure execution.

The goal is to associate high-overhead operations with the rarest events, while ensuring

that more common events have lower overhead.

The most frequent of the events discussed in this chapter should be data cache

misses. Therefore, the data cache miss should be optimized if at all possible. A block’s

sequence number is required for both decryption and signature generation, putting

sequence number fetching on the critical path of a data cache miss. We introduce an

additional on-chip cache resource to reduce the overhead of sequence number retrieval.

This cache, called the sequence number cache, will hold the sequence number blocks

discussed above in Section 6.1. As one sequence number block contains sequence

numbers for multiple data blocks, the sequence number cache exploits both temporal and

spatial locality of dynamic data accesses.

6.2.1 Page Allocation

The secure structures required for the dynamic data protection architecture must

be prepared for each dynamic data page that is allocated. First, its sequence number

blocks must be initialized and used to calculate the initial page root signature (see

Figure 4.2). The sequence number blocks and the page root signature must be written to

memory in their appropriate reserved areas. The starting address or offset from a known

starting address for the page’s sequence number blocks must be added to the page’s entry

in the page table. Secondly, the signatures for the page’s data blocks must be calculated

and stored in the appropriate location.

75

One option for implementing these procedures is to assume that the operating

system is trusted and allow it to perform the necessary operations on memory allocation.

This could potentially introduce high overhead. The other option is to perform the

operations in hardware and provide an instruction allowing the OS to trigger them. We

choose the latter option for both procedures.

Sequence number blocks must be initialized and used to calculate the page root

signature before the allocated page can be used. One approach to calculating the page

root signature would be to sign the four sequence number blocks using the mode of

choice and then XORing the resulting signatures together. Another method would be to

extend the desired mode to sign all four blocks at once. For CBC-MAC, this simply

requires extending the chain of AES operations. Doing this for PMAC would effectively

be the same as the method previously mentioned. For GCM, the GHASH function must

be extended to handle eight 128-bit blocks. This can be implemented with the same

hardware used to sign two 128-bit blocks by modifying the state machine that controls

the GMULT unit.

The program root signature is calculated by XORing the page root signatures of

each dynamic data page. Thus, when a new dynamic data page is allocated, the program

root signature must be updated by XORing it with the newly calculated page root

signature. All calculations on the program root signature must be performed on-chip. As

stated in Section 4.2, it must never leave the CPU in plaintext form.

The other task required for new dynamic data pages is data block signature

initialization. This could be done on page allocation, but that could introduce significant

overhead. Instead, we propose to create a block’s signature on its first write-back. A

76

block initialization bit vector must be established with a bit for each data block in the new

page (85 bits for our example system with embedded signatures). This bit vector

specifies which data blocks in the page have been used, with each block initially marked

as unused. The block initialization vector is stored in the page table.

The memory structures described above are summarized in Figure 6.2. Part (a)

shows the protected dynamic data page with embedded signatures. Part (b) shows the

new fields required in the page table, which must be loaded into an expanded TLB. The

first field specifies whether this page contains static or dynamic data. The second field is

the block initialization vector. The third field is a pointer to the page’s root signature in

the page root signature table (part (c) in the figure). The final field is a pointer to the first

sequence number block for the page (part (e) in the figure).

Data Block 1

Data Block 2

Data Block 85

.

.

.

S/D? Seq Num PointerPage Root Sig Offset

Seqnum Block 1

Seqnum Block 2

Seqnum Block 3

Seqnum Block 4

Page Root Sig

(a)Dynamic
Data Page

(b) Page Table Modifications

(c) Page Root
Signature Table

(e) Sequence
Number Table

Block Init. Vector

Program
Root Signature

Signature 1

Signature 2

Signature 85

Page Padding

(d) Program
Root Signature

Figure 6.2 Memory Structures for Protecting Dynamic Data

77

6.2.2 TLB Miss and Write-back

On a TLB miss, information about a data page is brought into the TLB. If the

page in question is a dynamic page, the aforementioned extra data required by this

architecture must be loaded from the page table and stored in the TLB at this point. The

page root signature for the data page should also be stored in the TLB. The integrity of

the program root signature is also verified at this time. The signatures from every active

dynamic data page are retrieved from the TLB or from memory. These signatures are

XORed together to recalculate the current program root signature. If the calculated

program root signature does not match that stored on on-chip, then the page root

signatures have been subjected to tampering and an exception is raised.

The overhead introduced by the architecture on a TLB miss depends on the

number of protected dynamic data pages at the time of the miss. It also depends on

design choices made when implementing the architecture. The page root signatures for

every protected data page are required. Signatures currently residing in the TLB should

be used, as the data in memory might be stale. All signatures not currently in the TLB

must be fetched from memory.

This situation leads to a design choice. Consider the case where the TLB contains

a noncontiguous subset of the total page root signature table. In some memory

architectures, fetching only the signatures not currently in the TLB would introduce

greater memory overhead than simply fetching all signatures and ignoring those already

in the TLB. This is due to the longer latencies introduced by starting new memory

fetches to skip the currently cached signatures. At the cost of additional TLB controller

78

complexity, control logic could be developed to determine the optimal operation on a

signature-by-signature basis.

Our example system has a memory latency of 12 clock cycles for the first eight

byte chunk, and two clock cycles for subsequent chunks. Fetching a 16 byte signature by

initiating a new fetch operation would cost 14 clock cycles. Fetching the same signature

as part of a longer fetch would only cost four clock cycles. Starting new memory fetches

to skip signatures currently in the TLB is only advantageous when four signatures must

be skipped. Therefore, we choose the simpler implementation of fetching all page root

signatures on a TLB miss and simply substituting those found in the TLB.

After each signature becomes available from memory, a simple XOR operation is

required for recalculating the program root signature. Once the final signature has been

processed, the recalculated program root signature is compared with that stored on the

chip. This operation takes less than one clock cycle. Therefore, the added overhead on a

TLB miss due to program root signature verification is simply the time required to fetch

the page root signatures for all protected data pages. This overhead, tTLBmiss, may be

calculated for our example architecture according to Equation (6.1), in which np

represents the number of protected dynamic data pages. The first term in the equation

covers fetching the two chunks comprising the first signature while the second term

covers fetching the remaining signatures.

]4)1[(14 xnptTLBmiss (6.1)

A page root signature will be updated when the sequence number for a data block

within that page is incremented. The program root signature will also be updated at that

time. See Section 6.2.3 below for discussion on the handling of sequence numbers. Thus

79

the only action required upon a TLB write-back is to write the page root signature and

block initialization bit vector contained in the TLB entry being evicted to memory.

TLB write-backs thus introduce negligible overhead. If the page root signature

contained in the entry to be evicted is not dirty, then no operations are required. If it is

dirty, the only required operation is to place the appropriate page root signature and bit

initialization vector into the write buffer, which will independently write it to memory

when the bus is free.

6.2.3 Sequence Number Cache Miss and Write-back

When a block’s sequence number is needed, it will first be sought in the sequence

number cache. If the requested sequence number is not found in the sequence number

cache, it must be fetched from memory. At this point, the integrity of the sequence

numbers from the data page in question must be verified. This requires all four sequence

number blocks associated with the page. These blocks may be retrieved from the cache

or from memory as appropriate. The four sequence number blocks are signed to calculate

the page root signature as described in Section 6.2.1. This calculated page root signature

is checked against that stored in the TLB. If they do not match, then a trap to the

operating system is asserted.

Some of the sequence number blocks needed to calculate the page root signature

may already be cached; the rest must be fetched from memory. As with the TLB miss

handling scheme, the implementation must balance overhead versus complexity. For our

sample implementation, we choose a scheme of moderate complexity. On a sequence

number cache miss, the sequence number cache is probed for the page’s first sequence

number block. If it is found in the cache, the cache is probed for the next block and so

80

forth until a block is not found in the cache. A memory fetch is initiated for the first

sequence number block not found in the cache and all subsequent sequence number

blocks associated with that page. Further probing for the rest of the blocks occurs in

parallel with the memory fetch. If a sequence number block is found in the cache, the

cached version is used and the version from memory is ignored. The blocks that were not

previously cached are inserted in the cache.

The performance overhead incurred on a sequence number cache miss depends on

the amount of data fetched from memory and the chosen cryptographic mode for

calculating the signature. We may set the upper bound for our example system by

examining the worst case scenario of having to fetch all four sequence number blocks.

The memory latency in this case would be 43 clock cycles, including one cycle required

to probe the cache for the first block, 18 cycles to fetch the first block, and eight cycles to

fetch each remaining block. The total performance overhead will depend on the

cryptographic mode; PMAC would lead to a total overhead of 55 clock cycles, while

GCM with a single-cycle implementation of GMULT would require 45 clock cycles.

When sequence number blocks are evicted from the sequence number cache, no

cryptographic activity is required. Furthermore, the page root signature is updated during

data cache write-back, and will be written to memory during a TLB write-back. Thus the

only operation required is to place the evicted sequence number block in the write buffer

to be written to memory when the bus is available. This introduces negligible overhead.

6.2.4 Data Cache Miss on a Dynamic Block

Data block verification is performed on data cache read misses for dynamic

blocks and write misses on blocks that have already been used. Therefore, on a write

81

miss the first task is to check the block’s entry in the block initialization bit vector in the

TLB. If the block has not yet been used then no memory access is required. The cache

block is simply loaded with all zeros, preventing malicious data from being injected at

this point.

If the miss was a read miss or a write miss on a previously used block, then the

data block must be fetched, decrypted, and/or verified using one of the methods described

above. Recall that a protected block’s sequence number is required for calculating its

signature, and also for decrypting the block when using OTP or GCM. Therefore,

fetching the sequence number is in the critical path for dynamic data verification. The

sequence number is retrieved as described above. Once the sequence number is

available, the cryptographic operations may commence in parallel with fetching the data

block from memory.

We have seen that the first task that must be performed on a data cache miss is to

request the appropriate sequence number form the sequence number cache. In our

sample system, this takes only one clock cycle on a sequence number cache hit, and up to

55 clock cycles when using PMAC, or 45 clock cycles when using GCM. Once the

sequence number is available, the verification timing for a dynamic block is the same as

for a static block.

6.2.5 Data Cache Write-Back

The data cache write-back procedure must be modified to support integrity and

confidentiality. When a dirty data block from a dynamic data page is chosen for eviction,

it must be encrypted and its signature calculated. Once again, the sequence number fetch

is on the critical path, so the current sequence number must be fetched before any other

82

operations. Once the sequence number is available, the minor sequence number must be

incremented. If the increment causes a minor sequence number overflow, then the major

sequence number must also be incremented. Such an increment requires special handling

as described below.

Regardless of whether or not there was a minor sequence number overflow, the

page root signature and program root signature must be updated at this point. The

signature of the sequence number block in its existing form is XORed with the page root

signature contained in the TLB, effectively subtracting it. The signature of the updated

sequence number block then added into the page root signature via another XOR. The

same operations are performed on the program root signature to update it. These

operations calculate the signature of the sequence number twice, once before and once

after the sequence number increment.

The pre-increment signature generation can be eliminated if the sequence number

cache lines are widened to include the sequence number block’s current signature. This

is similar to the technique described in Section 5.1.2. The signature would be populated

when it is calculated as part of sequence number verification on a sequence number cache

miss, and also after a sequence number increment. As before, this decreases performance

overhead at the cost of greater cache complexity.

Once the new sequence number is available, the dynamic data block under

eviction may be encrypted and/or signed. If hardware cryptographic resources permit,

the cryptographic operations for encryption may be interspersed with those for updating

the page root signature. When using PMAC and cached sequence number signatures, this

leads to a latency of 27 clock cycles after the sequence number is available; this drops to

83

18 cycles when using GCM with a single-cycle GMULT implementation. When running

with double sized protected blocks, the latencies increase to 31 and 21 clock cycles for

PMAC and GCM, respectively.

6.2.5.1 Minor Sequence Number Overflow

If a minor sequence number overflow occurs, the major sequence number must be

incremented. This requires that all data blocks associated with that sequence number

block and are not currently in the cache must be fetched, decrypted and/or validated, re-

encrypted and/or re-signed, and written back to memory. Those that are currently in the

data cache may be ignored, but the rest must be fetched from memory, re-encrypted

and/or re-signed, and written back to memory.

The best case scenario would occur when all blocks reside in the cache. In this

case, 24 cache probes must be performed, which may be overlapped with the

cryptographic operations required to update the page root signature and encrypt/sign the

data block. The best case overhead in the event of a minor sequence number overflow is

thus either 24 clock cycles or the time required to evict a dynamic protected block

without an overflow, whichever is longer.

The worst case scenario is when none of the other 24 blocks are available in the

cache, and the evicted block is not the first among the 25. In this case, 24 blocks must be

fetched from memory, with a new memory access started. (In our example system with

embedded signatures, it is faster to start a new memory fetch to skip an unwanted block

and its signature than to simply continue fetching and ignore the unwanted data.) The

time required to fetch all 25 protected blocks and their signatures is 308 cycles.

Assuming a pipelined AES unit and OTP (or GCM) cryptography, cryptographic

84

operations using the old and new major sequence number can be interleaved; thus the

final protected block will be re-encrypted and re-signed at the same time that its previous

signature has been verified. Thus, with PMAC, the total worst case overhead from a

minor sequence number overflow is 317 cycles. With GCM, it would only be 309 cycles,

as GHASH operations would complete while fetching the final signature. These figures

assume infinite write buffers; in an actual system there would likely be additional

overhead from writing back the re-encrypted and/or re-signed protected blocks due to

waiting for write buffers to become free.

One option that should be considered is integrating this functionality with the

DMA controller. Such an integration would allow the processor to continue executing

while the re-encryption and/or re-signing takes place in the background. The processor

would only have to stall if there were a cache miss on one of the 25 affected protected

blocks.

6.3 Comments

We have explored the challenges related to protecting dynamic data, including

how to efficiently store sequence numbers and prevent sequence number overflows. We

have also developed a tree-like structure for defending dynamic data against replay

attacks. This tree may be managed efficiently by limiting its scope to protecting

sequence numbers and maintaining it on events such as TLB and cache misses. The

approaches discussed in this chapter allow the protection of dynamic data without

incurring prohibitively large amounts of overhead.

85

CHAPTER 7

SECURE PROCESSOR DESIGN EVALUATION

Cycle-accurate simulation software was used to evaluate the performance

overhead of our proposed secure processor architecture and explore various design

choices and tradeoffs as discussed above. This chapter describes the methodology used

in evaluating the architecture with the simulator and the observed results. We start with

an overview of the experimental flow. We then discuss the simulator we have developed,

the simulation parameters used in our evaluation runs, and the benchmarks that are

chosen for simulation. We then present the results of our simulations, evaluating the

performance of the techniques proposed in Chapters 5 and 6 for each design choice of

interest. Finally, we use the simulation results to develop a mathematical model for

predicting performance overhead.

7.1 Experimental Flow

The experimental flow for evaluating our proposed architectures is illustrated in

Figure 7.1. We start with uncompiled source code for benchmark applications of interest,

which are described in Section 7.3 below. These are compiled using a cross-compiler to

generate executable binaries in the standard Executable and Linkable Format (ELF) [43].

86

The cross-compiler encodes the executables for the Advanced Reduced Instruction Set

(RISC) Computer Machine (ARM) instruction set. These binaries may then be run in the

simulator under a baseline configuration without security enhancements. The simulator,

which is described in Section 7.2, mimics an embedded microprocessor based on the

ARM architecture, and produces cycle-accurate execution times for benchmarks run

thereon. The benchmark binaries are then run with the simulator configured to model a

secure processor architecture with the various features as described in Chapters 4-6.

Once simulation runs are completed, the relevant results can be mined from the simulator

outputs.

Binary
Executable

Baseline Architectural
Parameters

Benchmark Inputs

Baseline
Results

ARM
Cross Compiler

Benchmark
Source Code

Architectural
Parameters

Benchmark Inputs

Cycle-Accurate
Simulator with

Security
Enhancements

Cycle-Accurate
Simulator

Results

Binary
Executable

Baseline Architectural
Parameters

Benchmark Inputs

Baseline
Results

ARM
Cross Compiler

Benchmark
Source Code

Architectural
Parameters

Benchmark Inputs

Cycle-Accurate
Simulator with

Security
Enhancements

Cycle-Accurate
Simulator

Results

Figure 7.1 Experimental Flow

7.2 Simulator and Parameters

The simulator used to evaluate the performance of the proposed architectures is a

derivative of sim-outorder, the most detailed simulator from the SimpleScalar suite [44].

The simulator is updated to provide a cycle-accurate timing analysis for our secure

87

processor, and supports many of the design choices and tradeoffs discussed in this

dissertation. Specifically, the simulator supports the following options:

 Protecting software and/or data integrity and confidentiality

 CBC-MAC, PMAC, and GCM cryptographic modes

 Storing signatures in a signature table or embedded with protected blocks

 Signature victim cache presence and size

 Sequence number cache size

 Instruction verification buffer (IVB) presence and depth

As our proposed architecture is event-driven, so is our simulator: the bulk of the

simulator updates are in various event handlers. The instruction and data cache miss and

TLB miss handlers have been updated as appropriate. Sequence number cache support

was added and its miss handler written. Data structures and routines were written to

provide support for victim caches and IVBs; these were written to reuse as much code as

possible when using separate instances of these resources to protect static and dynamic

data. Using the IVBs required modifications to the instruction issuing and memory

fetching code. The source code for our updated simulator, which we call simsec-outorder

is available as an electronic appendix to this dissertation.

Performance overhead is analyzed by using the simulator to run the benchmark

programs described in Section 7.3. The SimpleScalar metric of interest for performance

overhead analysis is sim_cycle, the number of simulated clock cycles required for the

benchmark to run to completion. After simulation is complete, this value is mined from

the simulation outputs. The performance overhead is reported using normalized

88

execution time - the value of sim_cycle for a secure architecture divided by the value

of sim_cycle from the appropriate baseline simulation run.

The simulator is configured to simulate two architectures based on ARM Cortex

cores. The parameters derived from these two architectures are shown in Table 7.1. The

Cortex-M3 [45] is a relatively simple, low-cost processor designed for deeply embedded

architectures and implementation on FPGAs. It is a single-issue in-order processor with a

single integer pipeline. The Cortex-A8 [46] is a faster and much more sophisticated core.

The A8 is dual-issue superscalar in-order processor. The A8 exploits instruction-level

parallelism, but its faster clock leads to longer memory fetch times and cryptographic

latencies. In our simulation runs, the M3 architecture is used to demonstrate how our

security extensions operate in a midrange embedded processor, while the A8 represents a

more high-end processor.

89

Table 7.1 Simulation Parameters

Simulator Parameter ARM Cortex-M3 ARM Cortex-A8

Branch predictor type None

Two-Level, 4096-entry global
branch history buffer indexed by

10-bit branch history register and 4
bits of program counter

Branch Target Buffer (BTB) N/A 512 entires, 2-way set associative

Instruction decode bandwidth 1 instruction/cycle 2 instructions/cycle

Instruction issue bandwidth 1 instruction/cycle 2 instructions/cycle

Instruction commit bandwidth 1 instruction/cycle 2 instructions/cycle

Pipeline with in-order issue True True

I-cache/D-cache
4-way, first level only,

1 KB, 2 KB, 4 KB, or 8 KB
4-way, first level only,

16 KB or 32 KB

Cache Hit Time 1 cycle 1 cycle

I-TLB/D-TLB 32 entries, fully associative 32 entries, fully associative

Execution units 1 floating point, 1 integer 1 floating point, 2 integer

Memory fetch latency
(first/other chunks)

12/2 cycles 24/4 cycles

Branch misprediction latency N/A 13 cycles

TLB latency 30 cycles 60 cycles

AES latency 12 cycles 24 cycles

GHASH latency 1 cycle 2 cycles

7.3 Benchmark Selection

We select a set of benchmarks for evaluating the performance overhead of our

proposed security enhancements on the simulated architectures discussed in the previous

section. These benchmarks represent typical tasks that an embedded system might

perform. They are selected primarily from the MiBench suite [47], with a few from the

MediaBench [48] and Basicrypt [49] suites. The primary criteria used in selecting

benchmarks are the cache miss rates. In order to properly exercise the proposed security

extensions, high miss rates for at least one of the simulated architectures is desired. Thus,

90

these benchmarks often represent a worst-case scenario with the greatest possible

overhead; other benchmarks with very low cache miss rates would only show negligible

overhead.

These benchmarks are described in Table 7.2, along with the number of

instructions that will be executed when running each benchmark. Their cache miss rates

when simulated on the architectures described above are shown in Table 7.3 and

Table 7.4.

91

Table 7.2 Benchmark Descriptions

Benchmark Description
Executed
Instructions [106]

adpcm ADPCM encoder 732.8

blowfish_enc Blowfish encryption 544.1

cjpeg JPEG compression 104.6

djpeg JPEG decompression 23.4

ecdhb Diffie-Hellman key exchange 122.5

ecelgencb El-Gamal encryption 180.2

fft Fast Fourier transform 301.8

ghostcript Postscript interpreter 708.1

gsm_d GSM encoder 1299.4

ispell Spell checker 817.8

lame MP3 encoder 1151.8

mad MPEG audio decoder 287.1

mpeg2_enc MPEG2 compression 127.5

rijndael_enc Rijndael encryption 259.3

rsynth Synthesize text to speech 796.1

stringsearch String search 3.7

sha Secure hash algorithm 140.9

tiff2bw Convert color TIFF to black and white 143.4

tiff2rgba Convert TIFF image to RGB 151.9

tiffdither Dither a TIFF image 833.0

tiffmedian Reduce TIFF image color palette 541.5

92

Table 7.3 Benchmark Instruction Cache Miss Rates

Instruction Cache Misses per 1000 Executed Instructions

Cortex M3 Cortex A8 Benchmark

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB

adpcm < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

blowfish_enc 41.05 5.98 0.06 < 0.01 < 0.01 < 0.01

cjpeg 8.08 1.40 0.34 0.08 0.03 0.01

djpeg 12.06 5.81 1.38 0.29 0.08 0.06

ecdhb 30.57 9.25 2.97 0.15 0.03 0.01

ecelgencb 28.30 4.97 1.51 0.08 0.01 < 0.01

fft 107.04 90.60 28.35 1.10 < 0.01 < 0.01

ghostcript 153.96 88.35 31.61 1.69 0.66 0.20

gsm_d 4.30 3.49 2.50 2.22 0.23 < 0.01

ispell 94.20 65.19 19.09 2.99 0.73 0.03

lame 22.56 11.90 2.89 2.12 1.56 1.20

mad 43.20 26.06 25.36 1.79 0.57 0.07

mpeg2_enc 2.29 1.16 0.41 0.20 0.07 0.04

rijndael_enc 130.16 127.79 75.51 11.12 < 0.01 < 0.01

rsynth 113.16 13.67 6.41 2.47 0.01 < 0.01

stringsearch 71.24 42.85 5.92 2.84 0.12 0.12

sha 5.56 0.08 < 0.01 < 0.01 < 0.01 < 0.01

tiff2bw 3.10 2.62 1.31 0.12 < 0.01 < 0.01

tiff2rgba 3.60 2.53 0.63 0.01 < 0.01 < 0.01

tiffdither 43.97 10.32 0.82 0.27 0.01 < 0.01

tiffmedian 1.53 1.15 0.47 0.02 < 0.01 < 0.01

93

Table 7.4 Benchmark Data Cache Miss Rates

Data Cache Misses per 1000 Executed Instructions

Cortex M3 Cortex A8 Benchmark

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB

adpcm 1.56 1.42 0.15 < 0.01 < 0.01 < 0.01

blowfish_enc 44.93 30.78 6.01 0.09 < 0.01 < 0.01

cjpeg 29.38 22.90 19.15 3.12 0.72 0.47

djpeg 40.93 25.49 16.78 6.59 2.52 0.58

ecdhb 2.56 0.55 0.13 0.07 0.02 0.01

ecelgencb 1.79 0.32 0.05 0.02 0.01 0.01

fft 33.10 9.37 1.31 0.77 0.69 0.65

ghostcript 26.18 9.08 1.64 0.82 0.58 0.47

gsm_d 1.28 0.69 0.23 0.04 < 0.01 < 0.01

ispell 32.61 17.42 2.14 0.68 0.17 0.03

lame 53.91 38.12 25.58 14.82 7.64 4.82

mad 28.01 21.39 12.70 3.83 2.24 0.24

mpeg2_enc 20.96 11.06 2.34 0.55 0.43 0.38

rijndael_enc 134.19 112.97 65.65 7.08 0.02 < 0.01

rsynth 21.35 11.46 2.22 0.82 0.32 0.29

stringsearch 35.43 17.39 2.96 1.33 0.47 0.33

sha 0.94 0.75 0.74 0.27 < 0.01 < 0.01

tiff2bw 26.25 26.22 26.21 25.36 17.63 0.30

tiff2rgba 50.29 50.27 50.26 50.26 37.45 18.24

tiffdither 10.23 3.88 3.73 3.37 1.91 0.04

tiffmedian 29.43 25.45 22.47 21.14 17.10 6.43

94

Rather than run the entire set of benchmarks for every permutation of

architectural parameters that we investigate, we wish to select a meaningful subset of

benchmarks. We make the selection using cluster analysis. For each architectural

configuration (processor core plus level - caches), we consider the cache miss rates from

the above tables in a Cartesian plane with the level-1 instruction cache miss rate as the

abscissa and the level-1 data cache miss rate as the ordinate. A minimum spanning tree

method is then used to group the benchmarks into four clusters with similar cache miss

rate characteristics. The benchmark closest to the centroid of each cluster is selected to

represent the cluster. The selected benchmarks for each configuration are shown in

Table 7.5. All 12 of these selected benchmarks will be used when evaluating across all

the simulated configurations. For evaluations whose scope is limited to one

configuration, only the four benchmarks chosen as significant for that configuration will

be used.

95

Table 7.5 Benchmarks Selected by Clustering Analysis

Configurations Relevant to Benchmarks

Cortex M3 Cortex A8 Benchmark

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB

blowfish_enc

cjpeg

fft

ghostcript

lame

mad

mpeg2_enc

rijndael_enc

stringsearch

tiff2bw

tiff2rgba

tiffmedian

7.4 Results

This section presents the results of both qualitative and quantitative analyses of

security extensions to the example system discussed in this dissertation. We start with

qualitative analyses of the complexity overhead required to implement our architectures

on a processor chip, followed by the extra space in memory required to run a secure

program on our architecture. We then present quantitative performance overhead results

obtained by simulating the execution of secure benchmark programs.

7.4.1 Complexity Overhead

The architecture we have proposed requires state machines for performing various

tasks, logic for address translation, buffers and registers, hardware for key generation,

96

and a pipelined cryptographic unit. All but the last two of these requirements introduce

relatively little additional on-chip area. A physical unclonable function (PUF) unit for

key generation requires nearly 3,000 gates [29]. The pipelined cryptographic unit, which

is shared among both architectures, introduces the greatest amount of overhead.

Assuming that this cryptographic unit follows the commercially available Jetstream

JetAES Fast high speed 128-bit AES core [23], the on-chip area it requires should be

approximately equal to that required for about 31,000 logic gates. If using GCM, a

GMULT unit must is also required. As we have seen in Section 3.3, the most complex

(but fastest) GMULT implementation has a complexity on the order of 1282 (16,384)

gates; slower implementations require fewer gates, but introduce a small state machine to

control the GMULT unit. Entire high-throughput GCM cores are commercially

available, which would cover both the AES and GMULT units, with gate counts ranging

from 30,000 to 60,000 [50, 51]. An additional source of complexity is the sequence

number cache; its complexity is determined by its size and organization, which are design

parameters.

The complexity overhead of the optional signature victim caches and instruction

verification buffers may be estimated by treating them as fully associative structures.

Each register bit in may be modeled as a latch using 2.5 logic gates. Every entry must

also have a comparator, also requiring 2.5 gates per bit. Each entry’s output must also be

protected by tri-state buffers at 0.5 gates per bit [52].

Each entry in the signature victim cache must contain a 128-bit signature and a

tag. In the worst case scenario, the tag would be the full 32-bit address, leading to

160 register bits, with a 32-bit comparator for the tag and a 128-bit array of tri-state

97

buffers. This leads to a total overhead of 544 logic gates per entry. The victim cache

could also be implemented as an array of indices into an on-chip memory. In this case,

the 128-bit register for the signature and the array of tri-state buffers would not be

required. The memory would be indexed by the number of the entry whose tag matched

the address. This would reduce the overhead per entry to 160 gates, but on-chip memory

resources would also be required. Furthermore, regardless of which victim cache design

was chosen, the instruction and data cache lines must be widened by 128 bits to support

storing signatures for placement in the victim caches.

Every IVB entry must contain a tag and two single-bit flags. Again assuming the

worst case scenario of a 32-bit tag, we have 34 register bits per entry, with a 32-bit

comparator and two tri-state buffers. The IVB overhead is thus 166 logic gates per entry.

7.4.2 Memory Overhead

The memory overhead incurred by protecting instructions and static data is a

simple function of the protected block size and the number of instruction blocks in the

program. Each signature is 16 bytes long. If 32 byte protected blocks are chosen, then

the size of the executable segment of the program increases by 50%. This overhead is

reduced to 25% for 64 byte protected blocks, and to 12.5% for 128 byte protected blocks.

The memory overhead required for protecting dynamic data is slightly larger.

The data signatures lead to the same overhead figures as for static data and instructions.

However, each dynamic data page requires sequence number blocks, additional space in

the page table, and an entry in the page root signature table. The sample architecture

presented in this dissertation requires six sequence number blocks when storing

signatures in a signature table, for a total of 192 bytes per protected dynamic page. Only

98

four sequence number blocks are required when using embedded signatures, lowering the

sequence number overhead to 128 bytes per page.

7.4.3 Performance Overhead

We evaluate the performance overhead of our proposed architectural extensions

using the experimental flow and simulator described above. Our strategy is to reveal how

the various choices and approaches described in Chapters 5 and 6 would affect the

performance of modern processor designs using security extensions. For each choice or

approach of interest, we set simulation parameters to isolate its influence and then

compare simulation results with theoretical projections.

7.4.3.1 Signature Location

We first evaluate how the signature location influences performance overhead.

This influence may be isolated by choosing the GCM cipher mode, which will minimize

the time required to calculate signatures and ensure that fetching signatures from memory

is the greatest contributor to performance overhead. We fix signature cache sizes at 50%

of the data cache size (i.e., an architecture with a 4 KB data cache would have a 2 KB

signature cache). We evaluate storing signatures in a signature table, a signature table

with 32-entry victim caches, and embedding them with protected blocks. We project that

using a signature table without victim caches will incur the most performance overhead,

while embedded signatures will provide the best performance. When using a signature

table with victim caches, the overhead should be somewhere in between.

The simulation results are graphed in Figure 7.2 - Figure 7.7 and presented

numerically in Table 7.6 and Table 7.7 for all architectures described above in

99

Section 7.2. The contributions to overhead from protecting instructions/static data and

dynamic data are shown separately. We find that the observed overheads mostly follow

the theorized behavior. Embedded signatures generally provide the best performance.

However, in a few instances, using a signature table with victim caches outperforms

embedded signatures.

100

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.2 Performance Overhead Implications of Signature Location, Cortex M3, 1 KB

101

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.3 Performance Overhead Implications of Signature Location, Cortex M3, 2 KB

102

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.4 Performance Overhead Implications of Signature Location, Cortex M3, 4 KB

103

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.5 Performance Overhead Implications of Signature Location, Cortex M3, 8 KB

104

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.6 Performance Overhead Implications of Signature Location, Cortex A8, 16 KB

105

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

T
bl

T
bl

/V
.C

.
E

m
b

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.7 Performance Overhead Implications of Signature Location, Cortex A8, 32 KB

106

Table 7.6 Performance Overhead Implications of Signature Location, Cortex M3

1 KB 2 KB 4 KB 8 KB
Benchmark

Signature
Location SICM Both SICM Both SICM Both SICM Both

Tbl 1.40 1.47 1.06 1.19 1.00 1.04 1.00 1.00
Tbl/V.C. 1.40 1.46 1.06 1.15 1.00 1.02 1.00 1.00 bf_e

Emb 1.40 1.43 1.06 1.11 1.00 1.02 1.00 1.00
Tbl 1.13 1.44 1.02 1.19 1.01 1.14 1.00 1.03

Tbl/V.C. 1.13 1.32 1.02 1.08 1.01 1.05 1.00 1.02 cjpeg

Emb 1.13 1.33 1.02 1.10 1.01 1.06 1.00 1.02
Tbl 2.40 2.90 2.37 2.41 1.46 1.46 1.02 1.02

Tbl/V.C. 2.40 2.83 2.37 2.39 1.45 1.46 1.02 1.02 fft

Emb 2.39 2.82 2.37 2.38 1.45 1.46 1.02 1.02
Tbl 3.22 3.68 2.33 2.37 1.47 1.48 1.03 1.03

Tbl/V.C. 3.22 3.64 2.33 2.36 1.46 1.48 1.03 1.03 ghostcript

Emb 3.21 3.62 2.33 2.36 1.47 1.48 1.03 1.03
Tbl 1.25 1.75 1.14 1.43 1.04 1.21 1.03 1.13

Tbl/V.C. 1.25 1.70 1.14 1.41 1.04 1.20 1.03 1.10 lame

Emb 1.25 1.60 1.14 1.31 1.04 1.13 1.03 1.08
Tbl 1.75 2.02 1.48 1.66 1.50 1.61 1.03 1.06

Tbl/V.C. 1.75 2.00 1.48 1.65 1.50 1.58 1.03 1.06 mad

Emb 1.75 1.93 1.48 1.59 1.50 1.57 1.03 1.05
Tbl 1.04 1.22 1.02 1.12 1.01 1.03 1.00 1.01

Tbl/V.C. 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01 mpeg2e

Emb 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01
Tbl 2.00 2.46 2.06 2.38 1.78 1.99 1.14 1.2

Tbl/V.C. 2.00 2.44 2.06 2.36 1.78 1.92 1.14 1.16 rijndael

Emb 2.00 2.33 2.06 2.27 1.78 1.87 1.14 1.17
Tbl 2.13 2.66 1.72 1.91 1.11 1.13 1.05 1.06

Tbl/V.C. 2.12 2.59 1.72 1.87 1.11 1.13 1.05 1.06 stringsearch

Emb 2.12 2.60 1.72 1.88 1.11 1.12 1.05 1.06
Tbl 1.05 1.21 1.04 1.19 1.02 1.18 1.00 1.17

Tbl/V.C. 1.04 1.21 1.04 1.19 1.02 1.18 1.00 1.17 tiff2bw

Emb 1.05 1.13 1.04 1.11 1.02 1.10 1.00 1.09
Tbl 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.22

Tbl/V.C. 1.05 1.26 1.03 1.24 1.01 1.22 1.00 1.22 tiff2rgba

Emb 1.05 1.17 1.03 1.15 1.00 1.12 0.99 1.12
Tbl 1.02 1.78 1.02 1.45 1.01 1.29 1.00 1.23

Tbl/V.C. 1.02 1.76 1.02 1.44 1.01 1.28 1.00 1.22 tiffmedian

Emb 1.02 1.66 1.02 1.34 1.01 1.19 1.00 1.14

107

Table 7.7 Performance Overhead Implications of Signature Location, Cortex A8

16 KB 32 KB
Benchmark

Signature
Location SICM Both SICM Both

Tbl 1.00 1.00 1.00 1.00
Tbl/V.C. 1.00 1.00 1.00 1.00 bf_e

Emb 1.00 1.00 1.00 1.00
Tbl 1.00 1.01 1.00 1.01

Tbl/V.C. 1.00 1.01 1.00 1.01 cjpeg
Emb 1.00 1.01 1.00 1.00
Tbl 1.00 1.00 1.00 1.00

Tbl/V.C. 1.00 1.00 1.00 1.00 fft
Emb 1.00 1.00 1.00 1.00
Tbl 1.02 1.03 1.01 1.02

Tbl/V.C. 1.02 1.03 1.01 1.02 ghostcript
Emb 1.02 1.03 1.01 1.01
Tbl 1.06 1.18 1.05 1.12

Tbl/V.C. 1.06 1.17 1.05 1.12 lame
Emb 1.06 1.12 1.05 1.09
Tbl 1.03 1.05 1.00 1.01

Tbl/V.C. 1.03 1.05 1.00 1.01 mad
Emb 1.03 1.04 1.00 1.01
Tbl 1.00 1.02 1.00 1.02

Tbl/V.C. 1.00 1.02 1.00 1.02 mpeg2e
Emb 1.00 1.01 1.00 1.01
Tbl 1.00 1.00 1.00 1.00

Tbl/V.C. 1.00 1.00 1.00 1.00 rijndael
Emb 1.00 1.00 1.00 1.00
Tbl 1.00 1.01 1.00 1.01

Tbl/V.C. 1.00 1.01 1.00 1.01 stringsearch
Emb 1.00 1.01 1.00 1.01
Tbl 1.00 1.27 1.00 1.01

Tbl/V.C. 1.00 1.26 1.00 1.00 tiff2bw
Emb 1.00 1.16 1.00 1.00
Tbl 1.00 1.44 1.00 1.13

Tbl/V.C. 1.00 1.44 1.00 1.11 tiff2rgba
Emb 0.99 1.26 1.00 1.09
Tbl 1.00 1.35 1.00 1.17

Tbl/V.C. 1.00 1.33 1.00 1.16 tiffmedian
Emb 1.00 1.20 1.00 1.10

108

7.4.3.1.1 Optimal Signature Victim Cache Size

In addition to evaluating the effects of signature location, we would also like to

find the optimal signature victim cache size to balance complexity with performance

overhead. We use the same parameters as in evaluating signature location, but fix the

architecture on the Cortex M3 with 2 KB caches, as this architecture demonstrates

nontrivial performance overhead. We choose the four benchmarks that the clustering

analysis found to be significant on this architecture, and simulate them using a signature

table. We vary the victim cache sizes among reasonable values, from eight to 64 entries

in powers of two, and compare the resulting performance overheads, as well as the

overhead from no victim caches. We predict that larger victim caches will provide better

performance.

The simulation results, which are shown in Figure 7.8 and Table 7.8, bear out this

prediction. They show no clear optimal victim cache size, but that increasing the victim

cache size slightly decreases performance overhead. Three of the benchmarks show little

sensitivity to victim cache size, but the results for the rijndael benchmark suggest that

some workloads would benefit somewhat from larger victim caches. The results also

indicate that victim caches are more effective in reducing the overhead of dynamic data

protection, and have little to no effect on the overhead from protecting instructions and

static data. However, as the overall effect of signature victim caches appears to be

negligible, it is probably not worthwhile to employ these caches.

109

DICM
SICM

V
.C

.8
V

.C
.1

6
V

.C
.3

2
V

.C
.6

4

N
o_

V
.C

.
V

.C
.8

V
.C

.1
6

V
.C

.3
2

V
.C

.6
4

N
o_

V
.C

.
V

.C
.8

V
.C

.1
6

V
.C

.3
2

V
.C

.6
4

O
ve

rh
ea

d

ghostcript mpeg2e rijndael stringsearch

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

N
o_

V
.C

.
V

.C
.8

V
.C

.1
6

V
.C

.3
2

V
.C

.6
4

N
o_

V
.C

.

Figure 7.8 Performance Overhead Implications of Signature Victim Cache Size

110

Table 7.8 Performance Overhead Implications of Signature Victim Cache Size,

Cortex M3, 2 KB

Benchmark
Signature
Victim
Caches

SICM Both

None 2.33 2.36
8 Entries 2.34 2.38
16 Entries 2.34 2.38
32 Entries 2.34 2.37
64 Entries 2.34 2.37

ghostcript

128 Entries 2.34 2.37
None 1.02 1.06
8 Entries 1.02 1.09
16 Entries 1.02 1.07
32 Entries 1.02 1.06
64 Entries 1.02 1.06

mpeg2e

128 Entries 1.02 1.05
None 2.06 2.36
8 Entries 2.06 2.38
16 Entries 2.06 2.37
32 Entries 2.06 2.36
64 Entries 2.06 2.32

rijndael

128 Entries 2.06 2.25
None 1.72 1.87
8 Entries 1.72 1.88
16 Entries 1.72 1.87
32 Entries 1.72 1.87
64 Entries 1.72 1.87

stringsearch

128 Entries 1.72 1.87

111

7.4.3.2 Cryptographic Modes

We evaluate the influence of cryptographic mode choice by fixing all parameters

other than cryptographic mode and simulating all chosen benchmarks for all architectures

of interest. For these simulations, signatures are embedded with protected blocks and all

sequence number caches are sized at 50% of their respective data caches. The three

cipher modes discussed in this dissertation are simulated: CBC-MAC, PMAC, and GCM.

Theoretically, CBC-MAC should induce the greatest performance overhead, with PMAC

offering a noticeable improvement, and GCM providing the best performance.

The simulation results are graphed in Figure 7.9 - Figure 7.14, and presented

numerically in Table 7.9 and Table 7.10. The simulation results closely follow the

theoretical projections. They also show that going from CBC-MAC to PMAC exhibits

the greatest increase in performance. GCM does provide the best performance, but the

difference between PMAC and GCM is not as dramatic for most workloads.

112

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostscript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.9 Performance Overhead Implications of Cipher Choice, Cortex M3, 1 KB

113

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.10 Performance Overhead Implications of Cipher Choice, Cortex M3, 2 KB

114

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.11 Performance Overhead Implications of Cipher Choice, Cortex M3, 4 KB

115

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.12 Performance Overhead Implications of Cipher Choice, Cortex M3, 8 KB

116

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.13 Performance Overhead Implications of Cipher Choice, Cortex A8, 16 KB

117

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

C
B

C
P

M
A

C
G

C
M

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.14 Performance Overhead Implications of Cipher Choice, Cortex A8, 32 KB

118

Table 7.9 Performance Overhead Implications of Cipher Choice, Cortex M3

1 KB 2 KB 4 KB 8 KB
Benchmark Cipher

SICM Both SICM Both SICM Both SICM Both
CBC 1.68 1.76 1.10 1.28 1.00 1.06 1.00 1.00

PMAC 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00 bf_e
GCM 1.40 1.43 1.06 1.11 1.00 1.02 1.00 1.00
CBC 1.21 1.61 1.04 1.27 1.01 1.21 1.00 1.05

PMAC 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.03 cjpeg
GCM 1.13 1.33 1.02 1.10 1.01 1.06 1.00 1.02
CBC 3.22 3.74 3.15 3.20 1.71 1.72 1.02 1.03

PMAC 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02 fft
GCM 2.39 2.82 2.37 2.38 1.45 1.46 1.02 1.02
CBC 4.45 5.00 3.08 3.15 1.74 1.76 1.04 1.05

PMAC 3.22 3.76 2.33 2.39 1.47 1.48 1.03 1.04 ghostcript
GCM 3.22 3.67 2.33 2.37 1.47 1.48 1.03 1.03
CBC 1.41 2.06 1.23 1.65 1.06 1.32 1.05 1.19

PMAC 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.13 lame
GCM 1.25 1.60 1.14 1.31 1.04 1.13 1.03 1.08
CBC 2.18 2.54 1.75 2.04 1.77 1.96 1.05 1.10

PMAC 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.06 mad
GCM 1.75 1.93 1.48 1.59 1.50 1.57 1.03 1.05
CBC 1.06 1.31 1.03 1.16 1.01 1.05 1.01 1.02

PMAC 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01 mpeg2e
GCM 1.04 1.14 1.02 1.06 1.01 1.02 1.00 1.01
CBC 2.75 3.21 2.83 3.17 2.31 2.60 1.23 1.31

PMAC 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.19 rijndael
GCM 2.00 2.33 2.06 2.27 1.78 1.87 1.14 1.17
CBC 2.77 3.33 2.13 2.35 1.17 1.21 1.08 1.10

PMAC 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.07 stringsearch
GCM 2.12 2.60 1.72 1.88 1.11 1.12 1.05 1.06
CBC 1.07 1.30 1.06 1.28 1.03 1.27 1.00 1.27

PMAC 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.18 tiff2bw
GCM 1.05 1.13 1.04 1.11 1.02 1.10 1.00 1.09
CBC 1.10 1.39 1.07 1.37 1.03 1.34 1.01 1.34

PMAC 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.23 tiff2rgba
GCM 1.07 1.17 1.05 1.15 1.02 1.13 1.01 1.13
CBC 1.04 1.97 1.03 1.61 1.01 1.42 1.00 1.35

PMAC 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.24 tiffmedian
GCM 1.02 1.66 1.02 1.34 1.01 1.19 1.00 1.14

119

Table 7.10 Performance Overhead Implications of Cipher Choice, Cortex A8

16 KB 32 KB
Benchmark Cipher

SICM Both SICM Both
CBC 1.00 1.00 1.00 1.00

PMAC 1.00 1.00 1.00 1.00 bf_e
GCM 1.00 1.00 1.00 1.00
CBC 1.00 1.02 1.00 1.01

PMAC 1.00 1.01 1.00 1.01 cjpeg
GCM 1.00 1.01 1.00 1.00
CBC 1.00 1.00 1.00 1.00

PMAC 1.00 1.00 1.00 1.00 fft
GCM 1.00 1.00 1.00 1.00
CBC 1.04 1.05 1.01 1.02

PMAC 1.04 1.04 1.01 1.02 ghostcript
GCM 1.02 1.03 1.01 1.01
CBC 1.09 1.28 1.07 1.19

PMAC 1.09 1.19 1.07 1.13 lame
GCM 1.06 1.12 1.05 1.09
CBC 1.04 1.09 1.00 1.01

PMAC 1.04 1.06 1.00 1.01 mad
GCM 1.03 1.04 1.00 1.01
CBC 1.01 1.03 1.00 1.03

PMAC 1.01 1.02 1.00 1.02 mpeg2e
GCM 1.00 1.01 1.00 1.01
CBC 1.00 1.00 1.00 1.00

PMAC 1.00 1.00 1.00 1.00 rijndael
GCM 1.00 1.00 1.00 1.00
CBC 1.01 1.02 1.01 1.01

PMAC 1.01 1.01 1.01 1.01 stringsearch
GCM 1.00 1.01 1.00 1.01
CBC 1.00 1.47 1.00 1.01

PMAC 1.00 1.31 1.00 1.01 tiff2bw
GCM 1.00 1.16 1.00 1.00
CBC 1.00 1.77 1.00 1.22

PMAC 1.00 1.52 1.00 1.16 tiff2rgba
GCM 1.00 1.26 1.00 1.09
CBC 1.00 1.61 1.00 1.29

PMAC 1.00 1.40 1.00 1.19 tiffmedian
GCM 1.00 1.20 1.00 1.09

120

7.4.3.3 Speculative Execution

We would also like to demonstrate the efficacy of speculative execution by

comparing the results of runs using the WtV scheme with those using an RbV scheme.

We have already simulated all benchmarks on all architectures with all ciphers in WtV

mode, so we choose the PMAC cipher and run additional simulations in RbV mode with

16-entry IVBs. Theoretically, the RbV mode should show considerably improved

performance over the WtV mode.

The results of the RbV simulations are graphically compared with those of the

WtV simulations in Figure 7.15 - Figure 7.20 and numerically in Table 7.11 and

Table 7.12. The observed results agree with the theoretical projections. Utilizing

speculative execution does provide a dramatic increase in performance, especially in

architectures with small caches (and thus higher cache miss rates).

121

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.15 Performance Overhead Implications of Speculative Execution,

Cortex M3, 1 KB

122

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.16 Performance Overhead Implications of Speculative Execution,

Cortex M3, 2 KB

123

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.17 Performance Overhead Implications of Speculative Execution,

Cortex M3, 4 KB

124

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.18 Performance Overhead Implications of Speculative Execution,

Cortex M3, 8 KB

125

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.19 Performance Overhead Implications of Speculative Execution,

Cortex A8, 16 KB

126

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

SICM
DICM

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

W
tV

R
bV

_1
6

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
tV

R
bV

_1
6

W
tV

Figure 7.20 Performance Overhead Implications of Speculative Execution,

Cortex A8, 32 KB

127

Table 7.11 Performance Overhead Implications of Speculative Execution, Cortex M3

1 KB 2 KB 4 KB 8 KB
Benchmark

SICM Both SICM Both SICM Both SICM Both
WtV 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00

bf_e
RbV 16 1.14 1.14 1.02 1.03 1.00 1.00 1.00 1.00

WtV 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.02
cjpeg

RbV 16 1.06 1.17 1.01 1.02 1.00 1.01 1.00 1.00
WtV 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02

fft
RbV 16 1.58 1.86 1.59 1.60 1.20 1.20 1.01 1.01

WtV 3.21 3.76 2.33 2.39 1.47 1.48 1.03 1.03
ghostcript

RbV 16 1.99 2.41 1.59 1.61 1.20 1.21 1.01 1.02
WtV 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.08

lame
RbV 16 1.09 1.29 1.05 1.12 1.01 1.04 1.01 1.03

WtV 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.05
mad

RbV 16 1.33 1.45 1.21 1.28 1.22 1.26 1.02 1.02
WtV 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01

mpeg2e
RbV 16 1.02 1.06 1.01 1.03 1.00 1.01 1.00 1.00

WtV 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.17
rijndael

RbV 16 1.30 1.53 1.32 1.47 1.27 1.29 1.06 1.06
WtV 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.06

stringsearch
RbV 16 1.49 1.85 1.32 1.43 1.05 1.05 1.02 1.03

WtV 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.09
tiff2bw

RbV 16 1.02 1.07 1.01 1.06 1.01 1.06 1.00 1.05
WtV 1.05 1.27 1.03 1.25 1.02 1.23 1.01 1.13

tiff2rgba
RbV 16 1.03 1.12 1.03 1.11 1.00 1.10 1.00 1.09

WtV 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.14
tiffmedian

RbV 16 1.01 1.39 1.01 1.17 1.00 1.08 1.00 1.05

128

Table 7.12 Performance Overhead Implications of Speculative Execution, Cortex A8

16 KB 32 KB
Benchmark

SICM Both SICM Both
WtV 1.00 1.00 1.00 1.00

bf_e
RbV 16 1.00 1.00 1.00 1.00

WtV 1.00 1.01 1.00 1.00
cjpeg

RbV 16 1.00 1.01 1.00 1.00
WtV 1.00 1.00 1.00 1.00

fft
RbV 16 1.00 1.00 1.00 1.00

WtV 1.02 1.03 1.01 1.01
ghostcript

RbV 16 1.01 1.02 1.00 1.01
WtV 1.06 1.12 1.05 1.09

lame
RbV 16 1.03 1.06 1.02 1.04

WtV 1.03 1.04 1.00 1.01
mad

RbV 16 1.01 1.02 1.00 1.00
WtV 1.00 1.01 1.00 1.01

mpeg2e
RbV 16 1.00 1.01 1.00 1.01

WtV 1.00 1.00 1.00 1.00
rijndael

RbV 16 1.00 1.00 1.00 1.00
WtV 1.00 1.01 1.00 1.01

stringsearch
RbV 16 1.00 1.01 1.00 1.00

WtV 1.00 1.16 1.00 1.00
tiff2bw

RbV 16 1.00 1.12 1.00 1.00
WtV 1.00 1.26 1.00 1.09

tiff2rgba
RbV 16 1.00 1.22 1.00 1.07

WtV 1.00 1.2 1.00 1.09
tiffmedian

RbV 16 1.00 1.06 1.00 1.02

7.4.3.3.1 Optimal IVB Depth

In addition to demonstrating the usefulness of speculative execution, we would

like to determine the optimal depth, or number of entries, for the instruction verification

buffer. We isolate the effects of the IVB by choosing the CBC-MAC mode, which

results in the longest verification latencies and thus will stress the IVB more than the

other cipher modes. We again fix the architecture as Cortex M3 with 2 KB caches and

use the benchmarks that are significant for that architecture, varying the IVB depth from

eight to 64 in powers of two. Theoretically, there should be a performance increase

going from WtV to an eight-entry IBV with further performance increases as the IVB

129

size increases. At some IVB size, the performance should level out as blocks may be

verified and instructions issued without saturating the IVB.

The simulation results are presented graphically in Figure 7.21 and numerically in

Table 7.13. The results demonstrate the dramatic increase in performance when going

from WtV to RbV with a small, eight-entry RbV. However, the performance overhead

shows no sensitivity to IVB depth; small IVBs perform as well as large IVBs. This

indicates that, even using the CBC-MAC cipher mode, the secure blocks are being

verified and their associated instructions retired before even a small IVB can be saturated.

Thus, only small IVBs are necessary for this architecture, and transistors may be

allocated for other uses on the chip.

DICM
SICM

R
bV

_6
4

W
tV

R
bV

_8
R

bV
_1

6
R

bV
_3

2
R

bV
_6

4

W
tV

R
bV

_8
R

bV
_1

6
R

bV
_3

2
R

bV
_6

4

O
ve

rh
ea

d

ghostcript mpeg2e rijndael stringsearch

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

W
tV

R
bV

_8
R

bV
_1

6
R

bV
_3

2
R

bV
_6

4

W
tV

R
bV

_8
R

bV
_1

6
R

bV
_3

2

Figure 7.21 Performance Overhead Implications of IVB Depth

130

Table 7.13 Performance Overhead Implications of IVB Depth, Cortex M3, 2 KB

Benchmark SICM Both
WtV 3.08 3.15

RbV 8 1.60 1.62
RbV 16 1.60 1.62
RbV 32 1.60 1.62
RbV 64 1.60 1.62

ghostcript

RbV 128 1.60 1.62
WtV 1.03 1.16

RbV 8 1.01 1.03
RbV 16 1.01 1.03
RbV 32 1.01 1.03
RbV 64 1.01 1.03

mpeg2e

RbV 128 1.01 1.03
WtV 2.83 3.17

RbV 8 1.32 1.47
RbV 16 1.32 1.47
RbV 32 1.32 1.47
RbV 64 1.32 1.47

rijndael

RbV 128 1.32 1.47
WtV 2.13 2.35

RbV 8 1.32 1.43
RbV 16 1.32 1.43
RbV 32 1.32 1.43
RbV 64 1.32 1.43

stringsearch

RbV 128 1.32 1.43

7.4.3.4 Sequence Number Cache Size

All simulations up until this point have used sequence number caches that are

50% of the size of their associated data caches. We here explore the effects that varying

the sequence number cache will have on overhead. We choose the PMAC cipher mode

with embedded signatures and vary the signature cache sizes between 25%, 50%, and

100% of the associated data cache size. We predict that performance will increase as the

signature cache size increases.

131

The simulation results are plotted in Figure 7.22 - Figure 7.27 and displayed

numerically in Table 7.14 and Table 7.15. For most workloads, the results follow our

theoretical projections. In many cases with the Cortex M3 architecture, increasing the

sequence number cache size from 50% to 100% has less effect than going from 25% to

50%. We therefore conclude that sequence number cache sizes of 50% provide the

optimal balance between performance and complexity when data caches are small

(≤ 8 KB). For large data caches (> 8 KB), the results indicate minimal performance

improvements with increasing sequence number cache size. Smaller sequence number

caches, such as 25% of the data cache size, are acceptable in this case.

132

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.22 Performance Overhead Implications of Sequence Number Cache Size,

Cortex M3, 1 KB

133

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.23 Performance Overhead Implications of Sequence Number Cache Size,

Cortex M3, 2 KB

134

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.24 Performance Overhead Implications of Sequence Number Cache Size,

Cortex M3, 4 KB

135

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.25 Performance Overhead Implications of Sequence Number Cache Size,

Cortex M3, 8 KB

136

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.26 Performance Overhead Implications of Sequence Number Cache Size,

Cortex A8, 16 KB

137

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 1

 1.5

DICM
SICM

 0.5

 2

 2.5

 3

 3.5

 4

25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0% 25
%

50
%

10
0%

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 1

 1.5

Figure 7.27 Performance Overhead Implications of Sequence Number Cache Size,

Cortex A8, 32 KB

138

Table 7.14 Performance Overhead Implications of Sequence Number Cache Size,

Cortex M3

1 KB 2 KB 4 KB 8 KB
Benchmark

Seqnum
Cache
Size SICM Both SICM Both SICM Both SICM Both

25 % 1.40 1.59 1.06 1.19 1.00 1.04 1.00 1.07
50 % 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.07 bf_e
100 % 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.07
25 % 1.13 1.71 1.02 1.22 1.01 1.13 1.00 1.29
50 % 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.28 cjpeg
100 % 1.13 1.33 1.02 1.18 1.01 1.13 1.00 1.28
25 % 2.40 3.15 2.37 2.54 1.46 1.46 1.02 1.46
50 % 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.46 fft
100 % 2.40 2.62 2.37 2.41 1.46 1.46 1.02 1.46
25 % 3.22 3.76 2.33 2.38 1.47 1.49 1.03 1.49
50 % 3.22 3.76 2.33 2.38 1.47 1.48 1.03 1.49 ghostcript
100 % 3.22 3.36 2.33 2.38 1.47 1.48 1.03 1.48
25 % 1.25 2.10 1.14 1.53 1.04 1.24 1.03 1.29
50 % 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.26 lame
100 % 1.25 1.63 1.14 1.41 1.04 1.21 1.03 1.26
25 % 1.75 2.28 1.48 1.75 1.50 1.63 1.03 1.72
50 % 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.72 mad
100 % 1.75 1.95 1.48 1.68 1.50 1.62 1.03 1.72
25 % 1.04 1.37 1.02 1.12 1.01 1.04 1.00 1.05
50 % 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.05 mpeg2e
100 % 1.04 1.19 1.02 1.10 1.01 1.03 1.00 1.05
25 % 2.00 3.25 2.06 2.52 1.78 2.14 1.14 2.80
50 % 2.00 2.45 2.06 2.38 1.78 1.98 1.14 2.59 rijndael
100 % 2.00 2.35 2.06 2.22 1.78 1.98 1.14 2.59
25 % 2.13 2.86 1.72 2.03 1.11 1.15 1.05 1.16
50 % 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.14 stringsearch
100 % 2.13 2.50 1.72 1.81 1.11 1.13 1.05 1.14
25 % 1.05 1.30 1.04 1.20 1.02 1.19 1.00 1.19
50 % 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.18 tiff2bw
100 % 1.05 1.19 1.04 1.18 1.02 1.17 1.00 1.18
25 % 1.06 1.41 1.04 1.27 1.01 1.25 1.01 1.25
50 % 1.06 1.27 1.04 1.25 1.01 1.23 1.01 1.23 tiff2rgba
100 % 1.06 1.26 1.04 1.24 1.01 1.23 1.01 1.23
25 % 1.02 2.01 1.02 1.74 1.01 1.45 1.00 1.46
50 % 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.31 tiffmedian
100 % 1.02 1.49 1.02 1.34 1.01 1.26 1.00 1.27

139

Table 7.15 Performance Overhead Implications of Sequence Number Cache Size,

Cortex A8

16 KB 32 KB
Benchmark

Seqnum
Cache Size SICM Both SICM Both

25 % 1.00 1.00 1.00 1.00
50 % 1.00 1.00 1.00 1.00 bf_e
100 % 1.00 1.00 1.00 1.00
25 % 1.00 1.01 1.00 1.01
50 % 1.00 1.01 1.00 1.01 cjpeg
100 % 1.00 1.01 1.00 1.01
25 % 1.00 1.00 1.00 1.00
50 % 1.00 1.00 1.00 1.00 fft
100 % 1.00 1.00 1.00 1.00
25 % 1.04 1.04 1.01 1.02
50 % 1.04 1.04 1.01 1.02 ghostcript
100 % 1.04 1.03 1.01 1.02
25 % 1.09 1.19 1.07 1.13
50 % 1.09 1.19 1.07 1.13 lame
100 % 1.09 1.18 1.07 1.13
25 % 1.04 1.06 1.00 1.01
50 % 1.04 1.06 1.00 1.01 mad
100 % 1.04 1.06 1.00 1.01
25 % 1.01 1.02 1.00 1.02
50 % 1.01 1.02 1.00 1.02 mpeg2e
100 % 1.01 1.02 1.00 1.02
25 % 1.00 1.00 1.00 1.00
50 % 1.00 1.00 1.00 1.00 rijndael
100 % 1.00 1.00 1.00 1.00
25 % 1.01 1.01 1.01 1.01
50 % 1.01 1.01 1.01 1.01 stringsearch
100 % 1.01 1.01 1.01 1.01
25 % 1.00 1.31 1.00 1.01
50 % 1.00 1.31 1.00 1.01 tiff2bw
100 % 1.00 1.31 1.00 1.01
25 % 1.00 1.52 1.00 1.16
50 % 1.00 1.52 1.00 1.16 tiff2rgba
100 % 1.00 1.52 1.00 1.16
25 % 1.00 1.44 1.00 1.19
50 % 1.00 1.40 1.00 1.19 tiffmedian
100 % 1.00 1.40 1.00 1.19

140

7.4.3.5 Double-Sized Protected Blocks

We also demonstrate the performance overhead effects of using double-sized

protected blocks, that is, protected blocks whose size is twice that of the cache line. We

have previously used 32 byte protected blocks, so double-sized protected blocks allude to

protecting 64 bytes of data with one signature (and one sequence number in the dynamic

case). We simulate using double-sized protected blocks on systems using the PMAC

cipher and embedded systems, and compare the results to the same systems using single-

sized protected blocks. We predict that, in the majority of workload cases, performance

should be roughly the same. Some cases should exhibit better performance as a result of

the prefetching behavior that using double-sized protected blocks entails. In some cases,

however, this prefetching may do more harm than good, leading to cache pollution and

degraded performance.

The results of these simulations are displayed graphically in Figure 7.28 -

Figure 7.33 and numerically in Table 7.16 and Table 7.17. The simulation results mostly

follow the theoretical projections. Note that using double-sized protected blocks when

protecting instructions and static data nearly always yields the same or better

performance as using single-sized protected blocks; protecting dynamic data shows

greater sensitivity to protected block size. Overall, an improvement in performance is

seen in most cases with smaller caches. Lower performance is observed in most cases

with larger caches.

141

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.28 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex M3, 1 KB

142

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.29 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex M3, 2 KB

143

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.30 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex M3, 4 KB

144

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.31 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex M3, 8 KB

145

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.32 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex A8, 16 KB

146

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

bf_e cjpeg fft ghostcript lame mad

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

SICM
DICM

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

S
in

gl
e

D
ou

bl
e

O
ve

rh
ea

d

mpeg2e rijndael stringsearch tiff2bw tiff2rgba tiffmedian

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
in

gl
e

D
ou

bl
e

S
in

gl
e

Figure 7.33 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex A8, 32 KB

147

Table 7.16 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex M3

1 KB 2 KB 4 KB 8 KB
Benchmark

Block
Size SICM Both SICM Both SICM Both SICM Both

Single 1.40 1.47 1.06 1.18 1.00 1.04 1.00 1.00
bf_e

Double 1.21 1.38 1.04 1.23 1.00 1.08 1.00 1.00
Single 1.13 1.43 1.02 1.18 1.01 1.13 1.00 1.02

cjpeg
Double 1.09 1.51 1.02 1.26 1.00 1.18 1.00 1.05
Single 2.40 2.92 2.37 2.41 1.46 1.46 1.02 1.02

fft
Double 1.88 2.82 1.90 2.12 1.43 1.44 1.03 1.03
Single 3.21 3.76 2.33 2.39 1.47 1.48 1.03 1.03

ghostcript
Double 2.31 3.40 1.87 2.04 1.50 1.53 1.02 1.03
Single 1.25 1.76 1.14 1.44 1.04 1.21 1.03 1.08

lame
Double 1.14 1.79 1.10 1.45 1.02 1.20 1.02 1.13
Single 1.75 2.03 1.48 1.68 1.50 1.63 1.03 1.05

mad
Double 1.46 1.79 1.24 1.43 1.24 1.41 1.02 1.05
Single 1.04 1.21 1.02 1.11 1.01 1.03 1.00 1.01

mpeg2e
Double 1.03 1.25 1.01 1.12 1.01 1.04 1.00 1.01
Single 2.00 2.45 2.06 2.38 1.78 1.98 1.14 1.17

rijndael
Double 1.59 2.37 1.59 2.15 1.57 2.00 1.15 1.28
Single 2.13 2.68 1.72 1.92 1.11 1.13 1.05 1.06

stringsearch
Double 1.87 2.71 1.52 1.85 1.12 1.18 1.06 1.08
Single 1.05 1.20 1.04 1.18 1.02 1.18 1.00 1.09

tiff2bw
Double 1.03 1.13 1.03 1.12 1.02 1.12 1.00 1.12
Single 1.05 1.27 1.03 1.25 1.00 1.23 1.00 1.13

tiff2rgba
Double 1.04 1.19 1.03 1.19 1.02 1.17 1.01 1.17
Single 1.02 1.81 1.02 1.47 1.01 1.30 1.00 1.14

tiffmedian
Double 1.02 1.70 1.01 1.42 1.01 1.32 1.00 1.28

148

Table 7.17 Performance Overhead Implications of Using Double-Sized Protected

Blocks, Cortex A8

16 KB 32 KB
Benchmark

Block
Size SICM Both SICM Both

Single 1.00 1.00 1.00 1.00
bf_e

Double 1.00 1.00 1.00 1.00
Single 1.00 1.01 1.00 1.00

cjpeg
Double 1.00 1.01 1.00 1.01

fft Single 1.00 1.00 1.00 1.00
 Double 1.00 1.00 1.00 1.00

ghostcript Single 1.02 1.03 1.01 1.01
 Double 1.02 1.03 1.01 1.02

lame Single 1.06 1.12 1.05 1.09
 Double 1.03 1.16 1.03 1.11

mad Single 1.03 1.04 1.00 1.01
 Double 1.02 1.06 1.00 1.01

mpeg2e Single 1.00 1.01 1.00 1.01
 Double 1.00 1.02 1.00 1.01

rijndael Single 1.00 1.00 1.00 1.00
 Double 1.00 1.00 1.00 1.00

stringsearch Single 1.00 1.01 1.00 1.01
 Double 1.00 1.01 1.00 1.01

tiff2bw Single 1.00 1.16 1.00 1.00
 Double 1.00 1.22 1.00 1.01

tiff2rgba Single 1.00 1.26 1.00 1.09
 Double 1.00 1.35 1.00 1.14

tiffmedian Single 1.00 1.20 1.00 1.09
 Double 1.00 1.53 1.00 1.29

7.4.4 Analytical Model

We use the simulation results from the cipher choice evaluation to generate

analytical models of our architecture’s performance overhead. We first plot performance

overhead versus the cache miss rate for a dataset of interest. Visual inspections of these

plots suggest that performance overhead trends piecewise linearly with respect to cache

miss rate. We therefore use linear regression to find approximate equations for each

piecewise segment and the breakpoint between segments. The linear regression is

149

performed using Microsoft Solver, with Microsoft Excel used as a front-end. The

resulting formulae are valid over the range of cache miss rates that we have simulated.

We limit our analysis to the Cortex M3 architecture, as the Cortex A8 demonstrates little

or no overhead in most cases. All Cortex M3 cache sizes are considered simultaneously,

as the overhead from an individual cache miss is independent of cache size. We analyze

each cipher mode separately, producing a plot and an equation for each cipher mode.

Furthermore, since our simulated system has independent instruction and data caches, we

treat the SICM and DICM modes independently.

7.4.4.1 SICM

The performance overhead incurred by protecting instructions and static data is

plotted versus the number of instruction cache misses is plotted in Figure 7.34 and

Figure 7.35. Equations (7.1), (7.2), and (7.3) were produced by piecewise linear

regression, and can be used to predict the performance overhead y as a function of the

instruction cache miss rate x for the CBC-MAC, PMAC, and GCM cipher modes,

respectively. The cache miss rate is in units of misses per thousand instructions. These

equations are valid for applications with instruction cache miss rates up to 160 misses per

1,000 instructions.

Note that the equations for the PMAC and GCM modes are very similar, and the

breakpoints for all three modes are close to each other. Also of interest is that the linear

functions for the higher cache miss rates have gentler slopes than their respective lower

miss rate functions. This suggests that, during the execution of real programs, our

security extensions incur a basic performance penalty up to a certain threshold. After that

threshold is met, additional cache misses incur less penalty.

150

otherwisex

xforx
y

 1.568590.01424

57.45560 1.001120.02412
 (7.1)

otherwisex

xforx
y

 1.383690.00854

57.29303 1.000180.01523
 (7.2)

otherwisex

xforx
y

 1.379080.00856

57.17616 1.001130.01517
 (7.3)

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

Figure 7.34 Analytical Model of SICM Performance Overhead, CBC-MAC

151

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

Figure 7.35 Analytical Model of SICM Performance Overhead, PMAC and GCM

152

7.4.4.2 DICM

The protection overhead incurred by protecting only dynamic data is plotted

versus the number of data caches misses in Figure 7.36 and Figure 7.37. Equations (7.4),

(7.5), and (7.6) may be used to model this performance overhead for applications with

data cache misses up to about 140 per 1,000 instructions. We note a dramatic difference

in slope for higher miss rates; the slope, in fact, is negative, indicating that past a certain

cache miss rate, security becomes less costly. A rough analogy could be made with

receiving a volume discount when purchasing a large number of items.

otherwisex

xforx
y

1.454680.00077-

29.43342 0.975360.01551
 (7.4)

otherwisex

xforx
y

1.287330.00002-

29.38261 0.990290.01009
 (7.5)

otherwisex

xforx
y

1.188260.00021-

29.38261 0.990570.00652
 (7.6)

153

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

Figure 7.36 Analytical Model of DICM Performance Overhead, CBC-MAC and PMAC

154

I-Cache Misses per 1000 Instructions

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

I-Cache Misses per 1000 Instructions

0

1

2

3

4

5

20 40 60 80 100 120 140 160

O
ve

rh
ea

d

0

Figure 7.37 Analytical Model of DICM Performance Overhead, GCM

7.5 Comments

In this chapter, we have used a simulator to evaluate the performance of our

proposed security enhancements. This evaluation shows that our enhancements are, for

the most part, practical for implementation. However, some enhancements, such as

signature victim caches, do not increase performance enough to justify their use. We

have also evaluated the complexity and memory overheads of our enhancements

analytically, and used the simulation results to develop an analytical model that can be

used to produce a first-order prediction of performance overhead without having to run

the simulator.

155

CHAPTER 8

AN FPGA SECURE PROCESSOR IMPLEMENTATION

The security extensions proposed in this dissertation should be feasibly

implementable using existing technologies. To prove this, we have implemented a

prototype of a subset of our security extensions using existing, inexpensive hardware.

Our implementation is limited to protecting the integrity and confidentiality of data stored

off-chip in a system on a programmable chip (SOPC). We here describe this

implementation, including the application of various enhancements discussed in previous

chapters and an evaluation of its performance.

8.1 Design Goals

Our implementation has three design goals: ensure a high level of security

(integrity and confidentiality), make the security extensions transparent to the

programmer, and keep the performance and complexity overheads as low as possible.

We ensure confidentiality by encrypting secure data that is stored off-chip. The base

implementation ensures integrity by generating cryptographically sound signatures for

off-chip data and using those signatures to verify those data when they are brought on-

chip. The security extensions are transparent to the programmer other than requiring a

function call to initialize the security-related hardware resources. We minimize

156

performance overhead in our base implementation by overlapping cryptography with

memory accesses and buffering verified blocks. Further enhancements include

parallelizing encryption/decryption, and parallelizing signature generation.

In the earlier chapters of this dissertation, we assumed that the computer architect

could modify the microprocessor, cache controller, TLB, and any other system

components as necessary. However, in the SOPC arena, many of these components are

implemented as binary intellectual property (IP) cores that cannot be modified.

Therefore, a guiding principle of our prototype implementation of security extensions is it

will not require the modification of any other cores in the system.

We have implemented these security extensions in a system based on the Altera

NIOS II soft-core processor. The test system was implemented on a Cyclone II FPGA

using Altera’s Quartus II toolchain. The performance of our extensions is evaluated

using both a targeted microbenchmark and a small suite of embedded system benchmarks

running on the actual SOPC. Evaluation shows that parallelizing encryption/decryption

and signature generation yields the best performance, but at the cost of increased

complexity.

8.2 Basic Implementation of Security Extensions

This section describes how our basic implementation achieves our three design

goals. We begin with a description of how our design achieves security. We then discuss

the programming model for our design, and the memory architecture necessary to

implement it. We finally discuss how these security extensions are implemented in a

hardware resource called the Encryption and Verification Unit (EVU).

157

8.2.1 Achieving Security

As described in earlier chapters, the basic unit of secure data is a protected block.

In systems with on-chip caches, the cache block size, or some multiple thereof, is a

convenient protected block size. In our implementation, we chose a protected block size

of 32 bytes. For our initial implementation we do not use data caches.

Our design uses cryptography to protect the integrity and confidentiality of data

stored off-chip. Confidentiality is protected by encryption. Integrity is protected by

generating a 16 byte signature for each protected block of data. We defend against replay

attacks by associating a sequence number with each protected block, and using it in

encryption/decryption and signature generation.

The confidentiality of data is protected by using the low-overhead OTP

encryption scheme described in Section 5.1. Equation (8.1) shows how this encryption is

performed. The 32 byte plaintext data block D is divided into two 16 byte sub-blocks

D0:3 and D4:7, which are separately encrypted to form ciphertext sub-blocks C0:3 and C4:7.

The 128-bit key used for pad generation is denoted as KEY1, A(SBi) is the address of

sub-block i, SN is the protected block’s sequence number, and SP is a secure padding

function that generates a unique 128-bit value from the 32-bit address and 32-bit

sequence number.

1..0))),(((134:434:4 iforSNSBASPAESxorDC iKEYiiii (8.1)

Decryption is simply the reverse of this operation. The pads are calculated as in

Equation (8.1), and then XORed with the ciphertext sub-blocks to produce the desired

plaintext sub-blocks.

158

Signatures are generated using a modified version of the CBC-MAC mode. The

protected block’s signature S is calculated according to Equation (8.2). Another 128-bit

key, KEY2, is used for signature generation. We also use the same secure padding

function defined above, SP, operating on the block’s address A(SB) and sequence number

SN. The use of the block address prevents splicing attacks, the use of the block text

prevents spoofing attacks, and the use of the sequence number prevents replay attacks. If

the keys are generated randomly for each run, then cross-executable splicing attacks will

also be prevented. The CBC-MAC approach used here differs from the approach in

Section 5.3.1 in that the initial vector is not encrypted and the signature is calculated on

ciphertext rather than plaintext. These changes are due to the limitations of the AES core

used in our implementation; it is not pipelined, so adding an additional operation to

encrypt the initial vector would significantly increase latency. This should not greatly

effect the resulting cryptographic soundness of the signatures as long as the secure

padding function assures uniqueness.

))),(((3:027:42 SNSBASPxorCAESxorCAESS KEYKEY (8.2)

If sequence numbers are stored off-chip, then they may be subjected to

sophisticated replay attacks in which the sequence number is replayed as well as the

protected block and its signature. This gives rise to the necessity of complex structures

such as Merkle trees [30, 31] to protect the sequence numbers. Our design assumes that

sequence numbers are stored in on-chip memory and are thus invulnerable to replay

attacks, and require no additional protection.

When the programmer reads from or writes to secure data at runtime, the

appropriate sequence number, encrypted protected block, and signature are fetched.

159

When the pads are available, the block is decrypted. As the two ciphertext sub-blocks

become available, its signature is recalculated. If the calculated signature and fetched

signature match, the block has not been subjected to tampering and the read or write

operation can proceed. If the signatures do not match, a security violation has occurred

and an interrupt is raised. More operational details are given below in Section 8.2.3.

In addition to preventing spoofing, splicing, and replay attacks, we must also

prevent the programmer from inadvertently accessing uninitialized blocks. To that end,

the sequence number value zero is reserved to indicate that its associated protected block

is uninitialized. If a protected block’s sequence number is zero, the programmer may

write to it, but not read from it. If the sequence number is nonzero, then the programmer

may both read from and write to the protected block. A read from an uninitialized block

will result in an interrupt.

Whenever a protected block is written back to main memory, its sequence number

must be incremented and new pads calculated to encrypt the block. Sequence number

overflows are undesirable, as they lead to pad re-use. Our design uses 32-bit sequence

numbers; should a particular target application have a strong likelihood of a sequence

number rollover, the design may be modified to use 64-bit sequence numbers.

In our design, the two cryptographic keys KEY1 and KEY2 are hard-coded in our

security extension hardware. For greater security, they could be randomly generated at

runtime for each application using methods such as physical unclonable functions [29].

In that case, these keys must be stored in the process control block in an encrypted form

in the event of a context switch. An additional hard-coded internal key would be needed,

which would then be used to encrypt these keys before and decrypt them after a context

160

switch. Keys should never leave the chip in plaintext form. Hard-coded keys should

only be used if the design will be protected by bitstream encryption.

8.2.2 Programming and Memory Model

An important design goal for these security extensions is that they be as

transparent to the programmer as possible. To that end, our implementation does not

require the programmer to use any special application programming interface (API) to

read and store secure data. An initialization function must be called to initialize the

necessary hardware resources (see Section 8.2.3 below). Thereafter, the programmer

simply defines his or her pointers appropriately and uses them as normal.

This transparency is possible because of address mapping. A portion of the

address space is set aside to physically store encrypted data. A similarly sized portion of

the address space is mapped to the EVU. For instance, to read or write the nth word of

encrypted data, the programmer will read or write the nth word in the EVU’s address

space. This transparency is illustrated in the code snippets in Figure 8.1. In the first

snippet, OFFCHIP_MEM_BASE_ADDR defines the base address for off-chip memory.

The second snippet accesses data relative to SECURE_DATA_BASE_ADDR, which

defines the base address for accessing secure data via the EVU.

The memory architecture of our design is illustrated in Figure 8.2. The program

text, heap, and stack are all stored in on-chip memory. Sequence numbers should also be

stored on-chip. The figure depicts signatures as stored on-chip; they may also be stored

in off-chip memory if desired. The shaded region in the address space contains the

secure data in its encrypted form, which is physically stored off-chip.

161

The programmer may read data directly from the encrypted region, but the result

would be a word of ciphertext. A direct write to this region would effectively constitute a

spoofing attack, and would result in an interrupt the next time this secure data was

properly accessed. Secure data should be accessed through an area of the address space

assigned to the EVU. Addresses in this region are mapped to those in the encrypted data

region, and the EVU handles all decryption and verification. If a block of secure data is

no longer needed, its corresponding space in off-chip memory may be reclaimed for

unsecured use. However, that block must not be treated as secure data thereafter.

Figure 8.1 Programmer’s View of Securing Data in Off-Chip Memory

/* This code writes data directly to off-chip
 memory in an insecure manner. */
void Array_Access_Insecure()
{
 int i;
 int *pArray;

 pArray = OFFCHIP_MEM_BASE_ADDR;

 for(i = 0; i < 16; i++)
 pArray[i] = i;
}

/* This code writes secure data using the EVU. */
void Array_Access_Secure()
{
 int i;
 int *pArray;

 Initialize_EVU();

 pArray = SECURE_DATA_BASE_ADDR;

 for(i = 0; i < 16; i++)
 pArray[i] = i;
}

162

Text, Heap,
and Stack

Encrypted
Data

Signatures

Sequence Numbers

Secure
Data

On-Chip

Memory

EVU
Address
Space

Off-Chip

Memory

Address
Mapping
via EVU

Figure 8.2 Memory Architecture

The maximum number of 32 byte protected blocks is determined by the amount

of memory allocated to storing signatures and sequence numbers. Each protected block

requires a 16 byte signature and a four byte sequence number. Thus the maximum

number of protected blocks NPB in a system is limited by Equation (8.3). In this equation,

Sz(Msig) and Sz(Mseqnum) are the sizes in bytes of the memory regions allocated for storing

signatures and sequence numbers, respectively.

4

)(
,

16

)(
min seqnumsig

PB

MSzMSz
N (8.3)

163

Since signatures introduce the greatest memory overhead, the designer may wish

to fix the size of the region of memory allocated to signatures, and then calculate the

required sizes for the other memory regions. In our implementation, we chose to

allocate eight kilobytes of memory for storing signatures. This allows us to have

512 protected blocks of 32 bytes each, for a total of 16 kilobytes of secure data. We thus

require two kilobytes of on-chip memory for sequence numbers.

8.2.3 Implementation

The implementation of these security extensions must balance complexity and

performance overhead, while at the same time not requiring the modification of any

existing soft cores. To that end, the EVU is implemented as an on-chip peripheral

attached to the bus. Other implementations are certainly possible, such as embedding the

EVU functionality in a custom memory controller. The implementation strategy we

choose, however, allows our design to be flexible and applicable to existing systems.

Figure 8.3 shows a block diagram of our implementation of an embedded system

incorporating our security extensions. All components of the baseline system are

unshaded, while the shaded components are added to implement the security extensions.

The baseline system for this implementation is a simple 32-bit NIOS II system-on-a-chip.

On-chip memories are used to store program instructions and data (heap and stack). A

synchronous dynamic random access memory (SDRAM) controller provides access to

off-chip memory. The system is generated using Altera’s SOPC Builder, part of the

Quartus II toolchain. The on-chip bus interconnects conform to the Altera Avalon

standard [53], with loads and stores occurring at the word level.

164

NIOS II
CPU

Instruction
Memory

Data
Memory

SeqNum
Memory

Signature
Memory

EVU

SDRAM
Controller

Off-Chip
SDRAM

Altera Avalon Bus

Chip
Boundary

Figure 8.3 System-on-a-Programmable Chip Incorporating Security Extensions

The base system uses a simple NIOS II CPU with no data cache. In a NIOS II

system with caches, cache lines are loaded and evicted via sequences of single-word

accesses. The EVU would handle these like any other accesses.

The additional hardware to implement the security extensions consists of a

discrete EVU peripheral, an on-chip memory for the sequence number table, and an on-

chip memory for the signature table. Secure data is physically stored in its encrypted

form in the off-chip SDRAM. (As mentioned earlier, signatures may also be stored off-

chip if necessary.) The programmer may read directly from the SDRAM; however, if a

location in the SDRAM containing secure data is read, encrypted data will be returned.

SDRAM locations not used for storing secure data or signatures may be used to store

non-sensitive plaintext data.

The internals and interfaces of the EVU are shown in Figure 8.4. In the upper left

of this figure are the data and control registers for the EVU. Three data registers specify

the base addresses of encrypted data in external memory, the signatures, and sequence

165

numbers. These should be set in the aforementioned initialization function. (The

initialization function should also initialize the sequence number table to all zeros.) The

control register allows the programmer to reset the EVU and clear the interrupt. An

Avalon bus slave interface allows access to these data and control registers.

Encrypted Data Base Address

Signature Base Address

Sequence Number Base Address

Control Register

Opportunity Buffer (OB)

Pad 1 Pad 2

Sequence Number

AES Unit
AES Unit

Controller

Memory Access Controller

Ciphertext Block

=/=

To Avalon
Bus (Slave)

To Avalon
Bus (Slave)

To Avalon
Bus (Master)

Interrupt
RequestFetched Signature

Calculated Signature

Tag Valid Dirty

Data and
Control

Registers

Secure
Data

Access

Memory
Access

Register widths not to scale

Figure 8.4 Block Diagram of the Encryption and Verification Unit

A second Avalon bus slave interface is shown in the bottom left of the figure.

This is the interface that the programmer will use to access secure data. Therefore, the

portion of address space allocated to this interface should be commensurate with the

amount of protected data. This is achieved by setting the width of the address signal on

the slave interface. Avalon slave interface address signals are actually word indices

rather than actual addresses. In our sample system, we have 16 kilobytes of secure data,

constituting 4,096 32-bit words. Thus, the address bus for this interface must be 12 bits

wide to address all 4,096 words.

166

The memory access controller is a state machine responsible for fetching

sequence numbers, signatures, and data blocks from memory and maintaining local

buffers. The controller can access on-chip and external memories via an Avalon bus

master interface. The EVU also contains an AES core and a state machine to control it.

An interrupt interface allows interrupts to be raised by the memory access controller if

the programmer tries to read from an uninitialized block or a fetched block and signature

fails verification.

The upper right of the figure shows the various buffers used in the EVU. There

are buffers for the fetched signature, calculated signature, the ciphertext block that has

been read from memory or will be written to memory, the pads used to encrypt and

decrypt the block, and the sequence number. An additional structure called the

opportunity buffer attempts to reduce performance overhead by taking advantage of the

locality of data accesses. Even though the processor will only read or write one word at a

time, the entire protected block must be brought into the EVU in order to perform

verification. This block is stored in the opportunity buffer as plaintext. Any further reads

from or writes to the protected block while it is buffered can be done within the EVU,

without having to access external memory. The block’s address may be reconstructed

from the opportunity buffer’s tag. Its sequence number and the pads used to encrypt and

decrypt it are also buffered.

When a word from a different block is requested, the block in the opportunity

buffer must be evicted, along with its sequence number and signature. If the block is

dirty, then it must be written back to external memory. The sequence number must be

incremented and the pads recalculated before the plaintext block can be encrypted for

167

storage. The opportunity buffer’s tag is used to calculate the addresses for the block to be

written back, its sequence number, and signature.

Figure 8.5 and Figure 8.6 list the algorithms used for reading and writing words of

secure data, respectively. Conditions that cause an interrupt to be raised are marked in

italicized text. These algorithms reveal the latency hiding mechanisms used in the EVU.

Whenever possible, cryptographic operations are done concurrently with memory

operations to hide cryptographic latency. When writing to a protected block, new pads

must be calculated once the sequence number has been incremented. As Figure 8.6

shows, the sequence number is only incremented when a block in the opportunity buffer

is first marked dirty. Pad calculation is begun, and the processor is allowed to continue

execution. If another secure read or write is initiated before the new pads have been

calculated, the new access is stalled until the pads are completed.

168

Figure 8.5 Algorithm for Secure Read

Wait for any crypto operations from a previous access to complete.
Is buffer valid and does buffer tag match address?
 Yes: (read hit)
 Return word from buffer and exit.
 No: (read miss)
 Is buffer valid and dirty?
 Yes: (evict block from buffer)
 Encrypt block using buffered pads.
 Write sequence number and cryptotext block to memory.
 In parallel with memory write, calculate block signature.
 When signature is ready, write signature to memory.
 Continue with read miss operation.
 No: (do nothing, continue with read miss operation)
 Fetch sequence number from memory.
 Is sequence number nonzero?
 Yes: (block has been initialized)
 Read block and signature from memory.
 In parallel with memory accesses, calculate pads.
 Decrypt sub-blocks as pads and data are available.
 When block is fully available, calculate signature.
 Do calculated signature and fetched signature match?
 Yes: (everything is fine)
 Buffer block and pads; mark buffer valid and clean.
 Return word from buffer and exit.
 No: (security violation)
 Raise interrupt, mark buffer invalid, and exit.
 No: (trying to read an uninitialized block)
Raise interrupt, mark buffer invalid, and exit.

169

Figure 8.6 Algorithm for Secure Write

Wait for any crypto operations from a previous access to complete.
Is buffer valid and does buffer tag match address?
 Yes: (write hit)
 Latch word into buffer.
 Is buffer currently marked clean?
 Yes: (precompute pads for eventual writeback)
 Mark buffer dirty.
 Increment buffered sequence number.
 Start calculation for new pads, and exit.
 No: (do nothing, exit)
 No: (write miss)
 Is buffer valid and dirty?
 Yes: (evict block from buffer)
 Encrypt block using buffered pads.
 Write sequence number and cryptotext block to memory.
 In parallel with memory write, calculate block signature.
 When signature is ready, write signature to memory.
 Continue with write miss operation.
 No: (do nothing, continue with write miss operation)
 Fetch sequence number from memory.
 Is sequence number nonzero?
 Yes: (block has been initialized)
 Read block and signature from memory.
 In parallel with memory accesses, calculate pads.
 Decrypt sub-blocks as pads and data are available.
 When block is fully available, calculate signature.
 Do calculated signature and fetched signature match?
 Yes: (everything is fine)
 Buffer block and pads; mark buffer valid and dirty.
 Increment sequence number.
 Latch word into buffer.
 Start calculation for new pads, and exit.
 No: (security violation)
 Raise an interrupt, mark buffer invalid, and exit.
 No: (initialize the block)
 Set sequence number to 1.
 Start pad calculation.
 Load buffer with zeros; mark buffer valid and dirty.
 Latch word into buffer and exit.

170

8.2.4 Initial Performance Evaluation

The EVU’s performance was profiled using built-in counters inside the EVU.

The EVU’s behavior on a read miss is of particular interest, as the actions taken on a read

miss also occur on a write miss. The counters report that a read miss in the EVU’s

opportunity buffer takes about 74 clock cycles. Further analysis reveals that memory

accesses complete long before the cryptographic operations, as depicted in Figure 8.7.

This analysis assumes that sequence numbers and signatures are stored on-chip, while the

protected blocks are stored in off-chip SDRAM.

Pad for First Sub-Block Pad for Second Sub-Block Signature, Part One Signature, Part Two

Memory Accesses

Cryptographic Operations 70 cycles

40 cycles

SN Encrypted Data Block Signature

Figure 8.7 Performance Overhead on a Read Miss

8.3 Optimizations and Enhancements

All theoretical analysis in this dissertation, other than that in this chapter, has

assumed a pipelined AES core. However, such cores may be prohibitively large to

implement in reconfigurable logic. For instance, the simple open-source AES IP core

used in this implementation [54] is not pipelined, and still contributes about half of the

total complexity overhead of the EVU (see Section 8.4.1). Using a non-pipelined core

requires all cryptographic operations to be performed sequentially, resulting in the

cryptographic latency being on the critical path of an opportunity buffer miss.

171

As we have seen in Chapter 5, exploiting parallelism in cryptographic operations

can decrease performance overhead. However, such optimizations would require either a

more complex, pipelined AES core or another independent AES core acting in parallel.

We choose the latter approach for lack of a pipelined AES core optimized for our target

platform. The following sections describe how we exploit cryptographic parallelism to

reduce performance overhead.

8.3.1 Parallelizing Pad Calculation

The first optimization we pursue is parallelizing pad calculation. Recall that the

protected block is divided into two sub-blocks, which are decrypted and encrypted by

XORing them with a precomputed pad, as in Equation (8.1). Each pad requires only the

sub-block’s address and the protected block’s sequence number, and thus the pads may

be calculated independently. We exploit this independence by initializing a second AES

core and generating both pads concurrently. The resulting performance profile is shown

in Figure 8.8. Comparing Figure 8.8 with Figure 8.7 shows that parallelizing pad

calculation reduces the cryptographic latency from 70 clock cycles to 57 clock cycles.

172

Pad for First Sub-Block

Pad for Second Sub-Block

Signature, Part One Signature, Part Two

Memory Accesses

Cryptographic Operations 57 cycles

40 cycles

SN Encrypted Data Block Signature

Figure 8.8 Performance Overhead on a Read Miss with Parallelized Pad Generation

8.3.2 Parallelizing Signature Generation

The cryptographic latency may be further reduced by parallelizing signature

generation. The CBC-MAC technique, by its very nature, requires that the cryptographic

operations required for signature generation be performed in sequence. Therefore, we

modify the signature generation methodology to use a variation on the PMAC mode.

Using this technique, signatures for each sub-block are calculated independently

(Equation (8.4)) and then XORed together to form the signature for the protected block

(Equation (8.5)). In these equations, Sig(SBi) is the signature for sub-block i, C0:3 and

C4:7 are the two ciphertext sub-blocks, SP is the secure padding function defined above,

A(SBi) is the address of sub-block i, SN is the protected block’s sequence number, and S

is the protected block’s signature. Like our CBC-MAC implementation, this

implementation of the PMAC mode differs from that discussed in Section 5.3.2 in that

the initial vectors are not encrypted. As with our CBC-MAC variant, this should not

significantly reduce the cryptographic soundness of our signatures as long as the initial

vectors are unique.

173

))),((()(34:42 SNSBASPxorCAESSBSig iiiKEYi (8.4)

)()(10 SBSigxorSBSigS (8.5)

Applying these equations, the cryptographic operation required for each sub-

block’s signature may be started as soon as the sub-block’s ciphertext is available from

memory. We again take advantage of the presence of two independent AES cores to

perform these operations concurrently. Figure 8.9 shows the resulting performance

profile incorporating both parallelized pad generation and parallelized signature

generation. Applying these techniques reduces the cryptographic latency to 47 clock

cycles (as compared to 70 cycles with a single AES core and 57 cycles for parallelized

pad generation alone).

Pad for First Sub-Block

Pad for Second Sub-Block

Signature, Part One

Signature, Part Two

Memory Accesses

Cryptographic Operations 47 cycles

40 cycles

SN Encrypted Data Block Signature

Figure 8.9 Performance Overhead on a Read Miss with Parallelized Pad

and Signature Generation

8.4 Evaluation

This section evaluates the complexity and performance overheads introduced by

the EVU in an actual SOPC. The implementation of our security extensions was

174

synthesized, placed, routed, and deployed on a Terasic DE2-70 [55], a low-cost

development and education board. The DE2-70 includes an Altera Cyclone II 2C70

FPGA. The complexity overhead is evaluated using the output of the synthesizer, while

the performance overhead is evaluated by running several benchmarks on the actual

secure system.

8.4.1 Complexity Overhead

Three discrete components were added to the baseline system to implement the

security extensions: the EVU, a 2 KB on-chip memory for the sequence number table,

and an 8 KB on-chip memory for the signature table. Furthermore, we have three distinct

EVU designs: an EVU with one AES core using CBC-MAC, an EVU with two AES

cores using CBC-MAC with parallelized signatures, and an EVU with two AES cores

using PMAC with parallelized signatures. The complexity overhead introduced by these

components is shown in Table 8.1. The figures in the table are reported by the Quartus II

tool. The first three rows in the table show the overheads for each of the EVU types.

The first number in each cell is the overall figure for that design EVU, followed by the

contribution of the AES cores in parenthesis. The final two lines show the overheads

induced by the memories, which are constant regardless of which EVU is chosen.

Note that about half of the overhead induced by any given EVU design comes

from its AES cores. The EVU itself takes advantage of dedicated logic registers to

implement the opportunity buffer. The additional memories consume little in the way of

logic cells, but do consume M4K blocks, which are on-chip RAM resources. Recall that

signatures need not be stored on-chip; they may be stored in an off-chip memory if on-

chip memory space is at a premium. The higher complexity of the PMAC EVU design

175

and CBC EVU design with parallelized pads is due to the presence of the second AES

core. Also, the complexity of the PMAC EVU design is similar to that of the CBC EVU

design with parallelized pads.

Table 8.1 Complexity Overhead

Component Name Logic Cells Dedicated Logic
Registers

M4K
Blocks

EVU – CBC 8,321 (5,031) 2,768 (658) 0
EVU – CBC with Parallelized Pads 13,514 (10,062) 3,403 (1,316) 0
EVU – PMAC 13,780 (10,062) 3,564 (1,316) 0
Sequence Number Memory (2 KB) 2 0 4
Signature Memory (8 KB) 2 0 16

8.4.2 Benchmarks

We run a suite of benchmarks to evaluate the performance overhead introduced

by our security extensions and explore the design space. A microbenchmark is used to

stress-test the system and evaluate its performance under a worst-case scenario. Four

actual benchmarks for embedded systems are used to evaluate performance under a more

realistic workload. Performance overhead is determined by dividing the number of clock

cycles required to run the benchmark on hardware with a secure configuration of interest

by the number of cycles required to run the same benchmark on a system without security

extensions.

The worst-case performance overhead introduced by the security extensions is

evaluated by running a microbenchmark to stress-test the system. The microbenchmark

potentially introduces far greater overhead than an actual application. It reads and writes

176

to an eight kilobyte array in memory with a varying stride factor. When performing

secure writes, a miss in the opportunity buffer will always cause a writeback. Baseline

results are measured by reading and writing directly to SDRAM. Varying the stride

factor allows the benchmark to vary the degree to which it takes advantage of the

opportunity buffer. With a stride of one, it takes full advantage of the buffer, with an

opportunity buffer miss every eighth access. With a stride of eight, an opportunity buffer

miss occurs every access, thus allowing us to measure the average time required to fetch

and verify a protected block from off-chip memory. Unless otherwise noted, neither the

baseline nor secure systems contain data caches or any other performance enhancement

mechanisms other than those in the EVUs being evaluated. This allows us to see the

worst-case, bottom-line latencies. Therefore, the latencies reported from the

microbenchmark are worse than they would be in a more realistic system containing one

or more levels of data cache.

In addition to the microbenchmark, four actual benchmarks representing typical

workloads for embedded processors were ported to run on the secure system. We chose

two benchmarks, ADPCM and a cyclic redundancy check (CRC) algorithm, CRC32,

from the MiBench suite [47]. We also chose two digital signal processing algorithms, a

fast Fourier transform (FFT) and finite impulse response (FIR) filter, to use as

benchmarks [56]. (Note that this FFT benchmark is different from that used in

Chapter 7.) The benchmarks were modified to place buffers, working variables, and

lookup tables in secure memory. Input and output files were read from and written to a

personal computer using the Altera Host Filesystem driver. This introduced a source of

uncertainty in runtimes, and so all performance data reported for these benchmarks are

177

averages across several runs. These benchmarks are profiled in Table 8.2. The table

shows the average number of cycles required for execution in the unsecured case (with

data placed in off-chip SDRAM), as well as the numbers of secure reads and writes, and

the read and write opportunity buffer miss rates.

Table 8.2 Embedded System Benchmarks

Benchmark Avg. Cycles
Unsecured
(millions)

Secure
Reads

Secure
Writes

OB Read
Miss Rate
[%]

OB Write
Miss Rate
[%]

ADPCM 248.80 26,661,720 14,044,719 17.97 14.87
CRC32 358.81 1,368,864 256 96.87 12.50
FFT 18.91 20,920 10,434 55.65 87.71
FIR 12.35 35,422 9,241 73.56 6.24

8.4.3 Effects of Cryptography Approaches

The suite of benchmarks was run on three secure systems incorporating EVUs

with all three designs discussed in this chapter: CBC-MAC without any cryptographic

parallelization, CBC-MAC with parallelized pad generation, and PMAC with parallelized

pad and signature generation. The performance overheads experienced by these

benchmarks are presented in Table 8.3. The first two sections of this table report the

worst-case read and write overheads, respectively, as reported by the microbenchmark.

The third section reports the overhead from the more realistic benchmarks.

As the table shows, the PMAC design consistently outperforms the other designs,

as would be expected based on theoretical analysis. This holds for both the raw, worst-

case overhead as reported by the microbenchmark and the more realistic benchmarks.

178

This suggests that the PMAC design should be used if its additional complexity relative

to CBC-MAC with a single AES unit can be tolerated.

The two benchmarks with long runtimes, ADPCM and CRC32, exhibit very low

overhead. ADPCM even takes advantage of the prefetching behavior of the opportunity

buffer, and experiences a speedup. The CRC32 benchmark, even with its high

opportunity buffer read miss rate, appears to amortize performance overhead over its

runtime, and still exhibits negligible overhead when using a CBC EVU. The FFT and

FIR benchmarks, on the other hand, have much shorter runtimes and high opportunity

buffer miss rates, thus exhibiting a much greater sensitivity to overhead from security

extensions.

Table 8.3 Performance Overhead Implications of EVU Design

Performance Overhead
Benchmark

CBC
CBC with

Parallelized Pads
PMAC

Microbenchmark Read Accesses
Miss Every 8th Access 0.94 0.92 0.90
Miss Every 4th Access 1.06 1.02 0.98
Miss Every 2nd Access 1.31 1.21 1.15
Miss Every Access 1.80 1.61 1.47
Microbenchmark Write Accesses with Writebacks
Miss Every 8th Access 1.37 1.35 1.33
Miss Every 4th Access 1.73 1.68 1.63
Miss Every 2nd Access 2.44 2.35 2.24
Miss Every Access 3.85 3.68 3.46
Embedded System Benchmarks
ADPCM 0.99 0.97 0.97
CRC32 1.02 1.01 1.00
FFT 1.28 1.27 1.26
FIR 1.14 1.09 1.07

179

8.4.4 Effects of Signature Location

We use the same suite of benchmarks to evaluate the performance overhead

incurred by storing signatures in off-chip SDRAM rather than in an on-chip memory.

We use the PMAC EVU design, as it has the lowest cryptographic latency and is thus

more likely to show the effects of longer memory fetch times. The resulting performance

overheads are shown in Table 8.4. The microbenchmark clearly shows an increase in

performance overhead when signatures are moved off-chip, but it is relatively minor for

all but the extreme worst case with a miss on every access. The embedded system

benchmarks, however, exhibit very little sensitivity to performance overhead, incurring

about the same amount of overhead regardless of signature location. These figures

suggest that, for actual applications, storing signatures off-chip should not introduce

prohibitive latencies. System designers may thus conserve on-chip memory resources

when needed without suffering prohibitive performance overheads.

180

Table 8.4 Performance Overhead Implications of Signature Location

Performance Overhead
Benchmark PMAC

Signatures On-Chip
PMAC

Signatures Off-Chip
Read Accesses
Miss Every 8th Access 0.90 0.92
Miss Every 4th Access 0.98 1.02
Miss Every 2nd Access 1.15 1.23
Miss Every Access 1.47 1.65
Write Accesses with Writebacks
Miss Every 8th Access 1.33 1.37
Miss Every 4th Access 1.63 1.71
Miss Every 2nd Access 2.24 2.41
Miss Every Access 3.46 3.80
Embedded System Benchmarks
ADPCM 0.97 0.98
CRC32 1.00 1.00
FFT 1.27 1.27
FIR 1.07 1.07

8.4.5 Effects of Data Caching

The analysis presented in this chapter has assumed that the processor has no data

cache. Many mid-range to high end embedded processors, however, will have one or

more levels of data cache. We therefore use the benchmark suite to evaluate the

performance of our security extensions in the presence of a data cache. The benchmarks

were run in systems with cache sizes of 2 KB, 4 KB, and 8 KB, with and without security

extensions. Recall from Section 4.1 that protected block size should be some multiple of

cache block size for best performance. As our protected block size is already set at

32 bytes, we choose cache line sizes of 32 bytes as well.

The observed performance overhead is presented in Table 8.5. The

microbenchmark operates on an 8 KB array, and thus will behave well for a cache size of

8 KB, but will cause severe thrashing for smaller caches. As the results from the

181

microbenchmark show, when an application is thrashing in the cache, the security

extensions amplify the thrashing’s deleterious effects. However, when an application is

well-behaved with respect to the cache, the security extensions introduce negligible

overhead.

Table 8.5 Performance Overhead Implications of Data Caching

Performance Overhead
Benchmark PMAC

2 KB D-Cache
PMAC

4 KB D-Cache
PMAC

8 KB D-Cache
Read Accesses
Miss Every 8th Access 1.11 1.12 1.00
Miss Every 4th Access 1.21 1.21 1.01
Miss Every 2nd Access 1.37 1.37 1.01
Miss Every Access 1.58 1.58 1.02
Write Accesses with Writebacks
Miss Every 8th Access 1.38 1.40 1.01
Miss Every 4th Access 1.69 1.72 1.02
Miss Every 2nd Access 2.25 2.27 1.03
Miss Every Access 3.29 3.33 1.05
Embedded System Benchmarks
ADPCM 0.91 0.95 1.00
CRC32 0.99 1.02 0.99
FFT 0.86 0.99 1.01
FIR 0.93 0.93 0.97

The more realistic benchmarks have relatively small working data sets, so they

are more well-behaved in these small data caches than the microbenchmark. The effects

of the EVU should therefore be negligible in these benchmarks. However, the

benchmarks all exhibit a speedup when running with the EVU with smaller caches, and

performance overheads approaching unity as the cache size increases. We can conclude

that the performance of systems with a data cache and an EVU is comparable to that of

182

systems with only a data cache, but the uncertainty introduced by using the Altera Host

Filesystem driver prevents us from drawing any further conclusions.

8.5 Comments

The implementation documented in this chapter proves that the sign-and-verify

security extensions described in this dissertation can be feasibly implemented in low-cost

embedded systems. Existing technology allows security extensions to be implemented

right now in systems utilizing soft-core processors; designers of such systems need not

wait for security features to be included in future generations of microprocessors.

Furthermore, the performance overhead results from the optimizations explored in this

chapter bear out the theories that were described above in Chapter 5. They demonstrate

that the theory applies in actual hardware, not just simulations.

This chapter should contain sufficient information to allow the interested reader to

design their own security extensions using the hardware description language of their

choice. However, we offer the source code of our implementation as an electronic

appendix to this dissertation. The basic principles and optimizations presented in this

dissertation and used in our implementation may be easily adapted for use with other

soft-core processors.

183

CHAPTER 9

RELATED WORK

In this chapter, we briefly survey several architectural techniques that have been

proposed to support software and data integrity and confidentiality. Security may be

approached from both the software and hardware perspectives. Software techniques may

be classified as static (relying on the detection of security vulnerabilities in code at design

time) and dynamic (adding code to enhance security at runtime). A survey of static and

dynamic software techniques may be found in [4]. Hardware techniques rely primarily

on hardware to ensure security, often with some degree of software support. This chapter

focuses on hardware techniques, as our proposed security architectures are hardware-

oriented.

Several non-comprehensive hardware techniques have been put forth to address

common types of attacks. Xu et al. [57] and Ozdoganoglu et al. [58] propose using a

secure hardware stack to defend against stack buffer overflow attacks. Tuck et al. [59]

suggest using encrypted address pointers. Suh et al. [60] and Crandall and Chong [61]

propose that all data coming from untrusted channels be tagged and not allowed to be

used as a jump target. Barrantes et al. [62] randomize a processor’s instruction set to

make attacks more difficult. Some techniques address side channel-attacks on software

cryptography, such as Wang and Lee’s proposal [63] to partition caches to thwart cache

184

miss analysis and Ambrose et al.’s [64] injection of random code to defeat power

analysis attacks.

Our approach, however, is intended to be more comprehensive than the proposals

mentioned above. Therefore, we more thoroughly examine proposals that are similarly

comprehensive in both the uniprocessor and multiprocessor domains. Uniprocessor

solutions may be further divided into proposals from academia, which are well

documented, and proposals from industry, which are not as well documented due to their

proprietary nature. We finally examine solutions targeting reconfigurable logic. Our

research primarily involves uniprocessor systems, with a focus on embedded systems

such as might be implemented in reconfigurable logic, so the uniprocessor and

reconfigurable logic topics are most salient for this dissertation.

9.1 Uniprocessor Proposals

Most secure processor research to date has focused on systems with a single

microprocessor. This type of system encompasses many general purpose computing

systems and embedded systems. In this section, we examine comprehensive proposals

for securing uniprocessor systems from both the academic and commercial sectors.

9.1.1 Academic

Ragel and Parameswaran [65] introduce an architecture for verifying code

integrity. The compiler calculates a checksum for each basic block. Special instructions

are inserted at the beginning of each basic block to load its checksum into a dedicated

register. The checksum is independently calculated as the block executes, and when an

instruction that alters control flow is encountered, the calculated checksum is compared

185

with the loaded checksum. If they mismatch, then the block has been subjected to

tampering. This approach requires both software and hardware support, including

compiler modifications and adding custom instructions to the instruction set. Also, it

only targets instruction integrity, and does not address data integrity or any form of

confidentiality.

The execute-only memory (XOM) architecture proposed by Lie et al. [66]

provides an architecture meeting the requirements of integrity and confidentiality. Main

memory is assumed to be insecure, so all data entering and leaving the processor while it

is running in secure mode is encrypted. This architecture was vulnerable to replay

attacks in its original form, but that vulnerability was corrected in [67]. The drawbacks

to this architecture are its complexity and performance overhead. XOM requires

modifications to the processor core itself and to all caches, along with additional security

hardware. This architecture also incurs a significant performance overhead, by its

designers’ estimation, of up to 50%.

The high overhead of XOM is reduced by the architectural improvements

proposed by Yang et al. [34]. They only address confidentiality, as their improvements

are designed to work with XOM, which already addresses integrity concerns. They

propose to use a one-time pad (OTP) scheme for encryption and decryption, in which

only the pad is encrypted and then XORed with plaintext to produce ciphertext, or with

ciphertext to produce plaintext. They augment data security by including a sequence

number in the pad for data blocks, and require an additional on-chip cache for said

sequence numbers. While their scheme greatly improves XOM’s performance, it inherits

its other weaknesses.

186

Gassend et al. [31] propose to verify untrusted memory using a tree of hashes.

They only address integrity, suggesting that their architecture can be added to a system

such as XOM, which will handle confidentiality concerns. The use of a hash tree

introduces significant bandwidth overhead, which is alleviated by integrating the hash

mechanism with system’s caches. However, their integrity-only overhead is still high,

with a maximum of 20% for the most efficient architecture they propose.

Lu et al. [68] propose a similar architecture, using a message authentication code

(MAC) tree. MACs are computed for each cache block, incorporating its virtual address

and a secret application key. For higher level nodes, MACs are computed using those

from the lower level and a random number generated from thermal noise in the processor.

They propose to enhance performance by caching MAC data on the chip. This MAC tree

architecture does show an improvement over the hash tree proposed by Gassend et al.,

but it still introduces an average performance overhead of between 10% and 20%.

Platte and Naroska [41] describe another tree-based sign-and-verify system for

protecting the integrity of code and data, also protecting the values of registers during

traps to the operating system. They treat dynamically generated code in the same manner

as dynamic data, but do not allow the use of dynamically linked libraries. Their design

only addresses integrity, and does not ensure confidentiality. Furthermore, verification is

not immediate; data block verification is only guaranteed to complete by the next

sequence call or context switch. This opens a window of vulnerability during which

malicious instructions may execute unchecked. Due to the securing of registers, the

compiler and operating system must be modified to utilize added instructions for

accessing secure data. No performance overhead analysis is presented.

187

Elbaz et al. [69] develop a technique for performing decryption and integrity

checking at the same time. They take advantage of the spreading property of the AES

algorithm, whereby every bit in a plaintext block influences every bit in the

corresponding ciphertext block. Every block of protected data is appended with a

random nonce before each encryption. The nonces are stored on-chip, and when a

protected block is decrypted, the resulting plaintext nonce is compared with the stored

nonce. If the nonces match, the block is safe for use. An average simulated overhead of

4% is reported. This approach requires a method for generating nonces that is at once

random yet also deterministic enough to guarantee that the same nonce will never by

generated twice. It also requires an on-chip resource to store a table of expected nonces;

however, this also eliminates the need for a tree-like structure in memory. This

architecture is extended in [70] to support off-chip nonce storage. In the extended

architecture, the nonce consists of the protected block address and counter value. A tree-

like structure is used to protect the counter values. Their approach introduces a 100%

memory overhead, and no performance evaluation is presented.

Suh et al. [71] propose an architecture that addresses confidentiality and overall

integrity. Their architecture uses one-time pad (OTP) encryption to provide

confidentiality with relatively low overhead. However, since their cryptographic

functions take a timestamp as an input, they propose that the entire protected memory be

re-encrypted on the unlikely event of a timestamp counter rollover. To reduce overhead

from integrity checking, they propose to construct a log of memory accesses using

incremental multiset hashes. They assume that a program produces meaningful, signed

outputs either at the end of its execution or at discrete intervals during execution. Their

188

architecture verifies the hashed memory access sequences only when those outputs are

produced. Since verification occurs infrequently, it introduces negligible overhead. The

major drawback is that tampering is not immediately evident, leaving the system

potentially vulnerable between verifications.

The work of Milenković et al. [4, 26, 72] provides the foundation for the research

documented in this dissertation, and introduced many of the elements used in this work.

Their proposed architecture addresses only the integrity of instructions, and involves

signing instruction blocks during a secure installation procedure. These signatures are

calculated using instruction words, block starting addresses, and a secret processor key,

and are stored together in a table in memory. At runtime, these signatures are

recomputed and checked against signatures fetched from memory. The cryptographic

function used in the architecture is a simple polynomial function implemented with

multiple input shift registers. The architecture is updated in [73] and [74], adding AES

encryption to increase cryptographic strength and embedding signatures with instruction

blocks rather than storing them in a table. This architecture remains vulnerable to

splicing attacks, since signatures in all programs use the same key.

Drinić and Kirovski [24] propose a similar architecture to that of Milenković

et al., but with greater cryptographic strength. They use the CBC-MAC cipher, and

include the signatures in the cache line. They propose to reduce performance overhead

by reordering basic blocks, so that instructions that may not be safely executed in a

speculative manner are not issued until signature verification is complete. The drawback

to this approach is that it requires significant compiler support, and may not consistently

189

hide the verification overhead. Furthermore, their architecture does not address

confidentiality, and is vulnerable to replay and splicing attacks.

A joint research team from the Georgia Institute of Technology (GA Tech) and

North Carolina State University (NCSU) has proposed several secure processor designs.

Yan et al. [42] describe a sign-and-verify architecture using Galois/Counter Mode

cryptography. They protect dynamic data using split sequence numbers to reduce

memory overhead and reduce the probability of a sequence number rollover. A tree-like

structure is used to protect dynamic data against replay attacks. Rogers et al. [33] lower

the overhead of the design by restricting the tree structure to only protect sequence

numbers. They claim an average performance overhead of 11.9%. This overhead may

be artificially low as they use “non-precise integrity verification,” which allows

potentially harmful instructions to execute and retire before they are verified.

9.1.2 Commercial

Microprocessor vendors Intel and Advanced Micro Devices (AMD) have each

introduced features to prevent buffer overflow attacks. Intel calls their feature the

Execute Disable Bit [75], which prohibits the processor from executing instructions that

originate from certain areas of memory. AMD’s No Execute (NX) Bit [76] is very

similar to Intel’s Execute Disable Bit. The NX bit is stored in the page table, and is

checked on translation look-aside buffer (TLB) misses. Both Intel and AMD allow

software to disable this functionality.

International Business Machines (IBM) has developed the SecureBlue

architecture [77]. Like the academically-proposed techniques described above, it relies

190

on cryptography to ensure integrity and confidentiality of both software and data.

SecureBlue is intended to be incorporated into existing microprocessor designs.

ARM markets the TrustZone security architecture [78], designed to augment

ARM microprocessors. It relies on both hardware and software support. The hardware

component uses cryptography to address integrity and confidentiality, allowing the

processor to run in either a secure or non-secure mode. The software support includes the

TrustZone Monitor, which augments the operating system and provides an application

programming interface (API) for secure programs.

Maxim (formerly Dallas Semiconductor) manufactures the DS5250 secure

microprocessor [79]. The DS5250 is designed to serve as a co-processor for embedded

systems with traditional, non-secure microprocessors. Maxim proposes that the co-

processor perform security-sensitive functions while the primary processor performs less

sensitive operations. The DS5250 contains a non-volatile on-chip memory that is erased

if physical tampering is detected. This memory is used to store the processor’s secret

key, and can also be used to securely store other sensitive data. The DS5250 can also

access external memory, using cryptography to ensure the integrity and confidentiality of

such accesses.

Secure Machines proposes an architecture to secure entire embedded computer

systems, such as those contained in cellular telephones [80]. Their architecture targets

the whole system, and ensures secure off-chip communications with peripherals.

However, this security requires that all chips used in the system be a custom-made

matched set sharing the same keys and containing security state machines called

191

hardware secure controllers. A secure kernel running on the microprocessor interacts

with the hardware secure controllers, but details are not specified.

9.2 Multiprocessor Proposals

Researchers have also explored secure multiprocessor system designs. However,

the added complexity of multiprocessor systems makes these designs difficult and costly

to evaluate. We look at a few secure multiprocessor proposals in this section.

Shi et al. present a scheme for bus-snooping multiprocessor systems [81]. The

basic architecture is sign-and-verify, like many of the above uniprocessor systems. They

propose two security domains, with the boundary at the Northbridge memory controller.

All incoming data (including executable code) is encrypted and signed using so-called

vendor keys. The memory controller decrypts and verifies the data, and then re-encrypts

and re-signs using system keys. All chips in the system must be matched sets, each

containing cryptographic hardware and a set of secrets common across chips (including

the system keys). Data is decrypted and verified when brought on a given chip. A

sequential authentication buffer is used to allow speculative execution in parallel with

data verification. The authors claim a performance overhead of 5% when running

SPLASH2 benchmarks.

Zhang et al. also target bus-snooping multiprocessors [82]. They assume an

existing method for securing external memory (such as one of the sign-and-verify

systems described above) and focus on cache coherence messages. Processors in the

system are divided into groups, each with a unique ID. Messages for each process are

tagged with group and process IDs, requiring extra lines on the bus. All messages are

encrypted using an OTP scheme and signatures are generated using CBC-MAC. A

192

global message counter is used to serialize the messages, and each processor keeps a

circular buffer of precomputed pads for quick encryption and decryption. For a given

message, one processor supplies the signature and all other processors recalculate the

signature and verify the message individually. For maximum security, each message is

verified. The chaining nature of the CBC scheme can be used to verify batches of

messages at a time, increasing performance at the expense of decreased security. Their

simulations predict that protecting messages in this manner adds an additional 2.03%

overhead, above and beyond the overhead required for protecting external memory. Bus

traffic also increases by 34%.

Lee et al. address the protection of cache coherence messages in distributed

shared-memory systems [83]. Their goal is to provide security regardless of the

interconnect system. They apply GCM cryptography, with a single authority assigning

ranges of counters (initial vectors) to individual processors. When a processor receives a

counter assignment, it precomputes the pads needed for GCM and stores them in a queue

to accelerate the encryption of outgoing messages. The other processors precompute the

same pads and cache them to accelerate the decryption of incoming messages. Recently

used pads are also cached in case a block is received and then sent out again unmodified.

The authors claim an average overhead of around 4% for protecting coherency messages.

They admit a weakness in that control messages are not protected.

Patel et al. [84] propose to use a monitor processor to ensure the integrity of

programs executing on a multiprocessor system-on-a-chip. The compiler maps out all

possible execution paths for critical code, generating a constraint database of valid paths

and minimum/maximum allowable execution times for each basic block. At runtime, one

193

processor is used as a monitor while others execute the programs. At the beginning and

end of each secured basic block, its executing processor reports flow and execution time

data to the monitor via a first-in-first-out queue. The monitor processor checks these data

against the constraints database. If the flow is invalid, or if the basic block took too much

or too little time to execute, the program has been compromised. This approach has

several admitted weaknesses, including reliance on a static analysis of program code that

may not accurately profile data-dependent execution paths. It does not address code

confidentiality; neither does it protect data. Reported performance overheads range

between 6.6% and 9.3%.

Rogers et al. from the GA Tech-NCSU team further extend their earlier design

into the multiprocessor arena [85], addressing distributed shared-memory systems. In

their design, each processor maintains its own tree for dynamic data protection. Sequence

numbers and timestamps are communicated among processors in addition to blocks of

data and their signatures. Coherence messages containing data blocks are also protected

by an additional message signature. Like this team’s earlier work, verification is non-

precise, which may lead to security vulnerabilities.

9.3 Proposals Targeting Reconfigurable Logic

A few researchers have targeted the reconfigurable logic domain. Wang et al.

[86] developed a cryptographic coprocessor on an FPGA to accelerate cryptographic

functions in an embedded system. Zambreno et al. [87, 88] propose to use an FPGA as

an intermediary, analyzing all instructions fetched by a processor. It calculates

checksums for basic blocks using two different methods, such as a hash on the code and

the list of registers used by instructions, and compares the two checksums at the end of

194

the basic block. The level of security provided by this approach is an open question, and

requires extensive compiler support, including the insertion of dummy instructions, to

establish the appropriate “register stream.” This leads to a rather high overhead of

around 20%, and only supports instruction integrity and confidentiality (by means of

optional encryption).

Suh et al. [29] developed and implemented the AEGIS secure processor on an

FPGA. They describe physical unclonable functions (PUFs) to generate the secrets

needed by their architecture. Memory is divided into four regions based on whether it is

static or dynamic (read-only or read-write) and whether it is only verified or is both

verified and confidential. They allow programs to change security modes at runtime,

starting with a standard unsecured mode, then going back and forth between a mode

supporting only integrity verification and a mode supporting both integrity and

confidentiality. They also allow the secure modes to be temporarily suspended for library

calls. This flexibility comes at a price; their architecture assumes extensive operating

system and compiler support.

195

CHAPTER 10

CONCLUSION

This dissertation has laid out the basic principles for implementing a secure

processor, presenting a sign-and-verify architecture for protecting the integrity and

confidentiality of software, static data, and dynamic data. We have also discussed many

challenges that a computer architect will face when implementing a secure processor, and

explored the various design options for meeting those challenges. We have also

introduced enhancements to reduce performance latency relative to that caused by a naïve

implementation of security extensions.

The performance overhead of our secure processor design has been evaluated

using a cycle-accurate simulator. This simulator allowed us to examine the effects of the

various design choices as if they were implemented in modern embedded processors and

prove that security can be ensured without incurring excessive performance overhead.

Utilizing our simulator, properly configured for the appropriate microprocessor

architecture, would allow computer architects to make informed decisions when

implementing our security enhancements in an actual processor design.

Furthermore, we have successfully demonstrated a prototypical implementation of

our security enhancements using a soft-core embedded processor in actual hardware. Our

implementation proves that our secure processor design concepts are sound, and may be

196

feasibly implemented in real systems. Security need not wait for future generations of

microprocessors; it can be implemented at the hardware level using existing technologies.

The field of secure processor research is quickly maturing, as evidenced by the

multiple academic proposals and industrial offerings discussed above. This means that

future advances in secure processor designs will likely be incremental in nature. As

cryptography evolves, secure processor designs should evolve along with it, embracing

newer, more secure cryptographic standards while still adhering to the basic established

principles of preserving integrity and confidentiality. Advances in hardware process and

fabrication will also influence secure processor development; more transistors will allow

more elaborate security hardware to be included on-chip. Chip designers must use those

added transistors wisely to ensure that security extensions are not detrimental to system

performance.

Given the breadth of the field of computer security, approaches above the

hardware level must also be employed. However, we believe that secure processors will

be an important part of overall solutions to computer security challenges. This

dissertation has treated the subject of secure processors in detail, in hopes of contributing

to making tomorrow’s computer environments safer for all users.

197

APPENDIX

SIMULATOR AND PROTOTYPE IMPLEMENTATION

SOURCE CODE

This dissertation includes an electronic appendix in the accompanying CD-ROM.

The electronic appendix is comprised of two zip archives, containing the source code for

the simsec-outorder simulator described in Section 7.2 and the EVU hardware

implementation described in Chapter 8. This printed appendix describes the contents of

those archives.

The zip archive simsec-outorder_source_pack.zip contains source

code, documentation, and configuration files for the simsec-outorder simulator. The

source code, which may be found in the archive’s src directory, is a patch to the

SimpleScalar/ARM suite. Therefore, SimpleScalar/ARM must be downloaded from the

SimpleScalar website [89] and unpacked before applying the source patches contained in

the simsec-outorder source pack. Instructions for applying the patch, compiling, and

running simsec-outorder are included in a file called README.txt, which is at the top

level of the archive. It also documents the configuration options for simsec-outorder and

gives several example command lines for various configurations. The sample command

lines reference the configuration files located in the archive’s conf directory, which may

198

be used to simulate architectures based on ARM Cortex-M3 and Cortex-A8 cores with

varying caches sizes.

The zip archive EVU_source_pack.zip contains source code and

documentation for our EVU implementation. At the top level, the archive contains

several files and a directory called EVU. The EVU directory contains the bulk of the

source code for the EVU implementation, in very-high-speed integrated circuit hardware

description language (VHDL) for the hardware component and C for the associated

device driver. The source is released under the GNU Lesser General Public License,

version 2.1, the text of which is included in a file at the top level of the archive. The file

README.txt gives instructions on how to incorporate the EVU into an existing

Quartus II project. There are also VHDL files for three EVU designs at the top level: an

EVU using the CBC-MAC mode, an EVU using the CBC-MAC mode and calculating

OTP pads in parallel, and an EVU using the PMAC mode and parallel pads. The desired

EVU VHDL file should be copied into the EVU directory and there renamed to

EVU.vhdl, per the instructions in README.txt. The top level of the archive also

contains a C source code file, EVU_demo.c, which demonstrates how to use the EVU in

an application.

199

REFERENCES

[1] NIST, "National Vulnerability Database," <http://nvd.nist.gov/home.cfm>
(Available November, 2009).

[2] BSA-IDC, "2008 Piracy Study,"
<http://global.bsa.org/globalpiracy2008/studies/globalpiracy2008.pdf> (Available
November, 2009).

[3] J. Turley, "The Two Percent Solution,"
<http://www.embedded.com/story/OEG20021217S0039> (Available
December, 2007).

[4] M. Milenković, "Architectures for Run-Time Verification of Code Integrity,"
Ph.D. Dissertation, Electrical and Computer Engineering Department, University
of Alabama in Huntsville, 2005.

[5] D. Ahmad, "The Rising Threat of Vulnerabilities Due to Integer Errors," IEEE
Security & Privacy, vol. 1, July-August 2003, pp. 77-82.

[6] Anonymous, "Once upon a free(),"
<http://www.phrack.org/issues.html?issue=57&id=9#article> (Available
August, 2007).

[7] R. Elbaz, D. Champagne, C. Gebotys, R. Lee, N. Potlapally, and L. Torres,
"Hardware Mechanisms for Memory Authentication: A Survey of Existing
Techniques and Engines," Transactions on Computational Science IV, vol. 5430,
May 2009, pp. 1-22.

200

[8] N. R. Potlapally, A. Raghunathan, S. Ravi, N. K. Jha, and R. B. Lee,
"Satisfiability-Based Framework for Enabling Side-Channel Attacks on
Cryptographic Software," in Proceedings of the 15th Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT '97), Konstanz, Germany, 1997, pp. 37-51.

[9] P. Kocher, "Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Systems
Using Timing Attacks," in Proceedings of the 15th Annual International
Cryptology Conference (CRYPTO ’95), Santa Barbara, CA, USA, 1995,
pp. 171-183.

[10] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," in Proceedings of
the 19th Annual International Cryptology Conference (CRYPTO '99), Santa
Barbara, CA, USA, 1999, pp. 388-397.

[11] D. Boneh, R. A. DeMillo, and R. J. Lipton, "On the Importance of Checking
Cryptographic Protocols for Faults," Cryptology, vol. 14, February 2001,
pp. 101-119.

[12] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, "On the Power of Simple Branch
Prediction Analysis," in Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security, Singapore, 2007, pp. 312-320.

[13] M. Milenković, A. Milenković, and J. Kulick, "Microbenchmarks for
Determining Branch Predictor Organization," Software Practice & Experience,
vol. 34, April 2004, pp. 465-487.

[14] C. Percival, "Cache Missing for Fun and Profit," in Proceedings of BSDCan 2005,
Ottawa, Canada, 2005, pp. 1-13.

[15] D. J. Bernstein, "Cache-timing attacks on AES,"
<http://cr.yp.to/antiforgery/cachetiming-20050414.pdf> (Available May, 2009).

[16] NIST, "Advanced Encryption Standard (AES)," FIPS PUB 197, November 2001.

[17] ISO/IEC, "Information technology - Security techniques - Message
Authentication Codes (MACs)," ISO/IEC 9797-2:2002, June 2002.

201

[18] M. Bellare, J. Kilian, and P. Rogaway, "The Security of the Cipher Block
Chaining Message Authentication Code," Journal of Computer and System
Sciences, vol. 61, December 2000, pp. 362-399.

[19] J. Black and P. Rogaway, "A Block-Cipher Mode of Operation for Parallelizable
Message Authentication," in Proceedings of the 21st Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2002), Amsterdam, Netherlands, 2002, pp. 384-397.

[20] J. H. An, Y. Dodis, and T. Rabin, "On the Security of Joint Signature and
Encryption," in Proceedings of the 21st Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT 2002),
Amsterdam, Netherlands, 2002, pp. 83-107.

[21] M. Bellare and C. Namprempre, "Authenticated Encryption: Relations among
Notions and Analysis of the Generic Composition Paradigm," in Proceedings of
the 19th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2000), Bruges, Belgium, 2000,
pp. 531-545.

[22] D. A. McGrew and J. Viega, "The Galois/Counter Mode of Operation (GCM),"
Cisco Systems and Secure Software, January 2004.

[23] Jetstream Media Technologies, "JetAES Fast: High Speed AES Core,"
<http://www.jetsmt.com/us4s/JetAES_4F_1675317.pdf> (Available
December, 2009).

[24] M. Drinic and D. Kirovski, "A Hardware-Software Platform for Intrusion
Prevention," in Proceedings of the 37th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-37), Portland, OR, USA, 2004,
pp. 233-242.

[25] A. Rogers, M. Milenković, and A. Milenković, "A Low Overhead Hardware
Technique for Software Integrity and Confidentiality," in Proceedings of the 25th
International Conference on Computer Design (ICCD). Lake Tahoe, CA, USA,
2007, pp. 113-120.

[26] M. Milenković, A. Milenković, and E. Jovanov, "A Framework for Trusted
Instruction Execution via Basic Block Signature Verification," in Proceedings of
the 42nd Annual ACM Southeast Conference, Huntsville, AL, USA, 2004,
pp. 191-196.

202

[27] D. Kirovski, M. Drinic, and M. Potkonjak, "Enabling Trusted Software Integrity,"
in Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA,
USA, 2002, pp. 108-120.

[28] Y. Wang, H. Zhang, Z. Shen, and K. Li, "Thermal Noise Random Number
Generator Based on SHA-2 (512)," in Proceedings of the 4th International
Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005,
pp. 3970-3974.

[29] G. E. Suh, W. O. D. Charles, S. Ishan, and D. Srinivas, "Design and
Implementation of the AEGIS Single-Chip Secure Processor Using Physical
Random Functions," in Proceedings of the 32nd Annual International Symposium
on Computer Architecture (ISCA-32), Madison, WI, USA, 2005, pp. 25-36.

[30] R. Merkle, "Protocols for Public Key Cryptography," in Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 1980, pp. 122-134.

[31] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, "Caches and
Hash Trees for Efficient Memory Integrity Verification," in Proceedings of the
9th International Symposium on High-Performance Computer Architecture
(HPCA-9), Anaheim, CA, USA, 2003, pp. 295-306.

[32] A. Rogers, "Low Overhead Hardware Techniques for Software and Data Integrity
and Confidentiality in Embedded Systems," Masters Thesis, Electrical and
Computer Engineering Department, University of Alabama in Huntsville, 2007.

[33] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, "Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly," in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-40) Chicago,
IL, USA, 2007, pp. 183-196.

[34] J. Yang, L. Gao, and Y. Zhang, "Improving Memory Encryption Performance in
Secure Processors," IEEE Transactions on Computers, vol. 54, May 2005,
pp. 630-640.

[35] P. Rogaway, "PMAC - A Parallelizable MAC - Background - Rogaway,"
<http://www.cs.ucdavis.edu/~rogaway/ocb/pmac-bak.htm> (Available
November, 2009).

203

[36] C. Parr, "Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems," in Proceedings of the 3rd Workshop on Elliptic Curve
Cryptography (ECC '99), Waterloo, Canada, 1999.

[37] L. Song and K. Parhi, "Efficient Finite Field Serial/Parallel Multiplication," in
Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, Chicago, IL, USA, 1996, pp. 72-82.

[38] G. Orlando and C. Paar, "A Super-Serial Galois Fields Multiplier for FPGAs and
its Application to Public-Key Algorithms," in Proceedings of the 7th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, Napa
Valley, CA, USA, 1999, pp. 232-239.

[39] G. Zhou, H. Michalik, and L. Hinsenkamp, "Improving Throughput of AES-GCM
with Pipelined Karatsuba Multipliers on FPGAs," in Proceedings of the 5th
International Workshop on Reconfigurable Computing: Architectures, Tools, and
Applications Karlsruhe, Germany, 2009, pp. 193-203.

[40] W. Shi and H. Lee, "Accelerating Memory Decryption with Frequent Value
Prediction," in Proceedings of the ACM International Conference on Computing
Frontiers, Ischia, Italy, 2007, pp. 35-46.

[41] J. Platte and E. Naroska, "A Combined Hardware and Software Architecture for
Secure Computing," in Proceedings of the 2nd Conference on Computing
Frontiers, Ischia, Italy 2005, pp. 280-288.

[42] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic, "Improving Cost,
Performance, and Security of Memory Encryption and Authentication," in
Proceedings of the 33rd Annual International Symposium on Computer
Architecture (ISCA-33), Boston, MA, USA, 2006, pp. 179-190.

[43] TIS, "Executable and Linking Format (ELF) Specification,"
<http://x86.ddj.com/ftp/manuals/tools/elf.pdf> (Available January, 2005).

[44] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: An Infrastructure for
Computer System Modeling," IEEE Computer, vol. 35, February 2002, pp. 59-67.

[45] ARM, "Cortex-M3 Technical Reference Manual," 2008.

204

[46] ARM, "Cortex-A8 Technical Reference Manual," 2008.

[47] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, "MiBench: A Free, Commercially Representative Embedded Benchmark
Suite," in Proceedings of the 4th Annual IEEE Workshop on Workload
Characterization, Austin, TX, USA, 2001, pp. 3-14.

[48] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems," IEEE
Micro, vol. 30, December 1997, pp. 330-335.

[49] I. Branovic, R. Giorgi, and E. Martinelli, "A Workload Characterization of
Elliptic Curve Cryptography Methods in Embedded Environments," ACM
SIGARCH Computer Architecture News, vol. 32, June 2004, pp. 27-34.

[50] IP Cores, "GCM/AES MACsec (IEEE 802.1AE) and FC-SP Core Families,"
<http://www.ipcores.com/macsec_802.1ae_gcm_aes_ip_core.htm> (Available
December, 2009).

[51] Jetstream Media Technologies, "JetGCM: High and Ultra High Speed AES-GCM
Cores," <http://www.jetsmt.com/us4s/JetGCM_1_1576754.pdf> (Available
December, 2009).

[52] V. Uzelac and A. Milenković, "A Real-Time Trace Compressor Utilizing Double
Move-to-Front Method," in Proceedings of the 46th Annual Conference on
Design Automation (DAC), San Francisco, CA, USA, 2009, pp. 738-743.

[53] Altera, "Avalon Interface Specifications,"
<http://www.altera.com/literature/manual/mnl_avalon_spec.pdf> (Available
January, 2009).

[54] H. Satyanarayana, "AES128,"
<http://www.opencores.org/projects.cgi/web/aes_crypto_core/> (Available
August, 2008).

[55] Terasic Technologies, "Altera DE2-70 - Development and Education Board,"
<http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=39&No=226> (Available
September, 2008).

205

[56] P. M. Embree and D. Danieli, C++ Algorithms for Digital Signal Processing:
Prentice Hall PTR, 1999.

[57] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer, "Architecture Support for
Defending Against Buffer Overflow Attacks," in Proceedings of the Workshop on
Evaluating and Architecting System Dependability (EASY-2), San Jose, CA, USA,
2002, pp. 50-56.

[58] H. Ozdoganoglu, C. E. Brodley, T. N. Vijaykumar, B. A. Kuperman, and A.
Jalote, "SmashGuard: A Hardware Solution to Prevent Security Attacks on the
Function Return Address," IEEE Transactions on Computers, vol. 55,
October 2006, pp. 1271-1285.

[59] N. Tuck, B. Calder, and G. Varghese, "Hardware and Binary Modification
Support for Code Pointer Protection from Buffer Overflow," in Proceedings of
the 37th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO-37), Portland, OR, USA, 2004, pp. 209-220.

[60] G. E. Suh, J. W. Lee, and S. Devadas, "Secure Program Execution via Dynamic
Information Flow Tracking," in Proceedings of the 11th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA, USA, 2004, pp. 85-96.

[61] J. R. Crandall and F. T. Chong, "Minos: Control Data Attack Prevention
Orthogonal to Memory Model," in Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-37), Portland, OR, USA,
2004, pp. 221-232.

[62] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanović, and D. D.
Zovi, "Randomized Instruction Set Emulation to Disrupt Binary Code Injection
Attacks," in Proceedings of the 10th ACM Conference on Computer and
Communications Security, Washington, DC, USA, 2003, pp. 281-289.

[63] Z. Wang and R. B. Lee, "New Cache Designs for Thwarting Software Cache-
Based Side Channel Attacks," ACM SIGARCH Computer Architecture News,
vol. 35, May 2007, pp. 494-505.

[64] J. A. Ambrose, R. G. Ragel, and S. Parameswaran, "RIJID: Random Code
Injection to Mask Power Analysis based Side Channel Attacks," in Proceedings
of the 44th Annual Conference on Design Automation (DAC), San Diego, CA,
USA, 2007, pp. 489-492.

206

[65] R. G. Ragel and S. Parameswaran, "IMPRES: Integrated Monitoring for
Processor Reliability and Security," in Proceedings of the 43rd Annual
Conference on Design Automation (DAC), San Francisco, CA, USA, 2006,
pp. 502-505.

[66] D. Lie, C. Thekkath, M. Mitchell, P. Lincolny, D. Boneh, J. Mitchell, and M.
Horowitz, "Architectural Support for Copy and Tamper Resistant Software," in
Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IX), Cambridge, MA,
USA, 2000, pp. 168-177.

[67] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz, "Specifying and Verifying
Hardware for Tamper-Resistant Software," in Proceedings of the 2003 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 2003, pp. 166-177.

[68] C. Lu, T. Zhang, W. Shi, and H. Lee, "M-TREE: A High Efficiency Security
Architecture for Protecting Integrity and Privacy of Software," Journal of Parallel
and Distributed Computing, vol. 66, September 2006, pp. 1116-1128.

[69] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, and A. Martinez,
"A Parallelized Way to Provide Data Encryption and Integrity Checking on a
Processor-Memory Bus," in Proceedings of the 43rd Annual Conference on
Design Automation (DAC), San Francisco, CA, USA, 2006, pp. 506-509.

[70] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and P. Guillemin,
"TEC-Tree: A Low Cost, Parallelizable Tree for Efficient Defense against
Memory Replay Attacks," in Proceedings of the 9th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2007), Vienna, Austria,
2007, pp. 289-302.

[71] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, "Efficient
Memory Integrity Verification and Encryption for Secure Processors," in
Proceedings of the 36th International Symposium on Microarchitecture
(MICRO-36), San Diego, CA, USA, 2003, pp. 339-350.

[72] M. Milenković, A. Milenković, and E. Jovanov, "Using Instruction Block
Signatures to Counter Code Injection Attacks," Computer Architecture News,
vol. 33, March 2005, pp. 108-117.

207

[73] M. Milenković, A. Milenković, and E. Jovanov, "Hardware Support for Code
Integrity in Embedded Processors," in Proceedings of the 2005 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES 2005), San Francisco, CA, USA, 2005, pp. 55-65.

[74] A. Milenković, M. Milenković, and E. Jovanov, "An Efficient Runtime
Instruction Block Verification for Secure Embedded Systems," Journal of
Embedded Computing, vol. 4, January 2006, pp. 57-76.

[75] Intel, "Execute Disable Bit and Enterprise Security,"
<http://www.intel.com/technology/xdbit/index.htm> (Available December, 2009).

[76] A. Zeichick, "Security Ahoy! Flying the NX Flag on Windows and AMD64 To
Stop Attacks," <http://developer.amd.com/articlex.jsp?id=143> (Available
August, 2007).

[77] IBM, "IBM Extends Enhanced Data Security to Consumer Electronics Products,"
<http://www-03.ibm.com/press/us/en/pressrelease/19527.wss> (Available
August, 2007).

[78] T. Alves and D. Felton, "TrustZone: Integrated Hardware and Software Security,"
I.Q. Publication, vol. 3, November 2004, pp. 18-24.

[79] MAXIM, "Increasing System Security by Using the DS5250 as a Secure
Coprocessor," <http://www.maxim-ic.com/appnotes.cfm/appnote_number/3294>
(Available August, 2007).

[80] G. Perrotey and P. Bressy, "Embedded Devices: Security Implementation,"
<http://www.secure-machines.com/fichiers/technical%20white%20Paper-
Fev2006.pdf> (Available July, 2008).

[81] W. Shi, H. Lee, M. Ghosh, and C. Lu, "Architectural Support for High Speed
Protection of Memory Integrity and Confidentiality in Multiprocessor Systems,"
in Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, Brasov, Romania, 2004, pp. 123-134.

[82] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta, "SENSS: Security
Enhancement to Symmetric Shared Memory Multiprocessors," in Proceedings of
the 11th International Symposium on High-Performance Computer Architecture
(HPCA-11), San Francisco, CA, USA, 2005, pp. 352-362.

208

[83] M. Lee, M. Ahn, and E. J. Kim, "I2SEMS: Interconnects-Independent Security
Enhanced Shared Memory Multiprocessor Systems," in Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques,
Brasov, Romania, 2007, pp. 94-103.

[84] K. Patel, S. Parameswaran, and S. L. Shee, "Ensuring Secure Program Execution
in Multiprocessor Embedded Systems: A Case Study," in Proceedings of the 5th
IEEE/ACM International Conference on Hardware/Software Codesign and
System Synthesis, Salzburg, Austria, 2007, pp. 57-62.

[85] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, "Single-Level
Integrity and Confidentiality Protection for Distributed Shared Memory
Multiprocessors," in Proceedings of the 14th International Symposium on High
Performance Computer Architecture (HPCA-14), Salt Lake City, UT, USA, 2008,
pp. 161-172.

[86] C. Wang, J. Yeh, C. Huang, and C. Wu, "Scalable Security Processor Design and
Its Implementation," in Proceedings of the IEEE Asian Solid-State Circuits
Conference (A-SSCC 2005), Hsinchu, Taiwan, 2005, pp. 513-516.

[87] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N. Memon, "SAFE-OPS:
An Approach to Embedded Software Security," ACM Transactions on Embedded
Computer Systems, vol. 4, February 2005, pp. 189-210.

[88] J. Zambreno, D. Honbo, A. Choudhary, R. Simha, and B. Narahari, "High-
Performance Software Protection Using Reconfigurable Architectures,"
Proceedings of the IEEE, vol. 94, February 2006, pp. 419-431.

[89] SimpleScalar LLC, "SimpleScalar Version 4.0 Test Releases,"
<http://www.simplescalar.com/v4test.html> (Available January, 2010).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

